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Abstract

In this thesis we develop methods to resolve a series of problems motivated by the

analysis of administrative data to help explain geographical variation in disease rates.

The Conditional auto-regressive (CAR) structure within a hierarchical generalized linear

model offers a robust, flexible, and popular class of models for the exploration and

analysis of geographical variation across small areas. However, lack of modeling

strategies for individual level covariate data is a limitation of the existing methodology.

We propose an individual level covariate adjusted conditional auto-regressive (indiCAR)

model to incorporate both individual and area level covariates while adjusting for spatial

correlation in disease rates. We also extend the indiCAR method to a semiparametric

mixed model framework that allows adjustment for smooth covariate effects

(smooth-indiCAR). We illustrate the applicability of both methods in a distributed

computing framework that enhances its application in the Big Data domain with a large

number of individual/group level covariates involved. We evaluate the performance of

indiCAR and smooth-indiCAR through simulation studies. Our results indicate that

both methods provide reliable estimates of all the regression and random effect

parameters. The estimated regression coefficient based on the CAR modeling, however,

appears to be sensitive to the assumed spatial correlation structure. We hypothesize that

such sensitivity is especially likely to occur when the covariate of interest has been

measured with error. We quantify the biases of covariate measurement error, showing

that the amount of attenuation depends on the degree of spatial correlation in both the

covariate of interest and the assumed random error from the regression model. These

results explain why the estimates obtained from spatial regression modeling are often so

sensitive to the assumed model error structure. We propose and develop both a

parametric and a semiparametric approach to obtain bias corrected estimate. Statistical

analysis of administrative data often helps in uncovering trends and patterns that need

to be followed up via traditional epidemiologic investigations. Case control studies are

often the first choice. However, appropriate selection of controls and lack of power to

detect interaction effect are the main concerns of a case control design. We propose a

variant of the classical case-control design, the exposure enriched case-control (EECC)

design, where not only cases, but also high (or low) exposed individuals are

over-sampled, depending on the skewness of the exposure distribution. We show that the

judicious oversampling of exposure is possible and can boost the study power particularly

when susceptibility genes are rare and environmental exposure is highly skewed.
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Chapter 1

Introduction

1.1 Introduction

The environment where we live in is a key determinant of health and wellbeing.

According to the World Health Organization, 23% (95% CI: 13-34%) of all deaths and

22% (95% CI: 13-32%) of the total disease burden in the world is due to modifiable

environmental factors (Prüss-Üstün, Wolf, Corvalán, Bos, & Neira, 2016). Cancer and

ischemic heart disease are among the top diseases in the list that are influenced by

environmental factors. The study of the distribution and determinant of health related

adverse events in a specified population in relation to environmental exposures and to

control the risks of such exposures are the main concerns of environmental epidemiology

(Baker, Kjellstrom, Calderon, & Pastides, 1999).

One of the key features of environmental epidemiology is that the data often have both

spatial and temporal dimensions, as risk factors for a disease often vary across time and

space. Therefore, it is necessary to combine the knowledge from epidemiology, statistics

and geographic information science in the assessment of risk factor variation (Beale,

Abellan, Hodgson, & Jarup, 2008). Understanding such complex phenomena often

requires simplification of the elements, idealization and modeling (Cox, 1990).

Throughout this thesis we focus primarily on the spatial modeling aspect of the

environmental epidemiology.

1



While environment has been classically interpreted to refer to aspects of our physical

world (e.g. chemical exposures), environmental epidemiologists are increasingly aware

that the social environment also plays an important role in health. There are a number

of different pathways and mechanisms through which the social environment impacts on

health. For example, exposure to chronic stress can directly affect the immune function

and result in disease (Rich & Romero, 2005). Socio-economic status for areas that

describes the circumstances in which people live, work and grow; has long been known to

predict disease incidence and mortality, with the more disadvantaged areas typically

experiencing higher risks (Pickett & Pearl, 2001). Because socio-economic status tends

to vary geographically it confounds the spatial variation of the disease rates and if

unaccounted for, may seriously bias the relationship and result in misleading conclusions

about the possible effects of environmental risk factors on health (Jolley, Jarman, &

Elliott, 1992).

The past decade has seen increasing interest in the use of routinely collected

administrative data to provide new insights into the environment around us. The use of

geographically referenced health databases, present an unique opportunity to investigate

the environmental, social and behavioral factors underlying geographic variations in

disease rates (Elliott & Wartenberg, 2004). Government agencies such as the NSW

Cancer Institute are routinely collecting vast volumes of data as part of state-mandated

cancer registries of disease incidence, treatment and outcome. Such data can be

extremely helpful in understanding the geographical variation of cancer.

In the case of cancer, variations are complex because cancer is not merely a single

disease but a collection of different types of diseases (U. S. Department of Health and

Human Services. National Institutes of Health. National Cancer Institute, 2015). Cancer

is a broad term used for diseases that arise from uncontrolled cell divisions in different

tissues and organs in the body. Depending on tissue or organ type, each of these cancer

diseases has its own characteristics of incidence, spread or survival rate (David, 1995).

As a result, there are large variations in the risk factors for these different types of

cancer. Several studies have revealed the relationship between genetic (Singh et al.,

2002; Thompson & Easton, 2001) and environmental factors (Armstrong & Doll, 1975)

with cancer.
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In addition to the enormous variations in cancer incidence and mortality across

geographical locations (Jemal, Center, DeSantis, & Ward, 2010; Parkin, Bray, Ferlay, &

Pisani, 2005), some authors (Farrow, Hunt, & Samet, 1992; Nattinger, Gottlieb, Veum,

Yahnke, & Goodwin, 1992) report that geographical variation also exist in cancer

treatment and outcome. In Australia, Mitchell et al. (2006) reported presence of

rural/urban differences in the presentation, management and survival outcomes of breast

cancer. Jong et al. (2004) and Nattinger, Kneusel, Hoffmann, and Gilligan (2001) argue

that geographical remoteness affects treatment choices made by both patients and

clinicians, and consequently has a major impact in the quality of cancer treatment.

MacNab (2003) studied geographical variation in incidence rates of intraventicular

hemorrhage in neonates as an important health care performance indicator. One of the

key mandates for cancer service providers is to ensure the same quality of care for each

cancer patient, even though the cancer experience might be different from person to

person. That is, the goal is to reduce the geographical variations in clinical outcomes for

people diagnosed with cancer (Cancer Institute NSW, 2011).

Addressing the causes of geographical variation related to health outcomes, access,

quality of care and productivity often necessitate policy reform (Hannan, 1999). Several

authors (Gardner, 1973; Miller, 1994; Tierney & McDonald, 1996; Tierney, Overhage, &

McDonald, 1997) suggest that routinely collected administrative data can provide

valuable information for identifying possible causes of variations. For example, Gardner

(1973) analyzed routinely collected data on mortality and environmental characteristics

using a multiple regression method. Careful analysis of routinely collected health care

data can identify potential causes of variations and improve the quality and cost

effectiveness of treatment. However, the analysis of routinely collected data may be

challenging due to complications such as non-Gaussian responses, hierarchical

relationships, non-linear predictor effects, measurement error, missing potential

covariates, missing values, spatial correlation and within-subject correlations. Therefore,

sophisticated statistical models are needed that can handle the large volume of data

involved, as well as doing appropriate adjustment for age, gender and other demographic

factors, while accounting for spatial and temporal variations (Ash et al., 2012). Although

there are strong desires to mine routinely collected administrative data sets, methods for

doing so are relatively undeveloped.
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My doctoral training has been through a new and unique program in Australia, the

Industry Doctoral Training Centre (IDTC), which is loosely modeled on programs that

exist in the UK. This training program aims to prepare graduates who are not only

technically strong, but also who are experienced and proficient in collaboration and

problem-based research. In my case, I had the opportunity to work with the NSW

Cancer Institute, analyzing registry data with the aim of developing/identifying

statistical methodology to assess geographical variation and hence enhance the quality of

care for patients with cancer.

My project involves development and application of sophisticated regression models and

methodologies for fitting and making inference with large complex cancer data sets, that

involve hierarchical relationships reflecting characteristics not only of individual study

subjects, but of their geographical location. The methodology was developed and tested

using simulated data, and then applied to actual data. Specifically, my doctoral research

has involved resolving a series of problems motivated by applications in environmental

epidemiology. These include individual level covariates adjusted conditional

auto-regressive modeling in disease mapping studies, quantifying and adjusting for

covariate measurement error in spatial linear regression models and developing a new

Exposure Enriched Case-Control (EECC) design for assessing gene environment

interaction.

The next section of the thesis includes a brief background of the research problem along

with main research questions, objectives and hypotheses, literature review and a section

on the scope and organization of the thesis.

1.2 Background

Cancer is a major cause of morbidity and mortality in Australia, with an estimated 30%

of all deaths attributed to cancer (Australian Institute of Health and Welfare (AIHW),

2014). However, cancer incidence and mortality is not uniformly distributed across

population groups, regions and socio-economic status (Australian Institute of Health and

Welfare (AIHW) & Australasian Association of Cancer Registries (AACR), 2012). One

of the key goals of the NSW Cancer Plan 2011-15 was to reduce variation of cancer
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outcomes in NSW by identifying areas of variation and developing strategies based on

routinely collected administrative data (Cancer Institute NSW, 2011) obtained from the

NSW Cancer Institute managed Centre for Health Record Linkage (CHeReL).

Underpinning this goal is the need to examine the current methodology and develop

appropriate methods for statistical analysis that enhance reporting.

In this thesis we focus on methods related to the geographical variation of febrile

neutropenia across NSW. Febrile neutropenia is the most common infection-related

syndrome and an early marker of sepsis in patients receiving myelosuppressive

chemotherapy (Aapro et al., 2011; Baden et al., 2012; Crawford, Dale, & Lyman, 2004).

Febrile neutropenia is a syndrome characterized by a low absolute neutrophil count and

associated fever. More profound and prolonged neutropenia is associated with an

increased risk of infection-related complications and death (Bodey, 2009). The

importance of febrile neutropenia is underscored by its associated higher incidence of

hospitalization and mortality irrespective of cancer type (Lyman et al., 2010). In

Australia, chemotherapy and complicating infections accounted for more than 40% of

hospital admissions for cancer-related illnesses during 2012-13 (Australian Institute of

Health and Welfare (AIHW), 2014). Febrile neutropenia can result in chemotherapy dose

reduction and delays which in turn compromise treatment outcomes, and is associated

with increased length of hospital stay and health care costs (Crawford et al., 2004;

Kuderer, Dale, Crawford, Cosler, & Lyman, 2006; Smith et al., 2006).

Geographical variation of neutropenia is of particular interest because of the uneven

concentration of population across different geographical locations within NSW. As a

result of this uneven population density, the access to health care services is not

universally shared. Moreover, risks of many diseases and health outcomes are influenced

by locally varying distributions of socioeconomic, behavioral and environmental risk

factors (Elliott & Wartenberg, 2004). These spatially correlated risk factors can have

important implications on the observed disease rates in small areas.

Therefore, sophisticated statistical methodologies are needed that can handle the large

volume of data involved, account for spatial correlation in the disease rates and adjust

for covariates on patients’ socio-demographic and clinical characteristics. Additional

complexity also arises from administrative data due to the fact that these data sets are

5



not collected for research purposes. Administrative data may have additional complexity

due to the presence of multiple sources of errors, particularly measurement error,

processing error and nonresponse error. In most instances administrative datasets are

observational, therefore drawing causal inference from these datasets are quite

challenging. On a practical level, the analysis of very large datasets will undoubtedly

require powerful computing capacity, and data management requires more time than

most research datasets. In this research project, we developed novel methodology that

can handle large volumes of administrative data, appropriately adjust for age, gender

and other socio-demographic factors and provide some guideline to appropriate analysis

of administrative data by resolving some of the quality issues.

1.3 Objectives of the Study

The main aim of my thesis is to study the bottlenecks in applying statistical methods to

routinely collected administrative data for assessing clinical variation and to develop new

methodology that can overcome some of these difficulties. The overall question of

interest of my research is:

”Can administrative data be effectively used to inform researchers and policy

makers about factors that influence spatial variation of disease rates?”

A major thrust of my thesis concerns the appropriate use of cancer registry data and

other administrative data sets to explain geographical variation in disease rates, finding

statistically significant factors that contribute to the disease variation, evaluate the

impact of data quality in the assessment of those factors and to design future studies

that can provide better quality data.

In the first part of my thesis, we develop spatial modeling techniques to explain the

geographical variation of febrile neutropenia across NSW. Disease mapping via spatial

regression modeling is a key tool in spatial epidemiology that provides a quantitative

summary and visual illustration of the underlying geographical variation of the disease.

It is also useful for generating new hypotheses on the disease aetiology through
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identifying apparently high risk areas/disease clusters (Snow, 1855). However, producing

reliable disease maps is complicated by the fact that raw incidence rates are often

unstable due to small incidence counts, spatial correlation among rates and also due to

the variation in individual patient characteristics (Besag, York, & Mollié, 1991; Clayton

& Kaldor, 1987; Cressie, 1993).

Poisson mixed models with conditional auto-regressive random effects are commonly

used for assessing the relationship between a rare disease outcome and risk factors in the

presence of geographical variation (Lee, 2011). These models can adjust for region

specific spatial random effects for correlated disease rates and region specific covariates.

However, the currently available methods only allow adjustment based on the age and

sex distribution of the underlying population through calculation of an offset in the

model (Leroux et al., 1999). Therefore, the effect of age and sex on disease risk cannot

be estimated from these models. Moreover, these models ignore a large number of

potential individual level covariates related to the underlying disease process which are

readily available in health registries. We therefore aim to develop a new methodology

that can incorporate both individual and group level covariates while adjusting for

spatial correlation in the disease rates.

Specifically, in the first part of the thesis, we will address the following research question:

Can we incorporate individual level covariates in currently available Poisson

mixed models with conditional auto-regressive random effects?

We hypothesized that reliable estimates of the regression coefficients for both individual

level and group level covariates can be obtained from the individual level covariates

adjusted Conditional Auto-Regressive (indiCAR) model. We further hypothesized that

this model can be extended to study continuous covariate effects via splines. We also aim

to formulate the indiCAR in a distributed computing framework so that individual and

group level covariate effect can be estimated separately. This will help to reduce

computational costs and overcomes memory space constraints, which is one of the major

concerns in applying statistical methodology for disease mapping with large numbers of

individual and group level covariates. Such formulations will also provide a convenient

way to extend recent developments in Big Data for independent responses to spatially

7



correlated response.

On further exploration of the applicability of conditional auto-regressive (CAR) based

model in assessing geographical variation, it appears that the estimated regression

coefficient depends strongly on the assumed spatial correlation structure. Similar

sensitivity to the assumed spatial correlation structure can also be seen in analysis of the

well-known Scottish Lip Cancer data (Breslow & Clayton, 1993; Clayton, Bernardinelli,

& Montomoli, 1993). In another spatial epidemiological study, Molitor et al. (2007) fit a

model for the effect of NO2 exposure on lung function. They considered a series of

models, including one based on a conditional auto-regressive (CAR) model. They

observed that models with spatial structure give smaller effect estimates as compared to

models without spatial structure. These results suggest that estimated coefficients from

a spatial regression model can be highly sensitive to whether and how spatial variation is

accommodated. We hypothesize that such sensitivity is specially likely to occur when

the covariate of interest has been measured with error.

Therefore, in the second part of the thesis, we aim to assess the impact of data quality,

in particular the consequences of covariate measurement error in spatial linear

regression. That is, our aim is to explore the nature of biases in the regression estimates

when covariates of the regression model are measured with error. It is well-known that

for classical linear regression, the presence of measurement error in the covariate

attenuates the estimated regression coefficient towards no effect. However, the

consequences of the measurement error in spatial linear model are not well studied. In

particular, we will address the following research question:

How to calculate the attenuation factor in case of covariate measurement

error in spatial linear regression?

Relating to the above research question, we hypothesize that (a) reliable estimates of the

true regression coefficient can be obtained using the covariance structure of the spatial

linear mixed model and (b) semiparametric regression might provide better results in

estimating unbiased estimates compared to the method based on modeling covariance

structure.
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Although the relationship between exposure and disease in a spatial modeling generates

useful hypotheses on disease aetiology, variation in individual response to environmental

exposures has been a major obstacle to understand the environmental exposure

contribution to disease. Case-control studies with detailed individual level exposure

information are often desired to support and test the hypothesis generated from spatial

correlation studies (Elliott & Wartenberg, 2004; Lawson, 2013; Pacione, 2013). In an

environmental case-control study, controls are selected from the neighborhood of the

cases to match with the background characteristics of cases. However, selection of cases

and controls with respect to same exposure source may result in over-matching: an

inappropriate matching strategy that forces similar exposure distributions on the case

and control groups, consequently the exposure effect cannot be determined. Moreover,

the statistical power to detect interaction effect from a case control study may be limited

when exposure distribution is highly skewed and the disease is rare. We hypothesize that

judicious over-sampling of high/low exposed individuals can boost the study power

considerably. Of course, a traditional logistic regression model is no longer valid in such

cases and would result in biased estimation. We show that the addition of a simple

covariate to the regression model removes this bias. We applied this concept in studying

genetic and environmental interactions.

In brief, the main objectives of our study are as follows:

1. to study the geographical variation of febrile neutropenia across NSW by

incorporating both individual and area level covariate information;

2. to develop statistical methods that can incorporate both (a) linear and (b)

non-linear individual level covariate effects in disease mapping studies with area

specific conditional auto-regressive random effects;

3. to explore the consequence of covariate measurement error in spatial linear

regression and to develop new statistical methodologies that overcome some of the

identified shortcomings;

4. to design a case control study that can provide better data and achieve higher

power in detecting the joint influence of genetic and environmental factors on the

risk of developing cancer.
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1.4 Literature Review

Spatial modeling

The availability of administrative health databases indexed at a geographical resolution,

presents a unique opportunity to investigate local variation in risk factors and disease

outcomes. Analysis of such data, however, raises many interesting technical challenges

such as how to best handle correlation among neighboring observations, uncertainty due

to unequal population sizes, modeling large data sets and measurement error in

covariates. Although there are well known statistical techniques to adjust for spatial

correlation and uncertainty due to unequal population sizes, relatively little has been

done in the context of spatial modeling when the covariate of interest is measured with

error and fitting spatial models in large data sets that include both ecological (area level)

and individual level covariates. In this thesis we will focus on these aspects.

Spatial modeling of geographical variation of disease in environmental epidemiology has

been investigated for a number of reasons including (i) disease mapping to identify

apparently high risks areas that could help in policy formulation and appropriate

resource allocation, (ii) spatial correlation studies that examine geographic variation with

respect to socio-economic and environmental exposures and further generate hypothesis

regarding disease aetiology and (iii) spatial clustering to identify disease clusters by

obtaining information on the background risk factors (Elliott & Wartenberg, 2004).

Disease mapping has a long history, dating back at least to the early or mid of the

nineteenth century (Walter, 2000). Some of the earliest examples of disease mapping

include the investigation of yellow fever in the United States just before the year 1800

(Walter, 2000) and cholera outbreak in London in the mid 1800’s (Snow, 1855).

Although at that time of cholera outbreak the aetiology of cholera was unknown, John

Snow’s dot map indicated that the outbreak was probably related to a contaminated

water source. Since then, a broad range of methodological developments have emerged in

relation to the mapping of spatial disease rates.

At the beginning of the Twentieth-Century, the Survey Gazetteers of British Isles

produced crude mortality maps based on 1901 Census for England and Wales (Howe,
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1964). However, the crude mortality rates used in the map produce erroneous

conclusions because of unequal population sizes. In 1928, Percy Stock overcame some of

the limitations of the crude mortality map by mapping Standardized Mortality Ratios

(SMRs) of cancer stratified by different cancer sites, age and sex distribution of the

population (Howe, 1964). The map based on SMRs describes the geographical variation

of disease by identifying areas with apparently high risks. The apparent differences in

risks are subject to subsequent modeling to identify the underlying disease aetiology.

Spatial modeling of disease rates, however, is complicated by correlations among rates

from contiguous areas. In addition, map based on SMRs are unstable and imprecise for

sparsely populated areas. Moreover, in the spatial modeling of disease rates, area serves

as a surrogate for a combination of various environmental and genetic factors. Therefore,

a map of residuals is used to examine the spatial variation of disease due to unmeasured

confounders (Gardner, 1973).

Ord (1975) proposed using a first order auto-regressive residual error model in order to

account for spatial correlation in the disease rates. Cook and Pocock (1983) considered

an alternative approach based on an exponential isotopic correlation structure where the

correlation between two observations declines exponentially if they are within a distance

of d unit and 0, if the distance greater than d. This specification of spatial correlation is

useful when diseases cluster around a point source.

Clayton and Kaldor (1987) proposed shrinking estimates of area specific SMRs towards a

common mean, using an empirical Bayes estimation technique. Their approach

represents a compromise where each estimated SMR sits somewhere between the overall

mean and the region specific rate. The amount of smoothing is determined by the

estimated mean from the data, its precision and a prior mean. To accommodate spatial

correlation in the disease rates the authors assume that the logarithm of SMRs follow a

multivariate Gaussian distribution with a Conditional Auto-regressive (CAR) structure.

In this formulation, the conditional variance is assumed to be constant and the

conditional expectation is assumed to be compromised between an overall mean and the

sum (not the mean) of the neighbors. The constant variance assumes the number of

neighbors is fixed which may not be the case in most of the disease mapping situations.

Moreover, this method does not allow for adjustment of confounding variables.
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Cressie and Chan (1989) proposed an alternative formulation of the CAR model

described by Clayton and Kaldor (1987) where the conditional mean remains the same

as the CAR model but the conditional variance changes across areas. However, such

formulation requires the estimation of large number of parameters and is not extensively

used in practice.

Marshall (1991) suggested a non-iterative empirical Bayes estimator for disease mapping

based on method of moments. In this formulation, the spatial correlation is accounted

for by using priors based on the neighborhood structure. However, such a formulation

depends on how neighborhoods are chosen and therefore can be quite subjective.

Besag et al. (1991) extended the Clayton and Kaldor (1987) approach to a fully Bayesian

formulation that can incorporate area level confounding variables as well as spatially

structured and unstructured random effects. They proposed the use of MCMC algorithm

for fitting such model. Their formulation leads to two classes of models: (i) Intrinsic

Conditional Auto-regressive model (ICAR) and (ii) convolution model. In the ICAR

formulation, the mean of the spatial structured random effect for any region given all

other random effects is equal to the mean of the random effects of all neighboring

regions, and the conditional variance is proportional to the number of such neighbors.

One of the major shortcomings of the ICAR is that the conditional variance is inversely

proportional to the number of neighbors even in the independent case.

The convolution approach combines the intrinsic model with a set of independent

random effects, hence only the sum of these two is identifiable. The independent random

effects are included to account for model over-dispersion. MCMC implementation is

difficult for this approach as the prior for the intrinsic and independent components of

the model are not identifiable.

In the discussion of the Besag et al. (1991) paper, Raftery and Banfield (1991) suggest

use of Gaussian kriging in order to model spatial dependence. Kriging is the most

popular method of spatial interpolation in geostatistics, and can describe spatial

variation by measuring drift, spatially correlated random variation and noise (nugget

effect). The advantage of kriging is that the correlation decreases with distance and it

can be used for both areal and point sourced risk data.

12



Clayton and Bernardinelli (1992) later proposed spatial disease mapping in Bayesian

Generalized Linear Mixed Model (GLMM) formulation where logarithmic SMRs can be

decomposed into an overall mean plus area specific random effects. The GLMM

formulation allows extension of the Clayton and Kaldor (1987) model to include

ecological covariates in the model. To estimate parameters, the authors implement a full

Bayesian analysis via MCMC. Chi-squared prior distributions for exchangeable and

autocorrelated random effects are considered. They also compared the results of a full

Bayesian estimates with those from the penalized quasi-likelihood implementation

(Breslow & Clayton, 1993).

Bernardinelli and Montomoli (1992) also compared empirical and fully Bayesian

approaches to disease mapping and conclude that the latter offer greater flexibility and

convenience in the statistical analysis of geographical variation in disease rates.

Breslow and Clayton (1993) proposed a penalized quasi-likelihood estimation procedure

as an alternative to the full Bayesian analysis of the generalized linear mixed model. In

the application of the PQL, the authors illustrate disease mapping examples in a

generalized linear mixed model formulation. They empirically compared estimated SMRs

based on the Clayton and Kaldor (1987) approach without ecological covariates in the

model, to the PQL with independent and intrinsic auto-regressive random effects. Their

results revealed that estimated SMRs are sensitive to the assumed spatial correlation

structure. The spatial dependence parameters considered are rather extreme (either no

spatial correlation or intrinsic correlation, corresponding to spatial dependence

parameter 0 and 1).

Clayton et al. (1993) fitted several spatial regression models with the aim to reduce

spatial confounding bias due to omitted covariates. They showed that different

assumptions on the spatial correlations lead to different estimates of regression

coefficients. They re-analyzed the well-known Scottish Lip Cancer data (Breslow &

Clayton, 1993) to study the relationship between exposure to sunlight and lip cancer.

However, instead of measuring exposure to sunlight they used the percentage of the

population employed in agriculture, fishing and forestry (AFF) as a surrogate measure.

They observed that the addition of a clustering term to the model yields a significant

decrease in the estimated regression coefficient of AFF. The authors hence argue that
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the clustering term accounts for unmeasured confounding variables in the model.

Schlattmann and Böhning (1993) proposed an alternative approach using a discrete

mixture of Poisson distributions under the assumption that the disease risk varies in

sub-populations. The parameters of such a model are estimated by non-parametric

maximum likelihood. The authors assumed that the rates are constant across a

sub-population and thus did not account for spatial correlation in disease rates.

Devine, Louis, and Halloran (1994) argued that both empirical Bayes and fully Bayesian

estimates experienced over-shrinkage towards their grand mean, particularly, in the case

where the sample variances of the underlying rates are greater than the sample variances

of corresponding estimates. To guard against such over shrinkage they proposed a

constrained empirical Bayes estimation procedure.

Pickle, Mungiole, Jones, and White (1996) produced maps of observed age-adjusted rates

and of predicted age-specific rates resulting from a linear mixed model. The model

allowed mapping of age specific rates using a single knot-based cubic spline function of

age. The knot captures a slope change in the age specific rates beyond the knot. The

fitting of cubic splines functions, however, is subject to the selection of the appropriate

number of knots and knot locations.

Bernadinelli, Pascutto, Best, and Gilks (1997) suggested a Bayesian hierarchical spatial

model for disease mapping that adjusts for covariate measurement error. The authors

empirically studied measurement error models using a metropolis Gibbs algorithm by

specifying smoothing priors for both relative risks and for covariate with errors. The

authors thus assumed that the log odds of the prevalence of the surrogate covariate

follows a normal distribution with mean equal to the prevalence of the true covariates,

and fixed the variance a priori. The choice of the variance is thus subjective.

Waller, Carlin, Xia, and Gelfand (1997) extended the hierarchical spatial models

described by Besag et al. (1991) to accommodate temporal effects and spatio-temporal

interaction in the context of disease mapping. They discussed an implementation of such

a model using a Metropolis Gibbs algorithm. They also proposed a predictive criterion

for model selection, validation and comparison. They reported a slow convergence rate
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for the parameter of interest.

Xia and Carlin (1998) extended the spatio-temporal analysis of Waller et al. (1997) by

including age adjusted disease rates in the model. They also studied covariate

measurement error in the spirit of Bernadinelli et al. (1997). The authors fitted several

alternative measurement error models using Metropolis Gibbs algorithm. However, their

approach was empirical and they did not address any theoretical aspects of the impact of

measurement error in regression modeling.

Diggle, Tawn, and Moyeed (1998) extended the Besag et al. (1991) approach of disease

mapping through the use of continuous spatial dependence similar to the classical

geostatistical approach. The authors proposed combining a generalized linear model for

the outcome and a Gaussian process to represent underlying spatial correlation

structure. The parameters of the resulting generalized linear statistical model are then

estimated using MCMC. The authors assumed a linear relationship between covariate

and disease rates.

Lin and Zhang (1999) proposed a general class of models for over dispersion and

correlated data in a mixed model framework. The authors allowed the functional

dependence of an outcome variable on covariates to be non-parametric and allowed for

correlation between observations by using random effects. They proposed estimation and

inference within a unified parametric mixed model framework by representing splines as

fixed and random effects components.

Leroux et al. (1999) proposed an alternative to the Bayesian formulation of Besag et al.

(1991) approach that allows for both structured and unstructured variation based on a

single random effect rather than the sum of two random effects. Under this formulation

the conditional mean (and variance) can be obtained as a weighted average of local mean

(variance) based on an intrinsic auto-correlation model and mean (variance) based on an

independent random effects model. They also described parameter estimation via

penalized quasi-likelihood (PQL) (Breslow & Clayton, 1993). They showed that PQL

parameter estimates provide nearly unbiased estimates of regression coefficients even for

very small expected counts. Moreover, the PQL is computationally faster than the

corresponding maximum likelihood (Empirical Bayes) or full Bayesian approaches.
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Stern and Cressie (1999) use an alternative formulation of Cressie and Chan (1989)

approach that leads to an invariant conditional variance, but replace the conditional

mean by the weighted sum of the neighbors (rather mean). Hence the model is

inappropriate in practice.

Langford, Leyland, Rasbash, and Goldstein (1999) extended the Besag et al. (1991)

approach by decomposing spatially structured random effects as a weighted sum of

independent random effects. They discussed various choices for weights including one

with an exponential decay model. The parameters are then estimated by translating the

spatial model as a multilevel model. However, such formulation requires the inclusion of

large numbers of explanatory variables in the model and a large number of constraint

vectors.

Leyland, Langford, Rasbash, and Goldstein (2000) latter extended Langford et al. (1999)

to allow joint spatial analysis of two outcomes based on a multilevel model. Estimation

of parameters associated with such formulation is obtained by iterative generalized least

squares technique which relax the constraint structures.

Knorr-Held and Best (2001) described a joint modeling of two diseases in a Bayesian

perspective. They introduced a shared component model which acts as a surrogate for

unobserved spatially structured covariates affecting the risk of either both or only one of

the two diseases. A joint modeling approach can be viewed as an improvement over the

Bernadinelli et al. (1997) approach where one disease was used as a surrogate for the risk

of other disease, hence introducing measurement error bias. However, underlying this

approach is the key assumption that all shared covariates may be modeled by a single

latent variable that adequately captured the underlying spatial structure. A lack of

information about this assumption will make inference from such models highly prior

dependent (Haneuse & Wakefield, 2008).

S. Wood (2003) suggested the use of isotropic thin plate regression smoothers for spatial

modeling. He formulated an optimal approximation for the thin plate regression splines

that can produce low rank smoothers for both single and multidimensional data. The

low rank smoothers avoid the knot placement problems associated with penalized

regression splines and provide low rank approximations to generalized smoothing spline
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models. They also provide a sensible way of modeling interaction terms in generalized

additive models and provide a means for incorporating smooth functions of more than

one variable into non-linear models and improve the computational efficiency.

Kammann and Wand (2003) extended the model based geostatistics (Diggle et al., 1998)

to an additive model framework. They proposed a semi-parametric formulation of spatial

mixed models as a unification of kriging and additive models. Their approach accounts

for linear or non-linear covariate effects under the additivity assumption and adjust for

spatial correlation by expressing kriging as a linear mixed model. This geo-additive

model is of low rank and can be implemented in the standard statistical packages which

makes the approach very popular.

Ruppert, Wand, and Carroll (2003); Wand (2003) later describe the relationship between

semiparametric regression models based on penalized splines and mixed models. They

showed that methods based on maximum likelihood estimation of mixed models can be

used for estimation and prediction based on semi-parametric models, using readily

available mixed model software (Ngo & Wand, 2004). Wand (2003) argued that

semi-parametric regression model can be extended in an efficient way to handle

measurement error in predictors.

Burden et al. (2005) explore the relationship between Ischemic Heart Disease (IHD) and

an area based measure of social disadvantage via spatio-temporal modeling. In the

analysis the author stratified the data from around 300,000 IHD hospital separation

records according to spatial location, day and month of hospitalization and age-gender

combination resulting a dataset over 39 million records. This large data set is too large

to be analyzed using a single spatio-temporal model. The authors explored a series of

analyses based on some simplified assumptions. One such assumption is that the effect of

time and area on log relative risk is mutually independent. This assumption is rather

unrealistic as the spatial effect may change over time. Therefore, more general

spatio-temporal models are needed that are capable of handling such Big Data.

Moreover, in the application the social disadvantage variable is subject to measurement

error and hence may have attenuated the estimated effect.

Ainsworth and Dean (2006) compared estimation of parameters based on the MCMC

17



and Penalized Quasi-likelihood (PQL) approaches to the spatial regression model

described by Besag et al. (1991) through simulation studies. The authors reported that

the PQL approach offers similar estimates of relative risks and confidence interval

compared to the MCMC implementation. In addition, the PQL approach is

computationally simple and requires less iteration to converge.

Lee (2011) empirically compared models proposed by Besag et al. (1991), Stern and

Cressie (1999) and Leroux et al. (1999) using MCMC with different specifications of

random effects that represent independence, moderate spatial dependence and strong

spatial dependence in the disease rates across areas. The author noted that among the

models compared, the Leroux et al. (1999) produced consistently better estimates across

all the specification of the random effect considered.

The traditional ecological regression methodologies as discussed above use data that are

measured at a variety of hierarchical levels but are accumulated to a common group level

to facilitate ecological analysis. The heterogeneous exposure/confounders distribution

within these groups, however, result in biased inference referred to as ecological bias or

cross-level bias (Anselin, 2002; Greenland, 2001). Several authors argued that

combination of ecological data with individual level data can provide a useful solution to

the ecological bias (Greenland, 2001; Wakefield, 2004a). Although such data provide

direct information about the relationship between exposure and response at individual

level, little research has been done into statistical model that combine individual and

group level data in the ecological modeling context.

Prentice and Sheppard (1995) studied an aggregated data study design in a non-spatial

framework that combined age and sex specific disease rates from routinely collected

administrative data and individual level covariate data from a random sample of

individuals from each of the several population cohorts. They developed an estimating

equations framework to obtain reliable estimates of individual level rate parameters.

They considered outcome information at an aggregated level, ignoring individual level

outcome data.

Best, Ickstadt, and Wolpert (2000) considered a Bayesian spatial modeling approach

that combined both individual and group level information to reduce ecological bias
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while accounting for spatial correlation in the rates. Underlying their approach is the key

assumption that all the spatially varying data are related to a latent, spatially

continuous stochastic process representing unexplained spatial variation in risk. They

proposed modeling this latent spatial covariate via a kernel density. In this formulation,

the baseline risk reflects unattributable risk which may confound the effect of the latent

covariate for a misspecified true spatial variation.

Guthrie, Sheppard, and Wakefield (2002) extended the aggregate data model described

by Prentice and Sheppard (1995) to allow residual spatial correlation in the disease

rates. Specifically, the authors combined the aggregated data model and the Bayesian

disease mapping model discussed by Besag et al. (1991). To represent structured

variation the author used an exponential correlation structure and fitted using MCMC.

They argued that only a small sample of covariate data can yield reliable estimates of

the disease risk in aggregated data model.

Wakefield (2004a) discussed various sources of biases in ecological regression model. The

author argued that modeling spatial variability in risks via random effects can control

neither ecological bias nor covariate measurement error bias. Ecological bias arises due

to within area variability of exposures/confounders. The author suggested the use of

individual level covariate information in order to reduce ecological bias.

Wakefield (2004b) also studied combined aggregated disease data with individual cohort

data. The author showed that the combination of aggregated and individual level data

provides unbiased estimate with improve precision. However, such an approach is

inefficient in the investigation of rare outcomes (Haneuse & Wakefield, 2008).

Jackson, Best, and Richardson (2006) suggest a joint modeling approach by combining

the same covariate information from a random sample of individuals in each area with

area level aggregation in an ecological regression framework. The authors considered a

binomial modeling approach for group specific outcome counts and fitted using MCMC

for a constant population size of 1000 within a area. The authors suggested that

including individual level covariates improves inference. However, the generalization of

this study is not clear in other applications as different covariates may be available for

aggregated and individual level data. Moreover, in many applications individual
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reporting may not corresponds to the aggregate level.

Martinez, Benach, Ginebra, G Benavides, and Yasui (2007) extended the aggregated

data analysis described by Prentice and Sheppard (1995) in order to incorporate both

individual and group level outcome data. They proposed an estimation-equation

framework for estimation and inference. They showed that combining two sources of

data through individual and group level modeling provides higher statistical power to

detect exposure effect and improve estimation (Mart́ınez et al., 2009). However, they did

not consider spatial correlation in the disease rates.

Haneuse and Wakefield (2007) proposed a hybrid design via a hybrid likelihood that

combines ecological data with a sample of individual level case control data to improve

inference. The hybrid likelihood is derived by averaging the individual level likelihood

over the uncertainty of the unobserved complete individual level data. They showed that

estimation and inference of such hybrid designs can be carried out via either maximum

likelihood or via MCMC in a Bayesian framework. However, this approach is

computationally intensive and does not incorporate spatially structured random effect.

