UNIVERSITY OF TECHNOLOGY, SYDNEY
Faculty of Engineering and Information Technology

AIR POLLUTANT EMISSION AND PREDICTION WITH EXTENDED KALMAN FILTERING

by

Santanu Metia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia
2016
Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis.

Santanu Metia
ABSTRACT

AIR POLLUTANT EMISSION AND PREDICTION WITH EXTENDED KALMAN FILTERING

by

Santanu Metia

The major sources of air pollutants in New South Wales (NSW is a state on the east coast of Australia) are anthropogenic emissions and biomass burning emissions. Anthropogenic mega city emissions play an important role with respect to air pollution: a relatively large amount of pollutants is released in a small area potentially leading to nonlinear chemical processes, which may further aggravate air pollution. Highly populated cities in NSW are mainly located in coastal areas while bush fires on the other hand usually take place in the inland of NSW, a region with a relatively low population density.

In order to compare the impact of these two emission sources in NSW on a climatological time scale, The Air Pollution Model with Chemical Transport Model (TAPM-CTM) is used, which receives meteorological data, terrain data and emission data together with chemical processes. These emission data are generated by the Emissions Data Management System (EDMS v2.0). To improve the air quality modelling performance, uncertainties in association with the estimation must be handled properly. For this, the Extended Kalman Filter (EKF) together with its modifications are studied throughout this thesis.

The motivation for this work stems from recently growing research interest in environmental modelling and control. The challenging inverse problem has intrigued researchers in atmospheric science as well as sustainable engineering and technology. This work addresses the problem in air pollutant estimation by proposing the use of TAPM-CTM coupled with the Extended Fractional Kalman Filter (EFKF)
based on a Matérn covariance function to enhance the estimation accuracy and to smoothen the spatiotemporal correlation. Here, concentrations of air pollutants such as nitrogen oxide (NO), nitrogen dioxide (NO$_2$) and ozone (O$_3$) are predicted by TAPM-CTM in the airshed of Sydney and surrounding areas. For improvement of the emission inventory, and hence, the air quality prediction, the fractional order of the EFKF is tuned by using a Genetic Algorithm (GA).

Nonlinearity is further treated by using unscented transforms in the prediction step with an Unscented Kalman Filter (UKF) to preserve the stochastic characteristics of the nonlinear environmental system involved. A comparison with the conventional EKF and the UKF is included to indicate the UKF viability in air pollutant estimation.

Academic contributions of this thesis include investigation, application, design, and implementation of the EFKF and UKF for air pollution estimation. Discussions on theoretical aspects and implementation details of these extended Kalman filters for environmental data are included together with some recommendations.
Acknowledgements

This thesis could not have been completed without the enormous support of numerous people. I would like to acknowledge all those people who have made contribution to the completion of my thesis.

First of all, I would like to express my sincere thanks to my PhD supervisor, Associate Professor Quang Phuc Ha, for his guidance, advice, encouragement and support in the course of my doctoral work. Regular meetings in his research group and friendly discussions during lunch time at the University of Technology, Sydney (UTS) helped me reaffirm my research direction.

I would like to thank Dr. Hiep Duc who is an atmospheric scientist from the Office of Environment and Heritage (OEH) New South Wales. I appreciate his assistance with air quality modelling related theories and his valuable comments with respect to this research project. Also thanks to division team members of OEH for guiding and providing me with the valuable knowledge of air quality measurement methodologies from collection of the research dataset.

I would like to take this opportunity to gratefully acknowledge UTS International Research (IRS) scholarship for the university fees support of my research and study at UTS.

I am very grateful to Mr. William John Hazelton for proofreading my thesis and providing me with useful comments and suggestions.

Most importantly, my thesis could not have been completed without the encouragement and support from my family. I would like to dedicate my thesis to my parents,
Mr. Niranjan Kumar Metia and Mrs. Sindhu Sudha Metia, my in-laws, Mr. Satya Narayan Mallick and Mrs. Gouri Mallick and my beloved wife Rita, who have been a source of care, love, support and strength during my graduate study.

I would like to extend my thanks and best wishes to all students in my research group, especially to Seth Daniel Oduro for some technical as well as moral support during my study. Their presence and companionship made my study experience most comfortable and enjoyable.

