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ABSTRACT

AIR POLLUTANT EMISSION AND PREDICTION WITH

EXTENDED KALMAN FILTERING

by

Santanu Metia

The major sources of air pollutants in New South Wales (NSW is a state on the

east coast of Australia) are anthropogenic emissions and biomass burning emissions.

Anthropogenic mega city emissions play an important role with respect to air pol-

lution: a relatively large amount of pollutants is released in a small area potentially

leading to nonlinear chemical processes, which may further aggravate air pollution.

Highly populated cities in NSW are mainly located in coastal areas while bush fires

on the other hand usually take place in the inland of NSW, a region with a relatively

low population density.

In order to compare the impact of these two emission sources in NSW on a

climatological time scale, The Air Pollution Model with Chemical Transport Model

(TAPM-CTM) is used, which receives meteorological data, terrain data and emission

data together with chemical processes. These emission data are generated by the

Emissions Data Management System (EDMS v2.0). To improve the air quality

modelling performance, uncertainties in association with the estimation must be

handled properly. For this, the Extended Kalman Filter (EKF) together with its

modifications are studied throughout this thesis.

The motivation for this work stems from recently growing research interest in

environmental modelling and control. The challenging inverse problem has intrigued

researchers in atmospheric science as well as sustainable engineering and technol-

ogy. This work addresses the problem in air pollutant estimation by proposing the

use of TAPM-CTM coupled with the Extended Fractional Kalman Filter (EFKF)



based on a Matérn covariance function to enhance the estimation accuracy and to

smoothen the spatiotemporal correlation. Here, concentrations of air pollutants

such as nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) are predicted

by TAPM-CTM in the airshed of Sydney and surrounding areas. For improvement

of the emission inventory, and hence, the air quality prediction, the fractional order

of the EFKF is tuned by using a Genetic Algorithm (GA).

Nonlinearity is further treated by using unscented transforms in the prediction

step with an Unscented Kalman Filter (UKF) to preserve the stochastic charac-

teristics of the nonlinear environmental system involved. A comparison with the

conventional EKF and the UKF is included to indicate the UKF viability in air

pollutant estimation.

Academic contributions of this thesis include investigation, application, design,

and implementation of the EFKF and UKF for air pollution estimation. Discussions

on theoretical aspects and implementation details of these extended Kalman filters

for environmental data are included together with some recommendations.
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Chapter 1

Introduction

1.1 Background

Over the last century, the world urban population has increased at a remarkable

pace. In 1950, there were 83 cities with populations exceeding one million; by 2007,

this number had risen to 468. The UN forecasts that today’s urban population of

3.2 billion will rise to nearly 5 billion by 2030, when three out of five people will live

in mega cities. These mega cities will face environmental issues. Ensuring a clean

and healthy environment, through effective environmental management, will provide

multiple benefits to society and the economy. Experts have estimated that nearly

one-quarter of all diseases and deaths are due to hazards from unhealthy living

and working environments. Air pollution, inadequate management of chemicals

and wastes, poor water quality, ecosystem degradation, climate change and ozone

layer depletion all pose significant threats to human health both individually and

combined (Figure 1.1).

The largest impacts of indoor air pollution are seen in developing countries,

where almost three billion people rely on solid fuels, traditional biomass and coal,

and open fires or traditional stoves for cooking and heating. Approximately 4.3

million people a year die prematurely from illness attributable to household air

pollution caused by the inefficient use of solid fuels. Over half of the deaths from

acute lower respiratory infections among children less than 5 years old are due to air

pollution from household solid fuels. In addition, 3.7 million deaths can be attributed

to outdoor air pollution of which transport, energy production and industry are
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Figure 1.1 : Estimated proportion of the total burden of disease that could be

prevented through proven interventions to reduce environmental risks [206].

major sources. These recent findings more than double previous estimates and

confirms that air pollution is now the world’s largest single environmental health

risk. Reducing air pollution could save millions of lives.

Therefore, the urban air quality management has played an important role in

developed countries. These countries have made extensive efforts to improve the

air quality through reducing emissions, such as: using cleaner energy, applying new

air quality regulations, moving the industrial activities to the developing countries,

building new power efficient thermal power plants and discarding old vehicles. These

efficient strategies at global scale are to move to developing countries. Air quality in

developing countries has deteriorated considerably, thus exposing millions of people

to harmful concentrations of pollutants because in developing countries urban air

quality management has not been adopted for a variety of reasons.

The science of air pollution centers on measuring, tracking, and predicting con-

centrations of key chemicals in the atmosphere. Four types of processes affect air

pollution levels [195]:
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• Emissions: Chemicals are emitted to the atmosphere by a range of sources.

Anthropogenic emissions come from human activities, such as burning fos-

sil fuel. Biogenic emissions are produced by natural functions of biological

organisms, such as microbial breakdown of organic materials. Emissions can

also come from nonliving natural sources, most notably volcanic eruptions and

desert dust.

• Chemistry: Many types of chemical reactions in the atmosphere create, mod-

ify, and destroy chemical pollutants. These processes are discussed in the

following sections.

• Transport: Winds can carry pollutants far from their sources, so that emis-

sions in one region cause environmental impacts far away. Long-range trans-

port complicates efforts to control air pollution because it can be hard to

distinguish effects caused by local versus distant sources and to determine

who should bear the costs of reducing emissions.

• Deposition: Materials in the atmosphere return to Earth, either because

they are directly absorbed or taken up in a chemical reaction (such as photo-

synthesis) or because they are scavenged from the atmosphere and carried to

Earth by rain, snow, or fog.

Knowledge of pollutant emissions, chemistry, and transport can be incorporated

into computer simulations (“air quality models”) to predict how specific actions,

such as requiring new vehicle emission controls or cleaner-burning fuels, will benefit

ambient air quality. However, air pollutants pass through many complex reactions

in the atmosphere and their residence times vary widely, so it is not always straight-

forward to estimate how emission reductions from specific sources will impact air

quality over time.
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Figure 1.2 : Many processes contribute to atmospheric pollution and trace gases

[195].

1.2 Research objectives

The main objectives of this research are:

i. To develop Extended Fractional-Order and Unscented Kalman Filters based

on a Matérn covariance function to deal with larger uncertainties and high

non-linearities in the air quality modelling systems.

ii. To improve air emission inventory by using the Extended Kalman Filter and

predict more accurate air pollutant distributions.
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iii. To compare the results of Air Quality model with satellite data and station

data to improve the model and to understand the role of emission and mete-

orology in air pollutant dispersion.

1.3 Thesis organisation

This thesis is organised as follows:

• Chapter 2:

This chapter presents the literature review related to this research. It begins

with an overview of the available air quality modelling techniques in atmo-

spheric studies followed by the description of air pollutant measurement and

predictions.

• Chapter 3: In this chapter, Kalman Filter and Matérn covariance function

based filtering are implemented on environmental data.

• Chapter 4: This chapter presents Extended Kalman Filter and Extended Frac-

tional Kalman Filter. Filtering of environmental pollutant has been estimated

using Matérn covariance function based filter.

• Chapter 5: In this chapter, Unscented Kalman Filter is presented which is

based on Matérn covariance function. Pollution episode is estimated using

UKF.

• Chapter 6: In this chapter, inverse air pollutant and prediction have been

implemented to improve emission inventory.

• Chapter 7: This chapter presents, inverse Unscented Kalman Filtering for

improving emission inventory.
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• Chapter 8: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendation for future works is given as well.
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Chapter 2

Literature Survey

In this chapter the analysis of pollutants in NSW is studied and air quality is pre-

sented. A brief air quality analysis is presented in this chapter which is used in

NSW.

2.1 Introduction

Population and economic growth put pressure on transport and energy systems.

Road traffic is the main form of transportation in many cities, and motor vehicles

dominate road traffic. These motor vehicles release large amounts of hazardous sub-

stances into the atmosphere. In addition, fossil fuels are used to generate electricity.

Consequently, air quality is degrading rapidly. All the definitions of air quality

terminology regarding NSW is given in the website[2].

2.2 Air Quality Assessment

2.2.1 Air Quality monitoring

Monitoring of air pollution is one of the most important parts in AQM. It helps

authorities to evaluate the status of air pollution levels and the evolution of air

pollution. Monitoring allows evaluation of emissions both at the roadside to assess

traffic emissions and in industrial parks for measuring industrial emissions. It helps

to monitor natural calamities such as bush fire which seems inevitable in NSW due

to landscape. Almost all large cities in the world have installed monitoring systems

to inform their populations about air pollution levels. Monitoring of air pollution
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also helps validate the results of emission models and air quality models. NSW has

monitoring stations which are shown in (Figure 2.1). A real monitoring station is

shown in (Figure 2.2).

2.2.2 Air Quality Index

The Office of Environment and Heritage (OEH) operates a comprehensive air

quality monitoring network to provide the community with accurate and up-to-date

information about air quality. Data from the monitoring network is presented on-

line as ambient concentrations and air quality index (AQI) values which are updated

hourly and stored in a database. A comparison of three air quality standards for

six criteria pollutants is shown in Table 2.1. Therein, to normalise the unit of

measures for the standards, parts per million (ppm) by volume and micrograms per

cubic metre of air (μg/m3) are used. In general, there are some similarities on the

set standards. Pollutants and units are given in Table 2.2.

Data readings

Data readings are the actual scientific measurements for each air pollutant. The

data readings are recorded in different units of measure, depending on the type of

pollutant. In order to provide more detailed information than is available in the

AQI (air quality index), measurements are also published as hourly data readings,

and daily data readings, in scientific units rather than the derived values provided

in the AQI.
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Table 2.1 : Table comparing U.S., EU and Australia air quality standards for criteria

pollutants.

Pollutant Averaging period Maximum concentration

U.S. EU Australia

Carbon monoxide 1 hour 35.00 ppm NA NA

8 hours 9.000 ppm 8.700 ppm 9.000 ppm

Nitrogen dioxide 1 hour 0.100 ppm 0.098 ppm 0.120 ppm

1 year 0.053 ppm 0.020 ppm 0.030 ppm

Ozone 1 hour 0.120 ppm NA 0.100 ppm

8 hours 0.075 ppm 0.061 ppm 0.080 ppm

Sulphur dioxide 1 hour 0.075 ppm 0.133 ppm 0.200 ppm

1 day NA 0.048 ppm 0.080 ppm

1 year NA NA 0.020 ppm

Lead 3 months 0.15μg/m3 NA NA

1 year NA 0.5μg/m3 0.5μg/m3

PM10 1 day 150μg/m3 50μg/m3 50μg/m3

1 year NA 40μg/m3 NA

PM2.5 1 day 35μg/m3 NA 25μg/m3

1 year 15μg/m3 25μg/m3 8μg/m3

Note: *NA=Not available; 1 ppm=1000 ppb.
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Figure 2.1 : Monitoring stations across New South Wales (NSW).

2.2.3 Air Quality Index Values

Data readings are converted into AQI values by using the formula:

AQIPollutant =
Pollutant Data Reading

Standard
× 100 (2.1)

This means the AQI is a derived value (based on the data reading). Because data

readings have different underlying units of measure, it is difficult to compare the

various pollutants. After we derive the AQI values we have a standardised set of

values that we can then compare and present.

Site AQI

There are 24 monitoring sites around NSW where the air quality index (AQI) values
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Figure 2.2 : Air quality monitoring station located in Sydney. (Photo courtesy of

OEH, NSW).

are calculated. The AQIs are compared at each site. The highest AQI value at each

site becomes the site AQI. In the example below, the highest AQI for pollutant 3

would be the site AQI. It is shown in Figure 2.3.

Figure 2.3 : Site AQI.

Region AQI
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Table 2.2 : Pollutants and units

Pollutant Units used for air quality data

Ozone pphm (parts per hundred million)

Nitrogen dioxide pphm (parts per hundred million)

Visibility (as Bsp) 10−4m−1

Carbon monoxide ppm (parts per million)

Sulfur dioxide pphm (parts per hundred million)

Particles μg/m3 (micrograms per cubic metre)

All the site AQIs in a given region are compared. The highest site AQI for a region

is taken as the region AQI. In the example below, the reading for site RST would

be the region AQI. It is shown in Figure 2.4.

Figure 2.4 : Region AQI.

Averaging periods

• Hourly: Data is collected from each site where these parameters are mea-

sured in the OEH network and reported as hourly AQI values and hourly data

readings in scientific units.

• Daily: The air quality daily summary lists maximum pollutant values mea-

sured from 01.00 am to 12.00 midnight the previous day and presents them as
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Figure 2.5 : Air quality categories based on the AQI values.

a daily AQI value and as daily data readings in scientific units.

Standards and goals

A categorisation scheme is used to indicate how an AQI relates to relevant Na-

tional Environment Protection Measure for Ambient Air (NEPM) external link for

criteria pollutants or the NSW standard for visibility: An AQI of 100 corresponds

to the relevant NEPM standards for criteria pollutants or the relevant NSW stan-

dard for visibility. Hence, when the AQI is reported as POOR, VERY POOR or

HAZARDOUS it indicates that the determining pollutant levels have reached or

exceeded the relevant standard. These levels are shown in colour code (Figure 2.5)

and standard values are given in (Table 2.3).

2.3 Air Pollution

2.3.1 Ozone-O3

Near the ground, ozone is a colourless, gaseous secondary pollutant. It is formed

by chemical reactions between reactive organic gases and oxides of nitrogen in the

presence of sunlight. Ozone is one of the irritant secondary pollutants in photo-

chemical smog and is often used as a measure of it.

2.3.2 Nitrogen Dioxide-NO2

The main oxides of nitrogen present in the atmosphere are nitric oxide (NO),

nitrogen dioxide (NO2) and nitrous oxide (N2O). Nitrous oxide occurs in much
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Table 2.3 : Standards/goals for AQI

Pollutant Averaging

period

Maximum

concentration

Goal (maximum allow-

able exceedences)

Carbon monoxide 8 hours 9.0 ppm 1 day a year

Nitrogen dioxide 1 hour 0.12 ppm 1 day a year

1 year 0.03 ppm none

Ozone 1 hour 0.10 ppm 1 day a year

4 hours 0.08 ppm 1 day a year

Sulfur dioxide 1 hour 0.20 ppm 1 day a year

1 day 0.08 ppm 1 day a year

1 year 0.02 ppm None

PM10 1 day 50μg/m3 5 days a year

Visibility (as Bsp) 1 hour 2.1 10−4 m−1 Not applicable

PM2.5 1 day 25μg/m3 Goal is to gather suffi-

cient data nationally to

1 year 8μg/m3 facilitate a review of the

standards for PM2.5

smaller quantities than the other two, but is of interest as it is a powerful greenhouse

gas and thus contributes to global warming. The major human activity which

generates oxides of nitrogen is fuel combustion, especially in motor vehicles.

2.3.3 Visibility-NEPH

Visibility is a measure which indicates the presence of fine particles in the air

from sources such as motor vehicles, wood fires and industry.
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2.3.4 Carbon Monoxide-CO

Carbon monoxide is an odourless, colourless gas produced by incomplete oxi-

dation (burning). As well as wildfires, carbon monoxide is produced naturally by

oxidation in the oceans and air of methane produced from organic decomposition. In

cities, the motor vehicle is by far the largest human source, although any combustion

process may produce it.

2.3.5 Sulphur Dioxide-SO2

Sulphur dioxide in the atmosphere arises from both natural and human activ-

ities. Natural processes which release sulphur compounds include decomposition

and combustion of organic matter; spray from the sea; and volcanic eruptions. The

main human activities producing sulphur dioxide are the smelting of mineral ores

containing sulphur and the combustion of fossil fuels.

2.3.6 Particulate Matter-PM10, PM2.5

Not only are there gaseous pollutants, there are also solid or liquid particles that

may be suspended in the air and may reduce visual amenity and adversely impact

health. OEH measures particles as PM10 (particles less than 10 micrometers in

diameter) and PM2.5 (particles less than 2.5 micrometers in diameter).

2.4 Monitoring Instruments

• BAM-PM2.5: Particles less than 2.5 micrometres in diameter measured using

a Beta Attenuation Monitor (BAM).

• Carbon monoxide (CO): Carbon monoxide is an odourless, colourless gas pro-

duced by incomplete oxidation (burning). As well as wildfires, carbon monox-

ide is produced naturally by oxidation in the oceans and air of methane pro-
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Figure 2.6 : O3 calibration instrument at OEH. (Photo courtesy of OEH, NSW)

duced from organic decomposition. In cities, the motor vehicle is by far the

largest human source, although any combustion process may produce it.

• Cd: Cadmium. Measured at certain monitoring sites.

• Ozone (O3): Near the ground, ozone is a colourless, gaseous secondary pollu-

tant. It is formed by chemical reactions between reactive organic gases and

oxides of nitrogen in the presence of sunlight. Ozone is one of the irritant

secondary pollutants in photochemical smog and is often used as a measure of

it.

• NEPH: Suspended fine particles as measured by a nephelometer.

• Nitrogen dioxide (NO2): Nitrogen dioxide is found at its highest concentrations

near busy roads and can also be high indoors when unflued gas appliances are
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used.

• NO: Nitrogen oxide. Measured at certain monitoring sites.

• NOX : Oxides of nitrogen. Measured at certain monitoring sites.

• Particulate matter (PM10, PM2.5): Solid or liquid particles may be suspended

in the air and reduce visual amenity and adversely impact health. The size of

a particle determines its potential impact on human health. Particles less than

10 micrometres in diameter are measured using a Tapered Element Oscillating

Microbalance (TEOM). Particles less than 2.5 micrometres in diameter are

measured using a Tapered Element Oscillating Microbalance (TEOM) or a

Beta Attenuation Monitor (BAM).

• Pb: Lead. Measured at certain monitoring sites.

• Sulphur dioxide (SO2): The main human activities producing sulphur dioxide

are the smelting of mineral ores containing sulphur and the combustion of

fossil fuels. Sulphur dioxide is a respiratory irritant and may worsen existing

respiratory illness.

• TEOM-PM10: Particles less than 10 micrometres in diameter measured using

a Tapered Element Oscillating Microbalance (TEOM).

• TEOM-PM2.5: Particles less than 2.5 micrometres in diameter measured using

a Tapered Element Oscillating Microbalance (TEOM).

2.5 Air Emissions Inventory

Ambient air monitoring determines compliance with Ambient Air Quality NEPM

(National Environment Protection (Ambient Air Quality) Measure) standards. The

air emissions inventory is then used to identify priority sources of key air pollutants.
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Modelling identifies the amount of air pollutant reductions required and cost effective

emissions reduction strategies are then developed to improve air quality. Figure 2.9

shows the role of the air emissions inventory within the air quality management

cycle.

The air emissions inventory is a detailed listing of pollutants discharged into

the atmosphere by each source type during a given time period and at a specific

location. The study area covers 57,330 km2, which includes the greater Sydney,

Newcastle and Wollongong regions, known collectively as the Greater Metropolitan

Region (GMR). About 75% of the NSW population resides in the GMR. The GMR

and the Sydney, Newcastle and Wollongong regions are shown in (Figure 2.7), along

with the population in each local government area (LGA).

The inventory includes emissions from biogenic (i.e. natural and living), geogenic

(i.e. natural non-living) and anthropogenic (i.e. human-made) sources, as follows:

• natural (e.g. bush fires, marine aerosols and vegetation)

• commercial businesses (e.g. non-EPA licensed printers, quarries and service

stations)

• domestic activities (e.g. residential lawn mowing, portable fuel containers and

wood heaters)

• industrial premises (e.g. EPA licensed coal mines, oil refineries and power

stations)

• off-road vehicles and equipment (e.g. dump trucks, bulldozers and marine

vessels)

• on-road transport (e.g. registered buses, cars and trucks).

The inventory covers over 850 substances, including:
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Figure 2.7 : Definition of GMR and the Sydney, Newcastle and Wollongong regions

and population in each LGA [39].
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• common pollutants, such as ammonia, carbon monoxide (CO), lead, oxides

of nitrogen (NOX), particulate matter ≤ 10μm (PM10), particulate matter

≤ 2.5μm (PM2.5), sulfur dioxide (SO2) and total volatile organic compounds

(VOC)

• organic compounds, such as 1,3-butadiene, benzene and formaldehyde

• metals, such as cadmium, manganese and nickel

• PAH (polycyclic aromatic hydrocarbons), PCDD (polychlorinated dibenzo-p-

dioxins) and PCDF (polychlorinated dibenzofurans)

• greenhouse gases (carbon dioxide, methane and nitrous oxide).

Air emissions data can be presented for the whole GMR, either of the Sydney,

Newcastle or Wollongong regions, or each of the 64 LGA within the GMR. Emissions

vary by month, day of week and hour of day so they can be presented on an annual,

monthly, daily or hourly basis.

2.5.1 Air Emissions Estimation

Emission estimation techniques for all sources have been based on published

state-of the-art methodologies, such as those used by the California Air Resources

Board (CARB), the European Environment Agency or the United States Environ-

mental Protection Agency (USEPA).

All emissions have been calculated within six source-specific relational databases,

which include all the data needed to estimate emissions to air from natural and

human-made sources. These databases contain activity data; emission factors; par-

ticulate matter (PM) and VOC specification profiles; spatial allocation data; hourly,

daily and monthly temporal variation data; and emission projection factors.
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Figure 2.8 : Spatial distribution of off-road vehicles and equipment [39].

Activity, spatial and temporal data have been acquired through a domestic sur-

vey of residential households and an industrial survey of EPA-licensed premises.

They have also been supplied by a number of government departments and service

providers.

Air emissions have been estimated by combining activity data with emission

factors. Where available, source emission test data has been used in preference to

emission factors for industrial and commercial sources.

