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Method to Decide a Multi-fault Rush Repair Robust Strategy in Power Distribution Networks
(Abstract—The multi-fault rush repair problem (MRRP) in power distribution networks is a discrete dynamic combinatorial problem with topology constraints and a series of uncertain factors in repairing process. This paper aims to obtain a robust repairing strategy by studying the uncertainty of fault repairing time in order to minimize the outage loss and total repairing time. To solve the above problem, sensitive faults will be considered to obtain the robust repairing. The robust repairing time model is proposed based on timed Petri Net model with inhibitor arcs, which is adopted to analyze the repairing process to obtain the impact factor of every fault in a power distribution network. To simulate the uncertainties of repairing process, a Latin hypercube sampling method combined with the simultaneous backward reduction algorithm is used to generate simulation scenarios. The continuous bacterial colony chemotaxis (BCC) optimization algorithm is revised to be applicable for integer variables so as to   find the optimal solution of each scenario in MRRP. Then the improved minimax regret criterion is applied to decide the final optimal robust repairing strategy. This approach is verified by the standard IEEE 33-bus system and a real-world power distribution network. Scenarios with deterministic and uncertain repairing time are discussed and the simulation results show the robustness and effectiveness of the approach.
Index Terms—MRRP, uncertainty, Petri Net, sensitive faults, bacterial colony chemotaxis, robust repairing strategy
1. Introduction
Power distribution network (PDN) is connected to end users directly, so its normal and economical operation is crucial to the entire power system [1]. In recent years, earthquakes, snowstorms, heavy rain and other natural disasters have brought great damages to the power distribution system. The failed power equipment, collapsed towers, and damaged substations have caused serious economic damage to the affected areas. Thus, it is very important to restore power supply of the outage zones quickly after any of such system failures. Due to the diversity of outage load at fault sites, the repairing personnel and resources may be insufficient to repair sites quickly, and also existing methodologies on fault restoration and reconstruction cannot fully meet the needs of MRRP. Therefore, it is necessary to propose an efficient multi-fault rush repairing strategy under limited repairing  resources.
There have been many studies on power system restoration and fault diagnosis, while studies on MRRP in power distribution systems are quite limited. The tactical model, short-term strategic model, and long-term strategic model of the repair-unit location problem are presented in [2], but the repairing strategy is not considered. Other existing studies on PDN multi-fault rush repair focus mainly on two types of problems: the allocation of fault tasks and the modeling of multi-fault rush repair. For the allocation of fault task problem, an optimization model with a single squad is established in [3], which cannot be applied to practical situations with  multiple squads. A multi-squad cooperation mechanism is given in [4], and a repairing scheduling multi-agent approach is proposed to archive an emergency repairing plan quickly. According to the characteristics of squads and faults, utility theory is introduced in [5] to achieve an efficient allocation of fault tasks. For the second problem on the modeling of multi-fault rush repair, a tie switch is taken as a virtual fault and a multi-fault rush repairing model is built in [6] and [7], which assume there are sufficient repairing personnel and resources, and assign fault tasks to each squad randomly. This approach increases significantly the solution searching range and thus computing time.    Sometimes it does not match well with the actual role of tie switches in PDN, and may not be able to repair all the faults. The MRRP is mainly solved by BCC optimization algorithm for its excellent performance [3-7]. 
Existing literatures generally propose the pre-fault repairing strategies based on deterministic fault repairing time. However, in an actual rush-repair the pre-fault repairing strategy is optimal only when the faults could be repaired at the expected time duration. When the actual repairing time is longer or shorter than expected, these repairing strategies will become worse or even unfeasible. Usually multiple squads will repair several faults at the same time. If the repairing time of any fault assigned to one squad is different to expected, the other squads’ process will be affected. For example, assume there are three squads repairing the faults at the same time, if the repairing time of the fault repaired by Squad 1 changes, then the power restoration process in the other two squads will be affected due to the topology constraints. Then the repairing strategies will become worse or even unfeasible, and the total outage loss and repairing time will be bigger. Therefore, this paper proposes a robust repairing strategy in the rush-repairing process which allows uncertainties on repairing time.
