
A Dissertation submitted in fulfilment of the
requirements for the degree of Doctor of

Philosophy

Autonomic Management of Software
Defined Networks

DAIM can provide the environment for building autonomy in
distributed electronic environments - using OpenFlow networks

as the case study

Ameen Reda Banjar

Spring 2016

University of Technology, Sydney,
Faculty of Engineering and Information Technology

Centre for Real Time Information Networks

Supervisor
Professor Robin Braun

Co-supervisor(s)
Dr. Bruce Moulton

Certificate of Original Authorship
I certify that the work in this dissertation has not previously been submitted for a

degree nor has it been submitted as part of requirements for a degree except as
fully acknowledged within the text.

I also certify that the dissertation has been written by me. Any help that I have
received in my research work and the preparation of the thesis it self has been
acknowledged. In addition, I certify that all information sources and literature

used are indicated in the dissertation.

Signature of Candidate

——————————————————

—————— day of ——————, 2016

i

Acknowledgments

I would like to express my sincere gratitude to my supervisor Professor Robin Braun,
who guided me through this research, was a great source of encouragement, and
always made me go that extra mile to resolve the various dilemmas that lead to
this dissertation. I learned a lot from his mature view on topics from a high level
and excellent computer and networking skills. I am gratefully thanking him for
his guidance to me throughout the years. Also, his patience with me is always
acknowledged and appreciated. I would also thank my Co-supervisor, Dr Bruce
Moulton, for supporting me throughout this research work.
I am grateful to Dr Zenon Chaczko from the School of Computing and Commu-
nications for assistance in the publication of Springer book chapters, Chairing AP-
CASE’14 in Bali and being a member of my CA panel. Also, for the very helpful
technical chats and continuous support in the past years.
I am pleased to work in close collaboration with Pakawat Pupatwibul, my research
collaborator and best friend, and I am gratefully thanking him for his invaluable
contributions and innovative ideas towards this research project. I am so proud of
what we have achieved together, thank you Pakawat.
During the period of this research, I also benefited greatly from interactions and
discussions with my colleagues, namely Dr Abdallah AL Sabbagh and to whom I’m
deeply indebted. A special mention also goes to Md Imam Hossain from the School
of Electrical and Mechanical Engineering of ongoing solutions to the problems in
C/C++ programming and extensive help in setting up the testbed used for this
research. My big thanks also go to the anonymous reviewers for their work in
improving the quality regarding my publications which have been published and
being under review now.
The interactions, technical discussions and conversations with my friends and mem-
bers of the Centre for Real-time Information Networks helped me during the period
of this research, not only regarding resolving quick technical challenges but also with
regards to “lightening up”. I have enjoyed many useful and happy chats with them.
I have been very fortunate to have them around during my Ph.D. research study.
I am honoured to have got government’s scholarship from saudi arabia. Thank for
their generosity, which has allowed me to be able to pursue the degree. Without
this, I would not have been able to do it. I would also like to acknowledge the School
of Computing and Communications at UTS for ongoing travel and infrastructure
support.

iii

Last, but by no means the least, I would like to thank my family for their endless
support and all of the sacrifices that they have made on my behalf. Thank you to
my mother, Jamilah Banjar, also to my daughter, Miar. You have provided me with
plenty of love, patience, support, and encouragement over the years and for that I
am incredibly grateful.
Some contents in chapter 1 and chapter 2 have been submitted to UTS subjects
(32144: IT Research Preparation and 32931: Technology Research Methods). These
subjects aim to guide research students to prepare literature reviews also experience
in the design of research studies, in the analysis and interpretation of data, and in
report presentation. As these contents have not been published; they can not be
referenced but they can be searched by some software such as Turnitin.

iv

Abstract

Next generation networks need to support a broad range of services and functional-
ities with capabilities such as autonomy, scalability, and adaptability for managing
networks complexity. In present days, network infrastructures are becoming increas-
ingly complex and challenging to administer due to scale and heterogeneous nature
of the infrastructures. Furthermore, among various vendors, services, and platforms,
managing networks require expert operators who have expertise in all different fields.

This research relied on distributed active information model (DAIM) to establish a
foundation which will meet future network management requirements. The DAIM
is an information model for network solutions which considers challenges of auto-
nomic functionalities, where the network devices can make local and overall net-
work decisions by collected information. The DAIM model can facilitate networks
management by introducing autonomic behaviours. The autonomic behaviours for
communication networks lead networks to be self-managed and emerge as promising
solutions to manage networks complexity.

Autonomic networks management aims at reducing the workload on network op-
erators from low-level tasks. Over the years, researchers have proposed a number
of models for developing self-managed network solutions. One such example is the
common information model (CIM), which is described as the managed environment
that attempts to merge and extend the existing conventional management and also
uses object-oriented constructs for overall network representation. However, the
CIM has limitations coping in complex distributed electronic environments with
multiple disciplines.

The goal of this research is defined as development of a network architecture or a
solution based on the DAIM model, which is effectively distribute and automate
network’s functions to various network devices. The research first looks into the
possibilities of local decision-making and programmability of network elements for
distributed electronic environments with an intention to simplify network manage-
ment by providing abstracted network infrastructures. After investigating and im-
plementing different elements of the DAIM model in network forwarding devices by
utilising virtual network switches, it discovers that a common high-level interface
and framework for network devices are essential for the development of network
solutions which will meet future network requirements.

The outcome of this research is the development of (DAIM OS) specification. The
DAIM OS is a network forwarding device operating system which is compliant with

v

the DAIM model when it comes to network infrastructure management and provides
a high-level abstracted application programming interface (DAIM OS API) for cre-
ating network service applications. Through the DAIM OS, network elements will
be able to adapt to ever changing environments to meet the goals of service pro-
viders, vendors, and end users. Furthermore, the DAIM OS API aims to reduce
complexity and time of network service applications development.
If the developed DAIM OS specification is implemented and if it functions as pre-
dicted in the design analyses; that will result in a significant milestone in the devel-
opment of distributed network management.
This dissertation has an introduction in chapter 1 followed by five parts in order
to draw a blueprint for information model as a distributed independent computing
environment for autonomic network management. The five parts include lending
weight to the proposition, gaining confidence in the proposition, drawing conclusions,
supporting work and lastly is appendices.
The introduction in chapter 1 includes motivations for the research, main chal-
lenges of the research, overall objectives, and review of research contributions. After
that, to lend weight to the proposition as the first part of the dissertation, there
is chapter 2 which presents the background and literature review, and chapter 3
which has a theoretical foundation for the proposed model. The foundation consists
of a generic architecture for complex network management and agents to aggreg-
ate distributed network information. Moreover, chapter 3 is probably more about a
state of the art in software engineering than about real implementation to engineer
autonomic network management.
The second part of the dissertation is to gain confidence in the proposition which
includes attempting to implement the DAIM model in chapter 4 with some tests to
report good performance regarding convergence and robustness for the service con-
figuration process of network management. Also, the second part has a specification
of true abstraction layers in chapter 5. The specification of true abstraction layers
proposes a high-level abstraction for forwarding networking devices and provides
an application program interface for network service applications developed by net-
work operators and service providers. The implementation in chapter 4 is supported
by the fourth part of the dissertation in chapter 10 which supports the theoretical
foundation, designing, modelling, and developing the distributed active information
model via simulation, emulation and real environments.
The third part of this dissertation provides the way to draw conclusions as shown
in chapter 7 which has the overall research summary, validation of the propositions,
contributions and discussion, limitations and finally recommendations for future
works.
Finally are the appendices in Appendix A, Appendix B, Appendix C and Appendix D
which provide a developing code of the core DAIM model and show different setting
up for testbed environments.

vi

My Related Publications

Most of the technical discussions, contributions, and theories in this dissertation are
based on the following publications written by the author, and the other three are
co-authored:

A. International Journal Publications:

[J1] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
A comparative review: Accurate OpenFlow simulation tools for prototyping.
Journal of Networks, 10(5):322–327, 2015.

[J2] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Performance eval-
uation of tcp/ip vs. OpenFlow in INET framework using OMNeT++, and
implementation of intelligent computational model to provide autonomous be-
haviour. In Osaka acbpp actis 2014, number 2189-1028, pages 43–56, Osaka,
Japan, 2014. The International Academic Forum (IAFOR), The Asian Con-
ference on Technology, Information & Society 2014.

[J3] BANJAR, A., PUPATWIBUL, P., BRAUN, R. 2014, DAIM: a Mechanism to
Distribute Control Functions within OpenFlow Switches. Journal of Networks,
North America, 9, jan. 2014. Available by: goole shearsh < jnw090119>. Date
accessed: 08 Oct. 2014.

[J4] Banjar, A., Pupatwibul, P., Sabbagh, A.A. & Braun, R. 2014, ’Using an ICN
Approach to Support Multiple Controllers in OpenFlow’, International Journal
of Electrical & Computer Sciences, vol. 14, no. 2.

B. Chapter of Book Publications:

[B1] Banjar, A., Pupatwibul, P., Sabbagh, A. & Braun, R. 2015, ’Comparison
of TCP/IP routing versus OpenFlow table and implementation of intelligent
computational model to provide autonomous behavior’, In Computational In-
telligence and Efficiency in Engineering Systems, pages 121–142. Springer,
2015.

[B2] Pupatwibul, P., Banjar, A., Sabbagh, A. & Braun, R. 2014, ’An Intelligent
Model for Distributed Systems in Next Generation Networks’, in R. Klempous,

vii

J. Nikodem, W. Jacak & Z. Chaczko (eds), Advanced Methods and Applica-
tions in Computational Intelligence, vol. 6, Springer International Publishing,
pp. 315-34.

C. International Conference Publications:

[C1] Banjar, A.; Pupatwibul, P.; Braun, R.; Moulton, B., "Analysing the perform-
ance of the OpenFlow standard for software-defined networking using the OM-
NeT++ network simulator," Computer Aided System Engineering (APCASE),
2014 Asia-Pacific Conference on , vol., no., pp.31,37, 10-12 Feb. 2014

[C2] Pupatwibul, P., Banjar, A., Al Sabbagh, A. & Braun, R. 2013, ’Developing an
application based on OpenFlow to enhance mobile IP networks’, Local Com-
puter Networks Workshops (LCN Workshops), 2013 IEEE 38th Conference
on, IEEE, pp. 936-40.

[C3] Al Sabbagh, A., Pupatwibul, P., Banjar, A. & Braun, R. 2013, ’Optimization
of the OpenFlow controller in wireless environments for enhancing mobility’,
Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th
Conference on, IEEE, pp. 930-5.

[C4] Pupatwibul, P., Banjar, A. & Braun, R. 2013, ’Using DAIM as a reactive inter-
preter for OpenFlow networks to enable autonomic functionality’, Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, ACM, pp. 523-4.

[C5] Pupatwibul, P., Sabbagh, A.A., Banjar, A. & Braun, R. 2012, ’Distributed
Systems in Next Generation Networks’, 1st Australian Conference on the Ap-
plications of Systems Engineering ACASE’12, p. 32.

viii

List of Figures

1.1. Conventional Networks Vs. Programable Networks 9
1.2. SDN architecture Vs. SDN with DAIM architecture 14
1.3. Overview of research structure . 16
1.4. Dissertation plan . 19

2.1. Centralised Management Paradigm 28
2.2. Distributed Management Paradigm 29
2.3. Autonomic Network Management . 36
2.4. Increasing complexity to manage complicated system 38
2.5. Computer hardware architecture with GPU 39
2.6. Comparison between OpenGL and Vulkan with increasing complexity

of computer application . 40
2.7. Drawing Triangle by using OpenGL 43
2.8. Components of Smart Packets project, including ANEP Daemon and

VM within each device . 44
2.9. Software-Defined Networks (SDN) architecture 46
2.10. Routing Control Platform RCP . 48
2.11. Distributed Routing Control Platform RCP 48
2.12. Ethane architecture decoupling control logic 50
2.13. OpenFlow architecture, theoretically similar to Ethane 52
2.14. OpenFlow packet processing flowchart 54
2.15. Actions associated with Flow entry of the flow table within switch . . 55
2.16. Flow table entry includes matching, status and action 55
2.17. Header fields in the flow entry for (wildcard and exact fields) 56
2.18. OpenFlow stack layers and TLS/SSL channel to controller 58
2.19. NOX structure and components . 64
2.20. Overview of Beacon Architecture [59] 65
2.21. Project Floodlight Infographic [72] 66
2.22. Kandoo architecture . 67
2.23. HyperFlow architecture . 68
2.24. Onix architecture . 69

3.1. Software-Defined Networking Architecture 75
3.2. OpenFlow networks structure . 75
3.3. DAIM model structure . 77

ix

3.4. (A) Computer architecture, (B) SDN architecture, (C) DAIM archi-
tecture . 81

3.5. Left side shows the northbound (NBI) and southbound interface (SBI)
of SDN architecture compared to right side which presents DAIM
module architecture with super southbound interface (SSBI) 82

3.6. DAIM module structure supported by agents 83
3.7. DAIM agents provider and components 84
3.8. Packet processing within OpenFlow switch integrated with DAIM

model . 86
3.9. DAIM agent owns flow entries in DAIM model 87

4.1. Integrating DAIM model to OpenFlow switch 92
4.2. Establish the connection to DAIM . 93
4.3. DAIM exchanging information with OpenFlow switch 93
4.4. Simple setup of DAIM model with simple controllers and system re-

quirement database . 96
4.5. Hello message structure for local links discovery 99
4.6. Activity diagram of hello message (sending/receiving) sides 100
4.7. Links share message structure for linear topology 102
4.8. Links share message structure for tree topology 102
4.9. Links share message structure for ring topology 103
4.10. Links share message structure for mesh topology 104
4.11. Activity diagram of links share message (sending/receiving) sides . . 105
4.12. Activity diagram of switch alive message (sending/receiving) sides . . 106
4.13. Shortest path calculated by each DAIM and setting no flooding ports 108
4.14. Flow entries installation . 108
4.15. Mininet emulator shows empty flow entries tables 109
4.16. DAIM shows ARP broadcast flood (Mininet emulator) 110
4.17. flow-mod packet for matching and packet comes to SW_1 112
4.18. flow-mod sent by the DAIM model (Wireshark captured) 113
4.19. Flow tables after the first ping (Mininet emulator) 114
4.20. Flowchart of packet-in to the DAIM model 115
4.21. Ping traffic of DAIM model vs Legacy switch in linear topology . . . 118
4.22. Ping traffic of DAIM model vs Legacy switch in tree topology 120
4.23. Ping traffic of DAIM model vs OpenFlow-NOX in ring topology . . . 121
4.24. Ping traffic of DAIM model vs OpenFlow-NOX in mesh topology . . 123
4.25. Average RTT of different DAIM model topologies 125
4.26. Latency of DAIM vs. Latency of NOX vs. Latency of POX 126
4.27. Latency responses of DAIM, NOX and POX 127

5.1. DAIM OS network architecture . 136
5.2. Different components in the DAIM switch platform 139
5.3. Interfaces between different DAIM switch platform components . . . 140

x

5.4. The DAIM OS is kept compatible across different hardware and soft-
ware configurations via different middleware 141

5.5. DAIM OS modules interconnectivity 143
5.6. Entries indicators in a switch port for a table configuration 144
5.7. The DAIM OS means of information retrieval 145
5.8. Link connecting two adjacent DAIM switch devices 157
5.9. Packet flow in a DAIM switch . 170
5.10. Retaining of incoming packets by the DAIM OS 175
5.11. DAIM cloud fetching DAIM switch id using DAIM OS cloud messages 184
5.12. DAIM OS cloud message structure for data ordering 185
5.13. DAIM OS packet forwarding pipeline 187
5.14. Forwarding of matching packets by the DAIM OS 188
5.15. Swapping internet access to hosts under two DAIM switches 189

10.1. The DAIM model uses simulation, real network, and emulation based
for implementation to draw the conclusion 240

10.2. Traditional network topology in OMNeT++ 241
10.3. OpenFlow network topology in OMNeT++ 241
10.4. Data Transfer Rate DTR of traditional and OpenFlow networks . . . 242
10.5. Round Trip Time RTT of traditional and OpenFlow networks 243
10.6. OpenFlow network topology for Australian cities 245
10.7. Performance of OpenFlow networks based on controller location . . . 246
10.8. RTT for controller location near to (Sydney/Perth) 247
10.9. Controller near Sydney (RTT of traditional vs. OpenFlow networks) 248
10.10.Controller near Perth (RTT of traditional vs. OpenFlow networks) . 248
10.11.Connection Establishment and Termination of TCP 250
10.12.Connection Establishment and Termination of OpenFlow Networks . 251
10.13.Architecture of the DAIM model for Basic carrier functionality . . . 252
10.14.Basic carrier topology testbed connected with one controller 252
10.15.Latency of NOX vs. Latency of DAIM with NOX 253
10.16.Latency of POX vs. Latency of DAIM with POX 254
10.17.RTT of POX vs. RTT of DAIM with POX 255
10.18.Average Response for Latency of NOX and DAIM with NOX/ POX

and DAIM with POX . 256
10.19.Throughput of NOX vs. Throughput of DAIM with NOX 256
10.20.Throughput of POX vs. Throughput of DAIM with POX 258
10.21.Average Response for Throughput of POX, NOX and DAIM with

NOX/ POX . 258
10.22.Semi-Autonomous functionality of DAIM model 259
10.23.Semi-Autonomous DAIM model testbed 260
10.24.Semi-Autonomous of DAIM model with packet size increasing 261
10.25.RTT for NOX, POX and Semi-Autonomous DAIM 262
10.26.RTT for NOX and Semi-Autonomous-of-DAIM with packet size in-

creasing . 263

xi

10.27.Fully Autonomous functionality of DAIM model 264
10.28.Integrating the DAIM model to Raspberry Pi 264
10.29.Topology of DAIM model integrated to Raspberry Pi in Lab 265
10.30.RTT for DAIM vs. POX . 266

A.1. GitHub page for DAIM model . 288
A.2. Memory Block for storage module . 315

C.1. Mininet structure and components [77] 332
C.2. GUI for NOX controller with log view and topology view 334

D.1. Raspberry Pi hardware components of model (B) 339
D.2. OpenFlow networks using Raspberry Pi integrated with DAIM model 340
D.3. Verifying OpenFlow dissector in Wireshark 345
D.4. Captured packets in Wireshark for OpenFlow 346

xii

List of Tables

1.1. Decomposition of the knowledge 10

2.1. IBM autonomic computing Self-CHOP concepts [40] 33
2.2. Autonomic network management and traditional network manage-

ment . 37
2.3. Comparing between OpenGL and Vulkan [145, 127] 41
2.4. Controller to switch messages . 57
2.5. Symmetric messages . 59
2.6. Asynchronous messages . 60
2.7. Comparison of network layers and functionality between TCP/IP,

OpenFlow, and traditional telephone 61
2.8. Distributed controllers approaches . 70

3.1. Comparison of DAIM Protocol and DAIM API 84
3.2. Comparison of OpenFlow and DAIM model processes 88

4.1. Discovery of Topology by DAIM model as steps 97
4.2. packet-in for ARP request in Wireshark 110
4.3. packet-in for ARP reply in Wireshark 111
4.4. packet-in for ICMP request in Wireshark 113
4.5. Testing TCP bandwidth between h1 and h2 of Linear topology 117
4.6. Testing UDP bandwidth between h1 and h2 of Linear topology 119
4.7. Testing TCP bandwidth between h1 and h2 of Tree topology 119
4.8. Testing UDP bandwidth between h1 and h2 of Tree topology 120
4.9. Testing TCP bandwidth between h1 and h2 of Ring topology 122
4.10. Testing UDP bandwidth between h1 and h2 of Ring topology 122
4.11. Testing TCP bandwidth between h1 and h2 of Mesh topology 124
4.12. Testing UDP bandwidth between h1 and h2 of Mesh topology 124

5.1. DAIM OS modules tasks . 142
5.2. The DAIM switch state flags and their meaning of setting 149
5.3. The DAIM switch port flags and their meaning of setting 153
5.4. Entity state flags and their meaning of setting 154
5.5. Switch link state flags and their meaning of setting 158
5.6. Port state flags and their operating mode 163
5.7. Entry identification variables for configuration tables 176
5.8. DAIM tables configuration in DAIM switch 1 by DAIM application . 189

xiii

5.9. DAIM tables configuration in DAIM switch 2 by DAIM application . 190

6.1. DAIM OS actions on DAIM information table fields 194
6.2. DAIM OS actions on Switch table fields 195
6.3. DAIM OS actions on Switch port table fields 196
6.4. DAIM OS actions on Entity table fields 197
6.5. DAIM OS actions on Entity port table fields 198
6.6. DAIM OS actions on Entity ARP table fields 198
6.7. DAIM OS actions on Link table fields 199
6.8. DAIM OS actions on Packet forwarding table fields 200
6.9. DAIM OS actions on Switch configuration table fields 201
6.10. DAIM OS actions on Switch port configuration table fields 201
6.11. DAIM OS actions on Entity configuration table fields 202
6.12. DAIM OS actions on Link configuration table fields 203
6.13. Flow rules by different entries in Packet forwarding table 204

10.1. OMNeT++ channel types . 244
10.2. Distance between Australian cities 244

A.1. Actions of public functions in the object list class 317
A.2. API dependencies for DAIM modules 318

B.1. Real network vs. network simulation [5] 326

D.1. Open vSwitch configuration Summary 341

xiv

Nomenclature

AC Autonomic Computing

ACS Autonomic Computing System

AI Artificial Intelligence

ANM Autonomic Network Management

ANS Autonomic Nervous System

API Application Programming Interface

AS Autonomous System

CIM Common Information Model

CLI Command Line Interface

CMIP Common Management Information Protocol

CMIS Common Management Information Service

CPU Central Processing Unit

DAIM Distributed Active Information Model

DAIM OS DAIM Operating System

DMTF Distributed Management Task Force

DTR Data Transmission Rate

GPU Graphics Processing Unit

HD Hard Drive

iBGP interior Border Gateway Protocol

ICN Information-Centric Networking

IOS International Organisation for Standardisation

xv

IP Internet Protocol

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MIB Management Information Base

MTU Maximum Transmission Unit

NE Network Elements

NETCONF Network Configuration Protocol

NGN Next Generation Network

NIB Network Information Base

NM Network Management

NMS Network Management System

NOS Network Operating System

NSOS Network Switch Operating Systems

OS Operating System

OSS Operating Support System

P2P Peer-to-Peer

POSIX Portable Operating System Interface

POX Python based controller

QoS Quality of Service

RAM Random-access memory

RCP Routing Control Platform

SDN Software-Defined Networking

SID Shared Information and Data Model

SNMP Simple Network Management Protocol

SRD System Requirement Database

xvi

TCP Transmission Control Protocol

TLS Transport Layer Security

TMF TeleManagement Forum

UML Unified Modelling Language

XML Extensible Markup Language

XML-RPC XML-encode Remote Procedure Call

xvii

Contents

Acknowledgments iii

Abstract v

Nomenclature xv

1. Introduction 1
1.1. Motivations . 3

1.1.1. The Swinging Pendulum of Network Structure 4
1.1.2. Evolve Networks Regularly 5
1.1.3. Limitation of Current Networking 5

1.2. Autonomic Communication . 7
1.2.1. Objective of Autonomic Network Management 7
1.2.2. Challenges of Fully Freedom Management 8
1.2.3. Autonomics Abstraction Layers 8
1.2.4. Possible Development Environments 9
1.2.5. Network management issues 9
1.2.6. Using OpenFlow networks as a case study 11

1.3. Research Objectives and Scope . 11
1.3.1. Objective . 12
1.3.2. Scope . 12

1.4. Research Proposition . 13
1.4.1. Core Proposition . 13
1.4.2. Attendant Propositions . 13

1.5. Overview of Methodological Framework 15
1.6. Statement of Contributions . 15
1.7. Overview of Dissertation Structure 18

I. Lending Weight to the Thesis 21

2. Background and Literature Review 23
2.1. High level background . 23
2.2. Network Management . 24

2.2.1. Network management functions and protocols 25
2.2.2. Network Managing Paradigms 27

i

2.3. Automatic and Autonomic Systems 31
2.4. Autonomic Computing Concepts . 32
2.5. Introducing Autonomic Communication 32

2.5.1. Lesson Learnt from Similar Fields 34
2.5.2. Human Biological Mechanisms 34
2.5.3. Possibility of Autonomic Network Management 35

2.6. Managing Complicated System by Increasing Complexity 38
2.6.1. Understanding Complex and Complicated system 39
2.6.2. Possibility of Implementing Complexity to Complicated System 42

2.7. Introducing a New Norm of Networking (SDN) 45
2.7.1. Major contributions toward SDN paradigm 47
2.7.2. Centralised and Distributed SDN Controllers 59

2.8. Information Models for network management 69
2.8.1. CIM from (DMTF) . 71
2.8.2. SID from (TMF) . 71
2.8.3. Issues of CIM and SID . 71

2.9. Summary . 72

3. Theory of The Proposed Model 73
3.1. Restatement of the Thesis . 74

3.1.1. Uniqueness of DAIM model 76
3.1.2. DAIM model Vs. current Information Models 77
3.1.3. Objectives of the DAIM model 78

3.2. DAIM model Architecture . 79
3.2.1. Describing the DAIM model 82
3.2.2. Packet processing within DAIM model 85
3.2.3. Risk Scenarios of DAIM model 87

II. Gaining Confidence in the Thesis 89

4. Attempting to Implement DAIM Model 91
4.1. Introduction . 91
4.2. Setting up the Demonstration . 91

4.2.1. Integrating DAIM model to OpenFlow Switch 92
4.3. Simple Reference Implementation: . 94

4.3.1. DAIM model components . 94
4.3.2. Discover Networks Topology 95
4.3.3. Calculating the Shortest Path with DAIM model 106
4.3.4. Flow Table in DAIM model with Example of Ping 107
4.3.5. Verifying DAIM model Functionalities 114
4.3.6. DAIM model Recovery . 127
4.3.7. Discrepancy of the DAIM model implementation 128

ii

5. Specification of DAIM OS 131
5.1. Introduction . 131

5.1.1. Scope . 132
5.1.2. Terms and definitions . 132

5.2. DAIM Operating System (OS) overview 135
5.2.1. DAIM operating system (DAIM OS) 137
5.2.2. Network flow management by DAIM OS 137
5.2.3. Tables in DAIM OS . 137

5.3. DAIM switch overview . 138
5.3.1. DAIM switch . 138
5.3.2. DAIM application . 138
5.3.3. DAIM switch platform . 138
5.3.4. DAIM switch stack . 138

5.4. DAIM OS model . 141
5.5. DAIM OS table model . 143
5.6. DAIM OS information retrieval model 144
5.7. DAIM OS tables description . 146

5.7.1. Information tables . 146
5.7.2. Network management tables 158

5.8. DAIM OS API description . 166
5.8.1. Reading of DAIM tables data 167
5.8.2. Writing data to DAIM tables 169
5.8.3. Catching signals from the DAIM OS 176

5.9. DAIM Cloud . 179
5.10. DAIM OS System API . 180
5.11. DAIM OS cloud protocol . 181

5.11.1. DAIM OS cloud message header 181
5.11.2. DAIM OS cloud messages . 181

5.12. DAIM OS packet forwarding pipeline 187
5.13. DAIM Switch network design scenario 188

5.13.1. Scenario A: a simple enterprise network 188
5.14. Conclusion . 190

6. Extra Details for DAIM OS Specification 191
6.1. DAIM OS API description . 191

6.1.1. Reading of DAIM tables data 191
6.1.2. Writing data to DAIM tables 194
6.1.3. Catching signals from the DAIM OS 215

6.2. DAIM OS cloud protocol . 218
6.2.1. DAIM OS cloud messages . 218

iii

III. Drawing Conclusions 221

7. Conclusion 223
7.1. Research Summary . 223
7.2. Validation of Research Propositions 224
7.3. Research Limitation . 229

8. Research Contribution and Discussion of Findings 231

9. Direction for Future Works and Recommendations 235

IV. Supporting Work 237

10.Supporting the Proposed Model Implementation 239
10.1. Exercise OpenFlow Networks in OMNeT++ 239

10.1.1. Performance of OpenFlow Vs. Traditional Networks 239
10.1.2. Implement OpenFlow to Australian cities 243

10.2. Exercise the DAIM model via Mininet 249
10.2.1. Integrating DAIM model to OpenFlow Switch 249

10.3. Integrating DAIM model with Raspberry Pi 264

V. Appendices 285

A. DAIM model with a Simple Controller 287
A.1. DAIM model Header Files . 287

A.1.1. Controller Header . 287
A.1.2. ARP Header . 290
A.1.3. Ethernet Header . 291
A.1.4. Communication Header . 291
A.1.5. OpenFlow Header . 292

A.2. Code of DAIM model and Controller 294
A.2.1. Main Cpp . 294
A.2.2. Controller Cpp . 296
A.2.3. Communication Cpp . 312

A.3. Storage module of the DAIM model 315
A.4. API dependencies for DAIM modules 317
A.5. Basic carrier for OF messages . 319

B. OMNeT++ (Simulation Environment) 325
B.1. Installing OMNeT++ in Linux OS 325
B.2. Import INET framework to OMNeT++ 327
B.3. Import OpenFlow in OMNeT++: . 328
B.4. OMNeT++ components: . 328

iv

B.5. Establish / Terminate Connection . 329
B.5.1. Traditional Networks . 329
B.5.2. OpenFlow Networks . 330

C. Mininet (Emulation Environment) 331
C.1. Building SDN lab environment . 331

C.1.1. Installing SDN Controller (NOX) 331
C.1.2. Installing Mininet . 333

C.2. Basic DAIM model with OpenFlow 336
C.2.1. Introducing controller benchmarker 337

D. Raspberry Pi (Real Environment) 339
D.1. Setting up OpenFlow on Lab . 340
D.2. Configuration summary . 340

D.2.1. Assign static IP for network interfaces 341
D.2.2. Setting up OpenFlow and DAIM 341
D.2.3. Setting OpenVswitch for Raspberry Pi 342
D.2.4. General configuration for Open vSwitch 343
D.2.5. Running DAIM model in Raspberry Pi 344

D.3. Installing Wireshark Dissector for OpenFlow 344

v

1. Introduction

Modern world needs and necessities drive network technologies to be improved
significantly in performance, complicatedness, functionalities and other aspects.
Presently, networking has become very complicated to manage, to control, to activ-
ate, and to monitor. Also, networking structures become insufficient and redundant.
Diversity in services, platforms, products and devices available from multiple vendors
require more effort to be managed. This heterogeneity leads infrastructure to be in-
creased in complicatedness which is hard to configure, maintain, reengineer, recover
and operate [102]. For instance, operators should configure, manage, and monitor
the network’s equipment, which leads to complicated techniques to provide services
[4]. The operator is required to administer centrally such a system for performing all
necessary tasks including detection of changes, configuration, recovery upon failures
and provide a maximum of excellent services and quality [8, 4].
These processes of network management are very dependent on the performance
of the operators. According to Robin Braun and Frank Chiang 2008, management
of these network technologies is usually centralised, therefore [102]; it is required
more effort to develop a scalable system with efficient performance to address the
complicatedness. In future, a better level of services needs to be managed in a
scalable manner.
In addition, there is a gap between market requirements and network capabilities
from the vendor’s side, as the network operators need to design a network according
to requirements of individuals, which limits their abilities [64]. Moreover, vendors
have a lack of standards and open interfaces [64]. Network carriers have attempted
to cope, by providing and developing technical solutions including protocols and
various standard procedures for regulating the transmission of data between net-
work elements [130]. Besides, the network carriers should provide an efficient level
of performance, high consistency, more connectivity as well as rigorous standards
of data protection. However, it is hard to accomplish the network management ap-
proaches, because of mechanism path, which may take several years to develop a
new fully designed protocol, and even longer for it to become widely spread [126, 31].
Also, characteristics of incremental properties, complicatedness of new network op-
erations and missing functionalities of the network elements should be considered
[118]. There are many difficulties in adding/removing devices such as configuration
difficulty, which must use device-level management tools [64].
Currently, many network management systems pursue a centralised paradigm, where
all of the computation is processed at a central point. An example of central man-

1

Introduction

agement point is, simple network management protocol (SNMP) which is a fully
centralised management paradigm [4]. Moreover, in today’s networks, there are
many occurrences of network management complicatedness and limitations such as
lack of flexibility and bottlenecks, which might not be solved adequately by the fully
centralised paradigm [21]. The centralised paradigm for network management is in-
sufficient to meet the requirements of a complicated distributed electronic environ-
ment [106]. Many technological innovations have been made to address these issues
such as autonomic communication networking, computing network applications, and
information modelling; all have played significant roles in managing the complicated
distributed electronic environment. Also, large scale current networks have become
more complicated and difficult to manage [115, 113]. The centralised management
or cluster-based server structures mostly focus on reducing management costs by
enabling innovative services [64]. Effective management requires monitoring, inter-
preting, and handling behaviour and performance of managed resources to ensure
that there is an adequate level of Quality of Service (QoS) [41]. For example, oper-
ating support system (OSS) is considered as a new management structure to cope
with complicated distributed network systems [102].

Hence, network management challenges lead network vendors to use IBM auto-
nomic computing (AC) concepts within the network to be managed autonomically
[40]. Then, networks will behave perfectly and network operators can become freed
of some low-level management tasks [40]. In this context “autonomic” means that
each device can draw its own adaptation strategies, according to the system’s ob-
jectives in order to meet service satisfaction within managed resources [36]. Due to
the increase of network management difficulties, AC is playing a major role and is
promising as a solution to address the challenges of distributed electronic environ-
ments. IBM aims to provide systems with the ability to adapt changing conditions
of a dynamic environment by the autonomic computing [40]. Moreover, autonomic
computing is considering a universal concept of Self-X properties with adaption
strategies which include self-chop (self-configuration, self-healing, self-optimisation,
and self-protection) [40]. These self-X functionalities are the key characteristics for
autonomic computing, described in the IBM blueprint [44, 43, 40].

There is a need for an open and flexible architecture to implement the autonomic
computing functionalities. Therefore, industry has developed a new network norm
called Software-Defined Networking (SDN) architecture aiming to reduce complic-
atedness of management [64]. The main idea of SDN approaches is to separate
functionality of data path from control path. The data path remains in a switch,
whereas higher level routing decisions are separated in a commodity device called a
controller (a standard server) [64]. The switch and controller can communicate using
OpenFlow protocol, which is considered as a first standardisation implementation of
SDN approach [83]. OpenFlow defines messages for receiving packets and sending
packets [100]. As advantages of SDN approach, companies get the programming
ability to control the network with high scalability and flexibility, which can adapt
easily according to ever changing circumstances. The layers of SDN architecture

2

Introduction

include application, network operating system (NOS), and forwarding layers [64].
The NOS layer has Application Programming Interfaces (APIs) so it is able as a
possible platform to implement autonomic functionalities such as self-protection and
self-optimisation [120, 43].

This research proposes a new model called distributed active information model
(DAIM) in which it is expected that the distribution active information model will
be implemented in OpenFlow-based SDN, to meet the requirements of the autonomic
components of the distribution network like self-configuration [99]. The autonomic
approach is the ability to provide the network with new services without reconfig-
uring the individual device or waiting for its launch from the vendors [47]. DAIM is
a sustainable information model, which collects, maintains, updates and synchron-
ises all the related information [102]. Moreover, DAIM offers adaptation algorithms
embedded with intelligent agents as functions and information objects to be applied
to such complicated systems [36, 102]. Also, adopting DAIM can manage complic-
ated systems in any distributed network, which can then be autonomous, adaptable,
and scalable [116, 117]. DAIM structure is proposed with the hope to address the
schemes of some previous network protocols such as SNMP [118], Common Inform-
ation Model (CIM) and some mechanisms like Policy-Based Network Management
[36, 102].

Ultimately, the proposed DAIM will hopefully address the limitations of current
approaches and future distributed network systems, aiming at the autonomic com-
puting management strategy [36, 115]. Also, DAIM approach will also satisfy the
requirements of autonomic functionality for distributed network components like
self-learning, self-adaptation and self-CHOP (configuration, healing, optimisation
and protection) [115, 99]. Thus, each component can be adaptable according to any
change in conditions of the dynamic environment without direct human interven-
tion. It is outside the scope of this research to develop comprehensive strategies.
Rather, it is the intention to prove that it is possible to provide autonomic be-
haviour within a distributed computing environment. This environment operated
by OpenFlow-based for DAIM and this distributed computing environment has the
ability to function as an operating system in a Software Defined Network sense.

1.1. Motivations

This section discusses the motivations behind this research in term of an import-
ance of managing network for universe and how it is developed (see subsection 1.1.1),
evolving of networks regularly and necessity to involve autonomic functionalities to
support networks management (see subsection 1.1.2), and finally, using the capabil-
ity of programmable networks that would overcome the limitation of current network
management (see subsection 1.1.3). Each motivation is presented in detail in the
following sections:

3

1.1 Motivations

1.1.1. The Swinging Pendulum of Network Structure

In the beginning
When telephony networks were first built in the early 1900’s, all the computing
power was in human brains [133]. The only way networks could be managed was by
using centralised manual exchanges [137]. Data and management paths where used.
When the first automatic exchanges arrived, they just mimicked manual exchanges
[138]. Gradually the data plane was separated from the management plane. All the
allocation of resources was done before a communication could be made. System
users did not understand the separation of work required to make a connection, and
hence had very little need for the “layered” structure.

The arrival of computing and packets of data
The 1970’s saw the rapid increase of computing power. According to Moore’s Law
[142], the power made it possible to shift the computing needs of the network to the
end points, away from the centre. This power also made it possible for the division of
data into “chunks” which were called packets [142]. Packets get delivered based on
the meta-data that they carry with them (To and from address etc.) Then adding
meta-data to these “chunks” of data to become packets and can be delivered by
the network elements themselves based on the 7/5 network layers of the OSI model
[143, 136].

The rise in complicatedness
All of this proliferation of devices, and division of labour gives rise to the alloca-
tion of management to the network elements, and hence to the massive growth in
complexity seen today. A recent count suggests that there are upwards of 15 Billion
connected devices by at least 1 CPU [144]. The networks have become “complicated”
in the classic sense of the word; they are stochastic, they are non-linear, they are
chaotic, and they are intractable. However, distributed nature forces the combina-
tion of the management and data forwarding paths, leading to further management
complicatedness and vulnerability [64].

Need for a new network architecture
For future network growth, the complexity is considered as an issue as the real in-
hibitor. The barrier is presenting the complicatedness, and not optics or electronics.
The complicatedness must be reduced through the re-evaluation of the basic man-
agement model [64]. There are some of possibilities to achieve the needs such as
separating the planes of data and management or through the network requirement
swapping with network parameters. The separation will provide a global overview
and optimum in a new network [64]. That happened in the 5/7 layers model, where
there are only two areas of work, data and management planes. In more detail, there
are a boss and workers. Existing layer 2 functions for all data forwarding and within

4

Introduction

the management function, there are layer 3 and 4 which have been subsumed. For
instance the 7 layers structure, which has a physical layer presented in telephone
network that the only thing which makes sense and layer 3 is being done by the
telephone numbering system [137]. Therefore, separation of layers for management
is needed in the new network architecture [136].

1.1.2. Evolve Networks Regularly

Enormous changes have happened in the area of networking in the last decade such as
Internet, and wireless technologies. These two factors reflect in the area of network-
ing; they changed the way of network services such as global usage of applications
anywhere and anytime. Moreover, all of this proliferation of service, devices, and
division of labour gives rise to the allocation of management to the network ele-
ments, and hence to the massive increase in complicatedness. For instance, a recent
count suggests that worldwide there is upwards of 15 billion connected devices with
at least 1 CPU [144]. However, for this technology development, there are many
issues, one of them is that network technologies have become complicated in the
classic sense of the word, they are: stochastic, non-linear, and intractable. For the
operator, they drive their capabilities and they respond to users’ needs to give users
all the benefit they can get from the services. Like any other system, the network
has to change and evolve regularly.

The only response to this unsustainable situation is innovation in the way networks
are managed and controlled. It is necessary to develop new networks that can auto-
matically adapt their configurations to the increasing and changing requirements of
end users and service providers. Therefore, future networks need to be more flex-
ible, capable of reorganising in an autonomic way when new types of equipment or
services are introduced, reducing the need for human intervention and consequently
associated costs [34, 46]. Also, future networks should be able to improve their per-
formances when needed to respond to unusual changes in the traffic pattern. The
innovation should help to design new types of equipment, protocols, and network
architectures and even services that can be self-managed, to reduce the operational
burden on the operators by the networks themselves making decisions regarding
configuration, optimisation, and protection [34, 46].

1.1.3. Limitation of Current Networking

The existing networks have rapidly grown in performance, complicatedness, func-
tionalities and other aspects. Also, networking has become very complicated to
manage, to control, to activate, and to monitor, so these management components
may generate significant challenges in management, operations and maintenance of
networks [118, 116]. Moreover, increases in network requirements, are considered as

5

1.1 Motivations

challenges for management to cope with such a complicatedness. Also, many ser-
vices have changed human lives such as computing environments, wireless networks,
and many services based on IP [117].
Traditional network management solutions called SNMP and Common Management
Information Service and Protocol CMIS/ CMIP have shown limitations with regard
to the increased scale and complicatedness of existing networks as the intelligence
of solving the problems was always outside the network and usually with human in-
tervention. In more detail, existing network architectures are not meeting the users
and carriers requirements, because of the limitations and constraint of existing tech-
nologies, which include complexity of heterogeneity, diversity of policies, scalability
and vendors structure dependencies [36, 102].

Complicatedness of heterogeneous technologies
Network protocols are designed to connect networks nodes over distance, link delay,
and topologies. However, industries develop more protocols, because existing pro-
tocols are not efficient in meeting requirements, seeking for better performance,
reliability, connectivity, and security. Then, with each new protocol invented, there
are problems which appear. An example would be adding/removing nodes that re-
quire many configurations for switches and routers and so on. Moreover, adopting
heterogeneous technologies need IPs to be converged for data, video, traffic and so
on. Administrators should configure each node with adjustment of parameters (e.g.
bandwidth, QoS, dependencies) since the network can not be adapted dynamically
to circumstances changes (e.g. traffic, apps, requirements) [36, 116, 117].

Diversity of configuration policies
It is difficult for network administrators in traditional networks to set consistent
configuration and policies, because of increasing of current demands. Thousands of
devices and mechanisms need to be configured by administrators for implementa-
tion of wide network policies. Then, a certain level of simplification provided by
automating some aspects of management is required. However, they are not enough
to cope with the ever increasing complicatedness [116, 104].

Scalability for growth in technology
The rapid expansion of technologies demands required increase in networking man-
agement. Also, more configurations are needed for increasing in devices complic-
atedness. Therefore, to remain competitive, and scalable; carriers must provide
higher value and better services with better performance for their clients [115].

Vendors production and business requirements
Vendors are seeking to cope rapidly, to the increasing of business requirements and
user needs, by trying to produce new services and capabilities. However, there is
a gap between business requirements and network capabilities from the vendor’s

6

Introduction

side, as the network operators need to design a network according to requirements
of individuals, which limits their abilities [64]. Moreover, vendors are faced with
a lack of standards and open interfaces [64]. Network carriers attempted to cope,
by providing and developing technical solutions including protocols, and various
standard procedures for regulating transmission of data between network elements
[130]. Besides, the network carriers should provide an efficient level of performance,
high consistency, more connectivity as well as rigorous standards of data protection.
However, it is hard to accomplish the network management approaches caused by
mechanism path; it may take several years to develop a new fully designed pro-
tocol, and even longer for it to spread widely [126, 31]. Also, there is a need to
consider characteristics of incremental properties, complicatedness of new network
operations and missing functionalities of the network elements [118]. Thus, develop-
ing such complex systems management will achieve an efficient autonomic network
management, which can fulfil the requirements. The outcomes of this research can
manage the distributed network. In other words, business needs drive network man-
agement, which requires operators to reconfigure a number of components. Thus,
having the autonomic network management (ANM) is considered as motivation.

1.2. Autonomic Communication

This section introduces approaches towards autonomic network management. Cur-
rently, many initiatives are launched to push for innovations in the area of self-
adaptation. These initiatives with different names such as autonomic network man-
agement (ANM) meet the emergence of a new generation of networks and services,
which have self-management in network capabilities [46]. The intention is to avoid
as much as possible the need for human interventions. For more details, autonomic
communication has objectives, challenges, and abstracting layers concepts as in the
following sections:

1.2.1. Objective of Autonomic Network Management

The objective of autonomic network management is to design new management
solutions, which are able to cope with complicatedness, heterogeneous scalability of
traditional and future networks. Autonomic network management is developing new
solutions to allow the networks to be self-managed [46]. The solutions should benefit
from the autonomic concepts to reach the required flexibility and adaptability to deal
with any unpredicted circumstances.

The autonomic network management solutions aim to develop management systems,
which are

• capable of self-managed [46] and

7

1.2 Autonomic Communication

• reducing the intervention of the human operators who are not able to deal
with increases of complicatedness [38] and

• to deal with unpredicted circumstances.
Skilled administrators seek to provide better performance and services by doing
more and more configuration; however, the network management solutions with
some level of intelligence capability can improve over time. Then, humans will only
need to interact with the system using some high-level language and goals, but not
low-level commands [34, 37]. Thus, autonomic management solutions will reduce
operational tasks for network administrators.

1.2.2. Challenges of Fully Freedom Management

There are many techniques to present autonomic properties as presented earlier
for autonomic network management. In autonomic network management, admin-
istrators should dynamically configure policies across the network elements in the
network. Then network elements should exhibit autonomic behaviour in term of
adaptation to changing circumstances to find better solutions. These adaptations
are debated by some researchers either to be determined by administrators goals and
constraints, or the emerging behaviours and collective behaviours will freely reach
optimum decision without any human intervention [39, 42, 46].
From an administrator’s point of view, the full freedom of the network is difficult to
be accepted today, so “self-management” would be appropriate only if it were to be
overseen in a manner understandable to a human controller. For example, the In-
ternet in the past has shown that several visions could coexist. However, autonomic
network management presents many challenges that need to be addressed. Among
these challenges, the smooth migration from existing management to fully auto-
nomic network management will require an accurate mapping between underlying
data models and high-level semantic models to efficiently control the underlying het-
erogeneous network equipment and communication protocols. Moreover, a high-level
governance directive should also be correctly mapped down to low-level adaptation
and control policies to be enforced in the individual heterogeneous elements. This
mapping can be even more complicated when one takes into account the context of
a specific service chain or flow within a more richly connected network of managed
elements [120, 43, 44, 20].

1.2.3. Autonomics Abstraction Layers

Maintaining knowledge as a base for the entire system can help to describe the net-
work situation and then that will lead to the right actions to perform. Therefore,
the knowledge should be classified in different types, which can support autonomic
network as diverse situation [45]. The knowledge can be structured in various levels

8

Introduction

Figure 1.1.: Conventional Networks Vs. Programable Networks

of abstraction [39]. The following table presents a decomposition of the knowledge
in three types: domain knowledge, control knowledge, and problem determination
knowledge (Table 1.1) [42]. Moreover, many initiatives have been launched to ad-
dress issues of the knowledge base for autonomic network management, but there
has been no agreement so far either on a standard specification of this knowledge or
a common architecture [39, 45].

1.2.4. Possible Development Environments

This section explores possible development environments and requirements for im-
plementing the new model which relies on software development. There are some
research efforts to develop programming languages for building network architecture,
which is compiled on run-time to provide high-level abstractions to the network man-
agement models [64, 119]. The aim is to control the network using programming
approach to be autonomically managed. For example, OpenFlow is a case study to
implement DAIM model for autonomic network management (see Fig. 1.1) [115].

1.2.5. Network management issues

Network management issues are the main concern in this research, especially for
distributed electronic environments. Then, this research has been attempted to
support distributed electronic environment with autonomic behaviour by using the

9

1.2 Autonomic Communication

Table 1.1.: Decomposition of the knowledge

Domain
knowledge

Providing a
conceptualisation of

the managed
elements, their

properties, and the
relations between

them

• Collect information about all
the components and concepts of
the target domain.
• Having all the information
about network elements,
configuration, links, and monitor
them.
• Relation between the different
elements.

Controlling
knowledge

Representing the
ways to manage and
control elements of
the entire network

• Determine whether or not to
update and which changes need
to be made in networks
components by means of high
level business requirements or
any circumstances which may
happen.
• Organising neutral way to
define control policies to support
decision making process of the
networks.

Problem
Determin-

ation
based on

knowledge

Analysing and
conclusion about
situations to find

solutions and
describes the

problems related to
the entire network

• Represents the information
captured or inferred.
• Specifies how to get new
information from existing
information to detect symptoms
and do actions.
• Allows the system to learn
about situations and optimise its
performance.
• Defines a standard approach
to represent issues and find
solutions.

10

Introduction

DAIM model, for becoming self-managed networks. In this regard, the research
discusses some matters to support network management in the following points:

• Single domain network management, and how that has global overview and
optimum performance [17]

• Distributed network management, and how that provides robustness and
scalability

• Difficulties and challenges of managing distributed network environments, for
example, wireless sensor networks (WSNs), bush fire alarming system, and
road traffic systems

• Introducing autonomic network management, which can be a solution to facil-
itate management of distributed network environments, and satisfy autonomic
properties self-X.

1.2.6. Using OpenFlow networks as a case study

The network management and devices are increasing in complicatedness and diffi-
culty of management. Among various vendors, services, and platform, managing
networks require expert operators. This research explores the introduction of pro-
grammable network elements, for a distributed electronic environment. Then, the
main question for this research is that “Given that we have an OpenFlow-Based
SDN environment, and we have clearly defined System Requirements, can we ad-
dress the research challenges which are described above, to construct abstraction
layers for networks infrastructure with autonomic behaviours, using DAIM as self-
adaptation strategies to maintain the system in the face of changing requirements
and unexpected threats to provide for the defined requirement, to satisfy operat-
ors? ”. Hence, there is an urgent need to explore the autonomic behaviour, which
supports autonomic network management to address the proposed issues above.

1.3. Research Objectives and Scope

The outcome of this research is a full specification of a networking architecture
based on the DAIM model. The implementation of the specification is out of the
scope of this research work. This research is aiming to build the DAIM model with
a richness of nature inspired adaptation algorithms to be applied to a distributed
computing environment. Also, the DAIM model includes intelligent elements to
enable local decision making. Moreover, it is built based on SDN approach with
some level of distribution and that will simplify the network management. Also,
it proposes concepts of autonomic network management as a solution promising
to address difficulties of managing networks complicatedness for enterprises. The
outcomes of this research can be implemented in real networks such as Bushfire
alarming system.

11

1.3 Research Objectives and Scope

1.3.1. Objective

The primary objective of this research is to develop a new way of network manage-
ment by using DAIM model for autonomic network management. The autonomic
behaviour includes for example self-adaptation, self-protection and self-optimisation.
DAIM model can be implemented in OpenFlow with some level of distribution to
maintain the system in the face of changing requirements and unexpected threats.
Implementation of the DAIM model will improve the system performance, scalab-
ility and robustness. Moreover, it has a more dynamic configuration, fewer errors,
less points of failure, consistent configuration and policies, and it can reduce oper-
ational expenses. Other objectives are for the creation of methodologies, models,
algorithms and protocols, which will enable the self-X. Also, the future of distributed
complicated networks can be assured.

1.3.2. Scope

The scope of this research will cover the following subsections with details and
explanation of each one individually:

• Re-engineering OpenFlow network with a portion of network operating system
within switches, and some level of distribution, by using DAIM model struc-
ture. DAIM model is providing information for the defined requirement, which
is implemented in OpenFlow as a case study. The re-engineered OpenFlow has
some level of distributed nodes and has DAIM agents residing in each switch.

• DAIM agents can collect information to defined requirements, after that can
build communication messages (get, get-response, set and transmit XML files
such as switch features and configuration point), then store information in a
storage module. Moreover, the DAIM agents have particular values such as
flow table entries and changing environment events. Also, to gain an active and
proactive environment the DAIM agents and their values should be configured.
Moreover, these agents should then be able to identify what values need to be
computed and changed in the flow tables based on DAIM model configuration
(e.g. system requirement database information).

• Autonomic Network Management functionalities for vulnerabilities of facing
threats and any changing circumstances.

Note that, the implementation of the proposed network model and respective spe-
cification is out of the scope of this research. Also, it is outside the scope of this
research to develop comprehensive strategies. Rather, it is the intention to prove
that it is possible to provide autonomic behaviour with this environment.

12

Introduction

1.4. Research Proposition

The research effort attempts to support a distributed computing environment with
autonomic behaviour by using DAIM model, for a self-managed network. Hence,
there is an urgent need to explore the autonomic behaviour for supporting network
management to address the proposed issues.

• Given that we have software defined network SDN that uses OpenFlow as its
Southbound interface, and

• That it is based on a distributed computing environment, and

– That this distributed computing environment is based on the DAIM
model, and

– That this distributed computing environment has the functionality to
facilitate autonomic management behaviour, and

– That this distributed computing environment uses autonomic behaviour
to provide an abstraction of the Southbound interface in the OpenFlow
architecture.

• We propose that:

1.4.1. Core Proposition

Given that the current paradigm of SDN, with its architecture as illustrated at the
top of Fig. 1.2, does not lend itself to the incorporation of autonomic behaviour, it
is proposed that by means of the introduction of the DAIM model, this study will
be able to move the SW/HW divider down, and subsume the OpenFlow protocols
into our DAIM layer, exposing an abstracted API layer to the applications like this
(bottom of Fig. 1.2).

DAIM is an operating system installed on network hardware, which provides API of
fewer details of network hardware for managing and configuring network forwarding
devices, packet routing, collecting and providing network information. Since DAIM
removes network hardware details and provides a simple interface for developing
network application, it is considered as an abstraction for running network devices.

1.4.2. Attendant Propositions

Attendant Proposition 1:
• We can use this distributed computing environment to provide the OpenFlow

network with Autonomic Management Behaviour,

13

1.4 Research Proposition

Figure 1.2.: SDN architecture Vs. SDN with DAIM architecture

14

Introduction

• We propose that this behaviour will satisfy a number of the Self-X properties
enunciated by IBM in their Red-book (2001)

• In particular, we propose to show that the network can exhibit Self-
management, Self-configuration and Self-optimisation behaviours

Attendant Proposition 2:
• We propose that the distributed computing environment will be made up of

multi-agent environments situated in the OpenFlow switches, and
• That the multi-agent environments will be hosted by Java Virtual Machines

or similar, and
• We propose to show that this distributed computing environment could be

used to provide autonomic behaviour to other kinds of networks, or even other
kinds of complicated infrastructure such as road traffic systems.

It is outside the scope of this research to develop comprehensive strategies. Rather,
it is the intention to prove that it is possible to provide autonomic behaviour with
this environment.

1.5. Overview of Methodological Framework

Research methodological framework is summarised in Fig. 1.3, which shows the re-
search structure with three stages for conducting this research. The first stage starts
with identifying and analysing the research issues and research propositions. Also,
as a part of the design, this research introduced the theory of DAIM model as a core
for building the final model. The second stage concerns are exercising the design
to get enough information to draw conclusions; it is based on attempts to develop
and implement the proposed model, including simulation, emulation and real hard-
ware. Also, as part of gaining confidence in the proposition some experimental of
functionalities and performance with comparisons to existing network approaches.
This stage is supported by implementing a simple model and some modules with
enhancements over phases to reach the ultimately proposed model. All the previ-
ous stages have led to the writing of the specification of abstraction named (DAIM
OS) to facilitate network management. The last stage is drawn by discussing the
outcomes and evaluating the propositions of using DAIM model for the network
management.

1.6. Statement of Contributions

This section shows briefly the contributions to knowledge, which include the proof of
robustness and scalability of distributed network management. Then, with a better

15

1.6 Statement of Contributions

Figure 1.3.: Overview of research structure

understanding of network management including challenges and the theoretical basis
of the proposed model is analysed as a solution; they can ease the building of the
DAIM OS with a simple implementation, validation and verification to meet the
requirements of this dissertation. Moreover, this research provides a specification of
true abstraction called DAIM OS, which can satisfy the autonomic properties for
a self-managed network. My colleagues and I published some conference papers,
journals and chapters of two books which lend weight the proposition and show
confidence in the proposition as a contribution to knowledge (refer to chapter 8 on
page 231). The contributions to each chapter are introduced below:

Concerning chapter 2: Literature review

The literature review has identified network issues, analysed the issues and showed
understanding of the gaps. Review of literature included several theoretical and
practical aspects such as network management, autonomic communication and in-
formation model. Moreover, the literature review has introduced systems complexity
with an ability to manage complicated systems. Also, business requirements, net-
work services, management requirements and other aspects of current networks have
been identified which have all motivated this research work. The review also intro-
duced the SDN and other approaches which were being developed to overcome the
current SDN architecture issues.

Concerning chapter 3: Theory of the proposed model

Theory of the DAIM model, the concepts, the fundamentals and the principles have
been introduced. The theoretical background of the DAIM model is to build a core

16

Introduction

model including objectives of the model, uniqueness and difference than other in-
formation models of network management. Moreover, the theory has an architecture
for the proposed model with the model description, a discussion of packet forwarding
process and awareness of the model risk scenarios.
Concerning chapter 4: Attempting to implement DAIM model
This simple or reference implementation is supported by the theory of the pro-
posed model in chapter 3 and implementation of the model components as modules
in chapter 10. The implementation provides a better understanding of the model
for each component, also verifying functionalities and processes overall with the
DAIM model clarify the interactions between modules. Some mechanism to dis-
cover network topology have been introduced with an optimum route to forward
packets. Then, finally after verifying and comparing the performance with current
approaches, there is a discussion on shortcomings of the DAIM model which support
the specification of DAIM OS.
Concerning chapter 5: Specification of the abstraction layer (DAIM OS)
The new DAIM model with programmability network elements will allow distrib-
uted management through local decision-making, and this will mainly contribute
to complex distributed networks. The programmability of the computer network
has gained considerable importance due to the advent of SDN architecture, which is
intended to simplify network management. In the DAIM model, network elements
will be enabled to adapt to ever changing environments and work towards meeting
the goals of service providers, vendors and end users.
Most interfaces of programming network devices are defined at low-level abstrac-
tion gained from network hardware infrastructures, whereas this abstraction leads
to complicated programming and also may result in errors. The model specification
in this research proposes a high-level abstraction for forwarding networking devices
and provides API for network service applications developed by network operators
and service providers. The proposed model is called DAIM OS including modules
for optimising packet routing, configuring network hardware infrastructure and ex-
ecuting forwarding rules. Moreover, the core of DAIM OS by utilising OpenFlow
switch has been implemented in chapter 4.
Concerning chapter 10: Supporting the proposed model implementation
This implementation of the candidate model has been discussed in chapter 3 as
concepts and theory. Besides, chapter 10 includes implementation of components,
fundamentals and functionalities. The implementation of simple modules of DAIM
model does not contain any complex networking functions such as routing, host de-
tection, or topology reconstruction. However, it has certain features such as aiming
to distribute electronic environment with the ability of self-configuration and self-
optimisation then the network can be described as ’self-managed’. The objective is to
re-engineer the centralised controller into some level of distributed management by
invoking some functionalities in each switch to do process and make decisions locally.

17

1.7 Overview of Dissertation Structure

This objective would be by studying the SDN controller functionalities, OpenFlow
protocol, and flow tables’ contents, rules and actions to handle the packet locally
from source to destination based on links in the network, topology, host locations
and all path routes. Also, some information driven from business needs such as
bandwidth, speed, priority, and security policies can be taken into account. Thus,
it should be clear what service has to be provided by the system. To draw the
conclusion this implementation used emulation, simulation and physical network as
following, firstly using OMNeT++ to simulate the OpenFlow with the new model,
also, using Mininet to emulate the OpenFlow with the new model, and lastly, develop
a physical network using Raspberry Pi with the new model.

1.7. Overview of Dissertation Structure

The remainder of the dissertation is organised as chapters building up to the conclu-
sion. For more details, Fig. 1.4 depicts blocks of the dissertation structure including
introduction followed by five parts which are including a lending weight to the
proposition, gaining confidence in the proposition, drawing conclusions, supporting
work and finally providing appendices.
In more detail, the introduction in chapter 1 includes motivations for the research,
main challenges of the research, overall objectives, and review of research res-
ults. After that, lending weight to the proposition which includes two chapters,
one is chapter 2 which presents background literature reviews, and the second one
is chapter 3 which has a theoretical foundation for the proposed model that is
developed by chapter 10 with some exercises to lend weight to the proposition.
chapter 10 of this dissertation is known as supporting work. The supporting work
part supports the theoretical foundation, designing, modelling, and developing the
distributed active information model DAIM via simulation, emulation and real en-
vironments.
The second part of the dissertation is to gain confidence in the proposition, and
that includes attempting to implement the DAIM model in chapter 4, and spe-
cification of true abstraction layers in chapter 5. The specification of the abstrac-
tion layer proposes a high-level abstraction for forwarding networking devices and
provides application program interface for network service applications. In other
words, chapter 5 provides a specification of DAIM operating system and chapter 4
demonstrate a simple implementation of core DAIM operating system by utilising
programmable switch.
The third part of this dissertation provides the way to draw conclusions as shown
in chapter 7 which has research summary overall, validation of the propositions,
contributions and discussion, limitations and finally recommendations for future
works.
Finally are presented the appendices in Appendix A, Appendix B, Appendix C and

18

Introduction

Figure 1.4.: Dissertation plan

Appendix D which provide developing code of the core DAIM model and show dif-
ferent setting for testbed environments.

19

Part I.

Lending Weight to the Thesis1

1From http://www.dictionary.com/browse/thesis?s=t: Thesis meaning a proposition stated or
put forward for consideration.

21

2. Background and Literature
Review

This chapter presents a literature review of previous researchers works and know-
ledge to understand and to make sense of this research concepts. Also, it is describing
the main concepts of the research which include autonomic network management,
distributed and centralised networks, active interpreter concept, and information
model for network management. Moreover, it discusses complicated and complexity
concepts, reasons to have autonomic systems for management, programmable net-
works where it possible to implement the proposed model and other approaches for
developing the current networks.

2.1. High level background

This section gives an overview of network management which started with the
swinging pendulum technique at the very beginning of network management, fol-
lowed by the arrival of computing power and packets of data, after that a discussion
of the rise of complicatedness, and finally the need for a new network architecture.

During the 1900’s, the first telephony networks were built. Before this time, the
brains of the humans hold all the computing processes [133]. The centralised manual
exchanges operated as the only way to manage the network. Management paths and
common data were used [137]. It was observed that the automatic exchanges were
only mimicking the manual exchanges [138]. Slowly, the management plane and the
data plane were separated. Before making the actual communication, the allocation
of resources was completed. It was not clearly understood as to how the work
separation should be done to establish a connection. There was a limited need for
the “layered” structure.

In 1970’s, computing power picked up rapid speed. It was now possible through this
power that computing network needs could be shifted from the centre to the end
points [142]. The data could also be divided into “chunks” which are also referred to
as packets [142]. The meta-data present within the packets determines the delivery
which is the “To and From” addresses [143]. Hence, the meta-data must be added
to the data chunks to convert them into packets and get them delivered by the
network elements. The packets need first to be delivered to the local post office and

23

2.2 Network Management

this postal service would then provide them on a global scale. Then, you can clearly
see a division of labour, and hence the 7/5 layer model [136, 7].

The division of labour and device proliferation leads to the allocation of management
to the network elements. Therefore, the complicatedness arises to a massive extent.
With 1 CPU there is an upward count of connected devices which is nearly 15 Billion
[144]. There is a presence of complicated networks which are also stochastic and non-
linear. At the same time, they are also intractable and chaotic. The management
vulnerability and complicatedness increase due to the above mentioned nature forces
along with the management and data forwarding plane combined [64]. Then for
future network growth, this is considered as an issue and as a real inhibitor. The
barrier presented is the complicatedness, which must be reduced through the re-
evaluation of the basic management model [64]. For instance, there are a number of
possibilities to achieve the needs such as separating of data and management planes
or through network requirements swapping with network parameters [64].

In more detail, separation will provide a global overview and optimum in new net-
work; that happened in the 5/7 layers model, where there are only two areas of work,
data and management planes [11]. In other words, there are a boss and workers,
where the existing layer 2 functions for all data forwarding. Also, for management
functions, there are layer 3 and 4 which have been subsumed. For instance, the 7
layers structure, which has physical layer presented in telephone infrastructures, and
layer 3 is presented in a telephone numbering system [137]. Therefore, separation of
layers for management is needed in a new network architecture, which will manage
and reduce complicatedness [136].

2.2. Network Management

Network management has been around for a considerable amount of time in the
community network sphere. Several researchers have defined a “network”, which is
the sharing of resources such as files, folders, emails, and printers and the exchange
of information between them, in a complex distributed manner [20, 136]. Since
the 1980s, implementation of networks increased, so the network management has
become an important matter, where the network management is essential for success.
The boundaries between the network environments and human factors regarding
the difficulty of use (such as maintenance, operation, configuration and protection)
require a network management [102]. Also, network management is important for
detecting problems and issues at an early stage so that they can be fixed rapidly.

Network resources are increasing in complicatedness every day and they require to be
managed to stay sustainable with high performance such as exchanging information,
printing and scanning. Also, management performs various tasks including monitor-
ing performance, detecting issues, maintaining any matters that have occurred and
keeping the network functioning correctly [20].

24

Background and Literature Review

Network devices are complicated and difficult to manage due to the wide variety of
vendors, services and platforms, where each device has its own features, and that
required experts to manage and overcome any issue arising [31]. On the one side,
the network complicatedness increases, and then there is a need for more highly
skilled people and more effort is required to maintain the infrastructure. And on
the other side, the deregulated market is pushing for more competition and lower
prices. It seems that the old operators and constructors have somehow found their
way in the competition, though at a higher cost than the newly entered actors.
Future developments are in the end users’ services with the introduction of high-
speed access networks.
Operators are constantly integrating new services, new components, and new tech-
nologies without interrupting the ongoing one to fulfil new customers’ needs, resolve
problems, increase capacity, and the like. Also, Operators are dealing with more
complex heterogeneous sources.
Probably the emergence of a new network technology in the future will be cheaper
to deploy and maintain than the existing ones and could therefore supersede all
existing technologies. The aim is to provide better services at a lower cost while the
remaining operators will still need to amortise their costly existing equipment and
associated human resources.
Unfortunately, network and system management solutions have made significant
advances and are no longer capable of dealing with the increasing complicatedness;
they still rely on expensive and expert humans to solve problems. Many problems
also arise from these experts’ intervention, such as misconfigurations. These miscon-
figurations are among the most complex problems to solve; they are very difficult
both to understand and to locate and then to fix them.

2.2.1. Network management functions and protocols

Network management is the responsibility of administrators and other people who
have expertise and are trained professionals. Administrators use some functions and
protocols to manage networks. In more detail and for a better understanding, the
following section will explain management functions, protocols, roles and respons-
ibilities including the network management benefit such as high performance and
services provided.

2.2.1.1. Network management functions

Management model has five characteristic’s functions: performance management,
configuration management, accounting management, fault management and security
management [23]. According to Raman (1998) [23], he explained those five functions
characteristics as following:

25

2.2 Network Management

• Performance management refers to operation task through collecting and pro-
cessing necessary management information.

• Configuration management refers to monitoring and controlling effects of any
device on the network; this characteristic can be used to search for any useful
information when any problem occurs.

• Accounting management guarantees a fair usage of network resources by any
user.

• Fault management refers to maintenance task, which can detect a problem,
isolate and fix it in the network.

• Security management controls access level of all users to resources of network
based on specific policies.

These functions are essential for administrators and other professional people who
are monitoring the network performance to either fix problems which have occurred
or to predict problems.

2.2.1.2. Network management protocols

Most of the proposed network management protocols are based on the International
Organisation for Standardisation definition for management model (IOS). Network
management has numbers of protocols for either sends and receives packets/data
between devices within a network. Moreover, protocols have several benefits for
current corresponding packets, but they are not able to cope with increase in com-
plicatedness of devices and users’ demands. Examples of these protocols are ordinary
network management protocol (SNMP) [4], Network Configuration Protocol (NET-
CONF) [33], and Common Information Model (CIM)[126].

SNMP
SNMP protocol consists of three parts: managed devices, agents, and network man-
agement system, where agents are software modules run on each managed device
and can provide management information of devices through a communication inter-
face called Management Information Base (MIB) which is a database for important
management information in each device [4]. As this communication is in-band, if
any problem occurs in the network, it is almost impossible to diagnose and recover
the network without using an external device, and the administrator should check
the device usually [4].

NETCONF
The limitation of SNMP has lead to the implementation of other approaches to
manage large-scale and complicatedness in a networking environment. The new
approach of network management is called Network Configuration NETCONF pro-
tocol. It is a document oriented approach based on Extensible Markup Language

26

Background and Literature Review

(XML) technology that aim to address the weaknesses of SNMP, especially the ap-
plication in configuration management [33]. Also, NETCONF protocol is considered
as the next generation of automated XML-Based network management system, be-
cause the communication between the NETCONF manager and the agents is formed
in an XML document, and based on XML-encoded Remote Procedure Call (XML-
RPC) [33].
NETCONF protocol brings many significant advantages when compared to SNMP
such as advanced functionalities, more efficient transactions of complex configura-
tion data, more secure and much easier to develop new applications than SNMP.
Moreover, NETCONF protocol is better than SNMP in some aspects for instance
in configuration management; however there are also some substantial drawbacks
associated with this approach. One major issue related to NETCONF is the lack
of support from industries and because there are few publications regarding NET-
CONF implementation [32]. Another problem is that new elements of NETCONF
security aspects should be added, especially in Access Control [32].