The emissions have been assigned to map coordinates for industrial and com-

mercial controlled point sources, or 1-km by 1-km grid cells for natural, domestic,
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off-road and on-road area sources and industrial and commercial uncontrolled fugi-

tive sources. As an example, (Figure 2.8) shows the spatial distribution of emissions

from off-road vehicles and equipment.

Emissions are then calculated for each month, day of week and hour of day by

using factors derived from the activity data.

The base year of the inventory represents activities that took place in the 2008

calendar year. Emissions are projected from 2009 to 2036 by using Equation (2.2):

Ei,j,n = Ei,j,2008 × PFj,n (2.2)

where Ei,j,n is emission of substance i from source type j for year n (tonne/year),

Ei,j,2008 is emission of substance i from source type j for the base year, 2008(tonne/year)

and PFj,n is emission projection factor for source type j for year n.

2.5.2 Emissions Data Management System

The air emissions inventory data are stored in a MicrosoftR© SQL ServerTM 2000

relational database. EDMS v2.0 includes a number of features, such as:

• air pollution modelling using models developed by the California Institute of

Technology, CSIRO and USEPA

• emissions charting by air pollutant, source, LGA and region

• emissions data visualisation using geographical information systems

• emissions forecasting up to 2036

• environmental reporting by air pollutant, source, LGA and region

• source and pollutant prioritisation using CARB facility prioritisation guide-

lines and the USEPA RSEI (risk screening environmental indicators) method-

ology
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• VOC prioritisation based on photochemical smog forming potential, using the

CARB MIR (maximum incremental reactivity) methodology.

Ambient air monitoring determines compliance with Ambient Air Quality NEPM

(National Environment Protection (Ambient Air Quality) Measure) standards. The

air emissions inventory is then used to identify priority sources of key air pollutants.

Modelling identifies the amount of air pollutant reductions required and cost effective

emissions reduction strategies are then developed to improve air quality. Figure 2.9

shows the role of the air emissions inventory within the air quality management

cycle.

Figure 2.9 : Air emissions inventory role in air quality management.
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2.5.2.1 Priority Air Pollutants

Air quality in the GMR has been steadily improving since the 1980s. In 1998,

ambient air quality standards and goals for six common pollutants (i.e. CO, lead,

nitrogen dioxide (NO2), ozone (O3), PM10 and SO2) were included in the Ambient

Air Quality NEPM. Ambient concentrations of CO, lead, NO2 and SO2 are all

consistently below the respective national standards. However, concentrations of

O3, and sometimes PM10, can exceed national standards. NOX , PM10, PM2.5 and

VOC are the air pollutants of primary concern in the GMR and the Sydney region.

NOX and VOC are photochemical smog precursors and when emitted in the

presence of sunlight they undergo a series of complex reactions that cause photo-

chemical smog to form. Ground-level ozone is an indicator of photochemical smog,

which is characterised by a white atmospheric haze during the warmer months of

the year.

PM10 andPM2.5 emissions are responsible for primary particulate matter pollu-

tion, which is characterised by a brown atmospheric haze during the cooler months

of the year.

NOx, VOC, SO2 and ammonia react in the atmosphere to form secondary organic

aerosols, nitrate and sulphate compounds, which are collectively known as secondary

particulate matter pollution.

Fine particulate matter pollution is made up of both primary emissions and

secondary organic and inorganic aerosols, which are formed through atmospheric

reactions.

Figure 2.10 illustrates air pollution sources, and the parts of the environment

that are affected by air pollution.
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Figure 2.10 : Sources of air pollution [39].

2.5.2.2 Natural and Human-made Anthropogenic Sources in the GMR

Table 2.4 presents annual emissions of common pollutants from natural and

human-made sources in the GMR. Human-made sources are the major contributors
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to CO (96.4%), NOX (96.9%), PM10 (72.8%), PM2.5 (81.2%) and SO2 (99.9%) emis-

sions, while VOC emissions from natural (55.3%) and human-made (44.7%) sources

are similar.

2.5.2.3 Natural and Human-made Anthropogenic Sources in the Sydney

Table 2.5 presents annual emissions of common pollutants from natural and

human-made sources in the Sydney region. Human-made sources are the major

contributors to CO (97.8%), NOX (98.3%), PM10 (80.9%), PM2.5 (91.9%), SO2

(99.5%) and VOC (75.3%) emissions.

Table 2.4 : Total estimated annual emissions from natural and human-made sources

in the GMR
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CO 34,934 389 109,377 613,365 53,817 153,812 965,693

NO2 9,811 501 3,290 191,411 53,210 60,932 319,156

PM10 33,635 2,020 8,189 73,213 3,607 2,793 123,458

PM2.5 7,338 695 7,873 17,672 3,433 2,071 39,083

SO2 317 180 175 280,472 7,824 269 289,237

VOC 169,637 9,176 68,809 11,519 17,950 29,504 306,595
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Table 2.5 : Total estimated annual emissions from natural and human-made sources

in the Sydney region

Substance

Emissions (tonne/year)
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CO 5,484 335 82,186 14,173 20,801 123,712 246,692

NOX 1,296 344 2,531 8,921 16,238 45,392 74,722

PM10 3,901 1,111 6,088 6,215 1,019 2,110 20,443

PM2.5 951 485 5,853 1,935 952 1,553 11,728

SO2 50 108 131 5,574 4,725 210 10,798

VOC 32,468 6,652 53,178 8,205 7,341 23,512 131,356

2.6 Overview of TAPM-CTM

2.6.1 The Development of TAPM-CTM

The modelling system consists of the TAPM prognostic meteorological model

and a chemical transport model (CTM) which CSIRO originally developed for use

with the Australian Air Quality Forecasting System. The technical background to

the CTM is summarised in [24]. The CTM is run online within the TAPM time

marching loop, and thus has the capability of handling frequent updates (i.e. 300

s intervals) to the meteorological fields. This capability provides the potential for

more accurate simulation of chemical transport and transformation under rapidly

changing meteorological conditions such as sea breeze flows.
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Figure 2.11 : The CTM file structure as used in TAPM-CTM for a two-grid system.

TAPM-CTM is configured for both episodic and longer term modelling (which

could involve simulating a period of weeks to years). TAPM-CTM was originally

configured to provide an alternative to the TAPM and CIT (Carnegie-Mellon, Cal-

ifornia Institute of Technology air-shed model; [68]) modelling system which was

used by some of the Australian environmental protection authorities. As such, the

system was designed to use the CIT format concentration boundary conditions and

emission inventory files, with only a minimal amount of modification. However,

the model has since been modified to input a superset of the TAPM-type emission

formats (i.e. see [77]) and thus provides additional flexibility in the treatment of

the emissions. Replacement of CIT by TAPM-CTM provides the ability to model

multi-scale problems (using nested grids), and to easily inter-change the chemical

mechanism. The online configuration of the CTM provides the advantage of more
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frequent updates of the meteorological data and improved transport modelling.

The file structure of the CTM component of TAPM-CTM is shown in Figure 2.11.

In this example, a two-level nested grid system is considered. Each of the CTM grids

must have a corresponding TAPM grid of the same resolution. For example, if the

CTM grids are to have a horizontal spacing of 3 km and 1 km respectively, TAPM

must be configured to run two grids of the same spacing (plus additional grids of

lower resolution if required for modelling larger scale meteorological processes).

2.6.2 TAPM-CTM modelling

There are three main steps to execute the simulation in the TAPM-CTM model

as shown in Figure 2.11, and are briefly described as follows:

1. The preparation of emission data using the EDMS system (as discussed in the

previous section).

2. Air quality modelling using TAPM-CTM: Three main input files are used,

which are emission files from the EDMS, topographical information of the

terrain heights, and synoptic data which is multi-layer meteorological data in

grid form and typically consists of temperature, wind direction and wind speed

data. In Australia, the topographical information can be obtained from the

Australia National Mapping Agency (AUSLIG), while the synoptic data can

be made available from the Bureau of Meteorology in NSW.

3. Visualisation of the simulation output: Air quality, emissions and meteoro-

logical data from TAPM-CTM can be displayed using a GUI-driven display

system such as CTM Data Display System (CTM-DDS).
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2.7 Review of Inverse Techniques in Air Quality

Inverse modelling has been a major research field since the last decade, where

the objectives are to obtain an accurate model from a complex model, to include

the non-linear system behaviour, and to reduce the cost, time, and amount of effort

required during a simulation. Some reviews for performance comparison of various

inverse techniques have been presented [106, 166]. Many researchers have used

Kalman Filter to improve emission inventory [196]. In [198] have developed inverse

modelling using satellite data to predict CO emissions in East Asia. Satellite data

has been used by many scientist to predict accurate inverse modelling of pollutant

emission [228].

Inverse theory, is the fine art of estimating model parameters from data. It

requires a knowledge of the forward model capable of predicting data if the model

parameters are, in fact, already known. Inverse theory, however, is capable (at least

when properly applied) of doing much more than just estimating model parameters.

It can be used to estimate the “quality” of the predicted model parameters. It

can be used to determine which model parameters, or which combinations of model

parameters, are best determined. It can be used to determine which data are most

important in constraining the estimated model parameters. It can determine the

effects of noisy data on the stability of the solution. Furthermore, it can help in

experimental design by determining where, what kind, and how precise data must

be to determine model parameters.

Forward Theory: The (mathematical) process of predicting data based on some

physical or mathematical model with a given set of model parameters (and perhaps

some other appropriate information, such as geometry, shape, size, contrast etc.).

It is shown in Figure 2.12.

Inverse Theory: The (mathematical) process of predicting (or estimating) the
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Figure 2.12 : Schematic diagram of forward theory.

numerical values (and associated statistics) of a set of model parameters of an as-

sumed model based on a set of data or observations. It is shown in Figure 2.13.

Figure 2.13 : Schematic diagram of inverse theory.

2.7.1 Spatio-Temporal Modelling

Inverse modelling is a formal approach for estimating the values of the vari-

ables driving the evolution of a system by taking measurements of the observable

manifestations of that system, and using our physical understanding to relate these

observations to the driving variables. We call the variables that we wish to estimate

the state variables, and assemble them into a state vector X. We similarly assemble

the observations into an observation vector Y . Our understanding of the relationship

between X and Y is described by a physical model F , called the forward model:

Y = F (X, p) + ε (2.3)

where p is a parameter vector including all model variables that we do not seek

to optimize (we call them model parameters), and ε is an error vector including

contributions from errors in the observations, in the forward model, and in the model

parameters. From inversion of equation (2.3), we can obtain X given Y . In the
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presence of error (ε �= 0), the best that we can achieve is a statistical estimate, and

we need to weigh the resulting information against our prior (a priori) knowledge

XA of the state vector before the observations were made. The optimal solution of

X reflecting this ensemble of constraints is called the a posteriori, the maximum a

posteriori (MAP), the optimal estimate, or the retrieval. We will use these terms

interchangeably, with some preference for optimal estimate which is the more general

terminology. Retrieval is the standard terminology for remote sensing. The choice

of state vector (i.e., which variables to include in X vs. in p) is up to us. It

depends on what variables we wish to optimize, what information is contained in

the observations, and what computational costs are associated with the inversion.

2.7.2 Context and Motivation

Addressing air pollution problems requires understanding the main causes of

these problems. Emissions of air pollutants and their precursors are of particular

interest as those are typically controlled to remediate elevated levels of pollutants.

Emissions from major sources have been inventoried and applied in air quality man-

agement. However, the same amount of emissions from sources with varying emis-

sion characteristics (e.g. locations, time, emitting height, concentration, amount)

can have different air quality impacts. In addition, secondary air pollutants such as

ozone are not emitted directly, but instead are formed from their precursors through

a series of complex physical and chemical processes in the atmosphere. Nonlinear

relationships between concentrations of secondary species and precursor emissions

are observed. Therefore, the amount, alone, of emissions cannot be directly used to

evaluate the air quality impacts from different sources.

Three-dimensional photochemical air quality models (i.e. source-oriented air

quality models), which are capable of simulating air pollutant concentrations and

how those levels change in response to different levels of emissions, are usually
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employed to investigate the main causes. In this approach, physical and chemical

processes in the atmosphere are described using the atmospheric diffusion-reaction

equation, which is solved numerically. Different relationships between concentrations

and emissions are expected for different air pollutants due to their unique behaviours

in the atmosphere. Impacts of varying meteorological and emission conditions are

addressed by detailed meteorological and emission inputs respectively.

Accuracy of simulations from the air quality models and their applications is

greatly impacted by uncertainties in model formulation and parametrization, initial

and boundary conditions, and meteorological and emission inputs. Among these

sources of uncertainty, emissions are regarded as one of the largest (Guenther et al.

[60], Placet et al. [161], Russell and Dennis [173], Sawyer et al. [183]). Impacts

of emission uncertainties have been evaluated by both sensitivity and uncertainty

analysis. Sensitivity analysis of air quality models estimate how model outputs

change with inputs and has been applied to evaluate model performance, investi-

gate relationships between outputs and inputs, and identify sensitive input variables.

However, estimated sensitivity coefficients of model simulations to emission inputs

can partially reveal the impacts of emission uncertainties on air quality modelling,

since responses of simulation uncertainties are also impacted by the levels of emission

uncertainties. Uncertainty analysis, which takes into account not only the sensitiv-

ity coefficients but also quantified emission uncertainties, is usually conducted to

estimate overall uncertainties in model simulations.

The magnitude of emissions uncertainties differs by sources and pollutants. For

instance, sulphur dioxide (SO2) emissions estimated by Continuous Emissions Mon-

itoring (CEM) data for electricity generating utilities (EGU) are less uncertain than

volatile organic compounds (VOCs) emissions from mobile sources. However, evalu-

ating impacts of emission uncertainties on air quality modelling requires quantified

emission uncertainties, which are often described using probability distributions.
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Emission uncertainties can be quantified by inverse air quality modelling (top-down),

propagation of input uncertainties (bottom-up), encoding of expert elicitation, or a

mixture of these methods.

Inverse air quality modelling estimates uncertainty factors of emissions by com-

paring simulation results from air quality modelling and ambient/satellite measure-

ments using various techniques. Such techniques include Kalman filtering, ridge

regression, and Bayesian least squares method (Gilliland et al. [53], Hartley and

Prinn [70], Mendoza-Dominguez and Russell [128], Shim et al. [185] ). This method

can be used for uncertainties in total emissions, emissions during different periods,

within different regions or from different source categories. However, the quality

of such results is largely limited by the capability of air quality models and the

availability of observation data. Uncertainties in other parts of the models and the

inputs can cause uncertainties in such estimates.

Emission uncertainties have also been evaluated by propagation of uncertainties

in emission modelling inputs (Hanna et al. [65]). Input uncertainties are quantified

by statistical analysis of measurement data or encoding of expert elicitation. Expert

elicitation refers to the method in which “experts” are asked to give estimates of

uncertainties based on their experience (Morgan and Henrion [139]). This method

is usually applied when relevant data are not available, or there is a gap between

available data and desired variables. Quantified input uncertainties are described

by probability distributions, and then are propagated through the emission models

using either analytical or numerical methods. When emissions models are nearly

linear and emission uncertainties are small, an analytical method can be used. Other

circumstances require numerical methods, of which the Monte Carlo method is the

most popular due to its flexibility.

In addition to estimation of uncertainties in emission modelling inputs, expert
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elicitation has also been applied to directly estimate emission uncertainties (Bergin

et al. [13], Hanna et al. [66], Hanna et al. [67]). As input uncertainties are

propagated through emission modelling, analytical or numerical methods can be

used to propagate emission uncertainties though air quality models.

Impacts of emission uncertainties can theoretically be quantified for any mod-

elling systems or air pollutants using methods summarized above. However, propa-

gation emission uncertainties through a complicated air quality model using numer-

ical methods is rather computationally expensive, and thus their applications are

greatly impeded. In addition, current applications focus on quantification of uncer-

tainties in ozone simulations, and uncertainties in fine particulate matter (PM2.5).

This thesis evaluates the emission uncertainties associated with and their im-

pacts on air quality modelling, with special attention to NOX emission. Uncertain-

ties in emission inventories are regarded as one of the major sources of uncertainty

in air quality modelling. Their impacts on ozone formation and emission control

efficiencies during a future year with the base year episodes have been evaluated

using improved inventories by Matérn covariance function based Extended Frac-

tional Kalman Filter (EFKF) which is calculated by a decoupled direct method im-

plemented in The Air Pollution Model-Chemical Transport Model (TAPM-CTM).

Large emission inventory uncertainties for point NOX emission which has elevated

ozone concentrations in NSW region due to mobile sources, point sources inside

and outside NSW, and NSW anthropogenic VOC emissions in a decreasing order,

with anthropogenic VOC emissions having their primary impacts in the NSW area.

Uncertainties in NSW mobile NOX emissions have the largest impact on uncertain-

ties in ozone concentrations, with similar impacts of uncertainties in emissions from

other source categories on a smaller scale. A large variance in the impacts of emis-

sion inventory uncertainties is found within an episode, while the variance between

episodes is small. Reducing NOX emissions from NSW mobile sources is the most
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efficient way to control ozone, followed by point NOX emissions inside and outside

of NSW and anthropogenic VOC emissions. Mean emission control efficiencies with

consideration of emission inventory uncertainties indicate similar ranking, with sig-

nificant uncertainties associated with emission control efficiencies. Uncertainties in

emissions sometimes even lead to negative emission control efficiencies, i.e. ozone

concentrations increase with emission reduction. Better understanding of emissions

in NSW is required for the development of a reliable control strategy in the NSW

area.

2.7.3 Types of Kalman Filtering

In recent years, the implementation of the Kalman filter as a relatively simple yet

powerful adaptive bias adjustment scheme for the correction of air quality forecasts

has grown considerably. Basically, these schemes express the corrected concentra-

tions as a linear function of the forecast values, estimating the coefficients of this

linear relation by means of the Kalman filter, and using the difference between the

observed and forecast values of the preceding period as a constraint.

In [88], emission inventory of PM pollutants for Santiago, Chile, was adjusted by

using an inversion method with the Kalman filter [95] and observation data. Ozone

forecasts have been done using Kalman filter bias corrections [30]. A similar study

was done by [196] via the inversion method for Carbon Monoxide (CO) emissions

using an Ensemble Kalman Filter (EnKF), where improvements were achieved by

reducing uncertainty of the emission inventory of CO for air quality management in

Beijing, China. [216] have estimated aerosole using KF. In [133] authors have used

Extended Fractional Kalman Filter (EFKF) to estimate environmental data. In

[188], the EFKFmathematical model has been developed and simulation results have

shown that EFKF has more accuracy than conventional Kalman Filter. Unscented

Transform (UT) can be used for forming a Gaussian approximation to the joint
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distribution of random variables. Environmental data can be treated as random

variables [91, 92, 219, 220].

This thesis evaluated the emission uncertainties and used Extended Fractional

Kalman filter to improve inventory. All details are given in Metia et al.[131].

2.7.4 Gaussian Process

Environmental data has a Gaussian nature which is known as the Gaussian

Process. A Gaussian Process is simply a collection of random variables which have

a multivariate normal joint distribution. All details are given in book [181]. In [178],

new filters and smoothers are established to estimated Gaussian Process. Basically,

pollution profile is a time series and in [69] the relationship is established between

time series and state-space model. Authors have used Matérn covariance function

to smooth data.

Gaussian models are widely used in atmospheric dispersion modelling, which are

based on Gaussian process and are often “nested” within Lagrangian and Eulerian

models. They are based on a Gaussian distribution of concentration in the plume

in vertical and horizontal directions under the steady state conditions (Holmes and

Morawska [76]). Gaussian models are popular, particularly for the following reasons:

• The Gaussian models represent a solution of equation under some simplifying

assumptions (e.g., constant wind and eddy diffusivity coefficients) and they

are consistent with the random nature of pollutant profile.

• Their simplicity allows for fast computation even with limited computational

resources. This is an essential property when we attempt to employ assimila-

tion techniques based on Monte Carlo approach or Kalman filtering, when the

model must be repeatedly run for many times.

• The analytical form of the Gaussian models allows for a good insight and a
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transparent evaluation of experimental results.

• The Gaussian models are easy to implement and they can be embedded into

various forecasting and assimilation systems.

• Validity of the Gaussian models have been satisfactorily verified for different

meteorological conditions via comparison to the results of field tests with tracer

releases, when the agreement of measured and modelled concentration was

assessed.

2.7.5 Matérn Covariance Function

Atmospheric data assimilation techniques rely on parametric models for spatial

correlation functions. The most popular and most often used family is the Matérn

class [55, 56, 156]. Authors have used Matérn covariance function for smooth pro-

cesses on a sphere [87] and in [93], have used Matérn function for global processes.

In [134, 135], authors have used Matérn function to analyse the soil properties.