As multiple squads will repair several faults at the same time, repairing process is therefore a parallel discrete event, and the task allocations between faults and squad  make the strategy decision more complicated. Note that Petri net (PN) is an efficient modeling tool to describe and analyze discrete-event dynamic systems [8,9] and has the characteristics of parallel information processing and concurrent operating function [10], therefore, it is  widely used in power system study [11-17]. Considering the topology constraints in MRRP, a timed PN model with inhibitor arcs is adopted to represent the concurrent and parallel behavior of different squads in multiple error conditions of power distribution systems. Then the impact of each fault on the repairing process is analyzed with the aid of PN. 
It is important to note that MRRP is indeed a high dimensional nonlinear integer programming problem, and therefore it is very difficult to be solved by traditional gradient based algorithms. Therefore, new algorithms based on intelligent computing are applied to solve MRRP, and this paper focuses on the application of the Bacterial Colony Chemotaxis (BCC) optimization algorithm. .  The chemotaxis algorithm is initiated by Bremermann in 1974 [18]. Based on the results of Bremermann, Müller et al. [19] developed the bacteria chemotaxis (BC) optimization algorithm and applied it to the solution of inverse airfoil design in 2002. BC is a simple and robust algorithm. In 2005, Li et al. [20] developed Bacterial Colony Chemotaxis (BCC) optimization algorithm by introducing the bacteria colony to improve the basic BC algorithm, this BCC performs better than BC in terms of  convergence and computational speed. BCC algorithm is a type of intelligent optimization algorithm for continuous variables that has been widely used in nonlinear programming [21]. The convergence and comparison of BCC against other algorithms have been investigated by more complicated problems with various constraints [22,23,24],  and it can effectively to solve many complex and high-dimensional problems. It is also verified that BCC algorithm has better performance than non-dominated Sorting Genetic Algorithm (NSGA-II) and MOEA/D [23]. Thus, bacterial colony chemotaxis (BCC) optimization algorithm is implemented to solve the MRRP. However, the repairing process is discrete, thus this BCC is revised to cater for discrete scenarios (i.e. integer variables), and a discrete bacterial colony chemotaxis (DBCC) is proposed in this paper. 
Multiple scenario technique is an efficient way to represent uncertainties, and it has been used in unit commitment [25] and economic dispatch [26] in power systems. Scenario analysis  can be used to deal with robust optimization and it will guarantee the robustness of the solutions [27].  Latin hypercube sampling (LHS) [28,29,30] and the simultaneous backward method [26] are used for scenario generation in this paper. After generating the possible scenarios,   a final repairing strategy needs to be obtained in these scenarios by certain decision rule. Note that the minimax regret criterion is an alternative subjective decision rule in decision theory [31], it is less conservative and can guarantee the same robustness as the minimax criterion. However, every scenario has a probability of occurrence in the paper, which makes the minimax regret cannot be applied directly. Thus the minimax regret criterion is improved by adding probability distributions to the scenarios and then applied to  decide the optimal repairing strategy .
The remainder of the paper is organized as follows: In Section 2, the multi-fault rush repair problem is introduced. The robust fault repairing model and the applications of PN model in repairing process are discussed In Section 3. In Section 4, the scenario generation, DBCC algorithm and the improved minimax regret criterion to solve the problem are presented. The standard IEEE 33-bus system and a real-world power distribution network are studied to demonstrate the performance of the proposed approach in Section 5. Conclusions  are drawn in Section 6.
2. The multi-fault rush repair problem
The multi-fault rush repairing management system and the MRRP model are introduced in this section.
2.1 Multi-fault rush repairing management system
The framework of multi-fault rush repairing management system is shown in Fig.1. Repairing Control Headquarter (RCH) is responsible for leading and organizing the multi-fault rush repairing work when multi-fault happens in PDN.
When multi-fault happens, the management system  will work as follows: 

