

Doctor of Philosophy

Diversified Probabilistic Graphical Models

by

Maoying Qiao

supervised

by Prof. Dacheng Tao

the Centre for Quantum Computation and Intelligent Systems (QCIS) the Faculty of Engineering and Information Technology (FEIT) the University of Technology Sydney (UTS)

July, 2016

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dacheng Tao for his continuous support of my Ph.D study. Thanks for his consistent patience and motivation, for his encouraging attitude and expert knowledage for my research. His strict academic attitude and deligent work style have played a model role for me and will continue to benefit me through my life. It is no exaggeration to say without his help steering my research direction, I would not have finished this thesis so smoothly and on time.

Besides my principal supervisor, I would like to thank Dr. Wei Bian. I want to thanks for his never bored discussion with my seemingly endless simple questions from research motivation, model development, algorithm implementation, and paper drafting. With these specific and detailed technical discussion, I have gained practical skills to effectively and efficiently develop and implement my research problems. I also gain deep understandings for my research areas. In addition, these discussion moments between us and with Qiang Li have been an inseparable part of my Ph.D life, and will always be cherished by myself.

I would like to thank Dr. Richard Yi da Xu for his advices on my study of Monte Carlo sampling methods. His help undoubtably has widened my research area. I also want to thank my colleages in Prof. Tao's group for their academic discussion and help. My special thanks goes to Ms. Jemima Moore for helping improve my English skills in both academic publications and presentations.

My sincere thanks also goes to China Scholarship Council (CSC), Univer-

sity of Technology Sydney (UTS) and the centre for Quantum Computation & Information System (QCIS). With the financial support from CSC-UTS joint scholarship, I could concentrate on my research study and did not have to worry about my living. QCIS has provided a excellent and supportive research environment for academic-related activities.

Last but not the least, my gratitude extends to my family who have been patiently encouraging and waiting for the finish of this thesis.

ABSTRACT

Probabilistic graphical models (PGMs) as diverse as Bayesian networks and Markov random fields have provided a fundamental framework to learn and reason using limited and noisy observations. Examples include, but are not limited to, hidden Markov models (HMMs), sequential graphical models, and probabilistic principal component analysis mixture models (PPCA-MM). PGMs have been used in a wide variety of applications such as speech recognition, natural language processing, web searching, and image understanding. However, one potential drawback of using PGMs with traditional learning and inference methods is that the learned parameters or inferred variables are easily trapped within local, clustered optima rather than distributed evenly across the whole space. Taking mixture models as an example, the learned mixing components might overlap. Consequently, the resulting models might show ambiguity when clustering is performed based on these overlapping mixing components. This phenomenon might limit PGM performance.

Although efforts have been made to explore a variety of priors to alleviate this potential drawback and to enhance PGM performance, diverse priors have yet to be fully explored and utilized. Diversity is a concept that encourages counterpart model parameters and variables to repel as much as possible and, in doing so, spread out model components and decrease overlapping. However, how to explicitly encode these priors into a PGM and how to solve the resulting diversified PGMs are two critical problems that must be solved. This thesis proposes a unified framework to constrain PGMs with diverse priors. Three different PGMs -HMMs, time-varying determinantal point processes (TV-DPPs), and PCA-MMs - are elaborated to demonstrate the proposed diversified PGM framework. For each PGM, three basic constituent framework elements are examined: which part of the traditional PGM is diversified, how to formulate the diversity, and how to solve the diversified version, e.g., parameter learning and inference. In addition, experiments are conducted using various application scenarios to verify the effectiveness of the proposed diversified PGMs.

Keywords: Probabilistic graphical models (PGMs), diversity prior, determinantal point processes (DPPs), hidden Markov models (HMMs), time-varying DPPs, probabilistic principal component analysis (PPCA).

TABLE OF CONTENT

CERT	IFICATE OF AUTHORSHIP/ORGINALITY		ii
ACKN	OWLEDGEMENTS		iii
ABST	RACT		\mathbf{v}
TABL	E OF CONTENT		vii
LIST (OF FIGURES		x
LIST (OF TABLES		xiv
Chapte 1.1 1.2 1.3 1.4	er 1 Introduction Background 1.1.1 Probabilistic graphical models 1.1.2 Determinantal point processes (DPPs) 1.1.2 Determinantal point processes (DPPs) Related works	· · · ·	1 1 3 6 7 10 12 16 16 17 18
Chapte	er 2 Diversified Hidden Markov Models for Sequential La-	-	20
2.1 2.2 2.3	Introduction		20 21 24 26 27 27 30