Similarly, this function is used in geostatistical applications [125, 153]. Modelling

spatially dependent data, Matérn covariance function used is crucial for produc-

ing accurate predictions and estimating prediction uncertainties [61]. Multivariate

data sets, in particular, bivariate data sets, have become very common in many real

problems. In [114] authors have used Matérn function in real data sets. Spatial or

spatio-temporal models have been proven to be useful in a variety of fields includ-

ing environ-metrics, hydrology, economics, among many others. One of the most

important parts in spatial and spatio-temporal analysis is the modelling of the co-

variance function. In [83], researchers have introduced valid parametric covariance

models for univariate and multivariate spatio-temporal random fields. In [69, 182],

authors show GP regression models in machine learning can be reformulated as

linear- Gaussian state space models with Matérn covariance function, which can be

solved exactly with classical Kalman filtering theory.
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2.8 OMI Data Inverse Techniques

NOX acts as a chemical precursor to the formation of regional ozone, acid rain,

and nitrate aerosol. NO2 is an important component of urban atmospheric chemistry

with large diurnal variations due to a strong dependence on mobile emissions and

incident sunlight. In the past few decades, catalytic converters on automobiles have

significantly reduced NOX formation by catalytic reduction to O2 and N2. This has

greatly reduced the emissions per vehicle, but regional ozone formation continues

to be a problem. Studying regional air quality using Chemical Transport Mod-

els (CTMs) such as the Community Multi-scale Air Quality (CMAQ) model (Byun

and Schere [17]) and TAPM-CTM can bring a greater understanding of atmospheric

processes to scientists, policy makers, regulatory agencies, and the community. Con-

tinuous monitoring of air quality provides a framework for evaluating model results

and increasing model accuracy. NASA’s Earth Observing Satellites (EOS) provide

air-quality researchers with a rich resource of daily global observations of the atmo-

sphere, including tropospheric NO2 column densities. Despite limitations of EOS

spatial and temporal resolution, as compared to a regional CTM, column retrievals

may prove useful for evaluating NOX emissions inventories.

The lifetime of NOX is short, so the presence of high values in the troposphere

is indicative of daily emissions, and errors in a CTM’s NOX emission inventory

should be evident when comparing satellite retrievals and model results for aver-

age daily NO2. Emissions inventories for on-road vehicles have been particularly

criticized (Parrish [154]) and are difficult to predict given the variability of vehi-

cle emissions. Recently, tropospheric NO2 retrievals by satellite have been used to

evaluate NOX emission inventories used in CTMs through Kalman filter inversion

(Napelenok [141]). Assimilation through adjoint inverse modelling using 4d-var al-

gorithms have also been developed as described in Kurokawa et al. [78] and Elbern
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et al. [37].

The OMI (Ozone Monitoring Instrument) is a Dutch instrument flying on the

NASA Aura satellite launched in July 2004. OMI has excellent spatial resolution

with pixels approximately 13 km × 24 km at nadir in normal operational mode. The

emission inventories of NOX were compared with satellite and analysed [78, 102,

228]. Recent trend of ground level NO2 is compared with satellite data to establish

correlation with in situ measurements from air quality network [12, 98, 100, 120,

222]. Air quality from dust episodes are investigated with satellite data, transport

model and synergistic ground-level based data [64]. Power plant NOX emissions

are estimated using satellite data [28]. A statistical model has been established

to estimate PM by satellite imagery of smoke [168]. An inverse modelling was

developed and tested for identifying possible biases in emission inventories using

satellite observations [141].

This thesis evaluates the emission uncertainties and compares data with OMI

data. All details are given in Metia et al.[130].

2.9 Artificial Intelligence Modelling

2.9.1 Artificial Neural Networks Modelling

An Artificial Neural Networks (ANNs) is a mathematical representation of the

operation of biological neural networks; in other words it is an emulation of a biolog-

ical neural system. ANNs are highly adaptive to non-parametric data distributions

and make no prior hypotheses about the relationships between the variables. ANNs

are also less sensitive to error term assumptions and they can tolerate noise, chaotic

components and heavy tails better than most of the others computational methods.

An ANN consists of an input layer, one or more layers of neurons (mathematical

entities whose behaviour is governed by a predefined function) and an output layer.
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Each ANN has to be trained first, by using a number of data instances as inputs,

and by trying to “fit” to some other data instances (output), commonly in terms

of predicting the (future) behaviour of parameters of interest with the aid of their

history (Kyriakidis et al. [109]).

The literature about the use of Artificial Neural Network for air quality modelling

is vast and it details an approach which has been extensively adopted worldwide.

Gardner and Dorling [49] were among the first researchers to apply the multilayer

perception, one type of artificial neural network, in the atmospheric sciences. In

air quality research, neural networks have been successfully applied to model some

air quality predictions, mainly in forecasting air pollutant concentrations [62, 217].

Diffusive sampling measurements and artificial neural networks evaluation was ap-

plied to calculate the average spatial distribution of NO2 pollutant[158]. In [23],

neural network based ensemble methodology was applied to improve the accuracy

of meteorological input fields for regional air quality modelling. Hybrid ANNs was

used to forecast PM2.5 pollution using air mass trajectory [42]. A similar approach

was used to forecast PM2.5 during haze conditions [136].

2.9.2 Fuzzy Logic Modelling

Environmental and biological systems are inherently stochastic due to unavoid-

able unpredictability (randomness). Some quantities are random even in principle,

while some quantities that are precisely measurable are modelled as “random” quan-

tities as a practical matter (due to cost and effort involved with continuous and pre-

cise measurement). For example, in air pollution systems, the turbulent atmosphere

and unpredictable emission-related activities contribute to “natural uncertainty”.

In such cases, a precise estimation of system properties is not possible, and the un-

certainty can be characterized through ensemble averages. On the other hand, the

modelling of emissions from a source are sometimes modelled via a mean value and



42

a “random error”, since it is impractical to continuously monitor the emissions.

Fuzzy theory is a method that facilitates uncertainty analysis of systems where

uncertainty arises due to vagueness or “fuzziness” rather than due to randomness

alone [51]. This is based on a superset of conventional (Boolean) logic that has been

extended to handle the concept of partial truth truth values between “completely

true” and “completely false”. It was introduced by Zadeh as a means to model the

uncertainty of natural language [229]. Fuzzy theory uses the process of “fuzzifica-

tion” as a methodology to generalize any specific theory from a crisp (discrete) to a

continuous (fuzzy) form.

A vast amount of literature is available on fuzzy theory and application in en-

vironmental science. In [18] a fuzzy inference system was used to classify predicted

air quality index. In [227], adaptive neuro-fuzzy logic method had been proposed to

estimate the impact of meteorological factors on SO2 and total suspended particular

matter (TSP) pollution levels over an urban area. Fuzzy-based air quality index for

air quality assessment had been established to monitor air quality of Iran [194]. In

[145], urban air quality using fuzzy synthetic evaluation techniques had been used

in Turkey. Researchers had established Neuro-fuzzy systems for air quality control

in Italy [19].

2.9.3 Genetic Algorithm Modelling

The genetic algorithms (GAs) basic principles were first proposed by Holland

(1975). GAs are iterative search heuristics mimicking natural evolution by means of

selection, recombination and mutation. The theoretical background of GAs appears

to be limited, but the building block hypothesis has been commonly proposed (Gold-

berg [57]). The hypothesis suggests that by decomposing the overall problem into

sub problems and solving these sub-problems separately, GA can find good solutions

to the overall optimization problem. GA has many appealing features compared to
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other search and optimization algorithms, such as the ability to:

• Perform global search

• Escape local minima

• Deal with discontinuous and multi-modal functions

• Perform parallel processing (algorithm can be paralleled)

• Easy to implement

Genetic algorithm was used as a tool to predict accurate air temperature [214].

Ozone concentration forecast method based on genetic algorithm optimization was

established in China [43]. The inputs for the model were selected and optimized

using a genetic algorithm to estimate PM10 [9]. Genetic algorithm was applied to

optimize the emission inventory for the CMAQ model [115].

2.9.4 Support Vector Machines Modelling

In modern techniques for supervised learning, support vector machines are com-

putationally powerful, while Gaussian processes provide promising non-parametric

Bayesian approaches. In the early 1990s, Vapnik and his co-workers invented a com-

putationally powerful class of supervised learning networks, called support vector

machines (SVMs) for solving pattern recognition (Boser et al. [15]). The new al-

gorithm design is firmly grounded in the framework of statistical learning theory

developed by Vapnik, Chervonenkis and others (Vapnik [212]), in which VC dimen-

sion (Vapnik and Chervonenkis [211]) provides a measure for the capacity of a neural

network to learn from a set of samples. The basic idea of Vapnik’s theory is closely

related to regularization, nevertheless capacity control is employed for model selec-

tion. Later, SVMs were adapted to tackle density estimate and regression (Vapnik

[213]).
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Recently, SVMs have been introduced in air quality prediction and pollutant

profile estimation. In [152], investigators have presented an application of the Sup-

port Vector Regression algorithm (SVMr) to the prediction of hourly ozone values

in the Madrid urban area. Similar studies had been done in Brazil to forecast O3

using Support Vector Machine (SVM) [118]. The hourly CO concentrations had

been predicted using the SVM and the hybrid Partial Least Square-Support Vector

Machine (PLS-SVM) [225]. In [117], SVM method was used to predict ground level

ozone which was compared with other existing methods.

2.9.5 Wavelet Modelling

Real world statistical material often takes the form of a sequence of data, in-

dexed by time. Such data are referred to as time series and occur in several areas

of human endeavour: share prices in financial markets, astrophysical phenomena

like sunspots, sales figures for a business, demographic information of a geograph-

ical entity, pollutant profile from monitoring stations amongst others. Time series

measurements may be continuous - made continuously in time - or discrete i.e. at

specific, usually equally spaced intervals. The essence of time series analysis is that

there are patterns of repeated behaviour that can be identified and modelled. The

repetition, either of smooth or turbulent behaviour, is essential for generalization.

Conventional statistical methods, soft computing methods, and hybrids have been

used to characterise repeating patterns in time series data. It is challenging to

predict accurate air quality from time series.

An alternative approach to the generation of better forecast accuracy might be

to reduce data complexity via pre-processing, rather than develop newer methods.

Various strategies have been used for pre-processing data in order to make data

stationary, or to obtain so-called components of time series. In particular, wavelet

analysis has been widely used for decomposing time serial data, prior to the appli-
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cation of modelling techniques. Wavelets are powerful analysis tools that provide

both temporal and frequency representations of a time series, by decomposing data

into different frequency components with the temporal resolution being matched to

the scale. In the next section, we provide an overview of time and frequency domain

analysis of time series, and discuss the use of the wavelet analysis for the decompo-

sition of time series. Conventional and soft computing methods so far described use

time domain properties of data for the generation of models. However, it has been

argued that hidden structures may be present in time series that are not readily

apparent in the time domain, but can be detected in frequency domain analysis of

such series (Chatfield [21]). Conventionally, a spectral plot is used to examine such

hidden structures, particularly the cyclic structure of time series, in the frequency

domain. The spectral plot is able to determine the number of frequency components

and to detect the dominant cyclic frequency, if any, which is embedded in a time

series, even in the presence of noise.

Using a wavelet decomposition algorithm, particle concentration time series were

separated to predict fine particles [174]. Multi-resolution wavelet-based simulation

of transport and photochemical reactions in the atmosphere was developed to model

the environment [73].

2.10 Statistical Modelling

The adverse health risks associated with ambient air pollution are typically esti-

mated from daily ecological (population level) data using Poission log-linear models.

A number of studies have also used additive models (see for example Ballester et

al. [41] and Andersen et al. [8]). A majority of these type of studies are based on a

linear model. Typically, the data used in air pollution and health studies comprises:

a daily count of mortality or morbidity events from the population living within

the study region, ambient air pollution concentrations which have been measured
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at a number of fixed site locations, and; meteorological covariates, all of which are

routinely collected for other purposes. Due to the ecological nature of these data

there are a number of statistical challenges which need to be addressed in order to

produce an appropriate model. It is important that researchers should build appro-

priate models, not just for statistical reasons but also for their use in accountability

research (Health Effects Institute [72]). For example, the health risks associated

with air pollution are typically quite small and their estimation can often prove

difficult, so use of a statistically realistic model is therefore vital. As a result of

this it has become increasingly popular for researchers to use statistical modelling

techniques which are more complex and require more computational power. It is

therefore necessary for a choice to be made about the trade-off between using a

simple model, which will require less computational effort and can be more easily

interpreted, and using complex models, which require much more computational

effort but will be more flexible and make fewer unrealistic assumptions about the

data.

In the case of a nonlinear model, nonparametric regression of pollutant con-

centrations on wind direction was combined with bootstrap hypothesis testing to

provide statistical inference regarding the existence of a local/regional air quality

impact [22]. Similarly, Semi-parametric statistical models have been established to

predict NOX near airports [209]. China’s regional air pollutants spatial analysis was

done using regression analysis [32]. Various statistical techniques had been used to

model air quality[7]. ADMS-Urban performances have been assessed through sta-

tistical analysis, by comparing carbon monoxide concentrations [171]. Regression

method had been used to estimate emission [230].
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2.11 Summary

This chapter has reviewed some of the approaches that are commonly being prac-

tised by researchers and the regulation authorities for managing air quality. There

are three important strategies involving the air quality monitoring; the pollutants’

emission inventory and assessment, and air quality modelling. There are two most

effective and accurate in the assessment process; however, its results can only be

used in the region of interest. Therefore, the modelling approach is used because it

can add benefit in many ways, such as through its ability to estimate accurately the

pollutants’ spatial distribution, and can be used in the emission reduction program.
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Chapter 3

Application of Kalman Filtering to

Environmental Data

3.1 Introduction

The chapter begins with the generalisation that optimal filtering refers to the

methodology that can be used for estimating the states of time varying systems,

which are measured directly or indirectly observed through noisy measurements.

The state of the system is defined by the dynamic variables such as positions, ve-

locities and accelerations, which describe the physical variables of the system. The

noise in the measurements is defined as a noise in the sense that the measurement

values are uncertain or unreliable, that is, even if we knew the true state the mea-

surements would not be deterministic functions of the state, but would have a certain

distribution function of possible values. The time series of the state is modelled as

a dynamic system, which is perturbed by a certain process noise. This noise is used

for modelling the uncertainties in the system dynamics and in most cases the system

is not truly stochastic, but the stochasticity is only used for representing the model

uncertainties.

3.2 Optimal Filtering

The above-mentioned property of the system can be modelled as time vary-

ing systems of the above type are very popular in engineering applications. These

kind of models can be found, for example, in environmental engineering, navigation,

robotics, aerospace engineering, space engineering, remote surveillance, telecommu-
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nications, physics, audio signal processing, control engineering, finance, biomedical

engineering and many other fields.

The history of optimal filtering begins from the Wiener filter [224], which is

a spectral domain solution to the problem of (least squares) optimal filtering of

stationary Gaussian signals. The Wiener filter is still popular in communication

applications, signal processing, digital signal processing, process control and system

identification. The drawbacks of the Wiener filter are that it can be applied to

stationary signals or stationary systems and that the construction of a Wiener filter

is often mathematically demanding and these mathematics cannot be avoided (i.e.,

made transparent). Due to the high mathematical calculations the Wiener filter can

only be applied to simple low dimensional filtering problems.

The success of optimal linear filtering in engineering applications is mostly due

to the article of Kalman [95], which describes the recursive solution to the optimal

discrete-time (sampled) linear filtering problem. Kalman filter is popular in control

system engineering, aerospace engineering, process control engineering, telecommu-

nications and many other fields. The main reason behind its success is that the

Kalman filter can be understood easily and applied with very simple mathematical

machinery unlike the Wiener filter. Also, despite its mathematical simplicity, the

Kalman-Bucy filter [96] contains the Wiener filter as a special case.

3.3 Optimal Continuous-Discrete Filtering

All natural processes are continuous, not discrete. Time is also continuous,

often a physically system is approached as a discrete-time filtering rather than a

continuous-discrete filtering [85]. In continuous-discrete filtering the state dynamics

are modelled as continuous-time stochastic processes, that is, as stochastic differen-

tial equations[97, 144] and the measurements are obtained at discrete instances of

time. This differs from the discrete-time filtering, because in that approach both
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the dynamics and measurements are modelled as discrete-time processes.

The idea behind continuous-discrete filtering can be shown by considering a time

series, which is not measured on each time step but instead between the discrete

time steps (measurement steps) there are additional states as shown in (Figure 3.1).

If we now consider that we add an infinite number of additional states between the

measurements, the state sequence becomes a random function, which is observed at

discrete instances of time.

Figure 3.1 : Continuous-discrete filtering.

The random functions are mathematically modelled as stochastic differential

equations (SDE), which can be considered as ordinary differential equations driven

by random white noise processes v(t). It is defined as:

dx

dt
= f(x, t) + L(t)v(t), (3.1)

where x(t) is the state, f(x, t) is the drift function, L(t) is the dispersion matrix, and

v(t) is the white noise process. In continuous-discrete filtering the measurements yk

are obtained at discrete time instances (t1, t2, · · · ). The measurement model is of
the same form as in discrete-time filtering.

3.4 Stochastic Differential Equations

This section reviews the Itô calculus and the theory of stochastic differential

equations. The presentation is quite short and the mathematical technicalities are
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kept to minimum, but still rigorous enough for the purposes of theory of optimal

filtering.

As discussed in previous sections, many dynamic processes in engineering, physics,

finance, environment and other fields can be modelled as differential equations with

an unknown driving function v(t), which is given in (3.1). Details of the theorems

and definitions are given in books [97, 144]. The unknown function v(t) would be

ideally modelled as a process that is Gaussian and completely “white” in the sense

that v(t) and v(s) are uncorrelated (and independent) for all t �= s. However, the

problem is that this kind of process cannot exist in any mathematically or physi-

cally meaningful sense [144]. Integrating the Equation (3.1) once with respect to

time gives the stochastic integral equation.

x(t)− x(s) =

∫ t

s

f(x, t)dt+

∫ t

s

L(x, t)v(t)dt. (3.2)

The first integral on the right hand side is a general integral, but the second integral

is complicated because of the appearance of the white noise process. Fortunately,

this integral can be defined to be a integral with respect to the stochastic “measure”

β(t) , which has independent Gaussian increments:∫ t

s

L(x, t)w(t)dt
Δ
=

∫ t

s

L(x, t)dβ(t) (3.3)

The process β(t) is known as the Brownian motion which is defined in the next

section. This kind of integral is known as a stochastic or Itô integral. White noise

is then, at least in a formal sense, the time derivative of the Brownian motion

v(t) = β(t)/dt.

3.5 Stochastic Processes and Brownian Motion

Stochastic process: An indexed collection of random variables is called a

stochastic process.

X (ω) = {x(t;ω), 0 ≤ t < ∞} (3.4)
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• Each ω �→ x(t;ω) is a measurable function defined on a probability space

(Ω,A ,P).

• For each ω ∈ Ω the function t �→ x(t;ω) is called the sample path of the

process.

Standard Brownian motion: A process β(t) is called a standard Brownian motion

if it has the following properties:

1. β(0) = 0.

2. β(t1), β(t2)−β(t1), · · · , β(tk)−β(tk−1) are independent for all t1 < t2 < · · · <
tk−1 < tk < ∞

3. β(t)− β(s) ∼ N(0, t− s) for every 0 < s < t < ∞.

4. The sample t �→ β(t;ω) is continuous for all ω ∈ Ω.

3.6 Linear State Space Estimation

The basic representation of the state space models considered in this thesis are

linear models, which can be expressed with equations of the following form:

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk, (3.5)

where xk ∈ Rn is the state of the system on the time step k, yk ∈ Rn is the

measurement of the system on the time step k, qk−1 ∼ N(0, Qk−1) is the process noise

on the time step k − 1, k, rk ∼ N(0, Rk) is the measurement noise on the time step

k, Ak1 is the transition matrix of the dynamic model, Hk is the measurement model

matrix, the prior distribution for the state is x0 ∼ N(m0, P0), where parameters m0

and P0 are set using the information known about the system under the research

work.
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3.6.1 Discretization of Continuous-Time Linear Time-Invariant Systems

To be able to define the Kalman filter and to use it properly is mentioned in the

next section. The model is defined in the Equation (3.1) and must be discretized

somehow, so that it can be described with a model of the form which is given in

Equation (3.5). All the details are given in articles [11, 179]. The solution for the

discretized matrices Ak and Qk can be given as

Ak = exp(FΔtk) (3.6)

Qk =

∫ Δtk

0

exp(F (Δtk − τ))LQcL
T exp(F (Δtk − τ))Tdτ, (3.7)

where Δtk = tk+1 − tk is the step size of the discretization. The matrix Qk can still

be calculated efficiently using the following matrix fraction decomposition:⎛⎜⎝ Ck

Dk

⎞⎟⎠ = exp

⎧⎪⎨⎪⎩
⎛⎜⎝ F LQcL

T

0 −F T

⎞⎟⎠Δtk

⎫⎪⎬⎪⎭
⎛⎜⎝ 0

I

⎞⎟⎠ . (3.8)

The matrix Qk is then given as Qk = CkD
−1
k .

3.6.2 Kalman Filter

The classical Kalman filter was first developed by Rudolph E. Kalman in his

paper [95]. The purpose of the discrete-time Kalman filter is to provide the closed

form recursive solution for estimation of linear discrete-time dynamic systems, which

can be described by the Equation (3.5).

Kalman filter has two steps: the prediction step, where the next state of the

system is predicted given the previous measurements, and the update step, where

the current state of the system is estimated given the measurement at that time

step. Details are given in articles [11, 179]. The steps translate to equations as

follows:



54

• Prediction:

m−
k = Ak−1mk−1

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1. (3.9)

• Update:

vk = yk −Hkm
−
k

Sk = HkP
−
k HT

k +Rk

Kk = P−
k HT

k S
−1
k

mk = m−
k +Kkvk

Pk = P−
k −KkSkK

T
k , (3.10)

where m−
k and P−

k are the predicted mean and covariance of the state, respectively,

on the time step k before seeing the measurement, mk and Pk are the estimated

mean and covariance of the state, respectively, on time step k after seeing the mea-

surement, vk is the innovation or the measurement residual on time step k, Sk is

the measurement prediction covariance on the time step k and Kk is the filter gain,

which tells how much the predictions should be corrected on time step k. In this case

the predicted and estimated state covariances on different time steps do not depend

on any measurements, so that they could be calculated off-line before making any

measurements provided that the matrices Ak, Qk, Rk and Hk are known on those

particular time steps.