(1) RCH will send order to all centers for information collection. 
(2) Information Collection 

Data Collection Center (DCC) is mainly responsible for collecting data of fault information, outage load information and distributed generation (DG) information which will be sent to RCH. 
Weather Service Center (WSC) collects weather information of the future hours and sends it to RCH. 
Repairing Resources Center (RRC) is responsible for collecting the available repairing resources and sending it to RCH. 
Geographic Information Collection Center (GICC) is in charge of gathering road information in the fault region and sending information to RCH. 
Repairing Center (RC) sends the information of repairing squads to RCH. 
(3) Information processing
RCH will send the received information to Assessment Center (AC) and AC will analyze the outage load, influence of weather condition, repairing path, fault type, and fault repairing time. 
(4) Strategy generation
 After receiving the evaluation results from AC, RCH will calculate and then generate the fault task allocation, repairing resource allocation and repairing strategy. 
(5) Repairing work

Repairing strategy will be sent to RC. The repairing work will be carried out by RC and RC will report repairing progress to RCH in real time. Also the other centers will collect, analyze and send information to RCH in real-time. If new fault occurs or actual repairing process deviates from expected significantly, the multi-fault rush repairing management system will reanalyze and a new strategy will be regenerated.
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Fig.1 Framework of multi-fault rush repairing management system

2.2 The MRRP model
The framework of multi-fault rush repairing management system has been introduced,  then the corresponding mathematical model of MRRP needs to be described. The fault task allocation, repairing resource allocation and repairing strategy are calculated by RCH. The other centers are mainly in charge of intelligence collecting and assessment. So the mathematical model is mainly about RCH decision making. The MRRP model in power distribution network can be expressed as
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is the squad collection, 
[image: image11.wmf]n

 is the number of squads;
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is the active power of outage load caused by faults, 
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 represents the traveling time between faults and between faults and squads;
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is the collection of switch (contact and section switch), 
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is the collection of maximum power flow capacity limit of branches, 
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To achieve the repairing work, three steps should be implemented, namely, resource allocation (
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), fault allocation (
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) and repairing strategy (
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). They can be expressed as equations (2)~(4). 
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 are obtained, the repairing work can be identified and implemented. Equation (5) is the objective function which will minimize the outage loss and total repairing time. Equation (6) represents inequality constraints.
Generally, the load in PDN can be divided into three levels according to the level of urgency.  The first, second and third levels of loads are defined to be of the highest urgency, medium urgency and low urgency, respectively. The levels of urgency are determined by the characteristics of the loads. For example, hospitals have the highest urgency, schools have medium urgency, and domestic users have low urgency.

The multi-fault rush-repair needs to achieve the following three objectives: (1) restore loads of highest urgency in priority to reduce the outage loss; (2) complete the task as soon as possible; (3) ensure that the repairing process will be affected as little as possible when the repairing time changes.
2.2.1 Objective function
The function indicating the outage loss can be expressed as follows:


[image: image42.wmf]12

min()min()()

fXfXfX

b

=+

                     (7)

where 
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 is a weight factor. The repairing target is to restore the outage load, so the value of 
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where 
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2.2.2 Constraints
The constraints can be formulated as follows:
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The constraints listed above include radial network topology constraint (10), branch current capacity constraint (11), node voltage constraint (12), and repairing resource constraint (13).

In the above constraints, 
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fault has been repaired, the connection status between both sides of the fault will be changed by switch operation. Constraint (10) is to prevent ring network operating.
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, which is calculated by back/forward sweep method, U is node voltage in the repairing process, 
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 is the required resources when multiple faults occur.

2.2.3 Repairing Process

To illustrate the proposed method clearly, the flowchart of the multi-fault rush repairing process is shown in Fig. 2. This repairing process has the following steps.
 (1) Initialization. Input all required data, initial PDN topology, outage load information and fault information.

(2) Identification of repairable faults. Find possible faults that each squad can repair [5].

(3) Calculate deterministic strategy. Assume the expected repairing time is true and calculate the deterministic repairing strategy using DBCC.

(4) Obtain sensitive faults. Establish the fault repairing time model considering time uncertainties. PN model is applied to represent the concurrent and parallel behavior of repairing process. Then impact factor of all faults and sensitive faults will be obtained.

(5) Calculate robust strategy. After sensitive faults are obtained, scenarios are used to represent the uncertainty associated to fault repairing time. Scenario generation and scenario reduction are used to generate the simulation scenarios. Then DBCC and the improved minimax regret criterion are applied to decide the optimal robust repairing strategy.

(6) Implement the repairing tasks.

(7) End.
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Fig.2 Flowchart of the multi-fault rush repairing process
3. Petri net and robust fault repairing time model 
Multiple unexpected events may occur during the actual rush repair, which will result in uncertain fault repairing time.    The paper considers the time uncertainty model as follows [32]. Assume that each 
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 which is called fluctuant coefficient. Then equation (8) can be modified as follows
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In the actual repairing process, it is almost impossible to expect all faults are repaired in the boundary of the expected time. However, the repairing strategy will not change when a fault repairing time changes, therefore, the repairing strategy needs to be sufficiently robust in order to be optimal [33]. The number of the faults with fluctuating time and the range of repairing time will be controlled to coordinate the optimality and robustness of the solution.