Wakefield and Sebastien (2008) proposed the use of a two-phase study design framework

(Weinberg & Wacholder, 1990; White, 1982) in order to remove ecological bias through

combining individual and group level ecological data. In this framework, outcomes are

stratified according to the combination of geographical regions, confounders and

exposure information at stage I. More detailed information on exposure and confounders

are obtained at stage II. They showed this approach not only remove ecological biases

but also provides efficient estimates of the regression parameters. However, this

approach relies on supplementary exposure information at the individual level covariate

rather than incorporating readily collected individual level covariates.

In this thesis we explore a novel individual level covariate adjusted conditional

auto-regressive (CAR) model that can incorporate both individual and group level

covariates while adjusting for spatial correlation in the disease rates. Our model allows

adjustment for both linear and non-linear covariate effect in conditional auto-regressive

(CAR) models. In both of these approaches we use the CAR structure proposed by

Leroux et al. (1999) and estimation of the corresponding parameters are carried out
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using PQL.

Covariate measurement error

Despite these excellent development in the theory of spatial modeling, relatively less

attention has been paid to the context where the covariates in the spatial regression

model are measured with error. The presence of measurement error in the covariate of

interest arises in many epidemiological and social behavioral studies. For example, in the

study of geographical variation in bladder cancer rates, lung cancer risk might be

included in the model as a proxy for smoking exposure (Bernadinelli et al., 1997; Clayton

et al., 1993; Xia & Carlin, 1998). In environmental epidemiology, individual air pollution

exposures might be approximated by the distance from the polluted sites or by using the

measures at a few monitoring sites (Carroll et al., 1997). These erroneous data can

produce systematic bias or result in random errors or imprecision, which typically lead

to bias toward no effect (Bernadinelli et al., 1997). Neither Bernadinelli et al. (1997) nor

Xia and Carlin (1998) theoretically quantified the measurement error bias.

The measurement error problems have been widely studied in the context of independent

data (Carroll, Ruppert, Stefanski, & Crainiceanu, 2006; Fuller, 1987). Many approaches

have been discussed in the literature for obtaining correct estimates of parameters in the

presence of measurement error of independent data. These approaches include both

parametric and non-parametric formulations with estimation based on maximum

likelihood, quasi-likelihood, generalized least squares and conditional independence

models (Carroll et al., 2006; Richardson & Gilks, 1993). However, relatively few papers

have addressed the specific context of spatial modeling.

Li, Tang, and Lin (2009) derived asymptotic bias expressions for estimated regression

coefficients in the context of a spatial linear mixed model. They showed that the

regression estimates obtained from naive use of an error prone covariate attenuates the

estimated regression coefficient, and that variance component estimates are also inflated.

They proposed the use of a maximum likelihood approach based on the EM algorithm to

adjust for measurement error. Their method performs well over various spatial

correlation structures; namely exponential, Gaussian and conditional auto-regressive
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structure (CAR). However, their simulation assumes that the measurement error

variance is known and they did not assess the performance in the case of misspecification

of the measurement error variance. Moreover, their result did not address the setting

where the degree of spatial correlation associated with the covariates differs from the

degree of spatial correlation in the error of the regression model. Their approach is also

subject to a high computational burden. Gryparis, Paciorek, Zeka, Schwartz, and Coull

(2009) and Szpiro, Sheppard, and Lumley (2011) noted that convergence can be very

slow for large data sets and can lead to spurious result when there are outliers or in the

case of model misspecification. Furthermore, Szpiro et al. (2011) argued that in the

presence of spatial correlation, joint modeling of the kind proposed by Li et al. (2009)

becomes challenging as it is very difficult to separate out the spatial correlation between

exposure and outcome.

Paciorek (2010) addresses the impact of omitting an important covariate that is spatially

correlated from a spatial linear regression model. He studied the effect of different

residual spatial structures on the bias and precision of estimated regression coefficient in

the context of omitted covariates. He argues that spatial models are particularly sensitive

to estimation bias induced by unmeasured confounders that are spatially correlated.

In this thesis, we quantify the biases of covariate measurement error, showing that the

amount of attenuation depends on the degree of spatial correlation in both the covariate

of interest and the assumed random error from the regression model. We proposed and

developed several approaches based on both a parametric and a semi parametric method

to obtain bias corrected estimates. The parametric approach has been published in

Environmetrics and the non-parametric approach in Biometrics.

Design issues

Although spatial modeling with group level covariates are useful in generating

hypotheses, the group level exposure may not reflect each individual’s exposure

experience in the group. Therefore, a detailed study of individual level exposure

characteristics is often desired. Recent exploration of the human genome offers new

opportunities to understand how genetic and environmental factors interplay to cause
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disease. Case-control studies are often the first choice to explore the joint influence of

genetic susceptibility and environmental risk factors on the risk of developing a rare

disease. Such studies generally attain greater power to detect gene-environment

interaction than comparably sized cohort studies, as cases are over-sampled from the

underlying populations in a case control study (Clayton & McKeigue, 2001). Moreover,

such design allows evaluation of the dose response relationship of the level of

environmental exposure with the genotype of interest (Khoury, Adams Jr, & Flanders,

1988). However, the validity of the case-control study results largely depends on the

appropriate selection of controls in the study (Miettinen, 1985). Case control studies

generally use unrelated controls from the population and require large sample sizes in

detecting gene-environment interactions (Foppa & Spiegelman, 1997; Garćıa-Closas &

Lubin, 1999; Luan, Wong, Day, & Wareham, 2001). To address this, various alternative

designs have been proposed in the literature.

White (1982) proposed a two stage design where exposure (or an appropriate surrogate)

is first measured in a large number of case and control subjects (Stage I). At Stage II,

detailed covariate information is obtained for a subset from each strata defined by

case/control and exposure status. Breslow and Cain (1988) formalized and generalized

White’s approach to a general two-stage design with analysis proceeding via logistic

regression applied to stage II data, but including an offset term that reflects the stage I

sampling probabilities.

Weinberg and Wacholder (1990) suggest a slightly simpler approach to the analysis of

two stage designs based on a so-called pseudo-likelihood approach that condition on

being sampled in stage II. Their method also requires the inclusion of an offset reflecting

sampling probabilities into the logistic regression. While these approaches all provide

consistent estimate of main and interaction effects, they require knowledge of the

screening variable specific disease rates.

Piegorsch, Weinberg, and Taylor (1994) proposed a case only design in the assessment of

gene-environment interaction under the assumption that genetic susceptibility is

independent of environmental exposure. The authors showed that under this assumption

the case only study provides more efficient estimates of parameters and higher power to

detect interaction effect than a case control study with a similar number of cases. The
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inference, however, is highly sensitive to this assumption (Albert, Ratnasinghe, Tangrea,

& Wacholder, 2001). Moreover, the case only design can only be used for testing

interactions, not the main effect.

Khoury (1994) argued that both sibling controls and case-parental controls can adjust

for genetic background and thus avoid bias from population stratification. Andrieu and

Goldstein (1996) later proposed the use of relatives as control in a case control study to

detect gene-environment interaction when the genetic factor is common. Although these

family based designs provide higher power to detect interaction parameter, they are

generally less powerful for testing main effects. Moreover, the use of relatives as controls

may lead to over-matching on various genetic and environmental factors (Khoury &

Flanders, 1996; Thomas, 2010).

Khoury and Flanders (1996) reviewed the family based designs along with case-only

design and argued that the apparent benefit of these non-traditional case-control study

may be inferior to a well conducted case-control study with unrelated control.

Furthermore, they noted that neither the genotype nor the exposure effect can be

estimated from a case only design.

Langholz and Borgan (1995) proposed counter-matching, an exposure stratified sampling

method where a control is randomly sampled from those in the risk set that have

exposure status opposite to that of the case. This allows for more variability in exposure

in the sampled risk set compared to a random sample of controls and hence is more

efficient than traditional case control design. They showed that the counter-matching

partial likelihood is proportional to the full cohort partial likelihood in the case of

modeling a single exposure variable. However, this approach require exposure or

exposure-related surrogate information on the full cohort and detailed exposure variable

is typically only collected on a subset.

Umbach and Weinberg (1997) showed that maximum likelihood estimates of the main

and interaction effects corresponding to a logistic regression model can be obtained by

fitting a constraint log linear model to the case control data. The constraint serves the

basis for genetic and environmental independence. As a consequence, the interaction

estimate depends on cases, and the genetic and environmental effect depends on control
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only through their marginal total. This results improved precision for the main and

interaction effect. Weinberg and Umbach (2000) later argued that the estimates of

gene-environment interaction based on case only are more precise than those based on a

classical logistic regression analysis. However, the author argued that a population based

case-control study is needed to confirm the apparent gene-environment interaction in a

case only study.

Andrieu, Goldstein, Thomas, and Langholz (2001) studied the counter-matching design

to estimate the effect of gene-environment interaction as well as both the genetic and

environmental main effects. Their approach requires exposure or surrogate information

for both genetic and environmental factors in the whole cohort. They showed that the

gain in efficiency of counter matching is highly dependent on the choice of highly specific

and sensitive surrogates. The author noted similar efficiencies in estimated interaction

effect can also be obtained from a two-phase design.

Chatterjee, Kalaylioglu, and Carroll (2005) proposed a conditional likelihood method for

family based case-control design that utilize the gene-environment independence

assumption. They showed that exploiting the gene-environment interaction effect in the

model provides highly efficient estimates of the gene-environment interaction effect.

Later Chatterjee and Carroll (2005) proposed a semiparametric approach for case control

that uses data from both the cases and the controls. The authors showed that efficient

estimates of the main and interaction effects can be obtained by employing a

gene-environment independence assumption in the analysis.

Kraft, Yen, Stram, Morrison, and Gauderman (2007) proposed a joint likelihood ratio

test of marginal genetic effect and gene-environment interaction effects for case control

data. They showed that the joint test had greater power than a marginal test of gene

effects and than a traditional test for gene environment interaction based on case-control

data.

Mukherjee and Chatterjee (2008) proposed a shrinkage estimate of gene-environment

interaction effects based on an empirical Bayes approach that provides weighted averages

of the case-only and case-control estimators. This avoids a two step test for determining

gene-environment independence based on control samples and test of interaction effects
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based on case-only analysis. When gene-environment independence in the control

population holds, the empirical Bayes estimators became more similar to the estimator

from the case only design. Similarly, in the absence of gene-environment independence,

the empirical Bayes estimator approximate the estimator from case-control study. This

provides a trade off between bias and efficiency as it takes advantage of smaller standard

error from a case-control study. The authors also argued that their approach is robust to

the departure of gene-environment independence assumption.

Chen, Kang, VanderWeele, Zhang, and Mukherjee (2012) proposed a two stage design

for detecting gene-environment interaction assuming a gene-environment independence.

They showed that enriching exposure information in control selection for genotyping

provides power advantages in binary exposure situations.

Stenzel, Ahn, Boonstra, Gruber, and Mukherjee (2015) empirically studied power

properties of exposure enriched sampling for a binary exposure based on case-only,

case-control and empirical Bayes approaches. They also considered the consequence of

exposure misclassification on power and parameter estimates. They showed that

exposure enriched sampling provides biased estimates of the parameters, but still exhibit

greater power properties. However, the author did not outline any methodology to

correct the biased estimates.

In this thesis, we further extend exposure enriched sampling with a continuous

environmental exposure to estimate gene-environment interaction in case control studies.

We show that the selection of individuals based on high (or low) value of the exposure

results in biased estimation of the regression coefficients when standard logistic

regression is used. We further show that valid statistical inference can be achieved

simply by the addition of a single covariate that reflects this exposure-related category.

We also discuss optimal design, showing that judicious over-sampling of high/low

exposed individuals can boost study power considerably. Although existing two stage

case control designs (Breslow & Cain, 1988) and their matched variant, counter

matching (Langholz & Borgan, 1995), are known to have higher power than traditional

case control design, they can only be used if surrogate information on gene, exposure or

both is available. The efficiency obtained from these two designs though similar, counter

matching designs are complex and require specific and sensitive surrogates for the risk
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factor of interest. Our Exposure Enriched Case Control (EECC) design to detect

gene-environment interaction uses similar underlying probability principle to

pseudo-likelihood analysis based on a two stage design, hence will result in similar

efficiency for an appropriate oversampling of high exposed individuals.

1.5 Organization of the Thesis

This thesis is organized in the following fashion. We start by developing a novel

individual level covariate adjusted conditional auto-regressive (indiCAR) model that can

incorporate both individual and group level covariates while adjusting for spatial

correlation in the disease rates in Chapter 2. An extension of the indiCAR model to

allow for non-linear smooth individual level covariate effect is presented in Chapter 3. In

Chapter 4, we quantify the bias due to covariate measurement error in spatial linear

regression and propose parametric approaches to calculate the attenuation factors and

hence obtain reliable estimates of the regression coefficient. In Chapter 5, we formulate a

semi-parametric model to adjust for covariate measurement error bias in spatial linear

regression model. In Chapter 6, we discuss an Exposure Enriched Case Control (EECC)

study that enhance power by oversampling exposure from the tail area of the exposure

distribution. Finally, Chapter 7 gives an overview of the results of the hesis, discusses

the contributions of the thesis, and presents areas for future work.

1.6 List of Publications Arising From this Thesis

All of the methodology chapters (Chapter 2 - 6) in this thesis are submitted to journals

for possible publications. Among these chapters, Chapter 2, 4, 5 and 6 has already been

published in International Journal of Heath Geographics, Environmetrics, Biometrics

and Genetic Epidemiology, respectively. The remaining Chapter 3 is in revision in the

Statistics in Medicine. The full list of all the submissions is provided below:

Chapter 2: Huque, Md Hamidul; Anderson, Craig; Walton, Richard and Ryan, Louise

(2016). Individual level covariate adjusted Conditional Auto-Regressive (indiCAR)
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model for disease mapping. International Journal of Health Geographics, 15, 25. DOI:

10.1186/s12942-016-0055-7.

Chapter 3: Huque, Md Hamidul; Anderson, Craig; Walton, Richard and Ryan, Louise.

Smooth individual level covariates in Conditional Auto-Regressive (smooth-indiCAR)

model for disease mapping studies. Statistics in Medicine (in revision).

Chapter 4: Huque, Md Hamidul; Bondell, Howard and Ryan, Louise (2014). On the

impact of covariate measurement error on spatial regression modeling. Environmetrics,

25 (8), 560-570.

Chapter 5: Huque, Md Hamidul; Bondell, Howard; Carroll, Raymond and Ryan, Louise

(2016). Spatial regression with covariate measurement error: A semiparametric

approach. Biometrics, DOI: 10.1111/biom.12474.

Chapter 6: Huque, Md Hamidul; Carroll, Raymond and Ryan, Louise (2016). Exposure

Enriched Case-Control (EECC) design for the assessment of gene-environment

interaction. Genetic Epidemiology. DOI: 10.1002/gepi.21986.
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Chapter 2

Individual Level Covariate

Adjusted Conditional

Auto-Regressive (indiCAR) Model

for Disease Mapping.

Summary

Mapping disease rates over a region provides a visual illustration of underlying

geographical variation of the disease and can be useful to generate new hypotheses on

the disease aetiology. However, methods to fit the popular and widely used conditional

autoregressive (CAR) models for disease mapping are not feasible in many applications

due to memory constraints, particularly when the sample size is large. We propose a new

algorithm to fit a CAR model that can accommodate both individual and group level

covariates while adjusting for spatial correlation in the disease rates, termed indiCAR.

Our method scales well and works in very large datasets where other methods fail.

The content of this chapter is published as: Huque, MH; Anderson C; Walton R; and Ryan LM. (2016).
Individual level covariate adjusted conditional autoregressive (indiCAR) model for disease mapping. In-
ternational Journal of Health Geographics, 15:25, DOI: 10.1186/s12942-016-0055-7.
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Results: We evaluate the performance of our indiCAR method through simulation

studies. Our simulation results indicate that the indiCAR provides reliable estimates of

all the regression and random effect parameters. We also apply indiCAR to the analysis

of data on neutropenia admissions in New South Wales (NSW), Australia. Our analyses

reveal that lower rates of neutropenia admissions are significantly associated with

individual level predictors including higher age, male gender, residence in an outer

regional area and a group level predictor of social disadvantage, the Socio-Economic

Index For Areas (SEIFA). A large value for the spatial dependence parameter is

estimated after adjusting for individual and area level covariates. This suggests the

presence of important variation in the management of cancer patients across NSW.

Conclusions: Incorporating individual covariate data in disease mapping studies

improves the estimation of fixed and random effect parameters by utilizing information

from multiple sources. Health registries routinely collect individual and area level

information and thus could benefit by using indiCAR for mapping disease rates.

Moreover, the natural applicability of indiCAR in a distributed computing framework

enhances its application in the Big Data domain with a large number of

individual/group level covariates.

2.1 Introduction

The risks of many diseases and health outcomes may vary across geographical locations

because of locally varying distributions of socioeconomic, behavioural and environmental

risk factors (Elliott & Wartenberg, 2004). These spatially correlated risk factors can have

important implications for the observed disease rates in small areas. Mapping disease

rates over a region offers a visual illustration of geographical variation. These maps are

particularly useful for generating new hypotheses through identifying apparently high

risk areas or disease clusters (Snow, 1855). However, producing such maps is complicated

by the fact that raw incidence rates are often unstable due to small incidence counts,

spatial correlation among rates and also due to the variation in individual patient

characteristics (Besag et al., 1991; Clayton & Kaldor, 1987; Cressie, 1993).

Poisson mixed models with conditional autoregressive random effects are commonly used
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for assessing the relationship between a rare disease outcome and risk factors in the

presence of geographical variation (Lee, 2011). These models can adjust for region

specific spatial random effects for correlated disease rates and both individual- and

region specific covariates. However, the fitting of such models is subject to high

computational burden, particularly when the sample size is large and when the number

of individual and group level covariates are large. To alleviate such problems,

investigators often adjust for the age and sex distribution of the underlying population

through calculation of an offset in the model (Leroux et al., 1999). Therefore, the effect

of age and sex on disease risk can not be estimated from these models. Moreover, such

an approach ignores a large number of potential individual level covariates that may be

related to the underlying disease process and readily available in health registries.

Health registries routinely collect geo-coded information relating to the patient’s

residence at diagnosis, their socio-demographic status and their clinical characteristics.

In addition, information on locally varying socioeconomic, behavioral and environmental

risk factors for each area under study can also be obtained from other data sources. For

example, in Australia, New South Wales (NSW) cancer registries collect cancer

treatment and outcome information for each patient diagnosed with cancer, along with

their socio-demographic characteristics. Additionally, a Socio-Economic Index For Areas

(SEIFA) and an area specific index for remoteness (ARIA) of each patient’s residence

can be obtained from the Census Bureau. Combining these individual and area level

characteristics in mapping studies can help researchers and policy makers to understand

the relative contribution of both individual and group level covariates to the observed

cancer rates. In addition, combining such data can also reduce ecological bias, which

occurs when the group level exposure-disease relationship does not reflect the individual

level relationship. A reduction in this bias leads to improved inference about both group

and individual level covariates(Haneuse & Bartell, 2011; Jackson et al., 2006). In this

paper we propose a novel approach that enables the study of individual level risk factors

in mapping studies.

The aim of our current research is to make use of routinely collected administrative

cancer treatment and outcome data to explore the possible geographical variation in the

rate of neutropenia admissions corresponding to all cancer types across New South Wales

(NSW). Neutropenia is a blood disorder with an abnormally low number of neutrophil
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granulocytes (a type of white blood cell in the blood), often associated with fever. It is a

life threatening complication of cancer chemotherapy and a major cause of morbidity and

associated healthcare resource costs. Furthermore, neutropenia results in compromised

efficacy due to delays and dose reductions in chemotherapy (Cameron, 2009).

New South Wales is the most populated state in Australia with a population of

approximately 7.6 million people. Geographical variations in neutropenia admissions are

of particular interest because of the uneven geographical concentration of the population

within the state. As a result of this uneven population density, the level of access to

health care services is not uniform across the whole region (Australian Bureau of

Statistics, 2015). Moreover, neutropenia incidence might also depend on patient age and

cancer type, as treatment modalities often vary across different types of cancer and age

groups. Therefore, appropriate analysis of geographical variation of neutropenia

admissions requires adjustment for both the patient’s demographic characteristics and

covariates reflecting the patient’s geographic location of residence. In our current

application, we explore whether there is any spatial variation in the rates of neutropenia

admissions after adjusting for patients’ individual and clinical characteristics.

In our proposed method, hereafter known as indiCAR, we incorporate individual level

covariate information in a two step iterative procedure following an initialization step.

At the initialization step, individual level outcome data were fitted against individual

level covariates with a Poisson Generalized Linear Model (GLM), ignoring random

effects and group level covariates. Then, at the first step, the individual level outcome

data were aggregated at the area level and fitted via a Poisson Generalized Linear Mixed

Model (GLMM) against area level covariates including a conditional autoregressive

spatial random effect, and an offset calculated based on individual covariate

contributions. At the second step, the individual level outcome data is fitted via a

Poisson GLM with individual level covariates and a second offset calculated based on the

contribution of area specific covariates and random effects obtained from the previous

step. Steps 1 and 2 are repeated until convergence.

We evaluate the performance of our indiCAR method through simulation studies and

also compare indiCAR to the traditional method of age-sex standardisation. (Leroux et

al., 1999). Our simulation results show that the proposed indiCAR approach is able to
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correctly estimate coefficients associated with both individual and group-level covariates.

We illustrate our proposed indiCAR method using data on neutropenia admissions from

the NSW Cancer Institute and conclude with some practical guidelines.

2.2 Methods

2.2.1 Data

New South Wales (NSW) cancer registries were used to identify patients diagnosed with

cancer, associated treatment procedures and co-morbidities. Specifically, we used data

from the NSW Central Cancer Registry (CCR) linked to NSW Admitted Patient Data

Collection (APDC). Detailed descriptions of the data items can be obtained from the

Centre for Health Record Linkage (CHeReL http://www.cherel.org.au/master- linkage

-key). Data were checked for consistency across data sources and linked by assigning a

unique Project Person Number (PPN) to each patient. Our study population comprises

all cancer patients that were diagnosed with cancer and were hospitalized during the

period between 2001 and 2009.

Demographic variables including age at diagnosis, gender, residence at diagnosis, postal

area of residence, and the Accessibility/Remoteness Index of Australia (ARIA) were

obtained from the CCR database. The ARIA variable was recorded at individual level

rather than postal area level because the ARIA index varies within postal areas. The

Socio-Economic Index For Areas (SEIFA; an index of social disadvantage) and the

geo-coded shape files for mapping corresponding to 2006 census postal areas were

obtained from the Australian Bureau of Statistics (ABS). Individual level clinical

characteristics such as type of cancer were also obtained from the CCR. The diagnosis of

neutropenia admissions and co-morbidity were obtained using data from the Admitted

Patients Data Collection (APDC). The ICD-10-AM (International Statistical

Classification of Disease and Related Health problem, 10th revision, Australian

modification) code D70 (Agranulocytosis) was used to identify admissions with possible

neutropenia.
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2.2.2 The Model

Suppose the total area under study is divided into M contiguous regions and the number

of neutropenia admissions for the ith (i = 1, 2, ..., nj) individual in the jth (j = 1, 2, ...,M)

region is denoted by {yij}. Let Y be a vector with elements {yij} that represents the

number of neutropenia admissions for all individuals in the study regions of interest.

Similarly, let X = (X1,X2, ...,Xp) and U = (U1,U2, ...,Uq) represent individual and

area level covariate matrices with dimensions n× p and M × q, respectively, where n is

the total sample size i.e., n =
∑M

j=1 nj . We define a replication matrix, Z of dimension

n×M to map group level covariates and random effects to the individual level as

Z =


1n1×1 0n1×1 · · · 0n1×1

0n2×1 1n2×1 · · · 0n2×1

...
...

. . .
...

0nM×1 0nM×1 · · · 1nM×1

 .

Under the above specifications, conditional on the area specific random effect vector, b,

the number of neutropenia admissions for each cancer patient is assumed to be a Poisson

random variable with mean µ, given by

ln(µ) = Xβ +ZUγ +Zb. (2.1)

Here, β and γ are the vectors of regression coefficients associated with the individual

level and group level covariates, respectively. Of course, it is possible to express model

(2.1) by replicating group level covariate data to the individual level and including them

within the design matrix, X. However, such a formulation often results in high

computational burden and a large amount of storage memory allocation. Instead,

formulation (2.1) hints on an algorithm that does not necessarily require the replication

of area level covariate to the individual level data for model fitting, thus helps to fit

individual and group level data separately in a distributed computing framework as will

be shown at the end of the current section.

Many different choices for modelling the random effect, b are available in the mapping

literature (see Lee 2011, for a recent review). Among these, the method of Leroux et al.
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(1999) is appealing because it allows varying weights between spatially structured and

unstructured variation (Leroux et al., 1999). Within this framework, the random effect

vector, b has a multivariate normal distribution with mean 0 and a covariance matrix, D

delivered through its Moore-Penrose generalized inverse, D− = σ−2{(1− λ)I + λR},

where I is the identity matrix, R is the intrinsic auto regression matrix reflecting the

neighbourhood structure. Typically, neighbours are those areas which share a common

boundary, but distance based neighbourhood structures can also be used (Earnest et al.,

2007).The typical element of R is given by

Rjj′ =


mj , j = j′

−I{j ∼ j′} j 6= j′,

where, mj is the number of neighbours of region j, and I{j ∼ j′} is an indicator function

that takes value 1 if regions j and j′ are neighbours and 0 otherwise. The parameters

characterising the random effect distribution, θ = (σ2 > 0,λ ∈ [0, 1]) quantify

overdispersion and spatial dependence respectively. A larger value of λ ∈ [0, 1] indicates

a higher degree of spatial correlation among proximal areal units. This specification

results in two extreme cases: i) completely independent random effects when λ = 0 and

ii) the intrinsic autoregressive model when λ = 1 (Besag et al., 1991). In cases where

0 < λ < 1, a weighted combination of these extreme cases is assumed. With the

expression of the Moore-Penrose generalized inverse of the covariance matrix as

σ−2{(1− λ)I + λR} therefore avoids inverting the covariance matrix D. Alternatively,

one can restrict λ to the range (0, 1), thus ensuring that D is invertible.

Since the random effects, b are unobserved, inference about β, γ and θ can be made by

integrating out the distribution of the random effects, b. The corresponding integrated

quasi-likelihood function is equal to (see equation (2) of Breslow and Clayton (1993))

|D|−
1
2

∫
exp

−1

2

M∑
j=1

nj∑
i=1

dij(Yij , µij)−
1

2
bTD−b

 db,

where d(Y,µ) refers to the deviance residual associated with observation Y .

The maximum likelihood estimates of β, γ and θ are simply those values which

maximize the above quasi-likelihood. However, no simple closed form expression exists
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for the integral. Instead, Breslow and Clayton (1993) proposed the penalized

quasi-likelihood (PQL) approach for parameter estimation and inference. The PQL uses

Laplace’s method for integral approximation and jointly maximizes the following

quasi-likelihood function to obtain estimates for β, γ and b(θ) (see equation (6) of

Breslow and Clayton 1993)

−1

2

M∑
j=1

nj∑
i=1

dij(Yij , µij)−
1

2
bTD−b. (2.2)

Under the above specification the approximate log-likelihood can be expressed as

const+ Y T(Xβ +ZUγ +Zb)−

1T exp(Xβ +ZUγ +Zb)− 1

2
bTD−b. (2.3)

Differentiating (2.3) with respect to β, γ and b using vector matrix calculus (Wand,

2002), we obtain the following score equations

{Y − exp(Xβ +ZUγ +Zb)}T X = 0, (2.4)

{Y − exp(Xβ +ZUγ +Zb)}TZU = 0, (2.5)

and

{Y − exp(Xβ +ZUγ +Zb)}TZ = bTD−. (2.6)

Iterative Re-weighted Least Squares (IRLS) can be applied to solve the above equations

for β, γ and b. However, high computational costs and memory space constraints often

make it difficult to apply these iterative procedures to data sets with a very large

number of cases. An alternative computational strategy is the use of the Gauss-Seidel

algorithm. In this method, at each iteration, one of the parameters is estimated while

keeping other parameters fixed at current values. The advantage of such an approach is

that substantial simplifications can be obtained at each step. Using this approach, we

first initialize β and then obtain updated estimates for γ and b in the following two step
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procedure:

Step 0: Set the coefficients corresponding to area level covariates, γ and random effects,

b to 0 in equation (2.4). Then we have

{
Y − exp(Xβ̂)

}T
X = 0.

This equation is the estimating equation for a Poisson generalized linear model (Wand,

2002) and thus can be fitted using the existing glm package in the R statistical

computing environment (R Core Team, 2013). This gives initial estimates of the

regression coefficient β associated with individual level covariates.

Step 1. Substitute the current estimated individual level coefficients, β̂ in equation (2.5)

and (2.6) and with some simple algebra, we have

{Y c − exp(O1 + Uγ + b)}T U = 0

and,

{Y c − exp(O1 + Uγ + b)}T = bTD−,

where Y T
c = Y TZ is a vector of aggregated disease counts of length M at the group

level and O1 = log{ZT exp(Xβ̂)} is a vector of offset with length M .

The above two equations are well known PQL estimating equations for the Poisson

mixed model (Breslow & Clayton, 1993). Since, the outcome Y c, offset O1, covariate U

and random effects b are all measured at the group level, estimates of parameters for the

group level coefficient γ̂ and random effects b can be estimated using the PQL method

(Breslow & Clayton, 1993; Leroux et al., 1999) with only group level data. The detailed

procedure is described in Appendix 2A.

Step 2. Now substitute the estimated area-specific regression coefficient, γ̂ and random

effect parameter, b̂ estimated at step 1 in (2.4). Then we have

{Y − exp(Xβ + O2)}T X = 0,
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where O2 = Z(Uγ̂ + b̂) is an offset vector of length n. Under the above specification, the

individual level coefficients estimate β̂ can then be updated using ordinary Poisson

regression with individual level data.

Steps 1 and 2 are then repeated until the algorithm converges. Estimates obtained by

this iterative procedure will be the same, aside from rounding error as the solution

obtained by a standard IRLS algorithm.

Estimation of standard error

The approximate standard error estimates for γ̂ and β̂ in step 1 and 2 assume fixed β

and fixed γ, respectively. Therefore, we re-calculated the standard error of these

regression coefficients by adjusting the variability of the estimated β̂ and γ̂. This can be

done via the Iterative Re-weighted Least Squares (IRLS) estimation of score equations

(2.4, 2.5 and 2.6). The IRLS estimation requires us to define a working dependent

variable and a weight matrix that are updated at each iteration and solved via Fisher

scoring (Breslow & Clayton, 1993).

Let the GLM adjusted dependent variable, Y pseudo be

Y pseudo = Xβ +ZUγ +Zb+ W−1(Y − µ) (2.7)

where W is a n× n diagonal matrix with diagonal elements µ. Harville (1977) and

Robinson (1991) showed that the Fisher scoring corresponding to the score equations

(2.4, 2.5 and 2.6) and GLM dependent variable as in (2.7), is identical to the normal

equation of the best linear unbiased predictors (BLUPs) of β, γ and θ corresponding to

the following linear mixed model

Y pseudo = Xβ +ZUγ +Zb+ εpseudo, (2.8)

where the pseudo-error εpseudo ∼ N(0,W−1). Following Robinson (1991), the estimated

regression coefficients for the fixed effects, (β,γ) and BLUP estimate for the random
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effect b can be obtained as

(β̂, γ̂) = (CTV −1C)−1(CTV −1Y pseudo)

b̂ = DZTV −1{Y −Xβ̂ −ZUγ̂} (2.9)

where C = [X|ZU ] and V = ZDZT + W−1, the variance of pseudo-response Y pseudo.

Thus, the variance-covariance matrix for the fixed effect (β̂, γ̂) can be estimated by

Q = (CTV −1C)−1. (2.10)

Note that equation (2.9) suggests that estimates of the regression coefficients and

variance components can be obtained using the Leroux et al. (1999) model with

appropriate specification of the design matrix (Z) associated with spatial random effect

(2.1). Indeed, a back-fitting approach such as indiCAR will be effective in situations

where memory constraints may prohibit fitting a single model consisting of all individual

and group level covariates. A useful feature of our indiCAR method is that we can

calculate the above standard error in a distributed computing framework. This is

because V −1 can be expressed as W −WZD(I +ZTWZD)−1ZTW (Henderson &

Searle, 1981). Therefore, the above variance-covariance matrix can be written as

Q =

 a11 a12

a21 a22

−1

,

where,

a11 = XTWX−XTWZD(I +ZTWZD)−1 ×ZTWX

a12 = XTWZU−XTWZD(I +ZTWZD)−1 ×ZTWZU

a21 = aT
12

a22 = UTZTWZU−UTZTWZD × (I +ZTWZD)−1ZTWZU.

Among the various components of the above variance-covariance matrix, XTWX and

XTWZ are the only terms involving individual level data, and the rest of the terms

involve a lower dimension corresponding to the group level data. These components are

therefore straightforward to calculate. Hence, upon convergence, calculation of the

variance-covariance matrix is also carried out in a distributed computing framework for
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individual and group-level data separately.

The covariance matrix for b̂ was obtained from the Fisher information matrix from Step

2 in the usual way, assuming that parameters for the individual and area specific

covariates are fixed. Of course there is additional variability due to the fact that the

individual and area specific covariates parameters are estimated. However, following

Breslow and Clayton (1993) we ignore this additional variability when making inference

about the parameters which characterize the random effect distribution, θ̂. The detailed

procedure is given in Appendix 2A.

In the next section we describe a simulation study to evaluate the performance of our

method.

2.3 Simulation Studies

To evaluate our proposed method we design a simulation study involving 400 regions in a

20× 20 square lattice grid with varying sample sizes. Specifically, we consider cases with

i) 10 to 1000 and ii) 10 to 50 subjects in each area. We declare two regions to be

neighbours if they share a common border. The random effects are generated following a

multivariate normal distribution with mean 0 and covariance matrix

D = [σ−2 {(1− λ)I + λR}]−1. The value of σ is set to 0.4 and five different values of

spatial dependence parameters, λ = {0, 0.25, 0.50, 0.75, 0.99} are considered in order to

represent different strengths of spatial correlation. We then generate three individual

level covariates (one binary, one categorical and one continuous) and one group level

covariate. The binary covariate represents the distribution of sex in the area and is

generated following a Bernoulli random variable with probability ranging from 0.45 to

0.55 across groups. The categorical variable with six categories is generated to represent

the age distribution of the neutropenia admissions data with prespecified probabilities

(similar to the neutropenia admissions data). The continuous individual level variable is

generated as Uniform (0.2, 1). The group level covariate is generated from a standard

normal distribution. The outcome variable is then generated using model (2.1). The full

list of the parameters used to generate data is given in Table 1. The binary and the

categorical individual level variables help us to compare our simulation results for the
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indiCAR with the age-sex adjusted Leroux et al (1999) approach. Conditional on the

area specific random effect b, the Leroux et al (1999) model is given by

lnµ = lnE + Uγ + b, where E is the expected count, which may be based on the age

distribution in the region and a set of standard rates.

2.4 Results and Discussion

In this section we discuss our results obtained from the simulation study and an

application to the neutropenia admission data. We compare the results obtained by

indiCAR with the existing Leroux et al. (1999) method. When applying indiCAR to the

simulated data, we adjust for all individual and areal covariates. However, in the existing

Leroux et al. (1999) method we were only able to incorporate the binary and categorical

variable by calculating offsets based on direct standardization of these covariates.

2.4.1 Simulation Results

Table 2.1 displays the average of estimated regression coefficients along with their

estimated standard errors for indiCAR and Leroux et al. (1999) methods based on 1000

simulation runs assuming a random number of subjects between 10 and 1000 in an area

and varying the spatial dependence parameter λ between 0, 0.25, 0.50, 0.75 and 0.99. We

estimated two different standard errors of estimated regression coefficients: namely, (i)

empirical standard errors i.e., taking the standard deviation of the 1000 simulated

regression coefficient estimates, (ii) average of model based standard errors. The first

column of Table 2.1 specifies the spatial dependence parameter used in that particular

simulation. The next eight columns list the estimated regression coefficients for the

individual level covariates using indiCAR method. The tenth, eleventh and twelfth

columns list the estimated group level regression coefficients, the estimated

over-dispersion parameters and estimated spatial dependence parameters for the spatial

random effect using indiCAR method. The last three columns list the estimated

regression coefficients for the group specific covariate and estimated over-dispersion and

spatial dependence parameter using the Leroux et al. (1999) method. The Leroux et al.