2.2.2. Network Managing Paradigms

Traditionally, network management systems architecture was highly centralised as
a central network point for communication and for traffic control. A centralised
architecture with central system controllers as well as optional redundant systems
offered call control, mobility and the management of traffic. For reliability, there was
a duplication of the central system; however it proved to be costly in deployment
and required additional system controllers [2, 18]. The centralised system also has
issues of network outages that affect the connection to the central controller and
can cause the system to crush [2]. The distributed network management model was
developed to solve such problems in the centralised network management approach.
It offers additional reliability, cost-effectiveness and eliminates the more expensive
central controller. The distributed network management system provides call con-
trol, management of mobility as well as traffic management that centralised network
systems offer with costly centralised controllers [3, 117]. This section discusses the
benefits and appropriateness of distributed network management over centralised
network management systems. This section will end with a recommendation for
this research which expects that the next generation network (NGN) should rely on
a distributed management paradigm.

2.2.2.1. Centralised Network Management Paradigm

Centralised paradigm consists of a single computer server and some computers
connected to that server by using an operating system communication application
[14, 98]. In more detail, the centralised paradigm’s server has its operating system
and applications to configure the communicated computers that have their operat-
ing systems and applications. Moreover, the centralised paradigm has an advantage,

27

2.2 Network Management

Figure 2.1.: Centralised Management Paradigm

where the connected computers have just a little responsibility and any liability is
on the central server [22]. However, the centralised paradigm has a major drawback,
which is a limitation of process power. For example, an increase in the load on a
central domain server results from an increase in the number of connected computers
[22]. Also, the centralised paradigm is obviously weak; if destruction happened to
that single central server, all the communication between the connected computers
would be destroyed (see Fig. 2.1) [3, 75].

Current network management (NM) systems have been developed in centralised NM
paradigm that features low flexibility as well as reconfigurability. The connections
occur between the application and the managed entities in the Network Elements
(NE). There is a host that gathers and processes data that the entities have retrieved
in the network domain. This is beneficial as it simplifies management operations,
ease of control and integration of procedures on Network Management Systems
Optimisation [19]. However, there are resultant drawbacks.

Tasks that are complex and with semantically rich interactions require large data
transfers, hence waste bandwidth leading to processing bottlenecks within the man-
agement host. It causes performance degradation as well as a reduction in Network
Management System (NMS) scalability by limiting the number of network entities
to be comfortably managed. An example of a centralised NMS that suffers from
standardised for TCP/IP networks is the SNMP [2]. Another disadvantage of the
centralised NMS is that lack of flexibility. Also, other issues of concern include
lack of security in SNMP, which has no encryption of confidential network manage-
ment information. Moreover, the authentication scheme is inadequate for SNMPv1
and SNMPv2 [19]. Therefore, to overcome such drawbacks on centralised network
management; the following section focuses on the benefits of distributed network
management paradigm.

2.2.2.2. Distributed Network Management Paradigm

Distributed paradigm relies on many distributed computers connected instead of re-
lying on one central point. Hence, the distributed paradigm devices have continuous
connections and have the ability to reconfigure the entire network for routing flows
from node to node until they reach the destination (see Fig. 2.2) [16].

28

Background and Literature Review

Figure 2.2.: Distributed Management Paradigm

Distributed system consists of various autonomous computers within a network and
runs a distributed program with a common functionality. An example of a dis-
tributed network management is in the wireless sensor networks. The sensors form
distributed networks within a target area and gather and process needed data. There
is the distribution of workloads as well as network traffic within participants. There
are many examples of distributed networks that include cellular networks, Peer-to-
Peer (P2P) networks, distributed database networks and distributed information
processing networks, among others [9, 1]. The Distributed network management
architecture uses mobile agents (MA) to overcome the drawbacks of the centralised
network management such as inflexibility, and lack of interoperability and scalability
[10, 141]. Distributed NM is also preferred as complexity and suitability of functions
rises. There is a minimal utilisation of bandwidth compared to the centralised NM
as well as security enhancements in the distributed NM systems.

Benefits of distributed network management
The distributed NM system solves many problems inherent in the centralised NM
system. The only challenge is that the mobile agents may be suitable for monitoring
purposes but lack a secure execution environment which limits their performance
and capabilities. Again, the mobile agents may execute programs without knowing
the goal of the manager [13]. However, the distribution of processes and control
has far more benefits in network management, such as expandability, flexibility, re-
liability, scalability, and robustness, as shown in this section. With increased scale,
complexity, and dynamism of communication networks, and applications, distrib-
uted NM architecture is most appropriate in the development of network systems
for enhanced performance, redundancy, reliability, security, as well as QoS. There
are various benefits of distributed management which are discussed below:

1. Expandability
The system can be designed small and later expanded by adding more equipment.
There is also cost effectiveness in expansion as purchase spread outs meet the budget
instead of the centralised NM systems where buying of central controllers is expens-
ive and only done up-front. The overall system is cost effective at its inception and

29

2.2 Network Management

later as it grows since there is less switching cost to purchase up-front. The function-
ality of dynamic recovery makes it easy to add into the system without interrupting
current operations and equipment [6]. Distributed NM system also uses network
gateways. Hence, existing equipment can be reused. It enhances interoperability
with the existing system for easier migration.

2. Flexibility
The fact that the system can be expanded without having to be replaced makes the
architecture flexible. At execution time, the distributed NM system allows for the
extension of network management system functionality [24]. Processing, as well as
filtering of management information, goes to the network element side leading to
enhanced distribution and a scalable NM system.

3. Scalability
The Distributed NM systems provide for an increase of capabilities whereby cus-
tomers can add sites without expansion to the central switch. There is no extra
use of bandwidth for current sites since traffic management is distributed when the
addition of new sites occur. Hence, there is minimal impact while there is growth
in system capacity. The distributed NM system uses multiple systems for peer net-
work management. Hence, every peer has a complete database. It means that each
peer can handle several tasks and report to a central location, then there is greater
site capacity [9]. Network management tasks are distributed to various peers hence
enhanced network monitoring in the entire system.

4. Reliability and Resilience
The utilisation of a distributed NM model offers multiple redundancy levels since
every site can perform a wide variety of system functions. Provision of wide area
functionality is critical as it allows the networked systems components to continue
performing even when some networks parts are down as a result of poor connectivity
to the network [24]. Therefore distributed NM systems eliminate single failure points
by providing a completely distributed and redundant system. Additionally, auto-
discovery mechanisms can be integrated into the systems for self-recovery of network
connections instead of manual interventions or the use of a backup system as done
in centralised NM systems. The centralised NM system is not fault-tolerant since
it becomes difficult for the system to handle additional network elements since the
system has to query devices from one central location.

5. Robustness
The distributed NM approach offers robustness. When there are network problems
for the different managed agents, the agent takes action in the event of an emergency.
They do not have to wait for the network manager to fix the connection issue as with
centralised NM systems. The network devices perform more than data collection
and can manage themselves. The managed network offers distributed management

30

Background and Literature Review

decisions that allow for robustness in case of management traffic. Allowing autonomy
to managed agents in the network provides stoutness to rapidly evolving network
tasks [13]. Therefore, the distributed NM approach is appropriate for large and
dynamic network environments.

2.3. Automatic and Autonomic Systems

This section presents the meaning of “automatic” system and “autonomic” system.
There are some semantic differences between automatic and autonomic and that
can be summarised in the following definitions. Moreover, this section explains that
autonomically is not equivalent to artificial intelligence (AI).

Automatic System

An automatic action is a reaction to some occurring is known events or problems [35].
In other words, it always exhibits the same behaviours for the same input. Automatic
systems in the IT world do not have any knowledge outside the predefined problems
and no ability to extend this knowledge, unless humans intervene [138]. With inbuilt
ability to perform specific actions when specific events occur, the system can perform
many decisions and actions automatically [138]. As a result, an automatic system
is based on a thorough understanding of system behaviours and control functions.

Autonomic System

An autonomic action is an action without any conscious thought, analogous to bodily
functions such as respiratory rate, oxygen levels, heart rate, and digestion without
direct self-control [102]. The “autonomic” in this context introducing the idea of
involuntary responses within an entity based on internal policies and principles [34].
An autonomic system is an overall approach to designing distributed computing
environments as self-managed systems. The input of autonomic systems is defined
as system goals by humans [102]. In more detail, the interactions between the
humans and the systems are only based on high-level goals. Human operators only
specify business policies and objectives for the systems, while the system interprets
these high-level policies and then responds [36]. In contrast, AI implies a higher
level of thinking and self-awareness that is similar to human consciousness [35].
Autonomic, however, operates below the standard of conscious thought.

The main different between “automatic” behaviour and “autonomic” behaviour in
the network is that the term “automatic” means simple functions reacting according
to predefined rules to manage the network. On the other hand, the term “ auto-
nomic” means high-level functions, which can create their adaptation strategies,
driven by system requirements, to support self-management functionalities for the
network [102].

31

2.4 Autonomic Computing Concepts

2.4. Autonomic Computing Concepts

Human mechanisms have become one of the motivations driving this research. Ana-
lysing and observing of human biological mechanisms similar to autonomic systems.
In contrast, an autonomic computing is motivated by the concept of human body
such as autonomic nervous which controls the human body [44].
IBM introduced the autonomic computing (AC) term in 2001. AC is an approach
which can create its strategies, adapt itself usually with dynamic conditions of the
environment. In this regard, each autonomic computing system (ACS) should have
two primary capabilities:

• to adapt quickly to a dynamic environment, and
• have the self-X management properties.

The autonomic computing systems should have a sustainable and maintainable in-
formation model, and have the ability to make local decisions according to inform-
ation collected. The main self-X properties proposed by IBM are illustrated in
self-CHOP, which is presented as following [104, 40]:

• Self-configuration: This means that the system should be able autonomically
to adapt to a forever-changing environment.

• Self-healing: This means that the system should be able autonomically to de-
tect and recover from potential problems that might occur in the local software
and hardware, for example, restart or reboot a failed element (return point,
backup).

• Self-optimisation: system software and hardware should use resources maxim-
ally to provide optimised functioning and performance of computing, as well
as to detect optimal behaviours to improve the system’s performance.

• Self-protection: This means that the system should be able autonomically to
identify and prevent any malicious attack against the system’s performance.
Also, protections include the ability to shut down resource in case of threats,
and ability to maintain the systems’ overall security.

IBM applied self-properties in local devices [34]. The following Tab. 2.1 presents IBM
self-CHOP concepts overview and autonomic procedures. Thus, learning from IBM
autonomic computing functionalities enables the deployment of them in autonomic
communication.

2.5. Introducing Autonomic Communication

Technologies have dramatically increased over the past few decades, mainly dis-
tributed networks, which are playing significant roles in providing services for large
and complicated networks. Using human network administrators is not efficient,

32

Background and Literature Review

Table 2.1.: IBM autonomic computing Self-CHOP concepts [40]

Concept Autonomic computing Current computing issues

Self-configuration

Configuration of
components and systems
following high-level policies
and objectives
autonomically. Rest of
system adjusts
automatically and
seamlessly.

Network devices have
heterogeneous vendors and
platforms, where
installation, configuration,
and integration systems
consume time and errors
could happen.

Self-optimisation

Components and systems
continually seek
opportunities to improve
their own performance and
efficiency.

Systems have a very large
number of manually set,
nonlinear tuning
parameters, and their
number increases with each
release.

Self-healing

System autonomically
detects, diagnoses, and
repairs localised software
and hardware issues.

Issues determination in
large, complicated systems
can take programmers
weeks to resolve.

Self-protection

System autonomically
defends against malicious
attacks or cascading
failures. It uses early
warnings to anticipate and
prevent system failures.

Detection of and recovery
from attacks and cascading
failures is done manually.

33

2.5 Introducing Autonomic Communication

economical and also errors could happen. Moreover, as the complicatedness of dis-
tributed system grows over time, an effective computing environment is needed to
ensure a high quality of network services and performance [102]. Currently, large-
scale electronics are becoming harder to manage, configure, operate, maintain, and
restructure. Then, it is important to propose a new management structure, to
cope with such complicatedness in distributed networks systems [102]. Thus, a new
paradigm of the network management is required addressing increases of environ-
ment complicatedness, management costs, and lack of expertise.
There are many strategies to overcome the complicatedness in network manage-
ment; one of which to deal with such complicatedness by implementing autonomic
functionalities and attempting to have autonomic communication that motivated by
IBM concepts of autonomic computing. The primary purpose of autonomic features
is to manage network complexity [47, 46].
The autonomic communication can address varieties of challenges for networks man-
agement. Additionally, it can improve the network and services ability to cope with
unpredictable changes such as changes in topology, tasks, and logical character-
istics [99, 102]. Currently, research is focused on distributed frameworks, models,
protocols and algorithms for IP-based networks to be “ distributed autonomic com-
munication”.
The autonomic communication is promising as a solution to cope with the network
complicatedness, by providing self-management functionalities such as self-CHOP
(Configuration, Healing, Optimisation, and Protection)[46]. Thus, the autonomic
communication can dynamically adjust and adapt itself, to face an uncertain change
environment based on system objectives.

2.5.1. Lesson Learnt from Similar Fields

There is only a limited body of literature on the autonomic network management
and distributed active information model fields; it is necessary to examine the liter-
ature in similar fields to obtain an understanding of improving performance, avoid-
ing mistakes and improving knowledge. The autonomic computing is a significant
concept for autonomic networks management structure. So, to understand the con-
cepts of autonomic communication, then the similarities of autonomic computing
concepts need to be studied [43]. The following sections present human mechan-
isms compared to the autonomic computing environment, and then the emergence
of autonomic communication.

2.5.2. Human Biological Mechanisms

A human’s biological mechanism is a paradigm of an autonomic system, where
the autonomic computing is motivated by the concepts of the human’s autonomic

34

Background and Literature Review

nervous system (ANS) [38]. In medical terms, autonomic means self-controlling or
functionality independent [35]. The autonomic computing is designed to work in a
similar way to a human’s ANS, which can control a human’s body [44]. However,
there are important differences between the independent activity in human bod-
ies and autonomic responses in computing systems. The nervous system monitors
heartbeat, checks blood sugar levels, and can adapt the body to normal temperature
without any conscious effort and conscious intervention from human, so that people
can manage ever changing conditions even unexpected circumstances [49]. On the
other hand, autonomic computing provides integrated self-learning which includes
activities, objectives, collected information, and from similar instances it can be
called self-management mechanisms [38].

2.5.3. Possibility of Autonomic Network Management

Autonomic network management means self-directed and self-managed. The self-
properties functionalities are the main components of autonomic network manage-
ment that aim to embed intelligence into network devices for meeting the business
needs. For current networks management; operators are required to reconfigure most
of the devices if any circumstances or requirements change. In future, the autonomic
configurations capabilities should be implemented to manage the networks. The self-
properties are considered as solutions to manage the complicatedness of distributed
networks. They give the system the ability to adapt to change environments in or-
der to improve its scalability, survivability of services, and optimum performance as
well as reducing humans workload on low-level configurations. Also, it is important
to discuss self-properties mechanisms and models, which are the basis of autonomic
networks. Moreover, the self-properties are designed to fulfil various tasks such
as monitoring, configuring, service provisioning, accounting, fault management and
performance management [35, 36, 32]. Since 2001, the list of self-properties has
grown dramatically. Currently, self-properties framework includes functions such as
self-definition, self-organisation, self-adjustment, self-monitoring and self-regulating.
In addition, this means that the network environment has some knowledge of its
available resources, its components, its ongoing status, and the status of communic-
ations with other systems [44]. Autonomic network has significant capabilities that
are:

• gathering related information,
• modifying the attributes of network nodes, and
• managing its functions to adapt itself to an ever changing environment of the

network, which is defined as network autonomy [104].
Moreover, autonomic network management can process the following features; resist
any attacks and positional damage, under-capability of self-reconfiguration. The
autonomic network management models can increase the survivability of services and
applications by gathered information and set-update-modify network components

35

2.5 Introducing Autonomic Communication

Figure 2.3.: Autonomic Network Management

without human involvement. For the management of a network, there are four
phases that are regularly repeated in the same order, unless there is an autonomic
system to break the cycle. The Fig. 2.3 presents the management cycle, and when an
autonomic system can be integrated to get autonomic network management rather
than traditional network management.

The first phase is unconscious incompetence: administrator does not know
that he has a problem and he does not know how to fix it. While here he does not
have any pain but he knows that he might have. Once someone has a problem in
his network, he moves from unconscious incompetence to conscious incompetence.

Phase two conscious incompetence: administrator knows that there is an issue,
he knows that, he needs to address the issue but he does not know what to do and
how to fix it. Once he has identified what the network performance issue is, he
can put in place some procedures may be some tools to assist network management
and fix that matter. Then he can move from consciously incompetent to conscious
competence.

Phase three conscious competence: this is where the administrator is actively
working to put in place a solution to the problem. Here he fixes the problem, and
he works hard to keep the system running. He has to use a lot of reports. Also,
he has to do a lot of tweaking, might not make a lot of changes to the system.
This could be quite costly; this is where traditional network management products
sit. In this phase the administrator can fix a problem with actively monitoring the
network to get benefits, even with time goes when stop monitoring the network is
operating will. Then the network status is moving into the next phase unconscious
competence.

Phase four unconscious competence: in this phase administrator does not
have to do a lot of network management, perhaps the network is not changing very
rapidly, the users remain happy with the performance that they are getting, in fact,
the system is operating well. However, with a major change in the network; there
is a chance for a problem to occur. Also, if the administrator does not actively
monitoring the system; that would lead to unconscious incompetence (first phase)

36

Background and Literature Review

Table 2.2.: Autonomic network management and traditional network management

Autonomic network management Traditional network (SNMP)
Communicating method would be a
whole batch file of configuration and
sharing information and task to
achieve goals as following:

Communicating method is just by
transmit a command as following:

• Get identity, Get basic
capabilities, Get statistics, Get
capabilities, Get configuration’s
information (Get node’s
information)

• Set node’s configuration such as
list of action for routing, add,
delete, and modify routing table

• Inform management system
about removal of routing table
and changes on ports, e.g. flow
being removed and state changes
on port

• GetRequest

• GetNextRequest

• GetResponse

• SetRequest

• Trap

with not knowing there is a problem and with no ability to fix that problem.

The autonomic system is enabling the system to stay in the unconscious compet-
ence’s phase. In more detail, the autonomic system keeps itself current with what
is going on. It can adapt to changes made by users, to the evolution in application,
across sites over time and removes the requirement for the administrator to manage
the network dynamically.

This is what an autonomic network management system brings: the ability to tighten
network performance conditions and business objectives and couple them together
to give the system constant ongoing guaranteed critical management performance.
Thus, autonomic network management could free up network’s administrators from
some management tasks especially low-level tasks, and at the same time bring about
better system behaviour. The following table Tab. 2.2 shows the comparison between
autonomic network management and SNMP, and how autonomic actions would
benefit network management.

37

2.6 Managing Complicated System by Increasing Complexity

Figure 2.4.: Increasing complexity to manage complicated system

2.6. Managing Complicated System by Increasing
Complexity

Managing system has different levels, where it can be disordered and not managed
and probably be scaled up to have an apparent order to manage the system. Four
levels are accumulating on top of each other based on level of management demand.
This research is focused on complicated and complex functionalities. The Fig. 2.4
presents that increasing of functions complexities can bring better management to
the system with minimal human intervention.

Chaos: when the system is not managed and with disorder functions. That can be
a problem and not painful but it might be an issue. Once someone has a matter in
the system, which need to be managed, that would take the system to the next level
from chaos and disorder to a simple system with an apparent order for management.

Simple: when the system has a simple level of management with an apparent order.
This level can manage a simple issue. Once the system identifies a problem, it can
put in place some procedures may be some functions to assist the system and fix that
matter. Then that can move the system from simple management to a complicated
system with an apparent order for management as well.

38

Background and Literature Review

Figure 2.5.: Computer hardware architecture with GPU

2.6.1. Understanding Complex and Complicated system

Complicated system is entirely managed and can hold many simple functions.
Moreover, the focus is to keep the system managed and running. Also, the sys-
tem should produce a lot of reports. However, when there is an issue and it appears
that there may be a problem, it must check all reports to fix the problem, then the
system should move to the next level of management with a hidden order called
"Complex" [129]. Complexity is when the system does a lot of management by it-
self without human intervention, with acceptable performance. Moreover, complex
management for the system is enabling the system to stay running with what is
going on, and adapt to changes [135].

Now lets looks at two software interfaces that abstract graphics processing unit
(GPU) of a computer namely OpenGL and Vulkan graphics API. These software
interfaces have different models for representing GPU details to the GPU utilising
applications. A GPU is a device of a computer which is responsible for drawing 2D
and 3D graphics to the frame-buffer of the display equipment [139]. By looking into
the application interfaces provided by the OpenGL and the Vulkan graphics API an
understanding of the complexity of abstraction can be developed.

39

2.6 Managing Complicated System by Increasing Complexity

Figure 2.6.: Comparison between OpenGL and Vulkan with increasing complexity
of computer application

As can be seen from the diagram in Fig. 2.5, the computer hardware architecture
is comprised of different components. These components serve various purposes for
the functioning of the overall system. The GPU is dedicated for processing of the
graphics memory located in the frame-buffer [128, 145], where everything in the
frame-buffer is displayed on the screen of a computer. A CPU of a computer func-
tions as an agent responsible for general computing as well as copying of data from
the computer main memory (RAM) and secondary storage such as hard-drive (HD)
to the frame-buffer of the GPU [139, 128]. The hardware details and resource man-
agement of these devices are mostly handled by the operating system of a computer
[128]. When applications such as computer games and graphics programs want to
utilise the GPU frame-buffer to display graphics on the computer screen, they can
do so either by an operating system supplied interface or some higher level graphics
abstraction interfaces such as OpenGL and Vulkan. The operating system provided
an interface of GPU frame-buffer is significantly low-level requiring a high-level of
understanding of different GPU architectures. On the other hand GPU, abstractions
such as OpenGL and Vulkan provide a simpler interface [145, 127]. The OpenGL
and Vulkan interfaces hide most redundant hardware details and provide interfaces
which are directly relevant to the game and graphics applications [139]. For this very
reason, applications tend to avoid directly utilising the operating system interface
and instead use some higher level abstractions such as OpenGL and Vulkan.

2.6.1.1. Complex Application for Abstractions

The Fig. 2.6 shows the primary critical systems involved in the computer when run-
ning game and graphics applications. In Fig. 2.6 there are two different games and
graphics applications execution models are compared, one using OpenGL as an ab-
straction for the GPU and the other is using Vulkan. As can be seen from Fig. 2.6,
OpenGL is significantly larger in size compared to Vulkan. As a result, the inter-
face that OpenGL provides to the game and graphics applications is much simpler

40

Background and Literature Review

Table 2.3.: Comparing between OpenGL and Vulkan [145, 127]

GPU OpenGL Vulkan

Application

Simple application,
OpenGL manages most of
the GPU memory
allocation, thread
management, context
management, and error
management

Application is responsible
for memory allocation and
thread management to
generate GPU commands

Abstract im-
plementation

Complex software, needs to
have code for all different
GPU architecture

Simpler code and software,
abstract is compatible
across different GPU
architecture

Abstract im-
plementation
performance

High software overhead,
errors are always managed
and controlled

Low software overhead,
errors are not managed

Control over
GPU by

applications

Only abstract has explicit
access to the GPU

Applications have direct,
predictable control over the
operation of the GPU

comparing to Vulkan. This is because; firstly OpenGL manages more hardware de-
tails internally than Vulkan. Secondly, OpenGL simplifies graphics routines more
extensively [139, 127]. Consequently, to the applications utilising OpenGL interface,
the overall complexity of the applications is significantly lower than the applications
using Vulkan interface. Furthermore, this also demonstrates that abstractions sizes
are directly proportional to their implementation complexity and operating over-
heads. Similarly, larger and complex abstractions provide cleaner and simpler in-
terfaces towards the applications. In summary, the following table Tab. 2.3 presents
a comparison between OpenGL and Vulkan in some attributes such as difference of
applications, implementation, and performance.

2.6.1.2. Scenario of application complexity with OpenGL

The following example considers a pseudocode of a typical graphics application
which intends in 2.6.1.x, to draw a triangle on the display of the computer using
OpenGL application programming interface API.
1 // Pseudocode of typical graphics application 2.6.1. x//
2

3 // Every OpenGL API has gl prefix and takes a number of arguments .
4 glViewport (0, 0, 640 , 480);
5 // Create a display view of size 640 by 480 pixels
6 glMatrixMode (GL_PROJECTION);

41

2.6 Managing Complicated System by Increasing Complexity

7 // Set the projection of models drawn on the display to be
perspective

8 glLoadIdentity ();
9 // Load the identity matrix for vertices coordinates

10 glBegin (GL_TRIANGLES);
11 // Tell OpenGL that vertices are for drawing a triangle
12 glColor3f (1.0f, 1.0f, 0.0f);
13 // Set the top vertex to be yellow colored by settings red , green

and blue values 1, 1, 0 respectively .
14 glVertex3f (0.0f, 1.0f, 0.0f);
15 // Assign top of triangle coordinates
16 glColor3f (0.0f, 0.0f, 1.0f);
17 // Set the left vertex to be blue colored by settings red , green

and blue values 0, 0, 1 respectively .
18 glVertex3f (-1.0f, 0.0f, 0.0f);
19 // Assign left of triangle coordinates
20 glColor3f (1.0f, 0.0f, 0.0f);
21 // Set the right vertex to be red colored by settings red , green

and blue values 1, 0, 0 respectively .
22 glVertex3f (1.0f, 0.0f, 0.0f);
23 // Assign right of triangle coordinates
24 glEnd ();
25 // Model the triangle from vertices
26 glFlush ();

The previous example tells OpenGL to sent data to the GPU frame-buffer necessary
to draw the triangle As can be seen from the above pseudocode code OpenGL
hides most hardware details such as memory allocation, execution units and drawing
routings from the application. This results in a simpler and smaller application code
base and reduces application complexity (see Fig. 2.7).

2.6.1.3. Scenario of application complexity with Vulkan

In contrast with Vulkan API, if the application wants to draw the same triangle, the
application will use Vulkan version of OpenGL API and it will also be required to
take care of memory allocations for the triangle vertices, as well as buffers for GPU
commands as shown in the pseudocode (2.6.1.x).

2.6.2. Possibility of Implementing Complexity to Complicated
System

Complexity is used to characterise something with many parts where those parts
interact with each other in multiple ways. The study of these complex linkages at
various scales is the main goal of complex systems theory. This section explores the
environments and the requirement for the ability to implement the new model. It
presents two environments that could be able to implement the new model, which

42

Background and Literature Review

Figure 2.7.: Drawing Triangle by using OpenGL

is reliant on software development. There are research efforts to develop program-
ming languages for building network applications, which are compiled at runtime to
provide high-level abstractions to the network management models. The aim is to
control the network using a programming approach as a reactive network and also
satisfy autonomic network management functionalities in such environments.

2.6.2.1. Active Networks

An active network is an example of increasing complexity to manage a complicated
network, which has elements of computing programs. The computing programs are
embedded within messages, which are distributed to the entire network, where net-
work nodes can execute these programs. In other words, messages are replacement of
packets by “capsules” that are executed at crossed router/switch [119, 26]. Then the
nodes can keep the values, return or forward the values to other nodes. Thus, it can
be said that, the network flexibility is increased, where it has power for controlling
packets.
The Active network uses a high-level assembly language to build programs which are
encapsulated with packets, and to be transmitted among all network nodes [119, 26].
Moreover, active networks’ traffic rate are growing which is expected to be difficult
to handle. Hence, active network introduces new ways to manage and monitor the
network. Therefore, the hope is to have more computing power, within individual

43

2.6 Managing Complicated System by Increasing Complexity

Figure 2.8.: Components of Smart Packets project, including ANEP Daemon and
VM within each device

nodes in the network [119]. Beverly Schwartz and others, in the year 2000 [119],
introduced the programmable nodes and named them “Smart Packets”, which can
inject packets with a little piece of program embedded within the message as shown
in Fig. 2.8.

A Smart Packets approach is interacting with the management centre, which can
send computing programs to managed nodes and control operations instead of repeat
get/set operations of SNMP. Moreover, management rules can be illustrated as
programs built in the management centre. The Smart Packets approach has some
benefits, such as secure architecture, where a payload is not readable unless executed
by virtual machines, which are resident within each network element. Also, the
approach is constrained by rules such as routers should support concepts of the
Smart Packet [119].

Smart Packets capsules format includes the result of data executing, management
and monitoring program, or messages, which are encapsulated within the active
network (encapsulation protocol). On the other hand, to have approaches capable
of being implemented in current network structures, their packets format should not
change; the change will be in the forwarding plane for forwarding purposes. Thus,
Smart Packets are manipulating both the contents of the packets and the node by
using MIB variables.

44

Background and Literature Review

2.6.2.2. Software Defined Networking

Another example of managing the complexity of network management is the new
norm of network architecture, which has emerged, and is called Software Defined
Networking (SDN) which is presented in sec. 2.7.

2.7. Introducing a New Norm of Networking (SDN)

Traditional network architectures have a limitation to meet the requirements of
current businesses, carriers, and users. A new norm of network architecture has
emerged called Software Defined Networking (SDN) where the idea behind it is
pulling any intelligence from networking hardware. In more detail, network control
is pulled from forwarding and it is programmable [64, 51]. This separation happened
for a long time now as swinging the pendulum of network structure mentioned
previously in this chapter. The interesting part of SDN approach is that abstracting
network hardware equipment, then just dealing with virtual network infrastructures
[80].
The networking equipment nowadays is same as those that were produced back on
1999 (e.g. routers, switches, routing protocols and so forth). The networking equip-
ment has become faster with bigger backplanes also greater throughput, but the
actual intelligence mechanisms are the same [76]. Vendors have proprietary frame-
ware and control logic, implemented on their owned switches, which can limit the
flexibility. Moreover, their switches are configured and managed by using one of the
restricted management protocols such as SNMP protocol. In addition, the vendors
add some quality of service (QoS), and some little things; however the networking
equipment are similar. Then, there is no possibility to introduce new functions or
protocols into the switch. Therefore, there is no opportunity for migration of con-
trol, benefit by creating an abstraction layer with a computing power for network
infrastructure accessible by applications and network services as a logical or virtual
entity (see Fig. 2.9 for SDN architecture).
The SDN approach is enabling a switch control plane to orchestrate forwarding
planes for the entire network remotely by using an open protocol such as Open-
Flow protocol as a first standardised implementation [68]. SDN architecture has a
logically centralised network operating system, which can control physically distrib-
uted switches, using network applications. The network applications use application
programming interface (API) on top of the network operating system, which can
set actions, and control the forwarding tables within each switch for forwarding
purposes. The SDN approach simplifies the implementation of control functions.
Network intelligence is logically centralised in controllers layer, with a global view of
the entire network from a single logical point, which greatly simplifies the network
design and operations. Each layer of architecture provides some functionalities for

45

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.9.: Software-Defined Networks (SDN) architecture

46

Background and Literature Review

services, management. For example, services which are on a network can be separ-
ated from the physical equipment such as a firewall to a control plane to deal with
it more efficiently. For another example, the management can manage services and
data, and make sure all servers on the control plane function as wanted.
Implementing the SDN approach will provide the following features and concepts:
SDN does not need to understand and process hundreds of protocol standards, but

can accept instructions from controllers [83].
SDN makes networking equipment dumber, but it creates a management system to

make the overall networking system much more intelligent [68].
SDN approach moves current static networks to be highly automated, flexible and

programmable networks with a bit of intelligence to assign the network’s
devices dynamically, within secure cloud environment [64].

SDN allows controlling over entire networking infrastructure at single domain con-
trol panel, instead of configuring individual router and switch and do different
types of changes [89].

SDN separates out components of the networking infrastructure, then deals with
them separately as data plane with commands from control plane to move
data from point (A) to point (B) as dealing with routers, switches, bridges
[83].

SDN allows the natural shaping of traffic in real time [73].

2.7.1. Major contributions toward SDN paradigm

This section provides contributions to the field of programmable networks, and
historical perspectives that have modelled the current SDN architecture. In order
to understand SDN working, there are three phases of concepts accumulating to the
final picture of SDN composition, benefits, and drawbacks as following:

• Concept of programmable network infrastructure [119],
• Concept of separation the control from data plane [61]and,
• Standardisation of the data plane interface [64].

2.7.1.1. Routing Control Platform RCP

Routing Control Platform (RCP) architecture emerged in 2004 [61]. It came to solve
scalability and correctness issues in the components of the Internet used between
routers inside an Autonomous System (AS) to distribute external routing inform-
ation; it is illustrated in interior Border Gateway Protocol (iBGP) protocol [67].
Fig. 2.10 shows RCP structure [61].

47

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.10.: Routing Control Platform RCP

Figure 2.11.: Distributed Routing Control Platform RCP

In the RCP architecture, routers send the routing information to a server that is
responsible for routing decisions. This server is able to maintain the global routing
state with only one connection per router. Also, the server has a complete view
of the routing information. In more detail, for scalability perspective; it reduces
the load on routers where in management perspective it can configure from a single
point, and RCP can free routers from router software.
RCP followed SDN architecture whereas, the routing state and logic are decoupled
from routers (data plane) to a server (control plane). The routers have a well-defined
dynamic interface for the routing tables’ configuration. The data plane configuration
is defined in software by decoupled server that has access to the global network view
(the routing state).
However, Feamster [61, 62] suggested having distributed RCP architecture in order
to avoid a single point of failure and increase scalability.
In distribution structure in Fig. 2.11, one router may connect to more than one RCP
server. Also, the RCP does not requires a consistency protocol between RCP servers
to guarantee no conflict between servers which may cause looping. To overcome that
weaknesses assumption they make some level of coordination, where each server has
a complete view of the routing state.

48

Background and Literature Review

To avoid conflicts; RCP should have consistency protocol to guarantee aliveness of
the system where the servers may not assign routes to other routers. However, with
no consistency protocol; the transient periods and updating RCP will be duplicated
with a possibility of conflict rules in routers and that may cause inconsistencies of
transient periods.

2.7.1.2. 4D

In 2005, 4D was proposed as clean slate network architecture [66]. 4D addresses the
root problem of the traditional networks. The intertwining of a control plane and a
data plane brings complexity on network elements.
SDN motivation appears because of a few issues started by network state manage-
ment, which can only be resolved through ad-hoc manual intervention (error-prone).
Also, there is difficulty within networks level goals specification as there is no co-
operation in the control functions. Moreover, the data plane has been distributed
and difficult to scale and control functionalities development is complex.
There are three principles in 4D architecture as following:
1. Global network level goals specification (For instance, security policy and routing)
2. Network state centralisation (For instance, link state and topology)
3. Network elements’ run time configuration.
The low-level protocol must be avoided as it contains hazards. The configuration
requires that it be distributed across various devices and the distributed algorithms
be developed for the function control. A network architecture which has been struc-
tured into 4D has been brought about as following [66]:

• Data plane: for the forwarding of packets
• Discovery plane: for the collection of information from the data plane
• Dissemination plan: to configure the data plane
• Decision plane: to translate the network goals into the data plane configura-

tion.
The 4D would present the same architecture as the decoupled planes, programmable
devices, centralised network state and many others when it is compared to the RCP
architecture. Routing from routers is separated by the RCP and an extreme design
is envisioned by the 4D architecture.
From the network devices, all control functionality has been separated. The devices
must only forward the packets as their responsibility from 4D perspective. The
forwarding mechanisms in the 4D include packet filters, packet scheduling and for-
warding tables; that must act as a unified resource [66]. Therefore, 4D and SDN
architecture is similar and a single protocol ties the dissemination and discovery
planes.

49

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.12.: Ethane architecture decoupling control logic

2.7.1.3. Ethane

For the organisation, network architecture was proposed in the year 2007 by Casado
and others [56] with emphasis on security aspects. The architecture was named
Ethane and it follows the footprints of 4D [66]. It also has the ability to identify
the same issues as the traditional network management domain. The distribution
configuration or lack of cooperating control functions would be responsible for the
configuration errors. A logically centralised server which was in charge of the net-
work devices has been introduced as the controller to manage the issues. A global
network view is maintained where the topology is presented, binds the users and
hosts the machines. An interposition role is played by the controller to carry out
communication between the networks. It makes sure that there is proper respect for
the network policy. Regular operation like routing protocols, packet filtering and
address learning is not carried by the network devices or switches that are part of
Ethane (see Fig. 2.12).

There is a limitation to flow based forwarding where a controller is maintaining the
local flow table. A packet will be redirected if it is unable to match with the rules
present in the flow table. The controller extracts the packet information, security
policy and current network and a forwarding policy is derived from this particular
packet as well as for the rest which belongs to the same flow. For instance, Ethane
was deployed at a campus network where there were 300 hosts and the significant
contribution was extracted from these results. The results indicate that a single
desktop computer can manage a campus network with 22,000 hosts. At peak time,
this can generate 10,000 flows per second [56]. Decoupled architectures have always

50

Background and Literature Review

been subjected to issues such as resilience and scalability and such an activity proves
to be interesting [56].

The Ethane resilience has also been discussed in [56]; one active controller is present-
ing primary mode and the rest are only on standby in case there is a failure. A
slow-changing state is maintained by the standby controllers like user registration
and configuration but consistency is observed in the binding of information which
forms a relationship between the host or network devices and the users. When the
mode is active, the network is controlled by two or more controllers and the requests
are distributed through switches all across the present controllers. Therefore, results
indicate that the control plane would be able to manage the load brought forward by
Ethane (22,000 host network). Hence, Ethane has been observed as the first example
of SDN architecture that allows complete operation with control logic. It is separate
from network devices that were reduced to an extent for the forwarding equipment
configured in the run time using the controller and the logically centralised network
state.

2.7.1.4. OpenFlow

McKeown and others presented the OpenFlow protocol in 2008 [77], which went
on to become the standardised process employed in programming data planes. The
OpenFlow protocol included an open interface in programming networked devices
which used to be restricted. A processor could be considered to present an analogy in
comparison to networked devices while the OpenFlow could be deemed to replicate
an instructional set in demonstrating the basic functional behaviour associated with
a well-defined interface.

In this context of an OpenFlow, network devices only function to the extent of a
flow-based forwarding structure, similar to that observed in Ethane [77]. The flow
table is embedded within the networked device and is considered to be composed of
multiple tuples. Also, the corresponding match enables the device to align against
corresponding packets arriving in a flow, with the associated action indicating the
forwarding behaviour. Moreover, devices were able to synchronise against specific
standard fields within Ethernet, IP, and transport headers, enabling actions ranging
from dropping, forwarding to multiple ports, and also perhaps forwarding to the
controller. Then the controller can align and institute necessary changes to the
table as per requirement. Then, OpenFlow is derived from the successes associated
with earlier versions of the systems, including that observed in Ethane.

In reality, McKeown with others has, have not necessarily presented any new theories
concerning Ethane, but have instead generalised a process which has been already
associated with Ethane switches (see Fig. 2.13). The treatise could also be considered
to be a “call to arms” within the industrial and academic communities. The former
would be encouraged to integrate the processes within their equipment while the

51

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.13.: OpenFlow architecture, theoretically similar to Ethane

latter could be invited to innovate exclusive of the SDN context. The corresponding
protocols were adopted in three basic settings.

• Firstly, it contributes towards bringing down the associated innovation barriers
by “opening” existing networks and the corresponding devices to be synchron-
ised against the new protocols which could be considered to run in parallel
while in exclusion from the production traffic.

• Secondly, it contributes to lowering the innovation barrier associated with the
development and presentation of SDN architectures.

• Thirdly the OpenFlow interface contract is a requirement of capabilities which
were earlier included within the hardware.

This contributes to the network devices being supportive of a basic firmware up-
grade. To summarise, OpenFlow provides to ensuring that switching technologies
are generalised and applicable in the context of the processes observed within Eth-
ane. The widespread acceptability of the methods is a testament to its popularity
amongst network manufacturers who are increasingly prone towards including asso-
ciated OpenFlow technologies within their equipment.
The OpenFlow is the interface between the control and forwarding layers within SDN
architecture, which is implemented on both sides of the interface between control
layer and forwarding layer [64, 83]. The OpenFlow is an application programmable
interface (API) so the network operators can define flows and can set the path that
packets can follow without disturbing the existing traffic. It also provides methods
to identify policies to find automatically paths that achieve certain characteristics,
like having higher bandwidth, reducing the number of devices and energy that the
traffic needs to reach the destination. Therefore, OpenFlow is a tool which allows
researchers/operators to perform and re-engineer traffic in their network [56].

52

Background and Literature Review

Programming a computer system can be done by an instruction set within the CPU.
Similarly, OpenFlow protocol uses an external application to program forwarding
layer, which includes switches/routers. The OpenFlow decouples the control plane
from switches to logically centralised control of the entire network by using soft-
ware applications. OpenFlow can direct access and edit the forwarding layer that
is illustrated in an OpenFlow-enabled switch. The OpenFlow-enabled switch can
deal with both conventional forwarding and OpenFlow-based forwarding. Also, the
network can respond to real-time changes in topology, application, and user level.
OpenFlow uses the concept of flow-based to identify match rules, which is modified
by the applications on the control layer, either statically or dynamically. So, based
on parameters such as usage patterns and cloud resources, it is possible to define
how traffic flow can be in the network devices. Also, OpenFlow is not only for
forwarding packets, but it is also architecture for network nodes, for managing and
reconfiguring the network, depending on flow definitions and network status [64, 83].

General view of OpenFlow architecture

The data path of the OpenFlow Switch consists of a Flow Table, and an action
associated with each flow entry. The data path of the OpenFlow Switch presents
an empty flow table with no flow entries when started. Each flow entry contains a
set of packet fields (variables) to match and defined actions such as send-out-port,
modify-field, or drop. So, it is possible in the OpenFlow to make new protocols such
as security models, and routing protocols. Moreover, according to[64, 83] it explains
how a packet is being transferred between hosts:

1. When the flow hit the switch, the switch checks the first packet of that flow;
if it has never seen it before and does not match with all flow entries, then the
switch will send the first packet of that flow to the controller.

2. Before the packet is forwarded to the controller, there is a step called table-miss
flow entry as shown in Fig. 2.14, whereby it specifies how to process unmatched
packets with the following options including dropping packets, passing packets
to another table or sending packets to the controller.

3. The controller checks the packet’s distinction and parameters. Then the con-
troller sends a flood to search where is the destination and to set/modify flow
entry, so each switch all the way down to the destination sends an acknow-
ledgement. However, the other switch that is not on the way to the destination
drops controller’s flood. The controller at that time makes a decision on how
to deal with this packet, maybe drop it according to policies, or add a new
flow entry in the switches’ flow tables, until the destination.

4. After that, the controller sends back the packet to the origin switch, which is
ready to send that flow, so the new flow entry is directing the switch on how
to forward packets all the way down to the destination.

53

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.14.: OpenFlow packet processing flowchart

Dealing with flows within OpenFlow

This section describes the components of flow tables and the procedure of matching
and actions. The switch expands the flow on receipt of the flow, to match the first
packet of that flow, so when the flow entry is found in the flow table there are some
actions associated with that flow entry; see the actions in the following Fig. 2.15.
The action could be routing the packets of that flow through the network to a given
port(s) [73]. Also, the other actions could be encapsulating packets and sending
them to the controller using OpenFlow protocol. However, it usually happens with
the first packet in a new flow, for controller decision such as add new flow entry or
drop the packet according to security purposes [73, 83].

A flow entry as shown in Fig. 2.16, has three fields as following:

• A flow header with 12-tuple called “Rule” which defines the flow, where the
rule consists of most fields in the packet header. Each header field can be a
wildcard (just MAC address) or exact header’s fields such as following Fig. 2.17.
If the packet matches multiple flow entries, then the highest priority of flow
entries will be chosen [77, 81, 83].

• The action field, which defines how to process the packets, then

• Stats/Counter field that count the packets and bytes for each flow, and the
time for removing inactive flow entries.

54

Background and Literature Review

Figure 2.15.: Actions associated with Flow entry of the flow table within switch

Figure 2.16.: Flow table entry includes matching, status and action

55

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.17.: Header fields in the flow entry for (wildcard and exact fields)

With flow-based, it is possible to build the candidate system that can scale to
distributed networks with flexibility [77, 81, 83].

OpenFlow Channel and Protocol
The OpenFlow channel is an interface, which connects between each switch and a
controller. So, by using this channel, the controller is able to configure and man-
age the switches and can send/receive packets from/to the switches. Also, Open-
Flow channel can exchange messages between each switch and the controller. The
messages between switches and controller are formatted as the OpenFlow protocol
required[83].
There are three message types supported by OpenFlow protocol, controller-to-switch
Tab. 2.4, asynchronous Tab. 2.6, and symmetric Tab. 2.5.

• Firstly, when the controller wants to manage/check the state of the switch(s),
it starts the controller-to-switch messages.

• Secondly, when the switch wants to update network events and state changes
within the controller, the switch starts the asynchronous messages.

• The last type is the symmetric messages which are started without asking by
either the controller or the switch such as “Hello messages” with the connection
startup.

For the last two messages the controller can ignore the messages; however it should
respond to echo messages to keep the connection with the switch [68, 83]. The
OpenFlow channel is usually illustrated as a single network connection, using TLS
connection, which started by the switch, which connected to the controller, via TCP
port 6633 as a default port, Fig. 2.18. The OpenFlow switch always starts a con-
nection to the controller (see Fig. 10.12). It should be conceded that an alternative
security way to prevent attacks on the OpenFlow channel, in the case when using
plain TCP connection [68].
Also, for better understanding a comparison of network layers and functionality
between TCP/IP, OpenFlow, and traditional telephone are presented in Tab. 2.7,
which shows the OpenFlow stack layers in more details.

56

Background and Literature Review

Table 2.4.: Controller to switch messages

Controller to switch messages
Controller initiate the following messages and use them to manage
and get state of connected switches see Fig. 10.12. There are six
types of controller messages as the following, which are may or

may not require a response from the switches:

Feature

When TLS connection establish, the controller
sends a feature request message to the
switches. Then switches should reply with a
(features reply) message which, include
features and capabilities the switches.

Configuration

The controller able to set configuration
parameters in the switch. Also the controller
able to get configuration parameters from the
switch where here switch should respond to
controller get message.

Modify State

The controller send these messages to manage
the state of connected switches such as (modify
entries of flow table / set port priorities).
e.g. ADD, MODIFY, DELETE, and MODIFY
with DELETE

Read State
Controller able to collect statistics from
switches (e.g. flow tables, ports, and flow
entries).

Send Packet Controller send (packets out) from a specified
port on the switch to destination(s).

Barrier
The controller request/reply messages to
ensure message dependencies have been met or
to receive notifications for completed
operations.

57

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.18.: OpenFlow stack layers and TLS/SSL channel to controller

58

Background and Literature Review

Table 2.5.: Symmetric messages

Symmetric messages
These messages are sent without solicitation from both ways
controller and switch as shown in Fig. 10.12. There are three

subtypes of symmetric messages as following:

Hello It is exchanged messages between switch and
controller when connection established.

Echo

It is exchanged messages between switch and
controller as heartbeat for connection between
them. Any echo request should respond by
echo reply messages.
Echo message can indicate the following:
Latency, bandwidth, and liveliness of
connection.

Vendor
Switches provide a standard way for OpenFlow
message type space for future revisions of
OpenFlow.

2.7.2. Centralised and Distributed SDN Controllers

SDN is simple to manage and it is flexible, based on abstracting control and manage-
ment functions as network applications over network operating system. In addition,
it has a comprehensive view of the entire network [98]. Moreover, the SDN architec-
ture has that control layer and forwarding layer; this architecture relies on a central
point, which can control the forwarding layer. This architecture is lacking in scalab-
ility, which has central domain management, which is responsible for establishing
every forwarding rule in the network [92, 75]. As the size of production networks
deploying centralised controller increases, so will the number of flows that need to
be processed [77]. If the central controller does not have the capacity to handle all
these flow setups, it can present a scalability bottleneck. For example, an enterprise
data centre’s networks may have 100 edge switches. The central domain controller
could expect to see around 10 million flow requests per second [55, 96]. This could
create significant challenges for deploying centralised controllers in large-scale data
centres [55]. Another drawback of the centralised domain is that each flow request is
processed individually, and all packets created accordingly are forward individually.
Also, sending out messages take about 80% of the flow request processing time [75].
This can cause an overhead of multiple sockets write operations to forward each
packet to the same destination individually instead of a single batched process.
The centralised domain does not provide sufficient flexibility to achieve scalability
for application developers, nor adequately address reliability as the control platform
must handle equipment and other failures gracefully [75]. Also, reference [92] ex-

59

2.7 Introducing a New Norm of Networking (SDN)

Table 2.6.: Asynchronous messages

Asynchronous messages
These message are initiated by switch to controller for update

controller information about network events and changes to the
switch state see Fig. 10.12 (e.g. packets arrival, switches state
change, and errors). There are four messages from switch to

controller as follows:

Packet-in

This message is sent to the controller if no
matching in flow table or action is sending to
the controller. The packet-in message could
include full packet to the controller or just
send to the controller (packet header and
buffer ID) and save the rest in switch.

Flow Removal
The switch should send a flow removal
message when the flow expires to inform the
controller. (e.g. idle timeout, hard timeout,
and flow modify messages)

Port status
The switch send port-status messages to
inform the controller about port configuration
state changes. (e.g. disabled by the user)

Error Error messages are to inform the controller
about switch problems.

60

Background and Literature Review

Table 2.7.: Comparison of network layers and functionality between TCP/IP,
OpenFlow, and traditional telephone

layer Functionality When it happens TCP/ IP OpenFlow Traditional
Telephone

5 Applications Computer
applications

Computer
applications Handset

4 Connection
assurance Packet by packet

TCP
protocols,

usually kernel
functions

TCP
protocols,

usually kernel
functions

None
needed
because

Pre-
assigned
resources

3 Global
connection

Packet by packet,
Pre-established

Routing

IP protocols,
Routers,

BGP, OSPF,
etc.

IP, MAC, etc
⇒ OpenFlow
⇒ IP, MAC,
etc

Telephone
numbers,
switching
algorithms

2 U Node to
neighbour-
hood

Frame by Frame

MAC
protocols,

IEEE802.x,
SMB,

bridges, hubs,
switches

2 L

Before first
Frame/Conversa-

tion
happens.

Again after last
Frame/Conversa-

tion.

Roadm,
Optical

interconnect,
Transponders

Crossbars,
telephone
switches,

etc

1 Node to Node
At time of network

construction or
maintenance

Cat5 physical, other
physical transport.

Optical, etc. No switching.

Telephone
wires

61

2.7 Introducing a New Norm of Networking (SDN)

plains that relying heavily on only one centralised controller for the whole network
may not be feasible for some reasons. Three facts are considered as drawbacks for
single domain controller; firstly, the amount of control traffic destined for a controller
increase according to the number of switches. Secondly, despite where the controller
is placed, if the networks have a large diameter, some switches will face long flow
setup latency. Thirdly, since the network is bounded by the processing capacity of
the controller, flow setup times can rapidly grow as demand grows regarding network
size and complicatedness [92].

Researchers and vendors introduced some different approaches of network paradigms
to cope with issues discussed previously and it becomes a significant challenge such
as, developing network with fully centralised database and fully centralised compu-
tation with increasing power and optimise techniques. Other approaches are about
improving performance to keep up with rising demand. They introduced networks
with distributed database and distributed computational power, and in this regard
the following sections will present centralised and distributed controllers approaches:

2.7.2.1. Centralised Controllers

This section presents an overview of the relevant centralised control plane for SDN
architecture. The centralised controllers can often process multiple tasks such as
routing, monitoring, and access control. These functions can not be independently
treated unless they perform on non-overlapping portions of the traffic. The services
are supported by applications on top of the centralised controller, which must estab-
lish rules that match on bits of the packet header. Also, applications can translate
high-level policy into multiple low-level rules [68, 59].

The controller is able to provide multiple in-memory applications which are asso-
ciated with differing events occurring within a particular data plane. Thus, each
of the events expressed concerning aligning such actions as establishing link up,
new switches or flow requests, reflects the switch is arranging to coordinate dis-
pensing message against the corresponding controller. This enables the messages to
be appropriately analysed concerning its particular classification and concludes the
initiation of a related pipeline. It is relevant to explain that a pipeline is assumed
to constitute multiple stages [83, 68].

Within each of the stages considered, varying application processes are assumed to
occur which concludes with the event being implemented onwards for processing.
Correspondingly, an application can be configured against the relevant switch at
multiple stages within the pipeline in consideration of explicit OpenFlow config-
uration messages[83]. Such architecture is suitable to be associated concerning a
tightly bounded management and data plane in consideration of the Northbound
API being exposed against the Southbound protocol in consideration of associated
switches’ events [64].

62

Background and Literature Review

NOX

NOX controller is a network operating system, which provides a platform for a
network. It has a high-level programmatic interface to build network applications,
which written in C++/Python for controlling and managing network infrastructure.
Moreover, NOX consists of a standard interface which facilitated the integration of
corresponding management applications within the controllers. While a significant
input and benefit associated with this treatise relate to the presentation of a Network
Operating System (NOS) abstract detailed in the NOX concept itself is considered
to be alluded to within the context of API. Also, NOX programming model is
dependent on multiple events and enable applications to be registered as shown in
Fig. 2.19 also, prioritised in consideration of event handlers aligned with both switch
and dependent events applications [68].

NOX was initially considered as a single threaded application which was not ne-
cessarily focused on the operational aspect. Nevertheless, there have been multiple
upgrades to the subsequent systems and correspondingly, the natural evolution-
ary process of the multi-core design statically binds the individual threads against
corresponding switches [91]. Currently, NOX is publicly traded in two divergent
versions of a C++ dependent controller compatible with Linux. A second edition is
a Python-based controller (POX) which caters to multiple Operating Systems [63].

NOX includes standard networking functions called NOX components such as host
detection, authentication, topology discovery and routing, (see Fig. 2.19). For ex-
ample, the topology discovery can track changes in network topology and routing
functionality can calculate and install path for flow. NOX can control the switches
via the OpenFlow protocol, so it requires minimum one OpenFlow switch on the
network to be supported [77, 68, 83]. Hence, abstracting the network management
by using the network applications, on top of the controller, offers possibilities to
implement the approach in this study.

The SDN structure uses API to communicate between the controller and applica-
tions; similar to user interface which can facilitate interaction between users and
computers. Then, NOX functions include abstraction layers, architecture, and basic
library, which is useless without NOX power that depends on network applications.
Moreover, NOX can run within user-space on network servers [68].

When the NOX applications receive a packet, it constructs a network observation,
and then NOX specifies to forward that packet and calculate the route or does
another thing according to components and policies [68]. For instance, for a network
observation and track topology, NOX uses LLDP. Also, for calculating the path and
forwarding control, the NOX has applications, which can specify which flows are
allowed, also that applications can compute an L2 route, install flow entries within
all switches located in the chosen path by the controller. Then, after that NOX
returns the packet to the origin switch to be forwarded [77, 68, 83].

63

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.19.: NOX structure and components

Beacon

The Beacon controller has been presented by David Erickson [59]. It is a Java based
open source controller, and was presented by the designer while he was still a student
at Stanford University [60].

The model is dependent on driven events, with applications being registered against
specific events and subsequently processed for configuration from the user’s per-
spective Fig. 2.20. Such applications being processed within an event are concluded
within the pipeline and later terminated upon its execution. It is correspondingly
found to be multi-threaded, composed of binding switches against specific threads.
The corresponding applications are all implemented in terms of specific bundles,
which are considered as an abstraction unit within the OSGI13 framework [71]. This
refers to a component and service platform considered within Java which constitute
a programming language inclusive of dynamic capabilities. This enables aspects
such as hot-swapping in terms of its deployment, starting and stopping the modules
within corresponding run times. The Beacon enables a central registration platform
synonymous with the creation of a registry, wherein individual bundles export it.
Associated applications are conducted in consideration of processes related to service
abstractions; wherein bundles would be registered within others towards enabling
listeners to know precisely when an event is executed. For extra information about
the Beacon model refer to [60, 59].

64

Background and Literature Review

Figure 2.20.: Overview of Beacon Architecture [59]

Floodlight
Floodlight is considered a new addition to the repertoire of licensed controllers,
presented by BigSwitch Networks [72]. The underlying architecture is dependent
on Java (see Fig. 2.21), although the application is perfectly compatible with Java,
Jython, and all associated languages utilising REST APIs [94]. The program is
implemented within standard event-driven programming models, associated in the
context of earlier controllers. Although the Floodlight program is a derivative form
of Beacon [60], the latter model discarded the OSGI support functionality towards
ensuring benefits in terms of performance and ease of deployment [71, 94].
The functionality is represented concerning its modules which enable the execution of
associated and related processes. This functionality is similar to Beacon, although
the modular service functionality aspect is provided from within the Floodlight
program and not from third-party frameworks.
The program is also considered to be multi-threaded, which is made possible in con-
sideration of synchronous event based multithreaded library [58]. This controls the
input/output communication processes in consideration of associated switches [94].
The Floodlight program is considered in a review of benefits associated regarding
it being a programming language which provides multiple applications on the shelf,
and which needs to be subsequently distributed [65]. In the current scenario, Java is
considered a priority amongst associated programming languages in consideration of
its propensity to integrate the library to construct a reliable data store, Floodlight
has broad applications within developers and associated users [58, 65].

2.7.2.2. Distributed Controllers

This section presents an overview of relevant distributed control plane of SDN archi-
tecture and advantages of implementation. A distributed controller in this context

65

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.21.: Project Floodlight Infographic [72]

66

Background and Literature Review

Figure 2.22.: Kandoo architecture

is that SDN architecture uses more than one controller to control the data plane. As
the proposed model in this thesis, it has horizontal communication to exchange in-
formation using API. A common characteristic among following approaches are that
the data plane is shared and divided across different controller; also, each controller
can dominate the entire data plane in some approaches. Then, events can be dis-
tributed over machines. The following methods are employing different techniques
to administrate the data plane, and manage the entire network state in a distributed
manner, with scalability, simplicity and global network view. However, some of the
distributed approaches have issues, and they may fail in arbitrary scenarios. Also,
a summary of Tab. 2.8, shows some of the distributed controller methods.

Kandoo

Scalability issues of the centralised model in SDN architecture have motivated re-
searchers to present the Kandoo approach [70, 54]. Kandoo is based on SDN archi-
tecture with distributed manner, where it divides the control plane into two levels,
see Fig. 2.22. One is root controller with global applications which are capable of
accessing global network state. And the other level of controller remains close to
the data plane called (local controller) which is capable of processing packets if the
global view is not required [70].

The approach was to bring some of the control functionality to the data plane for
better performance. Each controller has its responsibility to manage the network,
for example, the root controller is responsible for the normal operation and the local
controller can decide to redirect specific events to the root controller for processing
or process events locally. Moreover, each type of controller has a different type
of applications, the root controller has global applications for the global network
view, and the local controller has a different application to process events locally
without the root controller collaboration [70]. Theoretically, Kandoo can scale the
centralised control plane issues.

67

2.7 Introducing a New Norm of Networking (SDN)

Figure 2.23.: HyperFlow architecture

HyperFlow
HyperFlow is another approach to sort the lack of scalability in centralised domain
of management. The authors have enhanced SDN architecture by distributing the
controllers into two components, one is controller’s application to intercept events,
and the other one is a middleware which connects controllers together[92] as can be
seen in Fig. 2.23.
The motivation behind enhancement is to process event locally in the actual switch
and configure commands for some other events that must be distributed [92]. Hy-
perFlow uses middleware for all communication between controllers, which can Pub-
lish/Subscribe with publishers as senders of messages and subscribers as the receivers
of messages [92]. The controller’s applications are useful in this approach where the
idea here is not to sacrifice the simplicity of existing applications.
HyperFlow had been built as a C++ application on top of the NOX controller [68].
Each switch is maintained under its administrative domain of distributed HyperFlow
(contains a replica of entire network state). Also, HyperFlow supports the crash-
recovery fault model where controllers can fail cases such as crash or disconnect.
Moreover, controllers can recover later on, without affecting the network state. And,
HyperFlow can take decisions based on local state because each domain has a view
of the entire network [92].

Onix
Scalability is an issue for network infrastructures and it is considered as fundamental.
There is one more approach called Onix which is intended for a large-scale network as
a distributed management of SDN architecture, see Fig. 2.24. Onix is an enhanced
NOX controller with multiple contributions[75]. It contains Network Information
Base (NIB) which is an in-memory network graph for entities (network state), and
there are two duplicated data stores, for exchanging information with NIB [91, 75].
In this approach, the controller can reflect the southbound API circumstances
changes with northbound API, presented in NIB as management applications for
network graph. Moreover, Onix is considered as the first production level controller
[75]. Onix supports OpenFlow, where the data plane indirectly modifies the NIB
(through the controller). The controller has to guarantee that changes in the data
plane are reflected in the NIB and the NIB can modify the data plane configuration.

68

Background and Literature Review

Figure 2.24.: Onix architecture

Also, each Onix can manage a subset of particular data plane independently; also,
each can expose the entire network state using NIB (a distributed technique for
Onix controller) [75].

2.8. Information Models for network management

An information model is a structured representation of concepts, relationships, rules,
operations and data that is independent of platform, language, and protocol [132].
It provides raw information that is gathered either in real-time or batch processing
for knowledge management system to support decision-making. Moreover, the in-
formation model can build a data model, which is embedded in a platform, as a
language and as protocol or one of them. Also, it is used to define how data is struc-
tured and how data is accessed to specify data semantics and for implementation
purposes [120]. The information models cover most of the today’s elements in IT
resources such as computer systems, networks, and operating systems. Moreover,
there is a lot of similarities and overlap in the domain they covered and currently,
they are used by some different management solutions[140].
The information model has also been used for networks management purpose. As the
information model properties, it could handle the network management. Whereas,
the primary aim of the network is the availability of network resources for users and
the protection of the network resources from strangers [130]. In network management
there are some common models which could enable self-management functionalities
in heterogeneous network and complicated electronic environment; these include:

• The Distributed Management Task Force (DMTF) Common Information
Model (CIM) [124].

• The TeleManagement Forum (TMF) Shared Information and Data Model
(SID) [125].

For some details about the SID, it uses roles that can be played within network
elements in a scalable manner. In addition, the SID is designed by abstracting
business needs and abstracting services [125]. The CIM enables multiple parties
to exchange information of managed elements; also it provides ways to control and
manage these elements actively [130].

69

2.8 Information Models for network management

Table 2.8.: Distributed controllers approaches

System Summary Architecture Programming
Language

Kandoo
[70]

Hierarchical
controller levels
for SDN, 2012

Divided control plane
into two levels.One is
root controller and other
is local controller. -
(root controller) global
applications have access
to the network global
view. - (local controller)
local applications close
to switches with no
network global view.

C, C++, and
Python

HyperFlow
[92]

Application on
top of the NOX
controller, 2010

Has two components to
support distribution.
One is controller and
other is
Publish/Subscribe
middleware. - Controller
hold events and
configure commands for
distribution, and -
Middleware as links
between all controllers.

C++, requiring
minor

modifications to
the controller
applications

Onix [75] Improving NOX
legacy, 2010

Has an in-memory for a
network element state
management (NIB),
which is supported by
two data stores. Each
data store exchanges
information between
controller and NIB.

C++, and third
party libraries

70

Background and Literature Review

2.8.1. CIM from (DMTF)

CIM goal is to produce an object-oriented scheme to model the hierarchical data
of the managed IT environment. Moreover, CIM is an illustration of the managed
environment which attempts to merge and extend the existing conventional manage-
ment which uses object-oriented constructs and design such as SNMP. Also, CIM can
provide a consistent definition and structure of data by presenting managed elements
as a basic set of objects and relationship between objects [126, 124]. This standard
includes the CIM infrastructure specification and the CIM schema [102]. The CIM
infrastructure describes managed objects, as class and associations presenting the
relationship between those objects. Besides, CIM applies object-oriented concepts
of inheritance to define the common framework of managed objects and inherited
sub-objects effectively [104, 126].

2.8.2. SID from (TMF)

In a telecommunication environment there are business objects, which are defined
by specific terms; these terms are gathered in a single set which is provided by
SID. That single set which is provided by SID is for business objects and systems
perspective [125].
The SID model takes inspiration from all network resources, to align between busi-
ness as an organisation, and IT as softwares, by providing definitions, which are
understandable by business. Moreover, the SID provides a common information
and data vocabulary, and common language for communicating between business,
system, implementation and deployment. Also, the SID model is a unified data ref-
erence model, which allows all users everywhere to use the same terms for describing
the same real world practices, relationships and objects [125].
The SID is an object model, which uses data, UML (Unified Modelling Language),
and process modelling language, to define entities, relationship between them, at-
tributes and process which make up the entity or object. So, expressions of the
business needs are formalised by using UML [125, 48]. However, SID is insufficient
to support information integration, and logical networks. Thus, it is clear from SID
versions, which include the concept of topologies; SID is a poor management model
for network management [104].

2.8.3. Issues of CIM and SID

Traditionally, the SID has a different operational domain than the CIM model, and
they are not related to each other. The CIM focusses on the IT resources such as
systems, storage, and IP network. On the other hand SID provides a description of
technical and business system. However, SID and CIM are overlapping and have a
lot of similarities, where both are used by many management solutions [140].

71

2.9 Summary

The TeleManagement Forum (TMF), producer of the SID model, tried to align with
the Distributed Management Task Force (DMTF) producer of the CIM model over
their five years of relationship. They joined their effort together to do this project,
which aims to develop an approach, which applies to other domains. This project
was divided into two phases:

• The first phase which includes all the results which are presented within
these two documents: “DMTF/TMF Model Alignment Physical sub-Model
Alignment”, DMTF DSP2004/TMF GB932, and “DMTF/TMF Model Align-
ment SID Logical Resources and CIM Networks Sub-Models”, DMTF
DSP2000/TMF GB933, also this phase identified physical and logical resources
[134]. While,

• the second phase which was aiming to identify guidelines and processes of
CIM-SID model mapping, with a focus on logical and physical resources as
identified in the first phase[134].

Unfortunately, this relationship for that approach was not successful, because of
three issues [120]. The first issue is that the concepts of building a CIM model such
as (classes, attributes, and relationships) are not using Unified Modelling Language
(UML) as corresponding concepts, where it has its proprietary meta-model, whereas
the SID, uses UML [120, 48]. The second issue is that the CIM model does not use
patterns; and the SID model uses patterns, where in this context “patterns” are
the enabler to reuse of a successful design and can help to make models easier and
simpler to learn [120, 48]. The last issue is that the CIM does not use roles; however,
the SID model uses rules to make a design scalable and deployable by a different
managed entities. The design will be scalable by abstracting individual services,
devices, products, locations and users [120, 48].

2.9. Summary

The overall goals of this chapter were to establish the significance of network man-
agement, automatic and autonomic systems, complexity and complicatedness, soft-
ware defined networking, OpenFlow and controllers and information models, for the
network management.
This chapter was investigating the gap between the growing need for complicated

72

3. Theory of The Proposed Model

This chapter explores an introduction to design abstraction layers for distributed in-
dependent computing environment, which would be demonstrated through a struc-
tured system called Distributed Active Information Model (DAIM). This model can
provide the richness of nature-inspired adaptation algorithms on a complicated dis-
tributed computing environment. Also, it seeks to integrate with the current SDN
approach with some changes to provide some more abstraction and to be distributed.
Moreover, DAIM model can be implemented on a group of programmable switches
(e.g. OpenFlow switch) with some level of distribution supported by DAIM agents to
correspond information. These agents are imposed by a set of network applications,
which are integrated with the DAIM model. Also, the DAIM model is expected
to satisfy requirements of autonomic functionalities as precursors to autonomous
network management. The DAIM model also considers challenges of autonomic fea-
tures, where each network’s device can make its decisions by collected information
by the DAIM agents.
Theory of the DAIM model is probably more about the state of the art in software
engineering than about real implementation to engineer autonomic network man-
agement. To draw a blueprint for DAIM model as abstraction layers for distributed
independent computing environment for autonomic network management, it should
follow the fundamental software engineering guidelines [122, 87]:
Make explicit assumptions and requirements for DAIM model; it is ne-
cessary to make assumptions about the environment in which the DAIM model
can operate, and the expected results of the model. That would tell when model
components are operating under supported conditions.
Handle failures and risks; after understanding DAIM model assumptions, it
should be checked that it covers the risks and common failures encountered for
implementing in either emulation and real practical environments.
Understand interactions between DAIM model components; after imple-
mentation and testing DAIM model, the interacting of unpredictable communica-
tion behaviours of components, the understanding of all complicated communication
methods, and any component which does not meet the requirements should be re-
designed.
Support administrators can help DAIM model; avoiding previous issues by
analysing current approaches would support designing and implementing DAIM
model. Also, that would ease the understanding of future challenges, extensive

73

3.1 Restatement of the Thesis

support for monitoring of system performance, reliability, and other behaviours
should be analysed and designed in, from the beginning.
Test the proposed model for validation; DAIM model should be tested to
ensure it is meeting the propositions.
The DAIM model can manage complicated systems in any distributed networks
paradigm, which make it possible to be autonomous, adaptable, and scalable. Also,
the DAIM model can control devices and ease configuration of an entire network
autonomically, without configuring each device separately. Moreover, the DAIM
model is a sustainable information model, which collects, maintains, updates and
synchronises all the related information. Besides, the decision-making ability of
each device locally, by gathered information, allows devices to adapt autonomically
according to the ever-changing circumstances [102].
The DAIM model architecture is proposed with the hope that it addresses the lim-
itations of previous network protocols such SNMP , CIM and Policy-Based Network
Management. Ultimately, DAIM model could address the limitations of current ap-
proaches and future distributed network systems, creating an autonomic computing
management strategy.