3.1 The PN model
The MRRP in power distribution networks is a multi-objective dynamic combinatorial problem with topology constraints, and the repairing process is a parallel system completed by several squads. With these features, PN is a suitable and powerful modeling tool to describe the repairing process. 
A PN model with inhibitor arcs is defined as follows:
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Fig. 3 The model of PN

The timed PN model can be applied to model MRRP in the following way. 
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3.1.1 Translation from fault distribution network to Petri Net
The process to translate the fault distribution network into timed Petri Net can be described as follows. 

(1) Define the relationship between places and faults’ state.
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(2) Define the relationship between transitions and faults. 
In this step, the fault repairing time will be considered in the transitions. When the 
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(3) Define the relationship between inhibitor arcs and PDN.
 If Fault i and Fault j are in the same line in PDN and Fault i is nearer to the power source, Fault i should be repaired at first to guarantee repairing faults and restoring power supply quickly. In PN model, this relationship can be expressed by inhibitor arcs. Fault j is represented by 
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If Fault i and Fault j are not in the same line in PDN, then 
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(4) Define the weight of input and output arcs. The weight of arcs depends on the number of squads or 
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(5) Define the firing policies. When the fault has been repaired, the transition fires and the squads move to the next fault. The firing policies of transition 
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can be defined as follows.
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Fig.4 PN model with inhibitor arc and without inhibitor arc
3.1.2 Impact factor
When the expected repairing time of faults is determinate (
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 the obtained repairing strategy may not optimal. Corresponding to PN, the fired sequence of transitions will change. It can be clearly seen from the PN model whether the transitions can fire as usual. 
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3.2 Time model and sensitive fault
The impact factor (IF) 
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Now the control coefficient of the benchmark fault has been discussed, and control coefficients of other faults are discussed as follows.  These fluctuant coefficients depend on the benchmark fluctuant coefficient and they can be described as  
[image: image271.wmf]0,

jj

www

=

 
[image: image272.wmf](1,2,...,,)

jmji

=¹

.  If thisIF is smaller than 
[image: image273.wmf]i

h

, then fault 
[image: image274.wmf]j

 has less influence on the final strategy, so define 
[image: image275.wmf][0,0.5]

w

Î

 to guarantee the optimization. If the IF is bigger than 
[image: image276.wmf]i

h

, then fault 
[image: image277.wmf]j

has bigger influence on the final strategy, so define 
[image: image278.wmf][0.5,1]

w

Î

 to guarantee the robustness. We can adjust control coefficient 
[image: image279.wmf]j

w

¢

 from 0 to 
[image: image280.wmf]j

w

to cope with the changes in repairing time while coordinating the optimality and   robustness of the repairing strategy.
When the expected repairing time is known, we can obtain a deterministic strategy. If the repairing time of the 
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 fault changes, a new strategy will be obtained, then the 
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 fault will be called a sensitive fault.

Assuming that the number of sensitive faults is L, a relatively robust model will be built considering these faults and a final robust repairing strategy will be obtained to compensate the repairing time changes of the L sensitive faults.
4. Solutions
To solve MRRP with uncertain repairing time, scenarios are used to represent uncertainties, the discrete bacterial colony chemotaxis (DBCC) optimization algorithm is used to find the optimal solution in each scenario, and the improved minimax regret criterion is used as decision theory for final solution selection. 
4.1 Scenarios generation and scenario reduction

In this subsection, scenarios are used to represent the uncertainty associated with fault repairing time. Scenarios generation and scenario reduction are introduced.
4.1.1 Scenarios generation
Scenario generation techniques can be used to deal with robust optimization [27]. The sensitive faults and fluctuant coefficient are obtained in Section 3. The probability that the actual repairing time is closer to the expected repairing time is always bigger than those cases that the actual repairing time is far from the expected repairing time. In the actual repairing process, it is almost impossible that one fault is repaired exactly at the expected time. Thus it is assumed that the value of control coefficient 
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 is generated by LHS method, and one sample corresponds to one scenario. The procedure of LHS is described as follows:

Step 1: Determine the sample size H;