(1999) method adjusts only for the binary and categorical variables.
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Table 2.1: Simulation results for estimated regression coefficients following indiCAR and method proposed by Leroux et al. (1999) where each area
consists of a random number of subjects between 10 and 1000.

indiCAR Leroux et al (1999) approach

True β0 β1 β2 β32 β33 β34 β35 β36 γ σ λ γ σ λ
value -0.20 -2.50 0.70 -2.00 -1.50 0.20 0.50 0.80 0.20 0.40 0.20 0.40

λ Estimated coefficient

0.00 -0.175 -2.500 0.700 -2.005 -1.501 0.200 0.500 0.799 0.198 0.393 0.017 0.197 0.439 0.064
0.25 -0.172 -2.500 0.700 -2.002 -1.498 0.201 0.499 0.799 0.198 0.394 0.251 0.197 0.421 0.308
0.50 -0.163 -2.500 0.699 -1.997 -1.498 0.202 0.502 0.802 0.200 0.395 0.503 0.199 0.412 0.523
0.75 -0.147 -2.500 0.700 -2.005 -1.501 0.198 0.499 0.798 0.199 0.393 0.730 0.198 0.406 0.719
0.99 -0.117 -2.501 0.700 -1.998 -1.500 0.202 0.502 0.803 0.198 0.398 0.956 0.198 0.413 0.947

Empirical standard error

0.00 0.034 0.015 0.012 0.061 0.037 0.026 0.027 0.026 0.020 0.028 0.025 0.021 0.035 0.051
0.25 0.038 0.016 0.012 0.062 0.038 0.026 0.026 0.027 0.018 0.029 0.098 0.018 0.029 0.099
0.50 0.044 0.016 0.012 0.061 0.040 0.028 0.027 0.028 0.016 0.028 0.123 0.016 0.027 0.111
0.75 0.053 0.016 0.012 0.061 0.040 0.028 0.027 0.027 0.014 0.025 0.114 0.015 0.024 0.105
0.99 0.206 0.017 0.012 0.061 0.039 0.027 0.026 0.026 0.013 0.019 0.043 0.013 0.020 0.049

Average of the simulated standard error

0.00 0.034 0.016 0.012 0.061 0.039 0.027 0.027 0.027 0.021 0.028 0.045 0.022 0.031 0.055
0.25 0.036 0.016 0.012 0.061 0.039 0.028 0.027 0.027 0.017 0.029 0.091 0.017 0.030 0.098
0.50 0.041 0.016 0.012 0.062 0.039 0.028 0.027 0.027 0.015 0.026 0.113 0.015 0.026 0.114
0.75 0.050 0.016 0.012 0.062 0.039 0.028 0.027 0.027 0.014 0.021 0.101 0.014 0.022 0.102
0.99 0.130 0.016 0.012 0.061 0.039 0.028 0.027 0.027 0.013 0.019 0.035 0.013 0.020 0.039
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As expected, the indiCAR method provides consistent estimates of the individual level

and region specific regression coefficients and the parameters in the spatial random

effect. Though the Leroux et al. (1999) method provides similar consistent estimates of

the true region-specific regression parameters, however, the parameters in the random

effect are slightly biased.

To evaluate the performance of the proposed method under small sample settings, we

also conducted simulations with only 10 to 50 subjects per region. The results are given

in Table 2.2. As indicated in the table, the proposed method performs very well in this

setting providing consistent estimates of all the parameters. In contrast, the Leroux et al.

(1999) method provides slightly less efficient estimates of spatial dependence parameters.

2.4.2 Application to the Neutropenia Data

We applied our methodology to the data on neutropenia admission in New South Wales,

Australia. One of the key objectives of this analysis is to assess the geographical

variation of neutropenia admission rates and its association with area level measures of

socio-economic status. Data also includes patient age, gender, year of diagnosis, ARIA,

cancer types at diagnosis, number of major comorbidities excluding cancer during

hospital discharge and geographic location reported via postcode of residence.

Table 2.3 shows the descriptive statistics of cancer patients diagnosed and treated

between years 2001 and 2009 in New South Wales, Australia. The proportion of

neutropenia admissions decreases gradually with increasing age (9.2 % for 20-30 years of

age to 1.7 % for 80+ years of age). Overall, the rates are similar (≈ 5 %) across the

years 2001 to 2008 but are considerably lower (3.0 %) in the year 2009. This might be

due to the fact that the data are date limited to those patients diagnosed with cancer

and treated in 2009. As cancer treatment often requires long duration and subsequent

neutropenia admissions may have happened beyond the study period. The proportion of

neutropenia is highest (4.9 %) in the major cities followed by inner regional Australia

(3.9 %). Among the various types of cancer, the highest proportion of neutropenia

admissions are observed for hematological malignant cancer patients (25.0 %) followed

by lung (6.2 %) and breast cancer (5.3 %). The proportion of neutropenia admissions
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Table 2.2: Simulation results for estimated regression coefficients following indiCAR and method proposed by Leroux et al. (1999) where each area
consists of a random number of subjects between 10 and 50.

indiCAR Leroux et al (1999) method

True β0 β1 β2 β32 β33 β34 β35 β36 γ σ λ γ σ λ
value -0.20 -2.50 0.70 -2.00 -1.50 0.20 0.50 0.80 0.20 0.40 0.20 0.40

λ Estimated coefficient

0.00 -0.159 -2.496 0.698 -2.020 -1.508 0.206 0.506 0.805 0.195 0.383 0.045 0.186 0.449 0.058
0.25 -0.178 -2.507 0.703 -2.017 -1.493 0.212 0.510 0.810 0.199 0.379 0.236 0.193 0.427 0.228
0.50 -0.176 -2.500 0.699 -2.021 -1.502 0.202 0.500 0.802 0.198 0.376 0.449 0.194 0.426 0.378
0.75 -0.178 -2.500 0.702 -2.024 -1.506 0.202 0.503 0.803 0.198 0.380 0.671 0.197 0.440 0.576
0.99 -0.148 -2.502 0.698 -2.033 -1.509 0.199 0.500 0.800 0.199 0.405 0.922 0.198 0.514 0.849

Empirical standard error

0.00 0.117 0.067 0.052 0.256 0.160 0.115 0.112 0.116 0.032 0.062 0.077 0.034 0.066 0.079
0.25 0.093 0.052 0.039 0.196 0.128 0.090 0.083 0.085 0.023 0.048 0.155 0.025 0.052 0.150
0.50 0.090 0.049 0.041 0.209 0.124 0.085 0.084 0.085 0.023 0.044 0.191 0.025 0.050 0.180
0.75 0.099 0.053 0.037 0.198 0.131 0.086 0.085 0.088 0.024 0.041 0.169 0.026 0.045 0.182
0.99 0.238 0.066 0.048 0.265 0.165 0.120 0.118 0.117 0.027 0.051 0.098 0.030 0.057 0.146

Average of the simulated standard error

0.00 0.116 0.066 0.049 0.254 0.161 0.114 0.111 0.113 0.031 0.063 0.124 0.032 0.061 0.105
0.25 0.092 0.051 0.038 0.198 0.125 0.088 0.086 0.087 0.025 0.049 0.164 0.027 0.050 0.144
0.50 0.093 0.052 0.038 0.198 0.125 0.088 0.086 0.087 0.024 0.044 0.196 0.025 0.046 0.171
0.75 0.097 0.052 0.038 0.198 0.125 0.088 0.086 0.087 0.023 0.041 0.170 0.025 0.043 0.167
0.99 0.164 0.067 0.049 0.259 0.163 0.115 0.112 0.114 0.028 0.056 0.067 0.029 0.054 0.095
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Table 2.3: Descriptive analysis of neutropenia data.
Variables Neutropenia Total

N (%) N=279,623

Age group
20-30 years 408 (9.2) 4418
30-39 years 851 (7.7) 10,988
40-49 years 1649 (6.2) 26,395
50-59 years 2942 (5.6) 52,281
60-69 years 3465 (4.8) 71,446
70-79 years 2577 (3.7) 69,236
80+ years 769 (1.7) 44,859

Sex
Female 6,363 (5.0) 127,519
Male 6,298 (4.1) 152,104

Year of Diagnosis
2001 1,343 (4.9) 27,356
2002 1,411 (5.0) 28,451
2003 1,503 (5.1) 29,560
2004 1,478 (4.8) 30,970
2005 1,596 (5.1) 31,533
2006 1,452 (4.6) 31,865
2007 1,453 (4.5) 32,603
2008 1,405 (4.2) 33,343
2009 1,020 (3.0) 33,942

ARIA
Major Cities 9,199 (4.9) 189,322
Inner Regional Australia 2,638 (3.9) 67,086
Outer Regional Australia 774 (3.6) 21,664
Remote or Very remote Australia 50 (3.2) 1,551

Cancer Type
Breast Cancer 2,059 (5.3) 38,620
Lung cancer 1,401 (6.2) 22,744
Colon & rectum cancer 1,011 (3.0) 34,018
Haematological Malignancy 5,134 (25.0) 20,518
Other cancer 3,056 (1.9) 163,723

No. of major comorbidities
0 6,072 (3.7) 163,645
1 2,228 (4.9) 45,817
2 2,315 (6.7) 34,670
3 976 (5.7) 17,264
4+ 1,070 (5.9) 18,227

SEIFA
Most disadvantaged 1,388 (4.6) 30,302
2 1,750 (4.1) 42,558
3 3546 (4.5) 78,006
4 2800 (4.6) 60,880
Least disadvantaged 3177 (4.7) 67,877

45



are very similar across various SEIFA index categories.

Table 2.4 reports the multivariable analysis of neutropenia admission data using

indiCAR and the Leroux et al. (1999) method based on age-sex adjustments. We

calculate age-sex adjusted standardized incidence ratios (SIR) by dividing the observed

number of neutropenia admissions by the age-sex adjusted expected number of

neutropenia admissions (Breslow & Day, 1987). Our results reveal that higher age, male

gender, patients residing in outer regional and remote area and with higher

socioeconomic status all have a significantly lower rate of neutropenia. The estimated

over-dispersion (σ) and spatial dependence parameters (λ) with indiCAR are 0.204 and

0.992, respectively. These figures with Leroux et al. (1999) are estimated as 0.210 and

0.989. Both the methods estimate a very strong spatial dependence (≈ 1) in the

neutropenia admission across NSW.

Although advanced age has been identified as a significant predictor for neutropenia

admissions in previous studies (Klastersky et al., 2000), we observed a lower risk of

neutropenia admissions associated with increasing age. This might be due to the fact

that the current risk based prophylactic administration of Colony Stimulating Factor

(CSF) guidelines account for patients advanced age (Aapro et al., 2011).

The dependence between average neutropenia rate on ARIA and SEIFA are in the

opposite direction, which is counter intuitive as remote areas in NSW are mostly

associated with disadvantage SEIFA categories. However, the observed contrast in

estimated regression coefficients might be due to the differences in the health care

practices. Patients in the remote areas where the patients are geographically distant to

the treating medical oncologist are best managed by their primary care physicians, hence,

may be treated with lower doses of chemotherapy (Fox & Boyce, 2014). On the contrary,

patients in the major cities might get intensive chemotherapy to treat them early, and

are better managed due to availability of resources. Previous studies also indicate that

remoteness have greatest effect in quality of cancer treatment (Jong et al., 2004) and it

affect treatment choices made by both patients and clinicians (Nattinger et al., 2001).

Figure 2.1(a), shows the Standardized Incidence Ratios (SIR) of neutropenia admission

in NSW. Six postal areas in NSW had an estimated SIR> 3 as shown in the map. Five
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Table 2.4: Comparison of individual covariate adjusted conditional auto-regressive model
(indiCAR) with the age-sex adjusted Leroux et al. (1999) method.

indiCAR Leroux et. al.

Regression coefficients Estimates Std. Error Estimates Std. Error

Intercept -2.781 0.110 — —
Age group

20-30 years 0.124 0.056 — —
30-39 years 0.208 0.042 — —
40-49 years Ref
50-59 years -0.119 0.031 — —
60-69 years -0.287 0.031 — —
70-79 years -0.712 0.033 — —
80+ years -1.586 0.045 — —

Sex
Female Ref
Male -0.082 0.020 — —

Year of Diagnosis
2001 Ref
2002 0.018 0.038 — —
2003 0.083 0.038 — —
2004 0.021 0.038 — —
2005 0.096 0.037 — —
2006 0.036 0.038 — —
2007 0.026 0.038 — —
2008 -0.001 0.038 — —
2009 -0.315 0.042 — —

ARIA
Major Cities Ref
Inner Regional Australia -0.023 0.047 — —
Outer Regional Australia -0.147 0.068 — —
Remote/ Very remote Australia -0.231 0.163 — —

Cancer Type
Breast Cancer Ref — — —
Lung cancer 0.253 0.038 — —
Colon & rectum cancer -0.434 0.040 — —
Haematological Malignancy 1.572 0.029 — —
Other cancer -0.942 0.031 — —

No. of major comorbidities
0 Ref — —
1 0.413 0.026 — —
2 0.670 0.026 — —
3 0.609 0.036 – —
4+ 0.605 0.035 – —

SEIFA
Most disadvantaged Ref
2 -0.083 0.044 -0.075 0.042
3 -0.071 0.041 -0.068 0.038
4 -0.125 0.047 -0.121 0.044
Least disadvantaged -0.131 0.056 -0.129 0.052

Variance parameter

σ 0.204 0.023 0.210 0.022
λ 0.992 0.012 0.989 0.015
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(a) Standardized Incidence Ratio. (b) Estimated spatial random effects.

Figure 2.1: Estimated (a) Standardized Incidence Ratios (SIR) and (b) spatial random
effects of neutropenia admissions in NSW, Australia using indiCAR.

of these postcodes are in the remote or very remote area. There is also very high spatial

dependence of the neutropenia rates across NSW (Figure 2.1(b)). The white region in

the map of NSW is the Australian Capital Territory (ACT). Two other Australian

states, Queensland (QLD) and Victoria (VIC) are located to the North-East and

South-West of NSW, respectively. The strong spatial correlation after adjusting for

individual and group specific covariates indicates that geographical variation of

neutropenia might be due to differences in health care practices or access to care across

NSW. Further investigation needed possibly at the hospital level for a comprehensive

explanation of these findings. The lower spatial random effect might indicate a low

number of cancer patients recruited in our study due to a border effect (i.e., getting

admitted for neutropenia in other states: ACT, Victoria or Queensland).

Variation across clinical practices of neutropenia treatment has been identified in

Australia in a previous survey (Lingaratnam et al., 2011). The authors showed that the

treatment approach for management of neutropenia varies across oncologists,

hematologists and clinicians as well as different sectors of cancer care. Therefore, it

might be interesting to explore whether the observed variation is due to variation across

different hospitals (eg., metropolitan hospital vs. Non-metropolitan hospitals ) in NSW

or across various healthcare providers. However, data items for such analysis are not

collected in the registry and are beyond the scope of our present paper.

Our study was based on data linked from a state-based cancer registry and

administrative data from the Admitted Patient Data Collection (APDC). An advantage

of such linked data is that it provides us with a large, population based sample. Registry
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based analysis is more comprehensive than that based on single centre studies, and

provides more complete information than may be obtained from clinical trials where

patient selection and loss to follow-up may impact validity and generalizability of study

findings. However, it is important to keep in mind that the resulting data quality may be

inferior to that obtained from prospective studies.

Despite various limitations, indiCAR is an useful addition to the existing methodology

to explore clinical variation across geographical locations. One of the major advantages

of indiCAR is the ability to analyze age as a continuous variable rather than grouping

them using arbitrary cut-offs. The results of such analysis are given in Appendix Table

2.5, though they are very similar to those using age groups. However, in many

applications age grouping might induce residual confounding and result in spurious

relationship between age and outcome variable (Rothman, Greenland, & Lash, 2008). In

our simulation study, we evaluate indiCAR for a continuous area level covariate;

however, to ease our interpretation we considered SEIFA as a categorical variable. The

continuous SEIFA index scores are an ordinal measure, so care should be taken when

comparing scores. For example, an area with a index of 1000 is not twice as advantaged

as an area with a index of 500. Moreover the scores are relative measures of Social

economic disadvantages, so while this type of measure is useful for considering inequality

between households, it cannot provide information on absolute levels of poverty within a

community (McKenzie, 2003). Therefore, for ease in interpretation it is recommended

that the index rankings and quantiles (e.g. decile) should be used for analysis, rather

than using the index scores. The results are quite similar and indicate a significant

negative relationship between high SEIFA score and neutropenia admission (result not

shown in table).

2.5 Conclusions

In this paper we propose a novel methodology to incorporate individual level covariate

information in disease mapping studies. Our method provides reliable estimates of

individual and area level covariate effects. The natural applicability of indiCAR in a

distributed computing framework make it potential for possible implementation in the

Big Data situation. The gain in speed and computation for large data set with spatial

49



correlation can be obtained using indiCAR in conjunction with recently developed

statistical methodology for uncorrelated Big data (Enea, 2012; Lumley, 2011). Cancer

registries routinely collect individual level cancer information and thus could benefit by

using indiCAR to incorporate individual level information in the analysis and mapping

of disease rates.

In this chapter we assumed a linear dependence of age on neutropenia admission rates,

however, exploratory analysis suggests a non-linear relationship between age and

neutropenia admission rates. We therefore extend indiCAR in a semiparametric mixed

model formulation where effect of a continuous individual level covariate is

accommodated via a semiparametric splines formulation. The next chapter presents such

an extension in detail.
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Appendix 2A

Implementation of PQL in Step 2

The PQL estimation procedure is a iterative procedure where at each step requires

defining following working dependent variable and a weight matrix that are updated at

each iteration and solve via Fisher scoring (Breslow & Clayton, 1993; Leroux et al.,

1999). The detailed procedure has been illustrated elsewhere (Breslow & Clayton, 1993;

Leroux et al., 1999).

The GLM adjusted dependent variable (Y c−pseudo) at group level is calculated as

Y c−pseudo = η̂c + (Y c − µ̂c)
dη̂c
dµ̂c

, (2.11)

where, ηc = g(µc) = O1 + Uγ + b and O1 = log{ZT exp(Xβ̂)} is a vector of offset with

dimension M . The poisson link (g(µc) = logµc) and variance function V (µc) = µc are

used. The covariance matrix of Y c−pseudo is then approximated by

V̂c = Ŵc
−1

+ D̂, (2.12)

where D̂ is the covariance matrix of the random effects, b, evaluated at the current

estimate for the variance parameters, and Ŵc is the M ×M diagonal matrix with

diagonal terms w = µ̂c. Updated estimates of the fixed effect vector γ and random effect

vector b are then can be obtained from the solution of the following mixed model

equations:

γ̂ = (UTV̂c
−1

U)−1UV̂c
−1

(Y c−pseudo −O1), (2.13)

and

b̂ = D̂V̂c
−1

(Y c−pseudo −O1 −Uγ̂). (2.14)

The updated estimates of the variance parameters, λ and σ are obtain by a
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Newton-Rapson iterative procedure as follows:

 σ̂

λ̂

updated

=

 σ̂

λ̂

old

+ I−1S. (2.15)

where S is the score vector and I is the expected information matrix based on REML

likelihood for Y c−pseudo. The expression for the element of score vector and information

matrix, letting θ = (θ1, θ2) = (σ, λ) is given by

Si =
1

2
(Y c−pseudo −Uγ̂ −O1)TP

δVc
δθi

P

(Y c−pseudo −Uγ̂ −O1)− 1

2
tr

(
P
δVc
δθi

)

and

Ijk = −1

2
tr

(
P
δVc
δθj

P
δVc
δθk

)
,

where, P = V −1
c − V −1

c U(UTV −1
c U)−1UTV −1

c . The derivative of Vc with respect to σ

and λ are given below:

δVc
δσ

= 2σR−1
λ

δVc
δλ

= σ2R−1
λ (R− I)R−1

λ ,

where Rλ = (1− λ)I + λR and R is the intrinsic auto-regression matrix determined by

neighborhood structure .

Repeated iteration of equations (2.11)-(2.15) are considered to obtain a consistent

estimates of the region specific fixed effect and random effect parameters. Convergence is

acheived when the change in parameter estimates are less than a prespecified tolerance

level (less than 1e− 3, in the simulation study reported). Approximate standard errors

for λ and σ are obtained from the above information matrix in the usual way.
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Table 2.5: Application of indiCAR with age as a continuous predictor

Regression coefficients Estimates Std. Error

Intercept -1.493 0.047
Age -0.027 0.001
Sex
Female Ref
Male -0.043 0.020
Year of Diagnosis
2001 Ref
2002 0.021 0.038
2003 0.083 0.038
2004 0.019 0.038
2005 0.095 0.037
2006 0.038 0.038
2007 -0.022 0.038
2008 -0.004 0.038
2009 -0.315 0.042
ARIA
Major Cities Ref
Inner Regional Australia -0.006 0.022
Outer Regional Australia -0.118 0.037
Remote or Very remote Australia -0.192 0.142
Cancer Type
Breast Cancer Ref
Lung cancer 0.240 0.037
Colon & rectum cancer -0.463 0.040
Haematological Malignancy 1.497 0.029
Other cancer -0.986 0.031
No. of major comorbidities
0 Ref
1 0.413 0.026
2 0.682 0.026
3 0.589 0.036
4+ 0.594 0.035
SEIFA
Most disadvantaged Ref
2 -0.089 0.043
3 -0.078 0.038
4 -0.134 0.045
Least disadvantaged -0.144 0.053

Variance parameter

σ 0.209 0.022
λ 0.992 0.012
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R Code

Function for data generation

library(MASS)
DataSimulation<-function(nsamp=20000,nGroup=400,sigma=0.4,lambda=0.75,

beta0=-0.2, beta1=-2.5, beta2=0.7, beta32=-2.0, beta33=-1.5,
beta34=0.2, beta35=0.5, beta36=0.8, gamma=0.2)

{
# nGroup: Total number of group
# nSamp: sample size
# lambda:
# sigma: variance parameter
# beta0-beta3: individual level coefficients
# gamma: group level coefficient
# ID: Area ID e.g., postcode
repeat{

indivGroup<-as.vector(rmultinom(n=1, size=nsamp, prob=runif(400,0.05)))
if (all(indivGroup)>=1){break}

}
totalSample<-sum(indivGroup)
#generate covariate values
pr =runif(totalSample,0.45,0.55)
x2<-rbinom(totalSample,1,pr)
x1<-0.2*x2+runif(totalSample,0.2,2)
x3<-sample(1:6,totalSample, replace=TRUE,

prob=c(0.06,0.09,0.19,0.25,0.25,0.16))
#generate covariate values
z2<-rnorm(nGroup)
x4<-rep(z2,indivGroup)
ID<-rep(1:nGroup,indivGroup)
#Generating spatial random effect in a lattice grid
#### Set up a square lattice region
x.easting <- 1:20
x.northing <- 1:20
Grid <- expand.grid(x.easting, x.northing)
n <- nrow(Grid)
#### set up distance and neighbourhood matrices W
distance <-array(0, c(n,n))
W <-array(0, c(n,n))
for(i in 1:n)
{
for(j in 1:n)

{
temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
distance[i,j] <- sqrt(temp)
if(temp==1) W[i,j] <- 1
}

}
R <- -W
diag(R) <- as.numeric(apply(W, 1, sum))
Sigma.inv<-1/sigma^2*(lambda*R + (1-lambda)*diag(rep(1,n)))
Sigma<-solve(Sigma.inv)
phi <- mvrnorm(n=1, mu=rep(0,n), Sigma=Sigma)
phi_long<-rep(phi,indivGroup)

mu <- exp(beta0 +beta1 *x1 +beta2*x2+beta32*I(x3==2)+beta33*I(x3==3) +
beta34*I(x3==4)+beta35*I(x3==5)+beta36*I(x3==6)+ gamma*x4 + phi_long)
#generate Y-values
y <- rpois(totalSample, lambda=mu)
#data set
data <- data.frame(ID,y=y, x1,x2,x3,x4)
output<-list(data=data,R=R)
output
}
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Necessary functions for implementing the proposed method

# Load required library
library(lme4)
library(plyr)
library(reshape)
library(parallel)
# Load data set and neighbourhood matrix
DataSim<-DataSimulation()
sampleData1<-DataSim$data
R <- DataSim$R
#Fit generalized linear model with individual level covariates
fit_ind<-glm(y~x1+x2+as.factor(x3),data=sampleData1,family="poisson")
# Extract model matrix and coefficient
frame_ind <- model.frame(fit_ind)
Y <- model.response(frame_ind)
X_ind <-model.matrix(object = attr(frame_ind,"terms"), data = frame_ind)
n_ind<-nrow(X_ind)
beta <- fit_ind$coefficient
#Calculate the fitted value
sampleData1$Predict<-exp(X_ind%*%beta)
#head(sampleData1)
#Grouplevel data: Location data
locationData<-sampleData1[,c("ID","x4")]
GroupCovData<-aggregate(.~ ID, data = locationData, mean)
#head(GroupCovData)
#Aggregate data Over postcode
AreaData<-sampleData1[,c("y","ID","Predict")]
aggdata <-aggregate(. ~ ID, data = AreaData, sum)
#head(aggdata)
nGroup<-nrow(aggdata)
aggdataU<-aggdata[!duplicated(aggdata$ID),]

GroupData<-merge(GroupCovData,aggdataU,by="ID")
names(GroupData)<-c("ID","x4","totalY","totalePredict")
#head(GroupData)
#Fitting PQL model
gamma.iter<-NULL
theta.iter<-NULL
beta.iter<-NULL
#Set initial values
gamma.hat<-0
b.rand<-rep(0,nGroup)
sigma.hat <-0.5
lambda.hat <-0.5
theta.hat<-c(sigma.hat,lambda.hat)
#Generate covariance matrix
R <- DataSim$R
betaCombined<-c(beta,gamma.hat)
X_group <-as.matrix(GroupData$x4)
Y<-as.matrix(GroupData$totalY)
OffSet<-as.matrix(log(GroupData$totalePredict))

repeat{
repeat{

# Estimate covariance matrices
R.lambda <- lambda.hat*R + (1-lambda.hat)*diag(rep(1,nGroup))
R.lambda.inv<-solve(R.lambda)
D.hat.inv<-1/(sigma.hat^2)*R.lambda
D.hat<-solve(D.hat.inv)
# Calculate the PQL elements

repeat{
eta.est<-OffSet+X_group%*%gamma.hat+b.rand
mu.est<-exp(eta.est)
zz.est<-eta.est+(Y-mu.est)/mu.est
W.hat<-diag(as.vector(mu.est))
W.hat.inv<-diag(as.vector(1/mu.est))
#Estimate covariance matrix of Y
V.hat<-W.hat.inv+D.hat
V.hat.inv<-solve(V.hat)
#Estimate the fixed and random effect
gammaUpdate<-solve(t(X_group)%*%V.hat.inv%*%X_group)%*%(t(X_group)%*%

V.hat.inv%*%(zz.est-OffSet))
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b.rand.update<-D.hat%*%V.hat.inv%*%(zz.est-OffSet-X_group%*%gammaUpdate)
diff<-abs(gammaUpdate-gamma.hat)
diff.rand<-abs(b.rand.update-b.rand)
gamma.iter<-rbind(gamma.iter,gammaUpdate)
if (all(diff< 1e-5)){break}
if (all(diff.rand< 1e-3)){break}
gamma.hat<-gammaUpdate
b.rand<-b.rand.update

}
# Extract score and observed information matrix
P<-V.hat.inv-(V.hat.inv%*%X_group%*%solve(t(X_group)%*%V.hat.inv

%*%X_group)%*%t(X_group)%*%V.hat.inv)
dV.sigma<-2*sigma.hat*R.lambda.inv
dV.lambda<--1*sigma.hat^2*R.lambda.inv%*%(R-diag(rep(1,nGroup)))

%*%R.lambda.inv
#Score vector
score.sigma<-0.5*(t(zz.est-OffSet-X_group%*%gammaUpdate)%*%P)%*%

dV.sigma%*%(P%*%(zz.est-OffSet-X_group%*%gammaUpdate))-
0.5*sum(diag(P%*%dV.sigma))

score.lambda<-0.5*(t(zz.est-OffSet-X_group%*%gammaUpdate)%*%P)%*%
dV.lambda%*%(P%*%(zz.est-OffSet-X_group%*%gammaUpdate))-
0.5*sum(diag(P%*%dV.lambda))

score<-c(score.sigma,score.lambda)

exp.inf11<-0.5*sum(diag(P%*%dV.sigma%*%P%*%dV.sigma))
exp.inf12<-0.5*sum(diag(P%*%dV.sigma%*%P%*%dV.lambda))
exp.inf21<-0.5*sum(diag(P%*%dV.lambda%*%P%*%dV.sigma))
exp.inf22<-0.5*sum(diag(P%*%dV.lambda%*%P%*%dV.lambda))
exp.infor<-matrix(c(exp.inf11,exp.inf12,exp.inf21,exp.inf22),ncol=2)
thetaUpdate<-theta.hat+solve(exp.infor)%*%score
if (thetaUpdate[2]>1) {thetaUpdate[2]<-0.99999}
if (thetaUpdate[2]<0) {thetaUpdate[2]<-0.00001}
if (thetaUpdate[1]<0) {thetaUpdate[1]<-0.1}
sigma.hat<-thetaUpdate[1]
lambda.hat<-thetaUpdate[2]
diff.theta<-abs(thetaUpdate-theta.hat)
theta.iter<-rbind(theta.iter,as.vector(thetaUpdate))
if (all(diff.theta< 1e-5)){break}
theta.hat<-thetaUpdate

}
# Repeat individual level data fitting
GroupData$Predict_group<-X_group%*%gamma.hat+b.rand
combinedData<-merge(sampleData1,GroupData[,c("ID","Predict_group")]

,by=c("ID"))
formula_ind=y~offset(Predict_group)+x1+x2+as.factor(x3)
fit_ind<-glm(formula_ind,data=combinedData,family="poisson")
#Calculate the fitted value
betaUpdate<-fit_ind$coefficient
#Calculate the fitted value
combinedData$Predict<-exp(X_ind%*%betaUpdate)
AreaData<-combinedData[,c("y","ID","Predict")]
aggdata <-aggregate(. ~ ID, data = AreaData, sum)
aggdataU<-aggdata[!duplicated(aggdata$ID),]

GroupData<-merge(GroupCovData,aggdataU,by="ID")
names(GroupData)<-c("ID","x4","totalY","totalePredict")
Y<-as.matrix(GroupData$totalY)
OffSet<-as.matrix(log(GroupData$totalePredict))
betaCombined.Update<-c(betaUpdate,gamma.hat)
diff.est<-abs(betaCombined.Update-betaCombined)
beta.iter<-rbind(beta.iter,betaCombined.Update)
if (all(diff.est< 1e-5)) {break}
betaCombined<-betaCombined.Update
# End of indiCAR
}
#Estimate corrected standard error
M<-nGroup
group.size<-as.vector(table(combinedData$ID))
group.cov.long<-data.matrix(X_group[rep(1:nrow(X_group),

times = group.size),])
cov.combined<-cbind(X_ind,group.cov.long)
fitted.combined<-cov.combined%*%betaCombined+rep(b.rand,group.size)
mu.combined<-as.vector(exp(fitted.combined))
Xcov.m<-X_ind*mu.combined
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XTWX<-t(Xcov.m)%*%X_ind
groupID<-rep(c(1:M),group.size)
XTWZ<-t(rowsum(Xcov.m, groupID))
XTWZD<-XTWZ%*%D.hat
ZTWZ.vec<-aggregate(mu.combined,by=list(groupID),sum)
ZTWZ<-diag(ZTWZ.vec$x)
ZTWZD<-ZTWZ%*%D.hat
I.ZTWZD<-(diag(M)+ZTWZD)
I.ZTWZD.inv<-solve(I.ZTWZD)
a11<-XTWX-XTWZD%*%I.ZTWZD.inv%*%t(XTWZ)
XTWZU<-XTWZ%*%X_group
ZTWZU<-ZTWZ%*%X_group
a12<-XTWZU-XTWZD%*%I.ZTWZD.inv%*%ZTWZU
a21<-t(a12)
a22<-t(X_group)%*%ZTWZ%*%X_group-t(X_group)%*%ZTWZ%*%D.hat%*%

I.ZTWZD.inv%*%ZTWZ%*%X_group
Q.inv<-as.matrix(rbind(cbind(a11,a12),cbind(a21,a22)))
Q<-solve(Q.inv)
se.coef<-sqrt(diag(Q))
se.theta<-sqrt(diag(solve(exp.infor)))

coef<-c(betaCombined,as.vector(theta.hat))
names(coef)<-c("(Intercept)","x1","x2","as.factor(x3)2","as.factor(x3)3",
"as.factor(x3)4","as.factor(x3)5","as.factor(x3)6", "U","sigma","lambda")
se.coef<-c(se.coef,se.theta)
names(se.coef)<-c("(Intercept)","x1","x2","as.factor(x3)2",

"as.factor(x3)3","as.factor(x3)4","as.factor(x3)5",
"as.factor(x3)6","U","sigma","lambda" )
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Chapter 3

Smooth Individual Level

Covariates in Conditional

Auto-Regressive

(smooth-indiCAR) Model for

Disease Mapping.

Summary

Conditional Auto-Regressive (CAR) models have been extensively used in disease

mapping studies. However available implementations of such models only incorporate

area level covariates to help explain spatial variation in disease rates. In many

epidemiological study settings, individual level covariates also have considerable impact

on the outcome of interest. Therefore, spatial models for disease mapping should ideally

account for covariates measured at both individual and area levels.

In the current study, we propose a novel conditional auto-regressive model that can

incorporate both individual and group level covariates while adjusting for spatial
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correlation in the disease rates. In this formulation the effect of a continuous individual

level covariate is accommodated via semi-parametric splines. We describe a two-step

estimation procedure to obtain reliable estimates of individual and group level covariate

effects. We evaluate the performance of our smooth-indiCAR method through simulation

studies. Our results indicate that the smooth-indiCAR method provides reliable

estimates of all regression and random effect parameters. We also apply smooth-indiCAR

to the analysis of data on neutropenia admissions in New South Wales (NSW), Australia.

Incorporating individual covariate data in disease mapping studies improves the

estimates of fixed and random effect parameters by utilizing information from multiple

sources. Health registries routinely collect individual and area level information and thus

could benefit by using smooth-indiCAR to incorporate individual level information in

the analysis and mapping of disease rates. Moreover, the natural applicability of

smooth-indiCAR in a distributed computing framework enhances its application in the

Big Data domain with a large number of individual/group level covariates.

3.1 Introduction

Rapid growth of Geographic Information Systems (GIS), together with advances in high

performance computing environments, presents a unique opportunity to examine the

relationship between risk factors and outcomes that vary across geographical locations.

Careful analysis of spatial data can lead to useful explanation of the exposure and

disease relationship through natural experimentation (Rothman et al., 2008; Snow,

1855). It also helps in understanding spatial variation of disease, disease clustering,

distribution of socio-demographic structure, environmental exposure distribution and its

impact on health outcomes (Elliott & Wartenberg, 2004).

Analysis of spatially indexed data is complicated by correlations among neighboring

observations (Besag et al., 1991; Clayton & Kaldor, 1987; Cressie, 1993). Regression

analysis ignoring this spatial correlation leads to incorrect inference on the estimated

regression coefficients by narrowing of associated confidence intervals (Waller & Gotway,

2004). Mixed effects models provide a convenient way of adjusting for spatial correlation

by incorporating spatially defined Conditionally Auto-Regressive (CAR) random effects
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in the model (Breslow & Clayton, 1993; Leroux et al., 1999). The use of this model

allows one to map disease rates by borrowing information about each small area from its

surrounding areas, thus stabilizing estimation based on the sparse data for small areas.

Use of the CAR-based structure within a hierarchical generalized linear model offers a

robust, flexible, and enormously popular class of models for the exploration and analysis

of small area rates for disease mapping. However, a lack of modeling strategies for

individual level covariates is a limitation of existing software which may lead to

ecological bias (Wakefield, 2007).

In the previous chapter we propose an individual level covariate adjusted CAR

(indiCAR) model that can incorporate both individual and area level covariates. In such

a formulation individual and group level data were fitted in separate steps of an iterative

process. Although this approach is very useful in modeling large number of individual

and group level covariate effects, it relies on an assumption of log-linear dependence

between the outcome and covariates. In many epidemiological study settings, such

log-linear dependence may not be applicable, rather other types of non-linearity may be

in operation. Spline based techniques are appealing to model the effect of covariates in a

flexible non-linear fashion (Wakefield, 2007). In the case study that motivates this

chapter, researchers from the NSW Cancer Institute explored the use of the indiCAR

method to model the geographical variation of neutropenia infection across New South

Wales, Australia. However, exploratory analysis reveals that the age of the patient

exhibits a non-linear association with the observed neutropenia rate. The non-linear age

effect has been also noted in many previous studies (MacNab, 2004; Rosenbaum &

Rubin, 1984).

Therefore, in our current study we extend the indiCAR method to a semi-parametric

mixed model context. Following indiCAR, we incorporate individual level smooth

covariate information in a two step iterative procedure following an initialization step. In

this method, the individual level and the group level covariate effects are fitted in

separate iterations with existing software by appropriate calculation of an offset at each

step. We illustrate that the estimation and inference based on smooth-indiCAR can be

carried out in a distributed computing framework, thus achieving a helpful reduction in

computational cost and memory requirements.
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We evaluate the performance of the smooth-indiCAR method through simulation

studies. Our results show that the smooth-indiCAR is able to correctly estimate

coefficients associated with both individual and group-level covariates. We further

illustrate this method through the analysis of data on neutropenia admissions from the

New South Wales (NSW) Cancer Institute and conclude with some practical guidelines.