3.1. Restatement of the Thesis

Candidate approach is a combination of previous approaches integrated with the
DAIM model to gain a distributed reactive environment autonomically managed.
In more detail, it introduces programmability into the distributed network environ-
ment, illustrated in SDN concept, with some level of distribution functionalities.
SDN has a flow-based forwarding and separation of a control plane from a data
plane, and it provides flexibility in networks paradigm. However, the new system
requires some changes in the SDN approach. In this regard, implementation of
the DAIM model through the compiled interpreted reactive paradigm within SDN
environment has been proposed. This section describes all givens such as possible
tools, environment, programming languages and algorithms toward designing the
DAIM model. Moreover, it illustrates packet processing within the DAIM model,
and risk scenarios if failures happen.
As a solution to ameliorate the complicatedness of a network management, there
is a need for an open and flexible architecture to implement autonomic network
management functionalities. In this context, the flexible architecture is SDN archi-
tecture, whereby it is aimed at reducing the complexity of network management (see
Fig. 3.1)[64].
For more details about SDN architecture, it includes OpenFlow protocol (Con-
trolling interface) which is used between network infrastructure layer and control
layer to communicate and exchange messages such as get-stats, packets-receive, and

74

Theory of The Proposed Model

Figure 3.1.: Software-Defined Networking Architecture

Figure 3.2.: OpenFlow networks structure

packets-sent-out [100]. Also, there are API interfaces from the control layer, allowing
it to implement autonomic functionalities as applications, such as self-protection and
self-optimisation [105]. Then it is possible to control the network with high scalabil-
ity and flexibility, which can adapt quickly according to ever-changing circumstances
(see Fig. 3.2).

One of the means to implement autonomic functionality within SDN is a new nature-
inspired active information model, the DAIM model. It allows local decision-making
in each network device which manages a complicated distributed network environ-
ment. DAIM model can be implemented in OpenFlow networks as an open and
flexible architecture, to meet the requirements of autonomic components of a dis-
tributed network, such as self-managing [105, 117, 114].

OpenFlow approach, however, has a number of limitations [112, 3, 50]: it restricts its
use within a single domain, it is not scalable, and it does not adapt well to changes
in local environments. To solve these limitations, the DAIM model is proposed, and
it can be integrated into OpenFlow networks to provide abstraction layers, which

75

3.1 Restatement of the Thesis

can manage the flow tables autonomically.
Flow computation is done in the control layer, where switches are only performing
simple forwarding functions. OpenFlow is very efficient at moving the computational
load away from the forwarding plane and into the abstraction layer [109]. Moreover,
centralisation of management in OpenFlow network brings optimality; however, it
creates additional problems of its own including single-domain restriction, scalability,
robustness, and the ability for switches to act autonomously [115, 112, 117, 78].
There are three approaches to resolve the limitations of OpenFlow such as [57, 78,
79]:

• optimising the centralised controller,
• empowering the switches to process some control functions, and
• distributing the control platform.

However, this first approach still relies on only a single controller and sends batch
messages to the switches, not in a runtime configuration. This can significantly
affect the packets forwarding process within large-scale networks [55]. Furthermore,
OpenFlow is more flexible since its control logic can realise behaviours that can not
be easily achieved by a set of policy rules installed in authorised switches [57, 97].
Finally, synchronisation within distributed controllers should be in a runtime mode
to provide reliability and robust performance [75, 92].
The DAIM model is a combination of each approach, and it is integrated into each
switch. The DAIM model can compute the flows from local information and ex-
change information. The proposal moves the computational load to the switches
and efficiently the DAIM cloud acting as an abstraction layer reactively interprets
sources and distinctions of packets [99]. The functionality of the controller mi-
grates into each switch then to a database. The behaviour of the network is then
just changed through changes in the requirements database. Moreover, the decision-
making ability will be locally within each switch, by collected and shared information
supported by agents. Then, the decision-making ability gives autonomic adaptabil-
ity to ever-changing circumstances (see Fig. 3.3).

3.1.1. Uniqueness of DAIM model

The DAIM model derives its design principles from all previous approaches. That
is abstracting the network infrastructure layer which can be accessed by control
layer and application layer. The DAIM model is a distributed combination of net-
work operating system and control plane, so each switch has more control functions.
Furthermore, the DAIM model tries to solve the current issues of centralised net-
work control plane and difficulties in managing network by introducing autonomic
behaviours based on DAIM agents [102, 116, 107].
There are five unique features of the DAIM model which include:

76

Theory of The Proposed Model

Figure 3.3.: DAIM model structure

1. The DAIM model is a programmable framework for creating distributed con-
trol functions within SDN architecture. In other words, the DAIM model
can be applied in a flow-based routing network such as an OpenFlow network
[117, 64].

2. The DAIM model provides clear and direct control over interactions with
DAIM modules, and over network state synchronisation by using the DAIM
agents to gather information and set instructions [114].

3. The DAIM model could solve the scalability issue of the centralisation, by
distributing control functionalities within each switch [117].

4. The DAIM model within a distributed network environment can solve the
robustness and responsiveness issues of the current centralised paradigm. The
adaptation algorithms can adapt the distributed nodes by synchronising the
network state from neighbour switches [111, 107].

5. The DAIM model is not similar to the cloud computing, where the cloud com-
puting has many separated computing portions, presented as a single compu-
tational infrastructure. Whereas the DAIM model has many network entities,
which are distributed and working independently, and each object is represen-
ted as an independent computing environment [99, 107].

3.1.2. DAIM model Vs. current Information Models

The DAIM model is aiming to adopt object-oriented principles to manage the en-
tire network autonomically [116, 118]. One possible environment to implement the
DAIM model is OpenFlow network, where the DAIM model can handle flow entries
and messages between components [109]. Moreover, the DAIM model can corres-
pond actions using the DAIM agents, which reside on each switch. Each of the
DAIM agents has its methods, algorithms, attributes and messages dealing with
network’s elements dynamically [114, 121].

77

3.1 Restatement of the Thesis

This new information model allows each switch to make its decisions locally with
support from DAIM model components such as databases and DAIM agents [115,
114]. Thus, the DAIM model is designed mainly to support efficiency and to manage
a distributed communication environment.

3.1.3. Objectives of the DAIM model

The DAIM model approach can satisfy the requirements of autonomic function-
alities for distributed network components, like self-learning, self-adaptation and
self-CHOP (configuration, healing, optimisation and security). Also, each compon-
ent can be adaptable according to any changed conditions of the dynamic environ-
ment without human intervention. Therefore, to grant autonomic behaviour, the
DAIM model elements should be anticipated by the following functionalities of self-
management:
Self-locating: this feature can help DAIM model components in starting and up-
dating, also to identify neighbour nodes and locate the resources by exchanging
information between components s [106].
Self-configuring: individual devices can change their configurations dynamically
during “run-time”, then adaptation can be immediately provided and with the min-
imal human intervention [103].
Self-healing: current network state can be evaluated, and corrective actions can
be initiated without disrupting network operations. This action can change the
network state, which may influence other components in the network [43].
Self-Optimising: this feature uses information provided by the network environ-
ment to maximise components allocation and utilisation effectively to meet network
policies and business requirements, with the minimal human intervention [50].
Self-protecting: the ultimate goal of this functionality is to provide the right
information to the right component at the right time. A self-protecting information
provision can detect when the malicious behaviour occurs then take autonomous
action with less vulnerability [19].
Context-aware: this feature deals with perception and cognitive reaction to an
event. Context-awareness is the foundation for rest of operational features: self-
configuring, self-optimising, self-healing and self-protecting. This is one of the aims
of DAIM model to analyse each packet [42, 120].
The DAIM model can address the research challenges such as managing the com-
plicatedness of a distributed electronic environment and construct abstraction layers
for a network with self-properties of autonomic functionalities. And, according to
[102, 116, 121], The DAIM model requirements will be as the following:
Compatibility: considering the complexity and the future growth of networks, with
varieties of network devices and many business needs; the DAIM model implement-
ation could use OpenFlow networks as a programmable network to meet different

78

Theory of The Proposed Model

varieties of needs. Also, the DAIM model is abstracting network infrastructures
accessed by management model and services for network applications.
Model simplicity: the DAIM model allows each switch to make its decisions loc-
ally. That ability is called autonomic network management system (self-managed
network). This means that the distributed self-adaptation strategies can maintain
the network system in the face of changing requirements and unexpected threats
to provide for the defined requirements. Then, operators and programmers are no
longer required to handle any changes in the requirements either actively or react-
ively. Network infrastructures, management model and services will be abstracted
for network applications.
Modification of end hosts: the DAIM model does not require software or hard-
ware changing of the end hosts, rather the DAIM model mainly focuses in forwarding
packets as they are.
Security: the DAIM model is supporting security by using a secure access to the
components via API. Besides, it is possible to secure the network by implementing
secure policies based on applications.

3.2. DAIM model Architecture

The DAIM model architecture is composed of modules which can collect, store
and manipulate information using agents residing in each switch as an independent
computational environment. Moreover, the DAIM model can hold network inform-
ation such as a host identifier, business requirements, a topology discovery, QoS,
bandwidth, users, and global view of an entire network. Also, integrating the DAIM
model within networks could give effect to what called ’abstraction’ for a distributed
computing environment.
To meet the approach of managing distributed network autonomically; it should
be by analysing of network operating system components. These components are
supporting the DAIM agents to make local decisions regarding forwarding, main-
taining, and adapting to the unexpected changes such as changing of network links,
topology and host location, so that would facilitate the calculation and installation
of the shortest route. Moreover, these agents reside in network elements, which
would be OpenFlow switches. The actual values are in the OpenFlow tables, which
reside in the OpenFlow switches, and would then be properties of the DAIM agents.
Also, the DAIM agents would then have to do the work of modifying or adapting
their values taking regard of requirements of a network. Therefore, the DAIM model
stretches across all over network elements and then could be thought of as a react-
ive distributed interpreter that is interpreting the system requirements to enable the
infrastructure to provide for the business needs.
This research attempts to build an abstraction layer (DAIM) which holds all charac-
teristics of OpenFlow southbound as super southbound (see Fig. 3.5). Abstracting

79

3.2 DAIM model Architecture

characteristics can provide the network operating system with an interface ready
as network services for business requirements. For this proposition, there are two
approaches for building abstraction layers:

• The first approach aims to build a common model with features that all current
devices should have and most existing hardware would support this model.
However, such a model would be limited and would show many inexpressible
behaviours.

• The other approach aims are to create a super model that has every feature
found on any device with a few more just in case, where such a model would
be very powerful, but no existing hardware would support the full model; even
the supermodel will not do everything users want.

This research follows the standard approach to be valuable for the market and
compatible with hardware, that would be like the first approach. It could manipulate
the abstractions already used by network-based control protocols (e.g. OpenFlow
protocol).
Fig. 3.4 provides architectures of a computer in figure (A), SDN architecture in figure
(B) and an augmented SDN in figure (C), as the following:

• Figure (A): A basic architecture used for dispatching I/O between the User
Space and Kernel Space. This provides the system call interface that connects
the kernel to the user-space applications; also this component is responsible
for providing access to the hardware, and

• Figure (B): Is the SDN architecture with abstraction layers infrastructure
layer, control layer and application layer, and lastly is

• Figure (C): Shows the DAIM abstraction layer which is built after analysing
the existing OpenFlow messages from switch to controller [115]. DAIM layer
is accessed by control layer and application layer, aiming for more monitoring
and flexibility.

The DAIM model components use OpenFlow protocol for abstracting infrastructure
layer by corresponding messages between them. One of the main components is the
DAIM agents which reside in each switch as an independent computational envir-
onment and are interacting with neighbouring switches to exchange information.
Also, the DAIM agents can compute their local decisions according to the business
needs defined in the database to do management and make routing decisions. The
basic information unit of each DAIM agent includes attributes, method behaviours,
algorithms, and messaging (see sec. 3.2.1). These four characteristics can modify the
value of its property and invert the traditional (get-compute-set) process in network
management.
The following Fig. 3.5 introduces the designed architecture of the DAIM model, by
comparing the SDN architecture and the augmented SDN architecture integrated
with the DAIM model.

80

Theory of The Proposed Model

Figure 3.4.: (A) Computer architecture, (B) SDN architecture, (C) DAIM archi-
tecture

81

3.2 DAIM model Architecture

Figure 3.5.: Left side shows the northbound (NBI) and southbound interface (SBI)
of SDN architecture compared to right side which presents DAIM module archi-
tecture with super southbound interface (SSBI)

3.2.1. Describing the DAIM model

The DAIM model is implemented within each OpenFlow switch, which is supported
by the DAIM agents as a field of distributed active artificial intelligence, to enable
the self-management for networks. The basic information unit of the DAIM model
is the DAIM agents and each of them include [102, 116]:

• Attributes: specific variables that represent characteristics of flow entries
such as header fields, counters and actions.

• Method behaviours: actions that provide the autonomic functionalities such
as self-configuration instantly (switch down, port down), and self-optimisation
(shortest path).

• Algorithms: algorithms for a fulfilment of a network task, can be embedded
into the DAIM agents, such as informing the DAIM model if any circumstances
change within the network and synchronise information between components.

• Messaging: messages that can be created by DAIM model as a response to
requests to get information (track host location, track topology changing and
shortest route). Each switch is connected to a System Requirement Database
(SRD) as in sec. 4.3.1, for optimising network performance.

Integrating the DAIM model within networks gives effect to what is called a Re-
active Interpreter Network, and it would be an abstraction layer for a distributed
computing environment. Moreover, the DAIM model is used to administering the
data plane, according to the DAIM model architecture (see Fig. 3.6), the DAIM
model is focused on scalability, simplicity and generality as an abstraction layer
within OpenFlow networks.
The technique is to manage the distributed entities, by accessing network states,
and a distribution of the network state itself; such that it may become resilient to

82

Theory of The Proposed Model

Figure 3.6.: DAIM module structure supported by agents

failures (in some cases). The data plane characteristic is duplicated and partitioned
across distributed of the DAIM model, such as packets processing and features which
can be shared across distributed switches.

3.2.1.1. API vs Protocol for DAIM model

The communication between layers in SDN, which follow a north-south traffic pat-
tern, and that is compared with traditional client/server model. In contrast, for the
DAIM model it should be decided which approach has more controlling and more
flexibility. Then, analysing both ways for communicating the north-south by either
an API or a Protocol, should be conducted. For this matter, the API provides a
library which should be linked to it, for using the services [131, 108, 101]. On the
other hand, the protocol defines a standard request and response for transport, and
it is more complicated to use as it is less direct [131, 83]. The following Tab. 3.1
compares the API and the Protocol for the DAIM model, with a recommendation
for the API to be used [69].

3.2.1.2. DAIM agents

The primary goal of creating an autonomic system is to recognise external threats
or internal problems and then take measures to prevent automatically or correct
those issues without human intervention or even need to know there is a problem.
In other words, autonomic network management of this research matters [46, 39].
In contrast, agents that are individual agent applied in autonomic communication
networks which behave independently and socially in some circumstances, which
means that a comparatively independent still needs to collaborate, cooperate and
sometimes compete with others; to fulfil tasks and to achieve the global goal (see
Fig. 3.7).
These agents are also being designed to manage and proactively improve the network
management performance; they are equivalent to artificial intelligence [121, 43, 86].
Moreover, the DAIM agents have presented the intelligent aspects of software agents.
Therefore, agent technology plays a critical role in the development of autonomic
communication.

83

3.2 DAIM model Architecture

Table 3.1.: Comparison of DAIM Protocol and DAIM API

DAIM Protocol DAIM API
Applications and controllers have to
construct the messages using DAIM
protocol and send them on their own

Applications and controllers use
DAIM API to directly communicate

with the DAIM
Applications and controllers have to

use operating system platform specific
functions to communicate with DAIM

Applications and controllers can use
any operating system and platform to

communicate with the DAIM
Application and controller source

codes are not portable across different
operating systems due to platform

specific functions dependencies

Application and controller source
codes are portable and only need to be

recompiled using DAIM library

Figure 3.7.: DAIM agents provider and components

84

Theory of The Proposed Model

3.2.2. Packet processing within DAIM model

The DAIM model is typically using OpenFlow networks, which is supported by
other components such as agents, applications, and databases to achieve autonomic
behaviours. Each switch actively synchronises with others according to event re-
gistered. Also, the DAIM model can publish events to databases and actively syncs
with neighbour switches; then that would reconstruct the whole information about
the entire network.
An individual switch can serve any coming packets locally or packets are coming
from other switches. As a benefit of local packet processing, that gives the ability
of self-configuration if any local change happens within an individual switch, to
adapt other switches. Thus, the distributed system structure is feasible to deploy
the DAIM model, which can synchronise information of the entire network. Also, it
can be possible to achieve self-management when enabling all autonomic functions
[111].
When a packet hits a switch, it performs the operations shown in Fig. 3.8, where it
starts with packet header which is used for table lookups depending on the packet
type, and typically include various packet matching fields, such as Source IP, Des-
tination IP, and MAC destination address.
The switch starts by performing a table lookup in the first flow table, and may
perform table lookups in other flow tables. For example, the flow tables are sequen-
tially numbered, so the packet is matched against flow entries of flow table 0. Other
flow tables may be used depending on the outcome of the match in the table 0. If
a flow entry is matched, the instruction set included in that flow entry is executed
and the counters associated with the selected flow entry must be updated. Those
instructions may direct the packet to another flow table, where the same process is
repeated.
On the other hand, the instructions could forward the packet if it is not matched
to DAIM model. The behaviour of DAIM depends on its configuration (e.g. send
to the controller, get more information, drop packet, direct packets to a subsequent
table). Moreover, some of DAIM model features may be added/removed at any
time, and they may expire.
The DAIM model has a multi-agent operating system that can create, change, and
terminate the DAIM agents (as seen in Fig. 3.7). Essentially, the DAIM agents
have the responsibility to maintain their values, and they can adapt and modify
their value. According to the collected information; the DAIM agents can make
their local decisions based on the system requirements. Also, the DAIM agents will
be bounded to a particular variable such as flow entries variable and have some
level of self-adaptation strategy to manage the variables for forwarding according
to the business needs. The properties or values are familiarity notions of object-
oriented programming. Therefore, the DAIM agents have ingredients to implement
autonomic behaviours. For example, when the DAIM model receives an unmatched

85

3.2 DAIM model Architecture

Figure 3.8.: Packet processing within OpenFlow switch integrated with DAIM
model

86

Theory of The Proposed Model

Figure 3.9.: DAIM agent owns flow entries in DAIM model

packet, it creates DAIM agents which can access and control network elements such
as the databases and other switches to determine the forwarding rules. Then, the
DAIM agents should be able to check this flow against system requirements and
other policies to see whether it should be allowed and if allowed the DAIM agent
needs to compute a path for this flow and install flow entries on every switch along
the chosen path. Finally, the packet itself will be forwarded (see Fig. 3.9)
The following Tab. 3.2, shows a comparison between OpenFlow processing and the
DAIM model within OpenFlow, which typically depends on the system requirement
database and the DAIM agents, whereas, an individual switch can serve any coming
packets locally. Therefore, the DAIM agents provide a distributed environment
where the network information is the property (values) of software agents residing
on virtual machines that are distributed throughout the network elements.

3.2.3. Risk Scenarios of DAIM model

The DAIM model has a single point of failure which is a requirements database;
when the database goes down the network can no longer be efficiently controlled
over the entire network. However, the DAIM model is distributed by synchronising
between agents, which reside on each switch. So, the switch is responsible for serving
all packets within its site, unless failure happens.
If a failure happens, then hosts that are connected to that failure switch should be
reconfigured to the nearest switch instead of that failed switch. The new switch
can actively synchronise with other switches to know all the information and the
requirements to serve connected hosts using adaptation strategies. The following
consequences involved if the databases are failed:

87

3.2 DAIM model Architecture

Table 3.2.: Comparison of OpenFlow and DAIM model processes

OpenFlow Process DAIM model Process
Unknown packet arrives at a switch Unknown packet arrives at a switch
Switch cannot match a flow table

entry
Switch cannot match a flow table

entry

Switch uses OpenFlow protocol to
forward packet to controller

Switch send the packet to DAIM
model for creating a new agent, which

“owns” a new row in DAIM table

Controller computes forwarding
destination for the packet

This is a unique agent (which “owns”
that row in the DAIM table). It

computes the forwarding destination
for the packet according to the system
requirement database and exchanging

information between agents
Controller uses OpenFlow protocol to
update flow table entry on the switch,
which now knows how to forward the

packet, and similar ones

The agents update DAIM tables’ rows
using their builtin “methods” which

can route the packet(s) to
destination(s) using switch’s port(s)

• If an unknown packet arrives at a switch, and the switch is not able to forward
and calculate a path to a destination, then the switch will convert that packet
to be handled by Ethernet switching operation. However, the system will not
perform optimally because autonomic functions are disabled.

• If the autonomic functionalities are not able to store accumulated information
in databases, then they will be unable to perform some of the autonomic
actions such as self-adaptation, self-configuration and self-protection.

• All traffic will follow one specific shortest path from source to destination
without self-optimisation.

However, the above issues can be avoided by sharing information strategies to main-
tain any network state after the failure to be preserved for some purposes such as
forwarding. The DAIM model always actively synchronises with the rest of the sys-
tem upon starting by using the DAIM agents. The network information collected
by these DAIM agents is served as a heartbeat. So, if the switch generates data
that are detected by a neighbouring agent, it can immediately synchronise and store
to the databases using the DAIM agents. Thus, the DAIM model waits to receive
information from the DAIM agents in order to provide required services such as
self-adaptation.

88

Part II.

Gaining Confidence in the Thesis 1

1From http://www.dictionary.com/browse/thesis?s=t: Thesis meaning a proposition stated or
put forward for consideration.

89

4. Attempting to Implement DAIM
Model

The previous chapter 3 shows a theoretical foundation for the proposed DAIM
model. This chapter and the previous chapters including chapter 10 are supporting
the DAIM OS specification in chapter 5. Also, they have the foundation, consisting
of a generic architecture for complex network management and agents to aggregate
distributed network information. This chapter is more about reference implement-
ation to engineer autonomic network management. Moreover, to support drawing a
blueprint for the DAIM model as a distributed independent computing environment
for autonomic network management is another aim of this chapter.

4.1. Introduction

After analysing, understanding requirements and designing the model in the pre-
vious chapters, this section presents a simple implementation of the DAIM model
supported by a simple controller. The case study for this chapter is drawn from
OpenFlow networks with some changes to make them distributed networks rather
than centralised networks management with a single controller. The following sec-
tions include the test environment, the setting up of the model and connection
methods (see sec. 4.2), and finally a simple reference implementation based on an
understanding of SDN architecture (see sec. 4.3) . In particular, the case study is
about integrating the DAIM model with OpenFlow networks.

4.2. Setting up the Demonstration

The DAIM model can be demonstrated in an emulation environment such as Min-
inet and it can be demonstrated in hardware with Unix based, to create connec-
tion of sockets between DAIM and OpenFlow switches [110]. (refer to Appendix
Appendix C on page 331 for more information about setting up the emulation en-
vironment)

91

4.2 Setting up the Demonstration

Figure 4.1.: Integrating DAIM model to OpenFlow switch

4.2.1. Integrating DAIM model to OpenFlow Switch

The DAIM model is attached to each OpenFlow switch to create an abstraction layer
and to provide API which would access OpenFlow switch infrastructure. Technic-
ally, Fig. 4.1 shows steps to start and exit of the DAIM demonstration; it contains
initial components to establish connection with the DAIM model and it creates the
abstraction layer.

4.2.1.1. Creating Sockets

There are some sockets which can be used for data communicating between processes
on the same computer or processes separated by computers. Examples of socket
types, there is a raw socket, datagram socket, stream socket, network socket and
Berkeley sockets. This reference implementation used stream socket for reliable data
exchange between the DAIM controller and the OpenFlow switch; Fig. 4.2 shows
methods employed in the DAIM model and OpenFlow switch components.

4.2.1.2. Exchanging Information

The DAIM model has two methods to exchanging data with the OpenFlow switch.
read_from_switch method pulls data from the switch, whereas sending inform-
ation method transfers data to the switch. These two methods are part of com-
municate_with_switch method in the DAIM model. This process is shown in
Fig. 4.3.

92

Attempting to Implement DAIM Model

Figure 4.2.: Establish the connection to DAIM

Figure 4.3.: DAIM exchanging information with OpenFlow switch

93

4.3 Simple Reference Implementation:

4.3. Simple Reference Implementation:

This section focuses on a simple DAIM model setup to study the necessary API
in action using a simple controller. The setup (which has three switches which
can be seen in Fig. 4.4) has triangle connections between its three switches, and
each switch is integrated with the DAIM model on the management network. Also,
some Wireshark packet captures are taken to explain the study better labelled with
relevant information. The flow of the reference implementation starts with the very
first step of discovering the augmented switches in the network.

4.3.1. DAIM model components

The DAIM model is composed of three main components, a system requirement
database (SRD), a programmable switch, and a simple controller, as in the following:

System Requirement Database:

One of the components responsible for managing a network in the DAIM model is
SRD (see Fig. 4.4). The SRD is a cloud database which can reside in a remote or local
computer and is responsible for holding overall network connectivity information of
all the network nodes as well as network service requirements of different forwarding
devices. In addition, the SRD is a passive database used to store information from
different forwarding nodes. Without SRD, forwarding devices will have to store
redundant network information locally at all times. Also, the SRD helps forwarding
devices to coordinate and act as one unit to reach the overall network objective.

Simple controller:

A simple controller decides the incoming network traffic destinations based on the
information in the SDR and system requirement logics. It does this by applying
flow rules in the programmable switch and checking status on the various ports on
the switch. Furthermore, it uploads network service information to the SRD to
communicate messages to other simple controllers. As a result, the simple controller
act as a management plane in the network [68].

Programmable switch:

A programmable switch is a physical entity for forwarding network packets. It con-
tains network flow tables which can be modified using OpenFlow messages (Tab. 2.4,
Tab. 2.6, and Tab. 2.5) via an external process. Flow entries in the flow tables of
the programmable switch help the switch to know which ports to send incoming
network packets over. For example, OpenVswitch is a programmable switch which
can be configured using OpenFlow protocol [64].

94

Attempting to Implement DAIM Model

4.3.2. Discover Networks Topology

There are many ways to discover network links in the DAIM model. Some ap-
proaches are developed to demonstrate the feasibility of identifying of all the links
in a network. One of which is using an augmented link layer discovery protocol
(LLDP) which is generated by the DAIM model and the other approach is based on
DAIM tables and exchange information by the DAIM model.

4.3.2.1. Discover Topology by augmented LLDP

The very first step of the DAIM model network is discovering switches by the DAIM
agents. The DAIM model needs to know the topology before it can look for the path
between hosts in the network, then to install flow entries within switches for routing.
The DAIM model learns about the switches by read and write of the TCP/IP socket.
Once the DAIM model knows about the switch, the next step is to discover the total
view of the network (e.g. knowing the individual switch details also, the actual links
and ports connected to different switches). This discovery is made in two steps:

• Step one is to know about the individual switches, and
• Step two is to know about the links between those switches.

The step one is taken care by a feature-request and feature-reply mechanism
of the DAIM model. Then, each switch is initially configured with DAIM loopback
IP address. Each DAIM of each switch sends a feature-request message as soon
as the TCP handshake is done. Then each switch replies with a feature-reply
message. The feature-reply message tells the integrated DAIM model about the
switch capabilities, ports details, datapath ID and action capabilities.
In the second step, knowing about links between switches for discovery by flooding
LLDP packets through all of the connected ’up’ ports of the switches (or all ports)
between different switches. The discovery protocol packet LLDP typically contains
the datapath ID of a sender along with ports of the switch that the message origin-
ates from.
The LLDP frames send by OpenFlow protocol, where an individual switch does
not understand the LLDP, so all the LLDP frames are sent by using a packet-out
event with an action to send all or ’up’ owned ports. The incoming LLDP packets
on connected ports or peer switch are encapsulated in packet-in headers and sent
to its DAIM of each switch. Once each DAIM has received packets from neighbour
switches; it processes various LLDP packets coming from various switches, then each
DAIM shares information to other DAIM which will have a view of the full network
topology. (Note that the iteration of LLDP is every ten seconds).
Based on the above steps, each DAIM can have the view of network topology shown
in Fig. 4.4 (Note that each DAIM still would not know the external hosts, on top of
that system requirement database can have a copy of network view as well).

95

4.3 Simple Reference Implementation:

Figure 4.4.: Simple setup of DAIM model with simple controllers and system re-
quirement database

In other words, when the LLDP packets exchange; each DAIM send the LLDP
packets on all ports of its connected switch which are in ’up’ state. If the switch
does not receive a reply of the LLDP sent on some ports, it is known that those
ports are connected to a host.
The whole operation of topology discovery can be explained in the following steps
as can be seen in Tab. 4.1:

Sharing Links to all switches
The following algorithm presents the two sides of the DAIM model to exchange the
links, sending and receiving for share the links and obtain a global network view:
1 \\ Sharing of links of send thread on the sending DAIM switch :
2 Check whether which ports received switch replies ?
3 Send local links to replied ports
4

5 \\ Receiving of links through packet in on the receiving DAIM
switch :

6 Check wheather LLDP message type
7 check whether links sharing message type
8 check whether received links are destinated for itself
9 if no: forward the links to other ports

10 if yes: parse links and add to the links table

Typical case scenarios for link discovery:
1. Optimising of network path (Host table sharing)

96

Attempting to Implement DAIM Model

Table 4.1.: Discovery of Topology by DAIM model as steps

Packet
initiated

from:

Sending
Packet to

Packet
type Packet details

Each
DAIM

Own
switch

Feature
request

Each DAIM send feature request
to connected own switch

Each
switch

Own
DAIM

Feature
reply

Each switch send the
feature-reply message to
integrated DAIM (explaining all
features supported by the
switch)

DAIM_1 SW_1 Packet-out
DAIM_1 asks SW_1 to send
LLDP packets on port 32,52,41
of SW_1

DAIM_2 SW_2 Packet-out
DAIM_2 asks SW_2 to send
LLDP packets on port 30,50,41
of SW_2

DAIM_3 SW_3 Packet-out
DAIM_3 asks SW_3 to send
LLDP packets on port 32,52,41
of SW_3

SW_1 DAIM_1 Packet-in
SW_1 sends the encapsulated
LLDP packet, which it received
from SW_2 on port 52

SW_1 DAIM_1 Packet-in
SW_1 sends the encapsulated
LLDP packet, which it received
from SW_3 on port 41

SW_2 DAIM_2 Packet-in
SW_2 sends the encapsulated
LLDP packet, which it received
from SW_1 on port 50

SW_2 DAIM_2 Packet-in
SW_2 sends the encapsulated
LLDP packet, which it received
from SW_3 on port 41

SW_3 DAIM_3 Packet-in
SW_3 sends the encapsulated
LLDP packet, which it received
from SW_1 on port 41

SW_3 DAIM_3 Packet-in
SW_3 sends the encapsulated
LLDP packet, which it received
from SW_2 on port 42

All DAIM All DAIM Packet-out
Each DAIM asks connected
switch to send LLDP packets
imbedded with information

97

4.3 Simple Reference Implementation:

2. Point of failure (updating host table, use links table to update host table)
3. Administration (Calendar, Link management, forward management, host man-

agement)

Discovering Hosts in the DAIM model
Discovering of hosts could be processed after each DAIM discovers the direct and
indirect connections between the switches. Further, the DAIM also can keep alive-
ness of connections regularly with periodical check messages. Having the network
topology, then the DAIM model can determine the shortest path from a source
switch port to a destination switch port. After that,the use of ping utility enables
the DAIM to discover hosts.
Assume that, when ping request reaches SW_1, since there were no previously
installed flow entries for the incoming flow, SW_1 will forward the first packet of
the flow to the DAIM_1. This is the first time the DAIM_1 observes a message
originating from Host A. Hence, the DAIM_1 discovers that port 32 of SW_1 is
an attachment point for Host A. However, the DAIM_1 still does not have any
knowledge on the attachment points for the destination Host B. Thus, the DAIM_1
tells SW_1 to flood the packet. Due to flooding, the ping request reaches to SW_2
and SW_3.
For simplicity, let’s assume that the flood first arrived at SW_2. Since SW_2 does
not have any corresponding entries in its flow table for the flow, SW_2 forwards
the packet to the DAIM_2. DAIM_2 still does not know the attachment point of
Host B and hence commands to SW_2 to flood the packet again. After this second
flood, the ping request reaches to Host B and Host B replies back. Upon SW_2
receiving Host B reply from port 30, it forwards a response to the DAIM_2. Now
the DAIM_2 discovers that port 30 of SW_2 is an attachment point for Host B.
Since DAIM_1 has previously discovered Host A attachment point, and DAIM_2
has discovered Host B attachment point they share information of Hosts tables, they
know that the reply needs to be routed from port 30 to port 50 of SW_2 and then
from port 52 to port 32 of SW_1. Consequently, each DAIM installs the appropriate
rules to the switches SW_1 and SW_2, finally commands SW_2 to send the ping
reply from port 30.

4.3.2.2. Discover Topology by the DAIM model

In this method there are three steps for maintaining global network view in each
DAIM switch as the following:

1. Discovering of local links.
2. Sharing of the local links to discover global links.
3. Maintaining the links by alive messages.

98

Attempting to Implement DAIM Model

Figure 4.5.: Hello message structure for local links discovery

1- Discovering of local links:
The first step for a DAIM switch in the network to discover the links that are
connected to its ports. This process involves sending and receiving of hello messages
through its ports. The switch will repeat the process whenever a port’s state is
altered because of new link connection or removal of existing link from a port. After
this process the DAIM switch will have switch IDs and respective switch ports the
switch linked to. The main points of the local links discovery are:

• is used to discover the links that are connected to a switch ports
• the purpose is to find the switches that are connected to a switch ports
• is used for discovery of network topology
• will be triggered whenever link ports list is updated
• is done by sending and receiving hello messages among switches

Discovering local switches
As can be seen in Fig. 4.5 a network diagram with three switches. After local links
discovery step every switch has local links discovered. For instance switch 2 (s2) has
two links that are connecting the switch to (s1) and (s3) switches.

Activity diagram of hello message
Activity diagram describing the process of sending hello message and receiving hello
message as in Fig. 4.6:

2- Sharing of the local links to discover global links view:
The second step is sharing of local links that are discovered in the first step. The
DAIM switches with local links discovered will send links share messages through
it’s ports. The DAIM switches will also receive link share messages from the other
switches. From the receiving of local links of different DAIM switches from links

99

4.3 Simple Reference Implementation:

Sending Hello message Receiving Hello message

Figure 4.6.: Activity diagram of hello message (sending/receiving) sides

100

Attempting to Implement DAIM Model

share messages each DAIM switch will have all the links in the network. The main
points of sharing the local links to discover the global links view are:

• comes after local links discovery by individual switches
• describes the network topology
• will be used for routing
• will be used for flow path optimisation
• is done by sending, receiving and forwarding links share messages among

switches
• links share message sender’s ID will be kept in the received switches list for a

fixed amount of time (60 s =>) before it is removed
• links message sender’s ID entry timeout value in the received switches list will

be reset after receiving of a switch alive message
• if a switch ID is not present in the received switches list, then all the links

belong to the switch will be removed from the global links table

Sharing links information
As can be seen from:

• linear topology in Fig. 4.7,
• tree topology inFig. 4.8,
• ring topology inFig. 4.9 and
• mesh topology in Fig. 4.10

The previous figures are different diagrams to present switches in different network
topology, which discovered all the links in the network after the local link discovery
step:

Activity diagram of sharing links message
Activity diagram describing the process of sending links share message and receiving
links share message as in Fig. 4.11:

3- Maintaining links by alive messages:
This step is used to maintain the global network links in each DAIM switch. After
sharing of local links by a link share message in step two, each switch will periodically
send switch alive message through its port. Since each DAIM switch will delete the
local links from the different switch after a period from its database, switch alive
message is used to notify a switch not to delete local links of a particular switch. If
a switch wants to update other switches about local links change, then the switch
will start from step two. The main points of the global links discovery maintaining
by switch alive messages are:

101

4.3 Simple Reference Implementation:

Figure 4.7.: Links share message structure for linear topology

Figure 4.8.: Links share message structure for tree topology

102

Attempting to Implement DAIM Model

Figure 4.9.: Links share message structure for ring topology

103

4.3 Simple Reference Implementation:

Figure 4.10.: Links share message structure for mesh topology

104

Attempting to Implement DAIM Model

Sending links share message Receiving links share message

Figure 4.11.: Activity diagram of links share message (sending/receiving) sides

105

4.3 Simple Reference Implementation:

Sending switch alive message Receiving switch alive message

Figure 4.12.: Activity diagram of switch alive message (sending/receiving) sides

• used for keeping discovered switches links in the individual switches

• is sent from the individual switches after sharing of local links

Activity diagram of the switch alive message

Activity diagram describing the process of maintaining the global links discovery by
sending switch alive message and receiving switch alive message as in Fig. 4.12:

4.3.3. Calculating the Shortest Path with DAIM model

When each DAIM knows the topology, the shortest path can be calculated. This
section explains the shortest-path calculation based on fastest reply path for the
requested flood and comparison with already known topology. Then, the shortest
paths available are collected between end nodes including datapath ID and ports.
After that, each DAIM programs assigned ports with actions to forward or drop a
packet. Therefore, even if the switch receives a packet with an action of flooding, it
will flood to only the ports that are part of the path chosen as the shortest path.
Moreover, each DAIM is responsible for sending “port modification” for the shortest
path’s ports.

106

Attempting to Implement DAIM Model

For example, suppose that the packet needs to be sent between Host A and Host B,
and there are two paths can be taken. One is SW_1 to SW_2 direct, and another
one is SW_1 to SW_3 then SW_2, which is indirect. Then based on the shortest
path algorithm, fastest reply and compared links already known by each DAIM, the
event will follow these steps:
1- When the network comes up, each DAIM will send the message “port modifica-
tion” for setting ports in no flooding over ports of SW_1, SW_2, and SW_3 as the
following:
a. SW_1 will get “port_mod” for port (32,52,41)- setting a “no flooding” over all

ports
b. SW_2 will get “port_mod” for port (30,50,41)- setting a “no flooding” over all

ports
c. SW_3 will get “port_mod” for port (41,42)- setting a “no flooding” over all ports
2- Once each DAIM determines the topology using LLDP packet-in and packet-
out, the shortest path topology will be calculated, and specific links per switch will
be enabled by using the port modification packet as following:
a. SW_1 will get “port_mod” for port (32, 52)- putting the port in forwarding

state
b. SW_2 will get “port_mod” for port (50, 30)- putting the port in forwarding

state
c. SW_3 will get “port_mod” for port (41, 42)- as it is
Fig. 4.13 shows the shortest path calculated by DAIM_1 and DAIM_2 after both
steps are completed, where green ports on shortest path 32, 52, 50, and 30, while
the red ports are setting as no flooding (41 of SW_1), (41 and 42 of SW_2), and
(41 of SW_3).
If circumstances changed for SW_1 and SW_2 then the affected switch will inform
its connected DAIM while checking status message (aliveness) is sent from each
DAIM every 60 seconds. Then the port status will change the topology view at each
DAIM, and recalculation of the shortest path will be performed again, which sends
port modification packet based on new topology.

4.3.4. Flow Table in DAIM model with Example of Ping

Ping traffic would be an example to demonstrate a simple flow entries installation
on each switch by the DAIM model, for example, Host A ping Host B. The following
Fig. 4.14 shows where all the flow entries would add up, given this in the shortest
path, as shown in the previous section. This is followed by emulator example of the
same topology before ping traffic and all three switches SW_1, SW_2, and SW_3
are empty (see Fig. 4.15).

107

4.3 Simple Reference Implementation:

Figure 4.13.: Shortest path calculated by each DAIM and setting no flooding ports

Figure 4.14.: Flow entries installation

108

Attempting to Implement DAIM Model

Figure 4.15.: Mininet emulator shows empty flow entries tables

The operation of flow entries installation will proceed as the following steps:

Step 1:
When a ping command is executed from Host A to ping Host B on 10.0.0.2, an ARP
request will be generated by Host A, which it will send to SW_1 and SW_2. When
SW_1 and SW_2 get the ARP request, they will send a packet-in (ARP request
encapsulated with) to integrated DAIM_1 and DAIM_2. The packets presented in
Tab. 4.2 shows how they will look on Wireshark sniffer.

Step 2:
On getting the packet_in, DAIM_1 will de-encapsulate the packet and see the
ARP request. Then DAIM_1 will send a packet-out (encapsulating the original
ARP request) to its connected switch with an action to send the ARP request to
all ports except the ingress port. Moreover, DAIM_1 will send flow-mod message
to configure its connected switch as pre-installation for flow entry. In the topology,
there are two edge switches SW_2 and SW_3, but SW_3 was setting as no flood
for all ports.

Step 3:
After SW_2 received ARP request from SW_1, step 1 will be repeated and then
DAIM_2 will get packet-in and will do the same as DAIM_1 did until it finds
requested ARP for Host B, MAC address. In more detail, SW_2 will follow the
action of forwarding the original ARP request to all ports except the ingress port
as (flood), then it will get a reply from Host B Fig. 4.16. SW_2 forwards the ARP
reply to DAIM_2, essentially sending the ARP reply in the form of packet-in to
its connected DAIM_2, with the MAC address of 10.0.0.2. Tab. 4.3 shows how it
will be seen on Wireshark.

Step 4:
After DAIM_2 received packet-in from SW_2, it sends the packet-out all con-
nected ports with ARP reply embedded in it (see Tab. 4.3). Then, SW_1 will receive

109

4.3 Simple Reference Implementation:

Table 4.2.: packet-in for ARP request in Wireshark

DAIM_1
(2000)

DAIM_2
(2001)

Figure 4.16.: DAIM shows ARP broadcast flood (Mininet emulator)

110

Attempting to Implement DAIM Model

Table 4.3.: packet-in for ARP reply in Wireshark

DAIM_2
(2001)

DAIM_1
(2000)

111

4.3 Simple Reference Implementation:

Figure 4.17.: flow-mod packet for matching and packet comes to SW_1

ARP reply, and it will repeat step 3 as what DAIM_2 did then send packet-out
with an action to send it to Host A including MAC address of 10.0.0.2 so that Host
A can populate its ARP table.

Step 5:

Now as Host A has the ARP address of 10.0.0.2, it will send the ICMP request
packet to 10.0.0.2. When this ICMP packet comes to SW_1, it will encapsulate
it in a packet-in and send it to the DAIM_1. While the ICMP request packet is
published from Host A, at the same time, DAIM_1 sends packet-out to SW_2 and
starts installing flow entry to its connected switch SW_1 (based on MAC address
from ARP learning table). Also, ICMP request packet goes to 1.0.0.2 then it goes
to SW_2, which will encapsulate it in a packet-in and send it to the DAIM_2,
now DAIM_2 starts to install flow entry to SW_2 (based on MAC address from
ARP learning table). Then, both SW_1 and SW_2 have flow table filled. Tab. 4.4
shows how it will be on Wireshark.

Step 6:

Flow modification packets are sent by each DAIM to their connected switches SW_1,
SW_2, and SW_3 to install the flow bidirectionally on each switch. Fig. 4.17 is the
example of flow modification on SW_1 (similar packets will send from other DAIM
to install flow entries in switches SW_2 and SW_3) see also Fig. 4.18.

Step 7:

The packet-in that was sent to DAIM_1 by switch SW_1, encapsulating the ICMP
request, then DAIM_1 encapsulated in packet-out from SW_1 to SW_2 (which
will create packet-in to DAIM_2).

112

Attempting to Implement DAIM Model

Table 4.4.: packet-in for ICMP request in Wireshark

DAIM_1
(2000)

DAIM_2
(2001)

Figure 4.18.: flow-mod sent by the DAIM model (Wireshark captured)

113

4.3 Simple Reference Implementation:

Figure 4.19.: Flow tables after the first ping (Mininet emulator)

Step 8:

The reply of the ICMP packet will be sent by switch SW_2 to switch SW_1 based
on the flow installed by flow modification in Step 6 as you can see in Fig. 4.19 ,
SW_1 and SW_2 have flow entries, where SW_3 is still empty.

Dealing with packet-in by the Simple Controller

The following flowchart in Fig. 4.20 shows the process of packet-in() function
until response to the packet requirements such as packet-out() or flow-mod()
functions. The flowchart is showing the process of dealing with packet-in(). For
instance, when a packet hits an OpenFlow switch, it performs the operations shown
in Fig. 4.20, where it starts with packet headers which are used for table lookups
depending on the packet type such as checking the packet-in header; (e.g.ARP,
IPv4 or IPv6). Also, based on packet-in type, if it is ARP, then it will check the
destination, after that doing the proper action (also it will check if the destination
is in the DAIM tables, then it will do exit()). Ultimately, the simple controller
will generate flow-mod() function for ARP. The other type of packet-in is IPv4
and that includes ICMP, TCP or UDP and each has its flow-mod() action. The
process is clearly presented in Fig. 4.20.

4.3.5. Verifying DAIM model Functionalities

The aim of this section is to ensure that the DAIM model and deliverables meet
specified requirements before the final testing of validating results with existing
approaches. The test applies layer 3 behaviour including layer 4. Moreover, the test
checks capabilities and features as defined in the project’s scope and requirements
definition. To run this demonstration, there are four different topologies to test
DAIM model functionalities and also to compare with current model performance
plus using Cbench tools for testing latency as the following:

• Linear topology as a peer to peer connection, Fig. 4.21

114

Attempting to Implement DAIM Model

Figure 4.20.: Flowchart of packet-in to the DAIM model

115

4.3 Simple Reference Implementation:

• Tree topology which has indirect communication, more than one hop to the
source node, Fig. 4.22

• Ring topology for loop and continuous connection both ways communications
are available Fig. 4.23, and

• Mesh topology with fully connection Fig. 4.24. Then lastly is
• Latency of DAIM vs. Latency of NOX vs. Latency of POX

DAIM model demonstration setup
This section compared RTT measurements differences between DAIM ping, legacy
switch ping, and OpenFlow with NOX ping traffic. The design of an experiment
that has helped determine the functionality of layer 2 and layer 3 configurations
in each test is described. Based on this analysis, a comparison is made of RTT
measurements of DAIM approach and others.
The following experiments were designed with the purpose of evaluating the effects
of different measurement configurations. The experiment involved four topologies;
linear, tree, ring and fully connected mesh. Host 1 ping 3600 ICMP request packets
to the destination Host 2, 10.0.0.2. Twisted pairs of 100BASE-T connect the nodes.
Monitoring the ping traffic in the way described above, the differences between the
DAIM approach and others were caused by different ways of processing unknown
packets and different topologies.
The emulation test has different infrastructure topologies to evaluate the function-
alities of Layer 3 behaviours including Layer 4 of the DAIM model and the Legacy
switch. Also, it is conducted to demonstrate the correctness of the implementation
of DAIM model.
The topologies comprise linear, tree, ring and mesh which are represented by DAIM,
Legacy switches, and OpenFlow with NOX controller. Each topology consist of a red
circle as the DAIM is integrated with OpenFlow switch, legacy switch, or OpenFlow
switches with NOX, and two hosts. Each circle is connected to other circles via a
100-Based link and 10 metres distance between any two circles to calculate the delay
on that link. The link delay for 100Base cable can be computed as the ratio between
the link length and the propagation speed over that link. Hence, the link delay is
obtained by dividing the distance by the wave propagation speed of ethernet cable
where the speed is 5.3 m/ns. Then, in this case, the bandwidth is 100 Mbit/s and
the delay is 0.036 ms where the distance between nodes is 10 metres.
The functionality test for evaluating the DAIM model and the legacy switch was
performed by ping traffic to tunnel TCP connections to a remote host reliably using
ICMP echo request and reply packets, commonly known as ping requests and replies.
The emulation time for each run is set to 3600 seconds to perform one hour ping
in which there is a wait for an interval of seconds between sending each packet and
where the default is to wait for one second between each packet normally, or not to
wait in flood mode. By default ping sends 64-byte ICMP request packets (8 bytes

116

Attempting to Implement DAIM Model

Table 4.5.: Testing TCP bandwidth between h1 and h2 of Linear topology

DAIM Linear (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’93.7 Mbits/sec’, ’102 Mbits/sec’]

Legacy switch Linear (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’93.9 Mbits/sec’, ’94.2 Mbits/sec’]

for storing a timestamp and 56 bytes of data) continuously at one-second intervals
before it is interrupted. The latency differences (measured in milliseconds) were then
plotted against the time (3600 seconds) using ping traffic. These appear because
of the different ways of processing packet where legacy switch deals with a packet
on layer 2 but the DAIM has a different way to process unknown packets as the
abstraction layer of the DAIM has many tables to process the unknown packets and
then to just send a flow modification message to OpenFlow network infrastructure.
Moreover, the test includes layer 4 services such as TCP and UDP throughput,
by using Iperf, which is an active measurement tool for the maximum achievable
bandwidth on IP networks. Also, it is performing network throughput to a target
device where bandwidth is measured in (Mbit/sec). For more details, bandwidth
refers to how fast the device can send data over a single cable, and throughput refers
to how many bits are transferred between two devices.

4.3.5.1. Linear Topology

The experiments in Fig. 4.21, run ping for testing latency and Iperf for testing
throughput. The environment for running this experiment is based on a linear to-
pology; the DAIM runs with two switches against the legacy switch which also has
two switches. As mentioned above for setting up the environments, ping plots and
throughput results for TCP and UDP are presented (see Tab. 4.5 and see Tab. 4.6).
In Fig. 4.21 the top plot in blue colour presents ping traffic for the DAIM and
demonstrates functionality for layer 2 and layer 3, and the bottom plot in green
colour presents ping traffic for the linear legacy switches. As shown in Fig. 4.21
there are two lines in the middle of each plot, the red line presents mean RTT for
ping traffic for the DAIM and the black line presents mean RTT for ping traffic for
legacy switch.
The experiments between the DAIM and the legacy switch for mean RTT show more
latency in the DAIM by 0.585 ms. However, all the measurement differences shown
in Fig. 4.21 are positive. This is consistent with the fact that ping spends more
monitor processing time when measuring RTT because ping timestamps packet at
the application level in the operating system’s user-space.
The experiments run Iperf as shown in Tab. 4.5, which is a testing tool, between
two end-to-end hosts to collect performance information such as RTT, packet loss

117

4.3 Simple Reference Implementation:

Testbed / RTT minimum average maximum standard deviation
DAIM model 0.716 ms 1.180 ms 4.092 ms 0.377 ms
Legacy switch 0.276 ms 0.595 ms 6.001 ms 0.210 ms

Figure 4.21.: Ping traffic of DAIM model vs Legacy switch in linear topology

rate and throughput. And, when it runs as client/server, it can report the TCP
bandwidth between these hosts. Testing TCP bandwidth between Host 1 and Host
2 in Tab. 4.5 for the DAIM in linear topology shows that the number of bits which
hit the destination is 93.7 Mbits/sec and a number of bits received is 102 Mbits/sec.
On the other side, with the legacy switch environment the TCP bandwidth test
shows 93.9 Mbits/sec for download and 94.2 Mbits/sec for upload. Thus, based
on the demonstration topology configuration including links speed and delays, the
result for both tests of the DAIM and the legacy switch show fairly similar results.
Testing a UDP bandwidth as shown in Tab. 4.6 between Host 1 and Host 2 for the
DAIM and the legacy switch in linear topology presents information for transferring
10 Mega, 100 Mega and 1000 Mega. The results were the same on average and
limited by link capacity which is 100 Mbits/sec. As presented when 10 Mega are
sent through the UDP only 10 Mbits/sec hits the destination, and even when 100
Mega or 1000 Mega are sent with limits of links bandwidth as shown in the results
average of 97 Mbits/sec in Tab. 4.6.

4.3.5.2. Tree Topology

The experiments in Fig. 4.22, run ping for testing latency and Iperf for testing
throughput. The environment for running this experiment is based on a tree to-
pology (for multi hops to destination(s)). The DAIM runs with six switches against

118

Attempting to Implement DAIM Model

Table 4.6.: Testing UDP bandwidth between h1 and h2 of Linear topology

DAIM Linear (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’97.1 Mbits/sec’, ’97.1 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’97.2 Mbits/sec’, ’97.2 Mbits/sec’]

Legacy switch Linear (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’97.1 Mbits/sec’, ’97.1 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’97.2 Mbits/sec’, ’97.2 Mbits/sec’]

Table 4.7.: Testing TCP bandwidth between h1 and h2 of Tree topology

DAIM Tree (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’95.3 Mbits/sec’, ’95.8 Mbits/sec’]

Legacy switch Tree (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’95.2 Mbits/sec’, ’95.5 Mbits/sec’]

the legacy switch with six switches. As mentioned above for setting up the envir-
onments, ping plots and throughput results for TCP and UDP are presented (see
Tab. 4.7 and see Tab. 4.8).
When conducting ping test as in Fig. 4.22 the shape, the centre, and the variability
of the test are of primary concern. In other words, here after getting the plots
of the DAIM model and legacy switch, what is found out is that the shape of a
distribution of each plot can be symmetric around the mean RTT value (the DAIM
with 3.675 ms and the Legacy with 1.347 ms). Asymmetric test has its left and right
parts behaving the same way and has the symmetry of a mirror reflection about its
middle values which are the average of RTT. Also, the distributions are stated as
approximately symmetric over 3600 seconds of the test.
The experiments run Iperf as shown in Tab. 4.7; it can report a TCP bandwidth
between these hosts. Testing the TCP bandwidth between Host 1 and Host 2 for
the DAIM in the tree topology shows that the number of bits which hit the destin-
ation is 95.3 Mbits/sec and the number of bits received is 95.8 Mbits/sec. On the
other side with the legacy switch environment; the TCP bandwidth test shows that
95.2 Mbits/sec for download and 95.5 Mbits/sec for upload. Thus, based on the
demonstration configuration in Fig. 4.22 including links speed and delays, the result
for both tests of the DAIM and the legacy switch show quite similar results.
Testing a UDP bandwidth as shown in Tab. 4.8 between Host 1 and Host 2 for the
DAIM and the legacy switch in the tree topology provides information for transfer-
ring 10 Mega, 100 Mega and 1000 Mega. The results were similar on average and
limited by link capacity which is 100 Mbits/sec. As presented when 10 Mega were

119

4.3 Simple Reference Implementation:

Testbed / RTT minimum average maximum standard deviation
DAIM model 1.817 ms 3.675 ms 22.203 ms 1.112 ms
Legacy switch 0.538 ms 1.347 ms 14.026 ms 0.378 ms

Figure 4.22.: Ping traffic of DAIM model vs Legacy switch in tree topology

Table 4.8.: Testing UDP bandwidth between h1 and h2 of Tree topology

DAIM Tree (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’96.6 Mbits/sec’, ’96.6 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’96.9 Mbits/sec’, ’96.9 Mbits/sec’]

Legacy switch Tree (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’97.0 Mbits/sec’, ’97.0 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’97.0 Mbits/sec’, ’97.0 Mbits/sec’]

120

Attempting to Implement DAIM Model

Testbed / RTT minimum average maximum standard deviation
DAIM model 1.116 ms 2.982 ms 6.701 ms 0.903 ms

OpenFlow-NOX 0.344 ms 0.727 ms 7.806 ms 0.287 ms

Figure 4.23.: Ping traffic of DAIM model vs OpenFlow-NOX in ring topology

sent through the UDP only 10 Mbits/sec hits the destination, and even when sent
100 Mega or 1000 Mega, the bits which are hitting the destination with limits of
links bandwidth as shown in the results, average 97 Mbits/sec in Tab. 4.8.

4.3.5.3. Ring Topology

The experiments in Fig. 4.23, run ping for testing latency and Iperf for testing
throughput. The environment for running this experiment is based on a ring topo-
logy (for multi-hops, multi routes to destination(s) and looping circle). The DAIM
runs with five switches against OpenFlow networks with five switches connected
with NOX controller. As mentioned above for setting up the environments, ping
plots and throughput results for a TCP and a UDP are presented (see Tab. 4.9 and
see Tab. 4.10).
Fig. 4.23 presents OpenFlow network connected with NOX controller instead of the
legacy switch as in the previous demonstration of the linear and the tree topologies.
This is because an ARP request needs a STP protocol, otherwise the ARP request

121

4.3 Simple Reference Implementation:

Table 4.9.: Testing TCP bandwidth between h1 and h2 of Ring topology

DAIM Ring (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’98.3 Mbits/sec’, ’94.9 Mbits/sec’]

OpenFlow and NOX Ring (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’95.2 Mbits/sec’, ’95.7 Mbits/sec’]

Table 4.10.: Testing UDP bandwidth between h1 and h2 of Ring topology

DAIM Ring (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’97.0 Mbits/sec’, ’97.0 Mbits/sec’]

OpenFlow-NOX Ring (Iperf:testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’96.9 Mbits/sec’, ’96.9 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’96.8 Mbits/sec’, ’96.8 Mbits/sec’]

will not stop looping. The top plot in blue colour presents ping traffic for the DAIM
and demonstrates functionality for layer 2 and layer 3, and the bottom plot in
green colour presents ping traffic for the ring topology switches connected to NOX
controller. As shown in Fig. 4.23 there are two lines in the middle of each plot; the
red line presents the mean RTT for ping traffic for the DAIM and the black line
presents the mean RTT for ping traffic for OpenFlow with NOX controller.

The experiments of the DAIM and OpenFlow with NOX for the mean RTT show
more latency in the DAIM by 2.255 ms. However, all the measurement differences
shown in Fig. 4.23 are positive. This is consistent with the fact that ping spends
more monitor processing time when measuring the RTT, because ping timestamps
packets at the application level in the operating system’s user-space.

The experiments run Iperf as shown in Tab. 4.9 and Tab. 4.10; they report the TCP
and the UDP bandwidth between hosts. The TCP bandwidth between Host 1 and
Host 2 for the DAIM and OpenFlow with NOX in the ring topology shows the
number of bits which hit the destination and received are around 95 Mbits/sec (see
Tab. 4.9). In addition, for the UDP transferring 10 Mega, 100 Mega and 1000 Mega,
results were based on the limitation of the link capacity which was 100 Mbits/sec.
For example, when 10 Mega is sent through the UDP only 10 Mbits/sec hits the
destination, and even when 100 Mega or 1000 Mega are sent, the bits which are
hitting the destination are limited to the links bandwidth as shown in the results
around 96 Mbits/sec in Tab. 4.10. Thus, based on the demonstration configuration
in Fig. 4.23 including links speed and delays, the result for both tests of the DAIM
and OpenFlow with NOX show fairly similar results.

122

Attempting to Implement DAIM Model

Testbed / RTT minimum average maximum standard deviation
DAIM model 0.758 ms 1.926 ms 20.288 ms 1.210 ms

OpenFlow-NOX 0.270 ms 0.573 ms 8.057 ms 0.225 ms

Figure 4.24.: Ping traffic of DAIM model vs OpenFlow-NOX in mesh topology

4.3.5.4. Mesh Topology (fully connected)

The experiments in Fig. 4.24 run ping for testing latency and Iperf for testing
throughput. The environment for running this experiment is based on a fully con-
nected topology as a mesh network (for multi-hops, direct connection, multi-routes
to destination(s) and looping circle). The DAIM runs with six switches against
OpenFlow networks with six switches connected with NOX controller. As men-
tioned above for setting up the environments, ping plots and throughput results for
a TCP and a UDP are presented (see Tab. 4.11 and see Tab. 4.12).
Fig. 4.24 presents OpenFlow network connected with NOX controller instead of the
legacy switch as in the previous demonstration of the linear and tree the topologies;
this is because an ARP request needs a STP protocol otherwise the ARP request
will not stop looping. The top plot in blue colour presents ping traffic for the
DAIM and demonstrates functionality for layer 2 and layer 3, and the bottom plot

123

4.3 Simple Reference Implementation:

Table 4.11.: Testing TCP bandwidth between h1 and h2 of Mesh topology

DAIM Mesh (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’94.1 Mbits/sec’, ’94.4 Mbits/sec’]

OpenFlow-NOX Mesh (Iperf: testing TCP bandwidth between h1 and h2)
mininet> iperf ** Results: [’94.0 Mbits/sec’, ’94.4 Mbits/sec’]

Table 4.12.: Testing UDP bandwidth between h1 and h2 of Mesh topology

DAIM Mesh (Iperf: testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’97.1 Mbits/sec’, ’97.1 Mbits/sec’]

OpenFlow-NOX Mesh (Iperf:testing UDP bandwidth between h1 and h2)
mininet> iperfudp 10M ** Results: [’10M’, ’10.0 Mbits/sec’, ’10.0 Mbits/sec’]
mininet> iperfudp 100M ** Results: [’100M’, ’96.9 Mbits/sec’, ’96.9 Mbits/sec’]
mininet> iperfudp 1000M ** Results: [’1000M’, ’96.9 Mbits/sec’, ’96.9 Mbits/sec’]

in green colour presents ping traffic for the mesh topology switches connected to
NOX controller. As shown in Fig. 4.24 there are two lines in the middle of each plot,
the red line presents the mean RTT for ping traffic for the DAIM and the black line
presents the mean RTT for ping traffic for OpenFlow with NOX controller.

The experiments of the DAIM and OpenFlow with NOX in the mean RTT show
more latency in the DAIM by 1.353 ms. However, all the measurement differences
shown in Fig. 4.24 are positive. This is consistent with the fact that ping spends
more monitor processing time when measuring the RTT, because ping timestamps
packets at the application level in the operating system’s user-space.

The experiments run Iperf as shown in Tab. 4.11 and Tab. 4.12; they report the
TCP and the UDP bandwidth between hosts. The TCP bandwidth between Host
1 and Host 2 for the DAIM and OpenFlow with NOX in mesh topology shows
the number of bits which hit the destination and are received around 94 Mbits/sec
(see Tab. 4.11). In addition, for the UDP transferring 10 Mega, 100 Mega and
1000 Mega, results were based on the limitation of link capacity which was 100
Mbits/sec. For example, when sent 10 Mega through the UDP only 10 Mbits/sec
hits the destination, and even when sent 100 Mega or 1000 Mega, the bits which are
hitting the destination are limited to the links bandwidth as shown in the results
around 96 Mbits/sec in Tab. 4.12. Thus, based on the demonstration configuration
in Fig. 4.24 including links speed and delays, the result for both tests of the DAIM
and OpenFlow with NOX show quite similar results.

124

Attempting to Implement DAIM Model

Figure 4.25.: Average RTT of different DAIM model topologies

4.3.5.5. Comparing RTT of different DAIM model topologies

The previous sections presented demonstrations of the DAIM model with different
topologies to verify functionalities of the model. The following analysis is showing
the average RTT of the different topologies (see Fig. 4.25).
As presented in Fig. 4.25, the linear RTT average is the lowest among the other
topologies (as 1.18 ms), where that is reflecting the direct connections of the DAIM
model. Also, the mesh topology shows low RTT; that is because it has multi-routes
paths and direct connection as well, which in result can calculate shortest path and
provide low RTT on average. However, the tree topology shows the highest RTT
caused by multi-hops, where each switch has its own management plane represented
by the DAIM model. Ultimately, the DAIM model has acceptable average of RTT
compared to other models (see results of previous demonstrations of the DAIM
model versus others).

4.3.5.6. Comparing Latency of DAIM model versus current models

This section is comparing between a network latency over various performance issues
related to flow setup time. In other words, the focus would be for a latency of the
DAIM model and other models. As the latency is the waiting time for travelling for
a packet of data to get from one side to the other side, some of the environments
are measuring latency by sending a packet and counting until after it is returned
to the sender. Mainly, this comparison uses Cbench tool, which is a controller
benchmarking tool to measure the latency of different models, where, Cbench counts

125

4.3 Simple Reference Implementation:

Figure 4.26.: Latency of DAIM vs. Latency of NOX vs. Latency of POX

the response messages by its tool. In Ubuntu terminal, the following command is
conducted for running the Cbench test:

abanjar@ubuntu:~/oflops/cbench$./cbench -p 6633 -m 10000 -l 30 -s 1 -M 1000 >
/home/abanjar/LDAIM.txt
cbench: controller benchmarking tool running in mode ’latency’ connecting to con-
troller at localhost:6633
faking 1 switches offset 1 :: 30 tests each; 10000 ms per test with 1000 unique source
MACs per switch
learning destination mac addresses before the test starting test with 0 ms delay after
features_reply ignoring first 1
"warmup" and last 0 "cooldown" loops connection delay of 0ms per 1 switch(es)
debugging info is off

The Cbench emulates an OpenFlow switch, to be connected to the DAIM and
measure the number of flow responses per second that the DAIM can handle such
as generating packet-in events for new flows. And then get flow-mod from the
model side to OpenFlow switches. In this demonstration, each run consists of 30
test loops with default 10000 ms duration and 1000 unique source MAC addresses.
Moreover, the other tests (NOX and POX) also have the same configuration as the
DAIM model and then the total responses received from each test are averaged to
compute the responses per second results (see Fig. 4.26 for the latency plots of each
model).

Note that, in the latency mode of Cbench, each emulated switch maintains exactly
one outstanding new flow request, waiting for a response before soliciting the next
request. The latency mode measures the OpenFlow controller’s request processing
time under low-load conditions.

126

Attempting to Implement DAIM Model

Figure 4.27.: Latency responses of DAIM, NOX and POX

In Fig. 4.26, each run consists of 30 test loops with default 10000 ms duration and
1000 unique source MAC addresses. The results are reflecting that, over 30 test
loops the DAIM model (version 4) is stable with response time less than 2 ms for
all the test loops. In addition, the POX response time is less at the start than the
DAIM model being 1 ms. However, the latency of POX jumped after the sixth test
loop and remained stable with less than 4 ms of response time up to the last test
loop. Finally, the latency of NOX is clearly apparent and it is showing the highest
response time among the others (DAIMv4 and POX), where it starts with 6 ms of
response time and remained stable over 30 test loops.

4.3.5.7. Number of responses by the DAIM model and other models

This section reports as in Fig. 4.27 some flow responses per second over 30 test loops
for the three models which include the DAIM model, NOX and POX. The best
results among all belong to the NOX controller as on average it can do 5734.21
responses/s. Then after that is POX controller appeared with 3051.28 responses/s
on average, while the DAIMv4 had the least responses/s with 1554.3 which is an
acceptable performance related to flow setup time.

4.3.6. DAIM model Recovery

As shown in the triangle topology Fig. 4.13, the shortest path is based on the direct
connection in this stage of the DAIM model implementation (SW_1 <->SW_2 <-

127

4.3 Simple Reference Implementation:

> SW_3). For doing link failure, the link between SW_1 and SW_2 can be broken
(Fig. 4.13), then a reconfigured flow table should happen by flow modification. The
new flow will be modified and installed by each DAIM in the connected switch, as
explained in the following steps:

Step 1:

When the link between SW_1 and SW_2 is broken (by shutting it down on SW_2),
SW_2 sends a port-status message to DAIM_2.

Step 2:

When DAIM_2 gets the information on the broken link, it informs other connected
DAIM_1 and DAIM_3, to recalculate the shortest path again, and they send flow-
mod messages to their connected switches for installing a new path. (As triangle
topology, the new path would be a link between SW_1 <-> SW_3 then to SW_2.).

Step 3:

Then DAIM_2 knows that there is no link between SW_1 and SW_2, the flow that
was configured on SW_2 flow table will be deleted and reconfigured. Also, the flows
will be modified on SW_1 and SW_3. These steps can be applied to any topology
to understand how the DAIM model recovers in the situation of link failure.

4.3.7. Discrepancy of the DAIM model implementation

The DAIM model implementation that was used in this research had several object-
ives which are:

• verification of the functionality of the DAIM model for managing network flows

• reliability of the distributed flow controls environment

• stability of the DAIM model in different network arrangements

• Feasibility of the DAIM model in existing network infrastructure

As can be seen from the introducing analyses between the DAIM model implementa-
tion and other related projects; theDAIM model can strive to compete against other
projects as well as can perform relatively close to the related models. The testing of
the DAIM model implementation also verifies various workings of the DAIM model
such as reliability of DAIM performance, stability under different settings as well
as compatibility of the DAIM model to existing environments. Despite the stable
performance of the DAIM model, the analysis shows that the DAIM model under-
performs in many cases when it is compared with other solutions. As the primary
focus of the DAIM model implementation is not the performance of the model itself,
the implementation lacked the following performance optimisations:

128

Attempting to Implement DAIM Model

Checking of switch states and flow entries:
The DAIM model implementation (DAIM controller) almost work blindly meaning
the DAIM controller does not take switch flow table entries and states for its control
decision considerations. The DAIM controller did not implement switch checking
functionality into its modules to reduce implementation complexity and time. As a
result, the DAIM controller overrides switch states repeatedly causing unnecessary
switch processing overheads and performance penalty.

