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ABSTRACT

The amino acid sequence of the first neurotoxic phospholipase A2, acanthoxin AI,
purified from the venom of the Common death adder (Acanthophis antarcticus) was
determined. Acanthoxin Al shows high homology with other Australian elapid PLA2
neurotoxins, in particular Acanthin -I and -II, also from Death adder, Pseudexin A from
the Red-bellied black snake (Pseudechis porphyriacus), and Pa-I2a and Pa-9c from the
King brown snake (Pseudechis australis). Acanthoxin Al is a single-chain 118 amino acid
residue PLA2, including 14 half cystine residues and the essential residues forming the
ubiquitous calcium binding pocket and catalytic site. Critical analysis of the residues
hypothesized to be important for neurotoxicity is presented.

INTRODUCTION

A large number of phospholipase
A2 enzymes (pLA2, EC 3.1.1.4) from the
venomous snake families Elapidae.
Hydrophiidae, Crotalidae and Viperidae
have been purified and sequenced (Yang,
1994). All the sequences show a high
degree of homology, despite the fact that
they are capable of different

pharmacological activities, such as
neurotoxicity, myotoxicity, cardiotoxicity,
anticoagulant effects, and oedema-
stimulating activities (Kini and Evans,
1989). PLk enzymes isolated from
Australian snake venoms are Widely known
for their neurotoxic activities (Sutherland,
1990); however, identification of the
residues responsible for presynaptic
neurotoxicity remains controversial .
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Recently, neurotoxic PLA2
enzymes were isolated from the venom of
the Common death adder iAcamhophts
antarcticus) (van der Weyden et aI., 1997).
The major PLA2 from the venom of the
Common death adder, acanthoxin A
(AetxA), was found to exist in two
isoforms, Al and A2 (ActxAl and
ActxA2, respectively), which can be
separated by RP-HPLC (Hains et al.,
1999). N-terminal analysis of these two
isoforrns shows a difference of only 3
residues in the first 32 amino acids
(positions I, 3 and 10) (van der Wcydcn et
al., 1997). The complete sequence of
acanthoxin A1 is reported here and
discussed in terms of the residues
hypothesized to be important for
presynaptic neurotoxicity.

MATERIALS AND METHODS

Neurotoxicity Studies
Three male adult QS mice (30-

35g) were intraperitoneally injected with
200~ of ActxA (at doses of 80~, 160~
and 400~) suspended in 0.1% (w/v) BSA
in 0.9% (w/v) saline, and monitored for 24
hours. The positive control was 1OO~ of
whole A. antarcticus venom (12.5~); the
negative control was 100111of 0.1% BSA
in 0.9% (w/v) saline. The toxicity of
purified AetxAl and ActxA2 has since
been tested (Hains et al., 1999).

Enzymatic Digestions
ActxA was purified from the

venom of the Common death adder, as
previously described (van der Weyden et
al., 1997). All digestions were performed
on the performic acid oxidized derivative
of ActxA. Tryptic digestions (promega)
were carried out in 50mM ammonium
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bicarbonate, pH 7.8, at an
enzyme:substrate ratio of 1:20 (w/w), at
37°C for 18 hours. The reaction was
terminated by the addition of TFA (10%
v/v of reaction volume) and the mixture
stored at -80°C. Endoproteinase Arg-e
(Boehringer-Mannheim) digestions were
carried out in 90mM Tris-HCI, pH 7.6,
85mM CaCh, 5mM DIT, O.5mM EDTA,
at an enzyme:substrate ratio of 1:20 (w/w),
at 37°C for 18 or 30 hours. The reaction
was terminated by freezing or loading
immediately onto an HPLC column.
Endoproteinase Glu-C digestions
(Boehringer-Mannheim) were carried out
in lOOmMammonium acetate, pH 4.0, at
an enzymc:substrate ratio of 1:50 (w/w), at
room temperature for 1 week. The reaction
was terminated by freezing or placing
immediately onto an HPLC column.

Chemical Cleavages
BNPS-skatole chemical cleavages

were performed on unmodified ActxA.
ActxA bound to PVOF was covered in
glacial acetic acidwater (1:1 v/v) with a
dissolved crystal of cresol, followed by
addition of BNPS-skatole, dissolved in
acetic acid (approximately Img in SO~ in
a total volume of 150~). The reaction
proceeded for 48 hours in the dark at room
temperature. ~-Mercaptoetbanol was added
to the reaction, and incubated for a further
24 hours. The sample was diluted to
500~ and extracted with ethyl acetate to
remove excess reagent and break down
products. The aqueous solution and PVOF
were freeze dried. The PVOF was wetted
with 50% (v/v) methanol and suspended in
0.1% (v/v) TFA/water overnight before
being washed and air-dried ready for
sequencing.
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Purification of Peptides
The proteolytic peptide fragments

were separated by RP-HPLC with a
Pharmacia Sephasil CI8 column (2.1mm x
IOOmm)connected to a Pharmacia SMART
system. The . column was equilibrated in
0.1% (v/v) TFA water at a flow rate of
1OO~min. Elution was performed using a
linear gradient of 0.1% (v/v) TFA, 80%
(v/v) acetonitrile in water over 70 min. The
eluant was monitored at 214, 255 and
280nrn.