Santanu Metia
Sydney, Australia, 2016.
List of Publications

Contents

Certificate ii
Abstract iii
Acknowledgments v
List of Publications vii
List of Figures xvi
List of Tables xxii
Notation xxiv

1 Introduction 1
 1.1 Background 1
 1.2 Research objectives 4
 1.3 Thesis organisation 5

2 Literature Survey 7
 2.1 Introduction 7
 2.2 Air Quality Assessment 7
 2.2.1 Air Quality monitoring 7
 2.2.2 Air Quality Index 8
 2.2.3 Air Quality Index Values 10
 2.3 Air Pollution 13
 2.3.1 Ozone-\textsubscript{O}\textsubscript{3} 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Nitrogen Dioxide-NO₂</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Visibility-NEPH</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Carbon Monoxide-CO</td>
<td>15</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Sulphur Dioxide-SO₂</td>
<td>15</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Particulate Matter-PM₁₀, PM₂.₅</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Monitoring Instruments</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Air Emissions Inventory</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Air Emissions Estimation</td>
<td>20</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Emissions Data Management System</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Priority Air Pollutants</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Natural and Human-made Anthropogenic Sources in the GMR</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2.3</td>
<td>Natural and Human-made Anthropogenic Sources in the Sydney</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Overview of TAPM-CTM</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1</td>
<td>The Development of TAPM-CTM</td>
<td>27</td>
</tr>
<tr>
<td>2.6.2</td>
<td>TAPM-CTM modelling</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Review of Inverse Techniques in Air Quality</td>
<td>30</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Spatio-Temporal Modelling</td>
<td>31</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Context and Motivation</td>
<td>32</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Types of Kalman Filtering</td>
<td>36</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Gaussian Process</td>
<td>37</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Matérn Covariance Function</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>OMI Data Inverse Techniques</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Artificial Intelligence Modelling</td>
<td>40</td>
</tr>
</tbody>
</table>
2.9.1 Artificial Neural Networks Modelling 40
2.9.2 Fuzzy Logic Modelling 41
2.9.3 Genetic Algorithm Modelling 42
2.9.4 Support Vector Machines Modelling 43
2.9.5 Wavelet Modelling 44
2.10 Statistical Modelling 45
2.11 Summary 47

3 Application of Kalman Filtering to Environmental Data 48

3.1 Introduction 48
3.2 Optimal Filtering 48
3.3 Optimal Continuous-Discrete Filtering 49
3.4 Stochastic Differential Equations 50
3.5 Stochastic Processes and Brownian Motion 51
3.6 Linear State Space Estimation 52
 3.6.1 Discretization of Continuous-Time Linear Time-Invariant
 Systems 53
 3.6.2 Kalman Filter 53
 3.6.3 Gaussian Progress Regression 55
 3.6.3.1 Spectra and Covariance Functions of Stochastic
 Differential Equations 56
 3.6.3.2 Converting Covariance to Stochastic Differential
 Equations 57
 3.7 Matérn Covariance Function 58
 3.7.1 Matérn Function Family 59
 3.7.2 Length Scale Effect 59
4 Application of Extended Fractional Kalman Filtering to Environmental Data

4.1 Introduction ... 70
4.2 Taylor Series Based Approximations 70
 4.2.1 Linear Approximation of Non-linear Transform 71
 4.2.2 Quadratic Approximation of Non-linear Transform 71
 4.2.3 Discrete-Time Extended Kalman Filter 72
 4.2.4 First-Order Extended Kalman Filter 73
 4.2.5 Second-Order Extended Kalman Filter 73
 4.2.6 Limitations of EKF 75
 4.2.7 Extended Kalman Smoother 75
4.3 Basic Concepts of Fractional Calculus 76
 4.3.1 Basic Special Fractional Function 76
 4.3.1.1 Gamma Function 76
 4.3.1.2 Beta Function 77
 4.3.1.3 Mittag-Leffler Function 77
 4.3.2 Basic Definitions in Fractional Calculus 78
 4.3.2.1 Grunwald-Letnikov 78
 4.3.2.2 Riemann-Liouville 79
 4.3.3 Solution of Fractional Differential Equations Using Laplace Transform 79
4.4 Fractional Order Systems 80
5 Application of Unscented Kalman Filtering to Environmental Data

5.1 Introduction 107
5.2 Unscented Kalman Filtering 108
 5.2.1 Unscented Transform 108
 5.2.2 The Matrix Forms of UT 110
 5.2.3 Unscented Kalman Filter 111
 5.2.4 Unscented Kalman Smoother 113
5.3 Unscented Kalman Filter Based on Matérn Function 114
5.4 Results and Discussion 115
5.5 Summary 116
6 Emission Data Improvement Using Extended Fractional Kalman Filtering