A Gaussian Process is a special case of a stochastic process in which any finite

combination of samples has a joint Gaussian distribution. In fact GP can be seen as

an infinite dimensional generalization of the multivariate normal distribution. GP

can be defined by its mean m(x) and covariance k(x, x
′
) function:

f(x) ∼ GP (m(x), k(x, x
′
)). (3.11)



55

We selected the covariance function from the Matérn family. This covariance func-

tion is defined in articles [74, 170]. It has been used in smoothing sphere [87] and

used in global process [93]. It has application is in the non stationary model [103].

Detail of Matérn covariance function and Gaussian Process are described in the next

sections.

3.6.3 Gaussian Progress Regression

Gaussian process (GP) regression [143, 170] concerns the problem of estimating

the value of a function f : Rd �→ R on arbitrary input point t∗ ∈ Rd, given a set of

data D =
{
ti, yi

}n

i=1
, where the training targets yi ∈ R are usually assumed to be

the function values corrupted with Gaussian noise:

yi = f(ti) + εi, εi ∼ N(0, σ2
noise) (3.12)

The non-parametric GP approach is based on assuming that the joint prior for values

of f on any collection of points t is Gaussian, commonly denoted as

f(t) ∼ GP (0, k(t, t
′
, θ)), (3.13)

where k is a covariance function with hyperparameters θ. This means that the prior

for the function values on a finite set of input points
{
t1 . . . tn

}
is p(f(t1), . . . f(tn) ∼

N(0, K), where the entries of the covariance matrix K are formed by evaluating the

covariance function as [K]ij = k(ti, tj, θ). Due to the well known properties of the

Gaussian distribution it is straightforward to show that given the data set D and

hyperparameters θ, the posterior of f on input t∗ is also Gaussian

p(f(t∗)|y, θ) = N(μGP (t∗), σ2
GP (t∗)), (3.14)

with mean and variance

μGP (t∗) = k∗,f (K + σ2
noiseI)

−1y

σ2
GP (t∗) = k(t8, t∗)− k∗,f (K + σ2

noiseI)
−1kT

∗,f , (3.15)
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where the element i of row vector k∗,f is the prior covariance between f(t∗) and f(ti)

as[k∗,f ] = k(t∗, ti, θ).

3.6.3.1 Spectra and Covariance Functions of Stochastic Differential Equa-

tions

Our main aim is to represent the random process f(t) having the covariance func-

tion k(τ) as output of a linear time invariant (LTI) stochastic differential equation

(SDE). In particular, we consider mth order scalar LTI SDEs of form

dmf(t)

dtm
+ am−1

dm−1f(t)

dtm−1
+ · · ·+ a1

df(t)

dt
+ a0f(t) = w(t), (3.16)

where a0, . . . , am−1 are known constants and w(t) is a white noise process with

spectral density Sw(ω) = q. This can be written as first order (vector) Markov

process

dx(t)

dt
= Fx(t) + Lw(t), (3.17)

where the state x(t) contains the derivatives of f(t) up to order m − 1 as x(t) =(
f(t)df(t)

dt
. . . d

m−1f(t)
dtm−1

)T

. The matrices F ∈ Rm×m and L ∈ Rm×1 can be written

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

. . . . . .

0 1

−a0 . . . −am−2 −am−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

This representation is known as the companion form [59] of Equation (3.16), and

there exists other forms as well (such as the canonical controllable and observable

forms [54]).

By defining H =

(
1 0 . . . 0

)T

we can extract f(t) from x(t) as f(t) = Hx(t).

This can be used to compute the power spectral density of f(t) by replacing x(t)

with Hx(t) in Equation (3.17) and formally taking the Fourier transform on both
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sides of it, which after some algebra yields

S(ω) = H (F − iωI)−1 LqLT
[
(F + iωI)−1]T HT . (3.18)

In stationary state (i.e. when the process has run an infinite amount of time) the

covariance function of f(t) is the inverse Fourier transform of its spectral density:

k(τ) =
1

2π

∫ ∞

−∞
S(ω)eiωτdω. (3.19)

This can be calculated more easily as in [202]

k(τ) =

⎧⎪⎨⎪⎩ HP∞Φ(τ)THT , if τ ≥ 0

HΦ(−τ)P∞HT , if τ < 0
(3.20)

where Φ(τ) = exp(Fτ) and P∞ is the stationary covariance of x(t). The latter can

be obtained as the solution of the matrix Riccati equation

dP

dt
= FP + PF T + LqLT = 0. (3.21)

3.6.3.2 Converting Covariance to Stochastic Differential Equations

Assume now that we have been given a stationary covariance function k(τ) for

f(t), and we wish to represent f(t) in form of Equation (3.17) to achieve the linear

time inference. The real question now is how to form F , L and q such that the

first component of x(t) has the desired covariance function k(τ). This is possible

to do for covariance functions, whose spectral density S(ω) can be represented as a

rational function of the form

S(ω) =
(constant)

(polynomial in ω2)
, (3.22)

which is in fact the functional form of Equation (3.18). By applying spectral fac-

torization [224, 202, 11] we can write the spectral density as

S(ω) = H(iω)qH(−iω) (3.23)
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where the transfer functions H(iω) and H(−iω) have all of their poles in upper and

lower planes, respectively. We can construct a stable (causal) Markov process with

the former, which means that when a white noise process with spectral density q is

fed as input to the system with transfer function H(iω), the output has the desired

spectral density. This leads to following frequency domain representation of the

process:

(iω)mF (ω) + hm−1(iω)
m−1F (ω) · · ·+ h0F (ω) = W (ω),

where W (ω) and F (ω) are the formal Fourier transforms of w(t) and f(t), and

h0, . . . , hm−1 the coefficients of the polynomial in the denominator of H(iω). In

time domain:

dmf(t)

dtm
+ hm−1

dm−1f(t)

dtm−1
+ · · ·+ h1

df(t)

dt
+ h0f(t) = w(t),

which is of the desired Markov form of Equation (3.12). Next we show how some of

the most widely used Matérn covariance functions can be transformed to models of

this form.

3.7 Matérn Covariance Function

Here, the Matérn family of the covariance functions has an advantage in providing

more liberty to control the smoothness as well as the spatio-temporal correlation of

the process.

kν(τ) = σ2 2
1−ν

Γ(ν)

(√
2ν

l
τ

)ν

Kν

(√
2ν

l
τ

)
, (3.24)

where l and σ2 are the length scale and magnitude hyper parameters controlling

the overall correlation scale and variability of the process, Kν is a modified Bessel-

function and ν is a parameter controlling the smoothness of the process. The spectral

density of the Matérn covariance function is obtained by:

S(ω) = σ22π
1/2Γ(ν + 1/2)

Γ(ν)
λ2ν(λ2 + ω2)−(ν+1/2), (3.25)
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where λ =
√
2ν/l is to be chosen in association with the dominant pole for the

process. In this paper we select ν = p + 1/2, where p is a non-negative integer.

Thus,

S(ω) ∝ (λ2 + ω2)−(p+1), (3.26)

which is a rational function form to be rewritten as,

S(ω) ∝ (λ+ iω)−(p+1)(λ− iω)−(p+1), (3.27)

from which the transfer function of the stable process can be extracted as

H(iω) = (λ+ iω)−(p+1). (3.28)

The corresponding spectral density of the white noise process v(t) is

q =
2σ2π1/2λ(2p+1)Γ(p+ 1)

Γ(p+ 1/2)
, (3.29)

where Γ(p+ 1) = p! and Γ(1/2 + p) = (2p−1)!!
2p

√
π.

3.7.1 Matérn Function Family

Details are discussed in the previous Section 3.7. Matérn covariance function is

used in environmental data to estimate pollution profile [132, 133].

When parameters of a dynamic system is unknown, there is a problem for es-

timation using the EKF. To overcome it, the Extended Fractional Kalman Filter

(EFKF) can be a better option, especially when environmental models are highly

uncertain and nonlinear. Fractional calculus is defined in the next Chapter.

3.7.2 Length Scale Effect

Here, the Matérn correlation function with smoothness parameter ν = 3
2
or ν = 5

2

is known as a higher-order autoregressive function. With p = 2, the value of ν is

given by ν = 2 + 1
2
= 5

2
and the value of λ is calculated by λ =

√
2ν/l =

√
5/l,



60

where l is the length scale. Similarly p = 1, the value of ν is given by ν = 3
2
and

λ =
√
2ν/l =

√
3/l. For higher value p = 3 and λ =

√
2ν/l =

√
7/l. It is mentioned

in [38] that p = 2 produces realisation that are neither very smooth nor very noisy.

The length scale is known as the correlation length of the Gaussian process. A large

correlation length signifies an input with a very smooth and predictable effect on

the simulator output while a small correlation length denotes an input with a finer

scale influence on the output. The length scale varies in different applications with

various spatial ranges.

In [193], l = 0.1m was chosen for resonator maps for temperatures. In [69],

l = 10m was selected in their generated time series while the authors in[74] adopted

l = 5m and l = 10m in diffuse optical tomography experiments. In soil dynamics

modelling, [134] picked l = 100m as a length scale parameter to analyse the soil

properties, where the average distance between sampling points was around 100m.

In [55] the authors used l = 600km for atmospheric data analysis in the ionosphere

region of Earth’s upper atmosphere, whose rage was about from about 60km to

1, 000km altitude. In [104], authors had used 42km as length scale in atmospheric

data for analysing anisotropic structures. In [99], researchers had used length scale

of 6km for horizontal direction and 70m for vertical direction in troposphere region.

The approximate height of the troposphere is 5km to 10km. In our case, 20 moni-

toring stations are situated across the state of New South Wales (NSW), as shown

in (Figure 2.1), and data are collected 24 hours a day. The average distance between

stations, calculated by using station coordinates, is 72.625km, which is used here

as the length scale. As a result λ =
√
5/l =

√
5/72625. The corresponding Linear

Time Invariant Stochastic Differential Equation (LTI SDE) model, with a triple pole
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at −λ, reads therefore

dx(t)

dt
=

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

−λ3 −3λ2 −3λ

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

F

x(t) +

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

L

v(t), (3.30)

where the spectral density q of white noise v(t) is computed by Equation 3.29. Here

x(t) is station data, initial mean

⎡⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎦, initial covariance matrix
⎡⎢⎢⎢⎢⎣
0.1 0 0

0 0.1 0

0 0 0.1

⎤⎥⎥⎥⎥⎦,
assumed measurement variance 0.52 and spectral density of process noise 10−6.

3.7.3 Results and Discussion

In this section, different values of ν are considered to smooth the environmental

data. In [38], ν = 5
2
is used to smooth the data. Table 3.1, shows Mean Squared

Error (MSE) for different parameters profiles varying value of ν. Table 3.1 shows

the mean squared error (MSE) of NO, NO2, O3 and Temperature using the EKF

with different values of ν. It shows that ν = 7
2
has a smaller MSE value compare to

other values of ν. It can be also interpreted from Figure 3.2 that ν = 7
2
has better

prediction than other values of ν. Similarly, Figure 3.3, Figure 3.4 and Figure 3.5

are corresponding figures for NO2, O3 and Temperature respectively for different

values of ν.

In order to further evaluate the algorithms, the proposed EKF with different

values of ν are compared in terms of regression correlation value R. The correlation

coefficient of different values of ν are shown in Table 3.2. As depicted in Figure 3.6,

Figure 3.7, Figure 3.8 and Figure 3.9 for the regression between output (Y) and

target (T), ν = 7
2
is highly-correlated with the measurement data collected at mon-

itoring station Chullora.
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Table 3.1 : MSE for different parameters profile

NO NO2 O3 Temperature

ν = 3
2

1.1274 0.1308 1.1538 7.9824

ν = 5
2

0.6122 0.0637 0.5592 3.3068

ν = 7
2

0.2143 0.0200 0.1097 0.4637

Table 3.2 : Regression correlation coefficient of different parameters profile for dif-

ferent values of ν

ν = 3
2

ν = 5
2

ν = 7
2

NO 0.54330 0.85768 0.93727

NO2 0.55847 0.84911 0.94974

O3 0.48124 0.86258 0.97057

Temperature 0.57627 0.89629 0.98282

3.8 Summary

The Kalman filter is a linear filter that can be applied to a linear system. Un-

fortunately, linear systems do not exist in most real-life situation. All mechanical,

electrical, biological and other existing systems are ultimately nonlinear. However,

many systems are close enough to linear, so that linear estimation approaches (e.g.,

standard Kalman filters) give good results. However, “close enough” can only be

carried so far. Eventually we run across a system that does not behave linearly even

over a small range of operation, and the standard Kalman filter no longer gives good
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results. In this case, we need to explore nonlinear filters. These nonlinear filters are

discussed in the next chapters.
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Figure 3.2 : Prediction of surface NO concentration in Chullora station

during 1st-7th January, 2008.
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Figure 3.3 : Prediction of surface NO2 concentration in Chullora station

during 1st-7th January, 2008.
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Figure 3.4 : Prediction of surface O3 concentration in Chullora station

during 1st-7th January, 2008.
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Figure 3.5 : Prediction of surface temperature concentration in Chullora

station during 1st-7th January, 2008.
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(a)

(b)

(c)

Figure 3.6 : EKF prediction correlation coefficient for NO at Chullora for different

values of ν.
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(a)

(b)

(c)

Figure 3.7 : EKF prediction correlation coefficient for NO2 at Chullora for different

values of ν.
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(a)

(b)

(c)

Figure 3.8 : EKF prediction correlation coefficient for O3 at Chullora for different

values of ν.
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(a)

(b)

(c)

Figure 3.9 : EKF prediction correlation coefficient for temperature at Chullora for

different values of ν.
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Chapter 4

Application of Extended Fractional Kalman

Filtering to Environmental Data

4.1 Introduction

In this chapter, generic forms of extended Kalman filters (EKF) and smoothers

are derived. Often the dynamic and measurement processes in practical applica-

tions are not linear and the Kalman filter cannot be applied as such. However,

still often the filtering and smoothing distributions of this kind of processes can be

approximated with Gaussian distributions. In this section two types of methods

for forming the Gaussian approximations are considered, the Taylor series based

extended Kalman filters, and the Taylor series based extended Kalman filters with

the Matérn family of covariance functions.

4.2 Taylor Series Based Approximations

Linear and quadratic approximations of transformations of Gaussian random

variables are presented in this section. These methods try to approximate the dis-

tribution of a random variable y, which is generated as a non-linear transformation

of a Gaussian random variable x as follows:

x ∼ N(m,P )

y = g(x), (4.1)

where x ∈ Rj, y ∈ Ri, and g : Rj �→ Ri is a general non-linear function. Formally

the probability density of the random variable y is [50] given by

p(y) = |J(y)|N(g−1(y)|m,P ), (4.2)
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where |J(y)| is the determinant of the Jacobian matrix of the inverse transform

g−1(y). However, it is not generally possible to handle this distribution directly,

because it is non-Gaussian for all but linear g.

Linear and quadratic approximations can be used for forming Gaussian approx-

imations to the marginal distribution of y and to the joint distribution of x and y.

The derivations of these approximations can be found, for example, in the book [11].

4.2.1 Linear Approximation of Non-linear Transform

The linear approximation based Gaussian approximation to the joint distribution

of x and the transformed random variable y = g(x) when x ∼ N(m,P ) is given as⎛⎜⎝x

y

⎞⎟⎠ ∼ N

⎛⎜⎝
⎛⎜⎝m

μL

⎞⎟⎠ ,

⎛⎜⎝ P CL

CT
L SL

⎞⎟⎠
⎞⎟⎠ , (4.3)

where

μL = g(m)

SL = Gx(m)PGT
x (m)

CL = PGT
x (m), (4.4)

and Gx(m) is the Jacobian matrix of g with elements

[Gx(m)]j,j′ =
∂gj(x)

∂x
′
j

∣∣∣∣
x=m

. (4.5)

In quadratic approximations, in addition to the first order terms also the second

terms in the Taylor series expansion of the non-linear function are retained.

4.2.2 Quadratic Approximation of Non-linear Transform

The second order approximation is of the form⎛⎜⎝x

y

⎞⎟⎠ ∼ N

⎛⎜⎝
⎛⎜⎝m

μQ

⎞⎟⎠ ,

⎛⎜⎝ P CQ

CT
Q SQ

⎞⎟⎠
⎞⎟⎠ , (4.6)
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where the parameters are

μq = g(m) +
1

2

∑
i

eitr
{
G(i)

xx(m)P
}

SQ = Gx(m)PGT
x (m) +

1

2

∑
i,i′

eie
T
i
′ tr
{
G(i)

xx(m)PG(i
′
)

xx (m)P
}

CQ = PGT
x (m), (4.7)

Gx(m) is the Jacobian matrix from Equation (4.5) and G
(i

′
)

xx (m) is the Hessian matrix

of gi(·) evaluated at m:

[
G(i)

xx(m)
]
j,j′ =

∂2gi(x)

∂xj∂xj′

∣∣∣∣
x=m

, (4.8)

ei = (0 · · · 0 1 0 · · · )T is a vector with 1 at position i and other elements are zero,

that is, it is the unit vector in the direction of the coordinate axis i.

4.2.3 Discrete-Time Extended Kalman Filter

The extended Kalman filter (EKF) ([11, 59, 86, 192]) is an extension of the

Kalman filter to non-linear optimal filtering problems. The filtering model is

xk = f(xk−1, k − 1) + qk−1

yk = h(xk, k) + rk, (4.9)

where x ∈ Rn is the state, y ∈ Rm is the measurement, qk−1 ∼ N(0, Qk−1) is the

Gaussian process noise, rk ∼ N(0, Rk) is the Gaussian measurement noise, f(·) is
the dynamic model function and h(·) is the measurement model function. The first
order extended Kalman filters form Gaussian approximations

p(xk|y1:k) ≈ N(xk|mk, Pk), (4.10)

to the filtering densities using the linear approximation.
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4.2.4 First-Order Extended Kalman Filter

In the first order EKF the non-linearity is approximated with a linear function

which is defined in Section 4.2.1. The prediction and update steps of the first order

extended Kalman filter are:

• Prediction:

m−
k = f(mk−1, k − 1)

P−
k = Fx(mk−1, k − 1)Pk−1F

T
x (mk−1, k − 1) +Qk−1. (4.11)

• Update:

vk = yk − h(m−
k , k)

Sk = Hx(m
−
k , k)P

−
k HT

x (m
−
k , k) +Rk

Kk = P−
k HT

x (m
−
k , k)S

−1
k

mk = m−
k +Kkvk

Pk = P−
k −KkSkK

T
k , (4.12)

where the matrices Fx(m, k − 1) and Hx(m, k) are the Jacobian matrices of f and

h, respectively, with elements

[Fx(m, k − 1)]j,j′ =
∂fj(x, k − 1)

∂x
′
j

∣∣∣∣
x=m

(4.13)

[Hx(m, k)]j,j′ =
∂hj(x, k)

∂x
′
j

∣∣∣∣
x=m

. (4.14)

4.2.5 Second-Order Extended Kalman Filter

The prediction and update steps of the second order extended Kalman filter are:
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• Prediction:

m−
k = f(mk−1, k − 1) +

1

2

∑
i

eitr
{
F (i)
xx (mk−1, k − 1)Pk−1

}
P−
k = Fx(mk−1, k − 1)Pk−1F

T
x (mk−1, k − 1)

+
1

2

∑
i,i′

eie
T
i
′ tr
{
F (i)
xx (mk−1, k − 1)Pk−1F

(i
′
)

xx (mk−1, k − 1)Pk−1

}
+Qk−1. (4.15)

• Update:

vk = yk − h(m−
k , k)−

1

2

∑
i

eitr
{
H(i)

xx(m
−
k , k)P

−
k

}
Sk = Hx(m

−
k , k)P

−
k HT

x (m
−
k , k)

+
1

2

∑
i,i

′
eie

T
i
′ tr
{
H(i)

xx(m
−
k , k)P

−
k H(i

′
)

xx (m
−
k , k)P

−
k

}
+Rk

Kk = P−
k HT

x (m
−
k , k)S

−1
k

mk = m−
k +Kkvk

Pk = P−
k −KkSkK

T
k , (4.16)

where matrices Fx(m, k−1) and Hx(m, k) are given by Equations (4.13) and (4.14).

The matrices F
(i)
xx (m, k − 1) and H

(i)
xx(m, k) are the Hessian matrices of fi and hi

respectively:

[
F (i)
xx (m, k − 1)

]
j,j

′ =
∂2fi(x, k − 1)

∂xj∂xj
′

∣∣∣∣
x=m

(4.17)

[
H(i)

xx(m, k)
]
j,j′ =

∂2hi(x, k)

∂xj∂xj′

∣∣∣∣
x=m

. (4.18)

ei = (0 · · · 0 1 0 · · · )T is a vector with 1 at position i and other elements are zero,

that is, it is the unit vector in the direction of the coordinate axis i.
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4.2.6 Limitations of EKF

The EKF has a few serious drawbacks which are discussed in the example [90]

and should be kept in mind when it is used:

1. The linear and quadratic transformations produces reliable results only when

the error propagation can be well approximated by a linear or a quadratic

function. If this condition is not met, the performance of the filter can be

extremely poor. At worst, its estimates can diverge altogether.

2. The Jacobian matrices (and Hessian matrices with second order filters) need

to exist so that the transformation can be applied. However, there are cases,

where this is not true. It is given in [90] where the system might be jump-

linear, in which the parameters can change abruptly.

3. In many cases the calculation of Jacobian and Hessian matrices can be a

very difficult process, and its also prone to human errors (both derivation and

programming). These errors are usually very hard to debug, as it is hard to

see which parts of the system produce the errors by looking at the estimates,

especially as usually we do not know which kind of performance we should

expect.