Edman Degradation and Amino
Acid Sequencing

Edman degradation and amino acid
analysis was performed on the peptides
attached to either PVDF or polybrene-
treated, precycled glass-fibre disks, using a
gas-phase sequencer (pE Applied
Biosysterns Procise 494 Protein Sequencer,
4 cartridge model).

RESULTS

Neurotoxicity Studies
When ActxA was administered

intraperitoneal1y to adult mice they
exhibited classical signs of neurotoxic
poisoning; including respiratory distress
and hind limb paralysis, followed by
respiratory failure and death.

Protein Sequencing
The full amino acid sequence of

ActxAl is shown in Figure I. This figure
includes N-terminal sequencing, tryptic,
Arg-C, Glu-C and BNPS-skatole peptides,
to fully elucidate the sequence of ActxA 1.
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Tryptic Digestion
Tryptic digestion of AetxA gave

multiple peptides, only one of which was
uniquely informative and is included in
Figure 1. The sequence of this peptide
(Trypsin 11) was GGSGKPVDELR
(indicating a chymotryptic-type cleavage).
This sequence corresponds to residues 33-
43 of ActxA 1.

Endoproteinue Arg-C Digestion
The 18-hour digestion of AetxA

produced 4 main peptides, separated by
RP-HPLC, as monitored at 214mn. One
peptide (Arg-C_I8hr 30) revealed two
sequences (discernible by their quantitative
differences): APYNKNNIGIGSKTRCQ,
residues 101-117, and CFAKAPYNKNNI
GIGSKTRCQ, residues 97-117. Another
peptide produced the N- and C-terminal
sequences, as well as the minor sequence:
CGPKMTLYSW, corresponding to
residues 60-69. The remaining peptides
produced only low, background levels of
amino acids, suggestive that the peptides
had not properly attached to the PVDF
membrane. Cysteine was identified by the
lack of an amino acid in that cycle and by
homology to other PLA2 enzymes. As
ActxA was oxidized with perforrnic acid
cysteine was present as cysteic acid, the
PTIl derivatives of which are not detected
in our system.

The 30-hour digestion of ActxA
again produced 4 main peptides, which
were adsorbed to polybrene-treated,
precycled glass-fibre disks following
purification, in preference to PVDF. One
peak consisted of the N-terminus, plus a
minor sequence of CGPKMTLYS (Arg-
C_30hr 37), corresponding to residues 60-
68. An earlier eluting (more hydrophilic)
peak also contained the N-tenninus, plus a
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minor sequence: CCQIHDNCYGEAE
KKG (Arg-C_30hr 18), corresponding to
residues 44-59 (indicating that Arg-C will
cleave after a glycine if left to digest for a
long period).

Endoproteinase Glu-C Digestion
The endoproteinase Glu-C

digestion of ActxA produced 2 major
peaks, separated by RP-HPLC, as
monitored at 214nm. The earlier eluting
peak (Glu-C 19) gave the sequence
LDRCCQIHDNCYGEAEK (corres-
ponding to residues 41-57). The latter
(more hydrophobic) peak (Glu-C 39)
contained to two unresolved peptides: the
major sequence being GFVCDCD
AAAAKC, residues 86-97, and the minor
sequence AEKKGCGPKMTLYSW,
residues 55-69.

BNPS-Skatole Cleavage
BNPS-skatole cleavage of

unmodified ActxA was expected to
produce 4 peptides, as judged from the
amino acid composition data (van der
Weyden et aI., 1997). The resulting
peptidcs were not separated, but rather the
whole reaction mixture was sequenced. As
anticipated, four peptides were detected.
From knowledge of much of the sequence
of ActxAl we were able to discern 4
individual sequences as follows: (i) the N-
terminus, (ii) LSYVNYG ..., corresponding
to residues 20+, (iii) GGSGKPVD ...
corresponding to residues 32+, and (iv)
KDCANDVPVCNSKSGCEGFY, corres-
ponding to residues 70-88. This latter
sequence (iv) was the final section of
ActxAl that remained unknown.
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Hydrophobicity Prefile

The hydrophobicity profile for
ActxAl was calculated (Figure 3) using
AntheProt (Geourjon and Deleage, 1995)
with the criteria as defined by Kyte and
Doolittle (1982), where a positive value
indicates an increase in relative
hydrophobicity.