6.1 Introduction121
6.2 Emission Estimation with Extended Fractional Kalman Filter121
 6.2.1 Extended Fractional Kalman Filter Estimation Scheme122
 6.2.2 Emission Inventory122
6.3 Results and Discussion123
6.4 Summary126

7 Emission Data Improvement Using Unscented Kalman Filtering

7.1 Introduction141
7.2 Emission Data Estimation with Unscented Kalman Filter142
 7.2.1 Unscented Kalman Filter Estimation Scheme142
 7.2.2 Satellite Data143
7.3 Pollutant Estimation Using UKF145
 7.3.1 UKF Estimation Scheme145
 7.3.2 TAPM-CTM Data Estimation145
 7.3.3 OMI retrievals146
 7.3.4 Satellite Data Estimation146
 7.3.5 Surface concentration estimation147
 7.3.6 Results and Discussion147
7.4 Unscented Kalman Filter Based on Matérn Function149
 7.4.1 Improve Emission Inventory149
 7.4.2 Results and Discussion160
8 Thesis Contributions and Conclusions 175

8.1 Thesis contributions 175
8.2 Conclusions 177
8.3 Future work 178

Bibliography 181
List of Figures

1.1 Estimated proportion of the total burden of disease that could be prevented through proven interventions to reduce environmental risks [206]. .. 2

1.2 Many processes contribute to atmospheric pollution and trace gases [195]. .. 4

2.1 Monitoring stations across New South Wales (NSW). 10

2.2 Air quality monitoring station located in Sydney. (Photo courtesy of OEH, NSW). .. 11

2.3 Site AQI. .. 11

2.4 Region AQI .. 12

2.5 Air quality categories based on the AQI values. 13

2.6 O₃ calibration instrument at OEH. (Photo courtesy of OEH, NSW). 16

2.7 Definition of GMR and the Sydney, Newcastle and Wollongong regions and population in each LGA [39]. 19

2.8 Spatial distribution of off-road vehicles and equipment [39]................. 21

2.9 Air emissions inventory role in air quality management 23

2.10 Sources of air pollution [39]. .. 25

2.11 The CTM file structure as used in TAPM-CTM for a two-grid system 28

2.12 Schematic diagram of forward theory .. 31

2.13 Schematic diagram of inverse theory .. 31
3.1 Continuous-discrete filtering. ... 50

3.2 Prediction of surface NO concentration in Chullora station during
1st–7th January, 2008. 64

3.3 Prediction of surface NO\textsubscript{2} concentration in Chullora station during
1st–7th January, 2008. 64

3.4 Prediction of surface O\textsubscript{3} concentration in Chullora station during
1st–7th January, 2008. 65

3.5 Prediction of surface temperature concentration in Chullora station
during 1st–7th January, 2008. 65

3.6 EKF prediction correlation coefficient for NO at Chullora for
different values of ν. .. 66

3.7 EKF prediction correlation coefficient for NO\textsubscript{2} at Chullora for
different values of ν. .. 67

3.8 EKF prediction correlation coefficient for O\textsubscript{3} at Chullora for
different values of ν. .. 68

3.9 EKF prediction correlation coefficient for temperature at Chullora
for different values of ν. ... 69

4.1 Flow chart of GA based algorithm. 96

4.2 Prediction of surface NO concentration in Liverpool station during
1st–31st January, 2008. 101

4.3 Prediction of surface NO\textsubscript{2} concentration in Liverpool station during
1st–31st January, 2008. 101

4.4 Prediction of surface O\textsubscript{3} concentration in Liverpool station during
1st–31st January, 2008. 102

4.5 Prediction of surface temperature concentration in Liverpool station
during 1st–31st January, 2008. 102
4.6 Filter prediction correlation coefficient for NO at Liverpool, based on, (a) EKF, and (b) EFKF. .. 103