Lacking of proactive functionality:
The DAIM controller has no functionality to manage switches proactively for flow
entries. It mainly operates by reacting to network packet requests from the un-
derlying forwarding devices. Moreover, requests for similar types are not compared
and cached in the DAIM controller. For this reason, the DAIM controller executes
redundant jobs in its modules, which leads to significant overall performance loss.

Single process sequential approach for managing forwarding device:
In the DAIM controller, the controlling jobs are done in an orderly sequential man-
ner where failing of one intermediate job requires the restarting of the entire process
from the beginning. In the DAIM controller process chain, the tasks of the next
jobs are performed on demand without any caching and preallocation. For example,
a memory buffer for the packet from the packet-in message from the switch is al-
located when the packet is received. For the DAIM controller to forwarding device
communication channel, non-blocking sockets are used for a one to one send and
receive and sequential communication. This facilitated prediction of the communic-
ation between the DAIM controller and forwarding device as well as rapid design of
the DAIM controller. Finally, all the jobs in the DAIM controller are managed by
a single process where as a multi process the DAIM controller would easily increase
overall forwarding requests processing threshold.

Process of reading and writing:
The process of reading and writing to forwarding devices, currently it uses an error-
proof approach such as clearing the reading buffering using the memset() method
before actually reading the message from the forwarding device. This was done
to avoid memory corruptions and segmentation faults in the controller program.
However, clearing the buffer each time before reading creates performance overheads.
Another way to implement reading would be by not clearing the buffer and instead
overriding the buffer each time.

129

5. Specification of DAIM OS

The nature of this Chapter is by way of being a detailed specification. It is provided
as reference to others intending to implement the solution proposed in the Disserta-
tion. It contains important information, and should be used according to the readers
skill and requirement.

This chapter proposes an abstraction layer for network forwarding devices. The
overall model is called DAIM platform, including functions for configuring network
infrastructure. All the DAIM features which were described in the previous chapters,
development of DAIM controller and its discrepancy and the supporting fundament-
als is in the part IV of this research. Overall they lead to write of a specification of a
network operating system for managing network flows through forwarding devices.
Moreover, the abstraction gives programers direct control over the network flows
through APIs, and allowing programmers to specify networks flow rules in an ab-
stracted manner. Also, abstraction layer allows programs to be written for one
DAIM platform which runs on different physical devices.

5.1. Introduction

Generally, an abstraction is about hiding the details and complexity of one system
and providing a simple interface for accessing the system. It can be done by adding
more layers over the system which can manage different parts of the system. In
computing, an operating system is an abstract entity for accessing physical hard-
ware. Moreover, the operating system manages low-level hardware resources and
represents hardware resource in a more easily understandable and manageable way.
Similarly, DAIM OS is an operating system for managing network infrastructure.
It provides API for managing and configuring network forwarding devices, packet
routing, collecting network information. Since, DAIM OS removes network hard-
ware details and provides a simple interface for developing network management
application; it is an abstract for running network device.

All the example codes are written in this chapter assumed that the DAIM OS is
implemented on top of POSIX compliant computer operating system.

131

5.1 Introduction

5.1.1. Scope

This chapter specifies requirements for implementing the DAIM operating system
(sec. 5.2.1). The DAIM OS is a general purpose network forwarding device operating
system which provides a common mechanism for network applications to utilise a
network hardware. Also, the DAIM OS provides a framework for network debugging,
visualisation, and virtualisation and does provide an interface for interacting with
forwarding devices. The primary goals of the DAIM OS are as follows:

• Provide a high level (abstracted) programmatic interface for network manage-
ment and control applications which hides low-level details and methods for
interfacing with various networking components.

• Provide a network flow management interface which is goal oriented, where
network applications only define end goals not how to achieve those goals, al-
though explicit control over packets flow direction can be obtained via packets
carrier device configuration.

• Provide a network flow management platform where flow control decisions are
decentralised and follow the DAIM model.

• Compatibility with existing networking devices and network infrastructure.

5.1.2. Terms and definitions

For the purpose of this specification; the following definitions are applied:

5.1.2.1. Network switch

A network switch is an electronic device that is responsible for connecting other
devices together in a network using packet switching technique to receive, process
and send data to destination devices.

5.1.2.2. Network operating system

Network switch operating system (NSOS), also known as network operating system
(NOS), are a particular type of computer operating systems, used for networking
devices such as a router, a switch, and a firewall.

5.1.2.3. Network flow

A network flow is the stream of packets that travel through different networking
mediums from a source networking device to a destination device.

132

Specification of DAIM OS

5.1.2.4. Packet forwarding

Network forwarding or packet forwarding is the dispatching of network data frames
and packets from egress ports of a networking device.

5.1.2.5. Network forwarding body

A network forwarding body is software and hardware components of a networking
device; responsible for transmitting the network data through egress ports of the
networking device.

5.1.2.6. Network flow rule

A network flow rule is a set of variables, used by the network forwarding body to
determine network data forwarding (sec. 5.1.2.4) requirements.

5.1.2.7. DAIM NOS program

The main DAIM OS program responsible for management of network packet for-
warding (sec. 5.1.2.4), network devices configuration as well as providing services to
DAIM applications.

5.1.2.8. Conditionally-supported

DAIM NOS program construct that an implementation is not required to support.

5.1.2.9. Implementation-defined behaviour

Behaviour for a well-formed DAIM NOS program (sec. 5.1.2.7) construct and correct
data that depends on the implementation and each implementation document.

5.1.2.10. Implementation limits

Restrictions imposed upon DAIM NOS program (sec. 5.1.2.7) by an implementation.

5.1.2.11. Undefined behaviour

DAIM NOS (sec. 5.1.2.7) behaviour for which this standard imposes no requirements.

133

5.1 Introduction

5.1.2.12. Unspecified behaviour

Behaviour for a well-formed DAIM NOS program (sec. 5.1.2.7) constructs and correct
data that depends on an implementation.

5.1.2.13. Well-formed program

The DAIM NOS program (sec. 5.1.2.7) that is constructed according to the rules
and guidance of this standard.

5.1.2.14. Supporting networking device

A supporting networking device is a computer networking device which can sustain
the DAIM switch stack (sec. 5.3.4).

5.1.2.15. DAIM OS API

A set of routines used by DAIM applications (sec. 5.3.2) to interact with the DAIM
NOS program (sec. 5.1.2.7).

5.1.2.16. Computing processes

An instance of a program that runs on a device manager sec. 5.3.4.2).

5.1.2.17. DAIM OS header

The daim_os_api.h header file which describes various DAIM OS
(sec. 5.2.1) definitions, data structures and subroutines (can be accessed in:
https://github.com/ameen-banjar/DAIM-OS).

5.1.2.18. DAIM OS entity

A DAIM OS (sec. 5.2.1) entity is any device in a computer network which is reach-
able by a network device (sec. 5.1.2.14) running the DAIM OS (sec. 5.2.1) such as a
network host, a network switch, a network router and a DAIM switch.

5.1.2.19. System API (high level, simplified)

An abstracted version of application programming interface (API) for managing a
networking device (sec. 5.1.2.14) and its resources.

134

Specification of DAIM OS

5.1.2.20. DAIM switch protocols

A set of communication protocols used by DAIM switches and network hosts for
transmitting network information.

5.1.2.21. MAC address

Media access control address (MAC) is a unique value for identification of a network-
ing device or a networking device communication interface in a computer network.

5.1.2.22. DAIM cloud protocols

A set of communication protocols used by DAIM switches (sec. 5.3.1) and the DAIM
cloud (sec. 5.9) for transmitting network information.

5.1.2.23. Virtual Switch ports

Virtual ports are logical switch ports which are not physical ports but defined by
the DAIM OS in software for mapping communication interfaces that are connected
to devices such as hosts and DAIM switches wirelessly.

5.1.2.24. DAIM OS signals

DAIM OS signals are software interrupts invoked by the DAIM OS for notifying
DAIM applications of state changes or events.

5.1.2.25. DAIM table entry indicator

Entry indicators are variables in DAIM tables that point where a DAIM application
is in its table reading sequence.

5.2. DAIM Operating System (OS) overview

This section provides an overview of the DAIM OS which can be seen in Fig. 5.1 as
DAIM network architecture.

135

5.2 DAIM Operating System (OS) overview

Figure 5.1.: DAIM OS network architecture

136

Specification of DAIM OS

5.2.1. DAIM operating system (DAIM OS)

The DAIM OS is a network forwarding device operating system (sec. 5.1.2.2), de-
signed for better management of packet forwarding network infrastructure, by
providing precise control over network flows (sec. 5.1.2.3) in a computer network.
It simplifies information retrieval from a network, as well as improves programmab-
ility of network switch infrastructure, by providing a standard interface to network
controllers and management applications.

5.2.2. Network flow management by DAIM OS

In the core of the DAIM operating system (sec. 5.1.2.7), there are a number of tables
(sec. 5.2.3), which provide network and switch (sec. 5.3.1) information, as well as
facilitate configuring of network forwarding (sec. 5.1.2.4) behaviour and networking
devices. Network management applications and controllers effectively use the DAIM
OS API (sec. 5.1.2.15) to get and set information in DAIM OS tables (sec. 5.2.3).
Information stored in DAIM OS tables is used by the DAIM operating system to
understand network packet forwarding requirements.

5.2.3. Tables in DAIM OS

The DAIM OS has several tables. These tables contain abstract data regarding
networking devices states, flow (sec. 5.1.2.3) statistics, and network packet flow rules
(sec. 5.1.2.6). From the perspective of DAIM applications (sec. 5.3.2) there are two
kinds of DAIM tables:

• Information tables

• Network management tables

5.2.3.1. Information tables

Information tables are read-only tables, where a table field property cannot be modi-
fied externally by management applications and controllers. The DAIM OS retrieves
information from different sources and internally maintains the contents of these
tables. Moreover, Data stored in the information tables is used by applications and
controllers for network decision making, and ultimately management of network
flow through modification of network management tables (sec. 5.2.3.2). The seven
information tables are DAIM information table, DAIM switch table, DAIM switch
ports table, DAIM entity table, DAIM entity port table, DAIM entity ARP table
and DAIM link table.

137

5.3 DAIM switch overview

5.2.3.2. Network management tables

Most fields in network management tables are changeable to predefined values. The
changing happens by adding entries and altering one or more fields of these tables,
applications and controllers will iron out different rules for network data forwarding
as well as overall network behaviour. The five management tables are DAIM packet
forwarding table, DAIM switch configuration table, DAIM switch ports configura-
tion table, DAIM entity configuration table, and DAIM link configuration table.

5.3. DAIM switch overview

5.3.1. DAIM switch

DAIM switch is a networking device similar to a network switch (sec. 5.1.2.1) or to
a router, except that; it allows network packets to be forwarded programmatically
and efficiently by incorporating the DAIM OS (sec. 5.2.1) in the networking device
software stack. The DAIM switch has several software components, which form the
DAIM switch stack (sec. 5.3.4).

5.3.2. DAIM application

DAIM application(s) is a computer programs and a process designed to run on the
DAIM switch platform (sec. 5.3.3). The DAIM application is a network packets
control and a management program, which utilise the DAIM OS API to define a
network packets forwarding behaviour in the DAIM OS.

5.3.3. DAIM switch platform

The DAIM switch platform is the union of software and hardware solution for sup-
porting and running the DAIM applications (sec. 5.3.2).

5.3.4. DAIM switch stack

The DAIM switch stack is a software bundle for building the DAIM switch platform
(sec. 5.3.3) on a supporting networking device (sec. 5.1.2.14). It has three distinct
components namely, a device manager, middleware, and the DAIM OS. Each com-
ponent in the stack provides an interface to its respective upper-layer component.
The device manager provides a high-level interface (API) to middleware to access
system resources such as direct control of networking devices and ports. While, the
middleware provides a simplified version of the same high-level API of the device

138

Specification of DAIM OS

Figure 5.2.: Different components in the DAIM switch platform

manager to the DAIM OS. Moreover, the DAIM switch stack, the middleware and
the device manager components are highly interchangeable to different available
solutions. It is possible that the middleware and the device manager together to
be as a single entity instead of two separated entities; as long as the high-level sim-
plified API of the network device system resources is available to the DAIM OS.
The distinction is made between the middleware and the device manager for the
clarification of their respective purposes even though; both can form as a one single
component (see Fig. 5.2).

5.3.4.1. Networking device

In the DAIM switch a networking device is the only physical entity responsible for
providing various computing resources to the DAIM OS and the DAIM applications
via a device manager (see Fig. 5.3). The resources of the networking device are
similar to the networking switch (sec. 5.1.2.1). The networking device will have the
adequate processing power, primary and secondary storage capabilities to sustain
the DAIM OS and its underlying components.

5.3.4.2. Device manager

The DAIM OS is not directly handle different underlying networking devices; while
a device manager can be thought as an operating system for a networking device
hardware and can manage all the underlying network devices (see Fig. 5.3). Also, it
allocates and administer the networking device resources such as central processing
unit (CPU), primary and secondary storages and peripheral devices. In addition, it
provides high-level subroutines (system API) to a middleware or to the DAIM OS
for reading and writing data to physical networking ports and does control of the

139

5.3 DAIM switch overview

Figure 5.3.: Interfaces between different DAIM switch platform components

networking device (sec. 5.1.2.14). Moreover, it loads and executes the DAIM NOS
program (sec. 5.1.2.7) as well as the DAIM OS applications (sec. 5.3.2).

5.3.4.3. Middleware

Middleware is a wrapper library around system API provided by a device manager,
which simplifies the interface of the device manager as well as maintains cross com-
patibility of the DAIM OS to different device manager solutions (Fig. 5.3). Mainly,
the middleware forms a link or an adaptor between the DAIM OS and the device
manager, beside providing a simplified interface (sec. 5.1.2.19). The middleware also
provides the following advantages (see Fig. 5.4):

• Compatibility of the same DAIM OS for different device managers (sec. 5.3.4.2)
(network device operating systems)

• Targeting of the same DAIM OS for various networking devices (sec. 5.1.2.14)

• Updating of a device manager will not affect operations of the DAIM OS

• It is easier to alter the middleware implementation than the DAIM OS imple-
mentation

• It is easier to alter the middleware implementation than the device manager
implementation

140

Specification of DAIM OS

Figure 5.4.: The DAIM OS is kept compatible across different hardware and soft-
ware configurations via different middleware

5.3.4.4. DAIM OS

The DAIM OS (sec. 5.2.1) is the upper layer software component of a DAIM switch
stack (sec. 5.3.4). Similar to a device manager (sec. 5.3.4.2) instead of managing ne-
cessary networking equipment (sec. 5.3.4.1), the DAIM OS manages incoming net-
work packets from a networking device and provides an interface to DAIM applica-
tions (sec. 5.3.2) for network flow managements.

5.4. DAIM OS model

The DAIM OS has several modules for achieving network packet forwarding require-
ments. These modules will communicate to one another using what is called DAIM
OS internal APIs or DAIM OS internal communication protocols (see Fig. 5.5). The
exact nature of these internal APIs or protocols should be defined by DAIM OS
implementations (sec. 5.2.1). The DAIM OS designers and implementers are free to
design their DAIM OS internal APIs or protocols based on implementation require-
ments (sec. 5.1.2.10). The DAIM OS has following core modules (Tab. 5.1):
Other than the modules described in Tab. 5.1; the DAIM OS will have modules
for local network data sharing and network data gathering from DAIM switches
(sec. 5.3.1) as well as DAIM cloud (sec. 5.9) in a network. The overall goals of all
the DAIM OS modules are as follows:

• Forward packets in a network consisting of heterogeneous network nodes
• Forward packets in a network which is highly dynamic and uncertain
• Forwarding of packets based on local DAIM switch forwarding decisions made

from DAIM tables
• Share and collect network packet flow and node data from the network infra-

structure

141

5.4 DAIM OS model

Table 5.1.: DAIM OS modules tasks

Module Purpose/Goal/Activity

Configuration

Configuration of various DAIM OS entities to meet
DAIM OS entities to meet the DAIM OS tables and
packet forwarding requirements are dynamically
“run-time”. Also, an adaptation can be immediately
provided with minimal human intervention.

Protection

Actions to be taken to prevent packet forwarding
failures. In more detail, it can detect malicious
behaviour occurs then takes action with less
vulnerability.

Healing
Actions to be taken when occurring of packet
forwarding and in case of failures; corrective actions
can be initiated without disrupting network operation.

Optimisation

Determination of the optimum packet forwarding paths
also, to effectively maximise components allocation and
utilisation to meet network policies and business
requirements.

Forwarding

• Buffer packets from the network
• Parsing of received packets
• Construction of packets
• Sending packets down to the DAIM OS underlying
layers for forwarding, based on the DAIM tables
requirements
• Sending packets down to the DAIM OS underlying
layers for forwarding, based on modules (Configuration,
Protection, Healing, Optimisation) requirements

Application Carry out DAIM applications requests and notify
DAIM applications of state change

142

Specification of DAIM OS

Figure 5.5.: DAIM OS modules interconnectivity

5.5. DAIM OS table model

Tables (sec. 5.2.3) in the DAIM OS are data structures, which can be stored in any
computer data storage of a DAIM switch (sec. 5.3.1). These data structures may
be retained in the main memory or any secondary storage devices of a DAIM OS
networking device (sec. 5.1.2.1). Information in tables can be stored in a volatile
memory as if restarting of a DAIM OS host system (sec. 5.1.2.14) will cause losing
of all data in the tables.
The DAIM OS does not require DAIM tables to be implemented using any particular
memory model as this will limit hardware specific implementation and memory
addressing optimisations. However, the DAIM OS should store tables’ fields’ values
as unsigned data types, where values should be formatted to little-endian. All the
text data in tables’ fields should be represented in ASCII codes where each character
is an octet. Furthermore, text data should be padded on the right with null (\0)
bytes.
The DAIM OS will have exclusive access to DAIM tables (sec. 5.2.3) as if no other
processes (sec. 5.1.2.16) of a device manager will have direct access to the tables.
This can be done by locating DAIM tables in a virtual memory with some level of
memory protection. This is to ensure efficiency of DAIM tables’ data accesses by
DAIM modules as well as the stability of the DAIM OS since no other processes

143

5.6 DAIM OS information retrieval model

Figure 5.6.: Entries indicators in a switch port for a table configuration

will interrupt DAIM modules from accessing tables’ data. External processes such
as DAIM applications will use DAIM OS API to read contents of the tables as well
as write contents into the tables.
Each DAIM table will have a variable number of entry indicators (sec. 5.1.2.25)
depending on the number of DAIM applications’ requests. Each entry indicator
serves as a cursor or a pointer to the currently reading entry for a particular DAIM
application’s request in a table. For example, if an application is reading from a
table with two specific reading inquiries then the DAIM OS will maintain two entry
indicators to keep each inquiry separate from each other. An entry indicator is
created when a particular reading request is made from an application and destroyed
after reaching the last entry of the reading request. For example, the Fig. 5.6 shows
a switch port configuration table with five entries, where two entry indicators are
created based on an application’s requests. The red entry indicator is created for
a non-specific table read request, which will traverse through all the entries in the
table. The green entry indicator is created for a specific read request to read the
entries with port_state field values to be PORT_DOWN and will traverse
through only 3 and 5 entries.
DAIM tables provide a shared memory to DAIM OS modules. Data in inform-
ation tables (sec. 5.7.1) and network management tables (sec. 5.7.2) is a reflection
of information that are discovered and configured by the DAIM OS in a network
infrastructure respectively.

5.6. DAIM OS information retrieval model

The DAIM OS uses existing networking protocols, DAIM switch protocols
(sec. 5.1.2.20), DAIM cloud protocols (sec. 5.1.2.22) and System API (sec. 5.1.2.19)
to gather information from a network infrastructure. It will both reactively and
proactively seek information from network infrastructures, depending on the applic-
ations, controllers and network requirements. Also, the DAIM OS can find inform-

144

Specification of DAIM OS

Figure 5.7.: The DAIM OS means of information retrieval

ation about hosts, switches, routers, logical forwarding devices and communication
links network elements (see Fig. 5.7).
The DAIM OS have two operating modes for retrieving network element properties
and attributes. The DAIM OS will run in the first operating mode when the DAIM
cloud (sec. 5.9) is reachable by the DAIM switch that running the DAIM OS. Also,
in the firs operating mode, the DAIM OS will discover local network elements by
using the DAIM switch protocols and then upload local network elements data to the
DAIM cloud. Local network elements are entities, which are immediately linked to
the DAIM switch running the DAIM OS. After retrieving data of the local network
elements, the DAIM OS will fetch global network elements data from the DAIM
cloud. Global network elements are entities, which are reachable to the DAIM
switch running the DAIM OS in a network.
If the DAIM cloud is not reachable by the DAIM switch; the DAIM OS will run
in the second operating mode. In the second operating mode, the DAIM OS will
use the DAIM switch protocols to discover local network elements and then share
local network elements data with other adjacent DAIM switches to discover global

145

5.7 DAIM OS tables description

network elements data. In this operating mode, DAIM switches must propagate
each other’s, using DAIM switch protocol messages through the network to ensure
distribution of network elements data to all DAIM switches in the network.
In both operating modes, local network elements are discovered by a DAIM switch
by communicating adjacent DAIM switches iteratively. In the second operating
mode, global network elements are discovered by DAIM switches by sharing local
network elements recursively between each other.

5.7. DAIM OS tables description

5.7.1. Information tables

The DAIM OS will maintain an adequate number of entries in information tables to
report capabilities, states and analytics of a DAIM switch as well as other network
elements, which are reachable to the DAIM switch.

5.7.1.1. DAIM information table

DAIM information table contains data about the DAIM OS itself. Through this
table; DAIM applications can enquire state, features, vendor description, specifica-
tion version, and release date of the DAIM OS. This table has only one entry for the
running DAIM OS on a DAIM switch. The following structure lists the available
fields in the DAIM information table:
1 struct daim_info_table_entry {
2 uint16_t daim_state ;/* one of the value from daim_os_state */
3 uint16_t features ;/* bitmap of daim_os_feature */
4 uint8_t vendor_description [DESC_STR_LEN];/* description of

DAIM OS vendor */
5 uint8_t daim_specification_version ;/* DAIM OS specification

version */
6 uint16_t daim_release_date [3]; /* DAIM OS version release year

*/};

daim_state field describes the running DAIM OS current state. The field contains
one of the following values:
1 enum daim_os_state {
2 DAIM_SLEEP = 0xffa ,/* DAIM OS is sleeping */
3 DAIM_BUSY = 0xffb ,/* DAIM OS is busy */
4 DAIM_ACTIVE = 0xffc /* DAIM OS is running */ };

DAIM_SLEEP value is used when all network ports or communication interfaces
of an underlying DAIM switch device are not connected to any network links or

146

Specification of DAIM OS

brought down by DAIM OS modules and all DAIM OS operating contexts are in
saved state. In this state, DAIM applications can still read and write data to
DAIM tables. However, new data written to DAIM tables is only processed when
daim_state value changes to DAIM_ACTIVE. Furthermore, in this state other
than DAIM applications’ requests no new data is added to DAIM tables by DAIM
OS modules.
DAIM_BUSY value is used when the DAIM OS is busy handling its internal
operations or preparing one or more DAIM OS modules and cannot take any further
requests from DAIM applications such as providing of DAIM tables data, adding
new entries or deleting entries from DAIM tables.
DAIM_ACTIVE value is used when the DAIM OS is ready for processing DAIM
applications’ requests or the DAIM OS is resumed from a DAIM_SLEEP state.
features field describes the availability of different DAIM tables. Set status of the
following flags indicates availability of a corresponding DAIM table:
1 enum daim_os_feature {
2 DAIM_SWITCH_STATES = 1 << 0,/* switch table containing

statistics and states */
3 DAIM_PORT_STATES = 1 << 1,/* port tables containing statistics

and states */
4 DAIM_ENTITY_STATES = 1 << 2,/* entity table containing

statistics and states */
5 DAIM_LINK_STATES = 1 << 3/* link table containing statistics

and states */ };

vendor_description field contains a string of octets describing the vendor of a
DAIM OS implementation. For example, it may contain a string “University of
Technology, Sydney”, where the rightmost octet is the character ’U’ and leftmost
octet is the character ’y’.
daim_specification_version field is used for indicating the DAIM OS specifica-
tion version. For specification version 1 the field value will be 1 and for specification
version 1.2 the field value will be 12 and so on.
daim_release_date field denotes the release date of a DAIM OS implementa-
tion. For example, if a particular implementation is released on 13 March 2015,
in the array the values for first, second and third elements will be 13, 3, and 2015
respectively.

5.7.1.2. DAIM switch table

DAIM switch table consists of data regarding a DAIM switch identity, capabilities
and packets analytics. The DAIM switch table is similar to the DAIM information
table; however, the DAIM switch table has only one entry for the active DAIM
switch. It is described by the following structure:

147

5.7 DAIM OS tables description

1 struct switch_table_entry {
2 uint64_t id;/* unique id of the DAIM OS switch */
3 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the DAIM OS

switch device */
4 uint8_t manufacturer_description [DESC_STR_LEN];/* description

of DAIM OS switch manufacturer */
5 uint8_t hardware_description [DESC_STR_LEN];/* description of

DAIM OS switch hardware */
6 uint8_t software_description [DESC_STR_LEN];/* description of

DAIM OS switch software
stack */

7 uint8_t serial_number [SERIAL_NUM_LEN]; /* serial number for
DAIM OS switch */

8 uint32_t vendor_id ;/* vendor id of DAIM OS switch */
9 uint32_t product_id ;/* product id of DAIM OS switch */

10 uint16_t ports ;/* number of ports in the DAIM OS switch */
11 uint16_t switch_state ;/* bitmap of daim_switch_state */
12 uint16_t switch_capabilities ;/* bitmap of

daim_switch_capability */
13 uint64_t received_packets ;/* number of total packets received

*/
14 uint64_t received_bytes ;/* number of total bytes received */
15 uint64_t transmitted_packets ;/* number of total packets

transmitted */
16 uint64_t transmitted_bytes ;/* number of total bytes

transmitted */};

id field contains a unique value representing the DAIM switch device in a network.
This value is used to differentiate different DAIM switch devices in a LAN or a WAN
environment. If the DAIM switch is not connected to the DAIM cloud (sec. 5.9),
then the lower 48 bits represent the MAC address of the DAIM switch, while the
top 16 bits represent a random number. In the presence of the DAIM cloud, the
value of the id field is fetched from the DAIM cloud, as the DAIM cloud will be able
to provide a unique value for the id field for the DAIM switch device in a network.
mac_addr field contains MAC address of the DAIM switch device. If no MAC
address can be found in the hardware, then a random number is assigned to this
field. The formatting of the random number is implementation specific (sec. 5.1.2.9).
manufacturer_description field is a string of octets containing the DAIM switch
hardware manufacturer name.
hardware_description field is a string of octets containing the DAIM switch
hardware model name and number, where model name and number are separated
by a zero. For instance, for field value “Atlus 0 188”, model name is Atlus and
model number is 188.
software_description field is a string of octets describing the DAIM switch soft-
ware stack. For example, the value of this field can be “DAIM OS running on top
of GNU/Linux”.

148

Specification of DAIM OS

Table 5.2.: The DAIM switch state flags and their meaning of setting

Flag Meaning of setting flags

SWITCH_DOWN The DAIM switch can be deactivated by
DAIM applications’ requests

SWITCH_UP
The DAIM switch can be activated by
DAIM applications’ requests (only set if
SWITCH_DOWN is also set)

NOR_MOD The DAIM switch can operate as a DAIM
programmable switch

ETH_SW The DAIM switch can operate as a
traditional network switch

ETH_HUB The DAIM switch can operate as a network
hub

ETH_ROU The DAIM switch can operate as a minimal
network router

serial_number field contains the serial number of the DAIM switch as provided
by the hardware manufacturer.
vendor_id field contains hardware vendor id of the DAIM switch.
product_id field contains device id of the DAIM switch.
ports field represents the total number of physical and virtual ports (sec. 5.1.2.23)
of the DAIM switch.
switch_state field describes the currently supported configurations for the DAIM
switch as described by the following flags (refer to Tab. 5.2):
1 enum daim_switch_state {
2 SWITCH_UP = 1 << 0,/* the switch is administratively up*/
3 SWITCH_DOWN = 1 << 1,/* the switch is administratively down */
4 NOR_MOD = 1 << 2,/* the switch is configured to be a DAIM

switch */
5 ETH_SW = 1 << 3,/* the switch is configured to be a

traditional network switch */
6 ETH_HUB = 1 << 4,/* the switch is configured to be a

traditional network hub */
7 ETH_ROU = 1 << 5/* the switch is configured to be a

traditional network router */ };

switch_capabilities field value denotes the DAIM switch features which are im-
plemented by layers below the DAIM OS such as a device manager (sec. 5.3.4.2)
and a networking device (sec. 5.3.4.1). The field value can be a combination of the
following flags:
1 enum daim_switch_capability {
2 STP = 1 << 0, /* 802.1d spanning tree */

149

5.7 DAIM OS tables description

3 IP_REASM = 1 << 1 /* Can reassemble IP fragments */};

STP flag is set if spanning tree protocol is available through the underlying layers
of the DAIM OS and can be enabled or disabled on the ports of the DAIM switch
to prevent loops and collisions of packets.
IP_REASM flag is set if datagrams fragmentation and reassembly is supported
by the underlying layers of the DAIM OS.
received_packets field provides the total number of packets which are received by
all the DAIM switch ports excluding dropped packets.
received_bytes field provides total bytes of received packets.
transmitted_packets field provides the total number of packets which are suc-
cessfully transmitted by all the DAIM switch ports.
transmitted_bytes field provides total bytes of transmitted packets.
The received_packets, received_bytes, transmitted_packets and transmit-
ted_bytes fields values wrap around and the DAIM OS will emit signals upon
resetting of fields values to zero.

5.7.1.3. Switch port table

Entries in a switch port table provide information on addressing, capabilities and
packets statistics for different DAIM switch ports. The following structure shows
the fields of an entry in this table:
1 struct switch_port_table_entry {
2 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the DAIM OS

switch port */
3 uint16_t port_number ;/* DAIM OS switch port number */
4 uint16_t port_state ;/* bitmap combination of

daim_switch_port_state */
5 uint64_t port_speed ;/* maximum port speed as reported from the

hardware */
6 uint64_t port_mtu ;/* largest maximum transmission unit as

reported from the hardware */
7 uint64_t received_packets ;/* number of total packets received

in the port */
8 uint64_t received_bytes ;/* number of total bytes received in

the port */
9 uint64_t receive_drops ;/* number of total incoming packets

dropped in the port */
10 uint64_t receive_errors ;/* total number of receive errors */
11 uint64_t receive_frame_err ;/* total number of frame alignment

errors */
12 uint64_t receive_over_err ;/* total number of packets overruns

*/
13 uint64_t receive_crc_err ;/* total number of CRC errors */

150

Specification of DAIM OS

14 uint64_t transmitted_packets ;/* number of total packets
transmitted through the port */

15 uint64_t transmitted_bytes ;/* number of total bytes
transmitted through the port */

16 uint64_t transmit_drops ;/* number of total outgoing packets
dropped in the port */

17 uint64_t transmit_errors ;/* total number of transmit errors */
18 uint64_t transmit_over_err ;/* total number of packets overruns

*/
19 uint64_t collisions ;/* number of total packet collisions in

the port */
20 uint64_t duration ;/* duration of the port from most recent up

statue */};

mac_addr field holds the MAC address of the DAIM switch port.

port_number field contains a number for the corresponding port MAC address
from the mac_addr field. Also, this field is used to differentiate between the
DAIM switch ports. The DAIM OS will give priority for enumerating physical ports
so that physical ports will be enumerated first before virtual ports (sec. 5.1.2.23).
The DAIM OS will assign a unique number for each port MAC address in increasing
order. For example, if a DAIM switch has three physical ports and two virtual ports
then the values for the port_number field would be 1, 2, 3 for physical ports and
4, 5 for virtual ports respectively. The exact method for allocating a unique number
for the port_number field can be implementation specific (sec. 5.1.2.9) as long as
a unique number is assigned to each port, even though two ports have same MAC
addresses.

port_state field describes supported configurations for the DAIM switch port as
described by the following flags (refer to Tab. 5.3):

1 enum daim_switch_port_state {
2 PORT_UP = 1 << 0,/* the port is administratively up*/
3 PORT_DOWN = 1 << 1,/* the port is administratively down */
4 PORT_OPEN = 1 << 2,/* the port is open for receiving and

transmitting */
5 PORT_LINK_DOWN = 1 << 3,/*no physical link present at the

port */
6 PORT_ONLY_RECEIVE = 1 << 4,/* the port will not forward but

only receive packets */
7 PORT_ONLY_TRANSMIT = 1 << 5,/* the port will forward packets

and drop received packets */
8 PORT_NO_STP = 1 << 6,/* disable 802.1 D spanning tree on the

port */
9 PORT_NO_RECV = 1 << 7,/* drop all packets except 802.1D

spanning tree packets */
10 PORT_NO_RECV_STP = 1 << 8,/* drop received 802.1D STP packets

*/
11 PORT_NO_FLOOD = 1 << 9,/*do not include this port when

flooding */

151

5.7 DAIM OS tables description

12 PORT_HALF_DUPLEX = 1 << 10,/* the port is administratively
configured to be half duplex */

13 PORT_FULL_DUPLEX = 1 << 11,/* the port is administratively
configured to be full duplex */

14 PORT_ONLY_APP = 1 << 12 /* the port will only forward and
receive DAIM applications packets */ };

port_speed field indicates the maximum speed of the port as reported from the
hardware or the DAIM OS. The field value should be represented in megabit per
second (Mb/s).

port_mtu field indicates the largest maximum transfer unit of the port as reported
from the hardware or the DAIM OS. This field value is represented in bytes.

duration field indicates the elapsed time in seconds of the port up state from the
most recent down state.

The received_packets, received_bytes, receive_drops, receive_errors,
receive_frame_err, receive_over_err, receive_crc_err, transmit-
ted_packets, transmitted_bytes, transmit_drops, transmit_errors,
transmit_over_err, collisions and duration fields values wrap around; the
DAIM OS will emit signals upon resetting of fields values to zero.

5.7.1.4. Entity table

Entity table provides information about different entities (sec. 5.1.2.18) which are
reachable to the DAIM switch. The entity table has the following structure:
1 struct entity_table_entry {
2 uint64_t id; /* entity id as assigned by DAIM OS*/
3 uint8_t description [DESC_STR_LEN]; /* description for DAIM OS

entity */
4 uint16_t entity_state ;/* bitmap of daim_entity_state */
5 uint8_t location ;/* one of the daim_entity_location */
6 uint8_t type; /* one of the daim_entity_type */
7 uint16_t switch_port ;/* The DAIM OS switch port entity

connected to*/
8 uint64_t received_packets ;/* number of total packets received

by the entity */
9 uint64_t received_bytes ;/* number of total bytes received by

the entity */
10 uint64_t duration ;/* duration of the entity existence in

seconds */};

id field uniquely identifies the entity within the DAIM switch device. The value
of this field is determined by the DAIM OS of a corresponding DAIM switch by
different entity differentiation methods. The methods for differentiating entities can
be defined by individual DAIM OS implementations (sec. 5.1.2.12). Each DAIM

152

Specification of DAIM OS

Table 5.3.: The DAIM switch port flags and their meaning of setting

Flag Meaning of setting flags

PORT_DOWN The port can be deactivated by DAIM
applications’ requests

PORT_UP
The port can be activated by DAIM
applications’ requests (only set if
PORT_DOWN is also set)

PORT_OPEN The port will receive and transmit all
network packets

PORT_ONLY_RECEIVE
The port will only receive packets. All the
forwarding actions will be ignored by the
port

PORT_ONLY_TRANSMIT The port will only transmit packets while
dropping all the received network packets

PORT_NO_RECV
The port will receive only 802.1D spanning
tree packets and drop all the other network
packets

PORT_NO_RECV_STP Same as PORT_OPEN except drop all
the received 802.1D spanning tree packets

PORT_ONLY_APP The port will receive and transmit only
DAIM applications packets

PORT_NO_FLOOD The port will be removed from broadcasting
ports list

PORT_HALF_DUPLEX The port can be configured to operate in
half duplex mode

PORT_FULL_DUPLEX The port can be configured to operate in
full duplex mode

PORT_LINK_DOWN The port can report the presence of a
communication link

PORT_NO_STP 802.1D spanning tree protocol can be
disabled on the port

153

5.7 DAIM OS tables description

Table 5.4.: Entity state flags and their meaning of setting

Flag Meaning of setting flags

ENTITY_DOWN The entity can be deactivated by DAIM
applications’ requests

ENTITY_UP
The entity can be activated by DAIM
applications’ requests (only set if
ENTITY_DOWN is also set)

NOR_MOD The entity can be configured to carry out
it’s local operations

ETH_BRIDGE The entity can be configured to operate as a
network bridge

switch recognisable entity will have a unique value. Local entities such as entities
directly connected to the DAIM switch will have lower values than other entities.
description field contains a human-readable string of octets which describe the
entity. This field should not be used as a primary form of entity addressing or iden-
tification, as the value of this field is assignable by DAIM applications for debugging
purposes.
entity_state field describes supported configurations for the entity which are de-
scribed by the following flags (refer to Tab. 5.4):
1 enum daim_entity_state {
2 ENTITY_UP = 1 << 0,/* the entity is administratively up*/
3 ENTITY_DOWN = 1 << 1,/* the entity is administratively down */
4 NOR_MOD = 1 << 2,/* the entity is configured to operate local

functions */
5 ETH_BRIDGE = 1 << 3/* the entity is configured as Ethernet

bridge */};

location field indicates whether the entity is directly linked to the DAIM switch as
described by the following values:
1 enum daim_entity_location {
2 LOCAL_ENTITY = 0xf1 ,/* the entity is local to DAIM OS switch */
3 REMOTE_ENTITY = 0xf2 /* the entity is not local to DAIM OS

switch */};

LOCAL_ENTITY value is used for the entity which is directly linked to the
DAIM switch’s physical or virtual port.
REMOTE_ENTITY value is used for the entity which does not meet
LOCAL_ENTITY value requirements.
type field indicates whether the entity is a network host computer serving users or
a DAIM switch which is a network forwarding device such as a network switch or a
router. The values for the type field are:

154

Specification of DAIM OS

1 enum daim_entity_type {
2 HOST_ENTITY = 0xf3 ,/* the entity is a host computer */
3 DAIM_ENTITY = 0xf4 ,/* the entity is a DAIM switch */
4 OTHER_ENTITY = 0xf5 /* the entity is a forwarding device */};

switch_port field indicates the DAIM switch port number the entity linked to, as
described in the port_number field of the switch port table (sec. 5.7.1.3). This field
will only contain a value if the location field value contains LOCAL_ENTITY .
For location field value REMOTE_ENTITY , this field will contain decimal equi-
valent of hex value 0XFFFF.
duration field indicates the elapsed time in seconds for the entity’s existence in
network activities. The timing can start from the discovering of the entity by the
DAIM switch or the change of entity_state value from ENTITY_DOWN to
ENTITY_UP.
The received_packets and received_bytes fields values wrap around; the DAIM
OS and the DAIM OS will emit signals upon resetting of fields values to zero.

5.7.1.5. Entity port table

Entity port table provides information on the ports of different DAIM switch discov-
erable entities. Ports belonging to each entity listed in the entity table (sec. 5.7.1.4)
are listed in this table with ports data relating to addressing, state, speed, and
statistics. The following structure describes this table:
1 struct entity_port_table_entry {
2 uint64_t ent_id ;/* entity id the port belongs to*/
3 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the port */
4 uint32_t ip_addr ;/*IP address of the port */
5 uint8_t ip_netmask ;/*IP netmask of the port */
6 uint16_t port_state ;/* bitmap combination of

daim_entity_port_state */
7 uint64_t port_speed ;/* port speed as configured by the entity

*/
8 uint64_t received_packets ;/* number of total packets received

in the port */
9 uint64_t received_bytes ;/* number of total bytes received in

the port */
10 uint64_t duration ;/* duration of the port from most recent up

state */};

ent_id field contains a value from the id field of the entity table (sec. 5.7.1.4).
port_state field describes the current configuration and state of the entity port as
described by the following flags:
1 enum daim_entity_port_state {
2 PORT_UP = 1 << 0,/* the port is administratively up*/

155

5.7 DAIM OS tables description

3 PORT_DOWN = 1 << 1,/* the port is administratively down */
4 PORT_OPEN = 1 << 2,/* the port is open for receiving and

transmitting */
5 PORT_LINK_DOWN = 1 << 3,/*no physical link present at the

port */
6 PORT_ONLY_RECEIVE = 1 << 4,/* the port will not forward but

only receive packets */
7 PORT_ONLY_TRANSMIT = 1 << 5,/* the port will forward packets

and drop received packets */
8 PORT_NO_STP = 1 << 6,/* disable 802.1 D spanning tree on the

port */
9 PORT_NO_RECV = 1 << 7,/* drop all packets except 802.1D

spanning tree packets */
10 PORT_NO_RECV_STP = 1 << 8,/* drop received 802.1D STP packets

*/
11 PORT_HALF_DUPLEX = 1 << 10,/* the port is administratively

configured to be half duplex */
12 PORT_FULL_DUPLEX = 1 << 11 /* the port is administratively

configured to be full duplex */ };

port_speed field indicates the current operating speed of the entity port as con-
figured by the port owning entity. The value should be represented in megabit per
second (Mb/s).

The received_packets and received_bytes fields values wrap around and emit
respective the DAIM OS signals upon resetting of field value to zero.

5.7.1.6. Entity ARP table

The DAIM OS will save broadcast ARP request messages from different entities in
the entity arp table for DAIM applications and the DAIM OS to discover network
hosts MAC addresses proactively. For instance, the DAIM OS can fake broadcast
ARP request messages taken from the entity arp table to find out MAC addresses
of hosts associated with different IP addresses. This table will only contain ARP
request messages of the entities with MAC addresses enlisted in the entity port table
(sec. 5.7.1.5). This table has the following structure:
1 struct entity_arp_table_entry {
2 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the DAIM OS

entity */
3 uint8_t arp_request_message [ARP_PACKET_LEN]; /* ARP request

message of corresponding entity */};

mac_addr field contains MAC address of the entity who sent ARP request mes-
sage.

arp_request_message field contains the actual ARP request message buffer for
the corresponding MAC address in the mac_addr field.

156

Specification of DAIM OS

Figure 5.8.: Link connecting two adjacent DAIM switch devices

5.7.1.7. Link table

Link table provides addressing, capabilities, and packets flow statistics informa-
tion of the network links that interconnect different DAIM switches and forwarding
devices. In this table, a link is addressed by the link’s ends devices identifications
and port numberings as shown in the diagram below (see Fig. 5.8):
Link table is described by the following structure:
1 struct switch_link_table_entry {
2 uint64_t id;/* link id as assigned by DAIM OS*/
3 uint8_t description [DESC_STR_LEN]; /* description for link */
4 uint64_t left_id ;/* left switch id*/
5 uint16_t left_port ;/* switch port link connected to on the

left side */
6 uint64_t right_id ;/* right switch id*/
7 uint16_t right_port ;/* switch port link connected to on the

right side */
8 uint16_t link_state ;/* bitmap combination of switch_link_state

flags */
9 uint64_t link_speed ;/* maximum link bandwidth as reported from

the hardware */
10 uint64_t received_packets ;/* number of total packets

transmitted through the link */
11 uint64_t received_bytes ;/* number of total bytes transmitted

through the link */
12 uint64_t duration ;/* duration of the link from the last up

state */};

id field contains a unique value for identifying the link in a network. This value is
assigned by the DAIM OS by comparing the link connecting devices and their cor-
responding ports. The formatting of the field value can be implementation specific
(sec. 5.1.2.9).
description field contains a human readable string of octets describing the link
as assigned by DAIM applications. This field value is used for debugging purposes.
For example, the value for this field can be “link connecting UTS building 1 with
building 11”.

157

5.7 DAIM OS tables description

Table 5.5.: Switch link state flags and their meaning of setting

Flag Meaning of setting flags

LINK_DOWN The link can be deactivated by DAIM
applications’ requests

LINK_UP
The link can be activated by DAIM
applications’ requests (only set if
LINK_DOWN is also set)

left_id field contains the link’s left end device’s unique identification number.
left_port field contains the link’s left end device’s link connecting physical or vir-
tual port number.
right_id field contains the link’s right end device’s unique identification number.
right_port field contains the link’s right end device’s link connecting physical or
virtual port number.
link_state field indicates the applicable configurations on the link as described by
the following flags (refer to Tab. 5.5):
1 enum switch_link_state {
2 LINK_UP = 1 << 0, /* the link is administratively up*/
3 LINK_DOWN = 1 << 1/* the link is administratively down */};

link_speed field indicates the maximum allowable bandwidth for the link. The
field value should be represented in megabit per second (Mb/s).
duration field indicates total elapsed time in seconds since the most recent up state
of the link.
The received_packets and received_bytes fields values wrap around and the
DAIM OS will emit signals upon resetting of fields values to zero.

5.7.2. Network management tables

Except packet forwarding table, the DAIM OS will maintain an adequate number
of entries in network management tables to reflect current network elements’ con-
figurations and states.

5.7.2.1. Packet forwarding table

Packet forwarding table is the primary table used by the DAIM OS to determine
packet forwarding requirements as defined by DAIM applications. The entries in
packet forwarding table contain various addresses and forwarding actions for for-
warding of incoming packets by the DAIM switch based on port numbering of the

158

Specification of DAIM OS

physical DAIM switch ports, MAC addresses and VLAN tags of the data link layer,
IP addresses of the network layer, and TCP/UDP ports of the transport layer. Each
entry in this table describes a flow rule (sec. 5.1.2.6) for the packets coming from spe-
cific sources and have specific destinations. The table also provides details on flow
rules’ durations, priorities and packets statistics. The following structure describes
this table:
1 struct packet_forwarding_table_entry {
2 uint16_t in_port ;/* input DAIM switch port */
3 uint8_t mac_src [MAC_ADDR_LEN]; /* source Ethernet address */
4 uint8_t mac_dst [MAC_ADDR_LEN]; /* destination Ethernet address

*/
5 uint16_t ethernet_type ;/* Ethernet frame type */
6 uint32_t ip_source [2]; /* source IP address . first address

defines exact match , if second address is present , it
defines a range from the first address to the second address
*/

7 uint32_t ip_destination [2]; /* destination IP address */
8 uint8_t ip_netmask_source ;/* source IP netmask */
9 uint8_t ip_netmask_destination ; /* destination IP netmask

*/
10 uint16_t tcp_port_source [2]; /* TCP/UDP source port */
11 uint16_t tcp_port_destination [2]; /* TCP/UDP destination

port */
12 uint8_t ip_proto ;/*IP protocol or lower 8 bits of ARP opcode

*/
13 uint16_t vlan_id ;/* Input VLAN id*/
14 uint8_t vlan_pcp ;/* Input VLAN priority */
15 uint8_t ip_tos ; /*IP ToS (actually DSCP field , 6 bits)*/
16 uint64_t idle_timeout ;/* flow rule idle timeout in seconds */
17 uint64_t hard_timeout ;/* flow rule timeout in seconds */
18 uint64_t packet_count ;/* Number of packets processed */
19 uint64_t byte_count ;/* Number of bytes processed */
20 uint32_t duration ;/* total time flow rule is in the table in

seconds */
21 uint8_t weight ;/* flow priority 0 minimum , 100 maximum */
22 struct packet_buffer packet ;/* raw packet to forward or

available for collection */
23 uint16_t num_of_actions ;/* number of actions in actions array

*/
24 struct packet_action_header actions []; /* actions from

packet_action_ **/ };

in_port field contains one of the port numbers from the port_number field of
the switch port table (sec. 5.7.1.3). This field specifies the DAIM switch port in
which the incoming packets will be received. The decimal equivalent of hex value
0xFFFF is used to indicate any DAIM switch port.
mac_src field specifies MAC address of a sender for the incoming packets. The
decimal equivalent of hex value 0xFFFFFFFFFFFF is used to indicate any MAC
address.

159

5.7 DAIM OS tables description

mac_dst field specifies MAC address of the incoming packets destination. The
decimal equivalent of hex value 0xFFFFFFFFFFFF is used to indicate any MAC
address.
ethernet_type field specifies the ethernet frame payload type of the incoming
packets.
ip_source field specifies incoming packets senders IP addresses. If only first ele-
ment of this field is assigned then, one exact sender IP address is counted for a flow
rule. If both elements are assigned then, all the IP addresses between the first and
second elements are counted as sender IP address for a flow rule. For example, if
the first element is 192.168.1.0 and the second element is 192.168.1.100, then all the
IP addresses between the first and second elements are counted as senders for a flow
rule. The decimal equivalent of hex value 0xFFFFFFFF is used to indicate any IP
address.
ip_destination field specifies incoming packets destinations IP addresses. If only
first element of this field is assigned then, one exact destination IP address is counted
for a flow rule. If both elements are assigned then, all the IP addresses between first
and second elements are counted as destination IP address for a flow rule. For
example, if the first element is 192.168.1.0 and the second element is 192.168.1.100,
then all the IP addresses between the first and second elements are counted as
destinations for a flow rule. The decimal equivalent of hex value 0xFFFFFFFF is
used to indicate any IP address.
ip_netmask_source field specifies incoming packets senders netmask length of
IP addresses.
ip_netmask_destination field specifies incoming packets destinations netmask
length of IP addresses.
tcp_port_source field specifies incoming packets senders TCP/UDP port num-
bers. If only first element of this field is assigned then, one exact sender TCP/UDP
port number is counted for a flow rule. If both elements are assigned then, all
the TCP/UDP port numbers between the first and second elements are counted as
sender TCP/UDP port number for a flow rule. For example, if the first element is
1000 and the second element is 6000, then all the TCP/UDP ports between the first
and second elements are counted as senders for a flow rule. The decimal equivalent
of hex value 0x FFFF is used to indicate any TCP/UDP port.
tcp_port_destination field specifies incoming packets destinations TCP/UDP
port numbers. If only first element of this field is assigned then, one exact destina-
tion TCP/UDP port number is counted for a flow rule. If both elements are assigned
then, all the TCP/UDP port numbers between first and second elements are coun-
ted as destination TCP/UDP port number for a flow rule. For example, if the
first element is 1000 and the second element is 6000, then all the TCP/UDP ports
between the first and second elements are counted as destinations for a flow rule.
The decimal equivalent of hex value 0x FFFF is used to indicate any TCP/UDP
port.

160

Specification of DAIM OS

ip_proto field specifies IP protocol number or ARP opcode of the incoming packets.

vlan_id field specifies VLAN ID of the incoming packets. The decimal equivalent
of hex value 0x FFFF is used to indicate any VLAN ID.

vlan_pcp field specifies VLAN priority of the incoming packets.

ip_tos field specifies IP type of service of the incoming packets.

idle_timeout field specifies the minimum duration for a flow rule entry to remain
in the table if there are no matching incoming packets. If 0 is assigned, a flow rule
will not be discarded from the table regardless of flow activity of the flow rule.

hard_timeout field specifies the minimum duration for a flow rule to remain in the
table. If 0 is assigned, a flow rule will remain in the table for an indefinite period.

packet_count field contains the number of total packets processed by a flow rule
entry.

weight field is used to specify the priority of the flow rule in the table which can
be a value between 0 and 100, where 0 and 100 denote minimum and maximum
priority respectively.

packet field is used for specifying a buffer which will be forwarded by the DAIM
switch or locating a buffer which is received from a DAIM application residing on a
different DAIM switch.

actions_len field is used for specifying the total number of actions in the actions
field.

actions field is used to specify the actions for a flow rule matching packets.

The packet_count and byte_count fields values wrap around;
the DAIM OS will emit REC_PACK_COUNTER_RESET and
REC_BYTE_COUNTER_RESET signals upon resetting of packet_count
and byte_count fields values to zero respectively.

5.7.2.2. Switch configuration table

Switch configuration table is used for minimal configuration of the DAIM switch
such as setting of switch state, uptime, and total bytes receiving. The following
structure describes this table:
1 struct switch_config_table_entry {
2 uint16_t switch_state ;/* bitmap of daim_switch_state */
3 uint64_t up_time ;/* duration of the switch in seconds before

shutting down */
4 uint64_t run_out ;/* number of Megabytes to shut down the

switch */};

161

5.7 DAIM OS tables description

switch_state field indicates the current configuration of the DAIM switch as well
as is used for specifying a DAIM switch’s the DAIM OS operating mode and state.
The value for this field can have the following flags:
If SWITCH_DOWN flag is set, then DAIM OS is in sleeping state as de-
scribed in the DAIM_SLEEP value. However, the DAIM switch and its device
manager will still be running, waiting for the DAIM OS to change state. When
SWITCH_UP flag and one of the other state flags such as NOR_MOD,
ETH_SW , ETH_HUB and ETH_ROU are set, the DAIM OS will oper-
ate as a DAIM programmable switch, a traditional network switch, a network hub,
and a network router respectively. After booting up the device manager and ini-
tialising the DAIM OS, both SWITCH_UP and NOR_MOD flags should be
set in the switch_state field to indicate operating mode of DAIM programmable
switch.
up_time field specifies the total duration in seconds the DAIM switch should be
running before setting SWITCH_DOWN flag in the switch_state field. Once
the switch_state is changed to SWITCH_DOWN due to timeout of the field
value timer, zero is set for the field value. Until timeout of the field value timer,
the field value will remain constant as specified by DAIM applications. If zero is
assigned to the field value then, any existing timer timing the field value will be
canceled.
run_out field specifies the total number of megabytes the DAIM switch should
receive before setting SWITCH_DOWN flag in the switch_state field. Once
the switch_state is changed to SWITCH_DOWN due to reaching of field value
amount of megabytes, zero is set to the field value. Until reaching of field value
amount of megabytes, the field value will remain constant as specified by DAIM
applications. If zero is assigned to the field value then, any existing megabytes
counter counting received megabytes for the field value will be canceled.

5.7.2.3. Switch port configuration table

With switch port configuration table DAIM applications can do some minimal con-
figuration of DAIM switch ports. This table is described by the following structure:
1 struct switch_port_config_table_entry {
2 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the port */
3 uint16_t port_number ;/* DAIM OS switch port number */
4 uint16_t port_state ;/* bitmap of daim_switch_port_state */
5 uint64_t port_speed ;/* expected or configured port speed */
6 uint64_t port_mtu ;/* expected or configured maximum

transmission unit */
7 uint64_t up_time ;/* duration of the port in seconds before

shutting down */
8 uint64_t run_out ;/* number of Megabytes to shut down the port

*/};

162

Specification of DAIM OS

Table 5.6.: Port state flags and their operating mode

Flag Port operating mode

PORT_OPEN The port will receive and transmit all
network packets

PORT_ONLY_RECEIVE
The port will only receive packets. All
the forwarding actions will be ignored
by the port

PORT_ONLY_TRANSMIT
The port will only transmit packets
while dropping all the received
network packets

PORT_NO_RECV
The port will receive only 802.1D
spanning tree packets and drop all the
other network packets

PORT_NO_RECV_STP
Same as PORT_OPEN except
drop all the received 802.1D spanning
tree packets

PORT_ONLY_APP The port will receive and transmit
only DAIM applications packets

PORT_NO_FLOOD The port will be removed from
broadcasting ports list

mac_addr field contains the MAC address of the DAIM switch port.
port_number field contains the port number of the DAIM switch port as listed in
the port_number field of the switch port table (sec. 5.7.1.3).
port_state field indicates the current state of the DAIM switch port as well as it
is used for specifying the port’s state. The value for this field can have the following
flags:
PORT_DOWN flag is set when the port is brought down by the DAIM OS itself
or because of DAIM applications requests. PORT_UP flag is set if the port is
turned on. Whenever PORT_UP flag is set, the DAIM switch port can have the
following operating modes depending on the setting of other flags in the port_state
field (refer to Tab. 5.6):
PORT_HALF_DUPLEX flag is set when the port is operating in half duplex.
PORT_FULL_DUPLEX flag is set when the port is operating in full duplex.
PORT_LINK_DOWN flag is set when the port is not connected to a host or
networking device by a physical link.
PORT_NO_STP flag is set when 802.1D spanning tree protocol is disabled or
not available on the port.
port_speed field indicates the current speed of the DAIM switch port as well as
used for specifying the expected speed of the port. The field value is in megabit per

163

5.7 DAIM OS tables description

second (Mb/s).
port_mtu field indicates the current port MTU and also used for specifying the
expected port MTU. The field value is in bytes.
up_time field specifies up time for the port before setting PORT_DOWN flag
in the port_state field. Once the port_state is changed to PORT_DOWN
due to timeout of the field value timer, zero is set for the field value. Until timeout
of the field value timer, the field value will remain constant as specified by DAIM
applications. If zero is assigned to the field value then, any existing timer timing
the field value will be canceled.
run_out field specifies the total number of megabytes the port should receive before
setting the PORT_DOWN flag in the port_state field. Once the port_state is
changed to PORT_DOWN due to reaching of field value amount of megabytes,
zero is set to the field value. Until reaching of field value amount of megabytes,
the field value will remain constant as specified by DAIM applications. If zero is
assigned to the field value then, any existing megabytes counter counting received
megabytes for the field value will be canceled.

5.7.2.4. Entity configuration table

Entity configuration table is used for minimal configuring of entities reachable to
the DAIM switch. This table is described with the following structure:
1 struct entity_config_table_entry {
2 uint64_t id;/* entity id as assigned by DAIM OS*/
3 uint8_t description [DESC_STR_LEN]; /* description for DAIM OS

entity */
4 uint16_t entity_state ;/* bitmap daim_entity_state */
5 uint64_t up_time ;/* duration of the DAIM OS entity in seconds

before shutting down */
6 uint64_t run_out ;/* number of Megabytes to shut down the

entity */};

id field contains the identification number of an entity from the id field of the entity
table (sec. 5.7.1.4).
description field is used for specifying a human readable description for the entity
for debugging or other purposes.
entity_state field indicates the current configuration of the entity as well as is
used for specifying the entity’s state as described by the following flags:
when both ENTITY_UP and NOR_MOD flags are set, the entity is running
with default settings as if the entity’s configuration is not altered by the DAIM
switch. If both ENTITY_UP and ETH_BRIDGE flags are set, the entity is
behaving as a network bridge. Either NOR_MOD or ETH_BRIDGE flag is set
to indicate that the entity is operating in a particular mode. ENTITY_DOWN

164

Specification of DAIM OS

flag is set when the entity is put into sleeping state by the DAIM switch so that
the entity will not receive or send any packets into the network except the DAIM
switch protocol packets. The default flags which are set for all the network entities
are ENTITY_UP and NOR_MOD.

up_time field specifies up time for the entity before setting ENTITY_DOWN
flag in the entity_state field. Once the entity_state is changed to EN-
TITY_DOWN due to timeout of the field value timer, zero is set for the field
value. Until timeout of the field value timer, the field value will remain constant
as specified by DAIM applications. If zero is assigned to the field value then, any
existing timer timing the field value will be canceled.

run_out field specifies the total number of megabytes the entity should receive
before setting ENTITY_DOWN flag in the entity_state field. Once the
entity_state is changed to ENTITY_DOWN due to reaching of field value
amount of megabytes, zero is set to the field value. Until reaching of field value
amount of megabytes, the field value will remain constant as specified by DAIM ap-
plications. If zero is assigned to the field value then, any existing megabytes counter
counting received megabytes for the field value will be canceled.

5.7.2.5. Link configuration table

Link configuration table is used for minimal configuring of the links in a DAIM
switch network. This table is described with the following structure:
1 struct switch_link_config_table_entry {
2 uint64_t id;/* link id as assigned by DAIM OS and DAIM cloud */
3 uint8_t description [DESC_STR_LEN]; /* description for the link

*/
4 uint16_t link_state ;/* one of the switch_link_state */
5 uint64_t link_speed ;/* expected or configured bandwidth of the

link */
6 uint8_t weight ;/* link priority 0 minimum , 100 maximum */
7 uint8_t com_cost ;/* communication cost for the link 0 minimum ,

100 maximum */
8 uint64_t up_time ;/* duration of the link in seconds before

shutting down */
9 uint64_t run_out ;/* number of Megabytes to shut down the link

*/};

id field contains a link id as enlisted in the id field of the link table (sec. 5.7.1.7).

description field is used for specifying a human readable description for the link
for debugging or other purposes.

link_state field indicates the current configuration of the link as well as is used for
specifying the link’ state by using the flags listed in switch_link_state enumer-
ation.

165

5.8 DAIM OS API description

weight field specifies the priority of the link in packet routing calculations. The
value for this field should be between 0 and 100, where 0 and 100 denote minimum
and maximum priority respectively.

com_cost field specifies the packet communication cost over the link. The value
for this field should be between 0 and 100, where 0 and 100 denote minimum and
maximum cost respectively.

up_time field specifies up time for the link before setting LINK_DOWN flag
in the link_state field. Once the link_state is changed to LINK_DOWN due
to timeout of the field value timer, zero is set for the field value. Until timeout
of the field value timer, the field value will remain constant as specified by DAIM
applications. If zero is assigned to the field value then, any existing timer timing
the field value will be canceled.

run_out field specifies the total number of megabytes the link should receive before
setting LINK_DOWN flag in the link_state field. Once the link_state is
changed to LINK_DOWN due to reaching of field value amount of megabytes,
zero is set to the field value. Until reaching of field value amount of megabytes,
the field value will remain constant as specified by DAIM applications. If zero is
assigned to the field value then, any existing megabytes counter counting received
megabytes for the field value will be canceled.

5.8. DAIM OS API description

DAIM applications will request services from the DAIM OS using the DAIM OS
API. The DAIM OS provides four functions to DAIM applications to interact with
its internal modules and tables. These functions let DAIM applications to read and
write to DAIM tables as well as assign interrupt handler functions to various DAIM
OS signals (sec. 5.1.2.24). The prototypes of all the DAIM OS API functions are
given below:
1 /* initialises everything needed to support a DAIM application ’

requests returns zero if successful one is returned on failure */
2 extern uint16_t daim_init ();
3

4 /* cleans up all the resources associated with a DAIM application
*/

5 extern void daim_quit ();
6

7 /* writes an entry to one of the DAIM OS network management tables
found in daim_table table argument can be one of the daim_table
entry argument is formatted buffer according to corresponding

table entry structure size is the size of the entry buffer in
bytes op_code specifies one of the write operation in
table_write_op returns zero if successful one is returned on
failure */

166

Specification of DAIM OS

8 extern uint16_t daim_table_write (uint8_t table , void *entry ,
uint32_t size , uint8_t op_code);

9

10 /* reads an entry from one of the DAIM OS tables listed in
daim_table and returns a buffer of the corresponding table entry

formatted according to the corresponding table entry structure
if the function is successful then entry indicator is
incremented entry argument used for reading specific entries
size is the size of the entry buffer in bytes returned buffer
should be deallocated after use returns null if error occurs , i.
e. end of a table , no matching entries found */

11 extern void * daim_table_read (uint8_t table , void *entry ,
uint32_t size);

12

13 /* resets all the entry indicators to the beginning of the table
as specified in the table argument table argument is one of the
DAIM OS tables listed in daim_table */

14 extern void daim_table_rewind (uint8_t table);
15

16 /* attach a callback function for a specified DAIM OS signal
emission sig_type argument is one of the daim_signal_number
handler is a function of void callback_function (uint16_t
sig_num , void *data) type sig_num can be found in
daim_signal_number */

17 extern void daim_signal (uint16_t sig_type , sighandler handler);

5.8.1. Reading of DAIM tables data

DAIM applications will read DAIM tables to understand network devices and pack-
ets flow states. The DAIM OS provides daim_table_read function for reading
data from both information (sec. 5.7.1) and network management tables (sec. 5.7.2).
When the daim_table_read is called on a table for the first time, the entry
indicator (sec. 5.1.2.25) points to the first entry of the specifically enquired entries.
Each calling of daim_table_read function tries to retrieve an entry from a table
as pointed by the entry indicator. Each subsequent calling of daim_table_read
function and successful function returning retrieves the next entry from a table by
moving the entry indicator to the next entry. Moving of entry indicators to next
specific entries ensures applications can traverse through the entries in a table.
The daim_table_read function has three parameters. The first parameter table
indicates a DAIM table from the daim_table enumeration. The second parameter
entry is used for reading specific table entities or otherwise NULL is passed. The
third parameter size tells the function the size of the entry buffer in the second
parameter. If NULL is passed for entry parameter then size parameter is zero. If
daim_table_read is unable to read an entry, it returns NULL value otherwise
it returns a pointer pointing to a buffer containing the entry from a table.

167

5.8 DAIM OS API description

1 enum daim_table {
2 DAIM_INFO_TABLE = 0xa1 ,
3 DAIM_SWITCH_TABLE = 0xa2 ,
4 DAIM_SWITCH_PORT_TABLE = 0xa3 ,
5 DAIM_ENTITY_TABLE = 0xa4 ,
6 DAIM_ENTITY_PORT_TABLE = 0xa5 ,
7 DAIM_ENTITY_ARP_TABLE = 0xa6 ,
8 DAIM_LINK_TABLE = 0xa7 ,
9 DAIM_PACKET_FORWARDING_TABLE = 0xa8 ,

10 DAIM_SWITCH_CONFIG_TABLE = 0xa9 ,
11 DAIM_SWITCH_PORT_CONFIG_TABLE = 0xaa ,
12 DAIM_ENTITY_CONFIG_TABLE = 0xab ,
13 DAIM_LINK_CONFIG_TABLE = 0xac };

The code (on page 191) fragment shows how to read the first entry from the switch
port table (sec. 5.7.1.3) in a DAIM application (refer to sec. 6.1.1 on page 191). In
this code, the application reads the first entry from the switch port table and prints
the switch port number and prints received bytes on the port.
Every DAIM application must call the daim_init function before using any other
DAIM OS API functions. The daim_init function initialises necessary resources
such as signal emissions (sec. 5.1.2.4) and entry indicators (sec. 5.1.2.5) in the DAIM
OS for a DAIM application. On the other hand, DAIM application should call the
daim_quit function before exiting. This function frees the resources that were
allocated before by an application in the DAIM OS.
In the code (on page 191) of reading the first entry; the argument for the second
parameter of the daim_table_read function is NULL indicating the reading of
no specific entry, i.e. ports which are up. The daim_table_read retrieves the
first entry from the switch port table and returns a pointer to the retrieved entry
buffer.
Now consider the code (on page 192) fragment of a DAIM application, which reads all
the entries from the link configuration table (sec. 5.7.2.5) (refer to 6.1.1 on page 192).
In this code example, the application reads all the entries from the link configuration
table by iterating daim_table_read function calling. After retrieving each entry
from the link configuration table, link id and weight values are printed out to the
standard output.
When the end of the table is reached daim_table_read function returns a NULL
value, and the megabytes entry indicator is assigned to the NULL value. The
daim_table_rewind function is used for resetting any entry indicator to the first
entry in the table.
The daim_table_read function can also be used for reading specific entries match-
ing some fields data. This is shown in the code (on page 193) fragment of a DAIM
application (refer to 6.1.1 on page 193). In this code example, the application only
reads the entries with port state field value PORT_UP. And then prints out
megabytes port number and prints speed to the standard output.

168

Specification of DAIM OS

A separate structure variable entry_match_buffer of
switch_port_config_table_entry type is created for comparing with entries in
the switch port configuration table. After then, entry_match_buffer is cleared
with memset function so that, all the elements in the structure representing
different switch port configuration table fields data have the value zero. And
finally, the port_state element of entry_match_buffer is assigned to value
PORT_UP, and the entry_match_buffer is passed as an argument to the
daim_table_read function. In the daim_table_read function, the presence
of an argument for the second parameter will force the daim_table_read to
compare the field values of the table entries against the passed argument structure
elements’ values. After comparing the table entries, only the matching entries are
returned by the daim_table_read function.

When reading specific entries from a table, if an element in the matching buffer
has value zero then comparing against the corresponding field in the table entries
is ignored. If one or more flags from an element in the matching buffer are set to
the corresponding field value of the entries in a table, then the table entries are
counted as a match. If one or more elements in the matching buffer match with the
table field values in an entry, then the entry is returned by the daim_table_read
function. The rule for comparing matching buffer elements with the fields values
for a table entry for different DAIM tables are shown in 6.1.1 on page 194 (from
Tab. 6.1 on page 194 to Tab. 6.12 on page 203).

5.8.2. Writing data to DAIM tables

DAIM applications will write entries into network management tables (sec. 5.7.2)
to get desired network elements configurations and network packets forwarding.
The DAIM OS provides the daim_table_write function for adding and removing
entries from the network management tables.

daim_table_write function has four parameters. The first parameter is used
for specifying one of the network management tables as listed in the daim_table
enumeration. The second parameter is a buffer containing the entry that will be
used for writing or deleting entries from the specified table. The third parameter
indicates the size of the entry buffer in the second parameter. The fourth parameter
is one of the values from table_write_op enumeration which tells the function
whether to add or remove entries from the specified table.

1 enum table_write_op {
2 ADD = 0xa , /* add entry to the table */
3 DEL = 0xb /* delete entries from the table */ };

169

5.8 DAIM OS API description

Figure 5.9.: Packet flow in a DAIM switch

5.8.2.1. Flow management in Packet forwarding table

The entries in packet forwarding table (sec. 5.7.2.1) determine how incoming network
packets will be forwarded by the DAIM switch.

• First, the DAIM OS will synthesise flow rules (sec. 5.1.2.6) from the entries in
packet forwarding table to understand packet forwarding requirements.