Step 2: Divide equally the interval 
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 into H subintervals;
Step 3: Produce the H L (L is the numbers of variables, or in other words, the number of sensitive faults) Latin hypercube matrix, of which every column is a random arrangement of a sequence of integers 1, 2, …, H; Each column of this matrix corresponds to a variable and each row corresponds to a sample. By this way H samples are generated;
4.1.2 Scenario reduction
To reduce computational complexity, scenarios with too much similarities with others or with very low probabilities will be removed by scenario-reduction techniques [26, 34]. As an effective algorithm, the simultaneous backward method [26] is implemented in the article. Denote the H scenarios by 
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(i = 1,…, H), and assume each 
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 has a probability of occurrence Pr(i) which is obtained by LHS. The desired size of scenarios is h. The scenario reduction algorithm consists of the following steps:
Step 1: Let S be the initial set of scenarios to be reduced and DS the set of scenarios to be deleted from S. DS is initially empty. Compute the distances of all scenario pairs:
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Step 2: For each scenario 
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 is the maximum allowable deviation of fault l , which increases during the scenario reduction procedure to ensure fake scenarios not be reduced.
Step 3: Calculate 
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Step 4: Delete Sd  from the initial set of S:
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Step 5: Repeat steps 2-4 until the desired size of the reduced scenario set is reached.
Step 6: Calculate the repairing strategy corresponding to each scenario by DBCC. The constraints include  (6)-(9) mentioned above.

4.2  Discrete bacterial colony chemotaxis optimization algorithm

The control variables in the MRRP order optimization is a sequence of discrete variables, while existing BCC algorithm is only applicable to optimization problems with continuous variables. Therefore, the following method is applied to discretize the BCC algorithm:
The bacteria dimension is taken to be 
[image: image302.wmf]n

 since there are 
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with values taken between 0~1 and calculate the initial position of bacteria by normalization technique as follows:
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Now sort 
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4.3  Improved minimax regret criterion
The scenarios and the corresponding repairing strategies have been obtained in the above subsections, now the minimax regret criterion will be adopted to determine the final optimal strategy. The minimax regret is defined as [31]
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where R is the set of scenarios with repairing time uncertainty, x is the repairing strategy, X is the set of feasible strategies, 
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 is the objective value of strategy x in scenario r, and 
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 is the minimum objective value in scenario r. The final strategy can be obtained by solving (21).
In this article, every scenario has a probability of occurrence. However, some scenarios have smaller probabilities, especially those in the boundary of the expected time, thus the objective function need to be revised to include these probabilities. Then equation (20) can be rewritten as 
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where 
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 is the probability of scenario r.
5. Simulation and results

In this section the results of two cases are analyzed to validate the optimality and robustness of the repairing strategy obtained in this paper. The scenario desired sample size optimization of the proposed approach is also investigated. The detailed simulation results and discussions are presented  below.

5.1 Results and analysis 
The simulation results of the two cases are shown in this subsection. The two cases consist of the standard IEEE 33-bus testing system and a real power distribution network of an anonymous county in northern China.

5.1.1 Case 1:Results of standard IEEE 33-bus testing system

In this subsection, results of the standard IEEE 33-bus testing system [5] are presented to analyze the robustness of the repairing strategy obtained in this paper. In the case study, ten faults are added to the system see Fig.5. In Fig.5, Bus 0 is the power node. Nodes 1~10 are faults; nodes 11~42 are load. Assume the power company has three repairing squads, which are denoted by a, b, c respectively.
5.1.1.1 Parameter setting
Set the bacterial population 
[image: image316.wmf]100
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 EMBED Equation.DSMT4  
. The initial precision is 2.0, the precision updated constant is 1.2, and the update interation is 5. The three level coefficients of outage load are 
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, respectively. The actual size of scenarios is 500 while the expected size of scenarios is 50 for the purpose of reduced computing complexity. The expected repairing time and fluctuant coefficient of the faults are shown in Table 1. They will change along with fault locations and system topology. The details of load levels are shown in Table 2. The experiment is simulated in MATLAB.
Table 1 
Expected repairing time and fluctuant coefficient

	Faults
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
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	5.30
	2.00
	4.65
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	4.40
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	4.50
	5.00
	4.30
	2.30
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	0.15
	0.15
	0.10
	0.30
	0.20
	0.20
	0.30
	0.30
	0.25
	0.25


Table 2
Details of load levels
	Load level
	Load node

	First
	11,13,16,30,32,33,40,41,42

	Second
	12,14,15,19,20,21,22,23,24,26,27,28,31,35,36,37,38,39

	Third
	17,18,25,29,34


Table 3
Repairable faults of squads

	Squad
	Fault node

	a
	1, 2, 4, 5, 8, 9, 10

	b
	1, 2, 3, 4, 5, 8, 9

	c
	2, 3, 4, 5, 8, 9, 10

	a, c
	6

	b, c
	7


Table 4
Repairing strategy and value of objective

	Squad
	Repairing strategy X
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According to the repairing squads’ capability vector and faults’ demand vector [5], Table 3 lists all the possible faults which can be repaired by the relevant squads. This table shows that Fault 6 must be repaired by Squads a and c., and  Fault 7 must be repaired by Squads b and c.