4.7 Filter prediction correlation coefficient for NO\textsubscript{2} at Liverpool, based on, (a) EKF, and (b) EFKF. 104

4.8 Filter prediction correlation coefficient for O\textsubscript{3} at Liverpool, based on, (a) EKF, and (b) EFKF. 105

4.9 Filter prediction correlation coefficient for Temperature at Liverpool, based on, (a) EKF, and (b) EFKF. 106

5.1 Prediction of surface NO concentration in Liverpool station during 1st-7th January, 2008. 117

5.2 Prediction of surface NO\textsubscript{2} concentration in Liverpool station during 1st-7th January, 2008. 117

5.3 Prediction of surface O\textsubscript{3} concentration in Liverpool station during 1st-7th January, 2008. 118

5.4 Prediction of surface temperature concentration in Liverpool station during 1st-7th January, 2008. 118

5.5 Error ellipse plot of NO. .. 119

5.6 Error ellipse plot of NO\textsubscript{2}. 119

5.7 Error ellipse plot of O\textsubscript{3}. 120

5.8 Error ellipse plot of Temperature. 120

6.1 Flowchart of TAPM-CTM inventory estimation using Matérn function based EFKF .. 124

6.2 NO concentration (ppb) as simulated with (a) original inventory, and (b) EFKF inventory at 10 am, 25th January, 2008. 128
6.3 NO$_2$ concentration (ppb) as simulated with (a) original inventory, and (b) EFKF inventory at 10 am, 25th January, 2008. 129

6.4 O$_3$ concentration (ppb) as simulated with (a) original inventory, and (b) EFKF inventory at 3 pm, 25th January, 2008. 130

6.5 Difference between NO concentration (ppb) as simulated with original and EFKF inventories at 10 am, 25th January, 2008. 131

6.6 Difference between NO$_2$ concentration (ppb) as simulated with original and EFKF inventories at 10 am, 25th January, 2008. 132

6.7 Difference between O$_3$ concentration (ppb) as simulated with original and EFKF inventories at 3 pm, 25th January, 2008. 133

6.8 Prediction of surface NO concentration in Liverpool station during 2nd-31st January, 2008. .. 134

6.9 Prediction of surface NO$_2$ concentration in Liverpool station during 2nd-31st January, 2008. .. 134

6.10 EFKF prediction correlation coefficient for NO at Liverpool. 135

6.11 EFKF prediction correlation coefficient for NO$_2$ at Liverpool. 135

6.12 EFKF prediction correlation coefficient for O$_3$ at Liverpool 136

6.13 NO emission (kg/hr) on weekdays in (a) original inventory, and (b) EFKF inventory. .. 137

6.14 NO$_2$ emission (kg/hr) on weekdays in (a) original inventory, and (b) EFKF inventory. .. 138

6.15 NO emission (kg/hr) on weekends in (a) original inventory, and (b) EFKF inventory. .. 139

6.16 NO$_2$ emission (kg/hr) on weekends in (a) original inventory, and (b) EFKF inventory. .. 140
7.1 Flowchart of TAPM-CTM inventory estimation of emissions using
Matérn function based UKF and with satellite data 143

7.2 TAPM-CTM NO$_2$ (ppb) spatial plot for January 2008, based on (a)
original inventory, and (b) UKF inventory. 151

7.3 Satellite NO$_2$ (ppb cm2 molec$^{-1}$) spatial plot for January 2008, (a)
NO$_2$ spatial plot of Australia, and (b) Detail NO$_2$ spatial plot of
NSW region. .. 152

7.4 Scatter plots of TAPM-CTM and the OMI-derived surface NO$_2$ for
January 2008, based on (a) UKF inventory, and (b) original inventory. 153

7.5 TAPM-CTM NO$_2$ (ppb) spatial plot for July 2008, based on (a)
original inventory, and (b) UKF inventory. 154

7.6 Satellite NO$_2$ (ppb cm2 molec$^{-1}$) spatial plot for July 2008, (a) NO$_2$
spatial plot of Australia, and (b) Detail NO$_2$ spatial plot of NSW
region. ... 155

7.7 Scatter plots of TAPM-CTM and the OMI-derived surface NO$_2$ for
July 2008, based on (a) UKF inventory, and (b) original inventory. . . 156

7.8 Nitrogen Dioxide (NO$_2$ (ppb)) concentration difference between
original and UKF inventory, (a) January 2008, and (b) July 2008. . . 157

7.9 Difference between TAPM-CTM and OMI for January 2008, based
on (a) UKF inventory, and (b) original inventory. 158

7.10 Difference between TAPM-CTM and OMI for July 2008, based on
(a) UKF inventory, and (b) original inventory. 159

7.11 Flowchart of TAPM-CTM inventory estimation using Matérn
function based UKF .. 160

7.12 NO concentration (ppb) as simulated with (a) original inventory,
and (b) UKF inventory at 6 am, 15th January, 2008. 163