• Then, the DAIM OS will match incoming packets headers against the inform-
ation in the flow rules to apply one or more actions on the matching packets.

However, for incoming packets which do not match any flow rule from the packet
forwarding table, the DAIM OS will buffer the incoming packets and notify DAIM
applications of received packets through signals (sec. 5.1.2.24). The exact amount of
unmatched incoming packets buffering depends on the DAIM OS implementations
(see Fig. 5.9).
The DAIM OS provides many actions for an incoming matching packet including
but not limited to:

• forwarding the packet out to a specified port,
• flooding the packet on every DAIM switch ports and
• retaining the packet for DAIM applications to retrieve.

The full list of supported actions are defined in the daim_packet_action_type
enumeration. If actions are specified in a flow rule then the DAIM OS will execute
the actions on the matching incoming packets otherwise, the DAIM OS will apply
necessary actions on its own to meet the flow rule requirements.
1 enum daim_packet_action_type {
2 PACKET_OUTPUT , /* output to switch port */
3 PACKET_SET_VLAN_VID ,/* set the 802.1 q VLAN id*/
4 PACKET_SET_VLAN_PCP ,/* set the 802.1 q VLAN priority */
5 PACKET_STRIP_VLAN , /* strip the 802.1q header */
6 PACKET_SET_DL_SRC , /* set Ethernet source address */
7 PACKET_SET_DL_DST , /* set Ethernet destination address */

170

Specification of DAIM OS

8 PACKET_SET_NW_SRC ,/* set IP source address */
9 PACKET_SET_NW_DST , /* set IP destination address */

10 PACKET_SET_NW_TOS ,/* set IP ToS (DSCP field , 6 bits)*/
11 PACKET_SET_TP_SRC , /* set TCP/UDP source port */
12 PACKET_SET_TP_DST /* set TCP/UDP destination port */};

DAIM applications will format the entry buffers which will be passed to the
daim_table_write function to specify different flow rules. An entry in the packet
forwarding table describes a valid flow rule if it contains:

• Sources of the incoming packets as well as destinations of the incoming packets
or

• Sources of the incoming packets and forwarding actions for the matching pack-
ets or

• Sources as well as destinations of incoming packets and forwarding actions for
the matching packets

The table (on page 194) is presenting some examples of valid flow rules as specified
by different entries in the packet forwarding table (refer to sec. 6.1.2.1 on page 194).
The code (on page 194) fragment of a DAIM application shows how to write an
entry to the packet forwarding table using daim_table_write function (refer to
sec. 6.1.2.1 on page 194). In this code example, the DAIM application creates a
buffer entry_buffer to specify the flow rule; packets received on the DAIM switch
port 1 will be send out on the DAIM switch port 2. The data in entry_buffer
is then passed to the daim_table_write function to write an entry in the packet
forwarding table. The application then waits for 5 minutes and then reads all the
entries with the DAIM switch input port 1 from the packet forwarding table and
prints their port numbers, duration of the entries in the table and number of packets
processed by the entries.
When defining a flow rule by formatting flow rule entry buffer, all the elements
which are set to zero in the entry buffer will be regarded as ‘Not set’. For example,
in the application (on page 194) all the elements in the entry_buffer are to set
zero to indicate ‘Not set’ except in_port, num_of_actions and actions.
As can be seen from the DAIM application code (on page 194), one action of type
PACKET_OUTPUT is assigned to the packet forwarding table entry buffer,
entry_buffer . Each action buffer which is assigned to the actions element of the
packet forwarding table entry buffer has its own formatting. The formatting of
an action buffer for each corresponding action type is described by the following
structures:
1 /* action structure for PACKET_OUTPUT */
2 struct packet_action_output {
3 uint16_t type;/* PACKET_OUTPUT */
4 uint16_t port;/* switch output port */
5 uint8_t pad [4];};

171

5.8 DAIM OS API description

1 /* action structure for PACKET_SET_VLAN_VID */
2 struct packet_action_vlan_vid {
3 uint16_t type;/* PACKET_SET_VLAN_VID */
4 uint16_t vlan_vid ;/* VLAN id*/
5 uint8_t pad [4];};

1 /* action structure for PACKET_SET_VLAN_PCP */
2 struct packet_action_vlan_pcp {
3 uint16_t type; /* OFPAT_SET_VLAN_PCP */
4 uint8_t vlan_pcp ; /* VLAN priority */
5 uint8_t pad [5];};

1 /* action structure for PACKET_SET_DL_SRC /DST */
2 struct packet_action_dl_addr {
3 uint16_t type; /* PACKET_SET_DL_SRC /DST */
4 uint8_t dl_addr [MAC_ADDR_LEN]; /* Ethernet address */ };

1 /* action structure for PACKET_SET_NW_SRC /DST */
2 struct packet_action_nw_addr {
3 uint16_t type; /* PACKET_SET_TW_SRC /DST */
4 uint32_t nw_addr ;/*IP address */ };

1 /* action structure for PACKET_SET_TP_SRC /DST */
2 struct packet_action_tp_port {
3 uint16_t type; /* PACKET_SET_TP_SRC /DST */
4 uint16_t tp_port ;/* TCP/UDP port */
5 uint8_t pad [4];};

1 /* action structure for PACKET_SET_NW_TOS */
2 struct packet_action_nw_tos {
3 uint16_t type; /* PACKET_SET_TW_SRC /DST */
4 uint8_t nw_tos ;/* IP ToS (DSCP field , 6 bits)*/
5 uint8_t pad [5];};

1 /* action header structure which is common to all action
structures */

2 struct packet_action_header {
3 uint16_t type;/* one of PACKET_ **/
4 uint8_t pad [6];};

The DAIM OS has several virtual ports for indicating incoming packets forwarding
ports and sources. These are listed in the following enumeration:
1 enum daim_virtual_port {
2 PORT_IN_PORT = 0xfffa , /* send the packet out the input port

*/
3 PORT_FLOOD = 0xfffb , /* send the packet out all physical

ports except input port and those disabled by STP */
4 PORT_ALL = 0xfffc , /* send the packet out all physical ports

except input port */

172

Specification of DAIM OS

5 PORT_APP = 0xfffd , /* used when packet is delivered from
applications */

6 PORT_NONE = 0xfffe /* not associated with a physical port */ };

The above virtual ports can be used as a port value for a PACKET_OUTPUT
type action buffer.
The DAIM OS lets DAIM applications to send arbitrary data using raw packets by
the same manner the DAIM switch forwards incoming packets. The PORT_APP
value is used for indicating the packets which are sent from a DAIM application.
If the in_port value of an entry in the packet forwarding table is PORT_APP
then data in the packet of the entry is considered as a raw packet and forwarded by
the DAIM switch. The structure of the packet field value is shown below:
1 struct packet_buffer {
2 uint64_t len; /* size of the raw packet data as pointed by

buffer */
3 uint8_t * buffer ; /* raw packet to be sent from a DAIM OS

switch application /raw packet to be collected by a DAIM OS
switch application */};

Here the len variable specifies the size of the raw packet and buffer variable is
pointing to the actual raw packet data.
The code fragment (on page 206) shows how a DAIM application sends a message
out the DAIM switch port 2 using PORT_APP virtual port (refer to 6.1.2.1
on page 206). After successfully executing the program code, the DAIM OS will
construct an Ethernet frame of Ethernet type 0x0700 with payload “Hello, I am a
DAIM application” string buffer and forward it through the DAIM switch port 2. If
forwarding was successful then the corresponding entry is removed from the packet
forwarding table.
In the DAIM application (on page 206); the program did not construct a raw packet
instead it just assigned an arbitrary string buffer to the packet field value. In
the absence of a raw packet data in the packet field value, the DAIM OS will
construct necessary packets to transmit the data in the corresponding packet field
value through the DAIM switch ports. In this case, a DAIM OS implementation
may adopt different strategies for sending the arbitrary data in the packet field
value instead of using Ethernet frame with Ethernet type 0x0700 as defined in the
DAIM OS header file (sec. 5.1.2.17). If a DAIM application provides a raw packet
in the packet field value for an entry; then no further encapsulation is created by
the DAIM OS and the raw packet in the packet field value is forwarded through
the DAIM switch ports as it is.
The code fragment (on page 208) of a DAIM application demonstrates how to collect
the data which is sent from the DAIM application (on page 206) in a different DAIM
switch assuming that the packet is received on the DAIM switch port no. 1 (refer
to 6.1.2.1 on page 208). As the code illustrates, the DAIM application reads all

173

5.8 DAIM OS API description

the entries with in_port field value 1 and checks corresponding entry packet field
data for any raw packet or data that is sent from a DAIM application residing in
another DAIM switch. The DAIM OS will parse the data from the received packet
if the packet is not sent as a raw packet.
Instead of checking all the packet forwarding entries periodically for any newly
received packets from DAIM applications, the DAIM OS provides signals (135) to
efficiently collect the newly received packets on the DAIM switch, which is discussed
in the later section.
The code (on page 209) fragment of a DAIM application shows how to retain in-
coming packets in the DAIM OS for collection (refer to 6.1.2.1 on page 209). As
can be seen from this code example; the DAIM application first writes an entry for
the incoming packets which will be received on the DAIM switch port no. 3. After
waiting for 5 minutes, the application then collects the first packet which is received
on the DAIM switch port no. 3.
In the code example (on page 209); the DAIM OS will forward and retain the packets
which are received on the DAIM switch port no. 3. Upon receiving of the first packet
on the DAIM switch port no. 3, the DAIM OS will perform the following tasks:

• Emit a buffer collection signal
• forward the packet
• create a new entry (packet collection entry) in the packet forwarding table to

facilitate packet collection by the DAIM application
When a DAIM application requests the DAIM OS to retain specific incoming packets
by writing an entry in the packet forwarding table, the DAIM OS will save the
packets and create a packet collection entry in the packet forwarding table with
the packet field value pointing to one of the saved packets. Each time the DAIM
application reads the packet collection entry the DAIM OS provides a packet from
the saved packets. Upon reading of the last packet from the saved packets the packet
collection entry is removed from the packet forwarding table.
Assuming two packets are received on the DAIM switch port no. 3 for the DAIM
application example (refer to 6.1.2.1 on page 209), the Fig. 5.10 shows the packet
forwarding table entries before and after receiving the packets. The first reading
of entry no. 2 by the DAIM application will assign buffer pointer of the packet
structure to packet id 1’s packet buffer. Second reading of entry no. 2 will assign
buffer pointer of the packet structure to packet id 2’s packet buffer and remove entry
no. 2 from the packet forwarding table.
DAIM applications can remove entries from a DAIM table using the
daim_table_write function. If NULL is passed to the second parameter of
daim_table_write function then all the entries will be removed from a table like
shown in the code (refer to 6.1.2.1 on page 211) fragment of a DAIM application. If
this code run successfully; it will delete all the entries in the packet forwarded table.

174

Specification of DAIM OS

Figure 5.10.: Retaining of incoming packets by the DAIM OS

By specifying the second parameter of the daim_table_write function, specific
entries can be removed from a table. Assuming that there are some entries in the
packet forwarding table; the code (refer to 6.1.2.1 on page 212) fragment of a DAIM
application only removes the entries which have in_port field value 1.

5.8.2.2. Elements configuration by manipulating tables configuration

DAIM applications will read and alter the entries of switch, port, entity and link
configuration tables to get desired network elements performances. For example,
the code (refer to sec. 6.1.2.2 on page 213) fragment of a DAIM application shows
how to set a timeout on the DAIM switch . After executing this code; if the entry
alter_entry_buffer is successfully written to the table then, the DAIM OS will
try to set an up time for the DAIM switch. If the uptime is set by the DAIM OS
as per alter_entry_buffer value the entry in the switch configuration table will
be updated to reflect the settings. Another code example (refer to 6.1.2.2 on page
214) of a DAIM application demonstrates how to configure the DAIM switch port
no. 1 this application first writes an entry into the switch port configuration table
with a new port MTU and configuration for the DAIM switch port no. 1. Then
the application checks whether the new settings were applied by the DAIM OS by
reading the switch port configuration table.

DAIM applications will configure network elements by modifying corresponding con-

175

5.8 DAIM OS API description

Table 5.7.: Entry identification variables for configuration tables

Configuration Table
Acceptable field from an

entry for network element
identification

Switch configuration table N/A
Switch port configuration table MAC address, port number

Entity configuration table id
Switch link configuration table id

figuration table’s entries. DAIM applications will identify a network element from
the corresponding configuration table and set the desired configurations to modify
an entry in the table. The Tab. 5.7 shows the acceptable identifying variables for
each configuration tables which are used for identifying network elements:

5.8.3. Catching signals from the DAIM OS

The DAIM OS provides signals (sec. 5.1.2.24) to DAIM applications to promptly
take actions of network elements state change and events that require attention.
The DAIM OS signals are listed in the following enumeration:
1 enum daim_signal_number {
2 ENTRY_REMOVED ,
3 STATE_CHANGE ,
4 PORT_CHANGE ,
5 REC_PACK_COUNTER_RESET ,
6 REC_BYTE_COUNTER_RESET ,
7 REC_DROP_COUNTER_RESET ,
8 REC_ERR_COUNTER_RESET ,
9 REC_FRAME_COUNTER_RESET ,

10 REC_OVER_COUNTER_RESET ,
11 REC_CRC_COUNTER_RESET ,
12 TRA_PACK_COUNTER_RESET ,
13 TRA_BYTE_COUNTER_RESET ,
14 TRA_DROP_COUNTER_RESET ,
15 TRA_ERR_COUNTER_RESET ,
16 TRA_OVER_COUNTER_RESET ,
17 COLL_COUNTER_RESET ,
18 DURATION_COUNTER_RESET ,
19 COLLECT_BUFFER ,
20 NO_RULE ,
21 ENTITY_JOIN ,
22 ENTITY_LEAVE };

ENTRY_REMOVED is emitted when an entry is removed from a DAIM table
without any DAIM applications requests. This may occur when an existing network
element which is registered in the DAIM tables is removed or not reachable to

176

Specification of DAIM OS

the DAIM switch anymore, or one or more entries are removed from the packet
forwarding table due to entry timeout.
STATE_CHANGE is emitted when one or more network elements state is
changed and updated in DAIM tables.
PORT_CHANGE is emitted when a new port is added or any existing port is
removed from the DAIM switch.
REC_PACK_COUNTER_RESET is emitted when the counter of the re-
ceived_packets field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_BYTE_COUNTER_RESET is emitted when the counter of the re-
ceived_bytes field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_DROP_COUNTER_RESET is emitted when the counter of the re-
ceive_drops field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_ERR_COUNTER_RESET is emitted when the counter of the re-
ceive_errors field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_FRAME_COUNTER_RESET is emitted when the counter of the re-
ceive_frame_err field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_OVER_COUNTER_RESET is emitted when the counter of the re-
ceive_over_err field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
REC_CRC_COUNTER_RESET is emitted when the counter of the re-
ceive_crc_err field of an entry in a DAIM table is reset to zero due to reaching
maximum field value capacity.
TRA_PACK_COUNTER_RESET is emitted when the counter of the
transmitted_packets field of an entry in a DAIM table is reset to zero due to
reaching maximum field value capacity.
TRA_BYTE_COUNTER_RESET is emitted when the counter of the
transmitted_bytes field of an entry in a DAIM table is reset to zero due to
reaching maximum field value capacity.
TRA_DROP_COUNTER_RESET is emitted when the counter of the
transmit_drops field of an entry in switch port configuration table is reset to
zero due to reaching maximum field value capacity.
TRA_ERR_COUNTER_RESET is emitted when the counter of the trans-
mit_errors field of an entry in switch port configuration table is reset to zero due
to reaching maximum field value capacity.

177

5.8 DAIM OS API description

TRA_OVER_COUNTER_RESET is emitted when the counter of the
transmit_over_err field of an entry in switch port configuration table is reset
to zero due to reaching maximum field value capacity.
COLL_COUNTER_RESET is emitted when the counter of the collisions
field of an entry in switch port configuration table is reset to zero due to reaching
maximum field value capacity.
DURATION_COUNTER_RESET is emitted when the timer of the dura-
tion field of an entry in a DAIM table is reset to zero due to reaching maximum
field value capacity.
COLLECT_BUFFER is emitted when the DAIM OS creates an entry in the
packet forwarding table for collecting the DAIM OS retained packets by DAIM
applications.
NO_RULE is emitted when there is no rule in the packet forwarding table match-
ing the incoming packets.
ENTITY_JOIN is emitted when a new entity is discovered by the DAIM OS
and the entity is registered in DAIM tables.
ENTITY_LEAVE is emitted when an existing entity is not available to the
DAIM switch and the entity is removed from DAIM tables.
To catch a DAIM OS signal, DAIM applications will attach a signal handler function
to the corresponding DAIM OS signal using daim_signal DAIM OS API function.
The daim_signal registers the signal handling functions to the DAIM OS, so
that the signal handling functions will called whenever corresponding signals are
emitted from the DAIM OS. The daim_signal function has two parameters as
the following:

• first parameter is used for specifying one of the DAIM OS signals from the
daim_signal_number enumeration, and

• second parameter is used for specifying signal handler function pointer.
In DAIM applications, the signal handler function should have the following proto-
types:
1 void callback_function (int sig_num , void *data);

Here, sig_num specifies one of the signal from daim_signal_number enumera-
tion for which signal handler function is called. The data pointer will contain further
data regarding emitted signal. The code (refer to sec. 6.1.3 on page 215) fragment
of a DAIM application illustrates adding of a flow rule to the packet forwarding
table to retain the incoming packets for collection upon receiving of packets on the
DAIM switch. In this code, the function no_flow_rule_handler will be called
whenever the DAIM switch receive packets for which there is no corresponding flow
rules. Inside the no_flow_rule_handler function, the DAIM application dis-
covers information about the no flow rule packets by reading the contents of data

178

Specification of DAIM OS

parameter of the function. For NO_RULE signal, the data parameter of the signal
handler function is formatted according to the following structure:
1 struct no_rule_packet_info {
2 uint16_t in_port ;/* input DAIM switch port */
3 uint8_t mac_src [MAC_ADDR_LEN]; /* source Ethernet address */
4 uint8_t mac_dst [MAC_ADDR_LEN]; /* destination Ethernet address

*/
5 uint16_t ethernet_type ;/* Ethernet frame type */
6 uint32_t ip_source ;/* source IP address */
7 uint32_t ip_destination ;/* destination IP address */
8 uint8_t ip_netmask_source ;/* source IP netmask */
9 uint8_t ip_netmask_destination ;/* destination IP netmask */

10 uint16_t ip_port_source ;/* TCP/UDP source port */
11 uint16_t tp_port_destination ;/* TCP/UDP destination port */
12 uint8_t ip_proto ;/* IP protocol */
13 uint16_t vlan_id ;/* input VLAN id*/
14 uint8_t vlan_pcp ;/* input VLAN priority */
15 uint8_t ip_tos ;/*IP ToS (actually DSCP field , 6 bits)*/};

The code (refer to 6.1.3 on page 217) fragment of a DAIM application shows how
to discover entities by catching the ENTITY_JOIN and ENTITY_LEAVE
signals.

5.9. DAIM Cloud

The DAIM cloud is an online database server for DAIM switches to store individual
local network discovery information. In the DAIM network architecture; the DAIM
cloud will store global network information to provide efficient access to network
data to individual DAIM switch running the DAIM OS. In this specification, no
assumptions are made about the nature of the DAIM cloud except the following
points:

• The DAIM cloud is an online repository for DAIM OS forwarding devices to
store local data

• The DAIM cloud should be able to sustain communication from multiple
DAIM switch devices

• The DAIM cloud either resides in one of the DAIM switch as a service point
or separate entity in a computer network

• The relationship between DAIM switches and the DAIM cloud follows client-
server model

• The DAIM cloud provides services (network data) to DAIM switches

• The DAIM cloud provides network device mapping services to DAIM switches

179

5.10 DAIM OS System API

5.10. DAIM OS System API

The DAIM OS will use System API (sec. 5.1.2.19) interface provided by a device
manager or middleware to communicate and use the underlying DAIM switch hard-
ware. For the completeness of this specification, a fairly complete version of the
System API is defined targeting device managers or middleware. The function pro-
totypes from the System API are shown below:

1 /* System API for DAIM OS (network device software interface for
DAIM OS)*/

2 /*
3 reads from a device port specified in port_num and stores buffer

into the * buffer
4 size specifies the number of bytes to read
5 if size is set to -1, function stores the entire buffer into the

* buffer
6 on success , the number of bytes read is returned
7 returns negative if error occurs
8 */
9 extern int daim_port_read (uint8_t mac_addr [MAC_ADDR_LEN], void *

buffer , uint64_t size);
10

11 /*
12 writes the buffer pointed by * buffer to a device port specified

in port_num
13 size specifies the number of bytes to write from the * buffer
14 on success , the number of bytes written is returned
15 returns negative if error occurs
16 */
17 extern int daim_port_write (uint8_t mac_addr [MAC_ADDR_LEN], const

void *buffer , uint64_t size);
18

19 /*
20 manipulates the underlying DAIM OS switch parameters
21 request_code determines type of request to the device
22 data is a pointer to the memory holding request data for passing

to the device or is a pointer to buffer
23 for holding request data from the device
24 on success , zero is returned
25 returns negative if error occurs
26 */
27 extern int daim_switch_ioctl (uint64_t request_code , void *data);

The DAIM OS will use daim_port_read and daim_port_write functions to read
and write directly to a DAIM switch port respectively. The daim_switch_ioctl
function is used for discovering the DAIM switch features as well as requesting device
settings to the DAIM switch. All the structures, defines, and enumeration for the
System API is included in the daim_os_sys_api.h header file (can be accessed in:
https://github.com/ameen-banjar/DAIM-OS).

180

Specification of DAIM OS

5.11. DAIM OS cloud protocol

The DAIM OS cloud protocol is a DAIM cloud protocol (sec. 5.1.2.22) construc-
ted as a proof of concept for the DAIM OS specification. This version of DAIM
cloud protocol is used for sharing network elements data from DAIM switches to
the DAIM cloud and vice versa. The structures, defines, and enumerations de-
scribed below are taken from the daim_os_cloud.h header file (can be accessed in:
https://github.com/ameen-banjar/DAIM-OS).

5.11.1. DAIM OS cloud message header

Each DAIM OS cloud message begins with the following header structure:
1 /* DAIM OS cloud header message structure */
2 struct daim_cl_message {
3 uint8_t version ;/* DAIM OS version */
4 uint8_t type;/* one of the DCP_ constants */
5 uint8_t data []; /* buffer formatted with one of

daim_cl_msg_data_ * structures */};

The version specifies the version of the DAIM OS running on the DAIM switch.
The type specifies the DAIM OS cloud message type as described by the following
enumeration:
1 /* enumeration for DAIM OS cloud messages */
2 enum daim_cl_msg_type {
3 DCP_REQUEST_ID ,/* message from DAIM switch to cloud */
4 DCP_OFFER_ID ,/* message from DAIM cloud to switch */
5 DCP_ACCEPT_ID ,/* message from DAIM switch to cloud */
6 DCP_RENEW_ID ,/* message from DAIM cloud to switch */
7 DCP_UPLOAD_LINKS ,/* message from DAIM switch to cloud */
8 DCP_ACK_LINKS ,/* message from DAIM cloud to switch */
9 DCP_UPLOAD_HOSTS ,/* message from DAIM switch to cloud */

10 DCP_ACK_HOSTS ,/* message from DAIM cloud to switch */
11 DCP_REQUEST_LINKS ,/* message from DAIM switch to cloud */
12 DCP_REPLY_LINKS ,/* message from DAIM cloud to switch */
13 DCP_REQUEST_HOSTS ,/* message from DAIM switch to cloud */
14 DCP_REPLY_HOSTS /* message from DAIM cloud to switch */ };

The data contains actual message data formatted according to one of the
daim_cl_msg_data_* structures.

5.11.2. DAIM OS cloud messages

5.11.2.1. Getting a DAIM switch id from the DAIM cloud

The DAIM cloud will be able to provide a unique id to a DAIM switch by maintain-
ing attributes data of DAIM switches in a network. After getting a unique DAIM

181

5.11 DAIM OS cloud protocol

switch id from the DAIM cloud, the DAIM OS should request for DAIM switch id
renewal to the DAIM cloud before the DAIM switch id expires in the DAIM cloud
and available for other DAIM switches.
The DAIM OS will send DCP_REQUEST_ID type DAIM OS cloud message to
the DAIM cloud to get a unique id for DAIM switch. The formatting of the DAIM
OS cloud message for requesting switch id is shown in the code snippet below:
1 struct daim_cl_message * message_buffer ;
2 struct daim_cl_msg_data_header * message_data_header ;
3 struct daim_cl_msg_data_request_id * message_data ;
4 uint32_t message_transaction_id = rand ();
5 uint64_t message_data_size = sizeof (struct

daim_cl_msg_data_request_id);
6

7 message_buffer = (struct daim_cl_message *) malloc (sizeof (struct
daim_cl_message) + sizeof (struct daim_cl_msg_data_header) +

message_data_size);
8

9 memset (message_buffer , ’\0 ’, sizeof (message_buffer));
10 message_buffer -> version = 1; message_buffer ->type =

DCP_REQUEST_ID ;
11 message_data_header = (struct daim_cl_msg_data_header *)

message_buffer ->data;
12 message_data_header ->len = message_data_size ;
13 message_data_header ++;
14 message_data = (struct daim_cl_msg_data_request_id *)

message_data_header ;
15 message_data -> mac_addr [0] = 0xAA; message_data -> mac_addr [1] = 0

xAB;
16 message_data -> mac_addr [2] = 0xAC; message_data -> mac_addr [3] = 0

xAD;
17 message_data -> mac_addr [4] = 0xAE; message_data -> mac_addr [5] = 0

xAF;
18 message_data -> previous_id = 0;
19 message_data -> transaction_id = message_transaction_id ;

Every DAIM OS cloud message has a message data header to indicate the size of
the message data. This header is described by the following structure:
1 /* DAIM OS cloud message data header structure for cloud message

data structures */
2 struct daim_cl_msg_data_header {
3 uint64_t len;/* length of cloud message data structure */ };

The daim_cl_msg_data_request_id structure is used for the DAIM OS cloud
message data for both requesting a new as well as renewing an old DAIM switch id.
The structure of daim_cl_msg_data_request_id is given below:
1 /* structure for switch id request to the cloud
2 to be used with message types DCP_REQUEST_ID and DCP_RENEW_ID

*/

182

Specification of DAIM OS

3 struct daim_cl_msg_data_request_id {
4 uint64_t previous_id ; /* previous id of the DAIM switch */
5 uint32_t transaction_id ;/* facilitate pairing between messages

*/
6 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the DAIM

switch */};

The previous_id is used for specifying an old DAIM switch id which requires
renewing. If the DAIM OS is requesting for a new id then, previous_id is assigned
to zero. The transaction_id is used for checking the reply message from the DAIM
cloud. A random number is assigned to the transaction_id from the DAIM OS,
where the DAIM cloud will respond with a DAIM OS cloud message with the same
transaction id.

To renew an existing DAIM switch id the DAIM OS cloud message is formatted
according to the following code snippet:
1 struct daim_cl_message * message_buffer ;
2 struct daim_cl_msg_data_header * message_data_header ;
3 struct daim_cl_msg_data_request_id * message_data ;
4 uint32_t message_transaction_id = rand ();
5 uint64_t message_data_size = sizeof (struct

daim_cl_msg_data_request_id);
6

7 message_buffer = (struct daim_cl_message *) malloc (sizeof (struct
daim_cl_message) + sizeof (struct daim_cl_msg_data_header) +

message_data_size);
8

9 memset (message_buffer , ’\0 ’, sizeof (message_buffer));
10 message_buffer -> version = 1; message_buffer ->type = DCP_RENEW_ID ;
11 message_data_header = (struct daim_cl_msg_data_header *)

message_buffer ->data;
12 message_data_header ->len = message_data_size ;
13 message_data_header ++;
14 message_data = (struct daim_cl_msg_data_request_id *)

message_data_header ;
15 message_data -> mac_addr [0] = 0xAA; message_data -> mac_addr [1] = 0

xAB;
16 message_data -> mac_addr [2] = 0xAC; message_data -> mac_addr [3] = 0

xAD;
17 message_data -> mac_addr [4] = 0xAE; message_data -> mac_addr [5] = 0

xAF;
18 message_data -> previous_id = 10; /* DAIM switch old id*/
19 message_data -> transaction_id = message_transaction_id ;

After requesting for a new or renewal of old DAIM switch id, the DAIM cloud
should reply with the DCP_OFFER_ID type DAIM OS cloud message. The
structure of the DAIM OS cloud message data for DAIM switch id offering from
the cloud is shown below:

183

5.11 DAIM OS cloud protocol

Figure 5.11.: DAIM cloud fetching DAIM switch id using DAIM OS cloud mes-
sages

1 /* structure for messages for offering and acknowledgment of id
between DAIM cloud and switch

2 to be used with message types DCP_OFFER_ID and DCP_ACCEPT_ID
*/

3 struct daim_cl_msg_data_id {
4 uint32_t transaction_id ;/* facilitate pairing between messages

*/
5 uint64_t id;/*id offered to the DAIM switch /id acknowledged

by the DAIM switch */ };

The transaction_id will contain the same value as transaction_id of DAIM
switch id request and renewal DAIM OS cloud messages. This structure is also
used for DAIM switch id acknowledgment DAIM OS cloud message from the DAIM
switch. The sequence of DAIM OS cloud messages between a DAIM switch and the
DAIM cloud is shown in Fig. 5.11.

5.11.2.2. Synchronising network elements with the DAIM cloud

After getting a unique DAIM switch id from the DAIM cloud, the DAIM OS will
upload its local network elements data to the DAIM cloud. A unique DAIM switch
id from the DAIM cloud ensures that the DAIM switch running the DAIM OS is
registered in the DAIM cloud and data uploaded is referable to the DAIM switch
inside the DAIM cloud. Using the DAIM OS cloud protocol; the DAIM OS will send
both hosts and links data local information to the DAIM switch running DAIM OS.
The code (on page 218) snippet demonstrates the formatting of DAIM OS cloud
message for uploading hosts data from the DAIM OS (refer to sec. 6.2.1.1 on page
218). The code constructs a DAIM OS cloud message (shown in Fig. 5.12) which

184

Specification of DAIM OS

Figure 5.12.: DAIM OS cloud message structure for data ordering

will be used for uploading two host data to the DAIM cloud where each host has
one communication interface.

The following structure is used as message data for uploading host data from the
DAIM OS to the DAIM cloud:
1 /* structure for uploading hosts to the cloud
2 to be used with message type DCP_UPLOAD_HOSTS */
3 struct daim_cl_msg_data_up_hosts {
4 uint32_t transaction_id ;/* facilitate pairing between messages

*/
5 uint64_t id; /*id of the DAIM switch */
6 uint64_t num_of_hosts ;/* number of hosts */
7 struct daim_host hosts []; /* hosts array */ };

id is the unique DAIM switch id that is offered to the DAIM switch previously by
the DAIM cloud. num_of_hosts indicates the number of host data included in
the message. The hosts points to the individual host data formatted according to
the following structure:
1 /* structure for a host used for uploading host data to the cloud

*/
2 struct daim_host {
3 uint64_t id;/* host id as assigned by DAIM OS*/
4 uint16_t switch_port ;/* The DAIM OS host port entity connected

to */
5 uint64_t no_of_ports ;/* number of ports */
6 struct daim_host_port ports []; /* ports array */ };

185

5.11 DAIM OS cloud protocol

Here id is some number assigned to the host by the DAIM OS. no_of_ports
indicates the number of host’s communication ports included with this host data.
The ports points to the individual port data formatted according to the following
structure:
1 /* structure for a single host physical port */
2 struct daim_host_port {
3 uint8_t mac_addr [MAC_ADDR_LEN]; /* MAC address of the port */
4 uint64_t port_speed ;/* maximum port speed as reported from

hardware */};

Here, mac_addr contains the MAC address of a host communication port, and
the speed is the speed limit of the port.
After receiving of host data from the DAIM switch; the DAIM cloud will reply with
host acknowledgement message which has the following structure for message data:
1 /* structure for message for acknowledgment of hosts by the cloud

to the switch to be used with message type DCP_ACK_HOSTS */
2 struct daim_cl_msg_data_ack_hosts {
3 uint32_t transaction_id ;/* facilitate pairing between messages

*/
4 uint64_t id;/*id of the DAIM switch */
5 uint64_t num_of_hosts ;/* number of hosts */};

transaction_id contains the value of transaction_id of
DCP_UPLOAD_HOSTS type message. id indicates the id of the DAIM
switch DCP_UPLOAD_HOSTS type message sent from. num_of_hosts
contains the number of hosts data received by the DAIM cloud. If num_of_hosts
differs from the number of hosts data sent to the DAIM cloud; the DAIM OS will
resend the host upload message to the DAIM cloud.
The DAIM OS will send DCP_REQUEST_HOSTS type DAIM OS cloud mes-
sage to get all the hosts data of the network stored in the DAIM cloud. The format-
ting of the message is shown below:
1 struct daim_cl_message message_buffer ;
2 message_buffer . version = 1;
3 message_buffer .type = DCP_REQUEST_HOSTS ;

After requesting for hosts data to the DAIM cloud; the DAIM cloud should reply
with the DCP_REPLY_HOSTS type message which will contain hosts data
from the DAIM cloud. The message data of DCP_REPLY_HOSTS type mes-
sage is formatted according to the following structure:
1 /* structure for DAIM switch for decoding hosts data from the

cloud
2 to be used with message type DCP_REPLY_HOSTS */
3 struct daim_cl_msg_data_reply_hosts {
4 uint32_t transaction_id ;/* facilitate pairing between messages

*/

186

Specification of DAIM OS

5 uint64_t num_of_hosts ;/* number of hosts */
6 struct daim_host hosts []; /* hosts array */ };

DCP_REPLY_HOSTS type message follows similar data formatting as
DCP_UPLOAD_HOSTS type message.
Similarly, DAIM OS will upload local DAIM switch links and down-
load entire network links using the DCP_UPLOAD_LINKS and
DCP_REQUEST_LINKS type DAIM OS cloud messages.

5.12. DAIM OS packet forwarding pipeline

The main stages of the DAIM OS network packet forwarding by a DAIM OS imple-
mentation can be described by the following possible DAIM OS packet forwarding
pipeline. Each stage comprises of multiple tasks. The exact ordering of the tasks
and stages depends on a DAIM OS implementation. The Fig. 5.13 shows a packet
forwarding pipeline for the DAIM OS.
After synthesising flow rule stage, depending on the DAIM OS implementation for-
ward buffers will be created by a single or multiple concurrent DAIM OS agents.
Each forward buffer contains a matching packet and actions data for the matching
packet. Finally, forward buffers will be queued in the forward queue, which will

Figure 5.13.: DAIM OS packet forwarding pipeline

187

5.13 DAIM Switch network design scenario

Figure 5.14.: Forwarding of matching packets by the DAIM OS

schedule the forward buffers and execute corresponding actions from the forward
buffers as shown in Fig. 5.14.

5.13. DAIM Switch network design scenario

With the DAIM OS, network designers can program various packet forwarding be-
haviors by simply manipulating DAIM tables. The following section (see sec. 5.13.1)
provides a glimpse of network design by using DAIM switches and DAIM applica-
tions.

5.13.1. Scenario A: a simple enterprise network

The following Fig. 5.15 shows a network which is divided into two groups by using
two DAIM switches. The hosts under switch 1 will be able to reach internet only in
the morning and afternoon, whereas the hosts under switch 2 will be able to reach
internet only in the evening. The hosts under both switch 1 and 2 can only upload
and download 500 MB of data at any given day. Furthermore, the hosts under both
switches can communicate to each other at any given time. Two DAIM applications
will be running on the DAIM switch 1 and 2 to configure the DAIM tables as shown
below in Tab. 5.8 and Tab. 5.9:

188

Specification of DAIM OS

Figure 5.15.: Swapping internet access to hosts under two DAIM switches

Table 5.8.: DAIM tables configuration in DAIM switch 1 by DAIM application

Packet forwarding table of switch 1 in the morning and afternoon
Entry
NO.

Source of incoming
packets

Destinations of
incoming packets Forwarding actions

1

Received packets are
sent from IP address
range 192.168.1.100

to 192.168.1.102

Any Not set

Packet forwarding table of switch 1 in the evening

1

Received packets are
sent from IP address
range 192.168.1.100

to 192.168.1.102

Received packets have
destination IP
address range

192.168.1.103 to
192.168.1.104

Not set

Link configuration table of switch 1 at 6:00 a.m.
Entry
NO. id Run out

1 11 500

189

5.14 Conclusion

Table 5.9.: DAIM tables configuration in DAIM switch 2 by DAIM application

Packet forwarding table of switch 2 in the morning and afternoon
Entry
NO.

Source of incoming
packets

Destinations of
incoming packets Forwarding actions

1

Received packets are
sent from IP address
range 192.168.1.103

to 192.168.1.104

Received packets have
destination IP
address range

192.168.1.100 to
192.168.1.102

Not set

Packet forwarding table of switch 2 in the evening

1

Received packets are
sent from IP address
range 192.168.1.103

to 192.168.1.104

Any Not set

5.14. Conclusion

This specification discusses the main elements and required software and hardware
components for implementing and supporting the DAIM OS. The DAIM OS provides
an abstracted and goal oriented forwarding plane which simplifies development of
programmable networks. Through application programming interface of DAIM OS,
network applications can discover and configure network entities from a single net-
work forwarding device. Furthermore, the DAIM OS network architecture allows
development of distributed network forwarding and management, which has signi-
ficant implications in distributed networks.

190

6. Extra Details for DAIM OS
Specification

The nature of this Chapter is by way of being application information. It is provided
as reference to others intending to impliment the solution proposed in the Disserta-
tion. It contains important information, and should be used according to the readers
skill and requirement.

6.1. DAIM OS API description

6.1.1. Reading of DAIM tables data

Read first entry from switch port table
The following code fragment shows how to read the first entry from the switch port
table in a DAIM application:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <daim_os_api .h>
4

5 int main (int argc , char ** argv) {
6 /* pointer for the buffer holding an entry from the switch

port table */
7 struct switch_port_table_entry * entry_buffer = NULL;
8 /* request DAIM OS for service */
9 if (daim_init () == 1) {

10 fprintf (stderr , "DAIM OS is busy\n");
11 exit (EXIT_FAILURE);
12 }
13 /* get pointer of the first entry buffer */
14 entry_buffer = daim_table_read (DAIM_SWITCH_PORT_TABLE , NULL ,

0);
15

16 /* print information from the table entry buffer */
17 if (entry_buffer != NULL) {
18 printf ("First entry in the switch port table :\n");
19 printf ("Input port %u, received %lu bytes\n", entry_buffer ->

port_number , entry_buffer -> received_bytes);

191

6.1 DAIM OS API description

20 /* free the entry buffer after use */
21 free (entry_buffer);
22 }
23 /* notify DAIM OS to stop sending signals and clean -up

application ’s resource */
24 daim_quit ();
25 return (EXIT_SUCCESS);}

In the above code, the application reads first entry from the switch port table and
prints switch port number and prints received bytes on the port.

Reads all entries from link configuration table
Now consider the following code fragment of a DAIM application, which reads all
the entries from the link configuration table:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <daim_os_api .h>
4

5 int main (int argc , char ** argv) {
6 /* pointer for the buffer holding an entry from the link

configuration table */
7 struct switch_link_config_table_entry * entry_buffer = NULL;
8

9 /* request DAIM OS for service */
10 if (daim_init () == 1) {
11 fprintf (stderr , "DAIM OS is busy\n");
12 exit (EXIT_FAILURE);
13 }
14 /* traverse through link configuration table entries */
15 while ((entry_buffer = (struct switch_link_table_entry *)

daim_table_read (DAIM_LINK_CONFIG_TABLE , NULL , 0)) != NULL) {
16 /* print information from the table entry buffer */
17 printf ("Link id: %lu , weight : %u%%\n", entry_buffer ->id ,

entry_buffer -> weight);
18 /* free the entry buffer after use */
19 free (entry_buffer);
20 }
21 /* set the entry indicator to the first entry of the table */
22 daim_table_rewind (DAIM_LINK_CONFIG_TABLE);
23

24 /* notify DAIM OS to stop sending signals and clean -up application
’s resource */

25 daim_quit ();
26 return (EXIT_SUCCESS);}

In this example, the application reads all the entries from the link configuration
table by iterating daim_table_read function calling. After retrieving each entry
from the link configuration table, link id and weight values are printed out to the
standard output.

192

Extra Details for DAIM OS Specification

Reading specific entries matching some fields data

The daim_table_read function can also be used for reading specific entries match-
ing some fields data. This is shown in the following code fragment of a DAIM
application:

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv) {
7 /* pointer for the buffer holding an entry from the switch port

configuration table */
8 struct switch_port_config_table_entry * entry_buffer = NULL;
9 /* the buffer used for comparing entries in the switch port

configuration table */
10 struct switch_port_config_table_entry entry_match_buffer ;
11 /* request DAIM OS for service */
12 if (daim_init () == 1) {
13 fprintf (stderr , "DAIM OS is busy\n");
14 exit (EXIT_FAILURE);
15 }
16 /* set all the fields in the matching buffer to zero */
17 memset (& entry_match_buffer , ’\0 ’, sizeof (entry_match_buffer)

);
18 /* assign port state field in the matching buffer to port up*/
19 entry_match_buffer . port_state = PORT_UP ;
20 /* traverse through switch port configuration table matching

entries */
21 while ((entry_buffer = (struct switch_port_config_table_entry *)

daim_table_read (DAIM_SWITCH_PORT_CONFIG_TABE ,& entry_match_buffer
, sizeof (entry_match_buffer))) != NULL) {

22 /* print information from the table entry buffer */
23 printf ("Port number : %hu , Speed: %lu Mb/s\n",entry_buffer ->

port_number , entry_buffer -> port_speed);
24 free (entry_buffer);
25 }
26 /* move entry indicator to the first entry of the table */
27 daim_table_rewind (DAIM_SWITCH_PORT_CONFIG_TABLE);
28

29 /* notify DAIM OS to stop sending signals and clean -up application
’s resource */

30 daim_quit ();
31 return (EXIT_SUCCESS);}

In this code example; the application only reads the entries with port state field
value PORT_UP. And then prints out respective port number and prints speed
to the standard output.

193

6.1 DAIM OS API description

Table 6.1.: DAIM OS actions on DAIM information table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
DAIM information table

daim_state N/A Read-only
features N/A Read-only

vendor_description N/A Read-only
daim_specification_version N/A Read-only

daim_release_date N/A Read-only

DAIM OS actions on the DAIM tables fields
The rule for comparing matching buffer elements with the fields values for a table
entry for different DAIM tables are shown in the following tables (from Tab. 6.1 on
page 194 to Tab. 6.12 on page 203):

6.1.2. Writing data to DAIM tables

6.1.2.1. Flow management in Packet forwarding table

The following table is presenting some examples of valid flow rules as specified by
different entries in the packet forwarding table (see Tab. 6.13):
In Tab. 6.13, entry no. 1 tells the DAIM OS to send all the packets received on the
DAIM switch port 1 out on the DAIM switch port 2. The flow rule in entry no. 2 will
force the DAIM OS to determine the exact DAIM switch ports and create necessary
actions for sending out incoming packets which have source and destination MAC
addresses 2C:33:7A:74:E6:FF and 5V:12:8C:90:W3:EE respectively. Same as entry
no.1, entry no. 3 tells the DAIM OS to send all the packets which are sent from IP
address 192.168.1.1 out on the DAIM switch port 4. Similar to entry no. 2, entry
no. 4 requests the DAIM OS to create essential actions for incoming packets which
have source TCP port 81 and destination IP address 192.168.1.10. Entry no. 5
tells the DAIM OS to buffer or save all the packets which have VLAN id 2, so that
DAIM applications can download the packets from the DAIM OS. Entry no. 10 tells
the DAIM OS to create necessary actions for forwarding all the packets which have
destination IP addresses ranging from 74.125.206.99 to 74.125.206.105.

Write an entry to the packet forwarding table
The following code fragment of a DAIM application shows how to write an entry to
the packet forwarding table using daim_table_write function:

194

Extra Details for DAIM OS Specification

Table 6.2.: DAIM OS actions on Switch table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Switch table

id N/A Read-only
mac_addr N/A Read-only

manufacturer_description N/A Read-only
hardware_description N/A Read-only
software_description N/A Read-only

serial_number N/A Read-only
vendor_id N/A Read-only
product_id N/A Read-only

ports N/A Read-only
switch_state N/A Read-only

switch_capabilities N/A Read-only
received_packets N/A Read-only
received_bytes N/A Read-only

transmitted_packets N/A Read-only
transmitted_bytes N/A Read-only

195

6.1 DAIM OS API description

Table 6.3.: DAIM OS actions on Switch port table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Switch port table

mac_addr Equal Read-only
port_number Equal Read-only

port_state
One or more match buffer

element flags exist in the table
field value

Read-only

port_speed Equal Read-only
port_mtu Equal Read-only

received_packets
Table field value is equal or
greater than match buffer

element value
Read-only

received_bytes Same as received_packets Read-only
receive_drops Same as received_packets Read-only
receive_errors Same as received_packets Read-only

receive_frame_err Same as received_packets Read-only
receive_over_err Same as received_packets Read-only
receive_crc_err Same as received_packets Read-only

transmitted_packets Same as received_packets Read-only
transmitted_bytes Same as received_packets Read-only

transmit_drops Same as received_packets Read-only
transmit_errors Same as received_packets Read-only

transmit_over_err Same as received_packets Read-only
collisions Same as received_packets Read-only
duration Same as received_packets Read-only

196

Extra Details for DAIM OS Specification

Table 6.4.: DAIM OS actions on Entity table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Entity table

id Equal Read-only

description
One or more words in the

matching buffer value exist in
the table field value

Read-only

entity_state
One or more match buffer

element flags exist in the table
field value

Read-only

location Equal Read-only
type Equal Read-only

switch_port Equal Read-only

received_packets
Table field value is equal or
greater than match buffer

element value
Read-only

received_bytes Same as received_packets Read-only
duration Same as received_packets Read-only

197

6.1 DAIM OS API description

Table 6.5.: DAIM OS actions on Entity port table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Entity port table

ent_id Equal Read-only
mac_addr Equal Read-only

ip_addr Equal Read-only
ip_netmask Equal Read-only

port_state
One or more match buffer

element flags exist in the table
field value

Read-only

port_speed Equal Read-only

received_packets
Table field value is equal or
greater than match buffer

element value
Read-only

received_bytes Same as received_packets Read-only
duration Same as received_packets Read-only

Table 6.6.: DAIM OS actions on Entity ARP table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Entity ARP table

mac_addr Equal Read-only
arp_request_message Ignore Read-only

198

Extra Details for DAIM OS Specification

Table 6.7.: DAIM OS actions on Link table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Link table

id Equal Read-only

description
One or more words in the

matching buffer value exist in
the table field value

Read-only

left_id Equal Read-only
left_port Equal Read-only
right_id Equal Read-only

right_port Equal Read-only

link_state
One or more match buffer

element flags exist in the table
field value

Read-only

link_speed Equal Read-only
received_packets Same as weight Read-only
received_bytes Same as weight Read-only

duration Same as weight Read-only

199

6.1 DAIM OS API description

Table 6.8.: DAIM OS actions on Packet forwarding table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Packet forwarding table

in_port, mac_src,
mac_dst, ethernet_type,

ip_source, ip_destination,
ip_netmask_source,

ip_netmask_destination

Equal Read and
write

tcp_port_source,
tcp_port_destination Equal Read and

write

ip_proto Equal Read and
write

vlan_id, vlan_pcp Equal Read and
write

ip_tos Equal Read and
write

idle_timeout, hard_timeout Ignore Read and
write

packet_count
Table field value is equal or
greater than match buffer

element value
Read-only

byte_count Same as packet_count Read-only
duration Same as packet_count Read-only

weight Same as packet_count Read and
write

packet Ignore Read and
write

num_of_actions Ignore Read and
write

actions Ignore Read and
write

200

Extra Details for DAIM OS Specification

Table 6.9.: DAIM OS actions on Switch configuration table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Switch configuration table

switch_state N/A Read and
write

up_time N/A Read and
write

run_out N/A Read and
write

Table 6.10.: DAIM OS actions on Switch port configuration table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Switch port configuration table

mac_addr Equal Read and
write

port_number Equal Read and
write

port_state
One or more match buffer

element flags exist in the table
field value

Read and
write

port_speed Equal Read and
write

port_mtu Equal Read and
write

up_time
Table field value is equal or
greater than match buffer

element value

Read and
write

run_out Same as up_time Read and
write

201

6.1 DAIM OS API description

Table 6.11.: DAIM OS actions on Entity configuration table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Entity configuration table

id Equal Read and
write

description
One or more words in the

matching buffer value exist in
the table field value

Read and
write

entity_state
One or more match buffer

element flags exist in the table
field value

Read and
write

up_time
Table field value is equal or
greater than match buffer

element value

Read and
write

run_out Same as up_time Read and
write

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5 # include <unistd .h> /* used for sleep function */
6

7 int main (int argc , char ** argv)
8 {
9 /* entry buffer for writing an entry to the packet forwarding

table */
10 struct packet_forwarding_table_entry * entry_buffer = NULL;
11 /* pointer for action buffer */
12 struct packet_action_output * entry_buffer_action = NULL;
13 /* size of the entry buffer */
14 uint32_t entry_len = sizeof (struct packet_forwarding_table_entry)

+ sizeof (struct packet_action_output);
15 /* pointer for the buffer holding an entry from the packet

forwarding table */
16 struct packet_forwarding_table_entry * read_entry_buffer = NULL;
17 /* Buffer used for comparing entries in the packet forwarding

table */ struct packet_forwarding_table_entry
read_entry_match_buffer ;

18

19 /* request DAIM OS for service */
20 if (daim_init () == 1) {

202

Extra Details for DAIM OS Specification

Table 6.12.: DAIM OS actions on Link configuration table fields

Table field

Matching criteria for table
field value and match buffer
element value which is used
for reading specific entries

Table
field

operation
permis-

sion
Link configuration table

id Equal Read and
write

description
One or more words in the

matching buffer value exist in
the table field value

Read and
write

link_state
One or more match buffer

element flags exist in the table
field value

Read and
write

link_speed Equal Read and
write

weight
Table field value is equal or
greater than match buffer

element value

Read and
write

com_cost
Table field value is equal or
greater than match buffer

element value

Read and
write

up_time
Table field value is equal or
greater than match buffer

element value

Read and
write

run_out Same as up_time Read and
write

203

6.1 DAIM OS API description

Table 6.13.: Flow rules by different entries in Packet forwarding table

Packet forwarding table
Entry
NO.

Source of incoming
packets

Destinations of
incoming packets Forwarding actions

1 Packets received on
DAIM switch port 1 Not set

Send the matching
packets out on DAIM

switch port 2

2

Received packets are
sent from MAC

address
2C:33:7A:74:E6:FF

Received packets have
destination MAC

address
5V:12:8C:90:W3:EE

Not set

3
Received packets are
sent from IP address

192.168.1.1
Not set

Send the matching
packets out on DAIM

switch port 4

4 Received packets have
source TCP port 81

Received packets
destination IP

address 192.168.1.10
Not set

5 Received packets have
VLAN id 2 Not set

Retain the matching
packets for DAIM

applications

6

Received packets are
ARP data and are
received on DAIM

switch port 3

Not set

Flood the matching
packets on every

DAIM switch ports
except the ingress

port

7 Received packets have
IP netmask length 24

Received packets have
destination UDP port
20 and destination IP

address 10.0.0.1

Not set

8
Received packets have

VLAN id 3 and
VLAN priority 5

Received packets
destination IP

address 192.168.1.100

Retain the matching
packets for DAIM

applications

9
Received packets are
sent from IP address

10.0.0.200
Not set

Retain the matching
packets for DAIM

applications and send
the matching packets
out on DAIM switch

port 4

10 Any

Received packets have
destination IP
address range

74.125.206.99 to
74.125.206.105

Not set

204

Extra Details for DAIM OS Specification

21 fprintf (stderr , "DAIM OS is busy\n");
22 exit (EXIT_FAILURE);
23 }
24

25 atexit (daim_quit);
26

27 /* allocate memory for the entry buffer with one action for
matching packets */

28 entry_buffer = (struct packet_forwarding_table_entry *) malloc (
entry_len);

29

30 if (entry_buffer == NULL) {
31 fprintf (stderr , "Can not allocate memory for the entry\n

");
32 exit (EXIT_FAILURE);
33 }
34

35 /* set all the fields in the entry buffer buffer to zero */
36 memset (entry_buffer , ’\0 ’, entry_len);
37

38 /* format the entry buffer */
39 entry_buffer -> in_port = 1;
40 entry_buffer -> num_of_actions = 1;
41 entry_buffer_action = (struct packet_action_output *)

entry_buffer -> actions ;
42 /* assign an action to the entry buffer */
43 entry_buffer_action ->type = PACKET_OUTPUT ;
44 entry_buffer_action ->port = 2;
45

46 /* try to write the entry buffer into the packet forwarding table
*/

47 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE , entry_buffer ,
entry_len , ADD) == 1) {

48 fprintf (stderr , "Can not write the entry to the packet
forwarding table \n");

49 free (entry_buffer);
50 exit (EXIT_FAILURE);
51 }
52

53 /* pause the process for 5 minutes */
54 sleep (300) ;
55

56 /* set all the fields in the matching buffer to zero */
57 memset (& read_entry_match_buffer , ’\0’, sizeof (

read_entry_match_buffer));
58 /* assign in port field value 1 in the matching buffer */
59 read_entry_match_buffer . in_port = 1;
60

61 /* traverse through packet forwarding table matching entries */
62 while ((read_entry_buffer = (struct

packet_forwarding_table_entry *) daim_table_read (
DAIM_PACKET_FORWARDING_TABLE , & read_entry_match_buffer ,

205

6.1 DAIM OS API description

sizeof (read_entry_match_buffer))) != NULL) {
63 /* print information from the table entry buffer */
64 printf ("Port number : %hu , Duration : %u, Packets

processed :%lu\n", read_entry_buffer ->in_port ,
read_entry_buffer ->duration , read_entry_buffer ->
packet_count);

65 free (read_entry_buffer);
66 }
67

68 /* move entry indicator to the first entry of the table */
69 daim_table_rewind (DAIM_PACKET_FORWARDING_TABLE);
70

71 free (entry_buffer);
72 return (EXIT_SUCCESS);
73 }

In the example above, the DAIM application creates a buffer entry_buffer to
specify the flow rule:
packets received on the DAIM switch port 1 will be send out on the DAIM switch
port 2. The data in entry_buffer is then passed to the daim_table_write
function to write an entry in the packet forwarding table. The application then
waits for 5 minutes and then reads all the entries with the DAIM switch input port
1 from the packet forwarding table and prints their port numbers, duration of the
entries in the table and number of packets processed by the entries.

Send a message out the DAIM switch
The following code fragment shows how a DAIM application sends a message out
the DAIM switch port 2 using PORT_APP virtual port:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv)
7 {
8 /* message to be sent from the DAIM application */
9 char message [] = "Hello , I am a DAIM application ";

10 /* entry buffer for writing an entry to the packet forwarding
table */

11 struct packet_forwarding_table_entry * entry_buffer = NULL;
/* pointer for action buffer */

12 struct packet_action_output * entry_buffer_action = NULL;
13 /* size of the entry buffer */
14 uint32_t entry_len = sizeof (struct

packet_forwarding_table_entry) + sizeof (struct
packet_action_output);

15

16 /* request DAIM OS for service */
17 if (daim_init () == 1) {

206

Extra Details for DAIM OS Specification

18 fprintf (stderr , "DAIM OS is busy\n");
19 exit (EXIT_FAILURE);
20 }
21

22 atexit (daim_quit);
23

24 /* allocate memory for the entry buffer as well as one action for
matching packets */

25 entry_buffer = (struct packet_forwarding_table_entry *)
malloc (entry_len);

26

27 if (entry_buffer == NULL) {
28 fprintf (stderr , "Can not allocate memory for the entry\n

");
29 exit (EXIT_FAILURE);
30 }
31

32 /* set all the fields in the entry buffer buffer to zero */
33 memset (entry_buffer , ’\0 ’, entry_len);
34

35 /* format the entry buffer */
36 entry_buffer -> in_port = PORT_APP ;
37 entry_buffer -> num_of_actions = 1;
38 /* assign DAIM application packet data */
39 entry_buffer -> packet .len = sizeof (message);
40 entry_buffer -> packet . buffer = message ;
41 entry_buffer_action = (struct packet_action_output *)

entry_buffer -> actions ;
42 /* assign an action to the entry buffer */
43 entry_buffer_action ->type = PACKET_OUTPUT ;
44 entry_buffer_action ->port = 2;
45

46 /* try to write the entry buffer into the packet forwarding
table */

47 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE ,
entry_buffer , entry_len , ADD) == 1) {

48 fprintf (stderr , "Can not write the entry to the packet
forwarding table \n");

49 free (entry_buffer);
50 exit (EXIT_FAILURE);
51 }
52

53 free (entry_buffer);
54 return (EXIT_SUCCESS);
55 }

After successfully executing the above program code, the DAIM OS will construct an
Ethernet frame of Ethernet type 0x0700 with payload “Hello, I am a DAIM applic-
ation” string buffer and forward it through the DAIM switch port 2. If forwarding
was successful then the corresponding entry is removed from the packet forwarding
table.

207

6.1 DAIM OS API description

Collect the data which is sent from the above DAIM application

The following code fragment of a DAIM application demonstrates how to collect the
data which is sent from the above DAIM application in a different DAIM switch
assuming that the packet is received on the DAIM switch port no. 1:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv)
7 {
8 /* pointer for the buffer holding an entry from the packet

forwarding table */
9 struct packet_forwarding_table_entry * read_entry_buffer =

NULL;
10 /* Buffer used for comparing entries in the packet forwarding

table */
11 struct packet_forwarding_table_entry read_entry_match_buffer ;
12

13 /* request DAIM OS for service */
14 if (daim_init () == 1) {
15 fprintf (stderr , "DAIM OS is busy\n");
16 exit (EXIT_FAILURE);
17 }
18

19 atexit (daim_quit);
20

21 /* set all the fields in the matching buffer to zero */
22 memset (& read_entry_match_buffer , ’\0’, sizeof (

read_entry_match_buffer));
23 /* assign in port field value 1 in the matching buffer */
24 read_entry_match_buffer . in_port = 1;
25

26 /* traverse through packet forwarding table matching entries */
27 while ((read_entry_buffer = (struct

packet_forwarding_table_entry *) daim_table_read (
DAIM_PACKET_FORWARDING_TABLE , & read_entry_match_buffer ,
sizeof (read_entry_match_buffer))) != NULL) {

28 if (read_entry_buffer -> packet . buffer != NULL) {
29 /* print the message received from a DAIM application in different

DAIM switch */
30 printf (" Message : %s\n", read_entry_buffer -> packet .

buffer);
31 free (read_entry_buffer);
32 break;
33 }
34 free (read_entry_buffer);
35 }
36

37 /* move entry indicator to the first entry of the table */
38 daim_table_rewind (DAIM_PACKET_FORWARDING_TABLE);

208

Extra Details for DAIM OS Specification

39

40 return (EXIT_SUCCESS);
41 }

As the code above illustrates, the DAIM application reads all the entries with
in_port field value 1 and checks respective entry packet field data for any raw
packet or data that is sent from a DAIM application residing in another DAIM
switch. The DAIM OS will parse the data from the received packet if the packet is
not sent as a raw packet.

Retain incoming packets in the DAIM OS
The following code fragment of a DAIM application shows how to retain incoming
packets in the DAIM OS for collection:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5 # include <unistd .h> /* used for sleep function */
6

7 int main (int argc , char ** argv)
8 {
9 /* packet buffer pointer */

10 uint8_t * packet_buffer = NULL;
11 uint64_t packet_size = 0;
12

13 /* entry buffer for writing an entry to the packet forwarding
table */

14 struct packet_forwarding_table_entry * entry_buffer = NULL;
15 /* pointer for action buffer */
16 struct packet_action_output * entry_buffer_action = NULL;
17 /* size of the entry buffer */
18 uint32_t entry_len = sizeof (struct

packet_forwarding_table_entry) + (2 * sizeof (struct
packet_action_output));

19 /* pointer for the buffer holding an entry from the packet
forwarding table */

20 struct packet_forwarding_table_entry * read_entry_buffer =
NULL;

21 /* Buffer used for comparing entries in the packet forwarding
table */

22 struct packet_forwarding_table_entry read_entry_match_buffer ;
23

24 /* request DAIM OS for service */
25 if (daim_init () == 1) {
26 fprintf (stderr , "DAIM OS is busy\n");
27 exit (EXIT_FAILURE);
28 }
29

30 atexit (daim_quit);
31

209

6.1 DAIM OS API description

32 /* allocate memory for the entry buffer with 2 actions for
matching packets */

33 entry_buffer = (struct packet_forwarding_table_entry *)
malloc (entry_len);

34

35 if (entry_buffer == NULL) {
36 fprintf (stderr , "Can not allocate memory for the entry\n

");
37 exit (EXIT_FAILURE);
38 }
39

40 /* set all the fields in the entry buffer buffer to zero */
41 memset (entry_buffer , ’\0 ’, entry_len);
42

43 /* format the entry buffer */
44 entry_buffer -> in_port = 3;
45 entry_buffer -> num_of_actions = 2;
46 entry_buffer_action =(struct packet_action_output *)

entry_buffer -> actions ;
47 /* assign first action to the entry buffer */
48 entry_buffer_action ->type = PACKET_OUTPUT ;
49 entry_buffer_action ->port = PORT_APP ;
50 entry_buffer_action ++;
51 /* assign second action to the entry buffer */
52 entry_buffer_action ->type = PACKET_OUTPUT ;
53 entry_buffer_action ->port = 4;
54

55 /* try to write the entry buffer into the packet forwarding table
*/

56 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE ,
entry_buffer , entry_len , ADD) == 1) {

57 fprintf (stderr , "Can not write the entry to the packet
forwarding table \n");

58 free (entry_buffer);
59 exit (EXIT_FAILURE);
60 }
61

62 /* pause the process for 5 minutes */
63 sleep (300) ;
64

65 /* set all the fields in the matching buffer to zero */
66 memset (& read_entry_match_buffer ,’\0 ’, sizeof (

read_entry_match_buffer));
67 /* assign in port field value 1 in the matching buffer */
68 read_entry_match_buffer . in_port = 3;
69

70 /* traverse through packet forwarding table matching entries */
71 while ((read_entry_buffer = (struct

packet_forwarding_table_entry *) daim_table_read (
DAIM_PACKET_FORWARDING_TABLE , & read_entry_match_buffer ,
sizeof (read_entry_match_buffer))) != NULL) {

72 if (read_entry_buffer -> packet . buffer != NULL) {

210

Extra Details for DAIM OS Specification

73 /* print the message received from a DAIM application
in different DAIM switch */

74 printf (" packet received from the DAIM switch port no. 3")
;

75 packet_size = read_entry_buffer -> packet .len;
76 packet_buffer = (uint8_t *) malloc (sizeof (uint8_t) *

packet_size);
77 if(packet_buffer != NULL) memcpy (packet_buffer , read_entry_buffer

-> packet .buffer , packet_size);
78 free (read_entry_buffer);
79 break;
80 }
81 free (read_entry_buffer);
82 }
83

84 /* move entry indicator to the first entry of the table */
85 daim_table_rewind (DAIM_PACKET_FORWARDING_TABLE);
86

87 free (entry_buffer);
88 if (packet_buffer != NULL) free (packet_buffer);
89 return (EXIT_SUCCESS);
90 }

As can be seen from the above example, the DAIM application first writes an entry
for the incoming packets which will be received on the DAIM switch port no. 3.
After waiting for 5 minutes, the application then collects the first packet which is
received on the DAIM switch port no. 3.

Remove entries from a DAIM table

DAIM applications can remove entries from a DAIM table using the
daim_table_write function. If NULL is passed to the second parameter of
daim_table_write function then all the entries will be removed from a table like
shown in the following code fragment of a DAIM application:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv)
7 {
8 /* request DAIM OS for service */
9 if (daim_init () == 1) {

10 fprintf (stderr , "DAIM OS is busy\n");
11 exit (EXIT_FAILURE);
12 }
13

14 atexit (daim_quit);
15

16 /* try to remove all the entries in the packet forwarding table */

211

6.1 DAIM OS API description

17 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE , NULL , 0,
DEL) == 1){

18 fprintf (stderr , "Can not wipe the entries in the packet
forwarding table \n");

19 exit (EXIT_FAILURE);
20 }
21

22 return (EXIT_SUCCESS);
23 }

If the above code run successfully, it will delete all the entries in the packet forwarded
table.

Remove entries with in_port field value 1
By specifying the second parameter of the daim_table_write function, specific
entries can be removed from a table. Assuming that there are some entries in the
packet forwarding table, the following code fragment of a DAIM application only
removes the entries which have in_port field value 1:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv)
7 {
8 /* the buffer used for comparing entries in switch port table

*/
9 struct packet_forwarding_table_entry entry_match_buffer ;

10 /* request DAIM OS for service */
11 if (daim_init () == 1) {
12 fprintf (stderr , "DAIM OS is busy\n");
13 exit (EXIT_FAILURE);
14 }
15

16 atexit (daim_quit);
17

18 /* set all the fields in the matching buffer to zero */
19 memset (& entry_match_buffer , ’\0 ’, sizeof (entry_match_buffer)

);
20 /* assign in port field value 1 in the matching buffer */
21 entry_match_buffer . in_port = 1;
22

23 /* try to remove entries which have in_port field value 1 in
packet forwarding table */

24 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE , &
entry_match_buffer , sizeof (entry_match_buffer), DEL) == 1) {

25 fprintf (stderr , "Can not wipe the entries in the packet
forwarding table \n");

26 exit (EXIT_FAILURE);
27 }

212

Extra Details for DAIM OS Specification

28

29 return (EXIT_SUCCESS);
30 }

6.1.2.2. Elements configuration by manipulating tables configuration

Set a timeout on the DAIM switch
The following code fragment of a DAIM application shows how to set a timeout on
the DAIM switch:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 int main (int argc , char ** argv)
7 {
8 /* pointer for the buffer holding an entry from switch

configuration table */
9 struct switch_config_table_entry * read_entry_buffer = NULL;

10

11 /* request DAIM OS for service */
12 if (daim_init () == 1) {
13 fprintf (stderr , "DAIM OS is busy\n");
14 exit (EXIT_FAILURE);
15 }
16

17 /* read the only entry from switch configuration table
*/

18 if ((read_entry_buffer = (struct switch_config_table_entry *)
daim_table_read (DAIM_SWITCH_CONFIG_TABLE , NULL , 0)) != NULL
) {

19 /* check if DAIM switch is up and operating in normal mode
*/

20 if (read_entry_buffer -> switch_state & (SWITCH_UP |
NOR_MOD)) {

21 struct switch_config_table_entry alter_entry_buffer ;
22 memset (& alter_entry_buffer , ’\0 ’, sizeof (

alter_entry_buffer)); alter_entry_buffer
. switch_state = read_entry_buffer -> switch_state ;

23 /* set DAIM switch uptime to 60 minutes */
24 alter_entry_buffer . up_time = 3600;
25 /* try to write the alter_entry_buffer buffer into the

table */ if (daim_table_write (
DAIM_SWITCH_CONFIG_TABLE , & alter_entry_buffer ,
sizeof (alter_entry_buffer), ADD) == 1) {

26 fprintf (stderr , "Can not write the entry to the
switch configuration table \n");

27 free (read_entry_buffer);

213

6.1 DAIM OS API description

28 exit (EXIT_FAILURE);
29 }
30 }
31 free (read_entry_buffer);
32 }
33 /* move entry indicator to the first entry of the table */
34 daim_table_rewind (DAIM_SWITCH_CONFIG_TABLE);
35 /* notify DAIM OS to stop sending signals and clean -up

application ’s resource */
36 daim_quit ();
37 return (EXIT_SUCCESS);
38 }

After executing the above code, if the entry alter_entry_buffer is successfully
written to the table then, the DAIM OS will try to set an up time for the DAIM
switch. If the uptime is set by the DAIM OS as per alter_entry_buffer value
the entry in the switch configuration table will be updated to reflect the settings.