4.2.7 Extended Kalman Smoother

The main difference between the first order extended Kalman smoother [25, 177]

and the traditional Kalman smoother is the same as the difference between first order

EKF and KF, that is, matrix Ak in Kalman smoother is replaced with Jacobian

Fx(mk−1, k − 1), and m−
k+1 is calculated using the model function f . Thus, the
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equations for the extended Kalman smoother can be written as

m−
k+1 = f(mk, k)

P−
k+1 = Fx(mk, k)PkF

T
x (mk, k) +Qk

Ck = PkF
T
x (mk, k)

[
P−
k+1

]−1

ms
k = mk + Ck

[
ms

k+1 −m−
k+1

]
P s
k = Pk + Ck

[
P s
k+1 − P−

k+1

]
CT

k , (4.19)

where the matrix Fx(mk, k) is given by the Equation 4.13.

4.3 Basic Concepts of Fractional Calculus

Fractional calculus is the generalization of our familiar integer order successive

differentiation and integration of any arbitrary order. The fractional calculus or

generalized non-integer order calculus has gone through several modifications and

changes to take a suitable form for being applied as the scientists’ and engineers’

tools. Early contributions to the theory of fractional calculus are made by many

other renowned mathematicians. A detailed review on the history of fractional

calculus is given in [122]. and detailed review on fractional order differentiators

and integrators are explained in [107]. The generalized fractional calculus has been

defined in various ways.

4.3.1 Basic Special Fractional Function

The definition of fractional calculus uses the following three special functions:

4.3.1.1 Gamma Function

The gamma function is the extension of the factorial for non-integer numbers.

It is defined as:

Γ(z) :=

∫ ∞

0

e−uuz−1du ∀z ∈ R (4.20)
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For complex values of z, the real part has to be positive to get a finite value of the

gamma function. The gamma function has the following property:

Γ(z + 1) = zΓ(z) (4.21)

4.3.1.2 Beta Function

The beta function is defined as:

B(p, q) :=

∫ 1

0

(1− u)p−1uq−1du, p, q ∈ R+ (4.22)

The relation between beta and gamma function is given by the following relation.

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
= B(q, p), (4.23)

4.3.1.3 Mittag-Leffler Function

This is widely used as the solution of fractional order differential equations. It

is basically a generalized higher transcendental which encompasses a wide variety of

commonly encountered transcendental functions. The one parameter Mittag-Leffler

function is defined as:

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
, α > 0 (4.24)

The Mittag-Leffler function reduces to exponential function for α = 1. The two

parameter Mittag-Leffler function is defined as:

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 (4.25)

Clearly, it is given by

Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
= Eα(z). (4.26)

A few special cases of Mittag-Leffler function yields some commonly used tran-

scendental functions. In the simplest case, Mittag-Leffler function takes the form of
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the exponential function and hence, Mittag-Leffler can be viewed as the generalized

transcendental function e.g., variation in the second parameter in Equation 4.25

yields:

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez (4.27)

E1,2(z) =
∞∑
k=0

zk

Γ(k + 2)
=

∞∑
k=0

zk

(k + 1)!
=
1

z

∞∑
k=0

zk+1

(k + 1)!
=

ez − 1

z
(4.28)

E1,3(z) =
∞∑
k=0

zk

Γ(k + 3)
=

∞∑
k=0

zk

Γ(k + 2)!

=
1

z2

∞∑
k=0

zk+2

(k + 2)!
=

ez − 1− z

z2
(4.29)

As a generalized case,

E1,m(z) =
1

zm−1

(
ez −

m−2∑
k=0

zk

k!

)
(4.30)

Also, variation in the first parameter of Equation 4.25 yields:

E2,1(z) =
∞∑
k=0

z2k

Γ(2k + 1)
=

∞∑
k=0

z2k

(2k)!
= cosh(z) (4.31)

E2,2(z) =
∞∑
k=0

z2k

Γ(2k + 2)
=
1

z

∞∑
k=0

z2k+1

(2k + 1)!
=
sinh(z)

z
(4.32)

4.3.2 Basic Definitions in Fractional Calculus

The generalized fractional differentiation and integration has mainly two defini-

tions as follows:

4.3.2.1 Grunwald-Letnikov

This formula is basically an extension of the backward finite difference formula

for successive differentiation. This formula is widely used for the numerical solution

of fractional differentiation or integration of a function. By the Grunwald-Letnikov

method the αth order differ-integration of a function f(t) defined as:

Dα
t f(t) := lim

h→0

1

hα

∞∑
j=0

(−1)j
(
α

j

)
f(t− jh) (4.33)
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where (
α

j

)
=

α!

j!(α− j)!
=

Γ(α + 1)

Γ(j + 1)Γ(α− j + 1)

denotes the binomial co-efficients.

The Laplace transform of Grunwald-Letnikov fractional differ-integration is∫ ∞

0

e−st
0D

α
t f(t)dt = sαF (s) (4.34)

4.3.2.2 Riemann-Liouville

This definition is an extension of n-fold successive integration and is widely used

for analytically finding fractional differ-integrals. By the Riemann-Liouville formula

the αth order integration of a function f(t) is defined as:

aI
α
t f(t) = aD

α
t f(t) :=

1

Γ(−α)

∫ t

a

f(τ)

(t− τ)α+1
dτ (4.35)

for a, α ∈ R, α < 0.

By this formula fractional order differentiation is defined as the integer order

successive differentiation of a fractional order integral. i.e.

aD
α
t f(t) :=

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α+1
dτ (4.36)

where n− 1 < α < n.

The Laplace transform of Riemann-Liouville fractional differ-integration is:∫ ∞

0

e−st
0D

α
t f(t)dt = sαF (s)−

n−1∑
k=0

sk0D
α−k−1
t f(t)

∣∣∣∣
t=0

(4.37)

4.3.3 Solution of Fractional Differential Equations Using Laplace Trans-

form

If it be considered a physical system is governed by the following fractional

differential equation:

aD
α
t y(t) = f(t) (4.38)
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with zero initial condition, the Laplace transform of the above equation yields

G1(s) =
Y (s)

U(s)
=

1

asα
(4.39)

Inverse Laplace transform of the above equation produces

g1(t) =
1

a

tα−1

Γ(α)
(4.40)

The above equation can be viewed as the impulse response of the system’s trans-

fer function model G1(s). Extending the concept for two term differential equation

having the structure

aD
α
t y(t) + by(t) = f(t) (4.41)

similar Laplace operation with zero initial condition gives the system’s transfer func-

tion as

G2(s) =
Y (s)

U(s)
=

1

asα + b
=
1

a
· 1

sα + b
a

(4.42)

Inverse Laplace [184] of the above equation gives

ag2(t) =
1

a
tα−1Eα,α

(
− b

a
tα
)

(4.43)

The generalized solution of n-term fractional differential equation is solved in [116,

226, 94] and other details can be found in [163].

4.4 Fractional Order Systems

There are many natural processes that can be more accurately modelled us-

ing fractional differ-integrals. It has been experimentally demonstrated that the

charging and discharging of lossy capacitors for example [140], follows inherently

fractional order dynamics. The flow of fluid in a porous media, the conduction of

heat in a semi infinite slab, voltage-current relation in a semi infinite transmission

line, non-Fickian diffusion, Magneto-Rheological damper in smart structure, etc. are
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all such examples where the governing equations can be modelled more accurately

using fractional order differential or integral operators.

A Fractional order linear time invariant (LTI) system is mathematically equiv-

alent to an infinite dimensional LTI filter. Thus a fractional order system can be

approximated using higher order polynomials having integer order differ-integral

operators. The concept can be viewed, similar to the Taylor series expansion of

non-linear functions, as a summation of several linear weighted differentials. More

involved analysis and review of existing fractional order signals and systems can be

found in [123, 146, 147, 148, 149, 150, 151]

4.4.1 Fractional Order LTI Systems

Fractional order LTI systems can be modeled using the conventional input-output

transfer function approach similar to the integer order ordinary differential equa-

tions [138]. Fractional order ordinary differential equations lead to fractional order

transfer function models by the well known Laplace transform technique. The con-

ventional notion of state space modelling can also be extended to represent fractional

order dynamical system models with the additional requirement of defining the state

variables as fractional derivatives of another.

4.4.1.1 Transfer Function Representation

Let us consider the following fractional differential equation to represent the

dynamics of a system:

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t)

= bmD
β
mu(t) + bm−1D

β
m−1u(t) + · · ·+ b0D

β
0u(t) (4.44)

In the above fractional differential equation if the order of differentiations be an

integer multiple of a single base order i.e. αk, βk = kα, α ∈ R+, the system will
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be termed as commensurate order and will take the following form

n∑
k=0

akD
kαy(t) =

n∑
k=0

bkD
kαu(t) (4.45)

Taking Laplace transform of the above equation and putting zero initial condition,

the input-output fractional order transfer function models takes the form

G(s) =
Y (s)

U(s)
=

bms
βm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(4.46)

For commensurate fractional order systems the above transfer function takes the

following form

G(s) =

∑m
k=0 bk(s

α)k∑n
k=0 ak(s

α)k
=

∑m
k=0 bkλ

k∑n
k=0 akλ

k
, λ = sα (4.47)

Fractional order transfer function models leads to the concept of fractional poles and

zeros in the complex s-plane [129]. For the commensurate fractional order system

(4.47) with the characteristic equation in terms of the complex variable λ is said

to be bounded-input bounded-output (BIBO) stable, if the following condition is

satisfied

|arg(λi)| > α
π

2
(4.48)

where λi are the roots of the characteristic polynomial in λ.

For λ = 1, the well known stability condition for integer order transfer functions

is obtained which states the real part of the poles should lie in the negative half of

the complex s-plane i.e. |arg(λi)| > π
2
.

4.4.1.2 State-Space Representation

A generalized fractional order multiple input multiple output (MIMO) LTI state-

space model can be represented as

Dαx = Ax+ Bu

y = Cx+Du (4.49)
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where α = [α1, α2, . . . , αn] is the commensurate or incommensurate fractional orders.

u ∈ Rl is the input column vector,is x ∈ Rn the state column vector, y ∈ Rp is

the output column vector, A ∈ Rn×n is the state matrix, B ∈ Rn×l is the input,

C ∈ Rp×n is the output matrix, D ∈ Rp×l is the direct transmission matrix. In

the above fractional order state-space representation, the first equation is called the

fractional order state equation and the second one is known as the output equation.

The fractional state space model can be converted to the fractional order transfer

function form using the following relation

G(s) = C(sαI − A)−1B +D (4.50)

Here, I represents the identity matrix of dimension n × n and G(s) represents the

fractional order transfer function matrix of dimension p × l. The fractional order

state-space realization in controllable, observable and diagonal canonical forms are

similar to the corresponding integer order state-space models and have been detailed

in [138]. Accuracy of the numerical approximation of FO state-space has been

detailed in [16, 169].

It is interesting to note that the stability analysis of commensurate fractional

order systems is relatively easier [203, 204] since the conventional s-plane instability

region gets contracted by απ/2 for 0 < α < 1. Stability of incommensurate fractional

order models are mathematically more involved and have been discussed by [127] in

a detailed manner. Stability of nonlinear system is given in [223, 200]. Fractional

Order proportional-integral-derivative (FOPID) controller are studied and details

are given in [162, 63].

The discrete time fractional order state space corresponding to the continuous
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time fractional order state space can be represented as

x(k + 1) = (AT α + I)x(k) +BT αu(k) for k = 0

x(k + 1) = (AT α + I)x(k)

−
k+1∑
i=2

(−1)i
(
α

i

)
x(k + 1− i) +BT αu(k) for k ≥ 0

y(k) = Cx(k) +Du(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.51)

Considering an infinite dimensional memory of a fractional order system, the

above discrete time fractional order state space expressed in terms of an expanded

state space form ⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(k + 1)

x(k)

x(k − 1)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Ã

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

x(k − 1)

x(k − 2)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ B̃u(k)

y(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

x(k − 1)

x(k − 2)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+Du(k) (4.52)

where

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(ATα + αI) −I(−1)2(α
2

) −I(−1)3(α
3

) · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

BT α

0

0

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

C̃ =

[
C 0 0 · · ·

]
Here, 0 is the null matrix of dimension n× n.

The above discrete time fractional order state space model is asymptotically
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stable if the following condition ‖Ã‖ < 1 is satisfied. Here, ‖·‖ denotes the matrix
norm defined as max |λi| and λi being the i

th eigenvalue of extended matrix Ã.

4.5 Fractional Order Kalman Filter

Kalman filtering is the process by which unwanted noise can be removed from

a signal to obtain the original uncorrupted data. It has many practical uses in a

wide range of engineering disciplines like communication systems, control systems,

embedded systems, robotics, process control, image processing, etc. The Kalman

filter is an algorithm that can estimate the state variables of a process. From a

mathematical viewpoint the Kalman filter algorithm is an optimal state estimator

which estimates the states of a linear system from inaccurate and uncertain ob-

servations. The Kalman filter is optimal in the sense that it minimizes the Mean

Square Error (MSE) of the estimated parameters if the noise follows a Gaussian

distribution. If the noise is not Gaussian and only the mean and standard deviation

of the noise is known, the Kalman filter is the best linear estimator, though other

non linear estimators may work well, depending on specific cases. The term filter

is used in the sense that obtaining the best estimate from noisy data is equivalent

to filtering out the noise. However, the Kalman filter not only tries to remove the

noise from the measurements, but also projects these measurements onto the state

estimate. Kalman filter has gained wide popularity in practical applications due to

the following:

1. The recursive nature of the algorithm is suitable for real time implementation

as the measurement data can be processed as they arrive as opposed to batch

processing.

2. The optimality, simple structure and ease of implementation of the Kalman

filter helps in obtaining good results in practical applications.
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4.5.1 Fractional Kalman Filter

The integer order Kalman filter is extended for state estimation of Fractional

order linear state space systems and is known as the Fractional Kalman Filter (FKF)

[188, 189, 190, 191].

Δnxk =
1

hn

k∑
j=0

(−1)j
(
n

j

)
xk−j (4.53)

where n ∈ R is the order of the fractional difference, R is the set of real numbers, h

is the sampling interval, and k is the number of samples for which the derivative is

calculated. The factor
(
n
j

)
can be obtained using⎛⎜⎝n

j

⎞⎟⎠ =

⎧⎪⎨⎪⎩ 1 for j = 0

n(n−1)...(n−j+1)
j!

for j > 0
(4.54)

Thus the definition allows one to calculate the discrete equivalent of non-integer

order differ-integrals. A positive value of n denotes differentiation of that order and

a negative value denotes integration. The original function is obtained for n = 0.

Now a traditional stochastic discrete state space is of the form

xk+1 = Axk + Buk + wk

yk = Cxk + vk (4.55)

where xk is the state vector, uk is the system input, yk is the system output, wk is

the system noise and vk is the output noise at the time instant k.

This can be represented by

Δ1xk+1 = Adxk + Buk + wk

xk+1 = Δ1xk+1 + xk

yk = Cxk + vk (4.56)

where Δ1xk+1 = xk+1−xk is the first order difference of the sample xk and Ad = A−I

(where I is the identity matrix).
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Thus the generalized discrete time linear fractional order stochastic system in

state-space representation is as follows [187]:

ΔΥxk+1 = Adxk + Buk + wk

xk+1 = ΔΥxk+1 −
k+1∑
j=1

(−1)jΥjxk+1−j

yk = Cxk + vk (4.57)

where Υk = diag
[(

n1

k

)
. . .
(
nN

k

)]
and ΔΥxk+1 =

⎡⎢⎢⎢⎢⎣
Δn1x1, k + 1

...

ΔnNxN , k + 1

⎤⎥⎥⎥⎥⎦
Here, n1, . . . , nN are the orders of system equations and N is the number of

these equations. Estimation results are obtained by minimizing the following cost

function in each step:

x̂ = argmin
x

[
(x̃k − x)P̃−1

k (x̃k − x)T + (ỹk − Cx)R̃−1
k (ỹk − Cx)T

]
(4.58)

where x̃k = E
[
xk|z∗k−1

]
is the state vector prediction at the time instant k, defined as

the random variable xk conditioned on the measurement stream z∗k−1. Additionally,

x̂ = E [xk|z∗k] is the state vector estimate at the time instant k, defined as the random
variable xk conditioned on the measurement stream z∗k. The measurement stream

z∗k contains the values of the measurement output y0, y1, . . . , yN and the input signal

u0, u1, . . . , uN .

The prediction of the estimation error covariance matrix is defined as:

P̃k = E
[
(x̃k − x)(x̃k − x)T

]
(4.59)

The covariance matrix of the output noise vk is defined as Rk = E
[
vkv

T
k

]
and the

covariance matrix of the system noise wk is defined as Qk = E
[
wkw

T
k

]
. Additionally,

Pk = E
[
(x̂k − xk)(x̂k − xk)

T
]
is the estimation error covariance matrix. All the

covariance matrices are assumed to be symmetric.
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The Fractional Kalman Filter for the discrete fractional order stochastic system

in the state-space representation introduced by Equation (4.57) is given by the

following set of equations:

ΔΥx̃k+1 = Adx̂k + Buk

x̃k+1 = ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥjx̂k+1−j

P̃k = (Ad +Υ1)Pk−1(Ad +Υ1)
T +Qk−1 +

k∑
j=2

ΥjPk−jΥ
T
j

x̂k = x̃k +Kk(yk − Cx̃k)

Pk = (I −KkC)P̃k (4.60)

where Kk = P̃kC
T (CP̃kC

T + Rk)
−1 with the initial conditions x0 ∈ RN , P0 =

E
[
(x̃0 − x0)(x̃0 − x0)

T
]
.

Here vk and wk are assumed to be independent and with zero mean.

The two simplifying assumptions used in the derivation of the above FKF are as

follows:

(a) E [xk+1−j, z
∗
k] � E

[
xk+1−j, z

∗
k+1−j

]
for i = 1, . . . , (k + 1)

(b) E
[
(x̂l − xl)(x̂m − xm)

T
]
are equal to zero when l �= m.

Expression (a) can be interpreted in the sense that the last state vector is updated

in each of the filter iterations. Expression (b) implies that no correlation exists

amongst past state vectors. For practical implementation of this algorithm in actual

hardware the number of elements in the sum in the Equation (4.57) has to be limited

to a predefined value L. Thus the Equation (4.57) can be expressed as

xk+1 = ΔΥxk+1 −
L∑

j=1

(−1)jΥjxk−j+1 (4.61)

A small value of L speeds up calculation but affects the accuracy of the estimate,

while a large value gives more accuracy at the cost of increased computation. The
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choice of L depends on sampling time and system time constants and must be

appropriately chosen for each application.

4.5.2 Extended Fractional Kalman Filter

The FKF is only valid for linear stochastic fractional order systems. The FKF

can be modified to be applied for non-linear difference equations and is known as

the Extended Fractional Kalman Filter (EFKF). The nonlinear discrete stochastic

fractional order system in a state-space representation is given by:

ΔΥxk+1 = f(xk, uk) + wk

xk+1 = ΔΥxk+1 −
k+1∑
j=1

(−1)jΥjxk+1−j

yk = h(xk) + vk. (4.62)

For this nonlinear stochastic discrete fractional order state space model the Ex-

tended Kalman Filter is given by the following:

ΔΥx̃k+1 = f(x̂k, uk)

x̃k+1 = ΔΥx̃k+1 −
k+1∑
j=1

(−1)jΥjx̃k+1−j

P̃k = (Fk−1 +Υ1)Pk−1(Fk−1 +Υ1)
T +Qk−1 +

k∑
j=2

ΥjPk−jΥ
T
j

x̂k = x̃k +Kk(yk − h(x̃k))

Pk = (I −KkHk)P̃k (4.63)

with the initial conditions x0 ∈ RN , P0 = E
[
(x̂0 − x0)(x̂0 − x0)

T
]
, where

Kk = P̃kH
T
k

(
HkP̃kH

T
k +Rk

)−1

,

Fk−1 =

[
∂f(x, uk−1)

∂x

]
x=x̂k−1

, Hk =

[
∂h(x)

∂x

]
x=x̃k

(4.64)

and the noise sequences vk and wk are assumed to be independent and have zero

mean.
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The EFKF has found applications in practical estimation problems as in [172]

and in chaotic secure communication schemes as in [101].

4.5.3 Improved Fractional Kalman Filter

The assumptions of the FKF as stated in expressions (a) and (b) of the earlier

section make the filter suboptimal. The infinite dimensional form of the discrete

fractional state space considering all its previous states can be used to overcome

these limitations and obtain an optimal solution of the Kalman filter. However, due

to the infinite dimensional form, numerical computation is quite difficult. Thus the

improved Fractional Kalman filter (ExFKF) [189] has been proposed which assumes

that only m number of past state vectors are used in the estimation process. This

reduces the computational load in comparison to the infinite dimensional case and

is an improvement over the FKF. Next, the linear fractional order state space is

defined in such a manner that it is comprised of m state vectors from time k to

k −m+ 1.

Xk+1 = AmXk + Bmuk + Iwk − I

k+1∑
j=m+1

(−1)jΥjxk+1−j

yk = CmXk (4.65)
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where

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk

xk−1

...

xk−m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, I =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Am =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(A+Υ1) −(−1)2Υ2 . . . −(−1)mΥm

I . . . 0 0

...
...

...
...

0 . . . I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Cm =

[
C 0 . . . 0

]
(4.66)

and I ∈ RN×N is the identity matrix.