The structure of this chapter is as follows: Section 3.2 describes the data and model

formulation, estimation and inference procedures. Section 3.3 presents the data

generation process for our simulations. In section 3.4 we present results from the

simulation study and an application of the proposed method to data on neutropenia. We

conclude with general discussion in section 3.5.

3.2 Methodology

3.2.1 Data

NSW cancer registries were used to identify patients diagnosed with cancer, associated

treatment procedures and co-morbidities. Specifically, we used NSW Central Cancer

Registry (CCR) linked to NSW Admitted Patient Data Collection (APDC). Detailed

descriptions of the data items can be obtained from the Centre for Health Record Linkage

(CHeReL http://www.cherel.org.au/master- linkage -key). Data were checked for

consistency across data sources and linked by assigning a unique Project Person Number

(PPN) to each patient. Our study population comprises all cancer patients that were

diagnosed with cancer and were hospitalized during the period between 2001 and 2009.

Demographic variables including age at diagnosis, gender, residence at diagnosis, postal

area of residence, and Accessibility/Remoteness Index of Australia (ARIA) based on

patient residence were obtained from the CCR database. The ARIA variable was

recorded at individual level rather than postal area level because the ARIA index varies

within postal area. The Socio Economic Index For Areas (SEIFA; an index of social

disadvantage) and the geo-coded shape files for mapping corresponding to 2006 census

postal areas were obtained from Australian Bureau of Statistics (ABS). Individual level
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clinical characteristics such as type of cancer were also obtained from CCR. The

diagnosis of neutropenia admission and co-morbidity were obtained using data from the

Admitted Patients Data Collection (APDC). The ICD-10-AM (International Statistical

Classification of Disease and Related Health problem, 10th revision, Australian

modification) code D70 (Agranulocytosis) was used to identify admissions with possible

neutropenia.

3.2.2 Statistical Model

Suppose the total area under study is divided into M contiguous regions and the number

of outcomes for the ith (i = 1, 2, ..., nj) individual in the jth (j = 1, 2, ...,M) area is

denoted by {yij}. Let Y be a vector with elements {yij} that represents the number of

events for all individual in the study regions of interest. Similarly, let

X = (X1, X2, ..., Xp) and U = (U1, U2, ..., Uq) represent individual and area level

covariate matrices with dimensions n× p and M × q, respectively, where n is the total

sample size i.e., n =
∑M

j=1 nj . Further suppose that in addition to the log-linear

relationship of X and U with Y , an additional individual level covariate, T exhibits a

non-linear relationship with Y . Under the above specifications, conditional on the area

specific random effect vector, b, the number of events for each cancer patient is assumed

to be Poisson distributed with mean µ where

ln(µ) = Xβ + f(T ) +ZUγ +Zb. (3.1)

Here, β is a p× 1 vector of regression coefficients associated with the individual level

covariates, f(T ) is an unknown smooth function, γ is a q × 1 vector of area-specific

regression coefficients and Z = blockdiag(Z1, Z2, ..., ZM ) is a replication matrix that

replicates group level covariate and random effect to the individual level, where Zj is a

vector of length nj with all elements equal to 1. We further assume that the unknown

smooth function f(T ) can be represented by a linear combination of spline basis

functions, i.e., f(T ) = BT(T )η. Here B(T ) is a vector of spline basis functions and η is a

vector of corresponding basis coefficients.

Note that the proposed model (3.1) represents various study designs, such as clustered,

hierarchical and spatial designs depending on the specification of the random effect b.
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For example, the random effect may represent specification for a) random slope and

intercept for the multilevel (hierarchical) models (Gelman, 2007), b) random intercept

and stochastic process as of longitudinal studies (Zhang, Lin, Raz, & Sowers, 1998) and

c) modeling spatial correlation in disease mapping (Leroux et al., 1999). Leroux et al.

(1999) includes group level smooth predictor effect and group specific random effects but

does not incorporate individual level covariates effect. Throughout this paper we will

focus on modeling random effects so that they reflect spatial correlation. Our postulated

model (3.1) is an extension of Lin and Zhang (1999) that incorporates individual level

predictors and area specific conditional auto-regressive random effects in the context of

disease mapping studies.

To fit model (3.1), many different choices of random effects, b are available in the

mapping literature (see Lee (2011), for a recent review). Among these, the method of

Leroux et al. (1999) is appealing because it allows for a weighted combination of

spatially structured and unstructured area-level variation. Within this framework, the

random effect vector, b has a multivariate normal distribution with mean 0 and a

covariance matrix, D with Moore-Penrose generalized inverse,

D− = σ−2{(1− λ)I + λR}, where I is the identity matrix and R is the intrinsic

auto-regression matrix reflecting neighborhood structure. Typically, neighbors are those

areas which share a common boundary. The typical element of R is given by

Rjj′ =


nj , j = j′

−I{j ∼ j′} j 6= j′,

where, nj is the number of neighbors of region j, and I{j ∼ j′} is an indicator function

that takes value 1, if regions j and j′ are neighbors, 0, otherwise. Alternatively, a

distance based neighborhood structure could be used (Earnest et al., 2007). The

parameters characterizing the random effect distribution, θ = (σ2 > 0, λ ∈ [0, 1])

quantify over-dispersion and spatial dependence. A larger value of λ ∈ [0, 1] indicates a

higher degree of spatial dependence. This specification results in two extreme cases: i)

completely independent random effects when λ = 0 and ii) the intrinsic auto-regressive

model when λ = 1 (Besag et al., 1991). In general, a combination of the two is assumed.

Now consider the case without any non-linear predictor in the model (3.1), inference

about β, γ and θ can be made by integrating out or averaging over the distribution of
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the unobserved random effects, b. The corresponding integrated quasi-likelihood function

is equal to (see equation (2) of Breslow and Clayton Breslow and Clayton (1993))

|D|−
1
2

∫
exp

−1

2

M∑
j=1

nj∑
i=1

dij(Yij , µij)−
1

2
bTD−b

 db,
where d(Y,µ) is the deviance residual.

The maximum quasi-likelihood estimates of β, γ, and θ are those values of β, γ and θ

that maximize the above quasi-likelihood. However, no simple closed form solution

exists. Instead, Breslow and Clayton (1993) proposed the penalized quasi-likelihood

(PQL) approach for parameter estimation and inference. The PQL uses the Laplace

method for integral approximation and jointly maximize the above quasi-likelihood

function to obtain estimates for β, γ and b(θ).

In the presence of a non-linear predictor, however, statistical inference about β, γ and θ

must account for the non-parametric function, f(T ) which requires estimation of the

basis coefficient, η and smoothing parameter δ. Lin and Zhang (1999) showed that

approximate estimates of the regression parameters β, γ, θ and η can be obtained by

maximizing the following Double Penalized Quasi-Likelihood equation with respect to β,

γ, b and η:

−1

2

M∑
j=1

nj∑
i=1

dij(Yij , µij)−
1

2
bTD−b− 1

2
ηTSη, (3.2)

where S = δK with smoothing parameter δ and penalty matrix K. Here, K is a

(q +N)× (q +N) matrix where q is the number of knots and N is the dimension of the

unpenalized function. Given the knot locations {x∗(k) : k = 1, 2, ..., q}, the penalty matrix

have zeroes everywhere except in its lower right q × q block with K(ik) = ‖x∗j(i) − x
∗
j(k)‖

3,

for k ≤ q. The penalty matrices map the spline basis functions to the data whereas the

penalty parameters control the amount of smoothing (Ruppert et al., 2003; S. Wood,

2006). For now, assume that the smoothing parameter δ is known.
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Under the above specification the approximate log likelihood can be expressed as

const+ Y T(Xβ +BT(T )η +ZUγ +Zb)−

1T exp(Xβ +BT(T )η +ZUγ +Zb)− 1

2
bTD−b− 1

2
δηTSη. (3.3)

Differentiating (3.3) with respect to β, η, γ and b using vector matrix calculus (Wand,

2002), we obtain the following score equations

{
Y − exp(Xβ +BT(T )η +ZUγ +Zb)

}T
X = 0, (3.4)

{
Y − exp(Xβ +BT(T )η +ZUγ +Zb)

}T
B(T ) = ηTS, (3.5)

{
Y − exp(Xβ +BT(T )η +ZUγ +Zb)

}T
ZU = 0, (3.6)

and

{
Y − exp(Xβ +BT(T )η +ZUγ +Zb)

}T
Z = bTD−. (3.7)

Penalized Iteratively Re-weighted Least Squares (P-IRLS) can be applied to solve the

above equations for β, η, γ and θ (S. Wood, 2006). However, high computational costs

and memory space constraints often make it difficult to apply these iterative procedures

to data sets with large number of group level covariates and large sample size. An

alternative computational strategy is the use of the Gauss-Seidel algorithm to obtain the

same estimate as of P-IRLS of the associated parameters (Guha, Ryan, & Morara, 2009).

In this approach, at each iteration one of the parameters is estimated while keeping

others fixed at current values. Within this framework, we first initialize β and η and

then obtain updated estimates for γ and θ in the following two step procedure:

Step 0: Set the coefficients of area level covariates, γ and random effects, b to zero in

equation (3.4) and (3.5). Then we have

{
Y − exp(Xβ +BT(T )η)

}T
X = 0,
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and,

{
Y − exp(Xβ +BT(T )η)

}T
B(T ) = ηTS.

If the value of penalty parameter δ is known, the solution of the above equations can be

computed by a penalized version of the iterative re-weighted least square method used

for GLM estimation (Green, 1987; S. Wood, 2006). The smoothing parameter can be

estimated using the Generalized Cross Validation score (GCV) or the generalized

Akaike’s Information Criterion (S. Wood, 2006). Computationally, this can be done

using existing gam function in the mgcv package (S. Wood, 2006) in R (R Core Team,

2013). Thus we can obtain an estimate of the regression coefficients β and η associated

with individual level covariates and the penalty parameter δ. This step provides initial

estimates of the regression coefficients β and η.

Step 1. Now substitute the current estimated individual level coefficients, β̂ and η̂ into

equations (3.6) and (3.7). With some simple algebra, we have

{Y c − exp(O1 + Uγ + b)}T U = 0

and,

{Y c − exp(O1 + Uγ + b)}T = bTD−,

where, Y T
c = Y TZ, is a vector of aggregated outcome counts of length M at the group

level and O1 = log{ZT exp(Xβ̂ +BT(T )η̂)} is a vector of offsets.

The above two equations are well known PQL estimating equations associated with the

Poisson mixed model (Breslow & Clayton, 1993). Since, the outcome Y c, offset O1,

covariate U and random effects b are all available at the group level, estimates of

parameters for the group level coefficient γ̂ and random effects θ can be estimated using

the existing PQL method (Breslow & Clayton, 1993; Leroux et al., 1999) with only

group level data.

Step 2. Substitute the estimated area-specific regression coefficient, γ̂ and random effect
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parameter, θ̂ estimated at Step 1 into (3.4) & (3.5). With some simple algebra, we have

{
Y − exp(O2 + Xβ +BT(T )η)

}T
X = 0,

and

{
Y − exp(O2 + Xβ +BT(T )η)

}T
B(T ) = ηTS,

where O2 = Z(Uγ̂ + b̂) is a offset vector of dimension n× 1. Under the above

specification, the individual level coefficients estimate β̂ and η̂ and smoothing parameter

can then be updated using gam function with individual level data.

Step 1 and Step 2 are then repeated until the algorithm converges. The estimated

coefficients and parameters in random effect obtained by this iterative procedure will be

similar to the estimates of the true regression coefficients and parameters in the random

effect that would be obtained by solving equations (3.3) - (3.7) directly.

Approximate Standard Error

Model fitting at Step 1 and Step 2 assumes fixed (β, η) and fixed γ, respectively.

Therefore the corresponding standard errors of (β, η) from gam and (γ, θ) from the PQL

method based on Step 2 and Step 1 will not be exactly correct. We re-calculate the

standard error of these regression coefficients by adjusting the estimated standard errors

of β̂, γ̂ and η̂. This can be done via the Iterative Re-weighted Least Squares (IRLS)

estimation based on score equations (3.4, 3.5, 3.6 and 3.7) for a known smoothing

parameter, δ (Lin & Zhang, 1999). The IRLS estimation requires us to define a working

dependent variable and a weight matrix that are updated at each iteration and solved

via Fisher scoring (Breslow & Clayton, 1993; S. Wood, 2006).

Now assume that an unpenalized linear combination of basis functions is adequate to

represent the nonlinear function f(T ). In this case the linear combination of the basis

function contributes to the log-likelihood equation (3.3) via the fixed effect components

only. Therefore, the corresponding GLM adjusted dependent variable, Y pseudo can be

68



obtained as

Y pseudo = Xβ +B(T )η +ZUγ +Zb+ W−1(Y − µ) (3.8)

where W is a n× n diagonal matrix with diagonal term µ. Following Harville (1977)

and Robinson (1991), it can be shown that the Fisher scoring corresponding to the score

equations (3.4, 3.5, 3.6 and 3.7) and GLM dependent variable as in (3.8), is identical to

the normal equation of the best linear unbiased predictors (BLUPs) of β, γ, η and θ

corresponding to the following linear mixed model

Y pseudo = Xβ +B(T )η +ZUγ +Zb+ εpseudo,

where the pseudo-error εpseudo ∼ N(0,W−1). The estimated regression coefficients for

the fixed effect, (β,γ, η) and BLUP estimate for the random effect b can be obtained as

(Robinson, 1991)

(β̂, γ̂, η̂) = (CTV −1C)−1(CTV −1Y pseudo)

and

b̂ = DZTV −1{Y −Xβ̂ −ZUγ̂ −B(T )η̂}, (3.9)

where C = [X|ZU |B(T )] is a design matrix consisting of the individual level covariate

matrix, group level covariates and basis functions, and V = ZDZT + W−1 is the

variance of pseudo response Y pseudo.

Now consider the fact that the nonlinear function f(T ) is represented using splines

regression bases, with associated roughness penalties in the log-likelihood equation (3.3).

Following S. Wood (2006) and Marra and Wood (2012), it can be shown that the

maximum penalized likelihood estimate, (β̂, γ̂ and η̂) can be obtained as

(β̂, γ̂, η̂) = (CTV −1C + S1)−1(CTV −1Y pseudo)

b̂ = DZTV −1{Y −Xβ̂ −ZUγ̂ −B(T )η̂}, (3.10)

where S1 is the smooth matrix consisting of 0s except in the block corresponding to the

basis coefficients η, where it is replaced by smoothing matrix S. Thus, the frequentist
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variance-covariance matrix for the fixed effect (β̂, γ̂ and η̂) can be estimated by

QFreq = (CTV −1C + S1)−1CTV −1C(CTV −1C + S1)−1. (3.11)

Following the normality of Y psudo, S. Wood (2006) showed that η̂ ∼ N(E(η̂),Qfreq).

However, E(η̂) = η if η = 0only, therefore in general E(η̂) 6= η. Hence the above

estimated standard error for non-parametric function is only useful when testing model

terms equal to zero. S. Wood (2006) further suggests the use of an alternative Bayesian

approach to calculate uncertainty, which results in a Bayesian posterior covariance

matrix for the parameters as

QBayes = (CTV −1C + S1)−1. (3.12)

Note that the frequentist and the Bayesian estimates of standard error differ in the

inference about basis coefficients, but virtually are identical for linear individual and

group level covariate effects. Further note that reliable estimates of the regression

coefficients and variance components can also be obtained using the model of Lin and

Zhang (1999) with appropriate specification of the design matrix (Z) associated with the

spatial random effect model (3.1). However, their formulation requires representation of

smooth terms as a linear combination of fixed and random effect covariates. Back-fitting

approaches such as the smooth-indiCAR method calculate the tuning parameters at Step

1 and will be effective in situations where memory constraints prohibit the fitting of a

single model consisting of a large number of individual and group level covariates.

Smooth-indiCAR not only provides a convenient way of fitting large number of

individual and group level covariates in a distributed computing framework, it also allows

us to calculate the standard error in a distributed computing framework. This is because

V −1 can be expressed as W −WZD(I +ZTWZD)−1ZTW (Henderson & Searle,

1981). Therefore, the above Bayesian variance-covariance matrix can be written as

QBayes =

 a11 a12

a21 a22

+ S1

−1

,
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where,

a11 = X̄TWX̄− X̄TWZD(I +ZTWZD)−1 ×ZTWX̄

a12 = X̄TWZU− X̄TWZD(I +ZTWZD)−1 ×ZTWZU

a21 = aT
12

a22 = UTZTWZU−UTZTWZD × (I +ZTWZD)−1ZTWZU,

where X̄ = [X|B(T )], is the design matrix combining individual level covariates and

basis functions. Thus, among the various components of the above variance-covariance

matrix, X̄TWX̄ and X̄TWZ are the only terms involving individual level data, and the

rest of the terms involve a lower dimension corresponding to the group level data. Hence,

upon convergence, calculation of the variance covariance matrix can also be carried out

in a distributed computing framework for individual and group-level data separately.

However, the above standard errors for the non-linear function, f(T ) relies heavily on

large sample assumption and treating the smoothing parameter as a known quantity

(S. Wood, 2006). In reality, the smoothing parameter is estimated from the data, hence

the confidence intervals for non-linear function based on the standard errors as

calculated above may not be appropriate. Marra and Wood (2012) proposed and

developed an alternative confidence interval based on the above frequentist and Bayesian

variance covariance matrices. In this formulation the Bayesian and frequentist confidence

intervals for the non-linear function, f(T ) can be obtained as f̂(T )± zα/2
√

[V f ]ii, where

f̂(T ) = BT(T )η̂, V f = B(T )V ηB
T(T ), and zα/2 is the critical value of the standard

normal distribution with level of significance, α . Here, V η is the variance covariance

matrix of η̂ that can be obtained from the corresponding block of QFreq in (3.11) and of

QBayes in (3.12) in order to obtain frequentist and Bayesian confidence interval,

respectively.

The covariance matrix for θ̂ was obtained from the Fisher information matrix from Step

1 in the usual way, assuming parameters for the individual and area specific covariates

are fixed. Of course there is additional variability due to the fact that the individual and

area specific covariate parameters are estimated. However, following Breslow and

Clayton (1993) we ignore the additional variability due to estimation of γ̂ and β̂ for

inference about estimated random effect, θ̂.
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In the next section we describe a simulation study to evaluate the performance of

smooth-indiCAR method.

3.3 Simulation Study

To evaluate our proposed smooth-indiCAR, we design a simulation study involving 400

regions in a 20× 20 square lattice grid with varying sample sizes. To evaluate the

smooth-indiCAR in both a large and a small sample settings, we divided a total of 20000

individuals (scenario i) and 5000 individuals (scenario ii) randomly among 400 areas. In

this allocation, we ensured at least one individual for each region. We define two regions

as neighbors if they share a common border. The random effects are then generated

following a multivariate normal distribution with mean 0 and covariance matrix

D = [σ−2 {(1− λ)I + λR}]−1. The value of σ is set to 0.4 and five different values of

spatial dependence parameters, λ = {0, 0.25, 0.50, 0.75, 0.99} are considered in order to

represent different strengths of spatial correlation. We then generate three individual

level covariates (one binary, one categorical and one continuous) and one group level

covariate. The binary covariate represents the distribution of sex in the area and is

generated following Bernoulli random variable with probability ranging from 0.45 to 0.55

across groups. The categorical variable with five categories is generated with

pre-specified probabilities. The continuous individual level covariate, T is generated

using a univariate bump function as f(t) = 1
1+t − 2e−25(t−0.7)2 , to represent an age effect.

The group level covariate is generated as a standard normal random variable. The

outcome variable is then generated using model (3.1). The overall intercept of the model

is set to zero in this simulation. The full list of the parameters used to generate the

simulated data is given in the header row of Table 3.1.
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Table 3.1: Estimated regression coefficients and variance parameters for the proposed
smooth-indiCAR method using simulation scenario (i).

True β2 β32 β33 β34 β35 γ σ λ
value -2.00 -1.50 0.15 0.50 0.20 0.20 0.40

λ Estimated coefficient

0.00 -2.000 -1.499 0.150 0.501 0.201 0.198 0.391 0.021
0.25 -2.001 -1.499 0.150 0.500 0.200 0.197 0.392 0.249
0.50 -1.999 -1.500 0.149 0.499 0.199 0.198 0.392 0.496
0.75 -2.000 -1.499 0.150 0.500 0.202 0.200 0.391 0.723
0.99 -2.000 -1.502 0.147 0.497 0.197 0.198 0.392 0.932

Empirical standard error

0.00 0.020 0.053 0.030 0.028 0.029 0.023 0.036 0.035
0.25 0.020 0.053 0.030 0.029 0.030 0.018 0.041 0.133
0.50 0.020 0.055 0.031 0.028 0.029 0.016 0.042 0.189
0.75 0.020 0.052 0.032 0.029 0.030 0.015 0.034 0.164
0.99 0.020 0.053 0.032 0.031 0.030 0.014 0.024 0.066

Average of the simulated standard error

0.00 0.020 0.052 0.030 0.028 0.029 0.021 0.030 0.049
0.25 0.020 0.053 0.030 0.029 0.029 0.018 0.031 0.095
0.50 0.020 0.053 0.030 0.029 0.029 0.016 0.027 0.113
0.75 0.020 0.053 0.030 0.029 0.029 0.015 0.023 0.099
0.99 0.020 0.054 0.030 0.029 0.029 0.014 0.021 0.046

3.4 Results

3.4.1 Simulation Results

Table 3.1 displays the average of the estimated regression coefficients of linear individual

level covariates, group level covariate and parameters in the spatial random effects

corresponding to model (3.1) along with their estimated standard errors based on 500

simulation runs of scenario (i). We calculate two different standard errors for the

estimated regression coefficients: namely, (a) empirical standard errors i.e., taking the

standard deviation of the 500 simulated regression coefficient estimates, (b) average of

model based standard errors. The first column of Table 3.1 specifies the spatial

dependence parameter used in that particular simulation. The second column represents

the estimated coefficients corresponding to the binary variable, the next fours columns

list the estimated regression coefficients for the categorical individual level covariates.

The last three columns list the estimated regression coefficients for the group specific

covariate, estimated over-dispersion and spatial dependence parameter.
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Table 3.2: Estimated regression coefficients and variance parameters for the proposed
smooth-indiCAR method using simulation scenario (ii).

True β2 β32 β33 β34 β35 γ σ λ
value -2.00 -1.50 0.15 0.50 0.20 0.20 0.40

λ Estimated coefficient

0.00 -1.999 -1.499 0.151 0.500 0.199 0.197 0.379 0.021
0.25 -1.999 -1.494 0.154 0.504 0.203 0.197 0.371 0.207
0.50 -2.000 -1.495 0.156 0.506 0.208 0.199 0.372 0.403
0.75 -2.004 -1.511 0.153 0.503 0.203 0.199 0.371 0.619
0.99 -2.004 -1.499 0.154 0.503 0.205 0.200 0.391 0.901

Empirical standard error

0.00 0.040 0.107 0.059 0.058 0.059 0.026 0.045 0.039
0.25 0.040 0.104 0.063 0.060 0.059 0.025 0.048 0.141
0.50 0.039 0.110 0.063 0.058 0.060 0.021 0.043 0.167
0.75 0.040 0.110 0.062 0.058 0.061 0.021 0.039 0.178
0.99 0.038 0.107 0.062 0.059 0.060 0.018 0.035 0.108

Average of the simulated standard error

0.00 0.040 0.106 0.061 0.058 0.059 0.025 0.040 0.070
0.25 0.040 0.107 0.062 0.059 0.060 0.022 0.041 0.127
0.50 0.040 0.108 0.062 0.059 0.060 0.021 0.037 0.161
0.75 0.040 0.108 0.062 0.059 0.060 0.020 0.033 0.154
0.99 0.040 0.108 0.062 0.059 0.060 0.019 0.032 0.067

As expected, the smooth-indiCAR method provides reliable estimates of the individual

level and the region specific regression coefficients and the spatial random effect

parameters. Moreover, the estimated standard error matches well with the empirical

standard error for the individual level and the region specific regression coefficients.

However, our proposed method underestimated the empirical standard error for the

spatial random effect parameters.

To evaluate the performance of the proposed method under small sample settings, we

also conducted another simulation study with 5000 subjects distributed randomly in 400

regions (scenario (ii)). The results are given in Table 3.2. As indicated in the table, the

proposed method also performs well in the case when the number of individuals in a

group is low.

The estimated non-linear functions also approximate the true non-linear function well for

both scenarios (i) and (ii) as shown in Figure 3.1 and Figure 3.2, respectively. The solid

line in these figures represents the true non-linear curve and the dotted lines represent

the estimated non-linear functions from the first 50 simulations. The variability of the

fitted curve increases with the degree of spatial dependence parameter.
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(a) λ = 0 (b) λ = 0.50

(c) λ = 0.75 (d) λ = 0.99

Figure 3.1: Fitted non linear curves based on the first 50 simulations under scenario (i) for
different values of spatial dependence parameter. The solid line indicates the true curve.

3.4.2 Application to the Neutropenia Data

We applied our proposed smooth-indiCAR to the data on neutropenia admission. One of

the key objectives of this analysis is to assess the geographical variation of neutropenia

admission rates and its association with area level measures of socio-economic status.

Data also includes patient age, gender, year of diagnosis, ARIA, cancer types at

diagnosis, number of major comorbidities other than cancer and geographic location

reported via postcode of residence.
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Table 3.3: Comparison of estimated regression coefficients and variance parameters of
smooth-indiCAR with indiCAR using neutropenia data.

smooth-indiCAR indiCAR

Regression coefficients Estimates Std. Error Estimates Std. Error

Intercept -2.316 0.108 -1.493 0.047
Sex

Female Ref Ref
Male -0.091 0.020 -0.043 0.020

Year of Diagnosis
2001 Ref Ref
2002 0.016 0.038 0.021 0.038
2003 0.083 0.038 0.083 0.038
2004 0.023 0.038 0.019 0.038
2005 0.097 0.037 0.095 0.037
2006 0.038 0.038 0.038 0.038
2007 0.029 0.038 -0.022 0.038
2008 0.000 0.038 -0.004 0.038
2009 -0.313 0.042 -0.315 0.042

ARIA
Major Cities Ref Ref
Inner Regional Australia -0.024 0.047 -0.006 0.022
Outer Regional Australia -0.150 0.068 -0.118 0.037
Remote/ Very remote Australia -0.244 0.163 -0.192 0.142

Cancer Type
Breast Cancer Ref Ref
Lung cancer 0.259 0.038 0.240 0.037
Colon & rectum cancer -0.428 0.040 -0.463 0.040
Haematological Malignancy 1.579 0.029 1.497 0.029
Other cancer -0.934 0.032 -0.986 0.031

No. of major comorbidities
0 Ref Ref
1 0.424 0.026 0.413 0.026
2 0.680 0.026 0.682 0.026
3 0.625 0.036 0.589 0.036
4+ 0.623 0.035 0.594 0.035

SEIFA
Most disadvantaged Ref Ref
2 -0.082 0.044 -0.089 0.043
3 -0.070 0.041 -0.078 0.038
4 -0.125 0.047 -0.134 0.045
Least disadvantaged -0.129 0.056 -0.144 0.053

Variance parameter

σ 0.203 0.023 0.209 0.022
λ 0.992 0.012 0.992 0.012

AIC 87402.88 87580.13
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(a) λ = 0 (b) λ = 0.50

(c) λ = 0.75 (d) λ = 0.99

Figure 3.2: Fitted non linear curves based on the first 50 simulations under scenario (ii) for
different values of spatial dependence parameter. The solid line indicates the true curve.

Table 3.3 reports the multivariable analysis of neutropenia admission using the

smooth-indiCAR and indiCAR methods as discussed in the previous chapter. The only

difference between these two methods is that the former includes the age effect as a

non-linear predictor and the latter includes the age effect as linear. In general, the

results are quite similar although the magnitude of the regression coefficients differs. As

shown in Figure 3.3, the risk of neutropenia in cancer patients is non-linear and

decreases rapidly beyond the age of 65. This might explain the difference in the

estimates of the regression parameters between indiCAR and smooth-indiCAR. Our

results with a non-linear age effect are very similar in terms of coefficients of other
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Figure 3.3: The estimated effect of age on neutropenia admission rates with associated 95
% Bayesian (light gray region) and frequentist (dark region) confidence intervals.

covariates in the model to the results of the indiCAR method with age as a categorical

predictor (see Table 2.4 in the previous chapter). Male patients compared with female

patients, patients living in outer remote area compared with patients in major cities and

patients with a higher socio-economic index have lower risk of neutropenia infections.

(a) Standarized Incidence Ratio. (b) Estimated spatial random effects.

Figure 3.4: Distributions of estimated (a) Standardized Incidence Ratios (SIR) and (b)
spatial random effects of neutropenia admissions in NSW, Australia.

We obtained similar distributions of estimated Standardized Incidence Ratios (SIR) and

spatial random effects of neutropenia admissions in NSW for the smooth-indiCAR

method and indiCAR method. Figure 3.4, shows the estimated Standardized Incidence

Ratios (SIR) and estimated spatial random effects using indiCAR. The white region in

the map of NSW is the Australian Capital Territory (ACT), a standalone state
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surrounded by NSW. Two other Australian states, Queensland (QLD) and Victoria

(VIC) are located to the North-East and South-West of NSW, respectively. Some edge

effect is inevitable due to patients living near these border regions receiving treatment

interstate. The strong spatial correlation after adjusting for individual and group specific

covariates indicates that geographical variation of neutropenia might be due to

differences in health care practices or access to care across NSW.

3.5 Discussion

In this chapter, we have developed a framework to semi-parametrically adjust for a

continuous individual level covariate effect in spatial disease mapping. Our results

suggest that smooth-indiCAR provides reliable estimates of the true regression

parameters. Due to the natural applicability of the smooth-indiCAR method in a

distributed computing framework, this method has potential for Big Data

implementations. One of the key problems in Big Data analysis is to divide the data so

that this division retains the inherent correlation structure of the data. Our proposed

methodology provides a convenient method for such division by separating data

according to the natural characteristics of the data, based on individual and group level

covariates. The individual level covariate data can then be analyzed with the recent

development of generalized additive models for large data sets (S. Wood, Goude, &

Shaw, 2015). Thus our proposed smooth-indiCAR provides a convenient way to extend

recent developments in Big Data for independent responses to the spatially correlated

responses. This could also speed up the process and reduce computational costs.

For simplicity we assume single smooth function, however (3.1)can be extended to

include more than one smooth functions. In our proposed smooth-indiCAR we have

considered the smooth term as a nuisance parameter and that interest lies in inference

on other things, adjusted for smooth covariate. In this thesis, we have presented formula

for the confidence intervals for the smooth component. The proposed confidence interval

is known to exhibit good coverage probabilities (S. N. Wood (2012)). However, testing

the smooth term for equality to zero is beyond the scope of the current thesis. Future

research should be carried out whether an indiCAR and a smooth-indiCAR model is

more appropriate. Although our simulation results suggests that smooth-indiCAR model
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provides consistent estimates of the standard error of the main effect, we however

observed underestimation of the standard error for the variance component. Future

research should carried out to obtain appropriate standard error for variance component.

Health registries routinely collect geo-coded information for patient’s residence at

diagnosis and their individual level socio-demographic and clinical characteristics and

thus could benefit by using our proposed method to incorporate individual level

information in the analysis and mapping of disease rates. We illustrated the proposed

approaches using the analysis of neutropenia data. There are a number of areas where

future study would be useful.

We observed a lower risk of neutropenia admissions associated with increasing age,

although advanced age has been identified as a significant predictor for neutropenia

admissions in previous studies (Klastersky et al., 2000). This might be due to the fact

that the current risk based prophylactic administration of Colony Stimulating Factor

(CSF) guidelines account for patients advanced age (Aapro et al., 2011). The lower than

expected counts near the borders of NSW are almost certainly a result of some patients

being admitted for neutropenia out of state. The higher than expected areas are located

in two areas of higher population, this pattern invites further investigation.

The dependence between area-specific neutropenia rates on ARIA and SEIFA are in the

opposite direction. This is counter intuitive as remote areas in NSW are mostly

associated with disadvantaged SEIFA categories. However, the observed contrast in

estimated regression coefficients might be due to the differences in the health care

practices. Patients in the remote areas where the patients are geographically distant to

the treating medical oncologist are best managed by their primary care physicians, and

therefore may be treated with lower doses of chemotherapy (Fox & Boyce, 2014). On the

contrary, patients in the major cities might get intensive chemotherapy to treat them

early, and are better managed due to availability of resources. Previous studies also

indicate that remoteness has the greatest effect in quality of cancer treatment (Jong et

al., 2004) and it affects treatment choices made by both patients and clinicians

(Nattinger et al., 2001).

Variation across clinical practices of neutropenia has been identified in Australia in a
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previous survey (Lingaratnam et al., 2011). The authors showed that the treatment

approach for management of neutropenia varies across oncologists, hematologists and

clinicians as well as different sectors of cancer care. Therefore, it might be interesting to

explore whether the observed variation is due to variation across different hospitals (eg.,

metropolitan hospital vs. Non-metropolitan hospitals) in NSW or across various

healthcare providers. However, data items for such analysis are not collected in the

registry and are beyond the scope of our present paper.

Our study was based on data linked from a state-based cancer registry and

administrative data from the Admitted Patient Data Collection (APDC). An advantage

of such linked data is that it provides us with a large, population based sample. Registry

based analysis is more comprehensive than that based on single centre studies, and

provides more complete information than may be obtained from clinical trials where

patient selection and loss to follow-up may impact validity and generalizeability of study

findings. However, it is important to keep in mind that the resulting data quality may be

inferior to that obtained from prospective clinical studies.

Despite various limitations, smooth-indiCAR is an useful addition to the existing

methodology to explore clinical variation across geographical locations where covariates

might have non-linear effects. One of the major advantages of our proposed method is

the ability to obtain both individual and group level covariate effects when employing

spatial regression models for disease mapping.