Configure the DAIM switch port no. 1
The following code fragment of a DAIM application demonstrates how to configure
the DAIM switch port no. 1:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <unistd .h>
5 # include <daim_os_api .h>
6

7 int main (int argc , char ** argv)
8 {
9 struct switch_port_config_table_entry entry_buffer ;

10 /* the buffer used for comparing entries in the switch port
configuration table */

11 struct switch_port_config_table_entry entry_match_buffer ;
12 /* pointer for the buffer holding an entry from switch

configuration table */
13 struct switch_port_config_table_entry * read_entry_buffer =

NULL;
14

15 /* request DAIM OS for service */
16 if (daim_init () == 1) {
17 fprintf (stderr , "DAIM OS is busy\n");
18 exit (EXIT_FAILURE);
19 }
20

21 memset (& entry_buffer , ’\0’, sizeof (entry_buffer));
22 entry_buffer . port_number = 1;
23 entry_buffer . port_state = PORT_UP | PORT_OPEN | PORT_ONLY_APP

;
24 entry_buffer . port_mtu = 5000;
25

214

Extra Details for DAIM OS Specification

26 /* try to write the alter_entry_buffer buffer into the
table */

27 if (daim_table_write (DAIM_SWITCH_PORT_CONFIG_TABLE , &
entry_buffer , sizeof (entry_buffer), ADD) == 1) {

28 fprintf (stderr , "Can not write the entry to the packet
forwarding table \n");

29 exit (EXIT_FAILURE);
30 }
31

32 /* wait for 5 seconds */
33 sleep (5);
34

35 memset (& entry_match_buffer , ’\0 ’, sizeof (
entry_match_buffer));

36 entry_match_buffer . port_number = 1;
37

38 /* get the entry with port no. 1 from the table */
39 if ((read_entry_buffer = (struct

switch_port_config_table_entry *) daim_table_read (
DAIM_SWITCH_PORT_CONFIG_TABLE , & entry_match_buffer , sizeof (
entry_match_buffer))) != NULL) {

40 /* check whether port no. 1 has new settings */
41 if (read_entry_buffer -> port_mtu == 5000) printf ("Port

MTU setting is applied \n");
42 if (read_entry_buffer -> port_state & (PORT_UP | PORT_OPEN

| PORT_ONLY_APP)) printf ("The Port is configured to
receive only app packets \n");

43 free (read_entry_buffer);
44 }
45

46 /* move entry indicator to the first entry of the table */
47 daim_table_rewind (DAIM_SWITCH_CONFIG_TABLE);
48 /* notify DAIM OS to stop sending signals and clean -up

application ’s resource */
49 daim_quit ();
50 return (EXIT_SUCCESS);
51 }

The above application first writes an entry into the switch port configuration table
with a new port MTU and configuration for the DAIM switch port no. 1. Then
the application checks whether the new settings were applied by the DAIM OS, by
reading the switch port configuration table.

6.1.3. Catching signals from the DAIM OS

Adding flow rule to packet forwarding table
The following code fragment of a DAIM application illustrates adding of a flow rule
to the packet forwarding table to retain the incoming packets for collection upon
receiving of packets on the DAIM switch:

215

6.1 DAIM OS API description

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 void no_flow_rule_handler (uint16_t sig_num , void *data);
7

8 int main (int argc , char ** argv)
9 {

10 /* request DAIM OS for service */
11 if (daim_init () == 1) {
12 fprintf (stderr , "DAIM OS is busy\n");
13 exit (EXIT_FAILURE);
14 }
15

16 atexit (daim_quit);
17 daim_signal (NO_RULE , no_flow_rule_handler);
18

19 /* carry on other application tasks */
20

21 return (EXIT_SUCCESS);
22 }
23

24 void no_flow_rule_handler (uint16_t sig_num , void *data)
25 {
26 if (sig_num == NO_RULE) {
27 /* entry buffer for writing an entry to the packet forwarding

table */
28 struct packet_forwarding_table_entry * entry_buffer = NULL

;
29 /* pointer for action buffer */
30 struct packet_action_output * entry_buffer_action = NULL;
31 /* size of the entry buffer */
32 uint32_t entry_len = sizeof (struct

packet_forwarding_table_entry) + sizeof (struct
packet_action_output);

33

34 struct no_rule_packet_info * received_packets_info = data;
35

36 /* allocate memory for the entry buffer with one action
for matching packets */

37 entry_buffer = (struct packet_forwarding_table_entry *)
malloc (entry_len);

38

39 if (entry_buffer == NULL) {
40 fprintf (stderr , "Can not allocate memory for the

entry\n");
41 return ;
42 }
43

44 /* set all the fields in the entry buffer buffer to zero */
45 memset (entry_buffer , ’\0 ’, entry_len);

216

Extra Details for DAIM OS Specification

46

47 /* format the entry buffer */
48 entry_buffer -> in_port = received_packets_info -> in_port ;
49 entry_buffer -> num_of_actions = 1;
50 entry_buffer_action =(struct packet_action_output *)

entry_buffer -> actions ;
51 /* assign first action to the entry buffer */
52 entry_buffer_action ->type = PACKET_OUTPUT ;
53 entry_buffer_action ->port = PORT_APP ;
54

55 /* try to write the entry buffer into the packet
forwarding table */

56 if (daim_table_write (DAIM_PACKET_FORWARDING_TABLE ,
entry_buffer , entry_len , ADD) == 1) {

57 fprintf (stderr , "Can not write the entry to the
packet forwarding table\n");

58 }
59

60 free (entry_buffer);
61 }
62 }

In the above code, the function no_flow_rule_handler will be called whenever
the DAIM switch receive packets for which there is no corresponding flow rules.
Inside the no_flow_rule_handler function, the DAIM application discovers in-
formation about the no flow rule packets by reading the contents of data parameter
of the function.

Discover entities by catching signals
The following code fragment of a DAIM application shows how to discover entities
by catching the ENTITY_JOIN and ENTITY_LEAVE signals:
1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <daim_os_api .h>
5

6 void check_entity_handler (uint16_t sig_num , void *data);
7

8 int main (int argc , char ** argv)
9 {

10 /* request DAIM OS for service */
11 if (daim_init () == 1) {
12 fprintf (stderr , "DAIM OS is busy\n");
13 exit (EXIT_FAILURE);
14 }
15 atexit (daim_quit);
16

17 daim_signal (ENTITY_JOIN , check_entity_handler);
18 daim_signal (ENTITY_LEAVE , check_entity_handler);
19

217

6.2 DAIM OS cloud protocol

20 /* carry on other application tasks */
21

22 return (EXIT_SUCCESS);
23 }
24

25 void check_entity_handler (uint16_t sig_num , void *data)
26 {
27 if ((sig_num == ENTITY_JOIN) | (sig_num == ENTITY_LEAVE)) {
28 /* pointer for the buffer holding an entry from the

entity table */
29 struct entity_table_entry * entry_buffer = NULL;
30

31 /* traverse through entity table entries */
32 while ((entry_buffer = (struct entity_table_entry *)

daim_table_read (DAIM_ENTITY_TABLE , NULL , 0)) != NULL) {
33 /*
34 * code for checking change in entities by analysing entry_buffer
35 */
36 /* free the entry buffer after use */
37 free (entry_buffer);
38 }
39

40 /* set the entry indicator to the first entry of the table
*/

41 daim_table_rewind (DAIM_ENTITY_TABLE);
42 }
43 }

6.2. DAIM OS cloud protocol

6.2.1. DAIM OS cloud messages

6.2.1.1. Synchronising network elements with the DAIM cloud

1 struct daim_cl_message * message_buffer ;
2 struct daim_cl_msg_data_header * message_data_header ;
3 struct daim_cl_msg_data_up_hosts * message_data ;
4 struct daim_host * host_data ;
5 struct daim_host_port * host_port_data ;
6

7 uint32_t message_transaction_id = rand ();
8 uint64_t message_data_size = sizeof (struct

daim_cl_msg_data_up_hosts) + (2 * sizeof (struct daim_host))
+ (2 * sizeof (struct daim_host_port));

9

10 message_buffer = (struct daim_cl_message *) malloc (sizeof (
struct daim_cl_message) + sizeof (struct
daim_cl_msg_data_header) + message_data_size);

11

218

Extra Details for DAIM OS Specification

12 memset (message_buffer , ’\0 ’, sizeof (message_buffer));
message_buffer -> version = 1;

13

14 message_buffer ->type = DCP_UPLOAD_HOSTS ;
15 message_data_header = (struct daim_cl_msg_data_header *)

message_buffer ->data;
16 message_data_header ->len = message_data_size ;
17 message_data_header ++;
18 message_data = (struct daim_cl_msg_data_up_hosts *)

message_data_header ;
19 message_data -> num_of_hosts = 2;
20 message_data ->id = 10; /* DAIM switch id*/
21 message_data -> transaction_id = message_transaction_id ;
22 host_data = (struct daim_host *) message_data -> hosts ;
23 /* first host */
24 host_data ->id = 1;
25 host_data -> no_of_ports = 1;
26 host_data -> switch_port = 1; /* the DAIM switch port host linked to

*/
27 host_port_data = (struct daim_host_port *) host_data ->ports;
28 host_port_data -> mac_addr [0] = 0xAC;
29 host_port_data -> mac_addr [1] = 0xAE;
30 host_port_data -> mac_addr [2] = 0xAA;
31 host_port_data -> mac_addr [3] = 0xAF;
32 host_port_data -> mac_addr [4] = 0xAD;
33 host_port_data -> mac_addr [5] = 0xAE;
34 host_port_data -> port_speed = 5;
35 host_data ++;
36 /* second host */
37 host_data ->id = 2;
38 host_data -> no_of_ports = 1;
39 host_data -> switch_port = 2; /* the DAIM switch port host linked to

*/
40 host_port_data = (struct daim_host_port *) host_data ->ports;
41 host_port_data -> mac_addr [0] = 0xBC;
42 host_port_data -> mac_addr [1] = 0xAE;
43 host_port_data -> mac_addr [2] = 0xBA;
44 host_port_data -> mac_addr [3] = 0xAF;
45 host_port_data -> mac_addr [4] = 0xAD;
46 host_port_data -> mac_addr [5] = 0xBE;
47 host_port_data -> port_speed = 10;

219

Part III.

Drawing Conclusions

221

7. Conclusion

This is the final part with three chapters which provides the end of this dissertation.
Initially, the dissertation summary provides the aims and objectives, presents the
overall view of the approaches through the research propositions. Then the summary
follows with the research contribution and discussion of findings. The discussion
highlights the methods used, the work executed and the extent to which the initial
aims and objectives, also propositions that are stated in chapter 1 are met. This is
followed by a section that presents the research limitations as well as their impact
on current approaches. Finally, there is a discussion of a number of directions and
recommendations through this dissertation for future research.

7.1. Research Summary

This research had been conducted because of difficulties of managing, controlling,
activating and monitoring for distributed electronic environments. Also, diversity
of services, platforms, products and devices available from multiple vendors require
more efforts to be managed. This heterogeneity leads infrastructure to be increased
in complicatedness which is hard to configure, maintain, reengineer, recover and op-
erate. However, the current approaches become insufficient and redundant. Hence,
network management challenges lead network vendors to use IBM Autonomic com-
puting concepts for networks to be managed autonomically. IBM aims to provide
systems with the ability to adapt to changing conditions, of a dynamic environ-
ment by the autonomic computing. Each device can draw its adaptation strategies,
according to a system’s objectives to meet service satisfaction within managed re-
sources. These initiatives from network vendors and researchers are named in various
forms, for example, autonomic communication (AC), autonomic network manage-
ment (ANM). Moreover, ANM is playing a significant role and is promising as a
solution to address the challenges of managing distributed electronic environments.
Therefore, a well-designed management system with autonomic functionalities will
be proven to provide efficiency, robustness and flexibility then to improve the scalab-
ility and adaptability needs in complicated systems.
The main objective of this research is to design, model and develop DAIM model
to provide a new architecture in the SDN paradigm. Since management of hetero-
geneous network devices and networks composed of an immense number of nodes
are increasingly becoming complicated with conventional management paradigms,

223

7.2 Validation of Research Propositions

the DAIM model is researched thoroughly; it is supposed to cope with these com-
plications, and also network bottlenecks, improving overall routing based network
deployments.

SDN is a new network management strategy with a goal to overcome many current
network management and forwarding bottlenecks by separating network’s control
logic from the underlying network devices such as switches and routers, promoting
a coherent, centralised network control and programmability of network control
devices (e.g. OpenFlow-based on SDN architecture). However, the new network
management of SDN can bring in complications such as single point of failure and
scalability issues. Many current research proposals tried to improve this situation
by proposing a physically and logically distributed control plane. Although their
proposals provide a quick central view of the network and reduce look-up overhead
in the control plane, these solutions are not tested in the real world large-scale
networks with missing of autonomous and manual systems. Furthermore, current
proposal requires extensive traffic between the control plane and forwarding nodes
to maintain an overall network view. Therefore, an efficient SDN architecture is
needed with distributed network strategies with an aim to make a network more
efficient, robust and reliable.

The DAIM model will allow local decision-making for distributed network elements
and programmability of network elements, which will essentially contribute to com-
plex distributed networks. The programmability of the computer network has gained
considerable importance due to the advent of SDN paradigms, which intend to sim-
plify network management through programmable infrastructures. In the DAIM
model, network elements will be enabled to adapt to ever changing environments
and work towards meeting the goals of service providers, vendors, and end users.

Most interfaces of programming network devices are defined at low-level abstrac-
tion gained from network hardware infrastructures, whereas these abstractions lead
to complicated programming and also can result in errors. This research proposes
a high-level abstraction for forwarding networking devices and provides APIs for
network operators and service providers to develop network service applications.
The proposed model is called DAIM OS and includes sub-modules for optimising
packet routing, configuring network hardware infrastructure, and executing forward-
ing rules. Moreover, this research provides a description of DAIM OS specification
and a simple implementation of core DAIM OS by utilising OpenFlow switch.

7.2. Validation of Research Propositions

The research propositions presented in the introduction chapter 1, are examined and
validated here with consideration of chapter 3, chapter 5 and chapter 10. These re-
search propositions are approved and summarised in the same order as they are
initially outlined and their contributions to the knowledge of autonomic network

224

Conclusion

management, distributed environments and abstraction layers of SDN area are de-
scribed.

Core proposition:
Given that the current paradigm of the SDN, with its structure, does not lend
itself to the incorporation of autonomic behaviour, we propose that by means of
the introduction of the DAIM model, we can move the SW/HW divider down, and
subsume the OpenFlow protocols into our DAIM layer, exposing an abstracted API
layer to the applications.

Validation Highlights: DAIM switch platform has been developed for the network
applications which provides a high-level programmatic interface for distributed net-
work control and management. The DAIM switch platform contains DAIM operat-
ing system for the network forwarding device and underlying layers which support
the operating system. The DAIM operating system specification for a network
forwarding device is presented which sustains automatic, goal oriented network be-
haviour and distributed network management. The DAIM operating system ar-
chitecture is developed for supporting DAIM model in the network control and
management planes which can adapt to ever-changing network environments.

Simplifying of distributed network management can provide robustness and scalab-
ility with optimum performance. In distributed management paradigm each for-
warding device independently can make local decisions and overall network devices
can exchange information to make decisions for optimum network configuration,
route calculation, network security and response to business requirements for fu-
ture network growth, which is considered as an issue and a real inhibitor. The
barrier presented is the complicatedness of network management for a distributed
network and other aspects such as incompatibility, which must be reduced and solved
through the re-evaluation of the basic management model (this has been discussed
in chapter 2).
There are many ways to simplify the management and the utilisation of the distrib-
uted network infrastructure. One way to simplify network infrastructure is simpli-
fying of the interface it provides for utilisation and control. After looking into the
existing solutions which provide network programmability and network infrastruc-
ture abstraction, it was found that these solutions do not provide a single solution
for high-level abstraction of network forwarding devices as well as a framework for
distributed network management decisions. For these reasons, the goal was set to
develop a network platform which sustains distributed forwarding decision mak-
ing and infrastructure management and does not provide a high-level interface for
network management applications (as shown in chapter 3).
To come up with a viable and realistic solution to the problem mentioned above;
OpenFlow switch controller is developed which works differently from a conventional
OpenFlow controller. This controller is designed with the DAIM model in mind.
Standard OpenFlow switches are managed by a single OpenFlow switch controller,

225

7.2 Validation of Research Propositions

which does all the decision making, whereas the controller developed in this study
stays in each OpenFlow switch and makes it’s own decisions to achieve overall net-
work packet forwarding and management goals. Moreover, this controller is tested
with various major use case scenarios from Layer 2 to Layer 4 of OSI network model.
The adaptability of the developed DAIM model controller is tested against differ-
ent network topologies such as linear, tree, ring and fully meshed. Management
functionalities such as selecting an optimum flow path, recovery from links failures
and discovering of network view of the DAIM model controller are also verified (as
demonstrated in chapter 4).

The DAIM switch platform is developed by synthesising of the DAIM controller,
the OpenFlow switch, the OpenFlow protocol and the POSIX API. The DAIM
switch platform seems to integrate functionalities from existing solutions as well as
being compatible with the distributed network management. The DAIM operat-
ing system specification is developed for network forwarding device which is at the
heart of the DAIM switch platform. DAIM OS provides a simplified mechanism
for network infrastructure management which supports the DAIM model in net-
work management. This is done by increasing complexity inside the DAIM OS itself
and significantly reducing network management interface complexities. The DAIM
switch platform defines every component has a very specific role in achieving the
overall goal of the DAIM model of network management. This is to ensure network
management applications which run on top of DAIM switch platform are easily
developed and deployed. Overall, by developing DAIM switch platform a distrib-
uted network management and abstraction of network management interface were
achieved (as documented in chapter 5).

Attendant Proposition 1:

• We can use this distributed computing environment to provide the OpenFlow
network with Autonomic Management Behaviour,

• We propose that this behaviour will satisfy a number of the Self-X properties
enunciated by IBM in their Red-book (2001)

• In particular, we propose to show that the network can exhibit Self-
management, Self-configuration and Self-optimisation behaviour.

226

Conclusion

Validation Highlights: By enabling distributed management in the SDN architec-
ture, offered by the DAIM model with OpenFlow, then the outcome of this research
is considered as an innovative attempt to provide OpenFlow networks with some
autonomic management behaviours. In this research, the DAIM modules such as
storage module, application module and connection module have been developed to
facilitate the DAIM switch platform and to process flows with distributed calculation
aspect as a partial function of self-optimisation behaviour. Also, deployment of the
control module can further provide the configurations for managing dispersed net-
work elements in distributed OpenFlow switches. For instance, the configuration can
establish and maintain consistency of performance, functionalities, infrastructure at-
tributes with their requirements, design and operation for aliveness. Moreover, the
DAIM model can also manage the ever-changing environment, manage complexity
and define all network devices. Different environments have been used to deploy
the DAIM modules such as OMNeT++ for simulation, mininet for emulation and
lastly, move the deployment to the real word networks using Raspberry Pi.

Increasing of network management difficulties and challenges lead the use of auto-
nomic behaviours to manage the network; then each device can draw its own ad-
aptation strategies, according to the system’s objectives to meet service satisfaction
within managed resources. This research develops the DAIM OS specification as
an abstraction layer which reinforces the autonomic management behaviours, in-
cluding self-management, self-configuration, and self-optimisation. The DAIM OS
is invented with goals to address the limitations of current network management for
distributed electronic environments, aiming at autonomic management behaviours.
The abstraction of network infrastructures is specified and incorporated into the
SDN architecture at the level of OpenFlow switch to provide abstracted API layer
to the applications and to create a distributed network management. In more detail,
the DAIM switch platform is composed of some modules which support network
control, share distributed network elements, automate behaviours and configure
network infrastructures. Also, the modules are using agents to intercept, exchange,
and share any information and events that cause changes to the network. Then, by
applying these modules, the distributed networks can become adaptable, scalable
and robust.
A well-designed architecture is needed for building the DAIM model to organise
massive information of network elements, switch features, network view, network
status, and unpredictably distributed network information. This is described in
chapter 3, whereby the theoretical background based on autonomic behaviours and
network programming techniques are presented to enhance the management of pro-
cessing flows. Furthermore, the reason why the DAIM model is necessary and re-
quired is further explained, and hence, the contribution of DAIM model is justified.
chapter 5 based on the DAIM model describes the specification of DAIM OS and
its interoperation with SDN architecture as well as discusses principles regarding
analysis, design, and architecture.

227

7.2 Validation of Research Propositions

An active portion of DAIM OS has been applied successfully to SDN architecture to
abstract network infrastructure and to provide a distributed control plane for Open-
Flow networks. The DAIM OS development has been described in three phases
including basics of management, semi-autonomic and fully autonomic functionality
in chapter 10. Also, the most significant OpenFlow messages required for obtain-
ing network infrastructure and characteristics to develop abstraction layer are also
explained.

Attendant Proposition 2:
• We propose that the distributed computing environment can be made up of a

multi-agent system situated in the OpenFlow switches, and
• That the multi-agent environments can be hosted by Java Virtual Machines

or similar, and
• We propose to show that this distributed computing environment could be

used to provide autonomic behaviour to other kinds of networks, or even other
kinds of complicated infrastructure such as road traffic systems.

Validation Highlights: DAIM OS deems to provide a framework to successfully
build a distributed computing environment which is supportive for incorporating
multi-agent system. The control module of DAIM controller is an intelligent agent
responsible for uploading flow entries in the OpenFlow switch based on the envir-
onment (network hosts) communication requirements.
It is outside the scope of this research to develop comprehensive strategies. Rather,
it is the intention to provide a robust framework which can support and sustain
autonomic behaviour using multi-agent system.

The DAIM controller and the DAIM OS functionalities are broken down into dif-
ferent modules to meet the distributed network computational needs. Each module
is a container for maintaining some agents where the agents take various actions to
achieve the overall module’s goal. DAIM controller has been built using three main
modules namely storage, control and communication modules.
In the control module, there are agents or methods for connecting to the OpenFlow
switch, receiving a message from the OpenFlow switch, checking the message re-
ceived for integrity, parsing message data, uploading message data to the storage
module tables, and sending flow entry message to the OpenFlow switch. To per-
form the above tasks agents from the controller module execute functions from other
modules as well as share data between each other. Thus, the agents in the controller
module interact with its environment such as other DAIM controller modules and
receive messages from the OpenFlow switch to react and make their decisions.
The DAIM OS specification is created on the principle, similar to the DAIM control-
ler, where closely related tasks are categorised into different modules. These modules
will work independently of each other to achieve respective goals by spawning spe-
cific agents as per DAIM OS system’s requirements as specified in the DAIM tables.

228

Conclusion

As the internal architecture of DAIM OS has different modules, and goals of the
network can be set in each DAIM OS switch through the DAIM tables, DAIM OS
provides a platform for creating distributed network environment through DAIM
tables with autonomic functionality through the agents in the DAIM modules.

7.3. Research Limitation

The DAIM model is a new approach which can solve difficulties of current network
deployments and infrastructure. There are many steps to be taken before coming
up with a solution which exhibits many of the DAIM model features.

Abstracting of forwarding device

The DAIM model’s goal is to overcome difficulties involving network infrastruc-
ture management and network infrastructure deployment challenges. The goals of
DAIM model can be achieved by developing different network packet forwarding
mechanisms, and simplification of complicated networking objects for easier net-
work operations. In this significant research, the emphasis was given to develop a
complete solution of the DAIM model. However, network devices complexities and
execution of overall network infrastructure simulation shifted the attention towards
considering only one aspect of DAIM model solution, abstraction of network for-
warding device DAIM operating system. DAIM operating system specification was
created to hide the grainier details of forwarding devices and make packet forward-
ing decisions easier for the network upper decision-making applications. Moreover,
all the main goals of the DAIM model such as distributed information and decision
making are also considered while developing the DAIM operating system specific-
ation. However, despite the incorporation of core DAIM model concepts into the
DAIM operating system specification, the abstraction of a forwarding device by the
DAIM operating system specification can be considered as one of many possible
ways to achieve the DAIM model platform.

Verification of the DAIM OS

The DAIM OS specification is an evolutionary creation. The main concepts of the
DAIM OS such as forwarding table, entity table and overall functionality of the
DAIM OS are derived from the existing technologies such as OpenFlow switch, be-
sides other developed techniques in this research work such as the DAIM model con-
troller and the DAIM model itself respectively. As a result, the DAIM OS features,
applicability and functionality can be safely considered as robust and feasible from
the point of technical and theoretical perspectives. However, lack of the DAIM OS
specification implementation prevented verification of the suitability of the DAIM
OS with the existing software stacks as well as benchmarking of the DAIM OS
performance under different load conditions.

229

7.3 Research Limitation

Multiple Applications with the DAIM OS
The DAIM OS specification provides a number of tables to the DAIM OS applic-
ations for network forwarding configuration and behaviours. Designing a single
application is considered for managing different networking scenarios. However, the
effects of multiple applications simultaneously handling different DAIM OS tables
were not analysed thoroughly. Consequently, network services will require combin-
ing of various applications functionality into a single application for more predictable
network results from the DAIM OS.

Internal DAIM OS modules working and techniques
In the DAIM OS specification, the general frameworks of different internal modules
are defined. The functionality and core activities of the DAIM OS modules are
discussed briefly to the extent that overall the DAIM model objectives are achieved.
However, the proposition of different techniques and mechanisms that the modules
should work on; are not defined in this research. One reason for not proposing a
set of strict methods of working for the DAIM OS modules is to allow the flexib-
ility to implement the DAIM OS specification. Another reason is techniques and
mechanisms evolve with the time and the technology.

230

8. Research Contribution and
Discussion of Findings

The research key contribution is a system that brings programmability into the
distributed network environment, illustrated in SDN concept, with some level of
distribution and autonomic behaviours. The proposed system provides a specific-
ation of a network operating system for managing network flows through forward-
ing devices. Moreover, the network operating system allows a direct control over
network infrastructures through programming interfaces with the ability to specify
network behaviours. Also, the architecture and design of the proposed model are
implementable and compatible with standard devices (refer to chapter 5 on page
131).

The network operating system is called the DAIM platform which is based on a dis-
tributed architecture. In this regards, a simple attempt to implement DAIM model
has been discussed in this thesis. In essence, an alternative solution to manage dis-
tributed OpenFlow switches is proposed, implemented, validated and documented in
the published papers. A simple of reference implementation is provided in chapter 4
on page 91which is accessible through Appendix A on page 287 to the public domain
(GitHub) as a contribution to the SDN and the networking research community.

The reference implementation for DAIM model uses different environments for
demonstration such as OMNeT++ for simulation, mininet for emulation and us-
ing Raspberry Pi for real world networks. Refer to chapter 10 on page 239 for
DAIM model deployment as phases include gathering and analysing all requirements
for developing DAIM OS. Also, for setting up the different environments refer to
Appendix B on page 325 for OMNeT++, Appendix C on page 331 for mininet and
Appendix D on page 339 for real network. For instance, one of the DAIM model
demonstrations is (phase one) which is a very basic model to carry information as
a middleware within OpenFlow network structure; this is presented in Appendix A
on page 287.

Apart from the primary objectives of this research which has been reached through
some contributions, there are also, additional results to the original objectives. In-
novation and novelty of these contributions include:

1. Review of literature on network paradigms and management for NGN net-
works. These had been contributed with analysing the requirement for dis-
tributed network management systems in NGN networks. Besides, a chapter

231

Research Contribution and Discussion of Findings

of a book published by Springer contributes to knowledge [117]. (sec. 2.2.2 on
page 27)

2. A comprehensive review of the literature on an autonomic computing system
towards autonomic communication. That would ease network management
by invoking autonomic behaviour to be a self-managed network. A conference
paper and a chapter of a book published by Springer are introducing the
learning from concepts and they contribute to knowledge [117, 114]. (sec. 2.3
on page 31)

3. Review of literature on SDN architecture, concepts and fundamentals. This
contribution presents the state of the art in programmable networks based on
the SDN. It is also presents OpenFlow networks which include three layers of
abstractions forwarding layer, control layer and application layer, where the
mean of communication between forwarding layer and control layer is called
OpenFlow protocol. Also, it provides an in-depth analysis of the ongoing
research efforts and challenges of SDN including many analysis points of view
which have been published to contribute to knowledge such as [115, 117, 53].
(sec. 2.7 on page 45)

4. A comparative review conducted to analyse the accuracy of OpenFlow simula-
tion and emulation tools. For instance, Mininet as open access for researchers
allows the emulation of a complete OpenFlow network based on SDN archi-
tecture with the possibility to integrate the DAIM model which provides a
realistic performance for network benchmarking. A journal paper has been
published as a contribution to the knowledge [84]. (chapter 10 on pages 239,
249 and 264)

5. Some contributions specifically to analyse OpenFlow networks from different
aspects such as process, performance, messages, distribution of control plane,
procedures, operation and features. Also to study OpenFlow applications,
protocol and architectures of different designs including discussions of their
performance implications. That analysis and study give better understanding
for successfully building the proposed model like the following:

a) Contributing to OMNeT++ by testing the accuracy, performance and
evaluation for INET framework extension of OpenFlow with conventional
model TCP/IP of INET framework. Also, testing some of OpenFlow
network scenarios in Mininet emulator have shown the accuracy of OM-
NeT++ INET extension. The measurement results derived from both
tools demonstrate that they are correct, accurate, and repeatable regard-
ing their capabilities, performance, and functionalities [52, 85, 84].

b) Contribution to scale OpenFlow network in traffic engineering by re-
ducing the number of transactions, predicting and pre-populating flow
entries integrated with ICN approach. The new approach includes ad-
vantages of implementing ICN designs within OpenFlow which could en-
hance the performance of current OpenFlow networks. The proposed

232

Research Contribution and Discussion of Findings

solution can fulfil current management and utilisation of network de-
mands supported by many OpenFlow controllers. Also, debating of the
implementation of ICN’s design and features with regards to SDN [123].

c) Contributing for OpenFlow network to support mobility as an extinc-
tion algorithm, which can be integrated into the existing OpenFlow. The
mobility algorithm will deploy an innovative and realistic strategy for dif-
ferent services in wireless networks. It provides several mobility managers
and runs them concurrently in the network including hard handover, in-
formed handover, n-casting and Hoolock [50].

d) Contributing to Mobile IP mechanism by an alternative mechanism for
network connectivity, using the OpenFlow network which can perform a
different way of routing, where the new mechanism could reduce handoff
latency and reduce the load on the global internet. The proposed Open-
Flow application determines calculations and reroutes the subsequent
packets. The approach can optimise routing path and handoff perform-
ance by using controller’s application and exchanging controllers’ inform-
ation [141].

6. Contributing to the SDN area by a number of published papers that are in-
troducing concepts of DAIM model and autonomic management in distrib-
uted electronic environment. The DAIM model can be integrated into the
OpenFlow structure at a switch level to provide true abstraction layers that
are able to manage flow tables autonomically. Moreover, the published pa-
pers are giving an overview and blueprints for the distributed approach based
on SDN approach. Also, they seek to enhance the current SDN approach
which has some scalability issues. Also, there is many models, applications
and components which are combined and integrated together for the pro-
posed model such as modules, agents, databases, autonomic functionalities,
adaptation algorithms, local decisions and mechanism of packet processing
[115, 99, 114, 117]. (chapter 3 on page 73)

7. The DAIM model is implemented from scratch based on its theory and its
design architecture as presented in chapter 10 on page 239 which is considered
as a support work for the reference implementation in chapter 4 on page 91.
The reference implementation is summarised in three phases for implementing
DAIM model within OpenFlow networks to support the autonomic network
management as presented in a chapter of a book [53].

8. A new module had been created to facilitate the communications between
the controller and OpenFlow switch, which is implemented using a socket to
operate on OpenFlow messages without any modification. (sec. 4.2 on page
sec. 4.2)

9. The DAIM model provides some ways to discover a network topology which
are considered as contributions to the SDN area, one of which is that to embed

233

Research Contribution and Discussion of Findings

DAIM model messages with LLDP to discover network links. The augmented
LLDP has two stages; the first stage is discovering an individual switch then
to discover links between discovered switches. The second way to discover
network links is to generate DAIM messages including all information and in-
terpret that messages by another end. The way of generating DAIM messages
has three stages, firstly to discover local links then to discover global network
links and finally to maintain the discovered links by alive messages. (sec. 4.3.2
on page 95)

10. The DAIM model has three core modules which are implemented and that
brings better understanding to write the specification of the DAIM OS. The
three modules are communication module, storage module and control mod-
ule which are seeking to facilitate the network management including network
configuration, routing optimisation, network protection and network failure
recovery. Additionally, these modules of the DAIM model are implemented
in different network topology with different scenarios to be tested, discovered,
analysed and documented. In other words, the DAIM model exercises are con-
ducted to verify the functionality and compatibility. (chapter 10 on page 239
and sec. 4.3 on page 94. Moreover, for the code example refer to Appendix A
on page 287)

11. There are different factors that support the writing of the DAIM OS spe-
cification and this study might give a better understanding to researchers of
the SDN area. These factors influence the performance of the DAIM model
implementation and have been stated as discrepancy of the DAIM model im-
plementation in sec. 4.3.7 on page 128.

12. Supporting modules of DAIM model and their implementation, have been
tested and discovered by available benchmarking tools such as Chench, Ping,
Iperf and Iperfudp within different environments such as OMNeT++, mininet
and Raspberry Pi. Also, the performance evaluation of the DAIM model is
carried out and shows a better performance on throughput and latency. The
performance of DAIM is compared with NOX, POX and with improving ver-
sion of DAIM model. (For the DAIM model supporting modules, OMNeT++
in sec. 10.1 on page 239, Mininet in sec. 10.2 on page 249 and Raspberry Pi on
sec. 10.3 on page 264, note: the physical exercises conducted in the lab with
a small-size OpenFlow network to prove that the DAIM model can perform
operational functions and compatibility in real networks)

234

9. Direction for Future Works and
Recommendations

This research work eventually exposed the requirements for implementing a robust
distributed SDN solution for computer networks. The overall objectives of the robust
distributed SDN architecture for a self-managed network, which includes configura-
tion, healing, protection, and optimisation are derived via development of the DAIM
OS network device specification. Although the specification apparently meets all the
DAIM model core requirements, further refinements of mechanisms and introduction
of ad hoc feature need to be researched for current and future networking needs.
The following tasks are suggested for the progression of this research work.

Management methodology in the DAIM model

It should be clear, however, that DAIM OS does not, by itself, solve all of the network
management problems. The designers of management applications still have to
understand the scalability implications of their design. DAIM OS provides general
tools for managing state, and there is a need for more flexible API. DAIM OS is
required to combine with more methods, and algorithms of autonomic functionality
to provide more autonomic behaviours, to achieve a self-managed network.

Implementation of a DAIM OS stack for implementing the DAIM model

To fully understand the complexity and effectiveness of the DAIM model; the DAIM
OS that is designed to meet most of the DAIM model requirements needs to be
implemented in a physical hardware. This will require implementation of the actual
DAIM OS specification as well as installation and configuration of the DAIM OS in
a physical devices.

There are two ways by which the DAIM OS can be realised:

• One way is to develop only the DAIM OS programme with necessary system
interfaces to adapt with the current software stack solutions. For example, the
DAIM OS can be implemented for a generic computer running GNU/Linux
operating system where the DAIM OS will act on an OpenVSwitch using
OpenFlow protocol.

• The other way is to develop an entire DAIM switch stack from scratch to
develop a DAIM switch platform.

235

Direction for Future Works and Recommendations

In the first method, the implementation will require fewer resources and can be
retrofitted to existing devices. However, the first method will limit the performance
of the DAIM OS as other dependent software solutions will bind it. In the second
method, the DAIM OS should perform optimally, better than the first method
since the other solution stack of the DAIM networking device will be coherent with
the DAIM OS programme as well as the DAIM OS can be tailored for specific
hardware requirements. Since the DAIM OS implementation will cover the entire
DAIM OS specification as well as control mechanisms, communication algorithms
and development of internal DAIM OS architectures, implementation of the DAIM
OS is the most significant for the continuation of this research.

Application DAIM OS stack for active network configuration
After integrating DAIM OS into the network forwarding devices, the desired net-
working behaviour applications need to be developed utilising DAIM OS API. Ap-
plications can be of performing, configuring or monitoring types. The performing
type applications will execute predefined algorithms to achieve some desired results
such as an application for restricting some network services or managing some hosts
in the network. The configuring type applications will provide an interface to set
up a network, which will be used by the network administrators. Finally, the mon-
itoring type applications will log network settings and performance, which include
packet tracing, and topology viewing.

236

Part IV.

Supporting Work

237

10. Supporting the Proposed Model
Implementation

The nature of this Chapter is by way of focusing on experiments done to validate a
simple implementation of the DAIM model. Also, it is provided as a reference im-
plementation to others who are intending to understand more about what had been
done regarding this dissertation. This Chapter supports chapter 4 and chapter 5 by
analysing the requirements and conducting tests of functionalities. However, all out-
comes are outlined and summarised within chapter 4 and chapter 5. This Chapter
contains valuable information and experiments which should be used according to
the readers’ requirements.

This chapter shows the methodological framework which is supporting the imple-
mentation of a simple DAIM model with a simple controller (refer to Appendix A for
more information about the simple controller). Also, it includes some experiments
to verify the proposed model functionalities and to validate its concepts of distri-
bution management capabilities. Initially, general assumptions and the rationale of
the DAIM model, hardware and emulation based methodology are introduced to
draw the conclusion as presented in Fig. 10.1.
The simulation, emulation and real hardware, led to the building of chapter 4 and
chapter 5 based on the analysing of all requirements and the conducting of demon-
strations for testing functionalities; would satisfy the specification of an abstraction
layer called (DAIM OS). This chapter includes 17 tests, with measurements of per-
formance and analysing of the DAIM OS requirements.

10.1. Exercise OpenFlow Networks in OMNeT++

This section presents OMNeT ++ which is a simulation environment for exercising
the SDN approach [30, 82]. Also, it focuses on creating and running OpenFlow
Networks in OMNeT++ and collecting data during runtime of the simulation.

10.1.1. Performance of OpenFlow Vs. Traditional Networks

The OMNeT++ network simulator is used here to simulate the operation of Open-
Flow and TCP/IP while logging performance metrics including data transmission

239

10.1 Exercise OpenFlow Networks in OMNeT++

Figure 10.1.: The DAIM model uses simulation, real network, and emulation based
for implementation to draw the conclusion

rate (DTR) and the mean round-trip-time (RTT) for nodes in the simulated net-
works [15, 95].

This experiment measured DTR and mean RTT between the time-triggered nodes,
for both traditional network and OpenFlow network, including performance, traffic
and link delays. The experiments are using similar network topologies and similar
scenarios for both tests to analyse DTR and RTT. Each of simulated networks
includes a number of hosts, two switches (as in Fig. 10.2) and a destination server
for OpenFlow network (as in Fig. 10.3). Moreover, OpenFlow switches can perform
Layer 2, 3, and 4 routing, as compared to the Layer 2 MAC learning table used by
the traditional network [90].

Sequential ping requests are generated, where each ping includes a sequence number,
and replies are expected to arrive in the same order. Then, to measure RTT for each
ping and reply, the simulation was running for 300 seconds. Each simulation was
run ten times (OpenFlow and traditional networks five times for each) to reduce
simulation artefacts. A large number of samples are recorded and computed for
means, and standard deviations of (DTR and RTT).

Tr = Packet Size

Link Bandwidth
= 1500 ∗ 8 bit

100 ∗ 106 bit/s
= 0.12 ms

240

Supporting the Proposed Model Implementation

Figure 10.2.: Traditional network topology in OMNeT++

Figure 10.3.: OpenFlow network topology in OMNeT++

241

10.1 Exercise OpenFlow Networks in OMNeT++

Figure 10.4.: Data Transfer Rate DTR of traditional and OpenFlow networks

RTT = α ∗ RTT + (1 − α) ∗ Tr

The packet size is known to be 1,500 bytes long. The link speed is limited to 100
Mbit/s, in both traditional network and OpenFlow network. And, the transmission
time between the segments sent and the acknowledgement arrival, and is a smoothing
factor, which equals the value (7/8) ≈ 0.875.

Test 1: Measuring DTR for both OpenFlow and Traditional networks with file size
increasing (see Fig. 10.4),

This test runs some tests by increasing file size; then the outcomes show that the per-
formance of OpenFlow is slightly better than the traditional network for forwarding
video streaming UDP packets at higher rates (measured in Mbit/s).

Test 2: Measuring RTT for both OpenFlow and Traditional networks (see
Fig. 10.5),

In this test each client has generated pings and logged results to measure RTT for
OpenFlow and traditional networks. Also, it can be seen that in Fig. 10.5 that the
traditional network has higher RTT than OpenFlow.

Over these two tests in Fig. 10.4 and Fig. 10.5, the results indicate that OpenFlow
outperforms conventional network in these experiments analysis. However, Fig. 10.5,
shows some peak spikes every 120 seconds, because of a hard time out of OpenFlow
flow table entries. Therefore, OpenFlow performance benefits from packet transmis-
sion methods run at Layer 2, 3, and 4, even though connection establishment and
initialisation has more steps than conventional networks.

242

Supporting the Proposed Model Implementation

Figure 10.5.: Round Trip Time RTT of traditional and OpenFlow networks

10.1.2. Implement OpenFlow to Australian cities

The aim of this section is to analyse the results of controller locations, whereas,
the controller is responsible for managing networks (e.g. unknown packets). Also,
to find out which controller location can behave more efficiently than others, by
studying performance metrics with respect to RTT and mean RTT.

Topology and configuration for Australian cities
Australian cities topology in Fig. 10.6 was created with 8 locations of state capital
cities, where, each city has one host, one OpenFlow switch connected by (Ethernet
Line) as listed in Tab. 10.1 , and these switches are externally connected to a con-
troller. The controller is placed in the network and directly connected via a separate
link (Backbone Line) to the different OpenFlow switches, see Tab. 10.1. In addition,
a new OMNeT++ channel type is defined (Distance Channel) to connect these cities
together, see different link types at this Tab. 10.1. With respect please see Tab. 10.2
for example:

Brisbane.ethg++ <–>distance = 924km <–> Sydney.ethg++;

The example presents, the distance between Brisbane and Sydney which is 924 kilo-
metres. The link delay for the distance channel can be calculated by the following
equations as a fiberoptic cable is being used in this exercise for distance communic-
ation:

243

10.1 Exercise OpenFlow Networks in OMNeT++

Table 10.1.: OMNeT++ channel types

Data rate bandwidth Data rate bandwidth in bits
EthernetLine 100 Mbit/s 100 * 106 bit/s

DistanceChannel 10 Gbit/s 100 * 108 bit/s
BackboneLine 40 Gbit/s 400 * 108 bit/s

Table 10.2.: Distance between Australian cities

From ... City Distance in km To ... City
Darwin 3423km Brisbane

Brisbane 924km Sydney
Sydney 287km Canberra

Canberra 4055km Darwin
Sydney 1611km Hobart
Hobart 735km Melbourne

Melbourne 663km Canberra
Melbourne 727km Adelaide
Adelaide 3028km Darwin
Adelaide 2693km Perth

Perth 4032km Darwin

τ = d/c̃

Where τ is the delay of the wired (fiberoptic), d is the distance, and c̃ is the
propagation speed of fiberoptic.
c̃ = c/δ

Where c̃ is the propagation speed of fiberoptic, c is the speed of light, and δ is the
refractive index of fiberoptic.
In more detail, calculating the link delay of the mean (fiberoptic) is by dividing
the distance between Australian cities by the propagation speed of the fiberoptic.
Moreover, the calculation of the propagation speed of fiberoptic is by dividing the
speed of light by the refractive index of the fiberoptic. In other words, the propaga-
tion speed of fiberoptic is equal to two-third of the speed of light, if using the typical
refractive index of fiberoptic on air which is 1.5.
Test 3: Measuring mean RTT of each city with changing location of controller
(Fig. 10.7),
The scenarios of different controller locations are executed and the outcomes from
these exercises will be compared with each other. Performing measurements, the
host needs to initiate the transmission of data and other end-host needs to receive
the data, perform a minor computation and send back a response. The experiment
results were arrived at after recording a large number of samples. To describe the

244

Supporting the Proposed Model Implementation

Figure 10.6.: OpenFlow network topology for Australian cities

measurement of the numbers, a standard deviation and mean RTT are computed.
The mean RTT is assumed to be the average value and the standard deviation is
approximated using the following equation:
T = N/R

Where T is the packet transmission time between segments sent and an acknow-
ledgement of arrival is received (second), N is the packet size (bits), and R is the
data rate bandwidth (bit/second).
To calculate the packet transmission time, there is a need to divide the packet size
1500 bytes (as known in the simulation) by the data rate bandwidth that have been
defined in three kinds of channels as following: EthernetLine with data rate 100
Mbit/s that connects between nodes within domain, DistanceChannel with data
rate 10 Gbit/s that connects between domains, and BackboneLine with data rate
40 Gbit/s that connects between domains and central controller, see Tab. 10.1.
Then to calculate RTT by the following equation:
RTT = α ∗ ˜RTT + (1 − α) ∗ T

RTT in (second), α is the smoothing factor, ˜RTT is the old RTT, and T is the
packet transmission time. To calculate RTT by α (value between 0 and 1) which is
equals to the value 0.875 multiplying with old RTT as the top equation and then
multiplying with T which is the transmission time between the segments sent and
the acknowledgement arrival. Each run of simulation has 300 seconds. The outcomes
are one mean RTT value per domain and 8 cities mean RTT values in total.

245

10.1 Exercise OpenFlow Networks in OMNeT++

Figure 10.7.: Performance of OpenFlow networks based on controller location

246

Supporting the Proposed Model Implementation

Figure 10.8.: RTT for controller location near to (Sydney/Perth)

The results in Fig. 10.7 show the measured values for different locations of the con-
troller. For more details, the top figure illustrated results when the controller is
close to Perth domain, and the bottom figure is showing the result of the controller
when it close to Sydney domain.
The performance is affected by the controller locations. For example, Sydney and
Perth, to compare between controller locations, the test should run twice. One with
placing controller closer to Sydney then the second one placing the controller close
to Perth. The results for Sydney are better than for Perth, where these differences
are caused by the placement of the controller. The outcome of Fig. 10.7 is that
OpenFlow performance is affected by the placement of the controller. For example,
the last two domains, Perth and Sydney, where the controller was placed closer to
Sydney produces better results than Perth with 0.11244 seconds lower in the mean
RTT.
Test 4: Latency when the controller is near to (Sydney/Perth) (Fig. 10.8),
The Fig. 10.8 shows RTT in seconds over simulation time, where the blue line in the
plot is the result of placing controller near to Perth and the latency of the blue line
is higher than the red line of Sydney latency. Therefore, the finding out is that the
latency of the controller when it close to Sydney, better than when it close to Perth,
where latency average of Sydney is less than 0.2 second.
Test 5: Latency of Sydney domain within (OpenFlow/Traditional) networks
(Fig. 10.9),
Implementing traditional network TCP/IP in Australian cities with the same topo-
logy and configuration of previous tests of Australia, it is possible to measure RTT
for each city. In more detail, the test 4 of OpenFlow network in Australian cities
(Fig. 10.8) shows that the latency of the controller, when it is close to Sydney is
better than Perth. Then, to prove the quality of the controller when it is near to
Sydney, this test is conducted, to compare RTT of Sydney controller with a tradi-
tional network. Therefore, the results in Fig. 10.9 show the measured scalar values
for traditional TCP and OpenFlow among different domains and it is obvious that

247

10.1 Exercise OpenFlow Networks in OMNeT++

Figure 10.9.: Controller near Sydney (RTT of traditional vs. OpenFlow networks)

Figure 10.10.: Controller near Perth (RTT of traditional vs. OpenFlow networks)

the performance of TCP clients in every domain has similar RTT values to OpenFlow
when using the ping application of OMNeT++. Moreover, both plots have same
average latency over the simulation time. However, OpenFlow shows some peak
spikes at the beginning and the end of the simulation, because of establishment and
termination of OpenFlow connection as shown in Fig. 10.12.

Test 6: Latency of Perth domain within (OpenFlow/Traditional) networks
(Fig. 10.10),

In OpenFlow network when the controller is near to Sydney domain, the RTT starts
at 0.22 seconds, and in Fig. 10.10, the RTT of Perth domain starts at 0.57 seconds.
Then, comparing results of OpenFlow to the traditional network, and that give more
understanding, if the controller is close to Sydney, it has better performance. Also,
evident in the experiments is that there are sudden spikes at the beginning and the
end of OpenFlow caused by connection establishment and termination see Fig. 10.12.
However, the performance of OpenFlow and TCP are slightly similar during 100 to
250 seconds of simulation run time.

248

Supporting the Proposed Model Implementation

Connection Establishment and Termination for TCP/IP and OpenFlow
networks
Traditional network takes less connection set-up time than OpenFlow; see Fig. 10.11
for TCP connection [12], and see Fig. 10.12 for OpenFlow connection.

10.2. Exercise the DAIM model via Mininet

This section will apply the DAIM model in Mininet as an emulation environment.
The section methodology based on the three phases of building a simple reference
implementation of the DAIM model which includes firstly just a carrier model, then
a synchronised flow table within the DAIM model and lastly the involvement of all
the computational power to the DAIM model. These three phases helped to get a
better understanding of building the DAIM OS.

10.2.1. Integrating DAIM model to OpenFlow Switch

The DAIM model is collecting, maintaining, updating and synchronising all the re-
lated information and is building up an abstraction layer for network infrastructure.
Moreover, it is developing the decision-making for each device locally, on the basis
of collected information, which allows the autonomic behaviour of adapting accord-
ing to ever-changing circumstances. The DAIM model structure is proposed with
the hope of addressing the limitation of previous network protocols such as Simple
Network Management Protocol (SNMP), Common Information Model (CIM) and
Policy-Based Network Management.
Ultimately, the proposed DAIM model will address the limitations of current ap-
proaches and future distributed network systems, creating an autonomic computing
management strategy. The DAIM model approach will also satisfy the requirements
of autonomic functionality for distributed network components like self-learning,
self-adaptation and self-CHOP (configuration, healing, optimisation and security).
Each component can be adaptable according to any changed conditions of the dy-
namic environment without human intervention. This chapter introduces the three
phases of implementing the DAIM model as follows:

10.2.1.1. Phase one

Basic carrier functionality is phase one; that embedded the DAIM model with Open-
Flow messages as they are coming from OpenFlow switches. Essentially it describes
an environment where network information is the property of software variables
residing in virtual machines. The architecture of OpenFlow will be the same and
all the high-level routing decisions will still be made from the controller, but will

249

10.2 Exercise the DAIM model via Mininet

Figure 10.11.: Connection Establishment and Termination of TCP

250

Supporting the Proposed Model Implementation

Figure 10.12.: Connection Establishment and Termination of OpenFlow Networks

251

10.2 Exercise the DAIM model via Mininet

Figure 10.13.: Architecture of the DAIM model for Basic carrier functionality

Figure 10.14.: Basic carrier topology testbed connected with one controller

have the DAIM doing the work of carrying all OpenFlow messages from controller
to switch and vice versa. In this case, the DAIM will own the values (variables)
and properties of the flow entry. The DAIM model is able to operate the (get -
set) process driven by the controller as well as updating the forwarding table (see
Fig. 10.13).

Exercising DAIM model (phase one) within Mininet Testing performance, cap-
ability and functionality of the DAIM model phase one, it should set simple topology
as Fig. 10.14 to represent the DAIM model phase one. In this topology, the DAIM
model can hold packets locally and send them to the central controller as they are
(see the testbed topology Fig. 10.14).
The following tests are measuring throughput and latency for the phase one of the
DAIM model. There are four major tests including NOX and POX separately and
when the DAIM model is integrated with OpenFlow switch. In more detail, for the
tests, learning destination mac addresses before the test, next starting the test with
0 ms delay after features_reply ignoring first 1 "warm up" and last 0 "cool down"

252

Supporting the Proposed Model Implementation

Figure 10.15.: Latency of NOX vs. Latency of DAIM with NOX

loops connection delay of 0ms per switch as following:
Test 7: Latency of NOX vs. Latency of DAIM with NOX (Fig. 10.15), in Ubuntu
terminal, the following command is conducted for running the cbench test:

abanjar@ubuntu:~/oflops/cbench$./cbench -p 6633 -m 10000 -l 40 -s 1 -M 1000
cbench: controller benchmarking tool running in mode ’latency’ connecting to
controller at localhost:6633 and 30 tests each 10000 ms

The following Fig. 10.15 has two different plots; the blue plot on top presents NOX
performance as latency when it is connected to one switch with 1000 unique MACs,
the red bottom plot presents the DAIM model supported by NOX controller as the
first stage of the DAIM model implementation.
Latency is a crucial metric for a network operation and performance with transit
data from source to destination. Fig. 10.15 shows the latency of different structures
connected to the same controller (NOX); one is direct and the other one is connected
to the DAIM then to NOX.
The results of Fig. 10.15 suggest that:
The DAIM with NOX Latency (red plot) shows a significantly better performance
compared to the other with the direct connection to NOX, as expected when in-
tegrating the DAIM model which has a larger buffering capacity that would absorb
more packet_in to transfer them to NOX. After controller learns MACs the first
loop on the test shows that the DAIM with NOX response is faster than only NOX
which starts at 6 ms compared to the DAIM with NOX which starts at 4.2 ms. For
average performance the DAIM with NOX latency is better than NOX only, where
its range is about 3 ms, but NOX on its latency average around 5.5 ms. Therefore,
in the first attempt of the DAIM model implementation (phase one), we can see the
difference in performance as better than the NOX controller on its own.
Test 8: Latency of POX vs. Latency of DAIM with POX (Fig. 10.16), in Ubuntu
terminal, the following command is conducted in terminal for running the cbench
test:

253

10.2 Exercise the DAIM model via Mininet

Figure 10.16.: Latency of POX vs. Latency of DAIM with POX

abanjar@ubuntu:~/oflops/cbench$./cbench -p 6633 -m 10000 -l 30 -s 1 -M 1000
cbench: controller benchmarking tool running in mode ’latency’ connecting to
controller at localhost:6633
faking one switch and 30 tests each 10000 ms per test with 1000 unique source MACs

As the previous test of the DAIM with NOX, here we have POX controller perform-
ance and the DAIM with POX performance. In Fig. 10.16 there are two plots, the
top red plot presents the DAIM with POX and the bottom blue plot presents POX
only. The latency for POX only is slightly better than the DAIM with POX for
the first 6 tests, then POX only performance starts to merge and perform similarly
to the DAIM with POX. Moreover, as you can see in Fig. 10.15 and Fig. 10.16 the
startup latency for the DAIM model is around 4 ms; also comparing the previous
two test we can tell that the DAIM with POX/NOX and POX only, are performing
better than NOX only. The average latency of POX only and the DAIM with POX
are typically similar overall tests.
The Fig. 10.17 presents another test for latency; however, it uses ping utility. Using
ping would mean having additional hardware such as virtual hosts by mininet, to
send/receive ICMP messages and a way to gather the statistics and convey them to
the controller. Moreover, this test compare between latency of POX against latency
of the DAIM integrated with POX; the test is based on packet size increasing over
ping utility. The test is seeking for confirmation on the following points:

• If the performance show similar results between POX and the DAIM with
POX.

• If this test shows better performance than NOX and the DAIM integrated
with NOX, from the previous cbench tests.

Increasing packet size in the table at the bottom of Fig. 10.17 presents mean RTT
in milliseconds. As presented in the Fig. 10.17 POX RTT at the packet size 56 bytes
is similar to the DAIM with POX, however, increasing packet size for the POX
only the RTT is starting to exceed the similarity with the DAIM with POX. At the
packet size 65000 bytes, the RTT of POX is increased by 80 ms over the DAIM with

254

Supporting the Proposed Model Implementation

Figure 10.17.: RTT of POX vs. RTT of DAIM with POX

POX.

For the latency average response time, the Fig. 10.18 presents the average responses
for all test. As shown in the responses time, the DAIM with NOX has a better
performance in the test overall; however, the NOX only shows higher latency overall
test around 5734 seconds with stdev 266 seconds, which is acceptable over results.
Also, the Fig. 10.18 shows the POX only average responses latency which is similar
to the DAIM with NOX (around 3051 seconds), but it has stdev 883 seconds and
that is presenting not a stable performance for POX only overall test.

Test 9: Throughput of NOX vs. Throughput of DAIM with NOX (Fig. 10.19),

Throughput mode is sending many requests until the buffer blocks; it measures the
maximum flow setup rate that a controller can hold [93]. The focus in these tests is
to study the throughput in NOX, POX, and when connecting the DAIM with one
of them. Fig. 10.19 shows the maximum throughput (number of flows per second
which can be held by the controller of NOX only and the DAIM with NOX). To run
the cbench tool, in Ubuntu terminal, the following command is conducted with [-t
] option, for running the cbench in throughput mode:

abanjar@ubuntu:~/oflops/cbench$./cbench -p 6633 -m 10000 -l 30 -s 1 -M 1000 -t
cbench: controller benchmarking tool running in mode ’throughput’ connecting
to controller at localhost:6633

The cbench tool will create one fake switch with 1000 unique source MACs, and the
following test in Fig. 10.19 will run 30 tests, each test has 10000 ms.

255

10.2 Exercise the DAIM model via Mininet

Figure 10.18.: Average Response for Latency of NOX and DAIM with NOX/ POX
and DAIM with POX

Figure 10.19.: Throughput of NOX vs. Throughput of DAIM with NOX

256

Supporting the Proposed Model Implementation

As shown in Fig. 10.19 the first test learns destination mac addresses before the
test starting with 0 ms delay after features_reply. It has to ignore first test loop
and consider it as "warm up", also, the last test has 0 ms delay as "cool-down".
The results suggest that: NOX in blue plot shows less flows/sec handled (6 * 104

flows/sec) than the DAIM with NOX red plot(6.3 * 104 flows/sec).
The DAIM with NOX had a slightly better performance compared to the NOX
only. At the beginning they stay on average until 20 test loops, then NOX only
significantly starts to be better than the DAIM with NOX. That is because NOX
only does not buffer packets for long while the DAIM with NOX has to buffer
requests then send them to NOX, wait for a reply and that slow the performance of
the DAIM (phase one).
Test 10: Throughput of POX vs. Throughput of DAIM with POX (Fig. 10.20),
As the previous test of NOX throughput, here we run cbench: controller bench-
marking tool in ’throughput’ mode connecting to POX and the DAIM with POX.
The cbench tool will create one fake switch with 1000 unique source MACs, and the
following test in Fig. 10.20 will run 30 tests, each test has 10000 ms.

abanjar@ubuntu:~/oflops/cbench$./cbench -p 6633 -m 10000 -l 30 -s 1 -M 1000 -t
cbench: controller benchmarking tool running in mode ’throughput’ connecting
to controller at localhost:6633

The throughput of POX and the DAIM with POX can be seen in Fig. 10.20. The
first test learns destination mac addresses before the test starting with 0 ms delay
after features_reply. It has to ignore the first test loop and acknowledge it as "warm
up", also, the last test has 0 ms delay as "cool-down".
The results suggest that: POX in the blue plot shows less flows/sec handled (6.7 *
104 flows/sec) than the DAIM with POX in the red plot (7.4 * 104 flows/sec). The
DAIM with POX is slightly had better performance overall test loops compared to
the POX only. At the beginning they stay on average until 15 test loops, then in
19 test loop start to be in average again, but at the end test loop the DAIM with
POX start to be better again (7.4 * 104 flows/sec).
For the throughput average response time, the Fig. 10.21 presents the average re-
sponses for all test. As shown in the response times the DAIM with POX has
better performance overall test 6711 seconds and stdev 343 seconds, however, the
DAIM with NOX shows the lowest throughput overall test around 6115 seconds with
stdev 153 seconds, which is acceptable over the DAIM with NOX results. Also, the
Fig. 10.21 shows the NOX only average responses which is similar to the DAIM with
NOX around 6100 seconds.

10.2.1.2. Phase two

This phase is presenting semi-autonomous functionality which is similar to the phase
one; however, it includes distributed functionalities. Distributed functions reside on

257

10.2 Exercise the DAIM model via Mininet

Figure 10.20.: Throughput of POX vs. Throughput of DAIM with POX

Figure 10.21.: Average Response for Throughput of POX, NOX and DAIM with
NOX/ POX

258

Supporting the Proposed Model Implementation

Figure 10.22.: Semi-Autonomous functionality of DAIM model

each network node. The main difference of this phase is that the controller can
assign some functionality to the DAIM model (see Fig. 10.22).
The DAIM model in this phase is different than phase one, it can gather inform-
ation from network entities to perform some functionalities similar to controller
functionalities. For example, collecting RIB information from the controller, so it is
possible to forward flows directly from switch according to the flow entries, which
are pre-filled by the DAIM model.
In more detail, the DAIM model can update forwarding tables on the switches and
can execute some functionality across the OpenFlow controller and switches. The
controller uses a separate control channel to exchange information between network
nodes by using the DAIM. The network nodes listen to each other on a particular
port for messages from the DAIM.
Another example of the DAIM functionality is that it can perform certain functions
for querying network statistics. Moreover, the DAIM can inform the controller that a
network problem is happening and also can send an acknowledgement of the received
messages. In all cases, the DAIM cloud will trigger function to instantiate a new
unique function to process that information.

Exercising DAIM model (phase two) within Mininet Testing performance, cap-
ability and functionality of the DAIM model phase two, with a simple topology as
Fig. 10.23 to represent the DAIM model phase two. In this topology, the DAIM
model can process some packet types locally and drop unknown packet types. The
topology has a bandwidth of 100 Mbps and delays by 0.036 ms as shown in Fig. 10.23:
Test 11: Handling fragmentation of packets in DAIM model (phase two)
(Fig. 10.24),
This test of the DAIM model is checking the model’s ability to handle fragmentation
of packets with increase the packet size. The test showed that the DAIM model was
just able to process limited packet size which was 56 bytes, and when the packet size
was increased over the default size to be 4000 bytes, 8000 bytes, the DAIM could
not handle the fragmentation of packets (see Fig. 10.24). Also, after developing the
DAIM model phase two to process more than 56 bytes in version 2.2. It was still

259

10.2 Exercise the DAIM model via Mininet

Figure 10.23.: Semi-Autonomous DAIM model testbed

unable to reassemble the fragmentation and showed that the time is exceeded in
Fig. 10.24 part 2,3, and 4 with 100 percents packet loss.
Test 12: Latency of DAIM v.2, NOX and POX (Fig. 10.25),
This test is measuring the network latency, by using the ping utility. Then, it
compares results to analyse the performance of each network, to find out if the DAIM
model is performing better than current controllers or not. With default packet size
56 bytes and 1 second interval time for total experiment time 370 seconds, the results
are shown in Fig. 10.25 in figure (A) which has all three plots together; the DAIM
model v.2 in red, NOX in blue, and POX in green. The most apparent plot over
time 370 seconds is POX in green, which has a high peak every 30 seconds as can be
seen in figure (A). Moreover, each peak reaches between 30 and 40 millisecond RTT.
It should be noted that the sudden peak for all plots was because of reconfiguring
of the flow table in switches by either idle_timeout or hard_timeout.
The next figure (B) of Fig. 10.25, shows that over the testing time 370 seconds,
the DAIM has peaks up to 3 milliseconds; however, it has an average of 1 and 1.2
milliseconds of RTT.
The last figure (C) of Fig. 10.25, focuses on the NOX RTT which has an average
of 0.04 and 0.06 milliseconds and it has a peak every 60 seconds over 370 seconds.
Also, figure (C) shows POX plot in green and NOX plot in blue; they were similar
with an average performance around 0.04 and 0.06 milliseconds of RTT.
Test 13: Round Trip Time for DAIM and NOX with packet size increasing
(Fig. 10.26),
As can be seen, the stable performance of NOX and the DAIM on previous test 6,
with acceptable RTT, and their plots were similar with higher RTT in the DAIM.
Also, both had no high or very high sudden peaks every 30 seconds like POX. Next,
it is worthwhile to conduct a test to compare RTT between NOX and the DAIM
with increasing packets size, for analysing more behaviours (see Fig. 10.26). For
both NOX and the DAIM, the RTT are similar between them in all the tests; even

260

Supporting the Proposed Model Implementation

(1)

(2)

(3)

(4)

Figure 10.24.: Semi-Autonomous of DAIM model with packet size increasing

261

10.2 Exercise the DAIM model via Mininet

(A) Three plots are obvious and the focus for POX performance

(B) Focus for DAIM v.2 model performance

(C) Focus for NOX performance

Figure 10.25.: RTT for NOX, POX and Semi-Autonomous DAIM

262

Supporting the Proposed Model Implementation

Figure 10.26.: RTT for NOX and Semi-Autonomous-of-DAIM with packet size
increasing

when increasing the packet size from 56 bytes, 4000 bytes, up to 65000 bytes, the
results for both were around 33 ~ 40 milliseconds of RTT.

10.2.1.3. Phase three

The third phase is concerned with migrating all computational power to the DAIM
with fully autonomous functionality. Then, each switch will have autonomous beha-
viours for self network management. To understand this phase, the focus should be
on the migration of the computational power and transmit packets handed to the
DAIM.
The new architecture includes the DAIM storage module within each switch which
is synchronised with others according to events registered. Moreover, the DAIM
can publish events and actively synchronise to databases, so that other switches
can reconstruct the global network information. Also, the individual switch can
serve any coming packets locally or from other switches. Self-configuration and self-
adaptation will be applied if any local change happens as a benefit provided by the
local storage module. Thus, the DAIM can synchronise information of the entire
network and it has the feasibility to be deployed in distributed system structures.
Then, it could be possible to achieve self-management if all autonomic functions are
enabled (see the architecture of the DAIM phase three Fig. 10.27).

Exercising DAIM model (phase three) within Mininet This phase is not reached
completely yet. However, a few algorithms are deployed to test the capability of the

263

10.3 Integrating DAIM model with Raspberry Pi

Figure 10.27.: Fully Autonomous functionality of DAIM model

DAIM model to perform autonomic behaviours. Ultimately, the goal is to have
autonomic network management for distributed networks. The deployment of this
phase was in chapter 4, as a simple reference implementation of the DAIM model.

10.3. Integrating DAIM model with Raspberry Pi

This section focuses on hardware implementation for the DAIM model. One possib-
ility is by using Raspberry Pi, which is a very small computer the size of a human
hand, that can plug into a monitor, keyboard and mouse, as shown in Fig. 10.28.

Figure 10.28.: Integrating the DAIM model to Raspberry Pi

264

Supporting the Proposed Model Implementation

Figure 10.29.: Topology of DAIM model integrated to Raspberry Pi in Lab

Verifying DAIM Functionalities in Raspberry Pi

This section discusses the functionalities of the DAIM model on Raspberry Pi, with
the implementation of the DAIM model version 4 as the model on chapter 4. That
would be by running ping command to check network connectivity and measure the
mean of RTT between hosts. Moreover, it involves running tests for measuring net-
work throughput and latency by using Cbench (similar to sec. 10.2) and measuring
network bandwidth using Iperf. The topology for all the following experiments will
be as in Fig. 10.29.
Test 14: Latency of DAIM model vs POX within Raspberry Pi (Fig. 10.30),
Latency is measured by running a ping utility, with increasing of packet payload
size, based on topology in Fig. 10.29. The test is starting with default packet size
56 Bytes up to 65 k Bytes. Each test of ping includes 100 seconds with one second
time interval between each ping. The mean RTT measurements were collected from
the ping tests and displayed in milliseconds as seen in Fig. 10.30.
The results of mean RTT in Fig. 10.30 proof that they are affected by packet size
increasing. Furthermore, the mean RTT values are growth significantly with the
packet size increasing.
In contrast, for POX controller in Fig. 10.30 the mean RTT is increasing with packet
size increasing. The performance and process of POX support and give a better
understanding of the DAIM model performance. For instance, most of the packet
size range are higher than the DAIM model, but when the packet size is 65000 bytes;
the POX performance is better than the DAIM model.
As a result, ping or transferring a file with larger packet size may lead to packet
loss and poor performance. However, the response time performance can improve in
various ways, such as use flow_mod() directly of OpenFlow to configure flow entries.
Moreover, using better networking devices can also reduce the response time as the
Raspberry Pi does not have enough available rescuers to manage the packets faster.
Test 15: Throughput of DAIM model in Raspberry Pi

265

10.3 Integrating DAIM model with Raspberry Pi

Figure 10.30.: RTT for DAIM vs. POX

The cbench emulates an OpenFlow switch, to be connected to the DAIM and meas-
ure the number of flow responses per second that the DAIM can handle. Each run
consists of 16 test loops with default 1000 ms duration and 100,000 unique source
MAC addresses. The total responses received from each test are averaged to com-
pute the responses per second results. After running the throughput test, the results
are presented below:

DAIM: min/max/avg/stdev = 24952.54/28823.65/27139.88/1070.14 responses/s

In this test, the DAIM runs through Raspberry Pi, and it has achieved an average
throughput around 27,000 responses per second. There are a few factors that can
affect this throughput performance such as limited computing power of Raspberry
Pi.
Test 16: Latency of DAIM model in Raspberry Pi
The DAIM with a simple controller is required to support requests from the connec-
ted switch, and achieve low flow latency, also to scale efficiently on large networks.
This test is measuring the average response time of latency; the count performed
after reply, and before sending the next flow request. After running the latency test,
the results are presented below:

DAIM: min/max/avg/stdev = 346.97/391.33/362.17/15.47 responses/s

The average response time of the DAIM with one emulated switch is 362.17 responses
per second. However, one reason for the delay is that it caused by the overhead of
socket read/write system calls. Another reason is about the limited computational
power of Raspberry Pi. Therefore, there is a need to improve the DAIM model
and its controller for better performance with advanced computing power. One

266

Supporting the Proposed Model Implementation

way to achieve better performance is by decreasing the number of systems calls
reading/writing with more bytes in each socket call, using a larger read buffer.
Then, the DAIM can be optimised to latency.
Test 17: Measuring Bandwidth of (client/server) on Raspberry Pi Integrated with
DAIM model
This test is conducted using Iperf tools, which consume all bandwidth available
between client/server via TCP, regardless of LAN, WAN, or VPN connection.
Therefore, this test is sitting in Host 1 (192.168.100.100) as a client and Host 2
(192.168.101.101) which is assigned to a server. The bandwidth is measured by
TCP tests, on server port 6689. After running Iperf test, the bandwidth as shown
below is the bandwidth from host 1 to host 2.
Client side shows the following results in the terminal:
———————————————————————————————–
Client connecting to 192.168.101.101, TCP port 6689
TCP window size: 16.0 KByte (default)
———————————————————————————————–

[3] local 192.168.100.100 port 44047 connected with 192.168.101.101 port 6689
[ID] Interval Transfer Bandwidth
[3] 0.0-15.1 sec 9.25 MBytes 4.81 Mbits/sec

The test is performed with 15 seconds duration and default interval between periodic
bandwidth reports (1 second). The test output shows the DAIM can transfer 9.25
Mbytes of data at a rate of 4.81 Mbits/sec from host 1 to host 2 using the default
window size. This result could be affected by increasing the TCP window size (e.g.,
-w 2000), which can give better performance. However, the results show the DAIM
model can provide a fair performance regarding bandwidth utilisation.