The ExFKF for the m-finite form of the discrete fractional order system is as

follows:

X̃k+1 = AmX̂k + Bmuk − I

k+1∑
j=m+1

(−1)jΥjx̂k+1−j

P̃k = AmPk−1A
T
m +Qk−1 +

k∑
j=m+1

IΥjPk−jΥ
T
j I

T

X̂k = X̃k +Kk(yk − CmX̃k)

Pk = (I −KkCm)P̃k (4.67)
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where

Kk = P̃kC
T
m

(
CmP̃kC

T
m +Rk

)−1

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Q = IQkI

T

Pk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pk,k Pk,k−1 . . . Pk,k−m

Pk−1,k Pk−1,k−1 . . . Pk−1,k−m

...
...

...
...

Pk−m,k Pk−m,k−1 . . . Pk−m,k−m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.68)

with initial conditions X̂0 ∈ RmN , P0 = E
[
(X̂0 − X0)(X̂0 − X0)

T
]
and noises vk, wk

are assumed to be independent with zero expected value and matrices Pk, Rk are

positive-defined.

The ExFKF has been successfully applied to an estimation problem over lossy

networks in [189].

4.6 Extended Fractional Kalman Filter Based on Matérn

Function

All the details of EFKF are discussed in previous sections. Matérn function is

discussed in the previous chapter in Section 3.7. Using Matérn covariance function,

the corresponding Linear Time Invariant Stochastic Differential Equation (LTI SDE)

model, with a triple pole at −α, reads therefore⎛⎜⎜⎜⎜⎝
dΥ1x1(t)

dtΥ1

dΥ2x2(t)

dtΥ2

dΥ3x3(t)

dtΥ3

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 1

−λ3 −3λ2 −3λ

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

F

⎛⎜⎜⎜⎜⎝
x1(t)

x2(t)

x3(t)

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

L

v(t), (4.69)
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where the spectral density q of white noise v(t) is computed by Equation 3.29.

4.7 Fractional Order Identification

System identification is used to obtain mathematical models of any dynamical

system from measured data. System identification is important in cases where it is

difficult to obtain the model from basic governing equations and first principles, or

where there is only input-output data available and the underlying phenomena are

largely unknown. The methods for system identification can be broadly classified

into time domain and frequency domain techniques. Some fractional order system

identification techniques are presented next based on these classifications. Fractional

order system identification has been used for the estimation of the state of charge

for lead acid batteries [175, 221]. Fractional order modelling and identification of

thermal systems has been investigated in [45, 46, 47, 121]. Time domain identifi-

cation has been studied in [79, 84, 142, 157]. Frequency domain identification has

been investigated in [?, 52, 81, 82, 159, 208, 215]. Orthogonal function based identi-

fication has been used in [197] and triangular function is used in [26]. Vector Fitting

(VT) has been implemented in [124]. Chaotic system has been identified in [48] by

Differential Evolution (DE) algorithm. Genetic Algorithm (GA) has been used to

identify FO system in [160]. Cuckoo Search Algorithm (CSA) is implemented to

design differentiator in [108].

4.7.1 Genetic Algorithm Based Identification

Genetic algorithm (GA), inspired by natural mating, is one of the search methods

[75]. GA can be used in a wide variety of engineering applications as an effective tool

for searching the solution environment including system identification [4, 33, 35, 40,

44, 119, 137, 186, 199, 207]. The method starts with a random set of first generation

population and then proceeds with selecting parents from current individuals. After
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the parents are selected, new solutions are created based on their crossover operator.

Mutation is another operator that ensures diversity in the solutions and helps avoid

being trapped in local minimums. In each generation, the top two solutions are

carried forward to the next generation (elitism mechanism). The details of the

genetic operators used in the GA are presented below:

• Selection: Selection emphasizes good solutions and eliminates bad solutions

while keeping the population size constant. The goal here is to allow the

“fittest” individuals to be selected more often to reproduce. There are a num-

ber of operators proposed for selection operation. In this work, we have used

“tournament selection”. In tournament selection, ‘N’ individuals are selected

in random from the population, and the best of the N individuals is inserted

into the new population for further genetic processing. This procedure is re-

peated until the matting pool is filled. Tournaments are often held between

pairs of individuals (tournament size = 2), although larger tournaments can

also be held.

• Crossover: The crossover operator is mainly responsible for the global search

property of the GA. Crossover basically combines substructures of two parent

chromosomes to produce new structures, with the selected probability typi-

cally in the range of 0.6-1.0. As each individual in the population consists of

two types of variables: real and integer, a “two-point crossover” which takes

advantage of the special structure of the problem representation is developed.

First, the two parents are cut at the boundary between the float and integer

variables. Then separate crossover operators are applied on the floating point

and integer parts.

• Mutation: The mutation operator is used to inject new genetic material into

the population. Mutation randomly alters a variable with a small probability.
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In this work, “Uniform mutation” operator is applied to the mixed variables

with some modifications. First a variable is selected from an individual ran-

domly. If the selected variable is a real number then it is set to a uniform

random number between the variable’s lower and upper limit. On the other

hand, if the selected variable is an integer then the integer is randomly incre-

mented or decremented by one.

4.7.2 Genetic Algorithm Implementation

In solving the identification problem, the fitness value of each string is evaluated

by running GA using the variables represented by the string. Then the genetic

operators are applied on the genetic population to improve the solution. This process

is continued until the convergence criterion is satisfied. This is pictorially represented

in Figure 4.1.

• Problem representation

Each individual in the GA population represents a candidate solution for the

given problem of fractional value. The elements of that solution consist of all

the optimization variables of the problem.

• Evaluation function

Genetic algorithm searches for the optimal solution by maximizing a given

fitness function, and therefore an evaluation function which provides a measure

of the quality of the problem solution must be provided.

To improve the efficiency of GA, the Goldberg approach is used to scale all fitness

values of the solutions [57]. The Genetic Algorithm (GA) was used to identify a

fractional system by [165] to obtain a fractional order heat transfer model in the

state-space using time domain analysis. Similarly, in [71] the authors developed

a fractional mathematical model from transfer functions, where a rational system
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Figure 4.1 : Flow chart of GA based algorithm.

was matched with a fractional system by using a fitness function of a GA to tune

the fractional order in the time domain. In [82], a different method was used for

system identification by varying the fractional value in an incremental form to avoid
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complex nonlinear identification calculations. In our case, evaluation function is

given by:

J =

√√√√ M∑
i=1

(y∗i − yi)2, (4.70)

where M is number of data, y∗i is the real station data and yi is the estimated out-

put data from using the GA to identify Υk. The system order is initially defined

by sni±0.999, where ni is the order of the ith equation of the system. From Equa-

tion (4.69), it is interpreted that the system is a 3rd order system. Table 4.1 shows

the value of fraction which is obtained by minimising the Equation (4.70). The aim

is to find the optimal value of fractional order in yi using the GA. Here, the GA

toolbox in MATLAB environment is used to optimize the objective function Equa-

tion (4.70). The initial order of Equation (4.69) is considered as a string. These

strings are represented by a random number to form an initial population. After

that, a computational search is carried out among this population. The evolution of

the population elements is non-generational, meaning that the new elements replace

the worst ones. The main operators adopted in the GA are reproduction, crossover

and mutation. One of the advantages of the EFKF is the connection of the esti-

mation and the smoothing actions. The system model Equation (4.69) is used to

model the EFKF whereas the GA is used to tune fractional orders of the system.

The GA parameters are kept constant for all the simulations with crossover proba-

bility 0.35, mutation probability 0.02, population size 1000, number of generations

1000 and the roulette wheel selection for optimization of the objective function.

4.7.3 Results and Discussion

In this chapter, EFKF is implemented to estimate pollution profile. Observation

data for O3, NO2, CO, SO2, PM10 and PM2.5 from sites and their surrounding

areas, shown in Figure 2.1, are integrated to estimate pollutant profiles. Hourly

pollutant concentration measurements are collected at these monitoring stations,
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made available on-line by [3], providing a basis for air quality control for the Sydney

metropolis. Figures 4.2 and 4.3 show the profiles of NO and NO2 at Liverpool station

by monitoring as well as by using EKF and EFKF. Similarly, Figures 4.4 and 4.5

show the profiles of O3 and Temperature profile at Liverpool station by monitoring

as well as by using EKF and EFKF. Here, the fractional orders obtained by using

GA to minimise the Equation (4.70) are listed in Table 4.1 for the EFKF. Both filters

are used to estimate the temporal distribution of the air pollutant at this station.

The obtained results show that the estimation closely follows the observations at

the station, with the EFKF outperforming the EKF as can be seen in the zoom-

in insets. Table 4.2 shows the mean squared error (MSE) of NO, NO2, O3 and

Temperature using the EKF and the EFKF with the latter yielding a smaller MSE.

Thus, the EFKF can better deal with uncertainties than the EKF in air pollution

estimation. From the atmospheric point of view, it can be also interpreted from

Figure 4.3 that always present in the environment is the NO2, which is produced

by plants, soil, water and motor vehicle exhaust. Since NO2 and NO are formed

when oxygen combines with nitrogen during high-temperature combustion in the

atmosphere, the exhaust gases from motor vehicles are major sources of NOX , as

are the emissions from electrical power generation plants. Motor vehicle exhaust

emits more NO than NO2, but once the NO gas is released into the atmosphere it

quickly combines with oxygen in the air to form NO2. That is the main reason NO

is low during night time, and show low concentration in terms of parts per hundred

million, as shown in Figure 4.2.

In order to further evaluate the algorithms, the proposed EFKF and EKF meth-

ods are compared in terms of the MSE, regression correlation value R, as shown

in Table 4.3. As depicted in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 for

the regression between output (Y) and target (T), the EFKF estimation is highly-

correlated with the measurement data collected at monitoring station Liverpool
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Table 4.1 : Fractional order values calculated by using GA

Order NO NO2 O3 Temperature

s3 s3.712 s3.021 s3.011 s3.053

s2 s2.701 s2.032 s2.026 s2.049

s s1.703 s1.026 s1.010 s1.055

Table 4.2 : Mean squared error for different parameters profile

MSE NO NO2 O3 Temperature

EKF 0.7607 0.0427 0.7534 5.1980

EFKF 0.3516 0.0113 0.0592 0.2265

Table 4.3 : Regression correlation coefficient of different parameters profile for EKF

and EFKF

EKF EFKF

NO 0.69516 0.84093

NO2 0.84453 0.89434

O3 0.86713 0.92378

Temperature 0.89990 0.94256

compared to the EKF estimation..
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4.8 Summary

This chapter has addressed EKF and EFKF for environmental data. The ad-

vantage of EFKF over EKF is that it is a more global approximation than EKF,

because the linearization is not only based on the local region around the mean but

on a whole range of function values due to fractional calculus. The non-linearities

also do not have to be differentiable nor is there a need to derive their Jacobian

matrices. However, if the non-linearities are differentiable, then we can use the

Gaussian random variable property for rewriting the equations in EKF-like form.

The clear disadvantage of EFKF over EKF is that certain expected values of the

non-linear functions have to be computed in closed form using fractional calculus.

Naturally, it is not possible for all functions be defined in fractional form. Another

disadvantage of EFKF is to identify fractional order using analytical solution. In

this work, we have used heuristic search to tune fractional values.

The advantage of EKF over other non-linear filtering methods is its relative

simplicity compared to its performance. The EKF also requires the measurement

model and the dynamic model functions to be differentiable. This as such might be

a restriction, but in some cases it might also be simply impossible to compute the

required Jacobian matrices, which renders the usage of EKF impossible. And even

when the Jacobian matrices exist and could be computed, the actual computation

and programming of Jacobian matrices can be quite error prone and hard to debug.

In the next chapter other types of non-linear Kalman filters are discussed.



101

0 150 300 450 600 750

0

2

4

6

8

Time(Hr)

Station Data
EKF
EFKF

0 20 40 60
-2

0

2

4

Time(Hr)

N
O

 (p
ph

m
)

Figure 4.2 : Prediction of surface NO concentration in Liverpool station

during 1st-31st January, 2008.
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Figure 4.3 : Prediction of surface NO2 concentration in Liverpool station

during 1st-31st January, 2008.
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Figure 4.4 : Prediction of surface O3 concentration in Liverpool station

during 1st-31st January, 2008.
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Figure 4.5 : Prediction of surface temperature concentration in Liverpool

station during 1st-31st January, 2008.
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(a)

(b)

Figure 4.6 : Filter prediction correlation coefficient for NO at Liverpool, based on,

(a) EKF, and (b) EFKF.



104

(a)

(b)

Figure 4.7 : Filter prediction correlation coefficient for NO2 at Liverpool, based on,

(a) EKF, and (b) EFKF.
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(a)

(b)

Figure 4.8 : Filter prediction correlation coefficient for O3 at Liverpool, based on,

(a) EKF, and (b) EFKF.
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(a)

(b)

Figure 4.9 : Filter prediction correlation coefficient for Temperature at Liverpool,

based on, (a) EKF, and (b) EFKF.
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Chapter 5

Application of Unscented Kalman Filtering to

Environmental Data

5.1 Introduction

In this chapter, generic forms of unscented Kalman flters (UKF) and smoothers

are derived. The EKF algorithm, however, provides only an approximation to opti-

mal nonlinear estimation. The main goal is to point out the underlying assumptions

and flaws in the EKF, and present an alternative filter with performance superior

to that of the EKF and the EFKF. This algorithm is referred to as the unscented

Kalman filter (UKF).

The basic difference between the EKF and UKF stems from the manner in which

Gaussian random variables (GRV) are represented for propagating through system

dynamics. In the EKF, the state distribution is approximated by a GRV, which is

then propagated analytically through the first-order linearization of the nonlinear

system. This can introduce large errors in the true posterior mean and covariance of

the transformed GRV, which may lead to suboptimal performance and sometimes

divergence of the filter. The UKF addresses this problem by using a deterministic

sampling approach. The state distribution is again approximated by a GRV, but

is now represented using a minimal set of carefully chosen sample points. These

sample points completely capture the true mean and covariance of the GRV, and,

when propagated through the true nonlinear system, capture the posterior mean and

covariance accurately to second order (Taylor series expansion) for any nonlinearity.

The EKF, in contrast, only achieves first-order accuracy. No explicit Jacobian or
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Hessian calculations are necessary for the UKF. Remarkably, the computational

complexity of the UKF is the same order as that of the EKF.

5.2 Unscented Kalman Filtering

5.2.1 Unscented Transform

Like the Taylor series based approximation presented in Section 4.2 above also

the unscented transform (UT) [91, 92, 219, 220] can be used for forming a Gaussian

approximation to the joint distribution of random variables x and y, which are

defined with Equations (4.1). In UT we deterministically choose a fixed number of

sigma points, which capture the desired moments (at least mean and covariance)

of the original distribution of x exactly. After that we propagate the sigma points

through the non-linear function g and estimate the moments of the transformed

variable from them.

The advantage of UT over the Taylor series based approximation is that UT is

better at capturing the higher order moments caused by the non-linear transform,

as discussed in [91]. Also the Jacobian and Hessian matrices are not needed, so the

estimation procedure is in general easier and less error-prone.

The unscented transform can be used to provide a Gaussian approximation for

the joint distribution of variables x and y of the form⎛⎜⎝x

y

⎞⎟⎠ ∼ N

⎛⎜⎝
⎛⎜⎝m

μU

⎞⎟⎠ ,

⎛⎜⎝ P CU

CT
U SU

⎞⎟⎠
⎞⎟⎠ , (5.1)

The transformation is done as follows:

1. Compute the set of 2n + 1 sigma points from the columns of the matrix
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√
(n+ λ)P :

x(0) = m

x(i) = m+
[√

(n+ λ)P
]
i
, i = 1, . . . , n

x(i) = m−
[√

(n+ λ)P
]
i
, i = n+ 1, . . . , 2n (5.2)

and the associated weights:

W
(m)
0 = λ/(n+ λ)

W
(c)
0 = λ/(n+ λ) + (1− α2 + β)

W
(m)
i = 1/2(n+ λ), i = 1, . . . , 2n

W
(c)
i = 1/2(n+ λ), i = 1, . . . , 2n. (5.3)

Parameter λ is a scaling parameter, which is defined as

λ = α2(n+ κ)− n. (5.4)

The positive constants α, β and κ are used as parameters of the method.

2. Propagate each of the sigma points through non-linearity as

y(i) = g(x(i)), i = 0, . . . , 2n. (5.5)

3. Calculate the mean and covariance estimates for y as

μU ≈
2n∑
i=0

W
(m)
i y(i) (5.6)

SU ≈
2n∑
i=0

W
(c)
i (y(i) − μU)(y

(i) − μU)
T . (5.7)

4. Estimate the cross-covariance between x and y as

CU ≈
2n∑
i=0

W
(c)
i (x(i) −m)(y(i) − μU)

T . (5.8)
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The matrix square root of positive definite matrix P means a matrix A =
√
P such

that

P = AAT . (5.9)

Because the only requirement for A is the definition above, we can, for example, use

the lower triangular matrix of the Cholesky factorization [58].

5.2.2 The Matrix Forms of UT

The unscented transform can be written in matrix form as follows:

X = [m . . . m] +
√
c
[
0

√
P −

√
P
]

(5.10)

Y = g(X) (5.11)

μU = Y wm (5.12)

SU = YWY T (5.13)

CU = XWY T , (5.14)

where X is the matrix of sigma points, function g(·) is applied to each column of

the argument matrix separately, c = α2(n + κ) and vector wm and matrix W are

defined as follows:

wm =
[
W (0)

m . . . W (2n)
m

]T
(5.15)

W = (I − [wm . . . wm])

× diag
(
W (0)

c . . . W (2n)
c

)
× (I − [wm . . . wm])

T . (5.16)

We define the matrix of sigma points as

X =
[
x(0) . . . x(2n)

]
(5.17)

then the sigma point computation in Equations (5.2) can be written in the form of

Equation (5.10). The Equation (5.11) is simply the vector form of the Equation (5.5).
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If we define the weight vector wm and matrixWc as in Equations (5.15) and (5.16),

respectively, and denote the matrix of sigma points of y as Y the transformed mean

and covariance equations can be written as

μU =
∑
i

W (i)
m y(i)

= Y wm (5.18)

SU =
∑
i

W (i)
c

(
y(i) − μU

) (
y(i) − μU

)T
=
∑
i

W (i)
c

(
y(i) − Y wm

) (
y(i) − Y wm

)T
= (Y − Y [wm . . . wm])

× diag
(
W (0)

c . . . W (2n)
c

)
× (Y − Y [wm . . . wm])

T

= YWY T (5.19)

CU =
∑
i

W (i)
c

(
x(i) −m

) (
y(i) − μU

)T
=
∑
i

W (i)
c

(
x(i) −Xwm

) (
y(i) − Y wm

)T
= (X −X [wm . . . wm])

× diag
(
W (0)

c . . . W (2n)
c

)
× (Y − Y [wm . . . wm])

T

= XWY T . (5.20)

which leads to Equations (5.12) ,(5.13) and (5.14). This proof is given in [179].

5.2.3 Unscented Kalman Filter

The unscented Kalman filter (UKF) [91, 92, 220] is a discrete-time optimal fil-

tering algorithm, which utilizes the unscented transform for computing Gaussian

approximations to the filtering solutions of non-linear optimal filtering problems of
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the form

xk = f(xk−1, k − 1) + qk−1 (5.21)

yk = h(xk, k) + rk, (5.22)

where xk ∈ RN is the state, yk ∈ RM is the measurement, qk−1 ∼ N(0, Qk−1) is the

Gaussian process noise, and rk ∼ N(0, Rk) is the Gaussian measurement noise.

Using the matrix form of the unscented transform as given in Subsection 5.2.2

the UKF prediction and update steps can be written as follows:

• Prediction: Compute the predicted state mean m−
k and the predicted covari-

ance P−
k as

Xk−1 = [mk−1 . . . mk−1] +
√
c
[
0

√
Pk−1 −

√
Pk−1

]
X̂k = f(Xk−1, k − 1)

m−
k = X̂kwm

P−
k = X̂kW

[
X̂k

]T
+Qk−1. (5.23)

• Update: Compute the predicted mean μk and covariance of the measurement

Sk, and the cross-covariance of the state and measurement Ck:

X−
k =

[
m−

k . . . m−
k

]
+
√
c

[
0

√
P−
k −

√
P−
k

]
Y −
k = h(X−

k , k)

μk = Y −
k wm

Sk = Y −
k W [Y −

k ]
T +Rk

Ck = X−
k W [Y −

k ]
T . (5.24)

Then compute the filter gain Kk and the state mean mk and covariance Pk, condi-
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tional to the measurement yk (i.e., the updated mean and covariance):

Kk = CkS
−
k

mk = m−
k +Kk[yk − μk]

Pk = P−
k −KkSkK

T
k . (5.25)

A thorough treatment of the unscented Kalman filtering, sigma-point filtering in

general and connections to several other filtering algorithms can be found in the

PhD thesis [210]. In the thesis, [210] also presents efficient square root versions of

UKF. UKF is implemented practically in [10, 155].

5.2.4 Unscented Kalman Smoother

The unscented Kalman smoother is a Gaussian approximation based smoother,

where the conventional linearization of the extended Kalman smoother [25] is re-

placed with the unscented transform. This idea of the unscented Kalman smoother

is presented, for example in [220], but without explicit equations. In the following

these equations will be presented in terms of the matrix form unscented transform.

These smoothing equations can be derived from the UKF prediction equations in

the same way as the first order extended Kalman smoother equations and for this

reason it is possible that alternative (higher order) forms of the equations could be

developed.