Chapter 3 Fast Sampling for Time-Varying Determinantal Point Processes613.1Introduction623.2Related Work643.3Review of Sequential Monte Carlo663.4Time Varying Determinantal Point Processes673.5Experimental Results763.5.1News recommendation773.5.2Enron corpus873.6Summary95Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Summary and Bernoulli Distributions1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study134	2.4 2.5	2.3.4SolutionsExperimental results2.4.1Toy experiments2.4.2Real-world experimentsSummary	32 40 40 44 51
Processes 61 3.1 Introduction 62 3.2 Related Work 64 3.3 Review of Sequential Monte Carlo 66 3.4 Time Varying Determinantal Point Processes 67 3.5 Experimental Results 76 3.5.1 News recommendation 77 3.5.2 Enron corpus 87 3.6 Summary 95 Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA Model 97 4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1	Chapte	er 3 Fast Sampling for Time-Varying Determinantal Point	
3.1Introduction623.2Related Work643.3Review of Sequential Monte Carlo663.4Time Varying Determinantal Point Processes673.5Experimental Results763.5.1News recommendation773.5.2Enron corpus873.6Summary95Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA ModelPCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study134	-	Processes	61
3.2 Related Work 64 3.3 Review of Sequential Monte Carlo 66 3.4 Time Varying Determinantal Point Processes 67 3.5 Experimental Results 76 3.5 Experimental Results 77 3.5.2 Enron corpus 87 3.6 Summary 95 Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA Model 97 4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.2.1 PCA and its Mixture Extensions 102 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step	3.1	Introduction	62
3.3Review of Sequential Monte Carlo663.4Time Varying Determinantal Point Processes673.5Experimental Results763.5.1News recommendation773.5.2Enron corpus873.6Summary95Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA ModelPCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1094.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.2Inference: E-step1164.5.3Algorithm Summary and Bernoulli Distributions1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study1345.1Conclusions134	3.2	Related Work	64
3.4 Time Varying Determinantal Point Processes 67 3.5 Experimental Results 76 3.5.1 News recommendation 77 3.5.2 Enron corpus 87 3.6 Summary 95 Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA Model 97 4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.2 Inference: E-step 116 4.5.2 Inference: E-step 116 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 <td>3.3</td> <td>Review of Sequential Monte Carlo</td> <td>66</td>	3.3	Review of Sequential Monte Carlo	66
3.5Experimental Results763.5.1News recommendation773.5.2Enron corpus873.6Summary95Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA ModelPCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study134	3.4	Time Varying Determinantal Point Processes	67
3.5.1News recommendation77 $3.5.2$ Enron corpus87 3.6 Summary95Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA ModelPCA97 4.1 Introduction98 4.2 Related Work102 $4.2.1$ PCA and its Mixture Extensions102 $4.2.1$ PCA and its Mixture Extensions102 4.3 Background104 $4.3.1$ Simple Exponential Family PCA (SePCA)104 $4.3.2$ SePCA Mixture Models (SePCA-MM)105 4.4 The proposed model109 $4.4.1$ Motivation for Matrices-valued DPP109 $4.4.2$ Matrices-valued DPP109 $4.4.3$ Diversified SePCA-MM114 4.5 Learning and inference116 $4.5.1$ Learning Parameters: M-step116 $4.5.2$ Inference: E-step118 $4.5.3$ Algorithm Summary and Bernoulli Distributions122 $4.5.4$ Algorithm Complexity Analysis123 4.6 Experimental Results124 $4.6.1$ Synthetic Experiments124 $4.6.2$ Real-world Dataset experiment129 4.7 Summary133Chapter 5 Conclusion and Further Study134	3.5	Experimental Results	76
3.5.2 Enron corpus 87 3.6 Summary 95 Chapter 4 Diverse Learning for Mixtures of Exponential Family 97 4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129<		3.5.1 News recommendation	77
3.6 Summary 95 Chapter 4 Diverse Learning for Mixtures of Exponential Family 97 4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133		3.5.2 Enron corpus	87