267

Annotated Bibliography

The following bibliography presents the introduction of programmability of network
elements by distributing computing environment, which would be demonstrated
through a structured system which is a more complex model named Distributed
Active Information Model (DAIM). The increasing of complexity would ease the net-
work management by introducing autonomic behaviours to provide self-management
for network management. Authors go on to identify key concepts related to next
generation networks. These concepts are put into the network by some autonomic
behaviours by using specification, requirements and analysis of the proposed model.
In particular, these concepts include autonomic management; where the proposed
model can provide the environment for building autonomy in distributed electronic
environments. Moreover, the proposed model is assigned as an abstraction layer for
network infrastructure with some level of distribution. Finally, the bibliography is
ended by related references that support the dissertation stream.

Network management

The following bibliography analyses complicatedness of network management, con-
trolling, activating, and monitoring. Also, it is used to study current structure where
diversity in services, platforms, products, and devices require more effort to be man-
aged. Increasing of complicatedness brings difficulties on configuration, maintain-
ing, reengineering, recovering and operation. Moreover, the network’s equipment
has complicated techniques to provide quality services. The operator is required to
administrate centrally such a system for performing all necessary tasks including
detection of changes, configuration, recovery upon failures and provide a maximum
of excellent services and quality. Also, management of these network technologies is
usually centralised therefore it needs more effort to develop a scalable system with
efficient performance to address the complicatedness. In future, a better level of
services is required to be managed in a scalable manner.
In today’s network, there is much network management complicatedness and many
limitations such as lack of flexibility and bottlenecks, where might not be solved
adequately by the fully centralised paradigm such as SNMP, which is a fully cent-
ralised management paradigm. The centralised paradigm for network management
is insufficient to meet requirements of a complicated distributed electronic environ-
ment. Many technological innovations have been made to address these issues such

269

Bibliography

as autonomic communication networking, computing network applications, and in-
formation modelling; all have played significant roles in managing the complicated
distributed electronic environment. Also, the large scale of current networks is be-
coming more complicated and difficult to manage. The centralised management or
cluster-based server structures mostly focus on reducing management costs by en-
abling innovative services. Effective management requires monitoring, interpreting,
and handling behaviour and performance of managed resources to ensure that they
provide an adequate level of QoS.
Many researchers and network carriers attempted to cope, by providing and devel-
oping technical solutions including protocols, and various standard procedures for
regulating the transmission of data between network elements. In addition, they
should provide an efficient level of performance, high consistency, more connectivity
as well as rigorous standards of data protection. However, it is challenging to ac-
complish the network management approaches caused by mechanism path; it may
take several years to develop a new fully designed protocol, and even longer for it
to become widely spread.

[1] Jemal H Abawajy. Fault-tolerant scheduling policy for grid computing systems.
In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, page 238. IEEE, 2004.

[2] Sebastian Abeck. Network Management: Know It All. Morgan Kaufmann,
2009.

[3] Paul Baran. On distributed communications networks. Communications Sys-
tems, IEEE Transactions on, 12(1):1–9, March 1964.

[4] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and James Davin. Simple
network management protocol (snmp). Technical report, 1990.

[5] Thomas Chamberlain. Learning OMNeT++. Packt Publishing Ltd, 2013.
[6] Thomas M Chen and Stephen S Liu. A model and evaluation of distributed

network management approaches. Selected Areas in Communications, IEEE
Journal on, 20(4):850–857, 2002.

[7] Douglas E Comer. Internetworking con TCP/IP, volume 1. Pearson Italia
Spa, 2006.

[8] Marshall DenHartog. DPS Telecom ’How to Read and
Understand the SNMP MIB...’ , 2008. [Online]. Available:
www.dpstele.com/pdfs/white_papers/demystifying_the_snmp_mib.pdf
. [Accessed: 15-Jan-2012].

[9] Mustafa Mat Deris, Jemal H Abawajy, and Ali Mamat. An efficient replicated
data access approach for large-scale distributed systems. Future Generation
Computer Systems, 24(1):1–9, 2008.

[10] Timon C Du, Eldon Y Li, and An-Pin Chang. Mobile agents in distributed
network management. Communications of the ACM, 46(7):127–132, 2003.

270

Bibliography

[11] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe, reno and
sack tcp. ACM SIGCOMM Computer Communication Review, 26(3):5–21,
1996.

[12] Behrouz A Forouzan. TCP/IP protocol suite. McGraw-Hill, Inc., 2002.
[13] Martijn Frints and Tiago Fioreze. Possibilities of peer-to-peer technology in

network management. PhD thesis, Citeseer, 2006.
[14] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: a scalable and flexible data center network. In ACM SIG-
COMM computer communication review, volume 39, pages 51–62. ACM, 2009.

[15] Jeroen Idserda, Geert Heijenk, and Pieter-Tjerk de Boer. Tcp/ip modelling in
omnet++. 2004.

[16] Ji-Sun Jung, Keun-Woo Lim, Jae-Beom Kim, Young-Bae Ko, Younghyun
Kim, and Sang-Youm Lee. Improving ieee 802.11 s wireless mesh networks for
reliable routing in the smart grid infrastructure. In Communications Work-
shops (ICC), 2011 IEEE International Conference on, pages 1–5. IEEE, 2011.

[17] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and
Ronnie Chaiken. The nature of data center traffic: measurements & analysis.
In Proceedings of the 9th ACM SIGCOMM conference on Internet measure-
ment conference, pages 202–208. ACM, 2009.

[18] Hiroshi Kuriyama, Kyung-Hyu Lee, GS Kuo, Shingo Ata, and Choong Seon
Hong. Managing next generation networks and services: a report on apnoms
2007. Journal of Network and Systems Management, 16(1):113–119, 2008.

[19] G Lorenz, T Moore, G Manes, J Hale, and S Shenoi. Securing ss7 telecom-
munications networks. In Workshop on Information Assurance and Security,
volume 2, pages 273–278, 2001.

[20] Xianqi Lu, Wenan Zhou, and Junde Song. Key issues of future network man-
agement. In Computer Application and System Modeling (ICCASM), 2010
International Conference on, volume 11, pages V11–649. IEEE, 2010.

[21] Kraig Meyer, Mike Erlinger, Joe Betser, Carl Sunshine, Germán Goldszmidt,
and Yechiam Yemini. Decentralizing control and intelligence in network man-
agement. In Integrated Network Management IV, pages 4–16. Springer, 1995.

[22] Tore Mørkved. Peer-to-peer programming with wireless devices. 2005.
[23] L. Raman. Osi systems and network management. Communications Magazine,

IEEE, 36(3):46–53, Mar 1998.
[24] Arindam Roy and Larry Emmett. EFJohnson Technologyies, ’Be-

nefits of Distributed Architecture’ , 2011. [Online]. Available:
www.efjohnson.com/resources/dyn/files/632964zdfb3b4a2/ . [Accessed:
10-May-2012].

271

Bibliography

[25] Randall Stewart and Chris Metz. Sctp: new transport protocol for tcp/ip.
Internet Computing, IEEE, 5(6):64–69, 2001.

[26] David L Tennenhouse and David J Wetherall. Towards an active network
architecture. In DARPA Active NEtworks Conference and Exposition, 2002.
Proceedings, pages 2–15. IEEE, 2002.

[27] A Varga. Inet framework for the omnet++ discrete event simulator, 2012.

[28] Andras Varga. 2007, ’omnet++ user manual’. ,omnetpp.org, [Online]. Avail-
able: https://omnetpp.org/doc/omnetpp/manual/ . [Accessed: 29-December-
2012].

[29] András Varga et al. The omnet++ discrete event simulation system. In Pro-
ceedings of the European simulation multiconference (ESM’2001), volume 9,
page 65. sn, 2001.

[30] András Varga and Rudolf Hornig. An overview of the omnet++ simulation
environment. In Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops,
page 60. ICST (Institute for Computer Sciences, Social-Informatics and Tele-
communications Engineering), 2008.

[31] Dinesh C Verma. Simplifying network administration using policy-based man-
agement. Network, IEEE, 16(2):20–26, 2002.

[32] Baozhen Wu and Yanan Chang. Integrating snmp agents and cli with netconf-
based network management systems. In Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on, volume 1,
pages 81–84. IEEE, 2010.

[33] James Yu and Imad Al Ajarmeh. An empirical study of the netconf protocol.
In Networking and Services (ICNS), 2010 Sixth International Conference on,
pages 253–258. IEEE, 2010.

Autonomic

The following bibliography introduces the main difference between “automatic” be-
haviour and “autonomic” behaviour in networking, started by IBM concepts of
autonomic computing, which is an approach for computing element to create its
strategies, adapt itself usually with dynamic conditions of environment. Also, they
give better understanding of the concepts of autonomic communication, and the
similarities of autonomic computing systems. The autonomic computing systems
should have a sustainable and maintainable information model, and have the abil-
ity to make local decisions according to information collected. The main self-X
properties proposed by IBM are illustrated in self-CHOP.

272

Bibliography

Implementing autonomic functionalities is an attempt to have autonomic commu-
nication which is motivated by IBM concepts of autonomic computing to overcome
the complicatedness in network management. Moreover, many researchers use IBM
autonomic computing concepts for network management challenges, to be managed
autonomically. Then, networks will behave perfectly and network operators can
become freed from some low-level management tasks. In this context “autonomic”
means that each device can draw its own adaptation strategies, according to the sys-
tem’s objectives in order to achieve service satisfaction within managed resources.
Due to increase of network management difficulties, AC is playing a significant role
and promising as a solution to address the challenges of distributed electronic envir-
onments. IBM aims to provide systems with ability to adapt to change in conditions,
of a dynamic environment by the autonomic computing.

[34] Nazim Agoulmine. Autonomic network management principles: from concepts
to applications. Academic Press, 2010.

[35] Zenon Chaczko. Towards epistemic autonomy in adaptive biomimetic middle-
ware for cooperative sensornets. PhD thesis, University of Technology, Sydney,
2009.

[36] Frank Chiang, Hugo Fernandez, Robin Braun, and Johnson Agbinya. Integrat-
ing object-oriented o: Xml semantics into autonomic decentralised function-
alities. In Communications and Information Technologies, 2007. ISCIT’07.
International Symposium on, pages 768–773. IEEE, 2007.

[37] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A survey of autonomic communications. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), 1(2):223–259, 2006.

[38] Andrew D Foster and Mark R Rosenzweig. Learning by doing and learning
from others: Human capital and technical change in agriculture. Readings in
Development Microeconomics, 2:353, 2000.

[39] C. Jelger, C. Tschudin, S. Schmid, and G. Leduc. Basic abstractions for an
autonomic network architecture. In World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007. IEEE International Symposium on a, pages
1–6, June 2007.

[40] J Kephart, J Kephart, D Chess, Craig Boutilier, Rajarshi Das, Jeffrey O
Kephart, and William E Walsh. An architectural blueprint for autonomic
computing. IEEE internet computing, 18(21), 2007.

[41] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tour-
rilhes, Sung-Ju Lee, and Praveen Yalagandula. Automated and scalable qos
control for network convergence. Proc. INM/WREN, 10:1–1, 2010.

[42] A. Manzalini and F. Zambonelli. Towards autonomic and situation-aware com-
munication services: the cascadas vision. In Distributed Intelligent Systems:

273

Bibliography

Collective Intelligence and Its Applications, 2006. DIS 2006. IEEE Workshop
on, pages 383–388, June 2006.

[43] Roy Sterritt. Autonomic networks: engineering the self-healing property. En-
gineering Applications of Artificial Intelligence, 17(7):727–739, 2004.

[44] Roy Sterritt and David F Bantz. Personal autonomic computing reflex reac-
tions and self-healing. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 36(3):304–314, 2006.

[45] John Strassner. Knowledge management issues for autonomic systems. In
null, pages 398–402. IEEE, 2005.

[46] John Strassner. The design of the focale autonomic networking architecture.
Autonomic Network Management Principles: From Concepts to Applications,
page 231, 2010.

[47] John Strassner, Nazim Agoulmine, and Elyes Lehtihet. Focale–a novel auto-
nomic computing architecture. In Proceedings of the 2006 Latin–American
Autonomic Computing Symposium, 2006.

[48] John C Strassner and Yacine M Ghamri-Doudane. Modelling Autonomic Com-
munications Environments. Springer, 2009.

[49] Huaglory Tianfield and Rainer Unland. Towards autonomic computing sys-
tems. Engineering Applications of Artificial Intelligence, 17(7):689–699, 2004.

SDN

The following bibliography is referencing software defined networking SDN. Tradi-
tional network architectures have a limitation to meet the requirements of current
businesses, carriers, and users. A new norm of network architecture has emerged
called Software Defined Networking (SDN) where the idea behind it, is polling any
intelligence from networking hardware. In more detail, network control is extracted
from forwarding and it is programmable. SDN approach is enabling a switch control
plane to orchestrate forwarding planes for the entire network remotely by using an
open protocol such as OpenFlow protocol as a first standardised implementation.
SDN architecture has a logically centralised network operating system, which can
control physically distributed switches, using network applications. The network
applications use application programming interfaces (APIs) on top of the network
operating system, which can set actions, and control the forwarding tables within
each switch for forwarding purposes. The SDN approach simplifies the implement-
ation of control functions.
As advantages of SDN approach, companies and researchers get the programming
ability to control the network with high scalability and flexibility, which can adapt
easily according to ever changing circumstances. The layers of SDN structure include

274

Bibliography

application, network operating system, and forwarding layers. While the network
OS layer has APIs (Application Programming Interfaces) ability, so it is possible to
implement autonomic functionalities such as self-protection and self-optimisation.

[50] A. AL Sabbagh, P. Pupatwibul, A. Banjar, and R. Braun. Optimization
of the openflow controller in wireless environments for enhancing mobility.
In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th
Conference on, pages 930–935, Oct 2013.

[51] Siamak Azodolmolky. Software Defined Networking with OpenFlow. Packt
Publishing Ltd, 2013.

[52] A. Banjar, P. Pupatwibul, R. Braun, and B. Moulton. Analysing the per-
formance of the openflow standard for software-defined networking using the
omnet++ network simulator. In Computer Aided System Engineering (AP-
CASE), 2014 Asia-Pacific Conference on, pages 31–37, Feb 2014.

[53] Ameen Banjar, Pakawat Pupatwibul, and Robin Braun. Comparison of tcp/ip
routing versus openflow table and implementation of intelligent computational
model to provide autonomous behavior. In Computational Intelligence and
Efficiency in Engineering Systems, pages 121–142. Springer, 2015.

[54] M Faizul Bari, Arup Raton Roy, Shubhajit Roy Chowdhury, Qi Zhang, Mo-
hamed Faten Zhani, Rizwan Ahmed, and Raouf Boutaba. Dynamic controller
provisioning in software defined networks. In Network and Service Manage-
ment (CNSM), 2013 9th International Conference on, pages 18–25. IEEE,
2013.

[55] Zheng Cai, Alan L Cox, and TS Eugene Ng. Maestro: A system for scalable
openflow control. Structure, 2010.

[56] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McK-
eown, and Scott Shenker. Ethane: Taking control of the enterprise. In ACM
SIGCOMM Computer Communication Review, volume 37, pages 1–12. ACM,
2007.

[57] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for
high-performance networks. In ACM SIGCOMM Computer Communication
Review, volume 41, pages 254–265. ACM, 2011.

[58] Jeremy M Dover. A denial of service attack against the open floodlight sdn
controller, 2013.

[59] David Erickson. The Beacon OpenFlow Controller. In HotSDN. ACM, 2013.
[60] David Erickson. ’Beacon’ , 2013. [Online]. Available:

http://www.beaconcontroller.net . [Accessed: 20-Dec-2013].
[61] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jac-

obus Van Der Merwe. The case for separating routing from routers. In Pro-

275

Bibliography

ceedings of the ACM SIGCOMM workshop on Future directions in network
architecture, pages 5–12. ACM, 2004.

[62] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn. Queue,
11(12):20, 2013.

[63] Marcial P Fernandez. Comparing openflow controller paradigms scalability:
Reactive and proactive. In Advanced Information Networking and Applica-
tions (AINA), 2013 IEEE 27th International Conference on, pages 1009–1016.
IEEE, 2013.

[64] Open Networking Fundation. Software-defined networking: The new norm for
networks. ONF White Paper, 2012.

[65] Srinivas Govindraj, Arunkumar Jayaraman, Nitin Khanna, and Kaushik Ravi
Prakash. Openflow: Load balancing in enterprise networks using floodlight
controller. University of Colorado, 2012.

[66] Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers, Jennifer
Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4d
approach to network control and management. ACM SIGCOMM Computer
Communication Review, 35(5):41–54, 2005.

[67] Timothy G Griffin and Gordon Wilfong. On the correctness of ibgp config-
uration. ACM SIGCOMM Computer Communication Review, 32(4):17–29,
2002.

[68] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick
McKeown, and Scott Shenker. Nox: towards an operating system for networks.
ACM SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[69] Mukta Gupta, Joel Sommers, and Paul Barford. Fast, accurate simulation for
sdn prototyping. In Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, pages 31–36. ACM, 2013.

[70] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a framework for efficient
and scalable offloading of control applications. In Proceedings of the first
workshop on Hot topics in software defined networks, pages 19–24. ACM, 2012.

[71] Hiroo Ishikawa, Yuuki Ogata, Kazuto Adachi, and Tatsuo Nakajima. Building
smart appliance integration middleware on the osgi framework. In Object-
Oriented Real-Time Distributed Computing, 2004. Proceedings. Seventh IEEE
International Symposium on, pages 139–146. IEEE, 2004.

[72] Ryan Izard. ’Project Floodlight: an Open Source Soft-
ware for Building SDN Controller’ , 2012. [Online]. Available:
http://www.projectfloodlight.org/floodlight/ . [Accessed: 26-Oct-2012].

[73] Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian
Goll, and Phuoc Tran-Gia. Modeling and performance evaluation of an open-
flow architecture. In Proceedings of the 23rd international teletraffic congress,
pages 1–7. International Teletraffic Congress, 2011.

276

Bibliography

[74] Dominik Klein and Michael Jarschel. An openflow extension for the om-
net++ inet framework. In Proceedings of the 6th International ICST Con-
ference on Simulation Tools and Techniques, pages 322–329. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2013.

[75] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Pou-
tievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, et al. Onix: A distributed control platform for large-scale production
networks. In OSDI, volume 10, pages 1–6, 2010.

[76] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM, 2010.

[77] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008.

[78] Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, An-
drew R Curtis, and Sujata Banerjee. Devoflow: Cost-effective flow manage-
ment for high performance enterprise networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, page 1. ACM, 2010.

[79] Tatsuya Mori, Masato Uchida, Ryoichi Kawahara, Jianping Pan, and Shigeki
Goto. Identifying elephant flows through periodically sampled packets. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 115–120. ACM, 2004.

[80] Thomas D Nadeau and Ken Gray. SDN: software defined networks. " O’Reilly
Media, Inc.", 2013.

[81] Jad Naous, David Erickson, G Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an openflow switch on the netfpga platform. In
Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pages 1–9. ACM, 2008.

[82] Ben Pfaff, Martin Casado, James Kempf, and Cedric Westphal.
’OpenFlowVMS-Simulating OpenFlow Networks’ , 2009. [Online]. Available:
http://archive.openflow.org/wk/index.php/OpenFlowVMS . [Accessed: 22-
Jan-2012].

[83] Ben Pfaff, B Heller, D Talayco, D Erickson, G Gibb, G Appenzeller, J Tourril-
hes, J Pettit, KK Yap, M Casado, et al. Openflow switch specification version
1.0. 0 (wire protocol 0x01). Technical report, Technical report, Stanford Uni-
versity, 2009.

[84] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin
Braun. A comparative review: Accurate openflow simulation tools for pro-
totyping. Journal of Networks, 10(5):322–327, 2015.

277

Bibliography

[85] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Performance evalu-
ation of tcp/ip vs. openflow in inet framework using omnet++, and implement-
ation of intelligent computational model to provide autonomous behaviour. In
Osaka acbpp actis 2014, number 2189-1028, pages 43–56, Osaka, Japan, 2014.
The International Academic Forum (IAFOR), The Asian Conference on Tech-
nology, Information & Society 2014.

[86] Brent Salisbury. ’OpenFlow: Coarse vs. Fine Flows’ , 2013. [Online]. Avail-
able: http://networkstatic.net/openflow-coarse-vs-fine-flows/. [Accessed: 12-
Feb-2013].

[87] Brent Salisbury. ’SDN OpenFlow Policy Abstractions’ , 2013. [Online]. Avail-
able: http://networkstatic.net/sdn-openflow-policy-abstractions/. [Accessed:
10-May-2013].

[88] Rob Sherwood and Yap Kok-Kiong. ’Cbench: an Open-
Flow Controller Benchmarker’ , 2010. [Online]. Available:
http://www.openflow.org/wk/index.php/Oflops . [Accessed: 13-May-2013].

[89] Vishal Shukla. Introduction to software defined networking-openflow & vxlan,
2013.

[90] D Sünnen. Performance evaluation of openflow switches. Semester Thesis at
the Department of Information Technology and Electrical Engineering, 2011.

[91] Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Ap-
plying nox to the datacenter. In HotNets, 2009.

[92] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for openflow. In Proceedings of the 2010 internet network management
conference on Research on enterprise networking, pages 3–3. USENIX Associ-
ation, 2010.

[93] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and
Rob Sherwood. On controller performance in software-defined networks. In
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), volume 54, 2012.

[94] Ryan Wallner and Robert Cannistra. An sdn approach: quality of service using
big switch’s floodlight open source controller. Proceedings of the Asia-Pacific
Advanced Network, 35:14–19, 2013.

[95] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. Estinet open-
flow network simulator and emulator. Communications Magazine, IEEE,
51(9):110–117, September 2013.

[96] Julius Werner. Description of network research enablers on the example of
openflow. In New Network Architectures, pages 167–177. Springer, 2010.

[97] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable
flow-based networking with difane. ACM SIGCOMM Computer Communica-
tion Review, 41(4):351–362, 2011.

278

Bibliography

Distributed Active Information Model (DAIM)

This bibliography lists references on the research proposal, distributed active in-
formation model (DAIM) which is expected as an active information model for SDN
to meet the requirements of the autonomic components of the distribution network
such as self-management. The autonomic approach is the ability to provide a net-
work with new services without reconfiguring the individual device or waiting for
its launch from the vendors. The DAIM model is a sustainable information model,
which collects, maintains, updates and synchronises all the related information. The
DAIM offers adaptation algorithms embedded with intelligent agents and informa-
tion objects to be applied to such complicated systems.
Moreover, adopting the DAIM model can manage complicated systems in any dis-
tributed network, which is possible to be autonomous, adaptable, and scalable.
The DAIM model structure is proposed with the hope of addressing the schemes
of some previous network protocols such as Simple Network Management Protocol
(SNMP), Common Information Model (CIM) and mechanisms like Policy-Based
Network Management.
Ultimately, the proposed DAIM model will hopefully address the limitations of cur-
rent approaches and future distributed network systems, aiming at the autonomic
computing management strategy. The DAIM model approach will also satisfy the
requirements of autonomic functionality for distributed network components like
self-learning, self-adaptation and self-CHOP (configuration, healing, optimisation
and protection). Thus, each component can be adaptable according to any change
in conditions of the dynamic environment without direct human intervention.

[98] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, volume 10, pages 19–19, 2010.

[99] Ameen Banjar, Pakawat Pupatwibul, and Robin Braun. Daim: a mechanism
to distribute control functions within openflow switches. Journal of Networks,
9(1):1–9, 2014.

[100] Leonardo Richter Bays and Daniel Stefani Marcon. Flow based load balancing:
Optimizing web servers resource utilization. Journal of Applied Computing
Research, 1(2):76–83, 2011.

[101] Kenneth P Birman. Reliable distributed systems: technologies, web services,
and applications. Springer Science & Business Media, 2005.

[102] Robin Braun and Frank Chiang. A distributed active information model en-
abling distributed autonomics in complex electronic enviornments. In Broad-
band Communications, Information Technology & Biomedical Applications,
2008 Third International Conference on, pages 473–479. IEEE, 2008.

[103] Frank Chiang. Self-adaptability, resilience and vulnerability in autonomic
communications with biology-inspired strategies. 2008.

279

Bibliography

[104] Frank Chiang and Robin Braun. Self-adaptability and vulnerability assessment
of secure autonomic communication networks. In Managing Next Generation
Networks and Services, pages 112–122. Springer, 2007.

[105] Frank Chiang and Robin Braun. Towards a management paradigm with a
constrained benchmark for autonomic communications. In Computational In-
telligence and Security, pages 250–258. Springer, 2007.

[106] Frank Chiang and Venkatesh Mahadevan. Towards the distributed autonomy
in complex environments. In Information and Multimedia Technology, 2009.
ICIMT’09. International Conference on, pages 169–172. IEEE, 2009.

[107] Tao Feng, Jun Bi, Hongyu Hu, and Hui Cao. Networking as a service: a
cloud-based network architecture. Journal of Networks, 6(7):1084–1090, 2011.

[108] Nate Foster, Michael J Freedman, Rob Harrison, Jennifer Rexford, Matthew L
Meola, and David Walker. Frenetic: a high-level language for openflow net-
works. In Proceedings of the Workshop on Programmable Routers for Extens-
ible Services of Tomorrow, page 6. ACM, 2010.

[109] P. Gorja and R. Kurapati. Extending open vswitch to l4-l7 service aware
openflow switch. In Advance Computing Conference (IACC), 2014 IEEE In-
ternational, pages 343–347, Feb 2014.

[110] Ian Robert Govett. Client/server architecture supporting concurrent servers
within a server with a transaction manager providing server/connection de-
coupling, June 2 1998. US Patent 5,761,507.

[111] Venkateswara Rao Komma, Pramod K Jain, and Narinder K Mehta. An ap-
proach for agent modeling in manufacturing on jade reactive architecture. The
International Journal of Advanced Manufacturing Technology, 52(9-12):1079–
1090, 2011.

[112] KA Manjula and P Karthikeyan. Distributed computing approaches for scalab-
ility and high performance. International Journal of Engineering Science and
Technology, 2(6):2328–2336, 2010.

[113] Nitin Mohan and Manoj Sachdev. Low-leakage storage cells for ternary content
addressable memories. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 17(5):604–612, 2009.

[114] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Using daim as a
reactive interpreter for openflow networks to enable autonomic functionality.
In ACM SIGCOMM Computer Communication Review, volume 43, pages 523–
524. ACM, 2013.

[115] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin
Braun. An intelligent model for distributed systems in next generation net-
works. In Advanced Methods and Applications in Computational Intelligence,
pages 315–334. Springer, 2014.

280

Bibliography

[116] Pakawat Pupatwibul, Bahram Jozi, and Robin Braun. Investigating o: Mib-
based distributed active information model (daim) for autonomics. 2011.

[117] Pakawat Pupatwibul, Abdallah AL Sabbagh, Ameen Banjar, and Robin
Braun. Distributed systems in next generation networks. In 1st Australian
Conference on the Applications of Systems Engineering ACASE’12, page 32,
2012.

[118] Hugo Frenandez Rodriguez. Active mib, an object oriented solution for net-
work management. Chalmers University of Technology, 2007.

[119] Beverly Schwartz, Alden W Jackson, W Timothy Strayer, Wenyi Zhou, R Den-
nis Rockwell, and Craig Partridge. Smart packets: applying active networks
to network management. ACM Transactions on Computer Systems (TOCS),
18(1):67–88, 2000.

[120] John Strassner, Sven van der Meer, and James Won-Ki Hong. The applicability
of self-awareness for network management operations. In Modelling Autonomic
Communications Environments, pages 15–28. Springer, 2009.

[121] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa
Vazao. Towards programmable enterprise wlans with odin. In Proceedings of
the first workshop on Hot topics in software defined networks, pages 115–120.
ACM, 2012.

Related

The following references are providing information, knowledge and skills related to
building the proposed model in this research such as models for developing software
applications. The related information can give a better understanding of funda-
mentals and concepts for designing the proposed model architecture such as APIs
provided by Vulkan and OpenGL to interact with infrastructures. Also, there are
other aspects included such as complicated system, complex system, computer in-
frastructure and information models that are related to networks management.

[122] S Balaji and M Sundararajan Murugaiyan. Waterfall vs. v-model vs. agile: A
comparative study on sdlc. International Journal of Information Technology
and Business Management, 2(1):26–30, 2012.

[123] Ameen Banjar, Pakawat Pupatwibul, A Sabbagh, and Robin Braun. Using
an icn approach to support multiple controllers in openflow. International
Journal of Electrical & Computer Sciences (IJECSIJENS), 14(2), 2014.

[124] Hosted by OASIS. ’DMTF Common Information Model (CIM)’ , 2008. [On-
line]. Available: http://xml.coverpages.org/dmtf-cim.html . [Accessed: 15-
May-2012].

281

Bibliography

[125] Gang Chen, Baofei Yang, Wenan Zhou, and Junde Song. Research on service
management data modeling based on sid. In Vehicular Technology Conference,
2007. VTC-2007 Fall. 2007 IEEE 66th, pages 1995–1999. IEEE, 2007.

[126] Guillaume Doyen, Olivier Festor, and Emmanuel Nataf. A cim extension for
peer-to-peer network and service management. In Telecommunications and
Networking-ICT 2004, pages 801–810. Springer, 2004.

[127] Khronos Group. ’Vulkan Overview’ , 2015. [Online]. Available:
www.khronos.org/assets/uploads/developers/library/overview/ . [Accessed:
10-Sep-2015].

[128] John P Hayes. Computer architecture and organization. McGraw-Hill, Inc.,
2002.

[129] John H Holland. Hidden order: How adaptation builds complexity. Basic
Books, 1995.

[130] Alexander Keller, Heather Kreger, and Karl Schopmeyer. Towards a cim
schema for runtime application management. 2001.

[131] Mauri Kuorilehto, Mikko Kohvakka, Jukka Suhonen, Panu Hämäläinen,
Marko Hännikäinen, and Timo D Hämäläinen. Front Matter. Wiley Online
Library, 2007.

[132] Y Tina Lee. Information modeling: From design to implementation. In Pro-
ceedings of the second world manufacturing congress, pages 315–321. Citeseer,
1999.

[133] Douglas A Luke and Jenine K Harris. Network analysis in public health:
history, methods, and applications. Annu. Rev. Public Health, 28:69–93, 2007.

[134] Leen Mak. NGN Management Focus Group. ’NGN Manage-
ment Specification Roadmap v2.1’ , 2011. [Online]. Available:
www.ieee802.org/1/files/public/docs2006/ngn-mgt-roadmap-v2-1-1106.pdf .
[Accessed: 10-May-2013].

[135] Melanie Mitchell. Complexity: A guided tour. Oxford University Press, 2009.

[136] Craig Mortensen, Logan Roots, and Klaus Strelau. Method for modifying
packets that meet a particular criteria as the packets pass between two layers
in a network, January 2 1996. US Patent 5,481,735.

[137] Milton Mueller. The switchboard problem: Scale, signaling, and organization
in manual telephone switching, 1877-1897. Technology and Culture, 30(3):534–
560, 1989.

[138] Augustine C Odinma. Evolution of the voice networks: Historic perspective
from a developing nation. In EUROCON 2009, EUROCON’09. IEEE, pages
1028–1034. IEEE, 2009.

282

Bibliography

[139] Matt Pharr and Randima Fernando. Gpu gems 2: programming techniques for
high-performance graphics and general-purpose computation. Addison-Wesley
Professional, 2005.

[140] Andreas Pilz and Joachim Swoboda. Network management information mod-
els. Aeu-International Journal of Electronics and Communications, 58(3):165–
171, 2004.

[141] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Roland
Braun. Developing an application based on openflow to enhance mobile ip
networks. In Local Computer Networks Workshops (LCN Workshops), 2013
IEEE 38th Conference on, pages 936–940. IEEE, 2013.

[142] Robert R Schaller. Moore’s law: past, present and future. Spectrum, IEEE,
34(6):52–59, 1997.

[143] Craig B Stunkel, Dennis G Shea, Don G Grice, Peter H Hochschild, and
Michael Tsao. The sp1 high-performance switch. In Scalable High-Performance
Computing Conference, 1994., Proceedings of the, pages 150–157. IEEE, 1994.

[144] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Har-
ald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura,
Mark Harrison, M Eisenhauer, et al. Internet of things strategic research
roadmap. Internet of Things-Global Technological and Societal Trends, pages
9–52, 2011.

[145] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL pro-
gramming guide: the official guide to learning OpenGL, version 1.2. Addison-
Wesley Longman Publishing Co., Inc., 1999.

283

Part V.

Appendices

285

A. DAIM model with a Simple
Controller

This appendix provide codes for simple implementation of DAIM model with simple
controller. The codes include main, supporting by headers, and functional codes.
To download files, they are available on GitHub repositories Fig. A.1:
To download whole DAIM project:

https://github.com/ndomon/DAIM/archive/master.zip

To download separated files in:

https://github.com/ndomon/DAIM/tree/master/ANIv41

A.1. DAIM model Header Files

DAIM model implementation has five main header files to implement some of auto-
nomic functionalities and simple controller apps as following:

• Controller header sec. A.1.1
• ARP headersec. A.1.2
• Ethernet headersec. A.1.3
• Communication headersec. A.1.4
• OpenFlow headersec. A.1.5

A.1.1. Controller Header

1 // File: con.h
2

3 # ifndef CON_H
4 # define CON_H
5 # include <iostream >
6 # include <vector >
7 # include <stdlib .h>
8 # include <unistd .h>
9 # include <errno.h>

287

A.1 DAIM model Header Files DAIM model with a Simple Controller

Figure A.1.: GitHub page for DAIM model

288

A.1 DAIM model Header Files

10 # include <pthread .h>
11 # include <endian .h>
12 # include <sys/ socket .h>
13 # include <netinet /in.h>
14 # include <netinet /ip.h>
15 # include <netinet /tcp.h>
16 # include <netinet /udp.h>
17 # include <netdb.h>
18 # include "arp.h"
19 # include "eth.h"
20 # include "com.h"
21

22 using namespace std;
23

24 # define IP_TYPE_ICMP 1
25 # define IP_TYPE_TCP 6
26 # define IP_TYPE_UDP 17
27 # define IP_PROTO_IP 0
28 # define IP_PROTO_UNKNOWN 255
29 # define MAC_ADDR_LEN 6
30 # define DEFAULT_ANI_PORT 6633
31

32 struct switch_port {
33 uint64_t datapath_id ;
34 uint16_t port_no ;
35 uint8_t mac_addr [MAC_ADDR_LEN]; };
36

37 struct switch_host {
38 uint64_t datapath_id ;
39 uint16_t port_no ;
40 uint8_t mac_addr [MAC_ADDR_LEN];
41 uint32_t ip_addr ; };
42

43 struct switch_reply {
44 uint16_t port_no ;
45 bool rec; };
46

47 enum anim_type {
48 ANIM_ECHO_REQUEST ,
49 ANIM_ECHO_REPLY ,
50 ANIM_NODE ,
51 ANIM_LINKS };
52

53 struct net_node {
54 uint64_t datapath_id ;
55 uint16_t port_no ; };
56

57 struct switch_link {
58 net_node node_a ;
59 net_node node_b ; };
60

61 /* Header on all ANI Message packets . */

289

A.1 DAIM model Header Files DAIM model with a Simple Controller

62

63 struct anim_header {
64 uint8_t type; /* One of the ANIM_ constants . */
65 uint16_t length ; /* Length including this anim_header . */ };
66

67 extern uint16_t ani_port ;
68 extern vector < switch_host > hosts ;
69 extern vector < switch_port > ports ;
70 extern vector < switch_link > links ;
71 extern vector < switch_reply > sw_replys ;
72 extern pthread_t node_send_thread ;
73 extern bool verbose ;
74 extern bool cbench ;
75 extern int create_ani_socket ();
76 extern int create_switch_socket ();
77 extern void close_sockets ();
78 extern int communicate_with_switch ();
79 extern int read_from_switch ();
80 extern int check_openflow (char * of_buffer);
81 extern int send_information ();
82 extern int action_hello (char * of_buffer);
83 extern int action_packout (char * of_buffer);
84 extern int action_echo (char * of_buffer);
85 extern int action_features_reply (char * of_buffer);
86 extern void show_hosts ();
87 extern void show_ports ();
88

89 # endif /* CON_H */

A.1.2. ARP Header

1 # ifndef ARP_H
2 # define ARP_H
3 //! ARP request operation .
4 # define ARP_OP_REQUEST 1
5 //! ARP reply operation .
6 # define ARP_OP_REPLY 2
7 //! RARP request operation .
8 # define RARP_OP_REQUEST 3
9 //! RARP reply operation .

10 # define RARP_OP_REPLY 4
11

12 # define ARP_ETH_HEADER_LEN 28
13

14 # define ARP_PRO_IP 0 x0800
15

16 // The ARP packet structure .
17 typedef struct arp {
18 //! Format of hardware address .
19 uint16_t arp_hard_type ;

290

A.1 DAIM model Header Files

20 //! Format of protocol address .
21 uint16_t arp_proto_type ;
22 //! Length of hardware address .
23 uint8_t arp_hard_size ;
24 //! Length of protocol address .
25 uint8_t arp_proto_size ;
26 //! ARP operation code (command).
27 uint16_t arp_op ;
28 //! Hardware source address .
29 uint8_t arp_eth_source [6];
30 //! IP source address .
31 uint32_t arp_ip_source ;
32 //! Hardware destination address .
33 uint8_t arp_eth_dest [6];
34 //! IP destination address .
35 uint32_t arp_ip_dest ; } __attribute__ ((packed)) arp_t;
36

37 # endif

A.1.3. Ethernet Header

1 # ifndef OF_ETH_H
2 # define OF_ETH_H
3

4 # define OF_ETH_ADDR_LEN 6
5

6 # define ARP_DATA 0 x0806
7 # define IP_DATA 0 x0800
8 # define IP6_DATA 0 x86dd
9 # define VLAN_DATA 0x8100

10 # define LLDP_DATA 0x88cc
11

12 // An Openflow Packet In ethernet II packet structure .
13 struct of_ethernet {
14 //! Destination MAC address .
15 uint8_t dst[OF_ETH_ADDR_LEN];
16 //! Source MAC address .
17 uint8_t src[OF_ETH_ADDR_LEN];
18 //! The packet type.
19 uint16_t type;
20 };
21

22 # endif /* eth.h */

A.1.4. Communication Header

1 // File: com.h
2

291

A.1 DAIM model Header Files DAIM model with a Simple Controller

3 # ifndef COM_H
4 # define COM_H
5

6 # include <string .h>
7 # include <stdint .h>
8 # include <arpa/inet.h>
9

10 # include " openflow .h"
11

12 extern void create_of_hello (void *packet , uint32_t
transaction_id);

13 extern void create_of_echo_reply (void *packet , uint32_t
transaction_id);

14 extern void create_of_features_request (void *packet , uint32_t
transaction_id);

15 extern void create_of_switch_config (void *packet , uint32_t
transaction_id , uint16_t flags , uint16_t miss_send_len);

16

17 extern void create_of_packet_out (void *packet , uint32_t
transaction_id , uint32_t buffer_id , uint16_t input_port ,
uint16_t actions_length , uint16_t data_length);

18

19 extern void create_of_flow_mod (void *packet , uint32_t
transaction_id , uint16_t input_port , uint16_t out_port , uint32_t

buffer_id , uint16_t command , uint64_t cookie , uint16_t flags ,
uint16_t hard_timeout , uint16_t idle_timeout , uint16_t priority ,

uint32_t wildcards , uint32_t ip_addr_src , uint32_t ip_addr_dst ,
uint16_t ip_port_src , uint16_t ip_port_dst , uint8_t ip_protocol

, uint8_t ip_tos , uint16_t vlan , uint8_t vlan_priority , uint8_t
*eth_src , uint8_t *eth_dst , uint16_t eth_type , uint16_t
acts_length);

20

21 extern void create_of_action_output (void *packet , uint16_t
max_len , uint16_t out_port);

22

23 # endif /* COM_H */

A.1.5. OpenFlow Header

For more details about OpenFlow header please visit the following link:

http://archive.openflow.org/wp/downloads/
1 /* OpenFlow : protocol between controller and datapath . */
2

3 # ifndef OPENFLOW_OPENFLOW_H
4 # define OPENFLOW_OPENFLOW_H 1
5

6 # ifdef __KERNEL__
7 # include <linux / types .h>
8 #else

292

A.1 DAIM model Header Files

9 # include <stdint .h>
10 # endif
11

12 # ifdef SWIG
13 # define OFP_ASSERT (EXPR) /* SWIG can ’t handle OFP_ASSERT .

*/
14 #elif ! defined (__cplusplus) /* Build -time assertion for use in a

declaration context . */
15 # define OFP_ASSERT (EXPR)

\
16 extern int (* build_assert (void))[sizeof (struct { unsigned int

build_assert_failed : (EXPR) ? 1 : -1; })]
17 #else /* __cplusplus */
18 # define OFP_ASSERT (_EXPR) typedef int build_assert_failed [(_EXPR)

? 1 : -1]
19 # endif /* __cplusplus */
20

21 # ifndef SWIG
22 # define OFP_PACKED __attribute__ ((packed))
23 #else
24 # define OFP_PACKED /* SWIG doesn ’t understand

__attribute . */
25 # endif
26

27 # define OFP_VERSION 0x01
28 # define OFP_MAX_TABLE_NAME_LEN 32
29 # define OFP_MAX_PORT_NAME_LEN 16
30 # define OFP_TCP_PORT 6633
31 # define OFP_SSL_PORT 6633
32

33

34 /* Switch configuration messages . */
35 OFPT_FEATURES_REQUEST , /* Controller / switch message */
36 OFPT_FEATURES_REPLY , /* Controller / switch message */
37 OFPT_GET_CONFIG_REQUEST , /* Controller / switch message */
38 OFPT_GET_CONFIG_REPLY , /* Controller / switch message */
39 OFPT_SET_CONFIG , /* Controller / switch message */
40

41 /* Asynchronous messages . */
42 OFPT_PACKET_IN , /* Async message */
43 OFPT_FLOW_REMOVED , /* Async message */
44 OFPT_PORT_STATUS , /* Async message */
45

46 /* Controller command messages . */
47 OFPT_PACKET_OUT , /* Controller / switch message */
48 OFPT_FLOW_MOD , /* Controller / switch message */
49 OFPT_PORT_MOD , /* Controller / switch message */
50

51 /* Statistics messages . */
52 OFPT_STATS_REQUEST , /* Controller / switch message */
53 OFPT_STATS_REPLY , /* Controller / switch message */
54

293

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

55 /* Barrier messages . */
56 OFPT_BARRIER_REQUEST , /* Controller / switch message */
57 OFPT_BARRIER_REPLY , /* Controller / switch message */
58

59 /* Queue Configuration messages . */
60 OFPT_QUEUE_GET_CONFIG_REQUEST , /* Controller / switch message */
61 OFPT_QUEUE_GET_CONFIG_REPLY /* Controller / switch message */
62 };
63

64 /* Header on all OpenFlow packets . */
65 struct ofp_header {
66 uint8_t version ; /* OFP_VERSION . */
67 uint8_t type; /* One of the OFPT_ constants . */
68 uint16_t length ; /* Length including this ofp_header . */
69 uint32_t xid; /* Transaction id associated with this packet .

Replies use the same id as was in the request to facilitate
pairing . */

70 };
71

72 struct ofp_port_stats_request {
73 uint16_t port_no ; /* OFPST_PORT message must request

statistics * either for a single port (specified in port_no) or
for all ports (if port_no == OFPP_NONE). */

74 uint8_t pad [6];
75 };
76 // ..
77 // ..
78 // ..

Or you can download all the OpenFlow package from the following link:

http://archive.openflow.org/downloads/openflow-1.0.0.tar.gz

A.2. Code of DAIM model and Controller

• Main Cpp sec. A.2.1
• Controller Cpp sec. A.2.2
• Communication Cpp sec. A.2.3

A.2.1. Main Cpp

1 # include "ani.h"
2 struct sigaction sigIntHandler ;
3 int main (int argc , char *argv [])
4 {
5 int opt;
6 const char * short_options = "p:qcvh";

294

A.2 Code of DAIM model and Controller

7 const struct option long_options [] = {
8 {"port", 1, NULL , ’p’},
9 {"quite", 0, NULL , ’q’},

10 {" cbench ", 0, NULL , ’c’},
11 {" version ", 0, NULL , ’v’},
12 {"help", 0, NULL , ’h’},
13 {NULL , 0, NULL , 0}
14 };
15 while ((opt = getopt_long (argc , argv , short_options ,

long_options , NULL)) != -1) {
16 switch (opt) {
17 case ’p’:
18 ani_port = atoi (optarg);
19 break;
20 case ’q’:
21 verbose = 0;
22 break;
23 case ’c’:
24 cbench = 1;
25 break;
26 case ’h’:
27 cout << "Usage :\n" << "\t-p, --port controller

port e.g. -p 2000" << endl
28 << "\t-q, --quite turn off verbose mode" <<

endl
29 << "\t-c, --cbench Cbench benchmarking mode"

<< endl
30 << "\t-v, --version show ANI version " <<

endl
31 << "\t-h, --help show this help" << endl;
32 exit (EXIT_SUCCESS);
33 case ’v’:
34 cout << "ANI OpenFlow Controller " << endl
35 << " Compiled on " << __DATE__ << ’ ’ <<

__TIME__ << endl
36 << " version " << ANI_VERSION << endl;
37 exit (EXIT_SUCCESS);
38 default :
39 break;
40 }
41 }
42 if (atexit (exit_func) != 0) {
43 cerr << " Error : can not set exit function " << endl;
44 exit (EXIT_FAILURE);
45 }
46 cout << "Info: creating ANI socket ..." << endl;
47 if (create_ani_socket () == -1) {
48 cerr << " Error : can not create ANI socket " << endl << "

Exiting ..." << endl;
49 close_sockets ();
50 exit (EXIT_FAILURE);
51 }

295

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

52 cout << "Info: established ANI server !" << endl;
53 cout << "Info: waiting for the switch connection ..." << endl;
54 if (create_switch_socket () == -1) {
55 cerr << " Error : can not connect to the switch " << endl <<

" Exiting ..." << endl;
56 close_sockets ();
57 exit (EXIT_FAILURE);
58 }
59 cout << "Info: connected to the switch !" << endl;
60 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
61 sigIntHandler . sa_handler = SIG_IGN ;
62 sigaction (SIGINT , & sigIntHandler , NULL);
63 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
64 sigIntHandler . sa_handler = & exit_handler ;
65 sigaction (SIGINT , & sigIntHandler , NULL);
66 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
67 sigIntHandler . sa_handler = & exit_handler ;
68 sigaction (SIGTERM , & sigIntHandler , NULL);
69 while (1) {
70 if (communicate_with_switch () == -1) {
71 cerr << " Error : can not communicate with the switch "

<< endl;
72 exit (EXIT_FAILURE);
73 }
74 }
75

76 return EXIT_SUCCESS ;
77 }
78

79 void exit_handler (int sig)
80 {
81 cout << endl << "Info: caught signal , Ctrl + C: " << sig <<

endl;
82 exit (EXIT_SUCCESS);
83 }
84

85 void exit_func ()
86 {
87 pthread_join (node_send_thread , NULL);
88 close_sockets ();
89 cout << " Total host entries freed : " << hosts.size () << endl;
90 cout << " Total port entries freed : " << ports.size () << endl;
91 cout << " Total links entries freed : " << links.size () << endl

;
92 cout << " Total reply entries freed : " << sw_replys .size () <<

endl;
93 }

A.2.2. Controller Cpp

296

A.2 Code of DAIM model and Controller

1 # include "con.h"
2 // ani parameters
3 bool verbose = true;
4 bool cbench = false;
5 // variables for sockets
6 int ani_sockfd = -1;
7 struct sockaddr_in ani_addr ;
8 uint16_t ani_port = DEFAULT_ANI_PORT ;
9 int sw_sockfd = -1;

10 struct sockaddr_in sw_addr ;
11 socklen_t sw_addl = 0;
12

13 pthread_mutex_t links_mutex = PTHREAD_MUTEX_INITIALIZER ;
14 vector < switch_reply > sw_replys ;
15 bool echo_received = false;
16 bool check_network = false;
17 int anim_node_counter = 0;
18

19 // hosts and ports tables
20 vector < switch_host > hosts;
21 vector < switch_port > ports;
22 vector < switch_link > links;
23 // variables for buffers
24 char read_buffer [3072000];
25 char write_buffer [10240];
26 char * read_bufferp = NULL;
27 long read_buffer_len = 0;
28 long write_buffer_len = 0;
29 // OF transaction id for packets
30 uint32_t transaction_id = 0;
31 // OF Switch datapath id
32 uint64_t switch_id = 0;
33 // OF Switch no of ports
34 int no_of_ports = -1;
35 // Variables for sharing nodes
36 pthread_t node_send_thread = -1;
37

38 // OpenFlow packet pointers
39 struct ofp_header * pheader = NULL;
40 struct ofp_switch_config * pswitch_config = NULL;
41 struct ofp_switch_features * p_features_reply = NULL;
42 struct ofp_packet_out * p_packet_out = NULL;
43 struct ofp_action_output * p_action_output = NULL;
44 struct ofp_packet_in * p_packet_in = NULL;
45 struct of_ethernet * p_packet_in_eth = NULL;
46 struct ofp_flow_mod * p_flow_mod = NULL;
47 struct arp * p_packet_in_arp = NULL;
48 struct iphdr * p_packet_in_ip = NULL;
49 struct tcphdr * p_packet_in_tcp = NULL;
50 struct udphdr * p_packet_in_udp = NULL;
51 struct anim_header * p_anim_header = NULL;
52 struct net_node * p_net_node = NULL;

297

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

53 void * node_share_func (void * message);
54 int create_ani_socket () {
55 int optval ;
56 ani_sockfd = socket (AF_INET , SOCK_STREAM , 0);
57

58 if (ani_sockfd < 0) {
59 cerr << " Error : can not create ANI socket : " << strerror

(errno) << endl;
60 return -1;
61 }
62 memset (& ani_addr , ’\0’, sizeof (ani_addr));
63

64 ani_addr . sin_family = AF_INET ;
65 ani_addr . sin_addr . s_addr = htonl (INADDR_ANY);
66 ani_addr . sin_port = htons (ani_port);
67 optval = 1;
68 if(setsockopt (ani_sockfd , SOL_SOCKET , SO_REUSEADDR , &optval ,

sizeof (int)) == -1) {
69 cerr << "Error: can not set socket SO_REUSEADDR option , "

<< strerror (errno) << endl;
70 }
71

72 if (bind (ani_sockfd , (struct sockaddr *) &ani_addr ,
sizeof (ani_addr)) < 0) {

73 cerr << "Error: can not bind ANI socket , " << strerror (
errno) << endl;

74 return -1;
75 }
76

77 if (listen (ani_sockfd , 1) == -1) {
78 cerr << "Error: can not listen to switch connection , " <<

strerror (errno) << endl;
79 return -1;
80 }
81 return 0;
82 }
83

84 int create_switch_socket () {
85 int optval ;
86 sw_addl = sizeof (sw_addr);
87 memset (& sw_addr , ’\0’, sizeof (sw_addr));
88 sw_sockfd = accept (ani_sockfd , (struct sockaddr *) &sw_addr ,

& sw_addl);
89 if (sw_sockfd < 0) {
90 cerr << "Error: can not accept connection from the switch

, " << strerror (errno) << endl;
91 return -1;
92 }
93

94 optval = 1;
95 if (setsockopt (sw_sockfd , IPPROTO_TCP , TCP_NODELAY , &optval ,

sizeof (int)) < 0) {

298

A.2 Code of DAIM model and Controller

96 cerr << "Error: can not set protocol TCP_NODELAY option ,
" << strerror (errno) << endl;

97 }
98 optval = 1;
99 if (setsockopt (sw_sockfd , IPPROTO_TCP , TCP_QUICKACK , &optval ,

sizeof (int)) < 0) {
100 cerr << "Error: can not set protocol TCP_QUICKACK option ,

" << strerror (errno) << endl;
101 }
102 return 0;
103 }
104

105 void close_sockets () {
106 if (ani_sockfd > 0) close (ani_sockfd);
107 if (sw_sockfd > 0) close (sw_sockfd);
108 }
109

110 int communicate_with_switch () {
111 if (read_from_switch () == -1) {
112 if (sw_sockfd > 0) {
113 close (sw_sockfd);
114 sw_sockfd = -1;
115 }
116 cout << " Total host entries freed : " << hosts .size () <<

endl;
117 cout << " Total port entries freed : " << ports .size () <<

endl;
118 cout << " Total links entries freed : " << links .size () <<

endl;
119 cout << " Total reply entries freed : " << sw_replys .size ()

<< endl;
120 hosts. clear ();
121 ports. clear ();
122 links. clear ();
123 sw_replys . clear ();
124 cout << "Info: trying to reconnect to the switch " << endl

;
125 if (create_switch_socket () == -1) {
126 cerr << " Error : can not connect to the switch " <<

endl << " Exiting ..." << endl;
127 exit (EXIT_FAILURE);
128 }
129 cout << "Info: connected to the switch !" << endl;
130 }
131 if (send_information () == -1) return -1;
132 return 0;
133 }
134

135 int read_from_switch () {
136 memset (read_buffer , ’\0’, sizeof (read_buffer));
137 read_buffer_len = 0;

299

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

138 read_buffer_len = recv (sw_sockfd , read_buffer , sizeof (
read_buffer), 0);

139 if (read_buffer_len < 1) {
140 cerr << "Error: reading from the switch , " << strerror (

errno) << endl;
141 return -1;
142 }
143 else if (read_buffer_len > 0) {
144 if (verbose == true) cout << "Info: received packet from

the switch " << endl;
145 return 0;
146 }
147 }
148

149 int check_openflow (char * of_buffer) {
150 pheader = (struct ofp_header *) of_buffer ;
151 if (pheader -> version == OFP_VERSION) {
152 if (verbose == true) cout << "Info: OpenFlow packet

detected " << endl;
153 return 0;
154 }
155 else {
156 if (verbose == true) cerr << " Error : packet is not

recognised " << endl;
157 return -1;
158 }
159 }
160

161 int send_information () {
162 read_bufferp = read_buffer ;
163 if (cbench == true) {
164 long openflow_packet_size = 0;
165 for (long counter = read_buffer_len ;
166 counter > 0;
167 counter -= openflow_packet_size) {
168 if (check_openflow (read_bufferp) == -1) return 0;
169 pheader = (struct ofp_header *) read_bufferp ;
170 openflow_packet_size = ntohs (pheader -> length);
171 if (pheader ->type == OFPT_HELLO) {
172

173 if (action_hello (read_bufferp) == -1) return -1;
174 }
175 else if (pheader ->type == OFPT_FEATURES_REPLY) {
176 if (action_features_reply (read_bufferp) == -1)

return -1;
177 }
178 else if (pheader ->type == OFPT_PACKET_IN) {
179 if (action_packout (read_bufferp) == -1) return

-1;
180 }
181 else if (pheader ->type == OFPT_ECHO_REQUEST) {
182 if (action_echo (read_bufferp) == -1) return -1;

300

A.2 Code of DAIM model and Controller

183 }
184 else if (pheader ->type == OFPT_PORT_STATUS) {
185 }
186 read_bufferp += openflow_packet_size ;
187 }
188 }
189 else {
190 if (check_openflow (read_bufferp) == -1) {
191 if (pheader ->type == OFPT_HELLO) {
192 if (action_hello (read_bufferp) == -1) return -1;
193 }
194 return 0;
195 }
196 if (pheader ->type == OFPT_HELLO) {
197 if (action_hello (read_bufferp) == -1) return -1;
198 }
199 else if (pheader ->type == OFPT_FEATURES_REPLY) {
200 if (action_features_reply (read_bufferp) == -1) return

-1;
201 }
202 else if (pheader ->type == OFPT_PACKET_IN) {
203 if (action_packout (read_bufferp) == -1) return -1;
204 }
205 else if (pheader ->type == OFPT_ECHO_REQUEST) {
206 if (action_echo (read_bufferp) == -1) return -1;
207 }
208 else if (pheader ->type == OFPT_PORT_STATUS) {
209 }
210 }
211 return 0;
212 }
213

214 int action_hello (char * of_buffer) {
215 pheader = (struct ofp_header *) of_buffer ;
216 transaction_id = ntohl (pheader ->xid);
217 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
218 create_of_hello (write_buffer , htonl (transaction_id));
219 pheader = (struct ofp_header *) write_buffer ;
220 write_buffer_len = send (sw_sockfd , write_buffer , ntohs(

pheader -> length), 0);
221 if (write_buffer_len == 0) {
222 cerr << " Error : can not write hello to the switch : " <<

strerror (errno) << endl;
223 return -1;
224 }
225 else if (write_buffer_len > 0) {
226 if (verbose == true) cout << "Info: sent hello to the

switch " << endl;
227 transaction_id ++;
228 create_of_features_request (write_buffer , htonl (

transaction_id));
229 pheader = (struct ofp_header *) write_buffer ;

301

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

230 write_buffer_len = send (sw_sockfd , write_buffer , ntohs(
pheader -> length), 0);

231 if (write_buffer_len == 0) {
232 cerr << " Error : can not write feature request to the

switch : " << strerror (errno) << endl;
233 return -1;
234 }
235 else if (write_buffer_len > 0) {
236 if (verbose == true) cout << "Info: features request

sent to the switch " << endl;
237 return 0;
238 }
239 }
240 }
241

242 int action_echo (char * of_buffer) {
243 pheader = (struct ofp_header *) of_buffer ;
244 transaction_id = ntohl (pheader ->xid);
245 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
246 create_of_echo_reply (write_buffer , htonl (transaction_id));
247 pheader = (struct ofp_header *) write_buffer ;
248

249 write_buffer_len = send (sw_sockfd , write_buffer , ntohs (
pheader -> length), 0);

250 if (write_buffer_len == 0) {
251 cerr << "Error: can not write echo reply to the switch : "

<< strerror (errno) << endl;
252 return -1;
253 }
254 else if (write_buffer_len > 0) {
255 if (verbose == true) cout << "Info: echo reply sent to

the switch " << endl;
256 return 0;
257 }
258 }
259

260 int action_features_reply (char * of_buffer) {
261 p_features_reply = (struct ofp_switch_features *) of_buffer ;
262 transaction_id = ntohl (p_features_reply -> header .xid);
263 no_of_ports = ((ntohs(p_features_reply -> header .

length)) - (sizeof
264 (struct ofp_switch_features))) / (sizeof (struct ofp_phy_port));
265 cout << "Info: there are " << no_of_ports << " ports

on the switch " << endl;
266 if (no_of_ports == 0) return -1;
267 switch_id = be64toh (p_features_reply -> datapath_id);
268 if (pthread_create (& node_send_thread , NULL ,

node_share_func , n) < 0) cerr <<
269 "Error: can not create thread for node sharing "<< endl;
270

271 for (int port_count = 0; port_count < no_of_ports ;
port_count ++) {

302

A.2 Code of DAIM model and Controller

272 struct switch_port new_port ;
273 memset (& new_port , ’0’, sizeof (new_port));
274 new_port . datapath_id = switch_id ;
275 new_port . port_no = ntohs (p_features_reply ->ports[

port_count]. port_no);
276 new_port . mac_addr [0] = p_features_reply ->ports[

port_count]. hw_addr [0];
277 new_port . mac_addr [1] = p_features_reply ->ports[

port_count]. hw_addr [1];
278 new_port . mac_addr [2] = p_features_reply ->ports[

port_count]. hw_addr [2];
279 new_port . mac_addr [3] = p_features_reply ->ports[

port_count]. hw_addr [3];
280 new_port . mac_addr [4] = p_features_reply ->ports[

port_count]. hw_addr [4];
281 new_port . mac_addr [5] = p_features_reply ->ports[

port_count]. hw_addr [5];
282 ports. push_back (new_port);
283 }
284 show_ports ();
285 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
286 transaction_id ++;
287 create_of_switch_config (write_buffer , htonl (transaction_id)

, htons (0) , htons (128));
288 pswitch_config = (struct ofp_switch_config *) write_buffer ;
289 write_buffer_len = send (sw_sockfd , write_buffer , ntohs (

pswitch_config -> header . length), 0);
290 if (write_buffer_len < 0) {
291 cerr << " Error : can not write config to the switch : " <<

strerror (errno) << endl;
292 return -1;
293 }
294 else if (write_buffer_len > 0) {
295 if (verbose == true) cout << "Info: config request sent

to the switch " << endl;
296 return 0;
297 }
298 }
299 int action_packout (char * of_buffer) {
300 uint32_t buffer_id = 0;
301 uint16_t in_port = 0;
302 uint8_t src[OFP_ETH_ALEN];
303 uint8_t dst[OFP_ETH_ALEN];
304 uint32_t ip_src = 0;
305 uint32_t ip_dst = 0;
306 u_int16_t tcp_port_src = 0;
307 u_int16_t tcp_port_dst = 0;
308 u_int16_t udp_port_src = 0;
309 u_int16_t udp_port_dst = 0;
310 struct switch_host new_host ;
311 bool add_host = true;
312 p_packet_in = (struct ofp_packet_in *) of_buffer ;

303

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

313 buffer_id = ntohl (p_packet_in -> buffer_id);
314 in_port = ntohs (p_packet_in -> in_port);
315 transaction_id = ntohl (p_packet_in -> header .xid);
316 p_packet_in_eth = (struct of_ethernet *) p_packet_in ->data;
317 memset (src , ’\0 ’, sizeof (uint8_t) * OF_ETH_ADDR_LEN);
318

319 src [0] = p_packet_in_eth ->src [0];
320 src [1] = p_packet_in_eth ->src [1];
321 src [2] = p_packet_in_eth ->src [2];
322 src [3] = p_packet_in_eth ->src [3];
323 src [4] = p_packet_in_eth ->src [4];
324 src [5] = p_packet_in_eth ->src [5];
325 memset (dst , ’\0 ’, sizeof (uint8_t) * OF_ETH_ADDR_LEN);
326 dst [0] = p_packet_in_eth ->dst [0];
327 dst [1] = p_packet_in_eth ->dst [1];
328 dst [2] = p_packet_in_eth ->dst [2];
329 dst [3] = p_packet_in_eth ->dst [3];
330 dst [4] = p_packet_in_eth ->dst [4];
331 dst [5] = p_packet_in_eth ->dst [5];
332 if (ntohs(p_packet_in_eth ->type) == IP6_DATA) {
333 if (cbench == true) {
334 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
335 create_of_packet_out (write_buffer , htonl (

transaction_id), htonl (buffer_id),
336 htons (in_port), sizeof (struct ofp_action_output), 0);
337 p_packet_out = (struct ofp_packet_out *) write_buffer

;
338 create_of_action_output (p_packet_out ->actions , htons

(0) , htons (OFPP_FLOOD));
339

340 write_buffer_len = send(sw_sockfd , write_buffer ,
ntohs (p_packet_out -> header . length), 0);

341 }
342 }
343 else if (ntohs(p_packet_in_eth ->type) == ARP_DATA) {
344 p_packet_in_eth ++;
345 p_packet_in_arp = (struct arp *) p_packet_in_eth ;
346 ip_src = ntohl (p_packet_in_arp -> arp_ip_source);
347 ip_dst = ntohl (p_packet_in_arp -> arp_ip_dest);
348 p_packet_in_eth = (struct of_ethernet *)

p_packet_in ->data;
349

350 for (int count = 0; count < hosts.size ();
count ++) {

351 if (memcmp (hosts[count]. mac_addr , src , sizeof (
uint8_t) * MAC_ADDR_LEN) == 0) {

352 if (verbose == true) cout << "Info: host already
in the table" << endl;

353 add_host = false ;
354 break;
355 }
356 }

304

A.2 Code of DAIM model and Controller

357 if (add_host == true) {
358 struct switch_host new_host ;
359 memset (& new_host , ’\0’, sizeof (struct switch_host))

;
360 new_host . datapath_id = switch_id ;
361 new_host . port_no = in_port ;
362 new_host . mac_addr [0] = src [0];
363 new_host . mac_addr [1] = src [1];
364 new_host . mac_addr [2] = src [2];
365 new_host . mac_addr [3] = src [3];
366 new_host . mac_addr [4] = src [4];
367 new_host . mac_addr [5] = src [5];
368 hosts. push_back (new_host);
369 show_hosts ();
370 }
371 if ((p_packet_in_eth ->dst [0] == 0xff) && (p_packet_in_eth ->dst [1]

== 0xff) && (p_packet_in_eth ->dst [2] == 0xff) && (
p_packet_in_eth ->dst [3] == 0xff) && (p_packet_in_eth ->dst [4] ==
0xff) && (p_packet_in_eth ->dst [5] == 0xff)) {

372

373 if (verbose == true) cout << "Info: ARP broadcast " << endl;
374 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
375 create_of_packet_out (write_buffer , htonl (

transaction_id), htonl (buffer_id), htons (in_port),
sizeof (struct ofp_action_output), 0);

376 p_packet_out = (struct ofp_packet_out *) write_buffer
;

377 create_of_action_output (p_packet_out ->actions , htons
(0) , htons (OFPP_FLOOD));

378

379 write_buffer_len = send(sw_sockfd , write_buffer , ntohs (
p_packet_out -> header . length), 0);

380 }
381 else
382 {
383 uint16_t out_port = 0;
384 uint8_t op = 0;
385 for (int count = 0; count < hosts.size (); count ++) {
386 if (memcmp (hosts[count]. mac_addr , dst , sizeof (

uint8_t) * MAC_ADDR_LEN) == 0) {
387 if (verbose == true) cout << "Info: host

found in the table" << endl;
388 out_port = hosts[count]. port_no ;
389 break;
390 }
391 }
392 if (out_port != 0) {
393 p_packet_in_eth = (struct of_ethernet *)

p_packet_in ->data;
394 p_packet_in_eth ++;
395 p_packet_in_arp = (struct arp *) p_packet_in_eth ;
396 op = ntohs (p_packet_in_arp -> arp_op);

305

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

397 memset (write_buffer , ’\0’, sizeof (write_buffer))
;

398 create_of_flow_mod (write_buffer ,
htonl (transaction_id), htons(
in_port), htons (0) , htonl (
buffer_id), htons (OFPFC_ADD),
htobe64 (0) , htons (0) , htons (0) ,
htons (60) , htons (0) , htonl (0) ,
htonl (ip_src), htonl (ip_dst),
htons (0) , htons (0) , htons (op), 0,
htons (65535) , htons (0) , src , dst ,
htons (ARP_DATA), sizeof (struct
ofp_action_output));

399 p_flow_mod = (struct ofp_flow_mod *) write_buffer
;

400 create_of_action_output (p_flow_mod ->actions ,
htons (0) , htons (out_port));

401

402 write_buffer_len = send (sw_sockfd , write_buffer ,
ntohs(p_flow_mod -> header . length), 0);

403 if (verbose == true) cout << "Info: ARP flow
mod" << endl;

404 }
405 }
406 }
407 else if (ntohs(p_packet_in_eth ->type) == IP_DATA) {
408 uint16_t out_port = 0;
409 for (int count = 0;
410 count < hosts .size (); count ++) {
411 if (memcmp (hosts[count]. mac_addr , dst , sizeof (

uint8_t) * MAC_ADDR_LEN) == 0) {
412 if (verbose == true) cout << "Info: host found in

the table " << endl;
413 out_port = hosts[count]. port_no ;
414 break;
415 }
416 }
417 p_packet_in_eth = (struct of_ethernet *) p_packet_in ->

data;
418 p_packet_in_eth ++;
419 p_packet_in_ip = (struct iphdr *) p_packet_in_eth ;
420 ip_src = ntohl (p_packet_in_ip -> saddr);
421 ip_dst = ntohl (p_packet_in_ip -> daddr);
422 if (p_packet_in_ip -> protocol == IP_TYPE_ICMP) {
423 if (out_port != 0) {
424 memset (write_buffer , ’\0’, sizeof (write_buffer))

;
425 create_of_flow_mod (write_buffer , htonl (

transaction_id), htons(in_port), htons (0) ,
htonl (buffer_id), htons (OFPFC_ADD), htobe64
(0) , htons (0) , htons (0) , htons (60) , htons (0)
, htonl (0) , htonl (ip_src), htonl (ip_dst),

306

A.2 Code of DAIM model and Controller

htons (0) , htons (0) , IP_TYPE_ICMP , 0, htons
(65535) , htons (0) , src , dst , htons (IP_DATA),
sizeof (struct ofp_action_output));

426 p_flow_mod = (struct ofp_flow_mod *) write_buffer
;