Unscented Kalman smoother using the matrix form of the unscented transform

in Subsection 5.2.2, the unscented Kalman smoother prediction and update steps

can be written as follows:

• Prediction: Compute the predicted state mean m−
k+1 and the predicted covari-
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ance P−
k+1, and the cross covariance Ck+1 as

Xk = [mk . . . mk] +
√
c
[
0

√
Pk −

√
Pk

]
X̂k+1 = f(Xk, k)

m−
k+1 = X̂k+1wm

P−
k+1 = X̂k+1W [X̂k+1]

T +Qk−1

Ck+1 = XkW [X̂k+1]
T . (5.26)

where mk and Pk are the mean and covariance estimates computed by the

unscented Kalman filter. Note that this prediction is the same as the unscented

Kalman filter prediction step and thus we can also store the predicted means

and covariances and cross-covariances in the filter in addition to the updated

means and covariances.

• Update: Compute the smoother gain Dk, and the smoothed mean mk
s and the

covariance P k
s :

Dk = Ck+1

[
P−
k+1

]−1

ms
k = mk +Dk

[
ms

k+1 −m−
k+1

]
P s
k = Pk +Dk

[
P s
k+1 − P−

k+1

]
DT

k . (5.27)

5.3 Unscented Kalman Filter Based on Matérn Function

Details are discussed in previous Chapter 3 in Section 3.7. Matérn covariance

function is used in environmental data to estimate pollution profile [132, 133].

When using EKF, estimation performance is affected if the dynamic system is

subject to unknown disturbances or parameter variations. To overcome this prob-

lem, UKF may be a better option, especially in air quality modelling when envi-

ronmental models are highly uncertain. UKF algorithm is implemented to estimate

pollution profile of NO and NO2. Figure 5.1 and Figure 5.2 show the profiles of NO
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and NO2 at Liverpool station in the Sydney metropolitan area by monitoring as

well as by using EKF and UKF respectively. Both filters are used to estimate the

temporal distribution of the air pollutant at this station. The obtained results show

that the estimation closely follows the observations at the station, with the UKF

outperforming the EKF as can be seen in the zoom-in insets. This has confirmed

the advantage of the UKF in air quality modelling. Figure 5.3 and Figure 5.4 show

the profiles of Ozone and Temperature at Liverpool station by monitoring as well

as by using EKF and UKF respectively.

5.4 Results and Discussion

Table 5.1 shows the mean squared error (MSE) of NO, NO2, O3 and Temperature

profiles using the EKF and the UKF with the latter yielding a smaller MSE. Thus,

the UKF can better deal with uncertainties than the EKF in air pollution estimation.

From the atmospheric point of view, it can be also interpreted from Figure 5.2

that always present in the environment is the NO2, which is produced by plants,

soil, water and motor vehicle exhaust. Practically majority anthropogenic NOX

enters the atmosphere from the combustion of fossil fuels by automobiles, aircraft,

and thermal power plants. Wildland fires and bush fires also contribute to NOX

emissions. At normal atmospheric temperatures, nitrogen and oxygen, the two main

components of air, do not react with each other. However, they react at the very high

temperatures associated with such processes as in the internal combustion engines

or industrial furnaces. In a series of complex reactions, nitrogen and oxygen gases

combine to form NO. When released to the atmosphere, NO combines rapidly with

atmospheric oxygen to form NO2. That is the main reason why NO emissions are low

during night time with a small concentration in terms of parts per hundred million,

as shown in Figure 5.1. Error ellipses are plotted for NO and NO2 respectively in

Figure 5.5 and Figure 5.6. Similarly, O3 and Temperature error ellipses are shown in
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Table 5.1 : Mean squared error for different parameters profile

NO NO2 O3 Temperature

EKF 0.7607 0.0427 0.7534 5.1980

UKF 0.0254 0.0012 0.0064 0.0566

Figure 5.7 and Figure 5.8 respectively. It is interpreted UKF error is less compared to

EKF estimation. Table 5.1 shows that the MSE for NO, NO2, O3 and Temperature

is lower with the UKF estimation.

5.5 Summary

In this chapter, we have proposed a novel approach to improve the predicting

capability of the proposed air quality model, taking into account the nonlinear and

stochastic nature of the air pollutant emission. To access the performance of the

proposed method, both Extended Kalman Filter and Unscented Kalman Filter al-

gorithms based on a Matérn covariance function have been implemented. From the

simulation, the performance of the UKF proposed method indicates better results

by comparing with the measurement data collected at monitoring stations and the

EKF data.
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Figure 5.1 : Prediction of surface NO concentration in Liverpool station

during 1st-7th January, 2008.
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Figure 5.2 : Prediction of surface NO2 concentration in Liverpool station

during 1st-7th January, 2008.
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Figure 5.3 : Prediction of surface O3 concentration in Liverpool station

during 1st-7thJanuary, 2008.
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Figure 5.4 : Prediction of surface temperature concentration in Liverpool

station during 1st-7th January, 2008.



119

0 5 10 15

0

5

10

15

x

(a) NO EKF data estimation

0 5 10 15

0

5

10

15

x

(b) NO UKF data estimation

Figure 5.5 : Error ellipse plot of NO.
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Figure 5.6 : Error ellipse plot of NO2.
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Chapter 6

Emission Data Improvement Using Extended

Fractional Kalman Filtering

6.1 Introduction

This chapter presents inverse emission estimation. Special measures need to

be taken to maintain air pollution concentrations in metropolitan areas within the

permissible limits. The identification of the emission sources and the amount of

their reduction in concentration to comply with national standards is the major

part of the inverse problem, whereby accuracy of air quality modelling is crucial

for policy making. Given the highly-nonlinear, non-stationary long-range behaviour

of the process involved, extended fractional Kalman filtering is used here for the

inverse emission estimation, based on the Matérn covariance function.

6.2 Emission Estimation with Extended Fractional Kalman

Filter

When using EKF, estimation performance is affected if the dynamic system is

subject to unknown disturbances or parameter variations. To overcome this prob-

lem, the Extended Fractional Kalman Filter (EFKF) may be a better option, espe-

cially in air quality modelling when environmental models are highly uncertain. In

complex systems with uncertainties, the EFKF algorithm has been used for estima-

tion of state variables, whereby a fractional-order derivative can be used for their

more accurate description. Mathematical elaboration on the Extended Fractional

Kalman Filter (EFKF) has been conducted with simulation provided for a lossy net-
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work system by Sierociuk et al. [189], where improvements were achieved not only

for estimation in the case of packet losses but also for smoothing. Simulation on a

noisy cryptography system using the EFKF was studied by Sadeghian et al.[176].

Further details of the EFKF design and fractional systems can be found in Das and

Pan [27].

6.2.1 Extended Fractional Kalman Filter Estimation Scheme

All the details of EFKF are discussed in Chapter 4. Fractional order identifica-

tion is given in Section 4.7.

6.2.2 Emission Inventory

As per the flowchart of Figure 6.1, the fractional orders are retained to improve

the inventory. Emissions coming from areas, points and motor vehicles are gen-

erated by EMDS v2.0 and stored in the files aems, pems and mvems, containing

16 species including NO and NO2. These data are filtered by using the proposed

Matérn function-based EFKF and, together with synoptic and terrain data, form as

input to the TAPM-CTM software to obtain air quality models. The results from

the TAPM-CTM air quality model are displayed using the proprietary Chemical

Transport Model-Data Display System (CTM-DDS), which allows the comparison

of the predicted profiles with the original inventory. The predicted NO profiles, taken

on a summer day in 2008, using original inventory data and EFKF data are shown

respectively in Figure 6.2, where the overestimation effect commonly encountered in

emission inventories is avoided using the proposed EFKF. Similarly, Figure 6.3 and

Figure 6.4 show the inverse spatial distributions on the same day for air pollutants

NO2 and O3, respectively, with the same observation on improved estimation of

the air quality. The improvement is attributed to the proposed filter and does not

depend on the time of the day since it is noted that, unlike NO, the formation of

ground-level ozone O3 takes place during day time only. Figure 6.5, Figure 6.6 and
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Figure 6.7 show the difference between original inventory and EFKF inventory for

NO, NO2 and O3 respectively.

To show performance of the proposed EFKF, filtered emission inventory is used

in TAPM-CTM and output is compared with the measurement at monitoring sta-

tions. The air quality in Liverpool, NSW, during January 2008, is again considered

for this. TAPM-CTM is first simulated from 2nd January, 2008 to 31st January,

2008 to include weekdays as well as weekends. After that, data are extracted from

output files with the help of CTM-DDS. Since the temporal emission distribution is

an extremely ill-posed inversion problem, we propose the use of EFKF to reduce the

potential bias in the a priori emission inventories. Figure 6.8 shows the NO and Fig-

ure 6.9 shows NO2 variations as extracted originally from the TAPM-CTM model,

the EFKF inventory and the measured emission profile at Liverpool station. In the

EFKF based inverse estimation scheme, the uncertainty associated with emissions

are removed, making it perform better than the original inventory.

6.3 Results and Discussion

Performance of the EFKF and EKF for the inverse problem is now evaluated by

comparing filter-based inventories are used in TAPM-CTM and output is compared

with the station data, as summarized in Table 6.1. Here, Liverpool, Randwick and

Wollongong stations are considered as the experiment sites. Liverpool and Rand-

wick are located in Sydney which has a higher level of air pollution compared to

Wollongong, which is in the Illawarra region, South of Sydney. The selected station

sites have similar interpretation. As observed from the statistical goodness-of-fit

criteria such as mean-squared error (MSE) and correlation coefficient R between

the measurement and prediction, both filters indicate very good prediction capa-

bility with the proposed EFKF outperforming the EKF for all pollutants and at

all stations. It should be noted that NO and NO2 emissions come from inventory
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Figure 6.1 : Flowchart of TAPM-CTM inventory estimation using Matérn function based EFKF
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data while O3 does not as it is a secondary pollutant formed in the presence of NO,

NO2, VOCs and sunlight. That is why the regression correlation value of R in O3

estimation is lower than those in estimation of NO and NO2 while the corresponding

mean-squared error MSE is higher. As depicted in Figure 6.10, Figure 6.11 and Fig-

ure 6.12 for the regression between output (Y) and target (T), the EFKF inventory

is highly-correlated with the measurement data collected at monitoring station Liv-

erpool. The results obtained in this chapter are in agreement with those obtained

from other researchers such as Jorquera and Castro[88] and Yumimoto et al. [228],

using the same methodology but for a different pollutant (CO). For both EKF and

EFKF, the results are in good agreement with station data. However, there are few

points showing that the EFKF is stronger in its predictive ability.

In order to further evaluate the algorithms, the proposed EFKF and EKF meth-

ods are compared in terms of the MSE, regression correlation value R and also the

calculated probability or p−value to show the significance of the statistical analysis

in the air pollutant estimation at the three selected areas, as shown in Table 6.1. It

can be observed that the error variances of the estimation by EFKF are all smaller

than EKF at any station and for all pollutants. This is because the predicted and

estimated state from EFKF depend not only on its current value but also on his-

torical states starting from the initial time, and moreover, EFKF tends to increase

the power-law long-term memory and non-local effects [164], and hence, deals better

with uncertainties.

Table 6.2 shows the total emissions of nitrogen oxides by using the original and

EFKF-based inventories, where it can be seen that the proposed EFKF method has

produced better results in terms of reduced NO and NO2 emissions over NSW as it is

known that the original inventory by EDMS always overestimates the air pollution

level. O3 value is higher because it is a secondary pollution. Indeed, Figure 6.13

and Figure 6.14 show spatial plots using the EFKF inventory and original inventory
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in NSW during weekdays respectively for NO and NO2 emission, where a smaller

emission level can be observed by using the EFKF method. Similar results can be

obtained when comparing the EFKF inventory and original inventory during week-

ends which are shown in Figure 6.15 and Figure 6.16. These spatial distributions

confirm the merits of the proposed EFKF method for improvements of air quality

inverse modelling.

6.4 Summary

In this chapter, we have addressed the inverse modelling and proposed a novel

approach to improve the predicting capability of air quality, taking into account the

nonlinear and stochastic nature of the air pollutant emission. An extended fractional

Kalman filter is implemented to improve the estimation of the emission inventory,

where its fractional order is tuned by using a genetic algorithm. Here, fractional

calculus is chosen to be incorporated into the air quality model, mainly because of

its long-term memory and nonlocality. The Matérn covariance function is adopted,

incorporating considerations of smoothness and spatio-temporal correlation of the

air pollution process. To inspect the performance of the proposed method, both

Extended Kalman Filter and Extended Fractional Kalman Filter algorithms have

been implemented. From the simulation, the performance of the proposed method

indicates better results by comparing with the measurement data collected at mon-

itoring stations.
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Table 6.1 : Stochastic goodnees-of-fit criteria for EFKF and EKF

Station Pollutant Filter MSE R p-value

L
iv
er
p
o
ol

NO EFKF 0.2764 0.9551 1.5× 10−4

NO EKF 9.6208 0.8286 3.8× 10−4

NO2 EFKF 0.0544 0.9380 2.6× 10−4

NO2 EKF 1.9231 0.8572 4.2× 10−4

O3 EFKF 12.6864 0.9085 3.5× 10−4

O3 EKF 15.4823 0.8201 4.2× 10−4

R
an
d
w
ic
k

NO EFKF 0.2518 0.9408 1.8× 10−4

NO EKF 8.6214 0.8416 3.6× 10−4

NO2 EFKF 0.0962 0.9286 2.3× 10−4

NO2 EKF 1.6057 0.8616 3.6× 10−4

O3 EFKF 11.6826 0.9206 2.2× 10−4

O3 EKF 13.8413 0.8466 3.9× 10−4

W
ol
lo
n
go
n
g

NO EFKF 0.3321 0.9521 1.7× 10−4

NO EKF 9.2763 0.8607 3.7× 10−4

NO2 EFKF 0.0604 0.9572 2.5× 10−4

NO2 EKF 1.8604 0.8961 3.9× 10−4

O3 EFKF 12.7204 0.9361 2.6× 10−4

O3 EKF 15.7083 0.8562 4.2× 10−4
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(a)

(b)

Figure 6.2 : NO concentration (ppb) as simulated with (a) original inventory, and

(b) EFKF inventory at 10 am, 25th January, 2008.
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(a)

(b)

Figure 6.3 : NO2 concentration (ppb) as simulated with (a) original inventory, and

(b) EFKF inventory at 10 am, 25th January, 2008.
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(a)

(b)

Figure 6.4 : O3 concentration (ppb) as simulated with (a) original inventory, and

(b) EFKF inventory at 3 pm, 25th January, 2008.
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Figure 6.5 : Difference between NO concentration (ppb) as simulated with original

and EFKF inventories at 10 am, 25th January, 2008.

Table 6.2 : Total pollutant emission of January 2008

Atmospheric Parameters NO (kg/hr) NO2 (kg/hr)

Weekdays
EFKF 95940 7937

Original 101060 8155

Weekends
EFKF 90930 7337

Original 96821 7863
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Figure 6.6 : Difference between NO2 concentration (ppb) as simulated with original

and EFKF inventories at 10 am, 25th January, 2008.
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Figure 6.7 : Difference between O3 concentration (ppb) as simulated with original

and EFKF inventories at 3 pm, 25th January, 2008.
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Figure 6.8 : Prediction of surface NO concentration in Liverpool station

during 2nd-31st January, 2008.
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Figure 6.9 : Prediction of surface NO2 concentration in Liverpool station

during 2nd-31st January, 2008.
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Figure 6.10 : EFKF prediction correlation coefficient for NO at Liverpool.
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Figure 6.11 : EFKF prediction correlation coefficient for NO2 at Liverpool.
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Figure 6.12 : EFKF prediction correlation coefficient for O3 at Liverpool
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Figure 6.13 : NO emission (kg/hr) on weekdays in (a) original inventory, and (b)

EFKF inventory.
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Figure 6.14 : NO2 emission (kg/hr) on weekdays in (a) original inventory, and (b)

EFKF inventory.
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Figure 6.15 : NO emission (kg/hr) on weekends in (a) original inventory, and (b)

EFKF inventory.
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Figure 6.16 : NO2 emission (kg/hr) on weekends in (a) original inventory, and (b)

EFKF inventory.



141

Chapter 7

Emission Data Improvement Using Unscented

Kalman Filtering

7.1 Introduction

This chapter presents inverse emission estimation of NO2 using the Unscented

Kalman Filter. Isolated power plants are major sources of air pollution where emis-

sions can be estimated by using satellite data. In this study we evaluate NO2 emis-

sions from satellite retrievals made by the Ozone Monitoring Instrument (OMI).

These emission data are compared with The Air Pollution Model with Chemical

Transport Model (TAPM-CTM) using the original inventory data and the Un-

scented Kalman filter (UKF) inventory data. We consider power plant locations

in NSW (New South Wales) as our area of interest where the majority of power

plants are existing. The main idea is to combine the a priori information from the

bottom up original emission inventory used in an air quality simulation that covers

power plant areas with the tropospheric NO2 quantities estimated for one month by

TAPM a posteriori. These estimated values are compared with the tropospheric

NO2 column retrieved by OMI (Ozone Monitoring Instrument) data. The results

have identified biases between the a priori and a posteriori emission inventories

due to over-estimation of the spread and quantity of certain emission sources. To

remove these over-estimation values, an inverse Matérn based UKF is applied to

original inventory data. The prediction of NO2 concentration with a posteriori

emissions shows better agreement with the observations, implying that the inverse

modelling minimising the discrepancies in the TAPM-CTM predictions by improving
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the accuracy in estimating NO2 emissions.

7.2 Emission Data Estimation with Unscented Kalman Fil-

ter

We consider power plant location in NSW (New South Wales) as our area of

interest where the majority of power plants are existing. Hunter region and Central

West region of NSW have coal based power plants which contribute NOX in envi-

ronment. Table 7.1 shows the details of location and capacity of plants. The main

idea is to combine the a priori information from the bottom up original emission

inventory used in an air quality simulation that covers power plant areas with the

tropospheric NO2 quantities estimated for one month by TAPM-posteriori . These

estimated values are compared with the tropospheric NO2 column retrieved by OMI

data. The results have identified biases between the a priori and a posteriori emis-

sion inventories due to over estimation of the spread and quantity of certain emis-

sion sources. To remove these over estimation values, inverse Matérn based UKF

is applied to original inventory data. The prediction of NO2 concentration with a

posteriori emissions shows better agreement with the observations, implying that

the inverse modelling minimises the discrepancies in the TAPM-CTM predictions

by improving NO2 emissions data in NSW. As per the flowchart of Figure 7.1, the

UKF is applied to improve the inventory data.

7.2.1 Unscented Kalman Filter Estimation Scheme

All the details of UKF are discussed in Chapter 6.
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Figure 7.1 : Flowchart of TAPM-CTM inventory estimation of emissions using

Matérn function based UKF and with satellite data

7.2.2 Satellite Data

The GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure

(Giovanni) (http://giovanni.gsfc.nasa.gov) is an online tool for visualization, explo-

ration, and analysis of NASA Earth Science data [6, 14, 167]. The data sets within

Giovanni have been grouped into portals, designed to meet the needs of various

end-user communities. Giovanni portals fall into the categories of atmosphere, envi-

ronment, ocean, and hydrology. Giovanni covers topics to include air quality, ocean

color, precipitation, and others [5, 36, 80, 218]. Giovanni supports multiple data

formats including Hierarchical Data Format (HDF), HDF-EOS, network Common

Data Form (netCDF), GRIdded Binary (GRIB), and binary, and multiple plot types
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Table 7.1 : Major existing NSW power stations (coal base)[1]

Power station Location Nearest Installed Latitude Longitude

monitoring capacity (Degree) (Degree)

station (MW)

Bayswater Hunter Muswellbrook 2,720 -33.8765◦ 151.2290◦

Eraring Lower Hunter Wallsend 2,640 -33.0664◦ 151.5180◦

Liddell Hunter Muswellbrook 2,080 -32.4028◦ 151.0183◦

Mount Piper Central West Bathurst 1,400 -36.3817◦ 148.4178◦

Vales Point Central Coast Wyong 1,320 -33.1489◦ 151.4884◦

Wallerawang Central West Bathurst 1,000 -33.4113◦ 150.0649◦

including area, time, Hovmoller, and image animation. The main services currently

available relevant to air quality are latitude/longitude maps, animation maps, cor-

relation maps, scatter plots, and time series plots.

Satellite instruments are gaining popularity being used as a tool for air quality

management and air quality modelling. Power plants and larger cities NOX are

estimated by using satellite data [29, 28, 201]. Inverse modelling technique is used

to obtain top-down nitrogen dioxide (NO2) column values from OMI [231].

Satellite NO2 column retrieval has been used together with air quality models to

provide constraints on global and regional NOX in [34, 98, 102, 112, 126]. Inverse

modelling of NOX are studied by many investigators in [78, 105, 196].

Satellite observations of trends in NO2 have attracted considerable attention in

recent years to estimate ground level [12, 100, 111, 222]. Tropospheric pollutants

are observed and measured [20, 120, 168]. Matérn covariance function is discussed

in Chapter 3.
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7.3 Pollutant Estimation Using UKF

UKF is an extension of the classical Kalman filter [95] for nonlinear state esti-

mation problems. Unlike the extended Kalman filter [180] which uses the first-order

approximation of the nonlinear system, UKF represents a derivative-free alterna-

tive with lesser computational complexity. UKF employs the unscented transform

[220] to estimate the distribution of an a posteriori state without the need for any

linearization.

7.3.1 UKF Estimation Scheme

In [89, 91] authors have developed UKF using the UT(Unscented Transform),

first defined by Uhlmann in his doctoral dissertation [205]. UKF is more accurate

compared with EKF due to the capability of propagating mean and covariance in-

formation through nonlinear transformations. In [31] researchers have implemented

UKF in signal processing and in [179] authors have developed UKF for data smooth-

ing. The UT can be adopted for forming a Gaussian approximation to the joint

distribution of random variables x and y, when the random variable y is obtained

by a nonlinear transformation of the Gaussian random variable x. UT is described

in Section 5.2.