DISCUSSION

Irrespective of their origin,
mammalian pancreas or snake venom, the
primary structure of PLA7s show a high
degree of homology (Davidson and Dennis,
1990; Dennis, 1994). The sequence of
ActxAl was used as the input of a FASTA
search (pearson, W. R., 1990) of the OWL
database (Bleasby et aI., 1994). The 5
highest scoring PLA2 enzymes, aligned
with ActxAl using Clustal W 1.74
(Thompson et aI., 1994) are shown in
Figure 2. Acanthin-I and -n from A.
antarcticus (Chow et aI., 1998), Pseudexin
A from P. porphyriacus (Vaughan et aI.,
1981; Moon and Rys, 1984; Schmidt and
Middlebrook, 1989) and Pa-9c and Pa-l2a
from P. australis (fakasaki et aI., 1990a,
b) all share a high level of homology to
ActxAl. ActxAl showed the highest level
of identity (%%) to Acanthin-ll, also from
A. antarcttcus. AetxAl also showed a high
level of identity to Acanthin-I (92%),
Pscudcxin A (77%), Pa-12a (73%) and Pa-
ge (70%).

Given the high level of identity
between ActxAl and the Acanthins it is
important to consider the possibility that
ActxA 1 is in filet the same protein as either
Acanthin-I or Acanthin-ll. Indeed, the
PLAJ enzymes do share similar molecular
masses and isoelectrie points; however, this
is not uncommon for PLA2 enzymes from
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the same venom (Takasaki et aI., 1990a,
b). Significantly, the sequences of the
Acanthins differ from ActxA I in a number
of areas (Figure 2) with ActxAl
possessing amino acids that neither
Acanthin-I nor -II contain. Additionally,
Acanthin-I contains an additional amino
acid. Also, it remains to be elucidated if the
Acanthins are neurotoxic, whereas AetxA I
clearly is. As such, the authors feel that
ActxA 1 and the Acanthins are in fact
unique PLA2 enzymes present in the venom
of A. antarcticus. Recent LC-MS studies
of Death adder venom (Sung, 1998) has
shown that at least 7 PLA2 enzymes are
present in this venom.

ActxA I contains the 14 cysteine
residues typical of Group IA PLA2
enzymes (Davidson and Dennis, 1990;
Dennis, 1994, 1997) that form 7 disulfides
bonds as demonstrated by mass
spectrometry (not shown). The sequence of
AetxA 1 also contains the 4 residues which
form the essential calcium-binding pocket:
Y28, G30, G32 and D49 (Dijkstra et al.,
1981a, b; Bekkers et al., 1991; Ami and
Ward, 1996). AetxAl also contains the
essential catalytic unit residues: H48 and
D99 (Verheij"et aI., 1980). The proposed
catalytic mechanism is that a water
molecule, which is close to the nitrogen at
position 1 of the imidazole ring of the D99-
H48 pair, acts as the nucleophile (Verbeij
et al., 1980).

While residues important for
enzymatic activity are widely agreed upon,
those responsible for neurotoxicity remain
as yet to be fully elucidated. Comparison
studies of hydropathy profiles between
presynaptically acting PLA2 enzymes and
non-neurotoxic enzymes led Kini and
Iwanaga (1986) to suggest that the
hydrophobic region around residues 80-110
is important for the presynaptic
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neurotoxicity. As shown in Figure 3, the
neurotoxic AetxA 1 has a positive
hydrophobicity value around residues 90-
110 (using the homology numbering of
Renetseder et al., 1985). While these
results tend to support the hypothesis of
Kini and Iwanaga (1986), it should be
realised that this is not the case for all
neurotoxic PLA2S.For example, Pa-ll and
Pa-13 from P. australis, appear to
contradict this theory as they have very
similar hydrophobic residues at positions
90-110, yet only Pa-ll is toxic (Tsai et al.,
1987; Takasaki et al., 1990a, b).

Alternatively, it has been proposed
that the charge scores of certain residues of
elapid PL\2S correlate with toxicity, ie.
presynaptic toxins have a higher score of
charge (3+ or 4+) than the non-toxic PLA2
enzymes (-I to + I) over specific regions of
the protein (Tsai et al., 1987; Rosenberg et
al., 1989). Similarly, Kondo et al., (1982)
stressed the importance of specific basic
residues being associated with high or low
toxicity. ActxAl would seem to support
this hypothesis as it is a basic PLA2 (pI =
8.5). However, chemical modification
studies have shown that charge alone
cannot account for differences in toxicity
(Condrea et al., 1983; Barrington et al...
1984). In addition, this theory does not
account for the presence of potent acidic
neurotoxins in the venoms from Jlipera
russelli (Russell's viper, Huang and Lee,
1984), Bothrops altematus (Half Moon
viper) (Nisenbom et al., 1988), and
Pseudechis australis (King brown snake)
(Takasaki et al., 199Oa,b).