When the expected repairing time is deterministic, the final repairing strategy 
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, the outage loss and repairing time are shown in Table 4.
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Fig.5 The simplified figure of standard IEEE 33-bus system
5.1.1.2 Robust repairing strategy
After solving the optimization problem (5) with deterministic repairing time, then a deterministic solution for repairing process is obtained. The corresponding repairing process and repairing time of the PN are illustrated in Fig.6. The numbers in the brackets beside the places represent fault nodes. “Final” in the bracket beside P11 represents the repairing process is completed. The red arc represents the sequence of Squad a, the pink arc represents the sequence of Squad b, the blue arc represents the sequence of Squad c, the green arc represents cooperation of Squads a and c, and the orange arc represents cooperation of Squads b and c. Therefore, the procedure of squads’ working processes can be graphically shown by PN.
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     Fig.6 Repairing process  
From the expected fluctuation coefficient, the sensitive faults can be obtained, which are Faults 1, 3, 8 and 9. Furthermore, the fluctuant direction is obtained at the same time: Faults 1 and 9 have negative directions, while Faults 3 and 8 have positive directions, where a negative direction means that the repair of the fault is completed ahead of schedule, and a positive direction means that the repair of the fault is delayed.
When the actual repairing time of a sensitive fault deviates from the calculated repairing time, the new robust repairing strategy 
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 can be obtained by DBCC and the improved minimax regret criterion, which is described in Table 5. Obviously, 
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 in Table 5 is different from 
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Table 5 
Robust repairing strategy with time changes

	Squad
	Robust repairing strategy 
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5.1.1.3 Optimality and robustness analysis
To verify the performance of the optimality and robust repairing strategy 
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, the objective value 
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 and total repairing time 
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 of the deterministic repairing strategy 
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 and 
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 are compared as follows.
1) Deterministic scenario

Assume every fault can be repaired within the expected time, then the objective value and total repairing time of 
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 are 3788401 and 24.95h respectively. Compared to deterministic repairing strategy
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, the robust solution 
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 makes the objective value 174899 bigger and the repairing time 3.50h more. The strategy 
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 considers the actual deviations of repairing time, so it is not as optimal as deterministic solution if uncertainty is ignored. However, under the uncertain repairing time, the strategy 
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 would produce more outage loss and longer repairing time, and it is even unfeasible sometimes.
2) Uncertain scenario

In this subsection, the objective values of the two strategies will be compared in uncertain scenarios. Risk evaluation is used to evaluate the economic losses of the strategies. The risk value is defined to be the difference of the objective values between uncertain and deterministic scenarios. It is obvious that the smaller the risk value is, the stronger the ability to resist the time uncertainty will be. The comparison process is given as follows:
Step 1 Generate 10000 scenarios randomly within the range of the repairing time to obtain uncertain scenarios. 
Step 2 Check the feasibility of the two strategies in every scenario, and then calculate the objective values and total repairing time if they are feasible.
Step 3 Calculate the risk values of the two strategies for feasible scenarios.

The feasibility of strategies, the maximum, minimum and average values of the objective value and total repairing time are calculated, and the results are shown in Table 6.
Table 6 shows that the feasible rate, which is the ratio of the number of feasible scenarios to the number of total scenarios,  of strategy 
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 is much higher than that of strategy 
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. The feasible rate of strategy X is only 49.86%, while it is 98.28% for strategy 
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. The robust strategy has high feasibility when repairing time deviates from deterministic repairing time, while the deterministic strategy is often not feasible. This is to say, the robust strategy possesses high ability to resist time uncertainties.
It is also observed that the maximum, minimum and average values of the objective value of strategy 
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 are much less than those of strategy 
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. The average objective value of strategy 
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is larger than the value in robust scenario strategy 
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. That is, the performance of the robust strategy in terms of objective value is better than the deterministic strategy. For risk value, the performance of the robust strategy is also much better than that of the deterministic strategy.