Although both indiCAR and smooth-indiCAR modeled individual and group level data

very well, it appears that the estimated regression coefficient of a random effect model

depends strongly on the assumed spatial correlation structure. We hypothesized that

such sensitivity of the model parameters on spatial correlation structure is especially

likely to occur when the covariate of interest has been measured with error. We examine

the effect of covariate measurement error in the spatial linear regression setting. The

results are presented in the next chapter.
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R Code

Function for data generation

library(MASS)
DataSimulation<-function(nsamp=20000,nGroup=400,sigma=0.4,lambda=0.75,
beta0=0, beta1=1, beta2=-2.0, beta32=-1.5,beta33=0.15,beta34=0.5,
beta35=0.2, gamma=0.2)
{
# nGroup: Total number of group
# minIndivGroup: Minimum number of individual per group
# maxIndivGroup: Maximum number of individdual per group
# lambda:
# sigma: variance parameter
# beta0-beta3: individual level coefficients
# gamma: group level coefficient
repeat{

indivGroup<-as.vector(rmultinom(n=1, size=nsamp,prob=runif(400,0.05)))
if (all(indivGroup)>=1){break}
}

totalSample<-sum(indivGroup)
#generate covariate values
pr =runif(totalSample,0.45,0.55)
x2<-rbinom(totalSample,1,pr)
x1<-sort(runif(totalSample))
f <-function(x) 1/(1+x) - 2*exp(-20*(x-1)^2)
f1<-f(x1)
x3<-sample(1:5,totalSample, replace=TRUE,

prob=c(0.06,0.09,0.19,0.25,0.25))
#generate covariate values
z2<-rnorm(nGroup)
x4<-rep(z2,indivGroup)
ID<-rep(1:nGroup,indivGroup)
#Generating spatial random effect in a lattice grid
#### Set up a square lattice region
x.easting <- 1:20
x.northing <- 1:20
Grid <- expand.grid(x.easting, x.northing)
n <- nrow(Grid)
#### set up distance and neighbourhood matrices W
distance <-array(0, c(n,n))
W <-array(0, c(n,n))
for(i in 1:n)
{
for(j in 1:n)
{
temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
distance[i,j] <- sqrt(temp)
if(temp==1) W[i,j] <- 1
}

}
R <- -W
diag(R) <- as.numeric(apply(W, 1, sum))
Sigma.inv<-1/sigma^2*(lambda*R + (1-lambda)*diag(rep(1,n)))
Sigma<-solve(Sigma.inv)
phi <- mvrnorm(n=1, mu=rep(0,n), Sigma=Sigma)
phi_long<-rep(phi,indivGroup)
mu <- exp(beta0 + beta1*f1 +beta2*x2+beta32*I(x3==2)+beta33*I(x3==3)+
beta34*I(x3==4)+beta35*I(x3==5)+gamma*x4+phi_long)
#generate Y-values
y <- rpois(totalSample, lambda=mu)
#data set
data <- data.frame(ID,y=y, x1,x2,x3,x4,f1)
output<-list(data=data,R=R)
output
}
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Necessary functions for implementing the proposed method

# Load required library
library(mgcv)
DataSim<-DataSimulation()
sampleData1<-DataSim$data
R <- DataSim$R
#Use of generalized linear model with individual level covariates
# Fit model
fit_ind<-gam(y~s(x1,k=10)+x2+as.factor(x3), data=sampleData1,

family="poisson")
#coef(fit_ind)
# Extract model matrix and beta
#X_ind <-predict(fit_ind,type="lpmatrix")
#n_ind<-nrow(X_ind)
beta <- coef(fit_ind)
#Calculate the fitted value
sampleData1$Predict<-exp(predict(fit_ind))
#sampleData1$Predict1<-exp(X_ind%*%beta)
head(sampleData1)
#Grouplevel data: Location data
locationData<-sampleData1[,c("ID","x4")]
GroupCovData<-aggregate(.~ ID, data = locationData, mean)
#Aggregate data Over postcode
AreaData<-sampleData1[,c("y","ID","Predict")]
aggdata <-aggregate(. ~ ID, data = AreaData, sum)
nGroup<-nrow(aggdata)
aggdataU<-aggdata[!duplicated(aggdata$ID),]

GroupData<-merge(GroupCovData,aggdataU,by="ID")
names(GroupData)<-c("ID","x4","totalY","totalePredict")
#Fitting PQL model
gamma.iter<-NULL
theta.iter<-NULL
beta.iter<-NULL
#Set initial values
gamma.hat<-0
b.rand<-rep(0,nGroup)
sigma.hat <-0.5
lambda.hat <-0.5
theta.hat<-c(sigma.hat,lambda.hat)
#Generate covariance matrix
betaCombined<-c(beta,gamma.hat)
X_group <-as.matrix(GroupData$x4)
Y<-as.matrix(GroupData$totalY)
OffSet<-as.matrix(log(GroupData$totalePredict))
repeat{

repeat{
# Estimate covariance matrices
R.lambda <- lambda.hat*R + (1-lambda.hat)*diag(rep(1,nGroup))
R.lambda.inv<-solve(R.lambda)
D.hat.inv<-1/(sigma.hat^2)*R.lambda
D.hat<-solve(D.hat.inv)
# Calculate the PQL elements

repeat{
eta.est<-OffSet+X_group%*%gamma.hat+b.rand
mu.est<-exp(eta.est)
zz.est<-eta.est+(Y-mu.est)/mu.est
W.hat<-diag(as.vector(mu.est))
W.hat.inv<-diag(as.vector(1/mu.est))
#Estimate covariance matrix of Y
V.hat<-W.hat.inv+D.hat
V.hat.inv<-solve(V.hat)
#Estimate the fixed and random effect
gammaUpdate<-solve(t(X_group)%*%V.hat.inv%*%X_group)%*%(t(X_group)%*%

V.hat.inv%*%(zz.est-OffSet))
b.rand.update<-D.hat%*%V.hat.inv%*%(zz.est-OffSet-X_group%*%gammaUpdate)
diff<-abs(gammaUpdate-gamma.hat)
diff.rand<-abs(b.rand.update-b.rand)
gamma.iter<-rbind(gamma.iter,gammaUpdate)
if (all(diff< 1e-5)){break}
if (all(diff.rand< 1e-3)){break}
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gamma.hat<-gammaUpdate
b.rand<-b.rand.update

}
# Extract score and observed information matrix
P<-V.hat.inv-(V.hat.inv%*%X_group%*%solve(t(X_group)%*%V.hat.inv%*%

X_group)%*%t(X_group)%*%V.hat.inv)
dV.sigma<-2*sigma.hat*R.lambda.inv
dV.lambda<--1*sigma.hat^2*R.lambda.inv%*%(R-diag(rep(1,nGroup)))

%*%R.lambda.inv
#Score vector
score.sigma<-0.5*(t(zz.est-OffSet-X_group%*%gammaUpdate)%*%P)%*%

dV.sigma%*%(P%*%(zz.est-OffSet-X_group%*%gammaUpdate))-
0.5*sum(diag(P%*%dV.sigma))

score.lambda<-0.5*(t(zz.est-OffSet-X_group%*%gammaUpdate)%*%P)%*%
dV.lambda%*%(P%*%(zz.est-OffSet-X_group%*%gammaUpdate))-

0.5*sum(diag(P%*%dV.lambda))
score<-c(score.sigma,score.lambda)

exp.inf11<-0.5*sum(diag(P%*%dV.sigma%*%P%*%dV.sigma))
exp.inf12<-0.5*sum(diag(P%*%dV.sigma%*%P%*%dV.lambda))
exp.inf21<-0.5*sum(diag(P%*%dV.lambda%*%P%*%dV.sigma))
exp.inf22<-0.5*sum(diag(P%*%dV.lambda%*%P%*%dV.lambda))
exp.infor<-matrix(c(exp.inf11,exp.inf12,exp.inf21,exp.inf22),ncol=2)
thetaUpdate<-theta.hat+solve(exp.infor)%*%score
if (thetaUpdate[2]>1) {thetaUpdate[2]<-0.99999}
if (thetaUpdate[2]<0) {thetaUpdate[2]<-0.00001}
if (thetaUpdate[1]<0) {thetaUpdate[1]<-0.1}
sigma.hat<-thetaUpdate[1]
lambda.hat<-thetaUpdate[2]
diff.theta<-abs(thetaUpdate-theta.hat)
theta.iter<-rbind(theta.iter,as.vector(thetaUpdate))
if (all(diff.theta< 1e-5)){break}
theta.hat<-thetaUpdate

}
# Repeat individual level data fitting
GroupData$Predict_group<-X_group%*%gamma.hat+b.rand
combinedData<-merge(sampleData1,GroupData[,c("ID","Predict_group")],

by=c("ID"))
fit_ind<-gam(y~s(x1,k=10)+x2+as.factor(x3),offset=Predict_group,

data=combinedData,family="poisson")
#Calculate the fitted value
betaUpdate<-coef(fit_ind)
#Calculate the fitted value
combinedData$Predict<-exp(predict(fit_ind))
AreaData<-combinedData[,c("y","ID","Predict")]
aggdata <-aggregate(. ~ ID, data = AreaData, sum)
aggdataU<-aggdata[!duplicated(aggdata$ID),]

GroupData<-merge(GroupCovData,aggdataU,by="ID")
names(GroupData)<-c("ID","x4","totalY","totalePredict")
Y<-as.matrix(GroupData$totalY)
OffSet<-as.matrix(log(GroupData$totalePredict))
betaCombined.Update<-c(betaUpdate,gamma.hat)
diff.est<-abs(betaCombined.Update-betaCombined)
beta.iter<-rbind(beta.iter,betaCombined.Update)
if (all(diff.est< 1e-5)) {break}
betaCombined<-betaCombined.Update
# End of smooth-indiCAR

}
# Extract the smoothing parameters and vector
G<-gam(y~s(x1,k=10)+x2+as.factor(x3),offset=Predict_group,

fit=FALSE, data=combinedData,family="poisson")
X_bar<-G$X
lambda<-as.vector(fit_ind$sp)
K<-G$S[[1]]
S<-lambda*K
M<-nrow(GroupData)
group.size<-as.vector(table(combinedData$ID))
group.cov.long<-data.matrix(X_group[rep(1:nrow(X_group),

times = group.size), ])

cov.combined<-cbind(X_bar,group.cov.long)
fitted.combined<-cov.combined%*%betaCombined+rep(b.rand,group.size)
mu.combined<-as.vector(exp(fitted.combined))
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#Doing in another way
Xcov.m<-X_bar*mu.combined
XTWX<-t(Xcov.m)%*%X_bar
groupID<-rep(c(1:M),group.size)
XTWZ<-t(rowsum(Xcov.m, groupID))
XTWZD<-XTWZ%*%D.hat
ZTWZ.vec<-aggregate(mu.combined,by=list(groupID),sum)
ZTWZ<-diag(ZTWZ.vec$x)
ZTWZD<-ZTWZ%*%D.hat
I.ZTWZD<-(diag(M)+ZTWZD)
I.ZTWZD.inv<-solve(I.ZTWZD)
a11<-XTWX-XTWZD%*%I.ZTWZD.inv%*%t(XTWZ)
XTWZU<-XTWZ%*%X_group
ZTWZU<-ZTWZ%*%X_group
a12<-XTWZU-XTWZD%*%I.ZTWZD.inv%*%ZTWZU
a21<-t(a12)
a22<-t(X_group)%*%ZTWZ%*%X_group-t(X_group)%*%ZTWZ%*%

D.hat%*%I.ZTWZD.inv%*%ZTWZ%*%X_group
Q.inv<-as.matrix(rbind(cbind(a11,a12),cbind(a21,a22)))
# Bayesian estimates of regression coefficients
S1<-matrix(0,16,16)
S1[8:16,8:16]<-S
Q.bayes.inv<-Q.inv+S1
Q<-solve(Q.bayes.inv)
se<-sqrt(diag(Q))
cbind(betaCombined,se)
se.theta<-sqrt(diag(solve(exp.infor)))
se.theta
#Frequentist estimates of regression coefficients
Q.freq<-Q%*%Q.inv%*%Q
se.freq<-sqrt(diag(Q.freq))
cbind(betaCombined,se,se.freq)
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Chapter 4

On the Impact of Covariate

Measurement Error on Spatial

Regression Modeling.

Summary

Spatial regression models have grown in popularity in response to rapid advances in GIS

(Geographic Information Systems) technology. In health research, for example, it is

common for epidemiologists to incorporate geographically indexed data into their

studies. However, it turns out that there are some pitfalls. In contrast to many

regression analysis settings where parameter estimation is fairly robust to covariance

specification, we describe some empirical findings which suggest that spatial regression

analysis can be acutely sensitive to specification of the spatial correlation structure.

While some authors have studied the impact of omitted covariates as an explanation for

this phenomenon, we found that the presence of covariate measurement error can lead to

significant sensitivity of parameter estimation to the choice of spatial correlation

structure. We elucidate the effect of measurement error on parameter estimates and

The content of this chapter is published as: Huque, MH; Bondell, HD and Ryan. LM. (2014). On the
impact of covariate measurement error on spatial regression modelling. Environmetrics 25 (8),560-570.
This research was also presented at the Australian Statistical Conference in conjunction with the Institute
of Mathematical Statistics Annual Meeting, Sydney, 2014.
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discuss and evaluate several different ways to produce unbiased estimates.

keywords: Measurement Error, Spatial regression.

4.1 Introduction

Advances in statistical methodology, together with geographically referenced health

databases, present an unique opportunity to investigate the environmental, social and

behavioural factors underlying geographic variations (Elliott & Wartenberg, 2004). In

health research, for example, social epidemiologists seek to assess the impact of

socio-demographic characteristics of a community on the health of individuals living in

that community (Elliot, Wakefield, Best, & Briggs, 2000). Analysis of geo-coded data is

complicated by correlations among observations located near each other. Regression

analysis ignoring these spatial correlations leads to incorrect inference on the estimated

regression coefficients by narrowing confidence intervals. Mixed effect models provide a

convenient way of modeling spatial correlations by incorporating random effects with

spatial correlation structure (Waller & Gotway, 2004). In this paper, we focus on how

such models perform when covariates of interest are measured with error.

In the case study that motivates this paper, Australian researchers explored the

relationship between the SEIFA index (an area-based measure of socio-economic status

produced by the Australian Bureau of Statistics) and acute hospitalization for Ischemic

Heart Disease (IHD) for approximately 600 postcodes in NSW, Australia (Burden et al.,

2005; Guha et al., 2009). Regression models suggest a strong association between SEIFA

and IHD, even after adjusting for factors such as age, gender, population density and

other factors that might influence the outcome. However, exploratory analysis reveals

that the estimated coefficient of the SEIFA index from such models depends strongly on

the assumed spatial correlation structure. Briefly, the estimated SEIFA coefficients are

all significantly negative, confirming that IHD rates decrease as social advantage

increases. However, the magnitude of the effect varies by more than a factor of 2,

depending on whether or not a spatial correlation adjustment is made. Similar

sensitivity to assumed spatial correlation structure can be seen in analysis of the

well-known Scottish Lip Cancer data (Breslow & Clayton, 1993; Clayton et al., 1993). In
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another spatial epidemiological study Molitor et al. (2007) fit a model for the effect of

NO2 exposure on lung function. They considered a series of models included one based

on a conditional auto-regressive (CAR) model. They observed that models with spatial

structure give smaller effect estimates as compared to models without spatial structure.

These results suggest that estimated coefficients from a spatial regression model can be

highly sensitive to whether and how spatial variation is accommodated. In this paper,

we show that such sensitivity is especially likely to occur when the covariate of interest

has been measured with error.

Presence of measurement error in the covariate of interest arises in many epidemiological

and socio behavioural studies. For example, in the study of geographical variation in

bladder cancer rates, lung cancer risk might be included in the model as a proxy for

smoking exposure (Clayton et al., 1993). In environmental epidemiology, individual air

pollution exposures might be approximated by the distance from the polluted sites or by

using the measures at a few monitoring sites (Carroll et al., 1997). Further examples

include geographical studies relating cancer incidence and mortality to dietary intakes

(Prentice & Sheppard, 1990).

Many papers have appeared in the literature over the years on covariate measurement

error in the context of independent data (Carroll et al., 2006; Fuller, 1987; Wansbeek &

Meijer, 2000). In case of linear regression with independent data, it is well known that

presence of exposure measurement error causes estimated regression coefficients

attenuate toward the null. However, relatively few have addressed the effect of exposure

measurement error in the context of correlated data with spatial structure. In

epidemiological studies of association between air pollutants and health outcome,

typically data are available from few monitoring sites. Therefore, the measured exposure

used in the analysis might be different from the underlying true exposure.

Xia and Carlin (1998) presented a spatio-temporal analysis of spatially correlated data

with errors in the covariates, in the context of disease mapping. The authors empirically

studied several alternative measurement error models using a metropolis Gibbs

algorithm. Li et al. (2009) derived asymptotic bias expressions for estimated regression

coefficients in the context of a spatial linear mixed model. They showed that the

regression estimates obtained from naive use of an error prone covariates attenuates the
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estimated regression coefficient and variance component estimates are inflated. They

proposed the use of a maximum likelihood approach based on the EM algorithm to

adjust for measurement error under the assumed error structure. However, their

simulation assumes that the measurement error variance is known and they did not

assess the performance of their method in the case of misspecification. Their approach is

also subject to a high computational burden and may lead to spurious result in the

presence of outliers or model misspecification (Gryparis et al., 2009; Szpiro et al., 2011).

Furthermore, Szpiro et al. (2011) argued that in the presence of spatial correlation, joint

modeling becomes challenging as it is very difficult to separate out the spatial correlation

between exposure and outcome.

In this paper, we explore the sensitivity of estimated regression coefficients in spatial

regression models, showing that it arises in settings where the covariate of interest has

been measured with error. We show that ignoring measurement error attenuates

estimated regression coefficients and observe that estimates can be very sensitive to the

choice of assumed correlation structure in the model formulation. We derive expressions

for the bias when measurement error is ignored and present some technical derivations

that characterize the bias as a function of the degree of measurement error as well as the

degree of spatial correlation in the covariate of interest and in the residuals. We show

that the bias due to attenuation depends on the spatial correlation structure. When

there is no or the same degree of spatial correlation in both covariate or the

measurement error the bias in spatial linear model reduces to the familiar attenuation

factors under OLS modeling of independent data, namely ρ = σ2
X/(σ

2
X + σ2

U ), where σ2
X

is the variance of the true covariate and σ2
U is the variance of the measurement error.

Based on these expressions, we propose two different strategies for obtaining consistent

estimates: (i) adjusting the estimates using an estimated attenuation factor; and (ii)

using an appropriate transformation of the error prone covariate. We then evaluate the

performance of these two approaches via simulations. These approaches do not require

complex programming and can be implemented via readily available mixed model

software. Moreover, we suggest ways to estimate measurement error variance from the

data rather than assuming measurement error variance as a known quantity. Our

simulation results show that bias correction methods using the estimate of the

measurement error work reasonably well in obtaining consistent estimates. However,
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estimation of the measurement error variance requires additional data or assumptions

related to the underlying measurement error process. In the case of spatial epidemiology,

validation data are typically rare. Therefore we suggest employing a sensitivity analysis

when dealing with measurement error problems in practice. We illustrate the methods

using data on Ischemic Heart Disease (IHD) and conclude with some practical guidelines.

4.2 Model Formulation

Suppose that Xi represents the true covariate of interest for spatial location i,

i = 1, ..., n, and suppose that it is related to an outcome Yi according to a linear model:

Yi = β0 + β1Xi + εi, (4.1)

where ε = (ε1, ..., εn)T ∼ N(0,Σε) and Σε is a covariance matrix, for now kept arbitrary.

Let Wi be the observed covariate for spatial location i, related to the true covariate

according to a classical measurement error model:

Wi = Xi + Ui,

where U = (U1, ..., Un)T ∼ N(0,ΣU ). When X = (X1, ..., Xn)T is also normally

distributed (say with mean µX and covariance ΣX), straightforward algebra establishes

that Y = (Y1, ..., Yn)T and W = (W1, ...,Wn)T have a multivariate normal distribution,

 Y

W

 ∼MVN

 (β0 + β1µX)1

µX1

 ,

 Σε + β2
1ΣX β1ΣX

β1ΣX ΣX + ΣU


where 1 is an n× 1 vector of ones. Standard theory for the multivariate normal

establishes that Y |W is normally distributed with conditional mean

E(Y |W) = β01 + β1(I −Λ)µx + β1ΛW (4.2)

and conditional variance

V ar(Y |W) = Σε + β2
1(I −Λ)ΣX ,
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where

Λ = ΣX(ΣX + ΣU )−1. (4.3)

For ease of discussion, assume that the variable X has been centered so that µX = 0. In

direct analogy with standard measurement error settings, these results suggest that

regression coefficients obtained by regressing the outcome (Y ) on the observed, but error

prone covariate (W) will lead to bias as well as inaccurate variance modeling. We

proceed now to explore the nature of this bias under varying assumptions about the

correlation structure for Y , X and the measurement error term, U.

4.3 Asymptotic Bias Analysis

Suppose we fit model (4.1), naively replacing X with the error prone version of the

covariate W and assuming independence of the error terms in the model on Y . The

ordinary least squares estimate of β is

β̂
ols

= (WT
∗W∗)

−1WT
∗ Y , (4.4)

where W∗ is the n× 2 matrix with elements of the first column all equal to 1 and second

column corresponding to the n× 1 vector W. Under the true model and assuming

µX = 0, it is straight forward to show that the limiting value of this estimate is

β̃
ols

=

 1 0

0 trace (ΣX + ΣU )

−1 1 0

0 trace (ΣX)

β
=

 1 0

0 ρols

β,
where ρols = trace (ΣX) /trace (ΣX + ΣU ), see the Appendix 4A.

Using basic properties of the trace function, this simple formula leads to a number of

interesting observations. For example, suppose that both ΣX and ΣU have constant

diagonal elements σ2
X and σ2

U , respectively, then the bias factor can be written as

ρols = σ2
X/
(
σ2
X + σ2

U

)
. This is the standard measurement error result (see Carroll et al.
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2006), namely that the estimated regression coefficient is biased towards the null by an

attenuation factor that reflects the proportion of the variability in the observed covariate

W, explained by the true covariate X. Note that there is no bias in the estimated

intercept in this case since we have assumed that X has mean zero. It is interesting to

note that the result holds regardless of the correlation structures on the error term, Σε.

In the next section, we consider the bias associated with fitting a generalized least

squares model in the presence of covariate measurement error. We will see that in this

case, the degree of bias also depends on the assumed error structure.

4.3.1 Generalized Least Squares

Suppose we obtain a generalized least squares (GLS) estimator of β, under that

assumption that the error term ε has covariance matrix Σa, with the subscript ”a”

denoting ”assumed”. For fixed Σa, the estimator is:

β̂
gls

= (WT
∗Σ−1

a W∗)
−1WT

∗Σ−1
a Y . (4.5)

In the limit under the true model and following similar arguments as in the OLS case,

this estimate converges in probability to

β̃
gls

=

 n 0

0 trace
[
Σ−1
a (ΣX + ΣU )

]
−1 n 0

0 trace
[
Σ−1
a ΣX

]
β

=

 1 0

0 ρgls

β,

where ρgls = trace
[
Σ−1
a ΣX

]
/trace

[
Σ−1
a (ΣX + ΣU )

]
.

As in the OLS case, this simple formula also yields a number of interesting observations
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Figure 4.1: Attenuation factor associated with varying degree of measurement error.

with important practical implications. First of all, because we can write

ρgls =
[
1 + trace

(
Σ−1
a ΣU

)
/trace

(
Σ−1
a ΣX

)]−1
, (4.6)

it follows that there will always be an attenuation of the estimated regression coefficient

towards the null.

The following figure shows the attenuation factor associated with fitting generalized least

squares, ρgls, under the assumption that X and ε each have unit variance and an

exponential spatial covariance structure with the correlation between two observations a

distance h units apart is given by Cor(h) = exp(−h/τ), where τ denote the range.

Each line in Figure 4.1, corresponds to a unique value of σ2
U , the measurement error

variance. The x-axis in the figure varies according to the value of the range parameter

τx, which reflects the strength of the spatial correlation in the true covariate X. All

calculations in the figure assume that there is zero spatial correlation in the

measurement error term, U. Note that, as the range parameter goes to zero (τx → 0),

the attenuation factor becomes identical to that which would be obtained if OLS were

used instead of GLS. Of course, these results could change in the presence of other

covariates in the model (see Zeger et al. 2000).
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From equation (4.6), it is clear that the two attenuation factors, ρgls and ρols, will equal

the familiar attenuation factor under OLS modeling for independent data, namely

ρ = σ2
X/(σ

2
X + σ2

U ), under a variety of circumstances, including:

1. ΣX = σ2
XI and ΣU = σ2

UI. That is, there is no spatial correlation in X or U and

both random variables have homogeneous variance.

2. When the degree of spatial correlation is the same for X and the measurement

error, U. That is, ΣX = σ2
XR and ΣU = σ2

UR, where R is a spatial correlation

matrix.

Note that these results hold regardless of the value of Σa, the assumed correlation for

the residuals in regression models. In practice, ρgls and ρols may differ depending on how

well the assumed spatial correlation structure resembles the true process of the

underlying covariance structure.

In the next section, we propose several approaches to adjust for measurement error in

spatial regression settings.

4.4 Bias Correction

In the previous section, we have shown that presence of measurement error in covariates

attenuates estimated regression coefficient to the null. A consistent estimate of the true

regression coefficient can be obtained if we can estimate the various parameters that

govern the measurement error process. This is possible if we have access to a validation

data set without measurement error (Carroll et al., 2006). In the context of spatial

epidemiology, however, validation data are rarely available. Therefore, we need

additional assumptions to estimate the components of the attenuation factor. Without

such assumptions or validation data, the measurement error and the true residual error

variance are not identifiable in both case. In this paper we considered two different sets

of assumptions that lead to the model identifiability. The first approach assumes that

the true covariate X is smooth and that any observed nugget effect must be

measurement error. The second assumes that measurement error variance is fixed and
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known over a feasible range. A sensitivity analysis is then carried out over the feasible

range of known measurement error variance. Similar to Li et al. (2009), we assume that

the underlying covariate process {Xi} defined in section 2 contains all the spatial

correlation and that the measurement error is pure noise i.e., ΣU = σ2
UI. Under this

assumption, the attenuation factor, from equation (4.6) becomes

ρgls =
[
1 + σ2

U trace
(
Σ−1
a

)
/trace

(
Σ−1
a ΣX

)]−1
. (4.7)

The OLS version can be obtained from the special case where Σa = σ2
ε I.

We examine two different bias correction strategies to obtain a consistent estimate of the

regression coefficient. The first approach deals with estimation of each of the components

of ρgls and the second uses a linear transformation of the error prone covariate, W.

Both methods require knowledge of ΣX and σ2
U or their estimated values. We estimated

ΣX and σ2
U by fitting the error prone covariate (W) in an intercept only model with an

assumed spatial correlation structure (i.e., spatial geostatistical model). Under the

assumption that measurement error is pure noise and ΣX , is a smooth spatial covariate

with no nugget, the above model gives us a maximum likelihood estimate of the nugget

effect in W, which corresponds to σ2
U . And ΣX was estimated from the estimated

covariance matrix by subtracting the measurement error variance. Similarly, fitting Y on

W with spatial correlation structure give us a maximum likelihood estimate of the

underlying residual covariance structure, Σε. The first method additionally requires an

estimate of Σa.

4.4.1 Method I: Method of Moments

This method involves post analysis adjustment of the estimated regression coefficient

using an estimate of the attenuation factor. Ignoring the measurement error and

performing a likelihood analysis under the assumed covariance structure of Y |X using

W instead of X results in estimates denoted by β̂
ols

or β̂
gls

depending on whether

ordinary or generalized least squares has been used. Let β̂1 be the estimate of the

corresponding slope from the above regression, where for the ease of exposition we leave

96



off the superscript ’ols’ or ’gls’. We have shown that its limiting value is ρβ1. Denote its

variance by σ2
∗. We then define an adjusted estimate, β̂adj1 = β̂1/ρ̂ where ρ̂ is an estimate

of the attenuation factor defined at equation (4.7) and where the estimated variance

ˆV ar(β̂adj1 ) = ρ̂−2σ2
∗. An estimate of ρ is obtained by substituting σ̂2

U , Σ̂X and Σ̂a in

equation (4.7).

4.4.2 Method II: Transformation Method

Recall from equation (4.2) that E(Y |W) = β01 + β1(I −Λ)µX + β1ΛW, where

Λ = ΣX(ΣX + ΣU )−1. This suggests the use of a linear transformation of W to achieve

an appropriate linear regression model that can be fitted to yield a consistent estimate of

β. Specifically, letting T = µX + Λ(W − µX), it follows that T ∼ (µX ,ΛΣX) and

Cov(Y ,T ) = β1ΛΣX . Hence using the joint normality of W and Y , we have

E(Y |T ) = β0 + β1T , and V ar(Y |T ) = V ar(Y |W) = Σε + β2
1(I −Λ)ΣX .

Define T̃ as the estimator of T , obtained by substituting in consistent estimates of µX

and Λ. The outcome Y can then be regressed on T̃ , with an assumed spatial correlation

structure, via a linear mixed model to obtain a consistent estimate of β1 and

corresponding standard error.

4.5 Simulation Study

We conducted a simulation study to evaluate the finite sample properties of two methods

proposed in the previous section to adjust for measurement error. We simulated 100

sample locations randomly within a d× d rectangular grid, where d is taken to have a

value of either 40 or 80. Specifically, the ith random sample location si was generated by

simulating two coordinates (e.g., latitude and longitude) from a Uniform[0, d]

distribution. Given the set of si’s, the unobserved true covariate X was generated with

mean 0 and covariance matrix ΣX , where ΣX was assumed to have an exponential

correlation structure with unit variance. This implies that the correlation between two

observations distance h units apart is (1− ηx) ∗ exp(−h/τx), where τx is the range

parameter and ηx characterizes the so called nugget effect. We considered three different
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range parameters (τx = 1, 5, 10) resulting in minimal, moderate and high correlation

among the values of X’s with a nugget effect of ηx = 0.1.

The observed error-prone versions, W, of the true covariate were generated by adding

Gaussian noise with variance σ2
U to X. Outcome data, Y , were then generated according

to equation (4.1), the slope and intercept parameter are taken as (β0, β1)T = (1, 2)T and

the error variances were generated using a similar exponential correlation structure as

ΣX , but with different range parameters. We also add a random Gaussian noise to the

residual error variance (nugget effect).The variance parameter and the nugget for the

residual error was taken as 0.5 and 0.1, respectively.

To generate simulated data with exponential spatial correlation and also in model fitting,

we used the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2013). To

extract the covariate matrices from the object of lme fit we used the mgcv package

(S. Wood, 2006) in R (R Core Team, 2013).

To study the performance of our proposed methods under various degree of correlations

within the rectangular grid and for various values of the measurement error variance, we

simulated data based on various combinations of measurement error variances (σ2
U=0.0,

0.2 and 0.5). To simplify our presentation, only the results with measurement error

variance σ2
U = 0.2 in an 80× 80 grid scales are illustrated in Table 4.1. In general, the

results obtained by varying the measurement error and/or size of the grid are similar.

Table 4.1 shows the average of the estimated regression coefficients, empirical standard

errors and average of the estimated standard errors under 9 different combinations of

spatial correlation in the covariate X and in the error for the model Y given X, based on

1000 simulations. The first column of Table 4.1 specifies the combination of range

parameters (τX , τε) used in that particular simulation. The 2nd and 3rd columns shows

the estimated regression parameters under ordinary least squares based on using the true

covariate X and the error prone covariates W, respectively (see equation 4.4). The 4th

column shows the results from fitting a linear mixed model (using the ’lme’ function in

R) with assumed exponential correlation structure, but without adjusting for

measurement error. The 5th and 6th columns present the bias corrected estimates of the

regression parameter β1 using Method I and Method II, respectively. The next two
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Table 4.1: Simulation results using different combinations of range parameters. Reported
numbers are averaged over 1000 simulations with 100 observations per simulation with
measurement error variance 0.2.

Bias corrected lme using
Range* OLS lme estimated σ2

u true σ2
u true Λ

(τX , τε) using X using W using W Method I Method II Method I Method II Method II

Estimated coefficient

(1,1) 1.999 1.689 1.683 1.867 1.838 2.039 2.000 1.995
(1,5) 2.000 1.692 1.682 1.886 1.844 2.048 2.001 1.997
(1,10) 2.001 1.691 1.681 1.889 1.849 2.038 2.001 1.995
(5,1) 1.999 1.682 1.665 2.075 1.987 2.039 1.990 1.995
(5,5) 2.002 1.687 1.641 2.106 1.998 2.051 1.988 1.998
(5,10) 2.004 1.687 1.630 2.106 2.000 2.039 1.986 1.997
(10,1) 2.000 1.666 1.638 2.113 2.013 2.040 1.990 1.996
(10,5) 2.002 1.668 1.584 2.151 2.028 2.050 1.984 1.996
(10,10) 2.005 1.670 1.562 2.173 2.048 2.037 1.982 1.997

Empirical Standard error

(1,1) 0.075 0.097 0.099 0.473 0.321 0.138 0.126 0.115
(1,5) 0.077 0.099 0.099 0.614 0.331 0.147 0.127 0.115
(1,10) 0.077 0.099 0.095 0.676 0.349 0.142 0.123 0.112
(5,1) 0.079 0.104 0.107 0.583 0.409 0.145 0.131 0.120
(5,5) 0.091 0.110 0.113 0.753 0.508 0.178 0.139 0.123
(5,10) 0.098 0.116 0.115 0.768 0.512 0.172 0.143 0.127
(10,1) 0.083 0.114 0.121 0.494 0.334 0.176 0.139 0.125
(10,5) 0.102 0.126 0.142 0.616 0.418 0.247 0.159 0.137
(10,10) 0.117 0.134 0.145 0.692 0.469 0.210 0.165 0.142

Average of estimated standard errors

(1,1) 0.075 0.100 0.099 0.110 0.109 0.120 0.119 0.118
(1,5) 0.074 0.100 0.096 0.108 0.107 0.118 0.115 0.114
(1,10) 0.073 0.099 0.093 0.105 0.104 0.113 0.112 0.110
(5,1) 0.076 0.101 0.101 0.127 0.124 0.125 0.120 0.120
(5,5) 0.075 0.100 0.101 0.130 0.126 0.126 0.121 0.121
(5,10) 0.073 0.099 0.098 0.127 0.124 0.123 0.119 0.119
(10,1) 0.078 0.103 0.104 0.135 0.129 0.131 0.124 0.123
(10,5) 0.077 0.103 0.106 0.145 0.137 0.138 0.129 0.129
(10,10) 0.075 0.102 0.104 0.146 0.139 0.137 0.128 0.128

Range*- (τX , τε)values of the range parameter following exponential correlation in X and
the error term in the model on Y respectively.

columns of the table represent the results from Method I and Method II when true

measurement error variances were used instead of estimated values. That is, results in

column 5 use the estimated measurement error and column 7 uses the true value of the

measurement error variance under Method I. Similarly, columns 6 and 8 represent the

results obtained using Method II based on the estimated and true measurement error

variances, respectively. The last column of the table shows results from Method II when

all the components of Λ were calculated using true values (i.e., values used in data

generation).

The simulation results confirmed that the degree of bias for linear mixed model with
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error prone covariate varies with the strength of the spatial correlation structure of

covariate as well as residuals. However, our proposed bias correction methods perform

well in terms of providing consistent estimates of the regression coefficient. Both methods

under-estimate the true regression coefficient when measurement error is estimated and

there is very low correlation in X. This makes sense because the nugget effect in X is

non-identifiable in that setting. This is because the assumption that the true covariate X

is smooth is no longer valid, hence estimates are not reliable in such situations.

To assess the sensitivity of the true spatial correlation structure on parameter

estimation, we run a simulation with misspecified spatial correlation structure. In this

simulation we generated data using an exponential covariance structure, but fitted under

the assumption of a Gaussian covariance structure. Figure 4.2 shows the distribution of

estimated coefficients when estimated and true values of σ2
u are used with Method I (a-b)

and Method II (c-d), under different range parameters combined with true and

misspecified covariate structure. For each combination of range parameters, the first

boxplot (from left) represents results from the misspecified covariance structure. The

results obtained for the other combination of range parameters (not shown in this figure)

are similar.

Our simulation results illustrate that proposed methods are quite robust in case of

misspecification of underlying covariance structure. However the accuracy of the

methods depends largely on the value of σ2
u. Therefore, a close estimate of σ2

u to the true

value is more important than having a good estimates of underlying covariance

structure. Hence, we recommend a sensitivity analysis be used in practice.

To evaluate the performance of the proposed method under small samples, we also

conducted a simulation with a sample size of 50. In this case, the estimates obtained

from Method I are slightly upwardly biased with higher standard errors. However

Method II adjusts for bias quite well and provides a reliable estimates of standard errors.

In general, considering all the simulation scenarios, the transformation method (Method

II) outperforms the method of moments (Method I) in terms of standard errors.

We also run another set of simulations to ascertain whether the spatial configuration of

the point locations is an important feature in determining the effectiveness of bias
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Figure 4.2: Distribution of estimated coefficient when estimated and true value of σ2
u used

with Method I (a-b) and Method II (c-d) under different range parameters combinations
with true and misspecified covariate structure.

correction. We generated data based on a cubic function with Gaussian noise in a

80× 80 grid rather than uniformly distributed within the grid. Our simulation results

(not shown) show that the spatial configuration does affect the estimates of

measurement error variance, but not the estimated spatial structure. Thus the bias

correction methods remains consistent when true measurement error is known. In

practice, if measurement error is unknown, the best way is to run a sensitivity analysis

within the reasonable range of measurement error variance.

4.6 Analysis of Ischemic Heart Disease Data

Data on Ischemic Heart Disease (IHD) were collected from all hospitals in New South

Wales (NSW), Australia between July 1, 1994 and June 30, 2002. A detailed description

of the data has been given elsewhere (Burden et al., 2005). Briefly, patients who were

admitted to the hospitals via the emergency room and discharged with a diagnosis of

IHD were considered as acute IHD cases. Data also includes patient age, gender and

geographic location reported via postcode of residence. Data from 579 postcodes were
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included in the analysis. IHD event data were linked with the Census data which

contains age and gender-specific population counts. SEIFA (Socio-Economic Indexes For

Areas) scores and centroid co-ordinates (latitude and longitude) for each postcode were

obtained from Australian Bureau of Statistics (ABS). Since temporal patterns were not

our main concern in this study, we averaged the 8 year SEIFA scores and aggregated

values of the population size and number of IHD admitted cases for each postcode. We

then calculated age-sex adjusted standardized incidence ratios (SIR) by dividing the

observed number of IHD cases by the age-sex adjusted expected IHD cases (Breslow &

Day, 1987).

Li et al. (2009) analyzed square root transformed standard mortality ratios (SMR) to

make them more normal distributed. However, we found that untransformed SIR values

more closely approximated the normally distribution and hence we did not transform.

We fit model (4.1) assuming an exponential correlation structure for data observed for

each postcode,with distance based on latitude and longitude of each postcode centroid.

As Burden et al. (2005) noted, the principal component analysis that was used to derive

the SEIFA score only accounts for about 30 percent of the total variation of the

component used. Therefore, it is likely that the SEIFA score is subject to substantial

measurement error. We standardized the SEIFA scores to have a mean of zero.

Table 4.2: Analysis of Ischemic Heart Disease Data in NSW, Australia under different
specification of measurement error

Methods Estimates for SEIFA

Ignoring measurement error β̂ se(β̂)
Ordinary Least Squares -0.062 0.014
LME with spatial correlation -0.141 0.015

Accounting for measurement error bias
Method I -0.377 0.041
Method II -0.278 0.015

The results of our analysis are given in Table 4.2. The naive analysis ignoring spatial

correlation, suggests a significant protective effect associated with higher SEIFA values

(β̂SEIFA=-0.062, SE=0.014). Analysis via a linear mixed model accounting for spatial

correlation also suggests that the effect is very strong (β̂SEIFA=-0.141 with SE=0.015).

However, the magnitude of the effect is much larger.

We applied our bias correction methods on the result obtained from the linear mixed
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model. The linear mixed model of SEIFA based on a intercept only model with assumed

exponential spatial correlation suggests the estimate of measurement error variance as

0.28. Both methods suggest a strongly significant effect of SEIFA (β̂
adj

SEIFA=-0.377 and

-0.278 with SE=0.041 and 0.015 respectively). A large difference in the estimated

standard error for Method I and Method II is observed. The Method II account for less

uncertainty than Method I.