Chapter 4 Diverse Learning for Mixtures of Exponential Family PCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1094.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study134	3.6	Summary	95
PCA Model974.1Introduction984.2Related Work1024.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary1345.1Conclusions134	Chapte	er 4 Diverse Learning for Mixtures of Exponential Family	
4.1 Introduction 98 4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 134	emapte	PCA Model	97
4.2 Related Work 102 4.2.1 PCA and its Mixture Extensions 102 4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 109 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 134	4.1	Introduction	98
4.2.1PCA and its Mixture Extensions1024.3Background1044.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1294.7Summary133Chapter 5 Conclusion and Further Study134	4.2	Related Work	02
4.3 Background 104 4.3.1 Simple Exponential Family PCA (SePCA) 104 4.3.2 SePCA Mixture Models (SePCA-MM) 105 4.4 The proposed model 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.1 Motivation for Matrices-valued DPP 109 4.4.2 Matrices-valued DPP 110 4.4.3 Diversified SePCA-MM 114 4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 134		4.2.1 PCA and its Mixture Extensions	02
4.3.1Simple Exponential Family PCA (SePCA)1044.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1294.7Summary133Chapter 5 Conclusion and Further Study134	4.3	Background	04
4.3.2SePCA Mixture Models (SePCA-MM)1054.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1294.7Summary133Chapter 5 Conclusion and Further Study134		4.3.1 Simple Exponential Family PCA (SePCA)	04
4.4The proposed model1094.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1294.7Summary133Chapter 5 Conclusion and Further Study1345.1Conclusions134		4.3.2 SePCA Mixture Models (SePCA-MM)	05
4.4.1Motivation for Matrices-valued DPP1094.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment133Chapter 5 Conclusion and Further Study1345.1Conclusions134	4.4	The proposed model	09
4.4.2Matrices-valued DPP1104.4.3Diversified SePCA-MM1144.5Learning and inference1164.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study134		4.4.1 Motivation for Matrices-valued DPP	09
4.4.3 Diversified SePCA-MM1144.5 Learning and inference1164.5.1 Learning Parameters: M-step1164.5.2 Inference: E-step1184.5.3 Algorithm Summary and Bernoulli Distributions1224.5.4 Algorithm Complexity Analysis1234.6 Experimental Results1244.6.1 Synthetic Experiments1294.7 Summary133Chapter 5 Conclusion and Further Study5.1 Conclusions134		4.4.2 Matrices-valued DPP	10
4.5 Learning and inference 116 4.5.1 Learning Parameters: M-step 116 4.5.2 Inference: E-step 118 4.5.3 Algorithm Summary and Bernoulli Distributions 122 4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 5.1 Conclusions 134		4.4.3 Diversified SePCA-MM	14
4.5.1Learning Parameters: M-step1164.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study5.1Conclusions134	4.5	Learning and inference	16
4.5.2Inference: E-step1184.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study5.1Conclusions134		4.5.1 Learning Parameters: M-step	16
4.5.3Algorithm Summary and Bernoulli Distributions1224.5.4Algorithm Complexity Analysis1234.6Experimental Results1244.6.1Synthetic Experiments1244.6.2Real-world Dataset experiment1294.7Summary133Chapter 5 Conclusion and Further Study5.1Conclusions134		4.5.2 Inference: E-step	18
4.5.4 Algorithm Complexity Analysis 123 4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 5.1 Conclusions 134		4.5.3 Algorithm Summary and Bernoulli Distributions 1	22
4.6 Experimental Results 124 4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 5.1 Conclusions 134		4.5.4 Algorithm Complexity Analysis	23
4.6.1 Synthetic Experiments 124 4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 5.1 Conclusions 134	4.6	Experimental Results	24
4.6.2 Real-world Dataset experiment 129 4.7 Summary 133 Chapter 5 Conclusion and Further Study 5.1 Conclusions 134		4.6.1 Synthetic Experiments	24
4.7 Summary 133 Chapter 5 Conclusion and Further Study 134 5.1 Conclusions 134		4.6.2 Real-world Dataset experiment	29
Chapter 5 Conclusion and Further Study 134 5.1 Conclusions 134	4.7	Summary	33
5.1 Conclusions $\ldots \ldots \ldots$	Chapte	er 5 Conclusion and Further Study	34
	5.1	Conclusions	34