Table 6
Repairing strategy and value of objective
	
	Strategy 
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	Strategy 
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	Feasibility
	Number of feasible scenarios 
	4986
	9824

	
	Feasible rate(%)
	49.86
	98.28

	Objective
value
	Maximum
	4076932
	3821315

	
	Minimum
	3447568
	2709907

	
	Average
	3681197
	3151230

	Risk value
	Maximum
	463430
	32914

	
	Minimum
	-165933
	-1078494

	
	Average
	67695
	-637171

	Total repairing 

time(h)
	Maximum
	29.97
	30.31

	
	Minimum
	26.94
	24.03

	
	Average
	27.20
	26.52


The total repairing time of strategy 
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 is similar to strategy 
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. The maximum repairing time of 
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 is a little bigger than that of 
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, and the minimum and average of 
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 is a litter smaller than those of 
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. Therefore, the robust strategy is more desirable than the deterministic strategy when  uncertainty in repairing time presents.
5.1.2 Case 2: Results on a real power distribution network 
In this subsection, results on the power distribution network of an anonymous county from northern China are shown to analyze the optimality and robustness of the repairing strategy obtained in this paper. Three DGs and eleven faults are randomly added into the system, which is shown in Fig. 8. The system contains five distribution lines, five normally open contact switches and fifteen normally closed section switches. The expected repairing time and fluctuant coefficient of the faults are shown in Table 7, these parameters are location specific, and will change according to fault locations and network topology. The details of load levels are shown in Table 8. The other parameter settings are the same as Case 1.
Table 7
Expected repairing time and fluctuant coefficient

	Faults
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
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Fig.8 The Real Power Distribution Network with DGs
Table 8
Details of Load Levels
	Load Level
	Load Node

	first
	101,105,107,109,110,115,119,128,132,135,137,138,140,144,145,148,150,153,154,155,156,161,169,170,172,177,183,184,192,193,195

	second 
	102,103,106,108,111,113,114,116,118,120,121,122,125,126,130,131,133,134,139,142,146,147,151,152,158,159,162,163,164,166,167,

168,171,174,176,179,180,181,185,186,187,188,189,190,191,194,197,198

	third
	104,112,117,123,124,127,129,136,141,143,149,157,160,165,173,175,178,182,196


Table 9 shows possible faults which can be repaired by the corresponding squads.  It can be seen that Fault 50 only can be repaired by Squad b and Fault 48 can only be repaired by Squad c.

The final repairing strategy 
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 with deterministic repairing time and the robust repairing strategy 
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 obtained by the new approach are shown in Table 10. The robustness analysis is also carried out similar to Case 1. The feasibility of strategies, and the maximum, minimum and average values of the objective value and total repairing time are calculated, and the results are shown in Table 11.
Table 9
Repairable faults of squads

	Squad
	Fault node

	a
	43,45,46,47,49,51,52

	b
	44,45,46,50,52,53

	c
	43,44,47,48,49,51,53


Table 10
Repairing strategy with different approach
	
	a
	b
	c

	Strategy 
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	Strategy 
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Contents in the parentheses in Table 10 denote the switch operation after each fault has been repaired. C means “close” and O means “open”. For example, 49(C12,16; O11) means that when Fault 49 has been repaired switches 12 and 16 will be closed and switch 11 will be open. In this case, faults are isolated and the operations of DGs are adjusted so that outage loss is minimized.   

Table 10 shows that the robust repairing strategy 
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 is obviously different from strategy 
[image: image377.wmf]X

. The fault allocation, repairing sequence and switch operation are different between the two strategies. If the expected repairing time is deterministic, the objective value 
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 and total repairing time 
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 of strategy 
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 are 12501000 and 34.25h, respectively while those of strategy
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 are 12654200 and 36.45h. It can be seen that strategy 
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 is worse when the faults can be repaired during the expected repairing time.
Table 11
Repairing strategy and value of objective

	
	Strategy 
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	Strategy 
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	Feasibility
	Number of feasible scenarios 
	4472
	9798

	
	Feasible rate(%)
	44.72
	97.98

	Objective

value
	Maximum
	13126300
	12835600

	
	Minimum
	12408540
	12241300

	
	Average
	12593220
	12384650

	Risk value
	Maximum
	2653310
	202830

	
	Minimum
	-1742530
	-9128750

	
	Average
	585790
	-3824350

	Total repairing 

time(h)
	Maximum
	41.45
	40.45

	
	Minimum
	33.08
	32.15

	
	Average
	36.30
	35.20


However, the performance of the feasibility, objective value, risk value and total repairing time of strategy 
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 are better than that of strategy 
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as shown in Table 11. Especially, the feasible rate and risk value of strategy 
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 have much better performance than those of strategy 
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. It also indicates that the robust strategy has high ability to resist the time uncertainty and has less risk values when repairing time changes.
According to the simulation results of the two cases it can be known that the proposed approach can effectively deal with time uncertainty in repairing process. The proposed approach can generate robust strategies with less outage loss, low risk values and extremely high feasible rate.
5.2 Optimal desired sample size of scenarios