7.3.2 TAPM-CTM Data Estimation

In this work, the UKF is implemented to improve the emission inventory. NO2

data is extracted from TAPM-CTM plots for original as well as for UKF. These data

are compared with satellite data to match the trend of emission. Figure 7.2a shows

original inventory TAPM-CTM plot for NO2 and Figure 7.2b shows UKF inventory

TAPM-CTM plot for NO2. It is interpreted from figures that power plant emissions

concentration are higher than natural emission. Similarly, July month is simulated

and presented in Figure 7.5a and Figure 7.5b. Figure 7.8a and Figure 7.8b show



146

difference Nitrogen Dioxide (NO2 (ppb)) concentration difference between original

and UKF inventory for January and July months respectively.

7.3.3 OMI retrievals

The Ozone Monitoring Instrument (OMI) was launched on NASA’s Aura satel-

lite in July 2004 and has been providing measurements of ultraviolet and visible

radiation with a spatial resolution of up to 13 by 24 km2 as given in [113]. We have

used NO2 data derived from OMI measurements from power plant sources. Data

from the Ozone Monitoring Instrument (OMI) with a maximum resolution of 13 by

24 km2 are used to create maps over Australia at 0.1◦ resolution that are used to

compare NO2 data with measured surface concentrations [110]. We have compared

with TAPM-CTM data to calculate total NO2.

7.3.4 Satellite Data Estimation

Giovanni (http://giovanni.gsfc.nasa.gov) is an online tool for visualization, data

extraction, exploration, and data analysis of NASA Earth Science data. Data is

downloaded from the Giovanni site and contour plots are plotted. Figure 7.3 shows

NO2 spatial plot for January, 2008. In Figure 7.3a, the whole of Australia’s NO2

emissions is considered and Figure 7.3b represents detailed NO2 emissions of NSW

region. Fossil fuels and forest fires can lead to high emissions of NO2. In this

example, there seems to be good collocation between the areas of high NO2 concen-

trations over NSW region. Figure 7.6a shows detailed NO2 plot for July month and

Figure. 7.6b shows details of NSW region. It is interpreted that due to prevailing

wind NO2 concentration is moved towards the sea. This trend is also found in UKF

inventory in Figure 7.5b.
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7.3.5 Surface concentration estimation

We use TAPM-CTM model to derive NO2 vertical profile for the NSW. TAPM-

CTM modelling domain (57330 grid cells, 210×273 km2 and OMI domain (40 grid

cells, 13 km by 24 km) that covers the study region. The modelled NO2 profiles are

influence by the degree of of mixing in different levels. Our focus here is on model-

model comparison on ground level. We infer surface NO2 concentrations from the

satellite observation by calculating a scaling factor (ration of surface concentration

to column abundance) for each satellite pixel, calculated as the ratio of average in

surface NO2 to average OMI column abundance. TAPM-CTM scaling factor assume

a concentration above 4 km to the model boundary condition (1ppb). Scaling factors

from the TAPM-CTM are 2.5700×10−16ppb cm2 molec−1 for original inventory and

2.5240×10−16ppb cm2 molec−1 for UKF inventory during January 2008. Similarly,

scaling factors from TAPM-CTM are 1.9458×10−16ppb cm2 molec−1 for original

inventory and 1.8371×10−16ppb cm2 molec−1 for UKF inventory during July 2008.

These scaling factors are varying due to influence of natural NO2 emission during

different seasons. In [12] authors scaled down satellite data to comparable value

with CMAQ data. They employed a constant scaling factor (1.0× 10−14 ppb cm2

molec−1), calculated as the ratio of average in situ surface NO2 to average OMI

column abundance for coinciding measurements in the California’s South Coast Air

Basin (SoCAB).

7.3.6 Results and Discussion

TAPM-CTM forecasts of hourly NO2 concentration are evaluated against OMI

NO2 observations. Three power plant sites and two rural sites are considered for

analysis. NO2 profile is extracted from TAPM-CTM and compared with OMI NO2

profile. For comparison, OMI data are scaled down using scaling factor which are
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Table 7.2 : Stochastic goodness-of-fit criteria for original and UKF inventory

Month Type of inventory MSE R2 p-value

January
Original 5.2642 0.6861 2.2×10−4

UKF 1.0861 0.9283 1.6×10−4

July
Original 4.9621 0.9143 1.9×10−4

UKF 1.0361 0.7049 1.3×10−4

calculated in previous section. Statistical analysis has been done on extracted data

to determine accuracy. Figure 7.4a shows regression plot of NO2 using UKF inven-

tory and Figure 7.4b shows regression plot of NO2 using original inventory. Value

of R2 is higher in UKF inventory than original inventory. Similar trend is shown in

Figure 7.7 for July. There is a mismatch between TAPM-CTM grid numbers and

OMI grid numbers. We use Surfer 11.00 software to convert same comparable grid

numbers. Our aim is to model-model comparison. OMI NO2 values are subtracted

from TAPM-CTM NO2 values and resultant values are analysed. In ideal case, there

will be zero difference, but there is concentration of NO2 in difference. It is shown

in Figure 7.9a that UKF inventory difference is less compare to original inventory

in Figure 7.9b during January. Similar trend is shown in Figure 7.10 during July.

Performance of the UKF for the inverse problem is now evaluated by comparing

filter-based inventories with the satellite data, as summarized in Table 7.2. As ob-

served from the statistical goodness-of-fit criteria such as mean-squared error (MSE)

and the coefficient of determination R2 between the measurement and prediction,

both inventories indicate very good prediction capability with the proposed UKF

outperforming original inventory modelling for NO2 pollutant. As depicted in Fig-

ure 7.4a, Figure 7.4b, Figure 7.7a and Figure 7.7b for the regression line between

satellite data and TAPM-CTM data, the UKF inventory is highly-correlated with
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satellite which are downloaded from server.

This section describes observations from the station measurements, the emission

inventory, and improved results from UKF estimation for comparison with satellite

data. As per the flowchart of Figure 7.1, the UKF is implemented to improve the

inventory. Emissions coming from areas, points and motor vehicles are generated by

EMDS v2.0 and stored in the files aems, pems and mvems, containing 16 species

including NO and NO2. These data are filtered by using the proposed Matérn

function-based UKF, and together with synoptic and terrain data, form as input to

the TAPM-CTM software to obtain air quality models. The results from the TAPM-

CTM air quality model are displayed using the proprietary Chemical Transport

Model-Data Display System (CTM-DDS), which allows us to compare the predicted

profiles with the original inventory.

When using EKF, estimation performance is affected if the dynamic system is

subject to unknown disturbances or parameter variations. To overcome this prob-

lem, UKF may be a better option, especially in air quality modelling when envi-

ronmental models are highly uncertain. UKF algorithm is implemented to estimate

pollution profile of NO2. These details are given in Section 5.3.

7.4 Unscented Kalman Filter Based on Matérn Function

All the details of UKF are discussed in Chapter 5. Matérn covariance function

is discussed in Chapter 3.

7.4.1 Improve Emission Inventory

As per the flowchart of Figure 7.11, UKF is used to improve the emission in-

ventory. Emissions coming from areas, points and motor vehicle sources are gen-

erated by EMDS v2.0 and stored in the files aems, pems and mvems, containing

16 species including NO and NO2. These data are filtered by using the proposed
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Matérn function-based UKF, and together with synoptic and terrain data, form as

input to the TAPM-CTM air quality model software to obtain air quality models.

The results from the TAPM-CTM air quality model are displayed using the propri-

etary Chemical Transport Model-Data Display System (CTM-DDS), which allows

us to compare the predicted concentration profiles with the original inventory. The

predicted NO profiles, taken on a summer day in 2008, using original inventory data

and UKF data are shown respectively in Figure 7.12, where the overestimation effect

commonly-encountered in emission inventories is avoided using the proposed UKF.

Similarly, Figure 7.13 and Figure 7.14 show the inverse spatial distributions on the

same day for air pollutants NO2 and O3, respectively, with the same observation

on improved estimation of the air quality. The improvement is attributed to the

proposed filter and does not depend on the time of the day since it is noted that

unlike NO, the formation of ground-level ozone O3 takes place during day time only.

Figure 7.15, Figure 7.16 and Figure 7.17 show the difference between original in-

ventory and EFKF inventory for NO, NO2 and O3 respectively. Figure 7.18 and

Figure 7.19 show the profiles of NO and NO2 at Liverpool station in the Sydney

metropolitan area by monitoring as well as by using original inventory and UKF

inventory respectively. Error ellipse is plotted for NO and NO2 respectively in Fig-

ure 7.20 and Figure 7.21. It is interpreted UKF inventory data estimation error is

less compared to original inventory data estimation.
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Figure 7.2 : TAPM-CTM NO2 (ppb) spatial plot for January 2008, based on (a)

original inventory, and (b) UKF inventory.
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Figure 7.3 : Satellite NO2 (ppb cm
2 molec−1) spatial plot for January 2008, (a) NO2

spatial plot of Australia, and (b) Detail NO2 spatial plot of NSW region.
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Figure 7.4 : Scatter plots of TAPM-CTM and the OMI-derived surface NO2 for

January 2008, based on (a) UKF inventory, and (b) original inventory.
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Figure 7.5 : TAPM-CTM NO2 (ppb) spatial plot for July 2008, based on (a) original

inventory, and (b) UKF inventory.
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Figure 7.6 : Satellite NO2 (ppb cm2 molec−1) spatial plot for July 2008, (a) NO2

spatial plot of Australia, and (b) Detail NO2 spatial plot of NSW region.
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Figure 7.7 : Scatter plots of TAPM-CTM and the OMI-derived surface NO2 for July

2008, based on (a) UKF inventory, and (b) original inventory.
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Figure 7.8 : Nitrogen Dioxide (NO2 (ppb)) concentration difference between original

and UKF inventory, (a) January 2008, and (b) July 2008.
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Figure 7.9 : Difference between TAPM-CTM and OMI for January 2008, based on

(a) UKF inventory, and (b) original inventory.
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Figure 7.10 : Difference between TAPM-CTM and OMI for July 2008, based on (a)

UKF inventory, and (b) original inventory.
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Figure 7.11 : Flowchart of TAPM-CTM inventory estimation using Matérn function

based UKF

Table 7.3 : MSE emission inventory

MSE NO NO2 O3

Original 25.5798 18.6386 15.8028

UKF 2.4894 0.8594 10.7814

7.4.2 Results and Discussion

In this chapter, observations from the station measurements, the emission in-

ventory, and improved results from UKF estimation are compared with the original

inventory. The performance of the UKF inventory and original inventory for the

inverse problem is now evaluated by comparing filter-based inventories with the

station data, as shown in Table 7.3. Here, Liverpool, located in the south-west of



161

Sydney, is considered as our experiment site. MSE criteria for UKF inventory are

better than original inventory. As is shown in Table 7.3, MSE of NO2 for UKF

inventory is 0.8594 which is much smaller compared to original inventory’s value

of 18.6386. In the case of NO, MSE for UKF inventory is 2.4894 and for original

inventory is 25.5798. It is noted that O3 is a secondary pollutant; a higher value is

obtained in Table 7.3 compared to other pollutants.

Figure 7.22 and Figure 7.23 show spatial plots using the UKF inventory and

original inventory in NSW during weekdays respectively for NO and NO2 emission,

where a smaller emission level can be observed by using the UKF method. Similar

results can be obtained when comparing the UKF inventory and original inventory

during weekends which are shown in Figure 7.24 and Figure 7.25. These spatial

distributions confirm the merits of the proposed UKF method for improvements of

air quality inverse modelling.

7.5 Summary

In this chapter, we have compared TAPM-CTM with satellite data to estimate

power plant NO2 pollution profile. In the process, we improved emission inven-

tory using Matérn covariance function based UKF. Comparisons with satellite data

showed that TAPM-CTM with original inventory and UKF inventory have the same

trend. The present method assumes that the discrepancies in the modelled and ob-

served NO2 are due solely to estimates of emissions at the ground level. Uncertainties

in the chemical processes, emission aloft from lighting sources, air planes, and mete-

orological predictions also contribute to differences between modelled concentration

of NO2 and satellite observations. In the case of satellite, it is averaged from satellite

data and multiplied with scaling factor to compare with UKF and inventory data.

UKF estimation is lower than satellite data due to other natural factors which are

not included in the model. On the other hand it is improved from original inventory.
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We have addressed the inverse modelling and proposed a novel approach to im-

prove the predicting capability of the air quality model, taking into account the

nonlinear and stochastic nature of the air pollutant emission. To access the per-

formance of the proposed method, both Extended Kalman Filter and Unscented

Kalman Filter algorithms have been implemented. From the simulation, the per-

formance of the proposed method indicates better results by comparing with the

measurement data collected at monitoring stations.
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(a)

(b)

Figure 7.12 : NO concentration (ppb) as simulated with (a) original inventory, and

(b) UKF inventory at 6 am, 15th January, 2008.
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(a)

(b)

Figure 7.13 : NO2 concentration (ppb) as simulated with (a) original inventory, and

(b) UKF inventory at 6 am, 15th January, 2008.
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(a)

(b)

Figure 7.14 : O3 concentration (ppb) as simulated with (a) original inventory, and

(b) UKF inventory at 6 pm, 15th January, 2008.
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Figure 7.15 : Difference between NO concentration (ppb) as simulated with original

and UKF inventories at 6 am, 15th January, 2008.
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Figure 7.16 : Difference between NO2 concentration (ppb) as simulated with original

and UKF inventories at 6 am, 15th January, 2008.
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Figure 7.17 : Difference between O3 concentration (ppb) as simulated with original

and UKF inventories at 6 pm, 15th January, 2008.
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Figure 7.18 : Prediction of surface NO concentration in Liverpool station

during 2nd-31st January, 2008.
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Figure 7.19 : Prediction of surface NO2 concentration in Liverpool station

during 2nd-31st January, 2008.
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Figure 7.20 : Error ellipse plot of NO.
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Figure 7.21 : Error ellipse plot of NO2.
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Figure 7.22 : NO emission (kg/hr) on weekdays in (a) original inventory, and (b)

UKF inventory.
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Figure 7.23 : NO2 emission (kg/hr) on weekdays in (a) original inventory, and (b)

UKF inventory.
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Figure 7.24 : NO emission (kg/hr) on weekends in (a) original inventory, and (b)

UKF inventory.
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Figure 7.25 : NO2 emission (kg/hr) on weekends in (a) original inventory, and (b)

UKF inventory.
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Chapter 8

Thesis Contributions and Conclusions

8.1 Thesis contributions

The main theme of this thesis is the analytical modelling and implementation

of EKF, EFKF and UKF. The topic of inverse modelling in Air Quality field is

the motivation to produce this work. The process of using observation from the

dynamical system that is being modelled in order to infer information about the

boundary and initial conditions and other parameters is known as inverse modelling

(or solving an inverse problem).

The contributions of the thesis are summarised as follows:

• Matérn covariance function is coupled with the Extended Kalman Filter to pre-

dict accurately the pollutant profile. Different types of Kalman Filters have

been considered. For each type of Kalman filter, by using time series of air

quality data as measured from the monitoring stations, pollutant concentra-

tions have been predicted one hour ahead in time with system noise as a simple

practical forecasting system. Extended Kalman Filter (EKF), Extended Frac-

tional Kalman Filter (EFKF) and Unscented Kalman Filter (UKF) have been

implemented to predict accurately the spatio-temporal profiles of air pollutant

concentration.

• Emission inventory is often used in air quality dispersion model to predict

the air pollutant concentration in time and space. But the performance of

the air quality model is limited by the uncertainties in the emission inventory



176

estimate and in the model itself. In this work, EFKF is used with Matérn

covariance function to improve the estimate of the emission inventory. A

generalised way has been presented to tune fractional values of EFKF using

Genetic Algorithm (GA) to improve the estimate of the emission inventory

estimate. The improved emission inventory is then used in The Air Pollution

Model with Chemical Transport Model (TAPM-CTM) model to give a better

prediction of the air pollutant concentration compared to the prediction from

using the original emission inventory when compared with the observation

data at some stations.

• UKF is also used with Matérn covariance function to improve the emission

inventory estimate. Mathematical model of UKF is explained in details in

this work. Similarly to the EFKF-derived improved emission estimate, the

improved emission inventory estimate from using the UKF method is then

used in the air dispersion model (TAPM-CTM) to give better performance

in predicting the air quality concentration when comparing with the observed

monitoring data from the station.

• Matérn covariance function based UKF, has been implemented to improve the

emission inventory estimate. Air quality is then predicted using TAPM-CTM

model. The predicted concentration (nitrogen oxides and ozone) are com-

pared with the monitoring station data as well as with the Ozone Monitoring

Instrument (OMI) data from NASA satellite (Aqua and Terra MODIS). One

of the main applications of satellite remote sensing for air pollution is to detect

trends in emissions from power plant.
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8.2 Conclusions

To accomplish the thesis objectives, we have developed Matérn covariance func-

tion for Gaussian Process (GP). Based on random process theory of environmental

data, these are represented as the spectra and covariance functions of Stochastic

Differential Equations. Special case of Matérn covariance function has been consid-

ered in this study. The Matérn family of the covariance functions has an advantage

in providing more liberty to control the smoothness as well as the spatio-temporal

correlation of the process.

Since EKF has a limitation in predicting the concentration data, EFKF can

provide better prediction of environmental data. The advantage of EFKF over EKF

is that it is a more global approximation than EKF, as the linearization is not only

based on the local region around the mean but on a whole range of function values

due to fractional calculus. In Chapter 5, we have proposed a novel approach of

using UKF to improve the predicting capability of the air quality model, taking into

account the nonlinear and stochastic nature of the air pollutant emission. From

the simulation, the performance of UKF indicates better results by comparing with

station data and EKF data.

We have addressed the inverse modelling and proposed a novel approach to

improve the predicting capability of air quality, taking into account the nonlinear

and stochastic nature of the air pollutant emission. An extended fractional Kalman

filter is implemented to improve the estimation of the emission inventory, where its

fractional order is tuned by using a genetic algorithm.

The UKF model is described in Chapter 7. In Chapter 7, the UKF has been

implemented to improve the emission inventory estimate. The improved emission

inventory data is next used in TAPM-CTM model to predict the air quality con-

centration with improved accuracy when comparing with the observed monitoring
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data at the station. The predicted air quality data (nitrogen oxides, NO2 and NO)

is also compared with OMI satellite data. Comparisons with monthly average NO,

NO2 satellite data have shown that the TAPM-CTM prediction of air quality using

the original inventory and UKF inventory have the same trend. The UKF-derived

pollutant concentration has lowered value than satellite data due to other natural

factors such as lightning sources and aircraft emission which have not included in

the model. On the other hand the UKF-derived emission data has improved the

TAPM-CTM prediction compared with using the original inventory.

In conclusion, the Kalman filter developments throughout this thesis have shown

high performances against nonlinearities and uncertainties of the systems. The

results have shown that inverse problem in air quality studies can be achieved by

using either the Extended Fractional Kalman Filter or Unscented Kalman Filter to

improve emission inventory. However, research on inverse air quality modelling still

remains an open problem due to various considerations which have not taken into

account such as inaccurate emission inventory, uncertainties in chemical processes,

emissions aloft from lighting sources and from aircraft are not yet included in the

inventory, and inaccurate meteorological prediction.

8.3 Future work

Potential future works in air quality can be explored in two main aspects, namely,

vertical profiles of emissions and lightning emissions. CMAQ (Community Multi-

scale Air Quality ) and CAMx (Comprehensive Air quality Model with extensions)

are air quality models for assessment of tropospheric air pollution (ozone, particulate

matter, air toxics) over spatial scales ranging from neighbourhoods to continents. In

this work the TAPM-CTM model has been used to predict the air quality concen-

tration. Therefore, the performance could be compared to alternative models such

as CMAQ and CAMx models.
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Vertical profiles of emissions

In most chemistry-transport models (CTMs), the fire emissions are distributed

homogeneously within the planetary boundary layer (PBL). In the case of boreal

vegetation fires or bush fires, restricting the emissions to within the PBL can lead

the CTMs to significantly underestimate the top height reached by the fire products

and therefore the resulting long-range transport of smoke plumes.

The future work may focus on fire products which can be injected at high al-

titudes above the PBL. In addition, recent observations of intense Canadian forest

fires indicated that smoke can penetrate the stratosphere when ambient meteoro-

logical conditions are favourable. It is recommended to include the effect of bush

fires on the stratosphere in the emission inventory.

Lightning emissions

Lightning discharge produces nitrogen oxides (LNOX :NOX=NO+NO2) that con-

tribute to the global nitrogen budget. Annual mean LNOX emissions of 5±3 TgN
per year which is based on an extensive review of available data and literature;

mean values of 15 (240)×1025 NO molecules per flash and a mean flash rate of

44±5 flashes per second based on LIS (Lightning Imaging Sensor)/OTD (Optical

Transient Detector) satellite data are derived.

Lightning emissions depend on the strength of convective systems. Current

climate-chemistry models (CCM) have parameterizations of lightning frequencies

that are coupled to the convection scheme. As a consequence of this larger scale

models do not resolve the driving parameters as the relevant processes are occurring

on the sub-grid scale.

Currently, no trends in global lightning have been detected based on observa-

tional data. It is recommended to establish global lightning trend to improve the
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emission inventory. This will lead to better estimate of the emission inventory as

well as improved air quality prediction using a dispersion model.
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[180] S. Särkkä, “Unscented rauch–tung–striebel smoother,” Automatic Control,

IEEE Transactions on, vol. 53, no. 3, pp. 845–849, April 2008.
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