In practice, a bootstrap procedure can be used to calculate the standard error for

Method I. We implement a block bootstrap procedure by leaving one block at each

iteration. Blocks are automatically selected using the cluster separation method ”clara”

(Kaufman & Rousseeuw, 2005) in R (R Core Team, 2013). Specifically, this method

selects k representative objects in the data set, where k is the number of clusters. The

remaining objects are then assigned to the nearest representative object to form a cluster.

The representative objects are selected in such a way that the average distance of the

representative objects to all other objects in the same cluster is minimized. Our results

show that the difference in estimated standard error reduces with large number of blocks

while estimated standard error for Method II remain unchanged (result not shown).

Since we do not have a validation dataset and thus cannot test the assumption

underlying the bias correction methods, we conduct a sensitivity analysis to help in the

interpretation of our results. We conducted sensitivity analysis varying measurement

error variance, σ2
U from 0.0 (naive) to 0.40. The result of the sensitivity analysis is

presented in Figure 4.3.

As measurement error variance, σ2
U increases, the estimates obtained by method of

moments also decreases. The estimates obtained using transformation methods also

decreases until when the assumed measurement error variance is less than the estimated

measurement error variance and then increases. We note that the transformation

method appears to give stable results over the range of σ2
U .
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Figure 4.3: Sensitivity analysis for IHD data. The assumed measurement error variance
varied between 0 (naive) and 0.40

4.7 Discussion

In this paper, we have developed a framework to quantify the bias induced in estimated

regression coefficients when covariates are measured with error in spatial regression

settings. Both analytic and simulations results suggest that naive analysis that ignore

measurement error will attenuate estimated regression coefficients towards the null

hypothesis of no effect. Our results extend classical measurement error theory in that

the amount of attenuation depends on the degree of spatial correlation in both the

covariate of interest as well as the assumed random error from the regression model.

These results explain why the results from spatial regression modeling are often so

sensitive to the assumed model error structure. We proposed two different strategies to

obtain consistent estimates of the regression coefficients of interest in the presence of

covariate measurement error. These strategies include 1) post hoc adjustment of

estimated regression coefficient via an estimate of the attenuation factor and 2) a linear

transformation of the error prone covariates that can then be analyzed to yield

consistent results. We found that both methods perform well, though the second method

tends to be less variable and hence preferable in practice. We illustrated the proposed

approaches using the analysis of Ischemic Heart Disease data. There are a number of
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areas where future study would be useful.

Our analytic results are similar to those of Li et al. (2009) who also consider asymptotic

bias associated with spatial regression analysis involving covariate measurement error.

They also propose an adjusted analysis based on an EM algorithm. However, their

approach is difficult to apply, especially for large data sets. In contrast, our proposed

approaches can be easily implemented using readily available packages such as lme in R

(R Core Team, 2013). While Li et al. (2009) demonstrate via simulation that their

method works well, they use the true values of the measurement error variances and did

not consider the setting where measurement error variances are estimated. While our

simulations confirm the reliability of our proposed methods in settings where the

measurement error variance can be assumed known, we also suggest an approach to

estimating the measurement error variance. As in the classical measurement error

context, estimation of measurement error variance requires either additional assumptions

or additional information such as validation or replicate data. We showed how the

measurement error variance could be estimated under the assumption that the true

covariate of interest is smooth and hence that any estimated nugget effect can be

interpreted as measurement error. As expected, our simulations suggest that the

performance of our proposed bias correction methods decline when the measurement

error variance is estimated instead. Method I performs more poorly than Method II

since that latter requires the estimation of fewer model parameters. Our results suggest

that having some knowledge of the magnitude of measurement error is important and in

practice we suggest the use of a sensitivity analysis that varies the assumed values of the

measurement error variance over a feasible range.

One observation from our simulation is that the use of an estimated measurement error

variance estimates from the data leads to under estimation of the regression coefficients

when there is minimal spatial correlation in the covariate. This makes sense since most

of the covariate variability will be absorbed in to the estimated nugget effect. As

expected, we found that the situation improved when we used a smaller grid size ( see

also, Bell and Grunwald 2004). Use of an estimated measurement error variance also led

to much greater discrepancies between the average of our estimated standard errors and

the empirical standard errors derived from the simulation. In contrast, these were much

closer when the true values of the measurement error variances were used. These
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observations suggest that having knowledge of the true measurement error variance is

crucial not only in obtaining consistent estimates of the regression coefficients, but also

in terms of estimating standard errors and conducting appropriate inference. Again, we

recommend use of a sensitivity analysis in practice.

The estimated standard errors of regression coefficients underestimate the empirical

standard errors. This might be because our formulae for the standard errors of the

adjusted estimated regression coefficients do not fully account for the uncertainty

associated with the estimation of the variance component. It would be of future research

interest to conduct an asymptotic bias analysis on estimation of variance components in

spatial models when measurement error is ignored and the error-prone covariate follows

a spatial model. In practice, a block bootstrap procedure can be used to obtain

appropriate standard errors.

Our heart disease example demonstrated a substantial increase in the rates of Ischemic

Heart Disease as the level of SEIFA (Socioeconomic Indicators for Areas) measured at

the postcode level decreased. The magnitude of the effect increased after adjusting for

measurement error. Our results are consistent with social epidemiology literature (see

systematic review by Pickett and Pearl 2001) that suggests that low socio-economic

status leads to increased rates of a wide variety of health outcomes. While it is tempting

to interpret these results at an individual level, it is important to remember that doing

so may result in ecological bias (Sheppard, 2003). Prentice and Sheppard (1995) showed

that using group level covariates in the analysis reduces the effects of error in the

measurement of covariates at the individual level. However, Greenland (2001) and

Jackson et al. (2006) noted that ecological covariates are subject to non-random survey

errors and may not be addressed by aggregation of group level analysis of covariates.

Moreover, in many research areas, group level data are the only available source for

analysis. Air pollution epidemiology provides a classic example, since individual

measurements of air pollution studies rarely collected and instead are estimated based on

neighborhood monitoring and other sources (Sheppard et al., 2012). Consequently, air

pollution exposures are typically measured with error and it would be useful to consider

the impact of this error on subsequent effect size estimates.

In our simulation we have considered only a single covariate measured with error in a
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spatial linear mixed model with Gaussian error. It would be of interest to explore the

effect of covariate measurement error in the presence of multiple covariates and also

omitted covariates. Future work can also be done on extending our formulation to the

spatial generalized linear mixed model with non-Gaussian outcomes. However, such

explorations are beyond the scope of this present paper. In this paper we consider a full

parametric approach to adjust for covariate measurement error. Indeed, Ruppert, Wand,

and Carroll (2009) argued that penalized splines are the most effective method for

correcting the covariate measurement error in case of independent data. So it is of

natural interest to extent the spatial regression model with measurement error to a

semi-parametric framework. In the next chapter we have considered such as approach.

In light of the increasing popularity of multi-level models that include both individual

and area-specific covariates, it is important that practitioners be aware of the

importance, not only of careful modeling of the mean function, but also of accounting for

measurement error and appropriate spatial structure of their data.
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Appendix 4A

The ordinary least squares estimate of β is

β̂
ols

= (WT
∗W∗)

−1WT
∗ Y . (4.8)

with W∗ defined in the text. Under the true model, Y = X∗β + ε, we have

β̂
ols

= (WT
∗W∗)

−1WT
∗ Y

= (WT
∗W∗)

−1WT
∗ (X∗β + ε)

= WT
∗W∗)

−1WT
∗X∗β + (WT

∗W∗)
−1WT

∗ ε

=

(
WT
∗W∗
n

)−1(
WT
∗X

n

)
β +

(
WT
∗W∗
n

)−1(
WT
∗ ε

n

)

Now under certain regularity conditions (Zheng & Zhu, 2012) and by the weak law of

large numbers,
(
WT
∗W∗
n

)
p−→ cov(W∗) ,

(
WT
∗X∗
n

)
p−→ cov(X∗) and(

W∗ε
n

)
=
(
X∗ε
n + U∗ε

n

) p−→ 0. It follows that, β̃
ols p−→ [cov(W∗)]

−1 cov(X∗)β. Since W∗

and X∗ have first column equals to 1 corresponding to intercept of the model and

assuming µX = 0, it follows,

β̃
ols p−→

 1 0

0 trace (ΣX + ΣU )

−1 1 0

0 trace (ΣX)

β
=

 1 0

0 ρols

β,
where ρols = trace (ΣX) /trace (ΣX + ΣU ).
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Chapter 5

Spatial Regression with Covariate

Measurement Error: A

Semiparametric Approach

Summary

Spatial data have become increasingly common in epidemiology and public health

research thanks to advances in GIS (Geographic Information Systems) technology. In

health research, for example, it is common for epidemiologists to incorporate

geographically indexed data into their studies. In practice, however, the spatially-defined

covariates are often measured with error. Naive estimators of regression coefficients are

attenuated if measurement error is ignored. Moreover, the classical measurement error

theory is inapplicable in the context of spatial modeling because of the presence of spatial

correlation among the observations. We propose a semi-parametric regression approach

to obtain bias corrected estimates of regression parameters and derive their large sample

properties. We evaluate the performance of the proposed method through simulation

studies and illustrate using data on Ischemic Heart Disease (IHD). Both simulation and

The content of this chapter is published as: Huque, MH; Bondell, HD; Carroll, RJ and Ryan. LM.
(2016). Spatial regression with covariate measurement error: A semiparametric approach. Biometrics,
DOI: 10.1111/biom.12474. This research was also presented at the Joint Statistical Meetings, Boston,
2014.
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practical application demonstrate that the proposed method can be effective in practice.

5.1 Introduction

With the rapid growth of Geographic Information Systems (GIS), it is now common for

epidemiologists to incorporate spatially indexed data into their studies (Elliott &

Wartenberg, 2004). Analysis of such data, however, is complicated by correlations among

neighboring observations. Although there are well known statistical methods to adjust

for spatial correlation, relatively little has been done in the context of spatial modeling

when the covariate of interest is measured with error. In the case study that motivates

this study, Australian researchers explored the relationship between the SEIFA index (an

area-based measure of socio-economic status produced by the Australian Bureau of

Statistics) and acute hospitalization for Ischemic Heart Disease (IHD) in New South

Wales, Australia (Burden et al., 2005). Multivariate regression models suggest a

significantly negative association between SEIFA and IHD, implying that heart disease

rates increase with social disadvantages. However, the strength of association might be

attenuated due to the fact that the SEIFA index is constructed using principal

component analysis, therefore, is highly likely to be measured with error (Huque,

Bondell, & Ryan, 2014).

Many articles have appeared in the literature over the years on covariate measurement

error in the context of independent data (Carroll et al., 2006; Fuller, 1987). However,

relatively few have addressed the specific context of spatial modeling. Bernadinelli et al.

(1997) and Xia and Carlin (1998) presented a spatio-temporal analysis of spatially

correlated data with errors in covariates, in the context of disease mapping. They

empirically studied several alternative measurement error models using a Gibbs

algorithm. Li et al. (2009) derived asymptotic bias expressions for estimated regression

coefficients in the context of a spatial linear mixed model. They showed that the

regression estimates obtained from naive use of an error prone covariate are attenuated,

while variance component estimates are inflated.

Recently, Huque et al. (2014) confirmed the findings of Li et al. (2009) and derived

expressions for the bias when measurement error is ignored. They proposed two different
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strategies for obtaining consistent estimates: (i) correcting the estimate using an

estimated attenuation factor; and (ii) using an appropriate transformation of the error

prone covariate. They showed that both bias correction methods work reasonably well,

however, the standard error is underestimated in the case when measurement error

variances are estimated from the data. Moreover, their approach is fully parametric.

Indeed, Ruppert et al. (2009) argued that penalized splines are the most effective

method for correcting the covariate measurement error in case of independent data. So it

is of natural interest to extent the spatial regression model with measurement error to a

semi-parametric framework.

In this paper we propose a joint modeling approach to assess the relationship between a

covariate with measurement error and a spatially correlated outcome in a

semi-parametric regression modeling context. Our approach contrasts with what is

commonly assumed in the measurement error context, namely that some form of

validation data are available. Underlying our approach is the critical assumption that

the true, but unobserved covariate is smooth and that any random fluctuations from this

smooth surface represent measurement error. This assumption makes our model

identifiable by representing the unknown true covariate with a linear combination of

spline basis functions (Xun, Cao, Mallick, Maity, & Carroll, 2013; Yu & Ruppert, 2002).

We use penalized least squares which makes the estimation of parameters and inference

straightforward. We develop asymptotic theory for the estimated parameters and

provide both model based and simulation based standard error estimates. Our

simulation results reveal that the proposed method works well in obtaining consistent

estimates of the true regression coefficient in the presence of measurement error. Our

approach is computationally efficient and stable and can be implemented using standard

nonlinear least squares software.

The structure of the paper is as follows: Section 5.2 describes our model formulation,

estimation and inference procedures. Section 5.3 presents the data generation process

and results from the simulation study. In section 5.4 we present an application of the

proposed method to data on Ischemic Heart Disease (IHD). We conclude with general

discussion in section 5.5. The Appendix 5A gives detailed proofs, as needed.
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5.2 Model

Suppose that Xi represents the true covariate of interest measured at geographical

location, Si ∈ R2, i = 1, ..., n and suppose that Xi is related to an outcome Yi, according

to a spatial linear model:

Yi = β0 + β1Xi +G1(Si) + εi, (5.1)

where ε = (ε1, ....εn)T ∼ N(0, σ2
ε ) and {G1(Si) : Si ∈ R2} is an unknown function that

captures the spatial correlation, for now kept arbitrary. Further assume that εi and

G1(Si) are independent of each other and of the true covariate Xi (Cressie, 1993). In

practice, the outcome might also be related to other covariates and it is straight forward

to extent model (5.1) to include these. However, for simplicity, we only consider a single

covariate in model (5.1).

In the presence of measurement error, measurements on the true covariate X are not

observed directly, instead an error contaminated version is available. Let Wi be the

observed covariate for location Si ∈ R2, i = 1, ..., n, related to the true covariate Xi

according to a classical measurement error model:

Wi = Xi + Ui, (5.2)

where Ui ∼ N
(
0, σ2

u

)
. Note that in the case of independent data, a consistent estimate of

the true regression coefficient β1 can be obtained if either the measurement error

variance is known or can be estimated using a validation data set on the true covariate

(X) without measurement error (Carroll et al., 2006). However, in the spatial

epidemiology setting such validation data are relatively rare. We develop an alternative

approach assuming that the true covariate X is smooth and can be modeled by a second

smooth function, G2(Si).

Many different choices of smoothers have been discussed in the literature, including

locally-weighted running line smoothers (loess), Kernel smoothers or splines (Hastie &

Tibshirani, 1990). In general, techniques based on regression splines are robust in

approximating the true underling smooth functions and are relatively straight forward
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from a computational perspective, but have rigorous mathematical properties (Ruppert

et al., 2003; S. Wood, 2006). In this paper we also adopt such a technique using cubic

thin plate splines (S. Wood, 2006).

Within this framework, the unknown smooth functions, Gj(Si), for j = 1, 2 are

represented by linear combination of thin plate spline basis functions i.e.,

Gj(Si) = BT
j (Si)θj . Here B1(Si) and B2(Si) are two sets of thin plate splines basis

functions with dimensions (q1 + 3)× 1 and (q2 + 3)× 1, respectively, where q1 and q2 are

the corresponding number of knots and θ1 and θ2 are vectors of corresponding basis

coefficients.

Under the above specifications model (5.1) and (5.2) can be rewritten as

Yi = BT
2 (Si)θ2β1 +BT

1 (Si)θ1 + εi; (5.3)

Wi = BT
2 (Si)θ2 + Ui. (5.4)

Since these equations are linear with respect to a set of unknown parameters, we use

penalized least squares techniques for estimation (Xun et al., 2013; Yu & Ruppert,

2002). In this method, the data, (Y, W), are fitted to two different sets of spline basis

functions B1(Si) and B2(Si) by least squares where parameters are estimated by

minimizing the usual sum of squares plus roughness penalties. That is, we minimize

J(β, θ1) = n−1∑n
i=1{Yi −B

T
2 (Si)θ2β1 −BT

1 (Si)θ1}2 + δ1θ
T
1 D1θ1; (5.5)

J(θ2) = n−1∑n
i=1{Wi −BT

2 (Si)θ2}2 + δ2θ
T
2 D2θ2, (5.6)

where the terms δ1θ
T
1 D1θ1 and δ2θ

T
2 D2θ2 are roughness penalties associated with models

(5.3) and (5.4). These involve unknown regression coefficients θj , j=1,2, penalty

parameters δj and penalty matrices Dj of dimension (qj + 3)× (qj + 3). The penalty

matrices map the spline basis functions to the data whereas the penalty parameters

control the amount of smoothing (Ruppert et al., 2003; S. Wood, 2006). Given knot

locations {x∗j(i) : 1, 2, ..., qj}, penalty matrices have zeroes everywhere except in its lower

right qj × qj block with Dj(ik) =
∥∥∥x∗j(i) − x∗j(k)

∥∥∥2
log
∥∥∥x∗j(i) − x∗j(k)

∥∥∥, for i, k ≤ qj .

Note that the intercept term β0 in the model (5.1) is set to 0 in (5.3), because it is not

identifiable in the presence of a non-parametric function G1(·). Even so, the parameters
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of these models are not completely identifiable without some additional assumptions

outlined in the next section.

5.2.1 Identifiability

From the above models (5.3) and (5.4), it is evident that if B1(·) ≡ B2(·), then these

models are not identifiable because in this case (5.3) becomes

Yi = BT
2 (Si)(θ2β1 + θ1) + εi.

Thus, we can identify only θ2 and θ2β1 + θ1, and cannot separate out β1 and θ1. To

make these models identifiable, we assume that the asymptotic variability, Λ1 and Λ2 of

two sets of basis functions B1(.) and B2(.), respectively, are different. The asymptotic

variability Λj for j=1, 2, are the limiting values of Λnj , where

Λnj = {n−1∑n
i=1Bj(Si)B

T
j (Si)− δjDj}−1. (5.7)

In practice, this requirement can be easily achieved by ensuring that the numbers of

knots q1 and q2 are unequal.

5.2.2 Parameter Estimation

In addition to the assumption that Λ1 6= Λ2, we also assume that the penalty parameters

are small relative to the sample size as n→∞, i.e., n1/2δj → 0 for j = 1, 2. This means

that with large sample sizes, the estimated regression coefficients obtained using

penalized least squares will be close to the OLS estimates. Thus minimizing the

penalized sum of squares (5.6) and solving for θ2, we have

θ̂2 = Λn2n
−1∑n

i=1B2(Si)Wi, (5.8)

where Λn2 is defined in equation (5.7). A detailed derivation of θ̂2 along with it’s

asymptotic distribution is given in the Appendix 5A. Similarly, we can estimate θ1 and

β1 by minimizing the corresponding penalized sum of squares (5.5). This yields (see the
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Appendix 5A)

θ̂1 = Vn −Rnθ̂2β̂1 (5.9)

β̂1 =
n−1

∑n
i=1Yi{BT

2 (Si)−BT
1 (Si)Rn}θ̂2

θ̂T
2 (Tn −RT

nΛ−1
n1Rn)θ̂2

, (5.10)

where

Vn = Λn1n
−1∑n

i=1B1(Si)Yi;

Rn = Λn1n
−1∑n

i=1B1(Si)B
T
2 (Si);

Tn = n−1∑n
i=1B2(Si)B

T
2 (Si).

Although the above estimator of β1 was estimated using pseudo-likelihood, it is

consistent for β1. In the next section we will establish the asymptotic properties of the

estimator.

5.2.3 Asymptotic Theory

Asymptotic theory for the estimators β̂1 is based on treating the spatial locations

Si ∈ R2 as fixed constants. Following Yu and Ruppert (2002), if δj → 0 as n→∞, then

the bias also tends to 0 and consistency can be established. Asymptotic normality is

established by the following theorem, whose proof appears in Appendix 5A.

Theorem 1 Assume that the smoothing parameters are small relative to the sample

size, i.e., n1/2δj → 0, and the spatial correlation G1(.) and unknown covariate X are

correctly represented by a finite number of splines basis functions. Then the estimate of

β1 is consistent and asymptotically normally distributed with

n1/2
(
β̂1 − β1

)
d−→ N

(
0, σ2

)
, (5.11)

115



where

σ2 = limn→∞ n
−1
∑n

i=1(σ2
εG2

ni + σ2
uH2

ni);

Gni = Dni(θT
2 Cnθ2)−1;

Hni = AnΛn2B2(Si)(θ
T
2 Cnθ2)−1 −Anθ2Fni(θT

2 Cnθ2)−2;

An = n−1
∑n

i=1{G2(Si)β1 +G1(Si)}{B2(Si)−RT
nB1(Si)}T;

Cn = Tn −RT
nΛ−1

n1Rn;

Dni = {B2(Si)−RT
nB1(Si)}Tθ2;

Fni = θT
2 C2Λn2B2(Si) +BT

2 (Si)Λn2Cnθ2.

Rn = Λn1n
−1
∑n

i=1B1(Si)B
T
2 (Si);

Tn = n−1
∑n

i=1B2(Si)B
T
2 (Si).

(5.12)

Using this asymptotic expression we can also estimate the standard error of the

estimated regression coefficient β̂1. The next section will discuss two such options.

5.2.4 Estimating the Standard Error of β̂1

We first consider a model based estimate of the standard error of β̂1 using the

asymptotic theorem discussed in the previous section and then suggest a more robust

estimate of standard error using simulation.

Model Based Standard Error

The model based standard errors of the estimated β̂1 can be estimated by substituting

corresponding consistent estimates of σ2
ε and σ2

u (defined below) into expression (5.12).

Specifically,

σ̂2
ε =

∑n
i=1{Yi −B2(Si)θ̂2β̂1 −B1(Si)θ̂1}2

n− 2trace{L1(δ1, δ2)}+ trace{L1(δ1, δ2)LT
1 (δ1, δ2)}

σ̂2
u =

∑n
i=1{Wi −B2(Si)θ̂2β̂1}2

n− 2trace{L2(δ2)}+ trace{L2(δ2)LT
1 (δ2)}

,

where the denominators are the residual degrees of freedom associated with model (5.3)

and model (5.4) with smoother matrices L1(δ1, δ2) and L2(δ2), respectively (Ruppert et

al., 2003). Define Bj = {Bj(S1), ..., Bj(Sn)}T for j=1,2 and Dn = {Dn1, ..., Dnn)}T.
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Then the smoother matrices have the following expressions (see the Appendix 5A)

L1(δ1, δ2) = n−1
{
DnD

T
n (θ̂T

2 Cnθ̂2)−1 + B1Λn1B
T
1

}
(5.13)

L2(δ2) = n−1B2Λn2B
T
2 . (5.14)

Simulated Standard Error

From (5.10), the expression for β̂1 can be written as (see the Appendix 5A)

β̂1 =
Anθ2 + n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT
2 Cnθ2 + n−1

∑n
i=1FniUi

+ op(n
−1/2),

where εi and Ui are the random errors defined in models (5.1) and (5.2). Since these

quantities are not directly observed, we can estimate the variance of β̂1 by a residual

bootstrap (Carroll et al., 2006).

Let M be a fairly large number, say 100, and for b = 1, ...,M , generate independent

random samples εbi ∼ Normal(0, σ̂2
ε ) and Ubi ∼ Normal(0, σ̂2

u) for i = 1, 2,...n. Define the

b’th bootstrap estimates of β1 as

β̂b1 =
Ânθ̂2 + n−1

∑n
i=1{ÂnΛn2B2(Si)Ubi + D̂niεbi}

θ̂T
2 Ĉnθ̂2 + n−1

∑n
i=1F̂niUbi

,

where Ân, D̂n, Ĉn and F̂ni can be estimated by substituting the appropriate quantities

into expression (5.12). These estimated quantities preserve the underlying spatial

structure. Therefore, the sample variance of β̂1
1 , ..., β̂

M
1 is a consistent estimate of the

variance of β̂1 (Efron & Tibshirani, 1993).

5.2.5 Smoothing Parameter Selection

Our main objective is to obtain a consistent estimate of the regression parameter β1 such

that it accounts for the measurement error in the covariate. However, selecting a suitable

combination of the smoothing parameters (δ1, δ2) is a prerequisite to a good model fit.

All discussion so far has assumed that these parameters are fixed and known.
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To choose smoothing parameters that attempt to minimize the mean square error

(prediction error), three common approaches have been discussed in the literature

(Ruppert et al., 2003) (a) Generalized Cross Validation (GCV); (b) Mallow’s Cp; and (c)

Akaike Information Criterion (AIC). Among these methods, minimization of GCV scores

is more attractive because of being rotational invariant and being computationally

efficient as it avoids having to actually refit the model multiple times (S. Wood, 2006).

We use the GCV criterion to estimate the smoothing parameters (δ1, δ2) in a two-step

procedure (S. Wood, 2006). We first obtain an optimum value of δ2 by minimizing the

GCV score based on model (5.2) and then substitute this estimated value of δ2 into (5.8)

to obtain an estimate of θ2. We then use these estimates of δ̂2 and θ̂2 in (5.13) to obtain

an expression for the smoothing matrix, L1(δ1, δ̂2). Finally, we minimize the following

GCV score associated with the outcome model to get an optimum value of δ1:

GCV (δ1) =
n−1

∑n
i=1{Yi − Ŷi}2

{1− n−1trace{L1(δ1, δ̂2)}}2
,

where L1 is defined in section 5.2.4.

5.3 Simulation Study

In this section we discuss a simulation study designed to evaluate the finite sample

properties of our proposed method in the presence of covariate measurement error in

spatial linear regression.

5.3.1 Data Generation

We simulate n sample locations randomly within a square, where n is the sample size.

Specifically, the ith random sample location Si is generated by simulating two

coordinates (e.g., latitude and longitude) from a Uniform[0,1] distribution. Given a set of

simulated Si’s, the unobserved true covariate X is generated using a bivariate bump

function. Specifically, the bivariate bump function is generated using the product of two

univariate bump functions generated separately for each co-ordinate. That is, for each

coordinate, k, we generate Xik = 1
1+aik

+ 3e−50(aik−0.3)2 + 2e−25(aik−0.7)2 , k = 1, 2, where
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Figure 5.1: Contour plots of covariates (X and W) with different specification of mea-
surement error variance

ai1 and ai2 are the first and second coordinates of simulated ith sample location,

respectively. The observed error contaminated versions, W , of the true covariate is

generated by adding independent Gaussian noise with varying the measurement error

variance σ2
U as 0, 0.25 and 0.50 to X. The contour plot associated with the true and

error prone covariate is given in Figure 5.1.

As shown in the Figure 5.1, presence of measurement error adds noises to the true

distribution of the smooth covariate. As a result the underlying true covariate

distribution becomes obscured for higher degrees of measurement error.

The smooth spatial surface, G1(Si), is generated to have a normal distribution with

mean 0 and variance-covariance matrix σ2
G1
R, where σ2

G1
= 0.2 and R has an

exponential correlation structure with range parameter τG1 (Pinheiro & Bates, 2000).

This implies that the correlation between two observations with distance h units apart is

exp(−h/τG1). We considered three different range parameters (τG1= 0.1, 0.3 and 0.5)

resulting in minimal, moderate and high correlation among the values of G1’s.

Outcome data, Y , were then generated according to equation (5.1), with intercept and

slope parameters are (β0, β1)T = (1, 2)T and the variance parameter for the independent

residual error assumed to be 0.5. We used the nlme package (Pinheiro et al., 2013) in R

to generate exponential spatial correlation for our simulated data and in model fitting.
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5.3.2 Generating Bi-variate Splines Basis Functions

We now describe the steps used to fit our proposed semi-parametric model. We

generated two sets of basis functions B1(·) and B2(·) using bivariate thin plate spline

regression basis with 125 and 150 knots for response and covariate model, respectively.

We choose thin plate splines because they are not sensitive to knot locations, perform

reasonably well for a basis of any given lower rank, are computationally efficient and

more importantly rotational invariant (Ruppert et al., 2003; S. Wood, 2006). Unequal

number of knots were chosen for B1(.) and B2(.) to make the model identifiable, (see

Section 5.2.1). The number of knots for the response model (5.1) were analogous to the

default number of knots [max{20,min(n/4,150)}] suggested by Ruppert et al. (2003). For

the covariate model (5.2) we increased the default number of knots by 20%. Knot

positions were automatically selected using the cluster separation method ”clara”

(Kaufman & Rousseeuw, 2005) in R (R Core Team, 2013).

Of course one could select the number of knots by another algorithm such as space filling

algorithm (Nychka & Saltzman, 1998). However, implementation of this algorithm is

computationally intensive. Nychka and Saltzman (1998, page-169) argued that the

number of knots is flexible in the context of geo-spatial model and one needs to select

large enough knots to accurately represent the underlying function while keeping the

computational burden as low as possible. Furthermore, Ruppert (2002) suggest that

given the GCV criteria, the number of knots is not crucial for penalized regression

splines once it reaches a certain minimum value.

5.3.3 Simulation Results

The average of estimated regression coefficients along with their estimated standard

errors based on 1000 simulation runs are presented in Table 5.1, assuming a sample size

of 500 and varying the measurement error variance σ2
U between 0, 0.25 and 0.50. We

estimated three different standard errors of the estimated regression coefficients,

including, (i) empirical standard errors obtained by taking the standard deviation of the

1000 simulated regression coefficient estimates, (ii) the average of model based standard

errors and (iii) the average of simulated standard errors defined in section 5.2.4. We
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considered three different range parameters (τG1=0.1, 0.3 and 0.5) to represent minimal,

moderate and high level of spatial correlation in G1(Si). The first column of Table 5.1

specifies the range parameter used in that particular simulation. The next four columns

list the estimated regression coefficient using ordinary least squares (OLS), linear mixed

models with spatial correlation structure (LME), generalized additive models (GAM)

and our proposed method when the true covariate is measured without error. The

second and thirds sets of four columns also list estimates obtained using the above four

methods (OLS, LME, GAM and proposed method) with measurement error variances

0.25 and 0.50, respectively. Except for our proposed method, all of these methods

produce naive estimates of regression coefficient.

In the absence of measurement error, OLS, LME, GAM and our method all give similar

results. As the degree of measurement error increases, OLS, LME and GAM all exhibit

bias, though the degree of bias varies. All naive standard error estimates ignoring

covariate measurement error severely underestimate the empirical standard errors. In

contrast, our proposed bias correction method performs well even if the degree of bias for

generalized additive model with error prone covariate varies (range: 0.99-1.32) with the

strength of the spatial correlation structure. Both model based and simulation based

estimates of the standard error appear to be working well. In all cases, the average of the

estimated measurement error variances are very similar to the true values (not shown in

the table).

To evaluate the performance of the proposed method under small sample settings, we

also conducted simulations with sample sizes of 250 and 100 assuming a measurement

error variance σ2
U of 0.5. The results are given in Table 5.2.

With the size of 250 and 100 samples our proposed method still provides slightly biased

(around 1.95) estimates of the true regression coefficient of 2. However, with moderate

sample sizes (say, n=100) the variance of estimated regression coefficients tends to be

slightly inflated. To explore the impact of number of knots on our proposed method we

conducted additional simulation study by varying the number of knots for covariate

model as 130, 140 and 170 with measurement error 0.025, sample size of 500 and varying

range parameters, where the number of knots for the residual error model was fixed as

125. The results are presented in the Appendix Table 5.4. These results indicate that the
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Table 5.1: Simulation results using different combinations of range parameters and measurement error variance. Reported numbers are averaged
over 1000 simulations with 500 observations per simulation.

No Measurement error variance, Measurement error variance,
Range* measurement error σ2

u = 0.25 σ2
u = 0.5

(τG1) OLS LME GAM Proposed OLS LME GAM Proposed OLS LME GAM Proposed

Estimated coefficient

0.1 2.001 2.001 2.002 1.991 1.928 1.439 1.332 2.066 1.858 1.274 0.986 2.034
0.3 1.999 1.999 1.999 1.988 1.927 1.574 1.327 2.096 1.858 1.343 0.987 2.036
0.5 2.001 2.001 2.001 1.991 1.926 1.599 1.312 2.064 1.857 1.389 0.999 2.035

Empirical standard error

0.1 0.029 0.028 0.040 0.029 0.032 0.609 0.216 0.056 0.035 0.751 0.216 0.069
0.3 0.035 0.030 0.030 0.032 0.036 0.554 0.211 0.045 0.038 0.730 0.219 0.058
0.5 0.031 0.027 0.026 0.029 0.035 0.543 0.223 0.051 0.039 0.712 0.210 0.052

Average of estimated standard errors

0.1 0.014 0.021 0.030 0.015 0.022 0.040 0.058 0.051 0.027 0.037 0.057 0.053
0.3 0.014 0.020 0.026 0.014 0.022 0.035 0.057 0.041 0.027 0.035 0.056 0.052
0.5 0.014 0.018 0.023 0.014 0.022 0.034 0.057 0.049 0.026 0.034 0.056 0.051

Average of simulated standard errors

0.1 — — — 0.015 — — — 0.050 — — — 0.068
0.3 — — — 0.014 — — — 0.041 — — — 0.052
0.5 — — — 0.014 — — — 0.049 — — — 0.051

τG1 : values of the range parameter following exponential correlation in G1(si).
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Table 5.2: Simulation results using different combinations of range parameters and sample
sizes. Reported numbers are averaged over 1000 simulations with measurement error
variance 0.5.

Range* Sample size 250 Sample Size 100
(τG1) OLS LME GAM Proposed OLS LME GAM Proposed

Estimated coefficient

0.1 1.860 1.511 0.976 1.952 1.859 1.831 1.037 1.947
0.3 1.861 1.495 0.975 1.951 1.859 1.824 1.045 1.948
0.5 1.860 1.522 0.980 1.950 1.860 1.831 1.036 1.949

Empirical standard error

0.1 0.045 0.536 0.217 0.046 0.066 0.088 0.344 0.069
0.3 0.047 0.541 0.207 0.048 0.067 0.099 0.349 0.072
0.5 0.046 0.530 0.209 0.046 0.066 0.095 0.342 0.068

Average of estimated standard errors

0.1 0.038 0.051 0.083 0.046 0.061 0.064 0.132 0.099
0.3 0.038 0.051 0.081 0.045 0.060 0.064 0.130 0.099
0.5 0.037 0.050 0.081 0.045 0.060 0.063 0.130 0.098

Average of simulated standard errors

0.1 — — — 0.046 — — — 0.101
0.3 — — — 0.046 — — — 0.101
0.5 — — — 0.045 — — — 0.099

τG1 : values of the range parameter following exponential correlation in G1(si).

proposed methods is robust for the selection of number of knots for covariates models.

5.4 Analysis of Ischemic Heart Disease Data

We applied our proposed methodology to re-analyse data on Ischemic Heart Disease

(IHD). One of the key objectives of the analysis is to assess the relationship between

IHD rates and area level measures of socio-economic status. These data were collected

from all hospitals in New South Wales, Australia between July 1, 1994 to June 30, 2002.

A detailed description of the data has been given elsewhere (Burden et al., 2005).

Briefly, patients who were admitted to the hospitals via the emergency room and

discharged with IHD were defined as acute IHD cases. Data also includes patient age,

gender and geographic location reported via postcode of residence. Data from 579

postcodes were included in the analysis. IHD event data were linked with the Census

data which contains age and gender-specific population counts. SEIFA (Socio-Economic

Indexes For Areas) scores and centroid co-ordinates (latitude and longitude) for each

postcode were obtained from Australian Bureau of Statistics. We calculated age-sex

adjusted standardized incidence ratios (SIR) by dividing the observed number of IHD
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Table 5.3: Analysis of Ischemic Heart Disease Data in NSW, Australia under different
specification of measurement error.

Methods Estimates for SEIFA
model based simulated

β̂ se(β̂) se(β̂)
Ordinary Least Squares -0.062 0.014 —
Generalized additive model -0.145 0.014 —

Proposed semiparametric approach -0.273 0.045 0.045

Huque et al. (2014) approach
Method I: Method of Moments -0.377 0.041 —
Method II: Transformation of covariate -0.278 0.015 —

cases by the age-sex adjusted expected number of IHD cases (Breslow & Day, 1987).

The results of our analysis are given in Table 5.3. The naive analysis ignoring spatial

correlation, suggests a significant protective effect associated with higher SEIFA values

(β̂SEIFA=-0.062, SE=0.014). Our proposed semi-parametric approach that account for

measurement error in the covariates result in an estimated slope parameter β1 of -0.273

with measurement error variance estimated as 0.52. We choose 145 knots to represent

the spatial correlation in the outcome model and 180 knots to represent the covariate

model. The model and simulation based standard errors were estimated as 0.045 and

0.045, respectively. Thus, accounting for the measurement error in the covariate reflects

a high magnitude of protective effect of higher SEIFA scores on IHD rates, compared

with naive analysis.