Takasaki et al., (l990b) proposed
that the domain responsible for presynaptic
toxicity in elapid snakes consists of 7
hydrophilic residues (R43, K46, D50, E54,
K58, D90 and E94); PLA2 enzymes which
lack a few of them, especially D50, K58 or
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NLYQFGGMIQ CANKGARSWL SYVNYGCYCG WGGSGKPVDE LDRCCQIHDN CYGEAEKKGC
I INrterminal sequencing

~--:1i=-ry-'Ps-:-jn--:(~JJ-)--I1·······A;:g:C~"jOhaj'8j·······1
~ Glu-C(J9) 1 I ..

GPKMTLYSWK CANDVPVCNS KSGCEGFVCD CDAAAAKCFA KAPYNKNNIG IGSKTRCQ
I BNPS-shJrole I

,···..· ··..·..··..·..·..·..·· · i
Arg·C_1811r(23), ,

Arg-C18hr(30)A-;g:Cj'O;'; 'ij~
------iGlu-C (39)

AetxAl :
Aean II :
Aean I :
Pseud_A
Pa-12a
Pa-9c

AetxAl
Acan II
Acan_I
Pseud A
Pa-12a
Pa-9c

"---'-CI-/l'-C-(3-9-j --I

Figure 1: Complete amino acid sequence of ActxAl. The complete amino acid sequence
of AetxA 1 is shown along with the informative overlapping BNPS-skatole, trypsin,
endoproteinase Arg-C and Glu-C peptide data.

80 • 100

ill: G
: E

118
118
119
117
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118

Figure 2: Ali&DlDentof ActxAl with bomolo&ous PLk enzymes. AetxAl is aligned
with Acathin-I (AcanJ), Acanthin-ll (AcanJI), Pseudexin A (pseud_A), Pa-12a and Pa-
ge using Clustal W (Thompson et a/., 1994) an~ with GeneDoc. Conserved
residues are shaded as follows: 100%. 80%,•• 60%••

67
67
67
67
67
67
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39
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HOIOOlogy Sequc:ncc Nwdler

Figure 3: Hydrophobicity plot of ActxAl. The sequence of ActxAl was plotted on a
relative hydrophobicity scale using the algorithm of Kyte and Doolittle (1982) as
implemented by (Geourjon and Deleage, 1995) in AntheProt. The sequence has been
numbered according to the homology numbering of Renetseder et 01. (1985).

D90, are only weak neurotoxins. ActxAl
contains 5 of the 7 hydrophilic residues
with the exceptions being K46 (replaced by
Q) and 090 (replaced by A). Perhaps the
substitutions at these two residues could
explain the only moderate level of toxicity
(L0100 ;;:: 3.2mglkg s.c.) possessed by
ActxA (purified ActxAI was lethal at
6.4mglkg s.c.). (Hains et al., 1999).

Curin-Serbec et al. (1994) suggest
the controversy over the exact location of
the neurotoxic site on PLA2Smay be due to
the fact that the amino acids responsible
for toxicity are not in exactly the same
positions in these molecules. Considering
the great diversity among the quaternary

structures of the IJ-neurotoxins, such as the
single-chain PLA2S (notexin, ammody-
toxin; Halpert and Eaker, 1975; Krizaj et
al., 1989), Don-covalently linked multi-
chain PLA2S (crotoxin, taipoxin,
textilotoxin; Fohlman et 01., 1976; Faure
and Bon, 1988; Pearson, J. A. et 01., 1993)
and the covalently linked ~-bungarotoxins
(Kondo et al., 1978), this suggestion
appears highly probable.

We have also investigated the
phenomenon of presynaptic toxicity using a
three-dimensional model of ActxAl (Hains
et 01., 1999). By comparing the electro-
static surface potential of ActxA 1 to
several toxic and non-toxic PLA2 enzymes,
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we were able to postulate that negatively
charged residues on the non-catalytic
surface of PLA2 enzymes are important for
toxicity. This hypothesis is supported by
considerable evidence available (see Hains
et al., (1999)- and references therein).
Nevertheless, the defining elements of
presynaptic toxicity remain controversial
and will remain so until a consensus mode
of action is agreed upon. It is for this
reason that we need to continue the
purification and characterization of PLA2
enzymes from a range of snakes in which
they have yet to be fully characterized, as
without sufficient data the mode of
presynaptic action will remain contentious.
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