To reduce computational complexity while at the same time maintain sufficient feasible rates, it is worthy to investigate the optimal scenario desired sample size which is the least possible sample size to keep a very high feasible rate. Eight batches of scenarios are studied to illustrate the impact of desired sample size to feasible rates. These are scenarios with 10, 20, 30, 50, 80, 100, 150 and 200 samples, respectively. After the robust strategy is obtained under each sample size, 10000 scenarios are generated randomly to compare the feasibility of the strategies. The results are shown in Table 12.
Table 12 indicates that when the size is 10, the strategy has the same feasible rate as the deterministic strategy, which implies that this desired sample size is not sufficiently large to be statistically meaningful. When the sample size is 20, the feasible rate is better than the deterministic strategy. However, the feasible rates of the strategies in the cases of size 20 and 30 are much smaller than that of size 50. When the size is greater than 50, the strategy remains the same feasible rate. This is to say, the least optimal desired sample size is 50 which is big enough to be statistically meaningful. This optimal desired sample size will change when the system topology and the information of the faults change.
Table 12

Impacts of different desired sample size to feasible rate
	Number of desired samples
	Strategy
	Feasible rate(%)

	10
	a         
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b         
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c         
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	49.86

	20
	a         
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b         
[image: image393.wmf]8127

®®®


c         
[image: image394.wmf]4367

®®®


	52.35

	30
	a         
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	70.26

	50
	a         
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	98.28

	80
	Same as above
	Same as above

	100
	Same as above
	Same as above

	150
	Same as above
	Same as above

	200
	Same as above
	Same as above


5.3  Discussions
Up to now, the previous method to solve MRRP is mainly BCC optimization algorithm because of its excellent performance. However, the previous investigation on MRRP does not consider the uncertainty of fault repairing time.  The method used in [5] has been applied to obtain the repairing strategies in Case 1 and Case 2. It found that these repairing strategies are the same as the deterministic repairing strategy 
[image: image401.wmf]X

 in this paper. So the comparison results between the proposed approach with the previous method are exactly the same as the comparison of the deterministic and uncertain cases  in Subsections 5.1.1 and 5.1.2. Therefore,  the comparison results between previous BCC method and our new approach can be  summarized as follow. When the actual fault repairing time equals exactly the same to the expected repairing time, the strategy obtained by the previous method will be optimal and better than that robust strategy obtained in this paper. However, since uncertainties always exist in actual repairing work, the strategy obtained by the proposed approach has better performance than that obtained by the previous method in terms of feasibility, objective value and risk value as analyzed in Subsections 5.1.1 and 5.1.2. Therefore, the newly proposed approach is much better than the previous method for practical scenarios when uncertainty presents.
This proposed approach also has limitations. With the increase of the number of buses in the PDN, or there are more faults happen in the network, the solving process of the proposed method turns to be more complex and more computing time is needed. For instance, more sensitive faults and scenarios need to be considered in order to obtain the robust strategy, therefore, computational complexity will increase rapidly.  A detailed complexity analysis will be left for our future work.
6. Conclusion

In the article, repairing time uncertainty is studied in the multi-fault rush repairing process. The robust fault repairing time model is obtained, and the timed Petri net model with inhibitor arcs is adopted to analyze the discrete, dynamic and parallel repairing process to obtain the impact factor of each fault. LHS and the simultaneous backward method are used to generate reduced scenarios of repairing time uncertainties. BCC optimization algorithm is revised to be applicable to integer variables so as to find the optimal strategy in each scenario. Then the improved minimax regret criterion is further applied to identify the final optimal robust repairing strategy. At last, the reduced scenario sample size on feasible rates of robust repairing strategy is investigated. The simulation results on two case studies verify the robustness and effectiveness of the approach. When repairing time changes, the robust strategy can obtain shorter total repairing time and less economic loss than those of the strategy obtained in deterministic scenario. 
Future work of this research will focus on more uncertain factors in the multi-fault rush repairing process, and a stochastic Petri nets will be employed to represent uncertainties and different failure probability distributions. The rush repair work combined with power system restoration will also be investigated in the future. 
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