5.5 Discussion

In this chapter, we develop a semi-parametric framework to obtain a consistent estimate

of the true regression coefficients when covariates are measured with error in spatial

regression modeling settings. Asymptotic theory establishes that our approach provides

consistent, asymptotically normal estimates for the regression coefficient. The theory

yields both model based and simulation based standard error estimates. Our empirical

simulation results confirm that ignoring measurement error and conducting naive

analysis using both generalized additive model and linear mixed model attenuates the

estimated regression coefficient towards the null hypothesis of no effect. Our results also
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confirm the results of Huque et al. (2014) that the degree of measurement error bias

depends on the assumed correlation structure. It is interesting that the bias appears to

be least with OLS. This is likely because the covariate spatial structure and residual

spatial structure compete to explain the variability in the response (Waller & Gotway,

2004). Our proposed semiparameteric bias correction method performs very well and

provides comparable estimates of the regression parameters to the parametric methods

described by Huque et al. (2014) when applied to Ischemic Heart Disease (IHD) data.

Our approach is computationally efficient and stable because it involves direct estimation

using least squares and can be implemented using standard nonlinear least squares

software.

Although Huque et al. (2014) and Li et al. (2009) reported similar results for the bias

associated with covariate measurement error in spatial regression settings, their

approaches requires correct specification of the true covariate measurement error

variance. In addition, Huque et al. (2014) reported under estimation of standard error

when measurement error variances are estimated from the data. In contrast, our

approach is robust because it neither assumes that the covariate measurement error is

known nor depends on any particular kind of spatial correlation structure. Our method

is analogous to the popular regression calibration method where we estimate the true

underlying covariate following smoothing assumption and replace the error prone

covariate with this estimate in the outcome model.

Measurement error theory makes it very clear that without some kind of information

regarding the magnitude of measurement error, models will not be identifiable. Broadly

speaking there are two possibilities: (i) measurement error variance is known or can be

estimated using some form of validation data (ii) assumptions are made regarding the

nature of the measurement error process. By assuming that the true unobserved

covariate is smooth, our paper is using the second approach. Because our approach is

assumption based and not an empirical measurement error adjustment, our solution will

not be robust to this particular assumption. Nevertheless, because we use a

semi-parametric approach to quantifying the spatial correlation in our regression model,

our approach should be more robust than parametric alternatives, such as those

proposed by Huque et al. (2014). In practice, there will often be situations where it

makes sense that spatially-defined covariates are smooth. Air pollution epidemiology
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might be a good example. In general, however, we recommend that our proposed method

be used in the spirit of sensitivity analysis to assess the impact of measurement error.

One of the additional assumptions required by our approach is that the basis functions

for the covariate and the spatial residual term are unequal. In practice, this can be

achieved through ensuring more knots for the basis function representing covariate than

the spatial residuals. This ensures estimation of variability in covariate in a smaller scale

than the residual error. In many spatial epidemiology contexts, measurement error

becomes an increasing concern at small scales because of limitations in measurement

resources. As a result, the covariate measurement bias reduction relies in estimating

variability in covariate at scale smaller than the residual error (Paciorek, 2010).

In our simulation, we have considered only a single covariate measured with error in a

spatial linear mixed model with Gaussian error. It would be of interest to explore the

effect of covariate measurement error in the presence of multiple covariates and also

omitted covariates. Future work should also consider extensions of our formulation to

the setting of spatial generalized linear mixed model with non-Gaussian outcomes. One

can also consider a Bayesian approach that may relax the smooth covariate assumption.

However such an exploration is beyond the scope of the present thesis. We further note

that although our approach improved the estimation of standard error compare to

Huque et al. (2014) approach further improvement may be obtained using

block-bootstrap type estimation techniques or higher order asymptotic. Future study

need to be done in this regard.

Our heart disease example demonstrated a substantial increase in the rates of IHD as the

level of SEIFA measured at the postcode level decreased, with the magnitude of the

effect increasing after adjustment for measurement error. Our results are consistent with

broader literature suggesting a relationship between low socio-economic status and

adverse health outcomes (see systematic review by Pickett and Pearl 2001).

Because the SEIFA Index is measured at a group level, it is tempting to think that

Berkson measurement error theory should be in operation. However, this argument

doesn’t apply since we are considering measurement error in a group level covariate

applied at a group level analysis. It is also important to note that our results can only be
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interpreted at a group level. Interpretation at the individual level may result in

ecological bias (Sheppard, 2003). While it might be ideal to use individual level data, in

many research areas, group-level data are the only available source for analysis. Air

pollution epidemiology provides a classic example, because individual measurements of

air pollution studies are rarely collected, instead, they are estimated based on

neighborhood monitoring and other sources (Sheppard et al., 2012). Consequently, air

pollution exposures are typically measured with error.

In spatial data settings, for example, in environmental epidemiology, with the increasing

popularity of the semi parametric/multilevel models to account for the observed data

correlations, it is important that practitioners be aware of the consequences of

measurement error. Furthermore, it is useful to quantify its potential effect on the

estimating exposure-outcome relationship. The approach presented in this paper

provides one way of achieving this.
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Appendix 5A

Estimation of θ̂2 and its asymptotic distribution

We assume that the smoothing parameters are small relative to the sample size, i.e.,

n1/2δj → 0 for j = 1, 2. From (5.4) we estimate θ2 by minimizing the penalized sum of

squares J(θ2) = n−1
∑n

i=1{Wi −BT
2 (Si)θ2}2 + δ2θ

T
2 D2θ2. We have

∂J(θ2)

∂θ2
= 0

⇒ 2n−1∑n
i=1{Wi −BT

2 (Si)θ2}B2(Si) + 2δ2D2θ2 = 0

⇒ n−1∑n
i=1B2(Si)Wi − {n−1∑n

i=1B2(Si)B
T
2 (Si)− δ2D2}θ2 = 0

⇒ n−1∑n
i=1B2(Si)Wi − Λ−1

n2 θ2 = 0

⇒ θ̂2 = Λn2n
−1∑n

i=1B2(Si)Wi.

Now, the asymptotics of θ̂2 can be given by

n1/2(θ̂2 − θ2) = n1/2(Λn2n
−1∑n

i=1B2(Si)Wi − θ2)

= n1/2(Λn2n
−1∑n

i=1B2(Si)[B
T
2 (Si)θ2 + Ui]− θ2)

= n1/2Λn2(n−1∑n
i=1B2(Si)B

T
2 (Si)− Λ−1

n2 )θ2

+Λn2n
−1/2∑n

i=1B2(Si)Ui

= Λn2n
−1/2∑n

i=1B2(Si)Ui + op(1).

Thus,

(θ̂2 − θ2) = n−1Λn2
∑n

i=1B2(Si)Ui + op(n
−1/2). (5.15)

This is because as, n1/2δj → 0, then

n−1∑n
i=1B2(Si)B

T
2 (Si)− Λ−1

n2 = δ2D2 = op(n
−1/2). (5.16)
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Estimation of θ̂1

From (5.3), we estimate β1 and θ1 by minimizing the penalized sum of squares

J(β, θ1) = n−1
∑n

i=1{Yi −BT
2 (Si)θ2β1 −BT

1 (Si)θ1}2 + δ1θ
T
1 D1θ1. That is,

∂J(β, θ1)

∂β1
= 0

⇒ 2n−1∑n
i=1{Yi −B

T
2 (Si)θ̂2β1 −BT

1 (Si)θ1}BT
2 (Si)θ̂2 = 0

⇒ n−1∑n
i=1{B

T
2 (Si)θ̂2Yi − θ̂2B

T
2 (Si)B

T
2 (Si)θ̂2β1 − θ̂2B

T
2 (Si)B

T
1 (Si)θ1} = 0

⇒ n−1∑n
i=1{B

T
2 (Si)θ̂2Yi − θ̂2B

T
2 (Si)B

T
2 (Si)θ̂2β1 − θ̂2B

T
2 (Si)B

T
1 (Si)θ1} = 0,

and

∂J(β, θ1)

∂θ1
= 0

⇒ 2n−1∑n
i=1{Yi −B

T
2 (Si)θ̂2β1 −BT

1 (Si)θ1}B1(Si) + 2δ1D1θ1 = 0

⇒ n−1∑n
i=1{B1(Si)Yi −B1(Si)B

T
2 (Si)θ̂2β1 −B1(Si)B

T
1 (Si)θ1}+ δ1D1θ1 = 0

⇒ n−1∑n
i=1B1(Si)Yi − n−1∑n

i=1B1(Si)B
T
2 (Si)θ̂2β1 −

(n−1∑n
i=1B1(Si)B

T
1 (Si)− δ1D1)θ1 = 0

⇒ n−1∑n
i=1B1(Si)Yi − n−1∑n

i=1B1(Si)B
T
2 (Si)θ̂2β1 − Λ−1

n1 θ1 = 0

⇒ n−1{
∑n

i=1B1(Si)Yi − n−1∑n
i=1B1(Si)B

T
2 (Si)θ̂2β1 − Λ−1

n1 θ1} = 0.

This leads to the estimating equations

0 = n−1∑n
i=1

 B1(S1)Yi

BT
2 (Si)θ̂2Yi


−n−1∑n

i=1

 Λ−1
n1 B1(Si)B

T
2 (Si)θ̂2

BT
1 (Si)B

T
2 (Si)θ̂2 θ̂T

2 B
T
2 (Si)B

T
2 (Si)θ̂2


θ1

β1

 .

Writing Ĝ2(Si) = BT
2 (Si)θ̂2, we see that the estimating equations are

0 =
∑n

i=1{B1(Si)Yi − Λ−1
n1 θ̂1 −B1(Si)Ĝ2(Si)β̂1}; (5.17)

0 =
∑n

i=1Ĝ2(Si){Yi −BT
1 (Si)θ̂1 − Ĝ2(Si)β̂1}. (5.18)
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Now from (5.17) we see that

θ̂1 = Vn −Rnθ̂2β̂1,

where,

Vn = Λn1n
−1∑n

i=1B1(Si)Yi,

Rn = Λn1n
−1∑n

i=1B1(Si)B
T
2 (Si).

Estimation of β̂1

Substituting the value of θ̂1 in (5.18) we have

0 =
∑n

i=1Ĝ2(Si){Yi −BT
1 (Si)Vn +BT

1 (Si)Rnθ̂2β̂1 − Ĝ2(Si)β̂1}.

From this,

β̂1 =
n−1

∑n
i=1Ĝ2(Si){Yi −BT

1 (Si)Vn}
n−1

∑n
i=1Ĝ2(Si){Ĝ2(Si)−BT

1 (Si)Rnθ̂2}
. (5.19)

The numerator of (5.19) is

n−1∑n
i=1Ĝ2(Si){Yi −BT

1 (Si)Vn}

= n−1∑n
i=1YiB

T
2 (Si)θ̂2 − n−1∑n

i=1θ̂
T
2 B2(Si)B

T
1 (Si)Vn

= n−1∑n
i=1YiB

T
2 (Si)θ̂2 − n−1∑n

i=1θ̂
T
2 {B1(Si)B

T
2 (Si)}TVn

= n−1∑n
i=1YiB

T
2 (Si)θ̂2 − θ̂T

2 R
T
nΛ−1

n1 Vn

= n−1∑n
i=1YiB

T
2 (Si)θ̂2 − V T

n Λ−1
n1Rnθ̂2

= n−1∑n
i=1

{
YiB

T
2 (Si)− V T

n Λ−1
n1Rn

}
θ̂2

= n−1∑n
i=1Yi{B

T
2 (Si)−BT

1 (Si)Rn}θ̂2.
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The denominator of (5.19) is

n−1∑n
i=1Ĝ2(Si){Ĝ2(Si)−BT

1 (Si)Rnθ̂2

= θ̂T
2 n
−1∑n

i=1B2(Si){BT
2 (Si)−BT

1 (Si)Rn}θ̂2

= θ̂T
2 {n−1∑n

i=1B2(Si)B
T
2 (Si)− n−1∑n

i=1B2(Si)B
T
1 (Si)Rn}θ̂2

= θ̂T
2 (Tn −RT

nΛ−1
n1Rn)θ̂2.

where, Tn = n−1
∑n

i=1B2(Si)B
T
2 (Si) (say).

Hence,

β̂1 =
n−1

∑n
i=1Yi{BT

2 (Si)−BT
1 (Si)Rn}θ̂2

θ̂T
2 (Tn −RT

nΛ−1
n1Rn)θ̂2

.

Proof of Theorem 1

To ease exposition, let us define the following expressions:

An = n−1
∑n

i=1{G2(Si)β1 +G1(Si)}{B2(Si)−RT
nB1(Si)}T;

Cn = Tn −RT
nΛ−1

n1Rn;

Dni = {B2(Si)−RT
nB1(Si)}Tθ2;

Fni = θT
2 CnΛn2B2(Si) +BT

2 (Si)Λn2Cnθ2;

Gni = Dni/θT
2 Cnθ2;

Hni = AnΛn2B2(Si)/θ
T
2 Cnθ2 −Anθ2Fni/(θT

2 Cnθ2)2.

(5.20)

Consider that the Si’s are fixed and known and recall that, Yi = G2(Si)β1 +G1(Si) + εi.

Substituting the expression for Yi into the numerator of (5.19) and simplifying using the
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expression from (5.20), we have

n−1∑n
i=1Yi{B

T
2 (Si)−BT

1 (Si)Rn}θ̂2

= n−1∑n
i=1(BT

2 (Si)θ2β1 +BT
1 (Si)θ1 + εi){BT

2 (Si)−BT
1 (Si)Rn}θ̂2

= n−1∑n
i=1(BT

2 (Si)θ2β1 +BT
1 (Si)θ1){BT

2 (Si)−BT
1 (Si)Rn}θ̂2 +

n−1∑n
i=1εi{B

T
2 (Si)−BT

1 (Si)Rn}θ̂2

= Anθ̂2 + n−1∑n
i=1Dniεi

= Anθ2 +An(θ̂2 − θ2) + n−1∑n
i=1Dniεi.

Applying (5.15) to the above equation, we have

Anθ2 + n−1∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}+ op(n

−1/2).

Again, the denominator of (5.19) is

θ̂T
2 (Tn −RT

nΛ−1
n1Rn)θ̂2 = θ̂T

2 Cnθ̂2.

Now applying (5.15), the denominator becomes,

(θ2 + n−1∑n
i=1Λn2B2(Si)Ui) + op(n

−1/2)TCn(θ2 + n−1∑n
i=1Λn2B2(Si)Ui) + op(n

−1/2)

= θT
2 Cnθ2 + n−1∑n

i=1θ
T
2 CnΛn2B2(Si)Ui + n−1∑n

i=1U
T
i B2(Si)

TΛn2Cnθ2 +

(n−1∑n
i=1Λn2B2(Si)Ui)

T(n−1∑n
i=1Λn2B2(Si)Ui) + op(n

−1/2)

= θT
2 Cnθ2 + n−1∑n

i=1FniUi + op(n
−1/2).

Then, by a Taylor series expansion,

β̂1 =
Anθ2 + n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT
2 Cnθ2 + n−1

∑n
i=1FniUi

+ op(n
−1/2)

=

{
Anθ2

θT
2 Cnθ2

+
n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT
2 Cnθ2

}{
1 +

∑n
i=1FniUi
θT

2 Cnθ2

}−1

+ op(n
−1/2)

=
Anθ2

θT
2 Cnθ2

+
n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT
2 Cnθ2

− Anθ2

(θT
2 Cnθ2)2

n−1∑n
i=1FniUi + op(n

−1/2).

Thus

β̂1 −
Anθ2

θT
2 Cnθ2

= n−1∑n
i=1(Gniεi +HniUi) + op(n

−1/2).
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Now considering the fact from equation (5.16) that

n−1
∑n

i=1B2(Si)B
T
2 (Si) = Λ−1

n2 + o(n−1/2) and using this in the expression for Anθ2, we

have

Anθ2 = n−1∑n
i=1β1θ

T
2 B2(Si){BT

2 (Si)−BT
1 (Si)Rn}θ2

+θT
1 n
−1∑n

i=1B1(Si){BT
2 (Si)−BT

1 (Si)Rn}θ2

= β1θ
T
2 Cnθ2 + θT

1 {Λ−1
n1 − n

−1∑n
i=1B1(Si)B

T
1 (Si)}Rnθ2

= β1θ
T
2 Cnθ2 + op(n

−1/2).

Therefore,

Anθ2

θT
2 Cnθ2

= β1 + op(n
−1/2).

Hence,

n1/2(β̂1 − β1) ∼ Normal(0, σ2),

where

σ2 = lim
n→∞

n−1∑n
i=1(σ2

εG2
ni + σ2

uH2
ni). (5.21)

Thus, β̂1 is a consistent estimate for β1.
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Derivation of smoothing matrix

From (5.3), we have

Ŷi = BT
2 (Si)θ̂2β̂1 +BT

1 (Si)θ̂1

= BT
2 (Si)θ̂2β̂1 +BT

1 (Si)[Vn −Rnθ̂2β̂1]

= [B2(Si)−BT
1 (Si)Rn]Tθ̂2β̂2 +BT

1 (Si)Vn

= [B2(Si)−BT
1 (Si)Rn]Tθ̂2

(
n−1

∑n
i=1Yi{BT

2 (Si)−BT
1 (Si)Rn}θ̂2

θ̂T
2 Cnθ̂2

)
+BT

1 (Si)Λn1n
−1∑n

i=1B1(Si)Yi

=
Dnin

−1
∑n

i=1DniYi

θ̂T
2 Cnθ̂2

+BT
1 (Si)Λn1n

−1∑n
i=1B1(Si)Yi.

Similarly from (5.4), we have

Ŵi = BT
2 (Si)θ̂2

= BT
2 (Si)Λn2n

−1∑n
i=1B2(Si)Wi.
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Appendix Table 1

Table 5.4: Simulation results with varying number of knots (q2) for covariate model in

our proposed method. In each case, the number of knots for the residual model (q1) were

fixed at 125. Reported numbers are averaged over 1000 simulations. Data were simulated

with sample size 500, regression coefficient 2, measurement error variance 0.25 and varying

range parameters for spatial correlations.

Range* Number of knots for covariate model

(τG1) 130 140 170

Estimated coefficient

0.1 2.016 2.013 2.007

0.3 2.019 2.016 2.010

0.5 2.025 2.023 2.018

Empirical standard error

0.1 0.060 0.061 0.068

0.3 0.058 0.059 0.066

0.5 0.052 0.053 0.060

Average of estimated standard errors

0.1 0.048 0.048 0.049

0.3 0.047 0.047 0.047

0.5 0.045 0.045 0.046

Average of simulated standard errors

0.1 0.048 0.048 0.049

0.3 0.047 0.047 0.047

0.5 0.045 0.045 0.046

τG1 : values of the range parameter following

exponential correlation in G1(si).

135



R Code

Function for data generation

dataSimulation<-function(nsamp=500,b0=1,b1=2, sigma.Delta=0.25,
sigma.G=0.2,sigma.Y=0.5,range.par.Y=0.1)
{
# nsamp= Sample size for data generation.
# range.par.Y= Value of the range parameter for outcome variable.
# sigma.Delta= Measurement error variance.
# sigma.G=Variance for smooth spatial surface.
# sigma.Y=Residual error variance.
# b0=Intercept of the regression model.
# b1= Slope parameter for regression model.
# Load necessary R library
require(nlme)
# generate grid of nsamp points uniformly on square
s1 <- runif(nsamp)
s2 <- runif(nsamp)
spatDat <- data.frame(cbind(s1,s2))
#Covariance structure for Y following exponential correlation
cs1Exp.Y <- corExp(range.par.Y, form = ~ s1 + s2)
cs1Exp.Y <- Initialize(cs1Exp.Y, spatDat)
R.Y.matrix <- corMatrix(cs1Exp.Y)
# Get true inverse covariance matrices, square roots, eigenvalues,
# used to generate data and also to compute bias correction factors
eigen.decomp.corr.Y <- eigen(R.Y.matrix)
gamma.Y.mat <- cbind(eigen.decomp.corr.Y$vectors)
lambda.Y.vec <- eigen.decomp.corr.Y$val
decomp.Y <- gamma.Y.mat%*%diag(sqrt(lambda.Y.vec))%*%
t(gamma.Y.mat)
# generate true covariate X is is generated using a bivariate bump function
X1 <- 1/(1+s1) + 3*exp(-50*(s1-.3)^2) + 2*exp(-25*(s1-.7)^2)
X2 <- 1/(1+s2) + 3*exp(-50*(s2-.3)^2) + 2*exp(-25*(s2-.7)^2)
X <-X1*X2
# generate observed covariate measured with error
# Z ~ N (X, variance = sigma.Delta)
Z <- X + sqrt(sigma.Delta)*rnorm(nsamp)
# Generate smooth spatial surface
G1<-sqrt(sigma.G)*decomp.Y%*%rnorm(nsamp)
# generate outcome Y | X ~ N (b0 + b1 X+G1(si)+variance)
Y <- b0 + b1*X+G1+sqrt(sigma.Y)*rnorm(nsamp)
data<-as.data.frame(cbind(s1=s1,s2=s2,X=X,Z=Z,Y=as.vector(Y)))
data
}
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Necessary functions for implementing the proposed method

### Function for selecting knots in two dimensional space
defaultKnots2D <- function(x1,x2,num.knots)
{
require("cluster")
# Set default value for num.knots
if (missing(num.knots))
num.knots <- max(10,min(50,round(length(x1)/4)))
# Delete repeated values from x
X <- cbind(x1,x2)
dup.inds <- (1:nrow(X))[dup.matrix(X)==T]
if (length(dup.inds) > 0)
X <- X[-dup.inds,]
# Obtain and output knots chosen using
# coverage design principles
knots <- clara(X,num.knots)$medoids
return(knots)
}
### Function for penalty matrices using thin plate basis
# Set up thin plate spline generalised covariance function:
tps.cov <- function(r,m=2,d=1)
{
r <- as.matrix(r)
num.row <- nrow(r)
num.col <- ncol(r)
r <- as.vector(r)
nzi <- (1:length(r))[r!=0]
ans <- rep(0,length(r))
if ((d+1)%%2!=0)
ans[nzi] <- (abs(r[nzi]))^(2*m-d)*log(abs(r[nzi])) # d is even
else
ans[nzi] <- (abs(r[nzi]))^(2*m-d)
if (num.col>1) ans <- matrix(ans,num.row,num.col) # d is odd
return(ans)
}
# Set up function for matrix square-roots:
matrix.sqrt <- function(A)
{
sva <- svd(A)
if (min(sva$d)>=0)
Asqrt <- t(sva$v %*% (t(sva$u) * sqrt(sva$d)))
else
stop("Matrix square root is not defined")
return(Asqrt)
}
Ztps <- function(x,knots)
{
# Obtain matrix of inter-knot distances:
numKnots <- nrow(knots)
dist.mat <- matrix(0,numKnots,numKnots)
dist.mat[lower.tri(dist.mat)] <- dist(as.matrix(knots))
dist.mat <- dist.mat + t(dist.mat)
Omega <- tps.cov(dist.mat,d=2)
# Obtain preliminary Z matrix of knot to data covariances:
x.knot.diffs.1 <- outer(x[,1],knots[,1],"-")
x.knot.diffs.2 <- outer(x[,2],knots[,2],"-")
x.knot.dists <- sqrt(x.knot.diffs.1^2+x.knot.diffs.2^2)
prelim.Z <- tps.cov(x.knot.dists,m=2,d=2)
# Transform to canonical form:
sqrt.Omega <- matrix.sqrt(Omega)
Z <- t(solve(sqrt.Omega,t(prelim.Z)))
output<-list(basis=prelim.Z, penalty=Omega ,Z=Z)
return(output)
}
#Function for generalized cross validation for delta2
gcv.delta2<-function(nsamp,Z,B2,BTB.2, D2, delta.2)
{
Lambda.2.inv<-1/nsamp*BTB.2+delta.2*D2
eigen.decomp.Lambda.2 <- eigen(Lambda.2.inv)
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eigen.Lamdba.2.mat <- cbind(eigen.decomp.Lambda.2$vectors)
eigen.Lambda.2.vec <- eigen.decomp.Lambda.2$val
Lambda.2<-eigen.Lamdba.2.mat%*%diag(1/eigen.Lambda.2.vec)%*%
t(eigen.Lamdba.2.mat)
theta.2.Hat<-1/nsamp*Lambda.2%*%(t(B2)%*%Z)
RSS.delta2<-t(Z-B2%*%theta.2.Hat)%*%(Z-B2%*%theta.2.Hat)
smooth.delta2<-1/nsamp*B2%*%Lambda.2%*%t(B2)
gcv.delta2<-1/nsamp*
as.vector(RSS.delta2)/(1-1/nsamp*sum(diag(smooth.delta2)))^2
gcv.delta2
}
#Function for generalized cross validation for delta1
gcv.delta1<-function(nsamp,Y,Z,B1,B2,BTB.1,BTB.2,D1, D2, delta.2,delta.1)
{
Lambda.2.inv<-1/nsamp*BTB.2+delta.2*D2
eigen.decomp.Lambda.2 <- eigen(Lambda.2.inv)
eigen.Lamdba.2.mat <- cbind(eigen.decomp.Lambda.2$vectors)
eigen.Lambda.2.vec <- eigen.decomp.Lambda.2$val
Lambda.2<-eigen.Lamdba.2.mat%*%diag(1/eigen.Lambda.2.vec)%*%
t(eigen.Lamdba.2.mat)
theta.2.Hat<-1/nsamp*Lambda.2%*%(t(B2)%*%Z)
RSS.delta2<-t(Z-B2%*%theta.2.Hat)%*%(Z-B2%*%theta.2.Hat)
smooth.delta2<-1/nsamp*B2%*%Lambda.2%*%t(B2)
gcv.delta2<-1/nsamp*
as.vector(RSS.delta2)/(1-1/nsamp*sum(diag(smooth.delta2)))^2
Lambda.1.inv<-1/nsamp*BTB.1+delta.1*D1
eigen.decomp.Lambda.1 <- eigen(Lambda.1.inv)
eigen.Lamdba.1.mat <- cbind(eigen.decomp.Lambda.1$vectors)
eigen.Lambda.1.vec <- eigen.decomp.Lambda.1$val
Lambda.1<-eigen.Lamdba.1.mat%*%diag(1/eigen.Lambda.1.vec)%*%
t(eigen.Lamdba.1.mat)

### Generating the required components for equation (13)
Vn<-1/nsamp*Lambda.1%*%(t(B1)%*%Y)
Rn<-1/nsamp*Lambda.1%*%crossprod(B1,B2)
Tn<-1/nsamp*BTB.2
Cn<-(Tn-t(Rn)%*%Lambda.1.inv%*%Rn)
Dn<-(B2-B1%*%Rn)%*%theta.2.Hat
numerator<-1/nsamp*t(Y)%*%Dn
denominator<-t(theta.2.Hat)%*%Cn%*%theta.2.Hat
# Estimates of the regression parameter
b1.hat.basis<-numerator/denominator
theta.1.Hat<-Vn-Rn%*%theta.2.Hat*as.vector(b1.hat.basis)
RSS.Y<-
t(Y-B2%*%theta.2.Hat*as.vector(b1.hat.basis)-B1%*%theta.1.Hat)%*%
(Y-B2%*%theta.2.Hat*as.vector(b1.hat.basis)-B1%*%theta.1.Hat)
smooth.mat<-1/(nsamp*as.vector(denominator))*Dn%*%t(Dn)+
1/nsamp*(B1%*%Lambda.1%*%t(B1))
gcv.delta1<-as.vector(RSS.Y)/(1-1/nsamp*sum(diag(smooth.mat)))^2
gcv<-gcv.delta1
return(gcv)
}

Codes for Data analysis

# Set the number of knots
q1=125
q2=150
# Get the data
set.seed(123456)
data<-dataSimulation()
# Extract the coordinates (s1,s2), covariate Z and outcome Y
s1<-data$s1
s2<-data$s2
Z<-data$Z
Y<-data$Y
nsamp<-nrow(data)
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# Load relevant R library
require(cluster)
require(SemiPar)
# Section of knot locations
Knots1<-defaultKnots2D(s1,s2,q1)
Knots2<-defaultKnots2D(s1,s2,q2)

# Generating thin plate spline basis B1(.) & B2(.) with q1 and q2 knots
# respectively
B1<-cbind(rep(1,nsamp),s1,s2,Ztps(cbind(s1,s2),Knots1)$basis)
B2<-cbind(rep(1,nsamp),s1,s2,Ztps(cbind(s1,s2),Knots2)$basis)
### Generating penulty matrices
k1<-nrow(Knots1)+3
k2<-nrow(Knots2)+3
D1<-matrix(0,k1,k1)
D2<-matrix(0,k2,k2)
D1[4:k1,4:k1]<-Ztps(cbind(s1,s2),Knots1)$penalty
D2[4:k2,4:k2]<-Ztps(cbind(s1,s2),Knots2)$penalty
### Generating Lambda1 and Lamda2
BTB.1 <- crossprod(B1,B1)
BTB.2 <- crossprod(B2,B2)
# Estimating delta.2
delta.range<-seq(-11, 11, length.out =60)
V<-rep(0,60)
for (i in 1:60){
V[i]<-gcv.delta2(nsamp,Z,B2,BTB.2, D2,exp(delta.range[i]))}
index.delta2<-(1:60)[V==min(V)]
delta.2<-10^delta.range[index.delta2]
# Estimating delta.1
U<-rep(0,60)
for (i in 1:60){
U[i]<-gcv.delta1(nsamp,Y,Z,B1,B2,BTB.1,BTB.2,D1,D2,delta.2,
exp(delta.range[i]))}
index.delta1<-(1:60)[U==min(U)]
delta.1<-10^delta.range[index.delta1]
#Get lambda.1 using eigen value decomposition
Lambda.1.inv<-1/nsamp*BTB.1+delta.1*D1
eigen.decomp.Lambda.1 <- eigen(Lambda.1.inv)
eigen.Lamdba.1.mat <- cbind(eigen.decomp.Lambda.1$vectors)
eigen.Lambda.1.vec <- eigen.decomp.Lambda.1$val
Lambda.1<-eigen.Lamdba.1.mat%*%diag(1/eigen.Lambda.1.vec)%*%
t(eigen.Lamdba.1.mat)
#Get lambda.2 using eigen value decomposition
Lambda.2.inv<-1/nsamp*BTB.2+delta.2*D2
eigen.decomp.Lambda.2 <- eigen(Lambda.2.inv)
eigen.Lamdba.2.mat <- cbind(eigen.decomp.Lambda.2$vectors)
eigen.Lambda.2.vec <- eigen.decomp.Lambda.2$val
Lambda.2<-eigen.Lamdba.2.mat%*%diag(1/eigen.Lambda.2.vec)%*%
t(eigen.Lamdba.2.mat)

### Generating the required components for equation (13)
theta.2.Hat<-1/nsamp*Lambda.2%*%(t(B2)%*%Z)
Vn<-1/nsamp*Lambda.1%*%(t(B1)%*%Y)
Rn<-1/nsamp*Lambda.1%*%crossprod(B1,B2)
Tn<-1/nsamp*BTB.2
Cn<-(Tn-t(Rn)%*%Lambda.1.inv%*%Rn)
Dn<-(B2-B1%*%Rn)%*%theta.2.Hat
numerator<-1/nsamp*t(Y)%*%Dn
denominator<-t(theta.2.Hat)%*%Cn%*%theta.2.Hat
# Estimates of the regression parameter
b1.hat.basis<-numerator/denominator
# Estimates of the empirical variance for the beta estimates
theta.1.Hat<-Vn-Rn%*%theta.2.Hat*as.vector(b1.hat.basis)
RSS.Y<-
t(Y-B2%*%theta.2.Hat*as.vector(b1.hat.basis)-B1%*%theta.1.Hat)%*%
(Y-B2%*%theta.2.Hat*as.vector(b1.hat.basis)-B1%*%theta.1.Hat)
smooth.mat<-1/nsamp*(1/as.vector(denominator)*Dn%*%t(Dn)+
B1%*%Lambda.1%*%(t(B1)))
sigma.error.est<-as.vector(RSS.Y)/(nsamp-2*sum(diag(smooth.mat))+
sum(diag(crossprod(smooth.mat,smooth.mat))))
RSS.Z<-t(Z-B2%*%theta.2.Hat)%*%(Z-B2%*%theta.2.Hat)
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smooth.delta2<-1/nsamp*B2%*%Lambda.2%*%t(B2)
sigma.u.est<-as.vector(RSS.Z)/(nsamp-2*sum(diag(smooth.delta2))+
sum(diag(smooth.delta2%*%t(smooth.delta2))))

Gn<-Dn/(as.vector(denominator))
Fn<-2*B2%*%Lambda.2%*%Cn%*%theta.2.Hat
An<-(1/nsamp)*t(B2%*%theta.2.Hat*as.vector(b1.hat.basis)+
B1%*%theta.1.Hat)%*%(B2-B1%*%Rn)
Hn<-t(An%*%Lambda.2%*%t(B2)/as.vector(denominator))-
as.vector(An%*%theta.2.Hat)*Fn/(as.vector(denominator))^2
sigma.beta.est<-1/(nsamp^2)*(sigma.error.est*t(Gn)%*%Gn+
sigma.u.est*t(Hn)%*%Hn)

#Codes for the simulated standard error
nboot<-100
sim.b1.hat<-NULL
for (i in 1:nboot)
{
sim.sigma.Y<-rnorm(nsamp,mean=0,sd=sqrt(sigma.error.est))
sim.sigma.Delta<-rnorm(nsamp,mean=0,sd=sqrt(sigma.u.est))
sim.numerator<-An%*%theta.2.Hat+
1/nsamp*(An%*%Lambda.2%*%t(B2)%*%sim.sigma.Delta+
t(Dn)%*%sim.sigma.Y)
sim.denominator<-t(theta.2.Hat)%*%Cn%*%theta.2.Hat+
1/nsamp*(t(Fn)%*%sim.sigma.Delta)
sim.new.b1.hat<-sim.numerator/sim.denominator
sim.b1.hat<-rbind(sim.b1.hat, sim.new.b1.hat)
}
#Estimated regression coefficient
b1.hat<-b1.hat.basis
b1.hat
#Estimation of standard error
se.b1.hat<-sqrt(as.vector(sigma.beta.est))
se.b1.hat
#Estimation of simulated standard error
sim.se.b1.hat<-sqrt(apply(sim.b1.hat,2,var))
sim.se.b1.hat
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Chapter 6

Exposure enriched case-control

(EECC) design for the assessment

of gene-environment interaction

Summary

Genetic susceptibility and environmental exposure both play an important role in the

aetiology of many diseases. Case-control studies are often the first choice to explore the

joint influence of genetic and environmental factors on the risk of developing a rare

disease. In practice, however, such studies may have limited power, especially when

susceptibility genes are rare and exposure distributions are highly skewed. We propose a

variant of the classical case-control study, the exposure enriched case-control (EECC)

design, where not only cases, but also high (or low) exposed individuals are oversampled,

depending on the skewness of the exposure distribution. Of course, a traditional logistic

regression model is no longer valid and results in biased parameter estimation. We show

that addition of a simple covariate to the regression model removes this bias and yields

reliable estimates of main and interaction effects of interest. We also discuss optimal

The content of this chapter is published as: Huque, MH; Carroll, RJ; Diao N; Christiani DC; and Ryan
LM. (2016). Exposure Enriched Case-Control (EECC) Design for the Assessment of GeneEnvironment
Interaction. Genetic Epidemiology, doi: 10.1002/gepi.21986. This research was also presented at the
ENAR 2016 Spring Meeting, Austin, Texas, USA.
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design, showing that judicious oversampling of high/low exposed individuals can boost

study power considerably. We illustrate our results using data from a study involving

arsenic exposure and detoxification genes in Bangladesh.

6.1 Introduction

Many common diseases are now believed to be the result of interdependence between

genetic and environmental factors (Chatterjee & Carroll, 2005; Liu, Maity, Lin, Wright,

& Christiani, 2012; Mukherjee, Ahn, Gruber, Ghosh, & Chatterjee, 2010).

Gene-environment interaction refers to the setting where the effects of an environmental

exposure are enhanced in a particular genetic subgroup. Consequently, identification of

gene-environment (GE) interactions plays an important role in understanding the

aetiology of underlying diseases and hence, developing disease prevention and

intervention strategies. However, the classic case-control design can have limited power

for studying gene-environment interaction, especially in the case of rare genetic variants

and also when exposure distributions are skewed (Foppa & Spiegelman, 1997;

Garćıa-Closas & Lubin, 1999; Luan et al., 2001). To address this, various complex

sampling strategies have been proposed (see Thomas (2010) for a recent review). In one

of the first such approaches, White (1982) proposed a two stage design where exposure

(or an appropriate surrogate) is first measured in a large number of case and control

subjects (Stage I). At Stage II, detailed covariate information is obtained for a subset

from each strata defined by case/control and exposure status.