7.13 NO$_2$ concentration (ppb) as simulated with (a) original inventory,
and (b) UKF inventory at 6 am, 15th January, 2008. 164
7.14 O_3 concentration (ppb) as simulated with (a) original inventory, and (b) UKF inventory at 6 pm, 15th January, 2008. 165

7.15 Difference between NO concentration (ppb) as simulated with original and UKF inventories at 6 am, 15th January, 2008. 166

7.16 Difference between NO$_2$ concentration (ppb) as simulated with original and UKF inventories at 6 am, 15th January, 2008. 167

7.17 Difference between O$_3$ concentration (ppb) as simulated with original and UKF inventories at 6 pm, 15th January, 2008. 168

7.18 Prediction of surface NO concentration in Liverpool station during 2nd-31st January, 2008. .. 169

7.19 Prediction of surface NO$_2$ concentration in Liverpool station during 2nd-31st January, 2008. .. 169

7.20 Error ellipse plot of NO. .. 170

7.21 Error ellipse plot of NO$_2$. ... 170

7.22 NO emission (kg/hr) on weekdays in (a) original inventory, and (b) UKF inventory. .. 171

7.23 NO$_2$ emission (kg/hr) on weekdays in (a) original inventory, and (b) UKF inventory. .. 172

7.24 NO emission (kg/hr) on weekends in (a) original inventory, and (b) UKF inventory. .. 173

7.25 NO$_2$ emission (kg/hr) on weekends in (a) original inventory, and (b) UKF inventory. .. 174
List of Tables

2.1 Table comparing U.S., EU and Australia air quality standards for criteria pollutants. .. 9
2.2 Pollutants and units ... 12
2.3 Standards/goals for AQI .. 14
2.4 Total estimated annual emissions from natural and human-made sources in the GMR .. 26
2.5 Total estimated annual emissions from natural and human-made sources in the Sydney region .. 27

3.1 MSE for different parameters profile .. 62
3.2 Regression correlation coefficient of different parameters profile for different values of ν .. 62

4.1 Fractional order values calculated by using GA .. 99
4.2 Mean squared error for different parameters profile .. 99
4.3 Regression correlation coefficient of different parameters profile for EKF and EFKF .. 99

5.1 Mean squared error for different parameters profile .. 116

6.1 Stochastic goodnees-of-fit criteria for EFKF and EKF .. 127
6.2 Total pollutant emission of January 2008 131

7.1 Major existing NSW power stations (coal base)[1] 144
7.2 Stochastic goodness-of-fit criteria for original and UKF inventory . 148
7.3 MSE emission inventory .. 160
Nomenclature and Notation

Throughout the thesis, the following nomenclatures and notations are used:

- AQI: Air Quality Index
- BIBO: Bounded Input Bounded Output
- CO: Carbon Monoxide
- CTM-DDS: Chemical Transport Model- Data Display System
- EDMS: Emissions Data Management System
- KF: Kalman Filter
- EKF: Extended Kalman Filter
- EFKF: Extended Fractional Kalman Filter
- EnKF: Ensemble Kalman Filter
- GA: Genetic Algorithm
- GP: Gaussian Process
- LTI: Linear Time Invariant
- MIMO: Multiple Input Multiple Output
- MSE: Mean Squared Error
- NO: Nitrogen Oxide
- NO$_2$: Nitrogen Dioxide
- NO$_X$: Generic term for the mono-nitrogen oxides NO and NO$_2$
- NSW: New South Wales
- O$_3$: Ozone
- OEH: Office of Environment and Heritage
- PM: Particulate Matter
- OMI: Ozone Monitoring Instrument
- SDE: Stochastic Differential Equation
- SO$_2$: Sulphur Dioxide
- TAPM-CTM: The Air Pollution Model with Chemical Transport Model
- UKF: Unscented Kalman Filter
- UT: Unscented Transform
- VOC: Volatile Organic Compounds
- $w(t)$: Gaussian white noise process $w(t) = df(t)/dt$
- \mathbb{R}: Field of real numbers
- \mathbb{R}^n: n-dimensional space
- $\mathbb{R}^{n \times m}$: Space of all matrices of $(n \times m)$-dimension
- $S_w(\omega)$: Spectral density
- l: Length scale
- σ^2: Magnitude hyper parameter
- K_ν: Modified Bessel function
- ν: Parameter controlling the smoothness of the process
- Γ: Gamma function
- z: Complex number
- I_n: Identity matrix of $(n \times n)$-dimension
- $\| \cdot \|$: Euclidean norm of a vector or spectral norm of a matrix
- \forall: For all