427 create_of_action_output (p_flow_mod ->actions ,
htons (0) , htons (out_port));

428 write_buffer_len = send (sw_sockfd , write_buffer ,
ntohs (p_flow_mod -> header . length), 0);

429 if (verbose == true) cout << "Info: ICMP flow mod
" << endl;

430 }
431 }
432 else if (p_packet_in_ip -> protocol == IP_TYPE_TCP) {
433 if (out_port != 0) {
434 p_packet_in_ip ++;
435 p_packet_in_tcp = (struct tcphdr *)

p_packet_in_ip ;
436 tcp_port_src = ntohs (p_packet_in_tcp -> source);
437 tcp_port_dst = ntohs (p_packet_in_tcp -> dest);
438 memset (write_buffer , ’\0’, sizeof (write_buffer))

;
439 create_of_flow_mod (write_buffer , htonl (

transaction_id), htons(in_port), htons (0) ,
htonl (buffer_id), htons (OFPFC_ADD), htobe64
(0) , htons (0) , htons (0) , htons (60) , htons (0)
, htonl (0) , htonl (ip_src), htonl (ip_dst),
htons (tcp_port_src), htons (tcp_port_dst),
IP_TYPE_TCP , 0, htons (65535) , htons (0) , src ,
dst , htons (IP_DATA), sizeof (struct
ofp_action_output));

440 p_flow_mod = (struct ofp_flow_mod *) write_buffer
;

441 create_of_action_output (p_flow_mod ->actions ,
htons (0) , htons (out_port));

442 write_buffer_len = send (sw_sockfd , write_buffer ,
ntohs (p_flow_mod -> header . length), 0);

443 if (verbose == true) cout << "Info: TCP flow mod"
<< endl;

444 }
445 }
446 else if (p_packet_in_ip -> protocol == IP_TYPE_UDP) {
447 if (out_port != 0) {
448 p_packet_in_ip ++;
449 p_packet_in_udp = (struct udphdr *)

p_packet_in_ip ;
450 udp_port_src = ntohs (p_packet_in_udp -> source);
451 udp_port_dst = ntohs (p_packet_in_udp -> dest);
452 memset (write_buffer , ’\0’, sizeof (write_buffer))

;
453 create_of_flow_mod (write_buffer , htonl (

transaction_id), htons(in_port), htons (0) ,

307

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

htonl (buffer_id), htons (OFPFC_ADD), htobe64
(0) , htons (0) , htons (0) , htons (60) , htons (0)
, htonl (0) , htonl (ip_src), htonl (ip_dst),
htons (udp_port_src), htons (udp_port_dst),
IP_TYPE_UDP , 0, htons (65535) , htons (0) , src ,
dst , htons (IP_DATA), sizeof (struct
ofp_action_output));

454 p_flow_mod = (struct ofp_flow_mod *) write_buffer
;

455 create_of_action_output (p_flow_mod ->actions ,
htons (0) , htons (out_port));

456 write_buffer_len = send(sw_sockfd , write_buffer ,
ntohs (p_flow_mod -> header . length), 0);

457 if (verbose == true) cout << "Info: UDP flow mod"
<< endl;

458 }
459 }
460 else if (p_packet_in_ip -> protocol == IP_PROTO_UNKNOWN) {
461 memset (write_buffer , ’\0 ’, sizeof (write_buffer));
462 create_of_packet_out (write_buffer , htonl (

transaction_id), htonl (buffer_id), htons (in_port),
sizeof (struct ofp_action_output), 0);

463 p_packet_out = (struct ofp_packet_out *) write_buffer
;

464 create_of_action_output (p_packet_out ->actions , htons
(0) , htons (OFPP_FLOOD));

465 write_buffer_len = send (sw_sockfd , write_buffer ,
ntohs (p_packet_out -> header . length), 0);

466 }
467 }
468 else if (ntohs(p_packet_in_eth ->type) == LLDP_DATA) {
469 }
470 if (write_buffer_len < 0) {
471 cerr << "Error: can not write to the switch : " <<

strerror (errno) << endl;
472 return -1;
473 }
474 }
475 void show_hosts () {
476 for (int count = 0; count < hosts.size (); count ++) {
477 cout << "Host MAC: " << uppercase << hex << (int) hosts[

count]. mac_addr [0] << ":"
478 << (int) hosts[count]. mac_addr [1] << ":" << (int) hosts[count].

mac_addr [2] << ":" << (int)
479 hosts [count]. mac_addr [3] << ":" << (int) hosts [count]. mac_addr [4]

<< ":" << (int)
480 hosts [count]. mac_addr [5] << dec << " Ingress Port: " << (int)

hosts [count]. port_no << " Datapath : " << (int)
481 hosts [count]. datapath_id << endl;
482 }
483 }
484

308

A.2 Code of DAIM model and Controller

485 void show_ports () {
486 for (int count = 0; count < ports.size (); count ++) {
487 cout << " Switch port MAC: " << uppercase << hex << (int)

ports [count]. mac_addr [0] << ":" << (int)
488 ports [count]. mac_addr [1] << ":" << (int) ports [count]. mac_addr [2]

<< ":" << (int) ports[count]. mac_addr [3] << ":"
489 << (int) ports[count]. mac_addr [4] << ":" << (int) ports[count].

mac_addr [5] << dec << " Ingress Port: " << (int)
490 ports[count]. port_no << " Datapath : " << (int) ports [count].

datapath_id << endl;
491 }
492 }
493

494 void * node_share_func (void * message) {
495 bool threadl = false;
496 int ports_count = -1;
497 sleep (5);
498 send_anim :
499 if (pthread_mutex_lock (& links_mutex) == 0) {
500 ports_count = no_of_ports ;
501 anim_node_counter = 0;
502 pthread_mutex_unlock (& links_mutex);
503 }
504 for (int portno = 1; portno < (ports_count + 1); portno

++) {
505 struct ofp_packet_out * n_packet_out = NULL;
506 struct ofp_action_output * n_action_output = NULL;
507 struct of_ethernet * n_packet_out_eth = NULL;
508 struct anim_header e_anim_header ;
509 char eth_buffer [1024];
510 char n_buffer [10240];
511 long sw_write_len = -1;
512 memset (n_buffer , ’\0 ’, sizeof (n_buffer));
513 memset (eth_buffer , ’\0’, sizeof (eth_buffer));
514 memset (& e_anim_header , ’\0’, sizeof (e_anim_header));
515 n_packet_out_eth = (struct of_ethernet *) eth_buffer ;
516 n_packet_out_eth ->src [0] = 0;
517 n_packet_out_eth ->src [1] = 0;
518 n_packet_out_eth ->src [2] = 0;
519 n_packet_out_eth ->src [3] = 0;
520 n_packet_out_eth ->src [4] = 0;
521 n_packet_out_eth ->src [5] = 1;
522 n_packet_out_eth ->dst [0] = 1;
523 n_packet_out_eth ->dst [1] = 1 << 5 | 1 << 1 | 1;
524 n_packet_out_eth ->dst [2] = 1 << 5;
525 n_packet_out_eth ->dst [3] = 0;
526 n_packet_out_eth ->dst [4] = 0;
527 n_packet_out_eth ->dst [5] = 1;
528 n_packet_out_eth ->type = htons(LLDP_DATA);
529 n_packet_out = (struct ofp_packet_out *) n_buffer ;
530 n_packet_out -> header . version = OFP_VERSION ;
531 n_packet_out -> header .type = OFPT_PACKET_OUT ;

309

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

532 n_packet_out -> header .xid = htonl (0);
533 n_packet_out -> buffer_id = htonl (0 xffffffff);
534 n_packet_out -> in_port = htons (65533) ;
535 n_packet_out -> actions_len = htons (sizeof (struct

ofp_action_output));
536 n_action_output = (struct ofp_action_output *)

n_packet_out -> actions ;
537 n_action_output ->type = htons (OFPAT_OUTPUT);
538 n_action_output -> max_len = htons (0);
539 n_action_output ->len = htons (8);
540 n_action_output ->port = htons (portno);
541

542 memcpy (n_buffer + sizeof (struct ofp_packet_out) +
sizeof (struct ofp_action_output), eth_buffer , sizeof (
struct of_ethernet));

543

544 e_anim_header .type = ANIM_ECHO_REQUEST ;
545 e_anim_header . length = htons (sizeof (e_anim_header));
546

547 memcpy (n_buffer + sizeof (struct ofp_packet_out) +
sizeof (struct ofp_action_output) + sizeof (struct
of_ethernet), & e_anim_header , sizeof (e_anim_header));

548 n_packet_out -> header . length = htons (sizeof (struct
ofp_packet_out) + sizeof (struct ofp_action_output) +
sizeof (struct of_ethernet) + sizeof (e_anim_header));

549 sw_write_len = send(sw_sockfd , n_buffer , ntohs (
n_packet_out -> header . length), 0);

550

551 if (sw_write_len < 1) cerr << " Error : can not send echo
to port " << portno

552 << ", " << strerror (errno) << endl;
553 else cout << "Info: send echo to port " << portno << endl

;
554 sleep (5);
555 }
556 if (pthread_mutex_lock (& links_mutex) == 0) {
557 struct switch_reply *p = NULL;
558 p = (struct switch_reply *) sw_replys . get_object ();
559 while (p != NULL) {
560 struct ofp_packet_out * n_packet_out = NULL;
561 struct ofp_action_output * n_action_output = NULL;
562 struct of_ethernet * n_packet_out_eth = NULL;
563 struct anim_header n_anim_header ;
564 struct net_node n_anim_node ;
565 char eth_buffer [1024];
566 char n_buffer [10240];
567 long sw_write_len = -1;
568 memset (n_buffer , ’\0 ’, sizeof (n_buffer));
569 memset (eth_buffer , ’\0’, sizeof (eth_buffer));
570 memset (& n_anim_header , ’\0’, sizeof (n_anim_header));
571 memset (& n_anim_node , ’\0’, sizeof (n_anim_node));
572 n_packet_out_eth = (struct of_ethernet *) eth_buffer ;

310

A.2 Code of DAIM model and Controller

573 n_packet_out_eth ->src [0] = 0;
574 n_packet_out_eth ->src [1] = 0;
575 n_packet_out_eth ->src [2] = 0;
576 n_packet_out_eth ->src [3] = 0;
577 n_packet_out_eth ->src [4] = 0;
578 n_packet_out_eth ->src [5] = 1;
579 n_packet_out_eth ->dst [0] = 1;
580 n_packet_out_eth ->dst [1] = 1 << 5 | 1 << 1 | 1;
581 n_packet_out_eth ->dst [2] = 1 << 5;
582 n_packet_out_eth ->dst [3] = 0;
583 n_packet_out_eth ->dst [4] = 0;
584 n_packet_out_eth ->dst [5] = 1;
585 n_packet_out_eth ->type = htons(LLDP_DATA);
586 n_packet_out = (struct ofp_packet_out *) n_buffer ;
587 n_packet_out -> header . version = OFP_VERSION ;
588 n_packet_out -> header .type = OFPT_PACKET_OUT ;
589 n_packet_out -> header .xid = htonl (0);
590 n_packet_out -> buffer_id = htonl (0 xffffffff);
591 n_packet_out -> in_port = htons (65533) ;
592 n_packet_out -> actions_len = htons (sizeof (struct

ofp_action_output));
593 n_action_output = (struct ofp_action_output *)

n_packet_out -> actions ;
594 n_action_output ->type = htons (OFPAT_OUTPUT);
595 n_action_output -> max_len = htons (0);
596 n_action_output ->len = htons (8);
597 n_action_output ->port = htons (((struct switch_reply

*)p)->port_no);
598 memcpy (n_buffer + sizeof (struct ofp_packet_out) +

sizeof (struct ofp_action_output),
599 eth_buffer , sizeof (struct of_ethernet));
600

601 n_anim_header .type = ANIM_NODE ;
602 n_anim_header . length = htons (sizeof (n_anim_header) +

sizeof (n_anim_node));
603 n_anim_node . datapath_id = htobe64 (switch_id);
604 n_anim_node . port_no = htons (((struct switch_reply *)

p)->port_no);
605

606 memcpy (n_buffer + sizeof (struct ofp_packet_out) +
sizeof (struct ofp_action_output) + sizeof (struct
of_ethernet), & n_anim_header , sizeof (n_anim_header))
;

607 memcpy (n_buffer + sizeof (struct ofp_packet_out) +
sizeof (struct ofp_action_output) + sizeof (struct
of_ethernet) + sizeof (n_anim_header), & n_anim_node ,

sizeof (n_anim_node));
608

609 n_packet_out -> header . length = htons (sizeof (struct
ofp_packet_out) + sizeof (struct ofp_action_output)
+ sizeof (struct of_ethernet) + sizeof (n_anim_header
) + sizeof (n_anim_node));

311

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

610 sw_write_len = send(sw_sockfd , n_buffer , ntohs (
n_packet_out -> header . length), 0);

611

612 if (sw_write_len < 1) cerr << "Error: can not send
node "

613 << ((struct switch_reply *)p)->port_no << ", " << strerror (errno)
<< endl;

614 else cout << "Info: send node to port " << ((struct
switch_reply *)p)->port_no << endl;

615 p = (struct switch_reply *) sw_replys . get_object ();
616 }
617 sw_replys . list_rewind ();
618 pthread_mutex_unlock (& links_mutex);
619 }
620 while (1) {
621 if (pthread_mutex_lock (& links_mutex) == 0) {
622 threadl = true;
623 if (anim_node_counter > 20) break ;
624 anim_node_counter ++;
625 pthread_mutex_unlock (& links_mutex);
626 threadl = false ;
627 }
628 sleep (1);
629 }
630 if (threadl == true) {
631 pthread_mutex_unlock (& links_mutex);
632 threadl = false ;
633 }
634 if (pthread_mutex_lock (& links_mutex) == 0) {
635 struct switch_link *pl = NULL;
636 cout << " Switch Links" << endl;
637 pl = (struct switch_link *) links. get_object ();
638 while (pl != NULL) {
639 cout << " Datapath " << pl -> node_a . datapath_id
640 << " with port " << pl -> node_a . port_no << " is connected to

datapath "
641 << pl -> node_b . datapath_id << " with port "
642 << pl -> node_b . port_no << endl;
643 pl = (struct switch_link *) links. get_object ();
644 }
645 links . list_rewind ();
646 sw_replys . free_list ();
647 links. free_list ();
648 pthread_mutex_unlock (& links_mutex);
649 }
650 goto send_anim ;
651 }

A.2.3. Communication Cpp

312

A.2 Code of DAIM model and Controller

1 # include "com.h"
2

3 struct ofp_header * of_header = NULL;
4 struct ofp_switch_config * of_switch_config = NULL; struct

ofp_packet_out * of_packet_out = NULL;
5 struct ofp_flow_mod * of_flow_mod = NULL; struct ofp_action_output

* of_action_output = NULL;
6

7 void create_of_hello (void *packet , uint32_t transaction_id) {
8 of_header = (struct ofp_header *) packet ;
9 of_header -> version = OFP_VERSION ;

10 of_header ->type = OFPT_HELLO ;
11 of_header ->xid = transaction_id ;
12 of_header -> length = htons (sizeof (struct ofp_header));
13 }
14 void create_of_echo_reply (void *packet , uint32_t transaction_id)

{
15 of_header = (struct ofp_header *) packet ;
16 of_header -> version = OFP_VERSION ;
17 of_header ->type = OFPT_ECHO_REPLY ;
18 of_header ->xid = transaction_id ;
19 of_header -> length = htons (sizeof (struct ofp_header));
20 }
21 void create_of_features_request (void *packet , uint32_t

transaction_id) {
22 of_header = (struct ofp_header *) packet ;
23 of_header -> version = OFP_VERSION ;
24 of_header ->type = OFPT_FEATURES_REQUEST ;
25 of_header ->xid = transaction_id ;
26 of_header -> length = htons (sizeof (struct ofp_header));
27 }
28 void create_of_switch_config (void *packet , uint32_t

transaction_id , uint16_t flags , uint16_t miss_send_len) {
29 of_switch_config = (struct ofp_switch_config *) packet ;
30 of_switch_config -> header . version = OFP_VERSION ;
31 of_switch_config -> header .type = OFPT_SET_CONFIG ;
32 of_switch_config -> header .xid = transaction_id ;
33 of_switch_config -> header . length = htons (sizeof (

ofp_switch_config));
34 of_switch_config -> flags = flags ;
35 of_switch_config -> miss_send_len = miss_send_len ;
36 }
37 void create_of_packet_out (void *packet , uint32_t transaction_id ,

uint32_t buffer_id , uint16_t input_port , uint16_t
actions_length , uint16_t data_length) {

38 of_packet_out = (struct ofp_packet_out *) packet ;
39 of_packet_out -> header . version = OFP_VERSION ;
40 of_packet_out -> header .type = OFPT_PACKET_OUT ;
41 of_packet_out -> header .xid = transaction_id ;
42 of_packet_out -> header . length = htons (sizeof (struct

ofp_packet_out) + actions_length + data_length);
43 of_packet_out -> buffer_id = buffer_id ;

313

A.2 Code of DAIM model and Controller DAIM model with a Simple Controller

44 of_packet_out -> in_port = input_port ;
45 of_packet_out -> actions_len = htons (actions_length);
46 }
47 void create_of_flow_mod (void *packet , uint32_t transaction_id ,

uint16_t input_port , uint16_t out_port , uint32_t buffer_id ,
uint16_t command , uint64_t cookie , uint16_t flags , uint16_t
hard_timeout , uint16_t idle_timeout , uint16_t priority , uint32_t

wildcards , uint32_t ip_addr_src , uint32_t ip_addr_dst , uint16_t
ip_port_src , uint16_t ip_port_dst , uint8_t ip_protocol , uint8_t
ip_tos , uint16_t vlan , uint8_t vlan_priority , uint8_t *eth_src ,
uint8_t *eth_dst , uint16_t eth_type , uint16_t acts_length) {

48 of_flow_mod = (struct ofp_flow_mod *) packet ;
49 of_flow_mod -> header . version = OFP_VERSION ;
50 of_flow_mod -> header .type = OFPT_FLOW_MOD ;
51 of_flow_mod -> header .xid = transaction_id ;
52 of_flow_mod -> header . length = htons (sizeof (struct

ofp_flow_mod) + acts_length);
53 of_flow_mod -> match . in_port = input_port ;
54 of_flow_mod -> match . wildcards = wildcards ;
55 of_flow_mod ->match. nw_proto = ip_protocol ;
56 memcpy (of_flow_mod ->match.dl_src , eth_src , sizeof (uint8_t) *

OFP_ETH_ALEN);
57 memcpy (of_flow_mod ->match.dl_dst , eth_dst , sizeof (uint8_t) *

OFP_ETH_ALEN);
58 of_flow_mod ->match.pad1 [0] = 0;
59 of_flow_mod ->match.pad2 [0] = 0;
60 of_flow_mod ->match.pad2 [1] = 0;
61 of_flow_mod ->match. dl_type = eth_type ;
62 of_flow_mod ->match. nw_src = ip_addr_src ;
63 of_flow_mod ->match. nw_dst = ip_addr_dst ;
64 of_flow_mod -> match . nw_tos = ip_tos ;
65 of_flow_mod ->match. tp_src = ip_port_src ;
66 of_flow_mod ->match. tp_dst = ip_port_dst ;
67 of_flow_mod ->match. dl_vlan = vlan;
68 of_flow_mod ->match. dl_vlan_pcp = vlan_priority ;
69 of_flow_mod -> out_port = out_port ;
70 of_flow_mod -> buffer_id = buffer_id ;
71 of_flow_mod -> command = command ;
72 of_flow_mod -> cookie = cookie ;
73 of_flow_mod -> flags = flags ;
74 of_flow_mod -> hard_timeout = hard_timeout ;
75 of_flow_mod -> idle_timeout = idle_timeout ;
76 of_flow_mod -> priority = priority ;
77 }
78 void create_of_action_output (void *packet , uint16_t max_len ,

uint16_t out_port) {
79 of_action_output = (struct ofp_action_output *) packet ;
80 of_action_output ->type = htons (OFPAT_OUTPUT);
81 of_action_output ->len = htons (8);
82 of_action_output -> max_len = max_len ;
83 of_action_output ->port = out_port ;
84 }

314

A.3 Storage module of the DAIM model

Figure A.2.: Memory Block for storage module

A.3. Storage module of the DAIM model

The storage module required supporting from hosts and ports tables, as one way to
store network information, this appendix presents linked list based storage.
The linked list store information using block of memories (objects). Memory for
the objects is then allocated using C++’s dynamic memory allocation methods.
In linked list based storage, each object keeps the address of it’s preceding and
subsequent objects. So the objects can refer to it’s next and previous objects (see
Fig. A.2).
Where, * prev represents a pointer which holds address of a memory block. So,
the payload *p can point to any block of memory storing single or a combination
of information such as host mac address, switch datapath id, switch port, and IP
address. The structure for the block of memory is defined by:
1 struct object {
2 void *p;
3 struct object *next;
4 struct object *prev;
5 };

To store objects, we have object_lists (tables) structures in the storage module.
object_list is a representation of a table. So we have a
− hosts entries object_list and
− port entries object_list.
Each object_list structure keeps information such as each object size, address of the
first object, address of current object and address of the last object. Each object_list
has some functions to manipulate the object_list itself. These functions can be used
to add a new object, remove an object, free the memories used by the objects, and
retrieve an object from the list.
Now, the hosts table object list objects are used to store the following data (payload):

• Switch datapath id;
• Mac address of the host
• Switch port for host

315

A.3 Storage module of the DAIM model DAIM model with a Simple Controller

• IP address of host
Therefore, the objects for the host table entries will have the above pay loads which
is defined by:
1 struct switch_host {
2 uint64_t datapath_id ;
3 uint16_t port_no ;
4 uint8_t mac_addr [MAC_ADDR_LEN];
5 uint32_t ip_addr ;
6 };

Now, the class object_list defines an object which can relate to a table or object
list. This class which has the following structure shown in the code below:
1 class object_list {
2 struct object * first ;
3 struct object * current ;
4 struct object *last;
5 long size_of_object ;
6

7 public :
8

9 object_list ();
10 void * add_object ();
11 long get_list_size ();
12 int remove_object (const void *ob);
13 int free_list ();
14 void * get_object ();
15 void list_rewind ();
16 void set_object_size (long s);
17 long get_object_size ();
18 };

Each object of object_list type holds the address of first element, the current ele-
ment, the last element in the list as well as stores size of each element in the list.
Each object_list object has some methods defined as public functions to do some
operations in the list such as adding of new elements, removing of existing elements,
and getting an element from the list. These public functions implements memory al-
location and freeing of memory for the elements from the systems heap memory. By
using these functions we can interact with the object list and modify it’s properties.
The action of public functions in the object list class is listed the Tab. A.1.
The most important methods in the storage module (Linked list) are add_object,
remove_object and free list and the program flow for add_object, remove_object
and free_list as following:
Firstly, the add_object method first allocate memory for the object, and then the
method will check whether there is an element existing in the table. If there is no
element in the table, then set the first and last element to be the allocated object.
Furthermore, the method will set the previous and next element of the allocated

316

A.4 API dependencies for DAIM modules

Table A.1.: Actions of public functions in the object list class

Methods Actions

add_object allocates memory for a new element and returns
the pointer of allocated element payload

get_list_size Returns number of objects in a object list
remove_object Removes a matching object from a object list

free_list Frees the memory allocated by each element in
the list

get_object Returns a pointer to the next element in the list
(useful for reading through elements in the list)

list_rewind Sets the current element in the list to be first
element

set_object_size Sets the size of each object(element) in the list
get_object_size Returns the size of each element in the list

object to be NULL (non existing). If there is already an element exists in the table,
set the previous element of the allocated object to the last element in the table and
set the last element in the table to be the allocated object. Also the method will
set next element in the allocated object to the NULL.

Secondly, the remove_object method, matches every element in the table to the ob-
ject that needs to be removed. The actions on the matching element are determined
by four conditions:

(1) if the match found is both first and last element in the table (in other words the
only element);

(2) the match is first element;

(3) the match is last element; and

(4) the match does not fall into the first three conditions.

Lastly, the free_list method moves to the last element in the table and frees the ele-
ment from the table. After freeing each element, the method moves to the previous
element of the last removed element. This way the method continues freeing each
element in the table until it reaches the first element and finally removes the first
element.

A.4. API dependencies for DAIM modules

The API dependencies for DAIM modules are listed in the Tab. A.2:

317

A.4 API dependencies for DAIM modules DAIM model with a Simple Controller

Table A.2.: API dependencies for DAIM modules

API name Purpose

htons

To convert 2 bytes data from host byte order to
network byte order, e.g. messages send from the
DAIM to the switch are converted using hton
function series

htonl To convert 4 bytes data from host byte order to
network byte order

ntohs

To convert 2 bytes data from network byte order
to host byte order, e.g. messages received from
the switch to the DAIM are converted using ntoh
function series

ntohl To convert 4 bytes data from network byte order
to host byte order

memcpy

To copy n bytes of memory from one variable to
other, e.g. used by the control and
communication subsystem to copy mac addresses
into the DAIM tables objects

memset
To clear the first n bytes of the memory area in
the variables, e.g. used by different sub-systems
to give initial zero value to the variables

memcmp

To compare the first n bytes of one variable
memory to other variable memory, e.g. used by
the linked list and control module to determine
host matching

strerror
To get the string describing last system call error,
e.g. used by different sub-systems to display error
messages

exit To exit from the main program

318

A.5 Basic carrier for OF messages

A.5. Basic carrier for OF messages

For the first hands on the OpenFlow network is better to understand the protocol
and analyse all processes as they are. To do so, the following code would help the
analyses:
1 // DAIM Stage 1 (Phase One of DAIM model)
2

3 # include <stdio.h>
4 # include <stdlib .h>
5 # include <string .h>
6 # include <errno.h>
7 # include <unistd .h>
8 # include <signal .h>
9 # include <sys/types.h>

10 # include <sys/stat.h>
11 # include <sys/wait.h>
12 # include <fcntl.h>
13 # include <sys/ socket .h>
14 # include <netinet /in.h>
15 # include <netinet /ip.h>
16 # include <netdb.h>
17 # define Controller_PORT 6633
18 # define XAPP_PORT 2000
19

20 // Variables for XApp
21 int app_sockfd = -1;
22 struct sockaddr_in app_addr ;
23 int app_port = XAPP_PORT ;
24

25 // Variables for the switch
26 int sw_sockfd = -1;
27 struct sockaddr_in sw_addr ;
28 socklen_t sw_addl ;
29

30 // Variables for remote controller
31 int con_sockfd = -1;
32 struct sockaddr_in con_addr ;
33 int con_port = Controller_PORT ;
34 struct hostent * con_server ;
35

36 // Variables for XApp exit control
37 struct sigaction sigIntHandler ;
38 pid_t cproc = -1; int cstat;
39 int create_app_socket (void);
40 int create_controller_socket (void);
41 void close_sockets (void);
42 void exit_handler (int sig);
43 void child_exit_handler (int sig);
44

45 int main (int argc , char *argv []) {
46

319

A.5 Basic carrier for OF messages DAIM model with a Simple Controller

47 fprintf (stdout , "XApp version 1\n");
48 if (argc < 2) fprintf (stdout , "XApp port is 2000\ n");
49 else {
50 app_port = atoi (argv [1]);
51 fprintf (stdout , "XApp port is %d\n", app_port);
52 }
53

54 fprintf (stdout , "XApp: Creating XApp server socket ...\n");
55 if (create_app_socket () == -1)
56 {
57 fprintf (stderr , "XApp: Can not create server socket \ nExiting \n")

;
58 close_sockets ();
59 exit (EXIT_FAILURE);
60 }
61

62 fprintf (stdout , "XApp: Established XApp server !\n");
63 fprintf (stdout , "XApp: Creating controller socket ...\n");
64 if (create_controller_socket () == -1)
65 {
66 fprintf (stderr , "XApp: Can not create controller socket \ nExiting

\n");
67 close_sockets ();
68 exit (EXIT_FAILURE); }
69

70 fprintf (stdout , "XApp: Established connection to the remote
controller !\n");

71

72 // Set main process exit handler
73 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
74 sigIntHandler . sa_handler = & exit_handler ;
75 sigaction (SIGINT , & sigIntHandler , NULL);
76

77 // Create a child process
78 cproc = fork ();
79 if (cproc == -1) {
80 fprintf (stderr , "XApp: Can not fork child process \ nExiting \n");
81 close_sockets ();
82 exit (EXIT_FAILURE); }
83 else if (cproc == 0) {
84 char buffer [10240];
85 int buffer_len ;
86 int sw_write_len ;
87

88 // Set child process exit handler
89 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
90 sigIntHandler . sa_handler = SIG_IGN ;
91 sigaction (SIGINT , & sigIntHandler , NULL);
92 memset (& sigIntHandler , ’\0 ’, sizeof (sigIntHandler));
93 sigIntHandler . sa_handler = & child_exit_handler ;
94 sigaction (SIGTERM , & sigIntHandler , NULL);
95 while (1) {

320

A.5 Basic carrier for OF messages

96 memset (buffer , ’\0 ’, sizeof (buffer));
97 buffer_len = 0;
98 buffer_len = read (con_sockfd , buffer , sizeof (buffer));
99 if (buffer_len < 0)

100 {
101 fprintf (stderr , "XApp: Can not read from the controller : %s\

nExiting \n", strerror (errno));
102 close_sockets ();
103 _exit (EXIT_FAILURE);
104 }
105 else if (buffer_len > 0)
106 {
107 sw_write_len = write (sw_sockfd , buffer , buffer_len);
108 if (sw_write_len < 0)
109 {
110 fprintf (stderr , "XApp: Can not write to the switch : %s\ nExiting \

n", strerror (errno));
111 close_sockets ();
112 _exit (EXIT_FAILURE);
113 }
114 }
115 }
116 _exit (EXIT_SUCCESS);
117 }
118 else
119 {
120 char buffer [10240];
121 int buffer_len ;
122 int con_write_len ;
123 while (1)
124 {
125 memset (buffer , ’\0 ’, sizeof (buffer));
126 buffer_len = 0;
127 buffer_len = read (sw_sockfd , buffer , sizeof (buffer));
128 if (buffer_len < 0)
129 {
130 fprintf (stderr , "XApp: Can not read from the switch : %s\n",

strerror (errno));
131 fprintf (stdout , "XApp: Waiting for child process to exit\n");
132

133 // Send terminate signal to the child process
134 kill (cproc , SIGTERM);
135 waitpid (cproc , &cstat , WUNTRACED | WCONTINUED);
136 close_sockets ();
137 exit (EXIT_FAILURE);
138 }
139 else if (buffer_len > 0)
140 {
141 con_write_len = write (con_sockfd , buffer , buffer_len);
142 if (con_write_len < 0)
143 {
144 fprintf (stderr , "XApp: Can not write to the controller : %s\n",

321

A.5 Basic carrier for OF messages DAIM model with a Simple Controller

strerror (errno));
145 fprintf (stdout , "XApp: Waiting for child process to exit\n");
146

147 // Send terminate signal to the child process
148 kill (cproc , SIGTERM);
149 waitpid (cproc , &cstat , WUNTRACED | WCONTINUED);
150 close_sockets ();
151 exit (EXIT_FAILURE);
152 }
153 }
154 }
155 }
156 return EXIT_SUCCESS ;
157 }
158

159 int create_app_socket (void) {
160 // socket for server mode
161 app_sockfd = socket (AF_INET , SOCK_STREAM , 0);
162

163 if (app_sockfd < 0)
164 {
165 fprintf (stderr , "XApp: Error creating server socket : %s\

n", strerror (errno));
166 return -1;
167 }
168

169 // Define server address
170 memset (& app_addr , ’\0 ’, sizeof (app_addr));
171 app_addr . sin_family = AF_INET ;
172 app_addr . sin_addr . s_addr = INADDR_ANY ;
173 app_addr . sin_port = htons (app_port);
174

175 // Bind server socket to the main process
176 if (bind (app_sockfd , (struct sockaddr *) &app_addr , sizeof (

struct sockaddr)) < 0)
177 {
178 fprintf (stderr , "XApp: Error binding server socket : %s\n

", strerror (errno));
179 return -1;
180 }
181

182 // Set clients listening queue size
183 if (listen (app_sockfd , 10) == -1)
184 {
185 fprintf (stderr , "XApp: Error establishing listening : %s\

n", strerror (errno));
186 return -1;
187 }
188

189 // Accept connection from the switch
190 sw_addl = sizeof (sw_addr);
191 memset (& sw_addr , ’\0 ’, sizeof (sw_addr));

322

A.5 Basic carrier for OF messages

192 sw_sockfd = accept (app_sockfd , (struct sockaddr *) &sw_addr , &
sw_addl);

193 if (sw_sockfd < 0)
194 {
195 fprintf (stderr , "XApp: Error accepting connection from

switch : %s\n", strerror (errno));
196 return -1;
197 }
198 return 0;
199 }
200 int create_controller_socket (void)
201 {
202 con_sockfd = socket (AF_INET , SOCK_STREAM , 0);
203 if (con_sockfd < 0)
204 {
205 fprintf (stderr , "XApp: can not create socket for the

controller : %s\n", strerror (errno));
206 return -1;
207 }
208 con_server = gethostbyname (" 127.0.0.1 ");
209 if (con_server == NULL)
210 {
211 fprintf (stderr , "XApp: can not get host address for the

controller : %s\n", strerror (errno));
212 return -1;
213 }
214 memset (& con_addr , ’\0 ’, sizeof (con_addr));
215

216 // Define Address for the controller
217 con_addr . sin_family = AF_INET ;
218 bcopy ((char *) con_server ->h_addr , (char *) & con_addr . sin_addr .

s_addr , con_server -> h_length);
219 con_addr . sin_port = htons (con_port);
220

221 // Connect to the controller
222 if (connect (con_sockfd , (struct sockaddr *) &con_addr ,

sizeof (con_addr)) < 0)
223 {
224 fprintf (stderr , "XApp: can not connect to the controller

: %s\n", strerror (errno));
225 return -1;
226 }
227 return 0;
228 }
229

230 void close_sockets (void)
231 {
232 if (app_sockfd < 0) close (app_sockfd);
233 if (sw_sockfd < 0) close (sw_sockfd);
234 if (con_sockfd < 0) close (con_sockfd);
235 }
236

323

A.5 Basic carrier for OF messages DAIM model with a Simple Controller

237 void child_exit_handler (int sig)
238 {
239 close_sockets ();
240 fprintf (stdout , "\nXApp: Child Caught TERM signal : %d\n",

sig);
241 _exit (EXIT_SUCCESS);
242 }
243

244 void exit_handler (int sig)
245 {
246 // Send termination signal to the child process
247 kill (cproc , SIGTERM);
248 close_sockets ();
249 fprintf (stdout , "\nXApp: Caught close end signal , Ctrl + C:

%d\n", sig);
250 exit (EXIT_SUCCESS);
251 }

324

B. OMNeT++ (Simulation
Environment)

OMNeT++ stands for Objective Modular Network Testbed in C++. It’s a
component-based simulation library written in C++ designed to simulate commu-
nication networks. OMNeT++ is not a network simulator but a framework to allow
you to create your own network simulations [5, 29].

The need for simulation
Understanding the need for simulation is a big factor, therefore, have a look at this
table of real network versus simulated network comparison [5].

B.1. Installing OMNeT++ in Linux OS

Before installing OMNeT++, system must has some packages before compiling OM-
NeT++; follow these commands into terminal [28]:

$ sudo apt-get install openmpi-bin libopenmpi-dev
$ sudo apt-get install libpcap-dev
$ sudo apt-get update && sudo apt-get install build-essential gcc g++ bison flex
perl tcl-dev tk-dev
$ sudo apt-get install blt libxml2-dev xlib1g-dev openjdk-6-jre doxygen graphiz
$ sudo apt-get update

Download OMNeT++ source code, then compile it:
Visit URL: http://www.omnetpp.org/omnetpp. On there, click on Download but-
ton. For direct download link of OMNeT++ x.x.x (source + IDE, tgz) press the
following link:
http://omnetpp.org/omnetpp/send/30-omnet-releases/2290-omnet-4-6-source-ide-
tgz

After download OMNeT++, extract it by one of the following options:
1- using the file manager (right-clicking on the file and then clicking on Extract
Here, or double-clicking on the file and selecting where to extract it)

325

B.1 Installing OMNeT++ in Linux OS OMNeT++ (Simulation Environment)

Table B.1.: Real network vs. network simulation [5]

Real Network Network Simulation

-The cost of all the hardware,
servers, switches and so on has
to be borne.
-It takes a lot of time to set up
big specialist networks used for
business or academia.
-Making changes to a
pre-existing network takes
planning, and if a change is
made in error, it may cause the
network to fail.
-You get the real thing, so what
you observe from the real
network is actually happening.

-The cost of a single standalone
machine with OMNeT++
installed (which is free).
-It takes time to learn how to
create simulations, though once
you know how it’s done, it’s
much easier to create new ones.
-Making changes to a simulated
network of a real pre-existing
network doesn’t pose any risk.
The outcome of the simulation
can be analysed to determine
how the real network will be
affected.
-If there is a bug in the
simulation software, it could
cause the simulation to act
incorrectly.
As you can see, there are benefits
of using both real networks and
network simulations when
creating and testing your
network. The point I want to
convey though, is that network
simulations can make network
design cheaper and less costly.

326

B.2 Import INET framework to OMNeT++

2- entering the following code into Linux terminal:

$ tar xvzf ~/Downloads/omnetpp-x.x.x-src.tgz -C ~/

Then to compile OMNeT++ , open up a terminal for the extracted OMNeT++
folder and follow these commands in terminal:

$./configure
$ make

B.2. Import INET framework to OMNeT++

The INET Framework is a network simulation package that contains models for
wired and wireless networking protocols, including UDP, TCP, SCTP, IP, IPv6, and
Ethernet [74]. The INET Framework has recently implemented an extension to
enable OpenFlow to be modelled. The OpenFlow extension is still in early develop-
ment, and is currently based on Switch Specification Version 1.2 [27, 5].

For direct download link of INET x.x.x (source + IDE, tgz) press the
following link:

http://omnetpp.org/download/contrib/models/inet-2.5.0-src.tgz

After download INET, extract it by one of the following options:

1- using the file manager (right-clicking on the file and then clicking on Extract
Here, or double-clicking on the file and selecting where to extract it).

2- entering the following code into Linux terminal: -

$ tar xvzf ~/Downloads/inet-x.x.x-src.tgz -C ~/

Then to import INET follow these steps:

1. In OMNeT++, go to Select File | Import.

2. Click on General and then click on Existing Projects into Workspace.

3. Click on Browse and select the INET folder.

4. Tick the checkbox “Copy projects into workspace”.

5. Click “Finish”.

6. Under Project Explorer build INET to use it in fro network simulation (press
Ctrl + B or from the top select Project > Build all).

INET has been documented online including components and capabilities at
http://inet.omnetpp.org/doc/INET/neddoc/index.html.

327

B.3 Import OpenFlow in OMNeT++: OMNeT++ (Simulation Environment)

B.3. Import OpenFlow in OMNeT++:

Visit URL to download OpenFlow :

https://github.com/lsinfo3/ofomnet/archive/master.zip

After download OpenFlow, extract it by using the file manager (right-clicking on
the file and then clicking on Extract Here, or double-clicking on the file and selecting
where to extract it). Then to import OpenFlow to OMNeT++ follow these steps:

1. In OMNeT++, go to Select File | Import.

2. Click on General and then click on Existing Projects into Workspace.

3. Click on Browse and select the downloaded file of OpenFlow from GitHub.

4. Tick the checkbox “Copy projects into workspace”.

5. Click “Finish”.

6. Under Project Explorer build OpenFlow to use it in fro network simulation (press
Ctrl + B or from the top select Project > Build all).

Then after build the OpenFlow in the Project Explorer make INET as a reference
for the OpenFlow folder:

Under Project Explorer click on OpenFlow folder and then (from the top select
Project > Properties > Project References) tick on INET as reference for this folder.

B.4. OMNeT++ components:

Network:

Network is an object that defines the network and modules, also it allows modules
to talk to each other via channels.

Module:

Model is a component that sits inside a Network object and is able to send messages
to other Module objects (e.g. Router, Server, any components that is capable to
communicate across a network).

The NED language:

NED is a network description language, for creating a topology of networks in OM-
NeT++. Two ways to create network topologies using graphical editor or NED
language and they are coinciding reflecting on each other.

328

B.5 Establish / Terminate Connection

OMNeT++ configuration file:
The configuration file is responsible of how the simulation runs, usually it called
omnetpp.ini. This dissertation has some configuration file that run all scenarios
such as OpenFlow and conventional network within australians cities. For example
the following ini code:

tcp apps
**.client*.tcpApp[0].typename = "TCPSessionApp"
**.client*.tcpApp[0].localPort = -1
**.client*.tcpApp[0].connectAddress = "server1"
**.client*.tcpApp[0].connectPort = 1000
**.client*.tcpApp[0].sendBytes = 3000000B

For the send bytes can be changed to test round trip time RTT or throughput. Also
there are many application such as PingApp can be implemented to change network
behaviour.
random ping application
.OF_.client[*].pingApp[*].typename = "PingAppRandom"
.OF_.client[*].pingApp[*].sendInterval = 2s
.OF_.client[*].pingApp[*].startTime = uniform(2s,4s)

B.5. Establish / Terminate Connection

The following sections are presenting the establish and terminate connection of tra-
ditional networks and OpenFlow networks.

B.5.1. Traditional Networks

In traditional networks establish connection between client and server start by three
way handshake, and termination connection has four steps [85, 25]. The processes
of these two connections are presented (see chapter 7 Fig. 10.11).

For connection establishment:
1. TCP SYNchronise packet is sent by the client to the server.
2. The Server takes the client’s SYN and then sends a SYNchronise- ACKnow-

ledgement.
3. The client in turn takes the server’s SYN-ACK and forwards ACKnowledge.
4. Finally, the server receives ACK and thus TCP connection is ESTABLISHED.

For connection termination:
1. Client sends a FIN packet to the server.

329

B.5 Establish / Terminate Connection OMNeT++ (Simulation Environment)

2. The server acknowledges, and stays on hold until the server process is ready
to close.

3. Then the server sends its FIN-ACK, which in turn gets acknowledged by the
client.

4. The client holds up for a while and assures that its ACK is received.
5. Finally, the connection is CLOSED.

B.5.2. OpenFlow Networks

OpenFlow networks is based on SDN architecture where it uses OpenFlow protocol
as a secure channel to communicate between controller and switch (see chapter 7
Fig. 10.12) for defined messages exchanged between them.
The secure channel uses transport layer security (TLS) connection to secure messages
whereas there are three types of messages to exchange information, they are:

• Controller-to-switch messages (chapter 2, Tab. 2.4)
• Symmetric messages (chapter 2, Tab. 2.5)
• Asynchronous messages (chapter 2, Tab. 2.6)

In the case that a switch loses contact with the controller, as a result of an echo
request timeout, TLS session timeout, or other disconnection, it should attempt
to contact one or more backup controllers. If so number of attempts to contact
a controller fail, the switch must enter emergency mode and immediately reset the
current TCP connection. Upon connecting to a controller again, the emergency flow
entries remain. The controller then has the option of deleting all the flow entries, if
desired.
The controller configures and it manages switches, receives events from switches and
it sends packets out to the switches through Southbound interface. Moreover, the
OpenFlow protocol allows a remote controller to add, to update, or to delete flow
entries from OpenFlow flow table (reactively or proactively).

330

C. Mininet (Emulation Environment)

Mininet is a software tool, which enable SDN environment such as an entire Open-
Flow network to be emulated on a computer or laptop. Also, Mininet can simplify
the initial development, debugging, testing, and deployment process. Moreover,
Mininet uses lightweight process-based virtualisation (Linux network namespaces
and Linux container architecture) to run many hosts and switches (e.g. 4096 switch)
on a single OS kernel. Mininet can create kernel or user-space OpenFlow switches,
controllers to control the switches, and hosts to communicate over the emulated
network see Fig. C.1. Mininet connects switches and hosts using virtual Ethernet
(veth) pairs.

C.1. Building SDN lab environment

To build up an environment for OpenFlow we need complete SDN structure and
hosts as following:

C.1.1. Installing SDN Controller (NOX)

Take the following steps to install NOX controller required dependencies:

cd /etc/apt/sources.list.d/
sudo wget http://openflowswitch.org/downloads/debian/nox.list
sudo apt-get update sudo apt-get install nox-dependencies
sudo apt-get install libtbb-dev
sudo apt-get install libboost-serialization-dev libboost-all-dev

Then change to the directory, that NOX Controller source should be placed,

331

C.1 Building SDN lab environment Mininet (Emulation Environment)

Figure C.1.: Mininet structure and components [77]

332

C.1 Building SDN lab environment

and:
git clone git://github.com/noxrepo/nox
cd nox
./boot.sh
mkdir build
cd build
../configure
make
make install

Then to run NOX by the following command:

$./build/src/nox_core -v -v -i ptcp:6633 pyswitch

which setups a NOX controller that listens on port 6633 and makes the OpenFlow
switch to behave as a normal switch.

Graphical User Interface in controller (install dependencies):
The GUI is a front-end to NOX that provides network visualisation and monitoring,
and also serves as an interface for the user to communicate with NOX in runtime.
$ sudo apt-get install pyqt4-dev-tools python-qt4 python-simplejson python-qt4-sq

//Start NOX controller and follow by minimum ‘monitoring’ argument

$./build/src/nox_core -v -v -i ptcp:6633 pyswitch monitoring
OR
abanjar@ubuntu:~/noxcore/build/src$./nox_core -v -v -i ptcp:6633 switch monit-
oring lavi_switches lavi_swlinks lavi_host2sw trackhost_pktin

GUI start up:

~/nox/build/src/$ sudo ./nox_core -v -v -i ptcp:6633 monitoring pyswitch span-
ning_tree \ trackhost_pktin
// Run GUI /nox/src# ./nox-gui.py

abanjar@ubuntu:~/noxcore/src$./nox-gui.py

The GUI is distributed with NOX, as shown in Fig. C.2.

C.1.2. Installing Mininet

Installing mininet from source, this works well for local VM, and native installation.
It assumes the starting point of a fresh Ubuntu installation.
To install mininet from source, first you need to get the source code:

333

C.1 Building SDN lab environment Mininet (Emulation Environment)

Figure C.2.: GUI for NOX controller with log view and topology view

git clone git://github.com/mininet/mininet

For checking the version of mininet:

cd mininet
git tag # list available versions
git checkout -b 2.2.1 2.2.1 # or whatever version you wish to install
cd ..

Once you have the source tree, the command to install Mininet is:

mininet/util/install.sh [options]

Typical install.sh options include:

mininet/util/install.sh -a
mininet/util/install.sh -nfv
mininet/util/install.sh -s
mininet/util/install.sh -h (for Wireshark)

• -a: install everything that is included in the Mininet VM, including depend-
encies like Open vSwitch as well the additions like the OpenFlow wireshark
dissector and POX. By default these tools will be built in directories created
in your home directory.

• -nfv: install Mininet, the OpenFlow reference switch, and Open vSwitch
• -s mydir: use this option before other options to place source/build trees in a

specified directory rather than in your home directory.

334

C.1 Building SDN lab environment

So, you will probably wish to use one (and only one) of the following commands:
• To install everything (using your home directory): install.sh -a
• To install everything (using another directory for build): install.sh -s mydir
• To install Mininet + user switch + OVS (using your home dir): install.sh -nfv
• To install Mininet + user switch + OVS (using another dir:) install.sh -s mydir

Testing the basic Mininet functionality:

$ sudo mn –test pingall

C.1.2.1. Mininet Overview

New network applications can be first developed and tested on an emulation of the
anticipated deployment network. It can be then moved to the actual operational
infrastructure. By default, Mininet supports OpenFlow v1.0. However, it may be
modified to support a software switch that implements a newer release. Some of the
key features and benefits of Mininet are as follows:
Mininet creates a network of virtual hosts, switches, controllers, and links.
Mininet hosts run standard Linux network soft ware, and its switches support Open-
Flow. It can be considered as an inexpensive OpenFlow laboratory for developing
OpenFlow applications. It enables complex topology testing, without the need to
wire up a physical network.
Mininet includes a command-line interface (CLI) that is topology-aware and
OpenFlow-aware, for debugging or running network-wide tests.
You can start using Mininet out of the box without any programming, but it also
provides straightforward and extensible Python API for network creation and ex-
perimentation.
Instead of being a simulation tool, Mininet is an emulation environment, which runs
real, unmodified code, including application code, OS kernel code, and control plane
code (both OpenFlow controller code and OpenvSwitch code).
It is easy to install and is available as a pre-packaged virtual machine (VM) image
that runs on VMware or VirtualBox for Mac/Windows/Linux with OpenFlow v1.0
tools already installed.
In the rest of this section we will provide a tutorial overview of Mininet, which will
also be used in the rest of this dissertation.

• Virtual hosts
• Software-based switch and veth ports
• Links

335

C.2 Basic DAIM model with OpenFlow Mininet (Emulation Environment)

C.1.2.2. Basic Mininet commands

Mininet has walkthrough demonstration of most commands, and its typical usage
in concert with the Wireshark dissector.

The walkthrough assumes that your base system is the Mininet VM, or a native
Ubuntu installation with all OpenFlow tools and Mininet installed (this is usually
done using Mininet’s install.sh).

The entire walkthrough should take under an hour. Where you can find the mininet
documentation in the following web link:

http://mininet.org/walkthrough/

C.2. Basic DAIM model with OpenFlow

The DAIM model is collecting, maintaining, updating and synchronising all the
related information and building up an abstraction layer for network infrastructure.
Moreover, the decision making ability within each device locally, on the basis of
collected information, which allow autonomic behaviour to adapt according to ever
changing circumstances. The DAIM model structure is proposed with the hope that
addressing the limitation of previous network protocols such as Simple Network
Management Protocol (SNMP), Common Information Model (CIM) and Policy-
Based Network Management.

Ultimately, the proposed DAIM model will address the limitations of current ap-
proaches and future distributed network systems, creating an autonomic computing
management strategy. The DAIM model approach will also satisfy the requirements
of autonomic functionality for distributed network components like self-learning,
self-adaptation and self-CHOP (configuration, healing, optimisation and security).
Each component can be adaptable according to any changed conditions of the dy-
namic environment without human intervention. Moreover, chapter 7 introduces
the three phases of implementing DAIM model as following:

• Phase one is a basic carrier functionality that integrate DAIM by OpenFlow
messages as they are from OpenFlow switches (see chapter 7, sec. 10.2.1.1).

• Phase two presents semi-autonomous functionality which is similar to the
phase one, however it includes distributed functionalities (see chapter 7,
sec. 10.2.1.2).

• Phase three is concerning on migrating all computational power to DAIM
with fully autonomous functionality. Then, each switch will have autonomous
behaviour for network management (see chapter 7, sec. 10.2.1.3).

336

C.2 Basic DAIM model with OpenFlow

C.2.1. Introducing controller benchmarker

According to [88], testing throughput and latency would be by using cbench (con-
troller benchmarker) as measurement of various performance issues related to flow
setup time. In more details, cbench is a program for testing OpenFlow controllers
by generating packet-in events for new flows. Moreover, cbench emulates a switch
which connect to (DAIM model or to a controller) and send packet-in messages, and
then get flow-mods from (the DAIM model or from the controller) side to OpenFlow
switches.

Cbench has two mode, one is latency and the other is throughput, where in latency
mode, each emulated switch maintains exactly one outstanding new flow request,
waiting for a response before soliciting the next request. Moreover, latency mode
measures the OpenFlow controller’s request processing time under low-load con-
ditions. For the other mode of cbench which is throughput mode, each switch
maintains as many outstanding requests as buffering will allow, that is, until the
local TCP send buffer blocks. Thus, throughput mode measures the maximum flow
setup rate that a controller can maintain.

1 // cbench is a benchmarking tool for controllers
2 // Algorithm :
3 pretend to be n switches (n=16 is default)
4 create n openflow sessions to the controller
5 if latency mode (default):
6 for each session :
7 1) send up a packet in
8 2) wait for a matching else flow mod to come back
9 3) repeat

10 4) count how many times #1-3 happen per sec
11 // packet_in messages , that should get a response from a

controller .
12

13 else in throughtput mode (i.e., with ’-t’ option):
14 for each session (loop):
15 while buffer not full:
16 queue packet_in ’s
17 count flow_mod ’s as they come back

Quick start: run a controller on the local machine on port 6633, and launch cbench
without arguments.

abanjar@ubuntu:~/oflops/cbench$./cbench -p 2000 -m 10000 -l 30 -s 1 -M 1000 -t

337

C.2 Basic DAIM model with OpenFlow Mininet (Emulation Environment)

USAGE: cbench [option] # by Rob Sherwood 2010

-c /–controller <str> hostname of controller to connect to ("localhost")

-d /–debug enable debugging (off)

-h /–help print this message

-l /(small L)–loops <int> loops per test (16)

-M /–mac-addresses <int> unique source MAC addresses per switch (100000)

-m /–ms-per-test <int> test length in ms (1000)

-p /–port <int> controller port (6633)

-r /–ranged-test test range of 1..$n switches (off)

-s /–switches <int> fake $n switches (16)

-t /–throughput test throughput instead of latency

-w /–warmup <int> loops to be disregarded on test start (warmup) (1)

-C /–cooldown <int> loops to be disregarded at test end (cooldown) (0)

-D /–delay <int> delay starting testing after features_reply is received (in ms) (0)

-i /–connect-delay <int> delay between groups of switches connecting to the con-
troller (in ms) (0)

-I /–connect-group-size <int> number of switches in a connection delay group (1)

-L /–learn-dst-macs send gratuitious ARP replies to learn destination macs before
testing (on)

-o /–dpid-offset <int> switch DPID offset (1)

338

D. Raspberry Pi (Real Environment)

This appendix focus on hardware implementation for DAIM model. One possibility
is by using Raspberry Pi as shown in Fig. D.1. The Raspberry Pi is a very small
computer as human hand size, that can plug into monitor, keyboard and mouse.

Raspberry Pi Hardware:

The Raspberry Pi computer (Model B) which we use in our experiments. It is
equipped with an RCA video port, a 3.5mm audio jack, a USB port, a microUSB
power port, an SD card slot, an HDMI port and a 700 Mhz Broadcom SoC. Moreover,
model B has 256MB of RAM, USB 2.0 port and also a 10/100 Ethernet port. The
Raspberry Pi boot from an SD card but a USB hard drive can take over after the
initial boot. Switching it on and off by plugging it in and out (see Fig. D.1). Read
more at:

www.trustedreviews.com/opinions/raspberry-pi_Page-2#m6gMF34JtHcC51Vd.99

Figure D.1.: Raspberry Pi hardware components of model (B)

339

D.1 Setting up OpenFlow on Lab Raspberry Pi (Real Environment)

Figure D.2.: OpenFlow networks using Raspberry Pi integrated with DAIM model

D.1. Setting up OpenFlow on Lab

To create an OpenFlow-Based SDN with two OpenFlow switches (OpenVswith)
integrated with DAIM model, the environment should has:

• Two of (Raspberry Pi 2) - model B, as PC based software controlled by DAIM
model (loopback), see Fig. D.2.

• Two hosts, using Ubuntu 10.04 LTS (Lucid Lynx) operating system.

The aim here is to demonstrate the DAIM model functionalities and capability to
deploy in real networks. A small size of OpenFlow network has already been set up
physically in the lab with two software switches controlled by DAIM model. The
OpenFlow software reference system is also installed to add OpenFlow switching
capability to the Raspberry Pi with multiple NIC. Fig. D.2 shows a basic linear
topology for OpenFlow experiment. The setup installation, configuration and some
of useful tests are also demonstrated in this section.

D.2. Configuration summary

This configuration is all about setting up OpenFlow network integrated with
DAIM model on lab, for example setting up IP to Raspberry Pi which presents
(OpenVSwithch) as the topology on Fig. D.2 see Tab. D.1 as each Raspberry Pi has
two ports one between switches, and other on to the host(s). To communicate with
DAIM model, which has IP and Port to control connected Raspberry Pi see Tab. D.1.

340

D.2 Configuration summary

Table D.1.: Open vSwitch configuration Summary

OVSwitch
communicate
with DAIM/

on Port

OpenFlow
Ethernet
Port/IP

Host Ethernet
Port/IP

Switch 1
(Raspberry Pi) Loopback/2000 eth 6

192.168.1.98
eth 4

192.168.100.98
Switch 1

(Raspberry Pi) Loopback/2001 eth 9
192.168.1.99

eth 8
192.168.100.99

D.2.1. Assign static IP for network interfaces

Edit the network interface file by entering the following command into the terminal:

$ sudo gedit /etc/network/interfaces

When your editor opens the file change the wanted address as following:

auto lo ethX
iface lo inet loopback
iface ethX inet static
address xxx.xxx.xxx.xxx(enter IP)
netmask xxx.xxx.xxx.xxx
gateway xxx.xxx.xxx.xxx(enter gateway IP here)

Make sure to save the changes in the editor.

Restart the network interface by the new settings:

$ sudo /etc/init.d/networking restart

D.2.2. Setting up OpenFlow and DAIM

OpenFlow networks include three layers architecture, one is application, the other
one is controller, and the last is forwarding layer. This section will concern about the
main two layers and how to communicate them together (controller and forwarding)
see Fig. D.2.

341

D.2 Configuration summary Raspberry Pi (Real Environment)

D.2.3. Setting OpenVswitch for Raspberry Pi

To install OpenVswitch to Ubuntu just run the following command as super
user:
$ apt-get install openvswitch-common openvswitch-switch
$ cd openvswitch-x.x.x
$./boot.sh
$./configure –with-linux=/lib/modules/‘uname -r‘/build
$ make && make install

Read more at:
http://networkstatic.net/installing-and-configuring-openvswitch-on-ubuntu-12-04-
precise-pangolin/

Download the software from:
$ sudo apt-get install python-simplejson python-qt4 python-zopeinterface / python-
twisted-conch automake autoconf #
$ sudo wget http://openvswitch.org/releases/openvswitch-1.1.1.tar.gz
$ tar zxvf openvswitch-1.1.1.tar.gz

After downloading and unzipping compile the Open vSwitch:

cd openvswitch-1.1.1/
./configure
make -j4
make install

Insert Open vSwitch kernel module

insmod datapath/linux-2.6/openvswitch_mod.ko
insmod datapath/linux-2.6/brcompat_mod.ko

Create database for each Open vSwitch:

mkdir -p /usr/local/etc/openvswitch
ovsdb-tool create /usr/local/etc/openvswitch/conf.db vswitch-
d/vswitch.ovsschema

Start the database server:
#ovsdb-server/usr/local/etc/openvswitch/conf.db \
–remote=punix:/usr/local/var/run/openvswitch/db.sock \
–remote=db:Open_vSwitch,manager_options \
–private-key=db:SSL,private_key \ –certificate=db:SSL,certificate \
–bootstrap-ca-cert=db:SSL,ca_cert –pidfile –detach

342

D.2 Configuration summary

Check database:
ps -ef | grep ovsdb-server

Initialise database for the first time:
ovs-vsctl –no-wait init Start database:
ovs-vswitchd unix:/usr/local/var/run/openvswitch/db.sock \ –pidfile –detach

Create data path for each Open vSwitch:

./utilities/ovs-dpctl add dp dp0

Assign interface to the data path:
• Interfaces names for Open vSwitch 1 (eth4, eth6)

./utilities/ovs-dpctl add-if dp0 eth4
./utilities/ovs-dpctl add-if dp0 eth6

• Interfaces names for Open vSwitch 2 (eth8, eth9)

./utilities/ovs-dpctl add-if dp0 eth8
./utilities/ovs-dpctl add-if dp0 eth9

Connect between Open vSwitches and remote controller:
Let Open vSwitch protocol module talk to the controller assume that datapath-
id 0x00AAAAAAAAAA for this Open vSwitch and the controller is running on
192.168.0.100 port 6633.

./utilities/ovs-openflowd dp0 –datapath-id=0000004E46324304 tcp:192.168.100.2
\ port 6633 –out-of-band

D.2.4. General configuration for Open vSwitch

Firstly, ensure that Open vSwitch is running by:

$ /etc/init.d/openvswitch-switch start

Check Open vSwitch (Datapath and Flow-Table entries):

$ insmod datapath/linux-2.6/openflow_mod.ko
$ ovs-dpctl adddp dp0
$ ovs-dpctl addif dp0 eth1
$ ovs-dpctl addif dp0 eth2
$ ovs-dpctl add-flow dp0 in_port=0, dl_vlan=0xffff, dl_src=00:00:C0:03:00:02,\
dl_dst=00:00:C0:04:00:02, dl_type=0x0800, nw_src=192.3.0.2,
nw_dst=192.4.0.2,\ idle_timeout=0, actions=output:1

343

D.3 Installing Wireshark Dissector for OpenFlowRaspberry Pi (Real Environment)

D.2.5. Running DAIM model in Raspberry Pi

To install DAIM model to Raspberry Pi download files which are available on GitHub
repositories:

https://github.com/ndomon/DAIM/tree/master/ANIv41

After completing installation of the data plane layer on each Raspberry Pi (see
sec. D.2.3), start the DAIM to effectively manage network flows:

$ cd aniv41
$./aniv41 -p 6633

Then, connect each Raspberry Pi to the DAIM on a separated terminal. Since
OpenVswitch and the DAIM are on the same Raspberry Pi switch, the command
for running the model is:

$ sudo ovs-vsctl set-controller tcp:127.0.0.1:6633

The DAIM uses OpenFlow default port 6633. The output in the DAIM terminal
will appear as following:

Info: creating ANI socket . . .
Info: established ANI server !
Info: waiting for the switch connection . . .
Info: connected to the switch !

D.3. Installing Wireshark Dissector for OpenFlow

$ sudo apt-get update && apt-get install wireshark-dev wireshark mercurial git

$ cd openflow/utilities/wireshark_dissectors/openflow

Then to verify OpenFlow dissector and Wireshark installation, In Wireshark go to
Help->About->Plugins tab. You should see the OpenFlow plugin in the list as you
can see in Fig. D.3 and the Fig. D.4 shows some OpenFlow packets captured.

344

D.3 Installing Wireshark Dissector for OpenFlow

Figure D.3.: Verifying OpenFlow dissector in Wireshark

345

D.3 Installing Wireshark Dissector for OpenFlowRaspberry Pi (Real Environment)

Figure D.4.: Captured packets in Wireshark for OpenFlow

346

	Title Page
	Certificate of Original Authorship
	Acknowledgments
	Abstract
	My Related Publications
	List of Figures
	List of Tables
	Nomenclature
	Contents
	1. Introduction
	1.1. Motivations
	1.1.1. The Swinging Pendulum of Network Structure
	1.1.2. Evolve Networks Regularly
	1.1.3. Limitation of Current Networking

	1.2. Autonomic Communication
	1.2.1. Objective of Autonomic Network Management
	1.2.2. Challenges of Fully Freedom Management
	1.2.3. Autonomics Abstraction Layers
	1.2.4. Possible Development Environments
	1.2.5. Network management issues
	1.2.6. Using OpenFlow networks as a case study

	1.3. Research Objectives and Scope
	1.3.1. Objective
	1.3.2. Scope

	1.4. Research Proposition
	1.4.1. Core Proposition
	1.4.2. Attendant Propositions

	1.5. Overview of Methodological Framework
	1.6. Statement of Contributions
	1.7. Overview of Dissertation Structure

	I. Lending Weight to the Thesis
	2. Background and Literature Review
	2.1. High level background
	2.2. Network Management
	2.2.1. Network management functions and protocols
	2.2.2. Network Managing Paradigms

	2.3. Automatic and Autonomic Systems
	2.4. Autonomic Computing Concepts
	2.5. Introducing Autonomic Communication
	2.5.1. Lesson Learnt from Similar Fields
	2.5.2. Human Biological Mechanisms
	2.5.3. Possibility of Autonomic Network Management

	2.6. Managing Complicated System by Increasing Complexity
	2.6.1. Understanding Complex and Complicated system
	2.6.2. Possibility of Implementing Complexity to Complicated System

	2.7. Introducing a New Norm of Networking (SDN)
	2.7.1. Major contributions toward SDN paradigm
	2.7.2. Centralised and Distributed SDN Controllers

	2.8. Information Models for network management
	2.8.1. CIM from (DMTF)
	2.8.2. SID from (TMF)
	2.8.3. Issues of CIM and SID

	2.9. Summary

	3. Theory of The Proposed Model
	3.1. Restatement of the Thesis
	3.1.1. Uniqueness of DAIM model
	3.1.2. DAIM model Vs. current Information Models
	3.1.3. Objectives of the DAIM model

	3.2. DAIM model Architecture
	3.2.1. Describing the DAIM model
	3.2.2. Packet processing within DAIM model
	3.2.3. Risk Scenarios of DAIM model

	II. Gaining Confidence in the Thesis
	4. Attempting to Implement DAIM Model
	4.1. Introduction
	4.2. Setting up the Demonstration
	4.2.1. Integrating DAIM model to OpenFlow Switch

	4.3. Simple Reference Implementation:
	4.3.1. DAIM model components
	4.3.2. Discover Networks Topology
	4.3.3. Calculating the Shortest Path with DAIM model
	4.3.4. Flow Table in DAIM model with Example of Ping
	4.3.5. Verifying DAIM model Functionalities
	4.3.6. DAIM model Recovery
	4.3.7. Discrepancy of the DAIM model implementation

	5. Specification of DAIM OS
	5.1. Introduction
	5.1.1. Scope
	5.1.2. Terms and definitions

	5.2. DAIM Operating System (OS) overview
	5.2.1. DAIM operating system (DAIM OS)
	5.2.2. Network flow management by DAIM OS
	5.2.3. Tables in DAIM OS

	5.3. DAIM switch overview
	5.3.1. DAIM switch
	5.3.2. DAIM application
	5.3.3. DAIM switch platform
	5.3.4. DAIM switch stack

	5.4. DAIM OS model
	5.5. DAIM OS table model
	5.6. DAIM OS information retrieval model
	5.7. DAIM OS tables description
	5.7.1. Information tables
	5.7.2. Network management tables

	5.8. DAIM OS API description
	5.8.1. Reading of DAIM tables data
	5.8.2. Writing data to DAIM tables
	5.8.3. Catching signals from the DAIM OS

	5.9. DAIM Cloud
	5.10. DAIM OS System API
	5.11. DAIM OS cloud protocol
	5.11.1. DAIM OS cloud message header
	5.11.2. DAIM OS cloud messages

	5.12. DAIM OS packet forwarding pipeline
	5.13. DAIM Switch network design scenario
	5.13.1. Scenario A: a simple enterprise network

	5.14. Conclusion

	6. Extra Details for DAIM OS Specification
	6.1. DAIM OS API description
	6.1.1. Reading of DAIM tables data
	6.1.2. Writing data to DAIM tables
	6.1.3. Catching signals from the DAIM OS

	6.2. DAIM OS cloud protocol
	6.2.1. DAIM OS cloud messages

	III. Drawing Conclusions
	7. Conclusion
	7.1. Research Summary
	7.2. Validation of Research Propositions
	7.3. Research Limitation

	8. Research Contribution and Discussion of Findings
	9. Direction for Future Works and Recommendations
	IV. Supporting Work
	10. Supporting the Proposed Model Implementation
	10.1. Exercise OpenFlow Networks in OMNeT++
	10.1.1. Performance of OpenFlow Vs. Traditional Networks
	10.1.2. Implement OpenFlow to Australian cities

	10.2. Exercise the DAIM model via Mininet
	10.2.1. Integrating DAIM model to OpenFlow Switch

	10.3. Integrating DAIM model with Raspberry Pi

	Annotated Bibliography
	Network management
	Autonomic
	SDN
	Distributed Active Information Model (DAIM)
	Related

	V. Appendices
	A. DAIM model with a Simple Controller
	A.1. DAIM model Header Files
	A.1.1. Controller Header
	A.1.2. ARP Header
	A.1.3. Ethernet Header
	A.1.4. Communication Header
	A.1.5. OpenFlow Header

	A.2. Code of DAIM model and Controller
	A.2.1. Main Cpp
	A.2.2. Controller Cpp
	A.2.3. Communication Cpp

	A.3. Storage module of the DAIM model
	A.4. API dependencies for DAIM modules
	A.5. Basic carrier for OF messages

	B. OMNeT++ (Simulation Environment)
	B.1. Installing OMNeT++ in Linux OS
	B.2. Import INET framework to OMNeT++
	B.3. Import OpenFlow in OMNeT++:
	B.4. OMNeT++ components:
	B.5. Establish / Terminate Connection
	B.5.1. Traditional Networks
	B.5.2. OpenFlow Networks

	C. Mininet (Emulation Environment)
	C.1. Building SDN lab environment
	C.1.1. Installing SDN Controller (NOX)
	C.1.2. Installing Mininet

	C.2. Basic DAIM model with OpenFlow
	C.2.1. Introducing controller benchmarker

	D. Raspberry Pi (Real Environment)
	D.1. Setting up OpenFlow on Lab
	D.2. Configuration summary
	D.2.1. Assign static IP for network interfaces
	D.2.2. Setting up OpenFlow and DAIM
	D.2.3. Setting OpenVswitch for Raspberry Pi
	D.2.4. General configuration for Open vSwitch
	D.2.5. Running DAIM model in Raspberry Pi

	D.3. Installing Wireshark Dissector for OpenFlow