Breslow and Cain (1988) formalized and generalized White’s approach to a general

two-stage design with analysis proceeding via logistic regression applied to stage II data,

but including an offset terms that reflects the stage I sampling probabilities. Weinberg

and Wacholder (1990) suggest a slightly simpler approach to the analysis of two stage

designs based on a so-called pseudo-likelihood approach that condition on being sampled

in the second stage. Their method also requires inclusion of an offset reflecting sampling

probabilities into the logistic regression. While these approaches all provide consistent

estimate of main and interaction effects, they require knowledge of the screening variable

specific disease rates. In this paper, we propose an alternative approach that does not

require knowledge of these probabilities.
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Our work is motived by a study designed to explore the relationship between drinking

water arsenic levels, genetic polymorphisms and skin lesions in Pabna, Bangladesh

(Breton et al., 2007). Because the distribution of arsenic exposure generally high and

right skewed in Bangladesh (Ravenscroft, Burgess, Ahmed, Burren, & Perrin, 2005),

study investigators had over-sampled low exposed individuals (< 50 micro-grams per

liter) among controls. Consequently, traditional logistic analysis was no longer valid,

since the sampling mechanism has then violated the key assumption for a case-control

study that sampling should be independent of exposure status.

Our approach is designed for settings where interest lies in characterizing a dose response

relationship and associated interactions based on a continuous exposure. Our exposure

enriched case control (EECC) design over samples subjects based on case/control status,

as well as a categorical assessment of exposure (e.g. high versus low). We show that as

expected, selection of individuals based on high (or low) exposure results in biased

estimation of the regression coefficients when standard logistic regression is used.

However, we further show that valid statistical inference can be achieved simply by the

addition of a single covariate that reflects this exposure-related category. We illustrate

via computer simulations that judicious oversampling of individuals based on exposure

can significantly boost study power. We also investigate the relative importance of each

of the parameters that determine power for detecting interaction effects.

6.2 Methods

Suppose the probability of disease occurrence in the general population satisfies a logistic

regression model

logit[Pr(D = 1|E,G)] = β0 + βEE + βGG+ βGEEG, (6.1)

where D = 1 denotes the diseased and D = 0 the non-diseased state, E denotes the level

of a continuous environmental exposure, G is a binary indicator of genetic-susceptibility,

EG is the gene-environment interaction and where β0, βE , βG, βGE are the associated

regression coefficients. Genetic susceptibility is defined as the presence of one or more

gene mutations thought to be associated with the disease of interest. In practice, the
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susceptible group will generally correspond to those with the less common variant of the

allele of interest.

It is well known that while ordinary logistic regression analysis of case control study data

results in incorrect estimation of the intercept (β0), all other regression coefficients are

estimated correctly. This is due to the fact that instead of selecting a random sample

from the source population, a biased sample based on case control status was recruited.

There are many approaches to understanding why ordinary logistic regression works,

despite the fact that sampling is biased in the case control setting (Prentice & Pyke,

1979; Weinberg & Wacholder, 1990). We find it particularly useful to consider a

derivation based on Bayes rule (Hosmer, David, & Lemeshow, 2004). We use the same

principle to show that it is possible to boost study power to detect an interaction effect

by over-sampling not only cases, but also high (or low) exposed individuals. Similar

probabilistic logic was also used by Weinberg and Wacholder (1990).

Define ∆ as the sampling indicator with ∆ = 1 if the individual is selected into the study

sample and 0 otherwise. Also denote the probability of selecting an individual into the

sample who has disease status D, exposure level E and genetic characteristic G by

ρ(D,E,G) that is, ρ(D,E,G) = Pr(∆ = 1|D,E,G). Then some simple algebra and an

application of Bayes rule leads to the probability of being diseased conditional on

exposure, gene and being included in the study sample as (see technical Appendix 6A for

details)

logit[Pr(D = 1|E,G,∆ = 1)] = ln

{
ρ(D = 1, E,G)

ρ(D = 0, E,G)

}
+ β0 + βEE + βGG+ βGEGE.(6.2)

Note that the additional term in model (6.2), compared with model (6.1), is the log odds

of selection for cases versus controls, conditional on environmental exposure status and

genetic susceptibility. It is associated with the mechanism of recruitment of the study

sample, is within the control of investigators and is to be fixed as part of the design.

Depending on the recruitment of individuals in the sample, equation (6.2) leads to a

variety of familiar designs, including:

1. If the sampling probability ρ(D,E,G) is constant, i.e., a simple random sample of

subjects is chosen from the population then model (6.2) will estimate the true

population intercept, β0. This design is popularly known as the prospective cohort
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study (Prentice & Pyke, 1979).

2. If the sampling probability ρ(D,E,G) depends on the disease status, D but is

independent of genetic status G or environmental exposure E, i.e.,

ρ(D,E,G) = ρ(D), then the above model (6.2) represents ordinary case-control

design with the intercept of the model corresponding to

β∗0 = ln{ρ(D = 1)/ρ(D = 1)}+ β0. That is, the estimated intercept of the model

(6.2) will be incorrect without the knowledge of the disease prevalence. This result

explains the well-known fact that standard logistic regression applied to

case-control data yields valid estimates of all regression coefficients except the

intercept.

3. If the sampling probability ρ(D,E,G) depends on disease and level of exposure,

then its effect on equation (6.2) depends on the nature of the relationship. It is

Case (3) that we examine in more detail in this chapter.

Consider a situation where the selection of individuals depends on a certain cut-off value,

k, of the observed exposure, E, that characterizes the high or low exposure. Let p11 and

p10 denote the probability of selecting a case in the sample with high (that is, a subject

with D = 1 and E > k) and low (that is, a subject with D = 1 and E < k) exposure,

respectively. Similarly, let p01 and p00 denote the probability selecting a control subject

in the sample with high (that is, D = 0 and E > k) and low (that is, D = 0 and E < k)

exposure, respectively. If we only select low exposed individuals (or high exposed

individuals) in the sample. Then, since equation (6.1) holds in the population, we have a

logistic regression with different intercept for high and low exposed group, respectively.

Consequently, equation (6.2) can be re-expressed as

logit[Pr(D = 1|E,G,∆ = 1)] =

 ln(p11p01
) + β0 + βEE + βGG+ βGEGE ,E ≥ k

ln(p10p00
) + β0 + βEE + βGG+ βGEGE ,E < k

This means that the intercept in the model varies according to whether or not E ≥ k.

Thus we can succinctly write:

logit[Pr(D = 1|E,G,∆ = 1)] = β∗∗0 + λI[E ≥ k] + βEE + βGG+ βGEGE, (6.3)

where I[E ≥ k] is an indicator representing whether the environmental exposure E is
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above the exposure level k. The parameter β∗∗0 represents the intercept in the low

exposed group and can be expressed as a function of true intercept β0 and the log odds

of selection for cases versus controls in the low exposed group, i.e.,

β∗∗0 = ln(p11/p01) + β0. Similarly, λ represents difference between the log odds of the

selection probabilities of cases versus controls in the high versus the low exposed group,

i.e., λ = ln(p11/p01)− ln(p10/p00). As the cutoff is related to the exposure status,

ignoring the indicator variable is like having an omitted variable in the model. Hence,

both main effect and interaction will be biased.

Equation (6.3) suggests the simple approach of adding an indicator variable for high

versus low exposure into the logistic regression on case/control status. Hence,

prospective analysis (Prentice & Pyke, 1979) via logistic regression with the addition of

this covariate will yield consistent maximum likelihood estimation and inference of

regression coefficients associated with exposure, gene and interaction. For simplicity, we

have ignored confounder variables in model (6.2). Additional covariates can also be

included if desired. Throughout this paper, we assume that the sampling depends only

on the case-control status and environmental exposure, but is independent of genetic

susceptibility.

6.3 Simulation Study

In this section we discuss a simulation study designed to evaluate the finite sample

properties of the estimated parameters under the EECC design. We also explore power

properties of the proposed methods under various alternatives.

6.3.1 Data Generation

We generated a hypothetical population of one million subjects. A genetic susceptibility

covariate, G, was generated as a Bernoulli random variable with prevalence 0.2. The

environmental exposure, E, was generated as exponentially distributed random variable

with rate 1. The outcome data were generated using model (6.1) where parameters β0,

βE , βG and βGE were set to -4.60, 1.15, 0.8 and 0.406, respectively. The intercept
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parameter ensures the rare disease assumption with 1% disease prevalence in the control

population with non-susceptible gene. We defined high (or low) exposed individuals if its

exposure level was greater (or smaller) than an exposure level of 2 corresponding to

13.5% of the exposure data in the upper tail area. We then selected a total sample of

1100 observations from the above population equally stratified by exposure level and

case status. An equal number of high and low exposed subjects in the sample thus result

in oversampling from high exposed group.

6.3.2 Parameter Estimation

We estimated relevant parameters of our proposed method applying logistic regression

with an indicator variable (6.3) to the pooled data. We also compare these estimates

with naive analysis that ignores indicator variable. The sampling and estimation

procedure is repeated 1000 times.

6.3.3 Power Calculation

We use a simulation based technique to calculate power for testing H0 : βGE = 0 vs

HA : βGE 6= 0 via a standard Wald test (Cox & Hinkley, 1974). To estimate the power of

the test, we simulated data under the alternative hypothesis, HA and EECC design,

fitted model (6.3). Again, there were 1,000 simulated data sets. The calculated power is

the proportion of the 1000 replicates whose test statistics exceeds the relevant critical

value of 1.96 (at 5% level of significance). Though we use 5% level of significance, a

smaller level of significance can also be incorporated in testing the hypothesis. All

calculations were performed using R (R Core Team, 2013).

6.4 Simulation Results

We first show that ignoring the sampling scheme and performing standard logistic

regression results in biased estimation. We then show that the bias can be removed

through addition of an indicator variable, indicating high exposure, in the logistic
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Figure 6.1: Comparison of estimated coefficients obtained using usual logistic regression
ignoring sampling and EECC.

regression model (6.3). We later calculate power of our proposed method by varying

different parameters that govern the power to detect gene-environment interaction.

6.4.1 Estimation of Parameters

Figure 6.1 compares the distribution of the estimated regression coefficients using logistic

regression ignoring the over sampling of high exposed subjects (Figure 6.1a) and

accounting for high exposed subject in the sample (Figure 6.1b). In this case, data were

generated according to the EECC design and using the parameters values describe in

data generation section. The dotted lines indicate the true value of the corresponding

parameters. As the boxplots indicate, performing a standard logistic regression results in

incorrect estimates of all the parameters of the logistic regression model (Figure 6.1a).

However, adding an extra covariate indicating high exposure yields reliable estimates of

the true parameters (Figure 6.1b).

We also conducted additional simulations to exposure the nature of bias in estimated

regression coefficients when there is no interaction (γ = 0) or a negative interaction

(γ = −0.406) in the true model. The results are given in the Figure 6.2. The results are

quite similar to the results with positive interaction parameters, i. e., traditional analysis
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ignoring sampling provides biased estimates, however, analysis by adding an indicator

variable in the model provides reliable estimates of the true parameters.

We further conduct a simulation study similar to the data collection in our motivating

example where cases were randomly selected without stratification and low exposed

controls are oversampled. Specifically, we set a lower cut off value (k = 0.4) for

exponential exposure distribution, corresponding to 33% exposure information in the low

exposed group. We then sampled equal number of controls from high/low exposed group

based on above cut-off. All other parameters involved in this simulation were similar to

values presented in Figure 6.1. The results are given in Figure 6.3. The EECC design in

this case also provides reliable estimates of the true regression coefficients.

6.4.2 Estimation of Power

In this section we will compare power to detect gene environment interaction effect

employing EECC design and traditional case control design (sampling from case and

control population independent of exposure status). Given a particular value of the gene

environment interaction parameters under the alternative hypothesis, the power is a

function of the following parameters: the magnitude of the type I error (α), the sample

size (n), the gene frequency (PG), the exposure distribution (E), the control to case

ratio(rc), the ratio of high and low exposed sample(rH), and the cut-off, k above (or

below) which the exposure is considered to be high (or low). Therefore, we estimate

power by varying one of the aforementioned parameters, the remaining parameters were

held fixed. For all the power comparisons, unless stated otherwise the exposure

distribution is considered as exponential (rate=1) and distribution of gene prevalence is

considered as Binomial (PG = 0.2).

Relation between Power and Gene Frequency

Figure 6.4 illustrates the power comparison to detect the interaction parameter βGE

using traditional case control design and EECC design for different values of the

prevalence of genetic susceptibility, PG and sample size of 2000. As expected, power to
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Figure 6.2: Comparison of the estimated parameters for (a) Logistic regression analysis
ignoring sampling and (b) EECC design when true interaction parameters are 0 (upper
panel) and −0.406 (lower panel), respectively.
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Figure 6.3: Comparison of Estimated parameters for (a) Logistic regression analysis ig-
noring sampling and (b) EECC design when cases are randomly selected and controls are
selected by oversampling of low exposed subjects.

detect interaction parameter decreases with low gene prevalence. However, the EECC

design yields better power compare to traditional design for all cases with various

probability of gene susceptibilities (result not shown).

Relation between Power and Case-Control Ratio

In Figure 6.5, the power is shown as a function of control-case ratio (rC) for a given

number of cases using EECC design, see Figure 6.5(a), and using traditional case control

design; see Figure 6.5(b). Power increases as the number of controls increases for a fixed

number of cases in both the design. Similar to the classical case control studies (Taylor,

1986), most of the gain is evident if the control to case ratio is at most 4 in EECC

design. However, the EECC design outperforms the traditional case control design in

obtaining power to detect gene-environment interaction.

Relation between power and ratio of high and low exposed sample

In Figure 6.6, the power is shown as a function of high to low exposure ratio (rH) in the

sample with equal number of case and control. Sampling of more high exposed subjects
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Figure 6.4: Comparison of estimated power to detect gene-interaction effect obtained via
a traditional case-control design and EECC design for a sample size of 2000.

Figure 6.5: Power as a function of control-case ratio and sample sizes: (a) EECC design
(b) Traditional case control design.
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Figure 6.6: Power as a function of ratio of high and low exposed sample. Different values
of low exposed samples result in a different trajectory for power.

compared to low exposed subjects resulted in increased power for exponential (rate=1)

distribution. Most of the gain in terms of power is achieved if the ratio of high to low

exposed subjects is between 1 and 3.

Relation between Power and Asymmetry of the Exposure Distribution

In Table 6.1, we evaluate the estimated regression coefficients, their standard errors and

power for detecting the gene-environment interaction effect as a function of the

asymmetry of the exposure distribution and level of exposure cut off, k. Various values

of cut off were examined to ensure varying proportions (5% to 95%) of exposure

information lies above (or below) the cut off for EECC design, whereas, the samples for

the traditional case control design were selected independent of exposure status.

Specifically, we simulated exposure distribution following Beta(6, 2), Beta(6, 6) and

Beta(2, 6), where Beta(α, β) represents Beta distribution with shape parameters α and

β. Under the above specification the exposure distribution is either negatively skewed,

symmetric or positively skewed. The true parameter values used in this particular

simulation is given in the first row of the table. As expected, the power to detect a

significant interaction effect increases considerably with oversampling from the skewed

tail area of the exposure distribution. In the case of a symmetric exposure distribution,
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oversampling from lower tail areas boosts in power. The estimated regression coefficients

remain consistent to the true values. Furthermore, if the cut off for oversampling is

selected appropriately, there is a gain in efficiency for estimating gene and

gene-environment interaction effect. However, addition of an indicator variable related to

exposure status decrease efficiency for the continuous exposure effect.

Relation between Power and Exposure Distributions

To examine the performance of our proposed method with other exposure distribution,

we compared the performance of EECC design with traditional case control design for

various right tailed exposure distributions e.g., exponential (rate=1), Weibull

(shape=2.5,scale=1) and gamma (shape=3,rate=2). We select suitable cut off values so

that a 10% of the total exposure information lies above these cut off. The results are

given in the Table 6.2. For all the sample sizes and exposure distribution compared, the

EECC design resulted in higher power for detecting the interaction effect than the

traditional case-control study design.

Relation between Power/Probability of Type I Error with the Signs of

Interaction Parameter

We also estimate the power and probability of type I error in simulation studies

corresponding to the true interaction parameters −0.406 and 0, respectively with

exponential exposure distribution. The power to detect negative interaction parameter

remains similar to that of positive interaction parameters with the same cut off for

oversampling. This indicates that power doesnt depend on the sign of the interaction

parameters rather the skewness of the true exposure distribution. Moreover, type I error

probability corresponding to testing interaction parameter 0, for the EECC design

remained closed to 0.05 (results not shown in table).
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Table 6.1: Comparison of estimated regression coefficients and power for the asymmetry of the exposure distribution and varying cut offs with a
sample size of 1600.

Exposure % of expo- Traditional case-control design EECC
Distri- sure in the Cut βE(se) βG(se) βGE(se) Power βE(se) βG(se) βGE(se) Power
bution left tail off

True regression coefficient 1.15 0.8 1.5 1.15 0.8 1.5

Beta (6,2) 5% 0.48 1.167 (0.533) 0.830 (0.711) 1.480 (0.920) 0.372 1.132 (0.658) 0.793 (0.376) 1.153 (0.603) 0.729
(Left skewed) 10% 0.55 1.181 (0.687) 0.823 (0.465) 1.487 (0.708) 0.592

20% 0.63 1.175 (0.693) 0.803 (0.506) 1.511 (0.736) 0.503
30% 0.69 1.127 (0.783) 0.792 (0.593) 1.518 (0.829) 0.439
40% 0.73 1.164 (0.753) 0.825 (0.660) 1.476 (0.885) 0.406
60% 0.81 1.161 (0.793) 0.799 (0.763) 1.519 (0.974) 0.393
80% 0.88 1.133 (0.738) 0.784 (0.751) 1.527 (0.900) 0.380
90% 0.92 1.145 (0.719) 0.801 (0.730) 1.509 (0.857) 0.381
95% 0.95 1.128 (0.693) 0.774 (0.785) 1.543 (0.904) 0.410

Beta (6,6) 5% 0.27 1.178 (0.502) 0.823 (0.469) 1.474 (0.886) 0.363 1.182 (0.650) 0.799 (0.279) 1.516 (0.678) 0.595
(Symmetric) 10% 0.32 1.170 (0.679) 0.792 (0.337) 1.540 (0.762) 0.534

20% 0.38 1.167 (0.722) 0.796 (0.377) 1.527 (0.835) 0.450
30% 0.42 1.134 (0.705) 0.767 (0.405) 1.562 (0.845) 0.442
40% 0.46 1.183 (0.732) 0.814 (0.450) 1.488 (0.904) 0.375
60% 0.54 1.131 (0.739) 0.793 (0.470) 1.531 (0.868) 0.393
80% 0.62 1.160 (0.726) 0.801 (0.500) 1.510 (0.851) 0.430
90% 0.68 1.143 (0.716) 0.806 (0.495) 1.502 (0.792) 0.460
95% 0.73 1.162 (0.652) 0.833 (0.491) 1.459 (0.751) 0.499

Beta (2,6) 5% 1.156 (0.448) 0.802 (0.255) 1.531 (0.851) 0.433 1.162 (0.605) 0.800 (0.173) 1.532 (0.780) 0.498
10% 0.08 1.139 (0.640) 0.786 (0.193) 1.601 (0.838) 0.471

Right skewed 20% 0.12 1.149 (0.660) 0.800 (0.191) 1.512 (0.832) 0.428
30% 0.16 1.162 (0.685) 0.797 (0.235) 1.525 (0.908) 0.446
40% 0.19 1.181(0.670) 0.799 (0.228) 1.555 (0.836) 0.420
60% 0.27 1.152 (0.699) 0.786 (0.265) 1.562 (0.825) 0.467
80% 0.37 1.130 (0.692) 0.806 (0.284) 1.508 (0.744) 0.518
90% 0.45 1.147 (0.648) 0.800 (0.301) 1.519 (0.715) 0.619
95% 0.52 1.146 (0.593) 0.805 (0.290) 1.512 (0.626) 0.701
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Table 6.2: Comparison of estimated coefficients their standard errors, power of traditional case-control design vs modified case-control design for
various sample size and exposure distribution. The various cut off ensures 10% of the total exposure data lies above these cut offs.

Traditional case-control design EECC
Sample Exposure Cut- βE βG βGE Power βE(se) βG(se) βGE(se) Power
Size, n Distribution off se(βE) se(βG) se(βGE) se(βE) se(βG) se(βGE)

True regression coefficient 1.15 0.8 0.406 1.15 0.8 0.406

1600 Exp (1) 2.3 1.149 0.780 0.418 0.654 1.153 0.797 0.408 0.938
(0.072) (0.253) (0.181) (0.090) (0.241) (0.119)

Weibull 1.74 1.152 0.786 0.430 0.499 0.149 0.791 0.425 0.761
(1.5, 1) (0.099) (0.258) (0.220) (0.130) (0.279) (0.170)

Gamma 2.66 1.155 0.784 0.424 0.574 1.156 0.810 0.408 0.838
(3, 2) (0.079) (0.335) (0.198) (0.100) (0.332) (0.143)

1200 Exp (1) 2.3 1.156 0.781 0.427 0.530 1.158 0.794 0.412 0.861
(0.082) (0.291) (0.215) (0.097) (0.289) (0.141)

Weibull 1.74 1.155 0.769 0.437 0.405 1.156 0.792 0.415 0.620
(1.5,1) (0.120) (0.300) (0.254) (0.148) (0.311) (0.188)

Gamma 2.66 1.156 0.789 0.424 0.459 1.161 0.811 0.409 0.725
(3, 2) (0.097) (0.397) (0.233) (0.121) (0.371) (0.163)
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6.5 Application to the Arsenic Data from Bangladesh

We re-analyze data from a case-control study designed to evaluate the joint effect of

genetic polymorphisms and drinking water arsenic exposure on skin lesions (Breton et

al., 2007). These data were collected from 23 villages of the Pabna district in

Bangladesh, where a range of high and low well water arsenic levels were suspected due

to their proximity to the Ganges river. Therefore, to ensure a sufficient range of drinking

water arsenic exposure and to prevent over-matching on exposure, the study

investigators made sure that 80% of the controls were selected from communities having

suspected low exposed arsenic contamination (< 50µg/l). More detailed descriptions of

the data collection have been given elsewhere (Breton et al., 2007; McCarty et al., 2006).

Previously, analyzing these data, Breton et al. (2007), reported that the X-ray repair

cross complementing group 1 (XRCC1 Arg194Trp) polymorphism has a significant

interaction with toenail arsenic concentrations. We evaluate this relationship employing

our proposed method. We defined an indicator variable that indicates whether or not the

sample is obtained from high exposed communities (≥ 50µg/l). We assessed the

gene-environment interaction in a crude and adjusted logistic regression model, with the

latter accounting for the potential confounders such: age, sex, village, body mass index

(BMI), education, ever smoked status and ever chewed betel nuts status. These models

were then compared with crude and adjusted modified logistic regression model (6.3). Of

the 1800 participating cases and controls, 1756 (98%) were genotyped successfully for

XRCC1 Arg194Trp genotypes. Complete information on well water arsenic, toenail

arsenic, BMI, education, smoking and betel nut chewing was available for 1676 of these

participants. Crude and adjusted odds ratios along with 95% CI and p-values for both

the traditional case-control analysis as well as our EECC analysis are displayed in Table

6.3. The results are qualitatively similar in that we see a significant association between

arsenic exposure and skin lesions, as well as a significant gene-environment interaction.

Specifically, participants with the Trp/Arg genotype have a significantly stronger dose

response associated with arsenic exposure. However, the magnitudes of estimated effects

are different between the traditional and EECC analyses. Whereas the traditional

analysis suggested an adjusted odds ratio of 4.12 (95%CI : 3.17− 5.36), our EECC

analysis reduced the estimated dose response coefficient to 3.15 (95%CI : 2.37− 4.20).

The EECC analysis has much greater efficiency (smaller CI lengths) compare to
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Table 6.3: Comparison of estimated coefficients their standard errors, power of traditional case-control design vs modified case-control design for
various sample size and exposure distribution. The various cut off ensures 10% of the total exposure data lies above these cut offs.

Traditional case-control design EECC

Crude analysis Adjusted analysis Crude analysis Adjusted analysis

Exposure OR 95% CI P-value aOR 95% CI P-value OR 95% CI P-value aOR 95% CI P-value
log(Toenail) 4.01 (3.11-5.16) <0.001 4.12 (3.17-5.36) <0.001 3.10 (2.35-4.09) <0.001 3.15 (2.37-4.20) <0.001
XRCC1Arg194Trp
Arg/Arg Ref Ref Ref Ref
Trp/Arg 1.10 (0.80-1.51) 0.56 1.10 (0.80-1.51) 0.56 1.08 (0.79-1.48) 0.63 1.08 (0.79-1.47) 0.65
Trp/Trp 0.97 (0.33-2.86) 0.96 1.01 (0.34-2.99) 0.99 1.22 (0.44-3.35) 0.70 1.29 (0.46-3.61) 0.63
log(Toenail) * XRCC1Arg194Trp
lnTA*Trp/Arg 0.53 (0.31-0.91) 0.02 0.52 (0.31-0.90) 0.02 0.56 (0.33-0.94) 0.03 0.55 (0.33-0.94) 0.03
lnTA*Trp/Trp 0.37 (0.06-2.21) 0.28 0.35 (0.06-2.07) 0.25 0.28 (0.05-1.58) 0.15 0.26 (0.05-1.45) 0.12
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traditional design. The estimates for genetic effect and gene-environment interaction

effect are similar for the traditional and EECC design.

6.6 Discussion

In this paper, we have introduced the Exposure Enriched Case Control (EECC) study

which over-sampled subjects according to case/control status, as well as a categorization

of exposure (e.g. high versus low) into the study. We have shown via simulations that

the EECC can significantly boost the power to detect gene-environment interaction,

especially in the case of rare genetic variants and skewed exposure distributions. Stenzel

et al. (2015) also use the term Exposure Enriched and argue that oversampling high

exposure can boost the power to detect gene-environment interactions. However, they

analyzed the resulting data via ordinary logistic regression method and did not suggest

any analysis strategy to remove the biased induced by oversampling highly exposed

individuals. Our EECC method removes the bias induced by oversampling high exposed

individuals through the addition of a simple indicator covariate that reflects high versus

low exposure. Our approach assumes that case/control status will be modeled as a

function of a continuous exposure variable, genetic susceptibility and their interactions.

Our approach differs from other analysis methods for data collected via biased sampling

in that it does not require knowledge of the explicit sampling probabilities (Breslow &

Cain, 1988; Breslow & Chatterjee, 1999; Weinberg & Wacholder, 1990; White, 1982).

Our proposed EECC method has the advantage of simplicity since no specialized

software is required.

Although existing two stage case control designs (Breslow & Cain, 1988; Breslow &

Chatterjee, 1999) and their matched variant, counter matching (Andrieu et al., 2001),

are known to have higher power than traditional case control design, they can only be

used if surrogate information on gene, exposure or both is available. The efficiency

obtained from these two designs though similar, counter matching designs are complex

and require two specific and sensitive surrogates for the risk factor of interest. Our

EECC design is simpler and use similar underlying probability principle as

pseudo-likelihood analysis based on a two stage design, hence will results in similar

efficiency for an appropriate oversampling of high exposed individuals. Breslow and
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Chatterjee (1999) compared efficiency of two stage case control design with traditional

case control design using weighted likelihood, pseudo-likelihood and non-parametric

maximum likelihood approaches. They noted that pseudo-likelihood analysis provides

better results in a balanced two stage design (similar numbers of exposed and unexposed

individuals within case and control samples) but are generally worse than

non-parametric maximum likelihood approach. The estimation of the EECC design

using non-parametric maximum likelihood is beyond the scope of the present thesis.

Future research studies can be carried out in this regards. Other designs such as family

based designs (see Thomas 2010 for a recent review) are appealing in gene-environment

interaction studies. However, they generally have less power to test main effects, relative

to case-control studies using unrelated controls (Thomas, 2010) Moreover, they are very

sensitive to the independence assumptions of gene and environment effects (Albert et al.,

2001). The empirical comparison of the above designs with our proposed EECC design is

beyond the scope of the current paper. However, interested reader might consider recent

review (Thomas, 2010) for a detailed comparison among some of these methods.

While our paper has focussed primarily on introducing the EECC method, we have also

presented a re-analysis of data from a case-control study from Bangladesh, where low

exposed control subjects had been over-sampled (McCarty et al., 2006). They used

traditional logistic regression with a sensitivity analysis to explain the effect of this

biased sampling. However, the authors reported that they were not able to make a

succinct conclusion about the observed exposure-response relationship between arsenic

levels in tube-well drinking water and skin lesions, due to oversampling of controls from

the low exposed area. Our EECC approach rectifies the analysis with the addition of an

extra covariate indicating the oversampling rules in the model.

While our proposed EECC methodology has a number of appealing features, there are

some limitations that could be addressed in future studies. Our proposed EECC design

is currently allows only a binary cut off variable to represent oversampling from tail area.

However, in application more than one exposure levels in the tail area might be of

interest. Future work need to accommodate such extension. In environmental

epidemiology, exposure is often susceptible to measurement error (Huque et al., 2014). In

the case of exposure misclassification, it is well known that the estimates of the

regression coefficients will be attenuated (Stefanski & Carroll, 1985) and may distorts
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the power gain of exposure enriched design. Although various methods have been

proposed in the literature to correct the effect exposure measurement error in

gene-environment interaction studies (Lobach, Fan, & Carroll, 2010; Lobach, Mallick, &

Carroll, 2011; Spiegelman, Rosner, & Logan, 2000; Zhang, Mukherjee, Ghosh, Gruber, &

Moreno, 2008), however, further research is needed to evaluate and incorporate such

extension into our proposed EECC methodology.

Despite these potential limitations, our EECC design can be regarded as a simple

alternative to traditional two-stage designs. Furthermore the EECC methodology

enhances power to detect the joint influence of genetic and environment exposure for a

given sample size compare to traditional case-control studies. Therefore, it has a very

strong potential to be used in practice. This design also has potential to be used in

context of risk analysis where interest lies in quantifying dose response relationships

(Piegorsch, 2010).
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Appendix 6A

Let ∆ is the sampling indicator with ∆ = 1 if the individual is selected in the sample

and 0 if not selected and the probability of selecting an individual in the sample is

denoted by ρ(D,E,G) that is, ρ(D,E,G) = Pr(∆ = 1|D,E,G). Then following Bayes

rule (Hosmer et al., 2004) we have Pr(D = 1|E,G,∆ = 1) = Pr(D=1,∆=1|E,G)
Pr(∆=1|E,G) and

Pr(D = 0|E,G,∆ = 1) = Pr(D=0,∆=1|E,G)
Pr(∆=1|E,G) .

Therefore,

logit[Pr(D = 1|E,G,∆ = 1)] = ln

{
Pr(D = 1|E,G,∆ = 1)

Pr(D = 0|E,G,∆ = 1)

}
= ln

{
Pr(D = 1,∆ = 1|E,G)

Pr(D = 0,∆ = 1|E,G)

}
= ln

{
Pr(∆ = 1|D = 1, E,G)× Pr(D = 1|E,G)

Pr(∆ = 1|D = 0, E,G)× Pr(D = 0|E,G)

}
= ln

{
Pr(∆ = 1|D = 1, E,G)

Pr(∆ = 1|D = 0, E,G)

}
+ ln

{
Pr(D = 1|E,G)

Pr(D = 0|E,G)

}
= ln

{
Pr(∆ = 1|D = 1, E,G)

Pr(∆ = 1|D = 0, E,G)

}
+ β0 + βEE + βGG+ βGEEG

= ln

{
ρ(D = 1, E,G)

ρ(D = 0, E,G)

}
+ β0 + βEE + βGG+ βGEEG
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Chapter 7

Conclusion

This thesis has made several original contributions. The first contribution is the

extension of the Conditional Auto-Regressive (CAR) model to incorporate individual

level covariate data in spatial modeling. We have proposed both a linear and a

semiparametric adjustment of a continuous individual level covariate effect on outcome

of interest in Chapter 2 and 3, respectively. In both cases, we have shown that

parameter estimation can be carried out in a distributed computing framework, thus

achieving a helpful reduction in computational cost and memory requirements. These

contributions also provide a convenient way to extend recent developments in Big Data

for independent responses to spatially correlated response. However, the estimated

parameters of the CAR based ecological regression method strongly depends on the

assumed spatial correlation structure. We have shown that such sensitivity is especially

likely when the important ecological covariate is measured with error.

In Chapter 4, we have extended classical measurement error theory to show that the

amount of attenuation depends on the degree of spatial correlation in both the covariate

of interest as well as the assumed random error from the regression model. These results

explain why the results from spatial regression modeling are often so sensitive to the

assumed model error structure. Based on these results, we have proposed two different

strategies to obtain consistent estimates of the regression coefficients of interest in the

presence of covariate measurement error. These strategies include 1) post hoc

adjustment of the estimated regression coefficient via an estimate of the attenuation
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factor and 2) a linear transformation of the error prone covariates that can then be

analyzed to yield consistent results. We have found that both methods perform well,

though the second method tends to be less variable and hence preferable in practice. We

have presented formulas for the standard errors of the adjusted estimated regression

coefficients, though these do not fully account for the uncertainty associated with the

estimation of unknown parameters. In practice, a bootstrap procedure can be used to

obtain appropriate standard errors. However, this approach is fully parametric and the

standard error is underestimated in the case when measurement error variances are

estimated from the data.

In Chapter 5, we have developed a semi-parametric framework to obtain a consistent

estimate of the true regression coefficients when covariates are measured with error in

spatial regression modeling settings. Asymptotic theory establishes that our approach

provides consistent, asymptotically normal estimates for the regression coefficient. The

theory yields both model based and simulation based standard error estimates. Our

empirical simulation results confirm that ignoring measurement error and conducting

naive analysis using both generalized additive model and linear mixed model attenuates

the estimated regression coefficient towards the null hypothesis of no effect. These

results also confirm the result presented in the previous chapter that the degree of

measurement error bias depends on the assumed correlation structure. Our work on

measurement error in spatial linear regression model is an important addition in the

literature as methods to treat error in correlated covariates are lacking.

In the ecological studies group level exposure may not reflect each individual’s exposure

experience in the group. Case-control studies with detailed individual level exposure

information are often desired to support and test hypotheses generated from spatial

correlation studies. Recent exploration of the human genome presents new opportunities

to understand how genetic and environmental factors interplay to cause disease. The

statistical power to detect an interaction effect from a case control study, however, is

limited when exposure distribution is highly skewed and disease is rare.

In Chapter 6, we have proposed a variant of the classical case-control study, the exposure

enriched case-control (EECC) design, where not only cases, but also individuals with

high (or low) exposure are over-sampled, depending on the skewness of the exposure
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distribution. We show that judicious over-sampling of high/low exposed individuals can

boost study power considerably. Of course, a traditional logistic regression model is no

longer valid and results in biased estimates. We have shown that addition of a simple

covariate to the regression model removes this bias and yields reliable estimates of main

and interaction effects of interest.

We have studied a broad range of methodological issues in this thesis and provide some

solutions. However, there are a number of areas where future study would be useful. In

the Chapter 2 and 3, we assume individual outcome follows a Poisson distribution with

rare disease assumption. In many application, the disease may be binary, hence a

Bernoulli assumption for the individual level outcome might be appropriate, but the

group level outcome can be well approximated by the Poisson model (Guthrie et al.,

2002).

In our analysis of geographical variation of neutropenia admission rates, we modeled the

regional counts of neutropenia admission rates adjusting for various types of cancer in

multivariable models. However, it might be interesting to investigate neutropenia

admission rates in various different types of cancer on the same regional grid. Hence,

joint modeling (Held, Natário, Fenton, Rue, & Becker, 2005) or generalized multivariate

CAR (Jin, Banerjee, & Carlin, 2007) might be of interest. Future work can explore the

possibility of incorporating individual level covariates in these context.

In the Chapter 4 and 5, we have studied the consequences of measurement error in the

ecological covariates in a spatial linear regression framework. Future work is needed in

order to extend and generalize these approaches in the context of a generalized spatial

linear regression model. Moreover, we only studied measurement error biases in a single

ecological covariate. Future studies need to accommodate the consequence of

measurement error in spatial linear regression when there are are other

covariates/confounders in the model, that also may be measured with error. It might

also be interesting to study the consequence of measurement error in the individual level

covariate adjusted conditional auto-regressive model, where either or both individual and

group level covariates are susceptible to measurement error biases.

In Chapter 6, we have shown that judicious oversampling can boost study power and can
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provide unbiased estimates of regression parameters of the model. However, we didn’t

present a sample size calculation. Furthermore, EECC design currently allows only a

binary cut off variable to represent oversampling from the tail area. In application, more

than one exposure level in the tail area might be of interest. Further work need to

accommodate such an extension. In environmental epidemiology, exposures are often

susceptible to measurement error (Huque et al., 2014). In the case of exposure

misclassification, it is well known that the estimates of the regression coefficients will be

attenuated (Stefanski & Carroll, 1985) and may distort the power gain of exposure

enriched design. Although various methods have been proposed in the literature to

correct the effect of exposure measurement error in gene-environment interaction studies

(Lobach et al., 2010, 2011; Spiegelman et al., 2000; Zhang et al., 2008), further research

is needed to evaluate and incorporate such extension into our proposed EECC

methodology.

Our contributions in the methodological development of environmental epidemiology will

be a significant addition to the existing methodology. We believe our work in developing

effective algorithms for spatio-temporal modeling and research designs, and applying

these to real world cancer registry data has the potential for major real-world impact.
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