5.2	Further study		•			•	•		•		•	•	•	•	•	•	136
REFEI	RENCES																137

LIST OF FIGURES

1.1	Illustration of diverse subset	4
1.2	Demonstration of diversity captured by DPP. \ldots	6
1.3	Graphical representation for Markov DPP	9
1.4	Graphical representation for sequential DPP \ldots	9
1.5	Thesis structure	18
2.1	Graphical model of diversified HMM	52
2.2	Parameters of ground-truth, learned by proposed dHMM and by traditional HMM	53
2.3	Diversities of transition matrix of ground-truth, dHMM-learned and HMM-learned with regard to the parameter of variance of the Gaussian emission distributions	54
2.4	Histograms of hidden states inferred from parameters of ground- truth, dHMM-learned and HMM-learned	55
2.5	Number of hidden states inferred by model parameters of dHMM- learned and HMM-learned with regard to the variance of Gaussian emission distributions	56
2.6	Sentence example with PoS tags	56
2.7	Effectiveness of α for PoS tagging	57
2.8	Transition diversity comparison between dHMM and HMM for tag '1' and all other tags	57
2.9	Histogram comparisons among ground-truth, HMM and dHMM $$.	58
2.10	Effectiveness of α for OCR	58
2.11	Test accuracies of different classifiers	59
2.12	Transition diversity comparison between dHMM and HMM	60

- Time Varying DPPs: In the first diagram, the first row represents 3.1the news updating process along time stamps. Six different news sources are schematically listed, i.e. 'The Daily Telegraph', 'Daily Mail', 'ABC NEWS', 'The Guardian', 'Reuters' and 'Indiatimes'. From time to time, only a small portion of the news sources are updated. The arrows make which news sources are updating clear: It starts at a news source with old news and points to the same source with new headlines -bordered in cyan - at the next time stamp. The second row shows the evolution of DPP marginal kernel L along with the news updates. The difference between two successive L-s is highlighted with different colours and is apparently tiny. The third row shows explanatory diverse subsets outputted by TV-DPPs. In the second diagram, the solid circles represent the observations, which correspond to the news dataset shown in the first row of the above figure, and the hollow circles represent the variables obeying the DPP distribution, one example of which can be found in the third row of the above figure. One important truth is that given the observations $\{X_1, X_2, ..., X_T\}$, the variables $\{Y_1, Y_2, \dots, Y_T\}$ are independent.
- 3.2Illustration of Sequential Monte Carlo: At time stamp t - 1, 10 particles in red with equal weights are given, i.e. $\{x_{t-1}^{(i)}\}_{i=1}^{10}$. At this stage, two computations will be done - One is computing the incremental weights; the other is computing the particles for the next time stamp. For the incremental weight of each particle at time t-1, according to Eq. (3.7), it is simply the likelihood ratio between time stamps t and t-1. The corresponding relationship is denoted by the dashed line connecting two neighbour distributions and the weight for each particle is illustrated by size of blue solid circle. For the particle's location at next time stamp t, usually, a Markov transition kernel is used to qualify the transition job between two slightly different neighbour distributions. The transition relationship is indicated by solid line with arrow. For the particle's weight at time stamp t, it is gained by multiplying the weight at time stamp t-1 by the incremental weight. To alleviate the degeneracy of the algorithm which is measured by effective sample size (ESS), a re-sampling step is applied when $N_{ESS} < \alpha \cdot N$. High weighted particles will re-birth as several equal weighted particles, while particles with low weights may disappear. To increase the samples' diversity, a move step is followed. Once particle' locations and weights at t are prepared, it will recursively carry out the whole above procedure.

75

LIST OF FIGURES

3.3	Analysis for fast DPPs sampling algorithm at $t = 1$	79
3.4	Diversity comparison of news subsets selected by sep-DPPs and TV-DPPs with regard to both diverse probability and cosine similarity.	82
3.5	Time cost comparison between sep-DPPs and TV-DPPs for news recommendation. X-axis indicates the time stamps, while Y-axis shows the accumulated seconds over time.	83
3.6	Demonstration of diverse subset of news articles sampled by TV- DPPs	85
3.7	Demonstration of news topic drift: Comparing sequential subsets from TV-DPPs with the subsets from sep-DPPs, it extracts a more smooth news evolvement.	86
3.8	One example of Enron communication network.	87
3.9	Time cost comparison between sep-DPPs and TV-DPPs for Enron communication network. X-axis represents the day stamps, while Y-axis shows the accumulated seconds.	90
3.10	Demonstration of news topic drift: Comparing sequential subsets from TV-DPPs with the subsets from sep-DPPs, it extracts a more smooth news evolvement.	92
3.11	Demonstration of Enron communication drift: No communication patterns or events can be detected from the above figure. However, three different stages are clearly obtained with smoothness at each stage. Two separating points - one is around 2001-Oct-01 and the other around 2001-Nov-10 - coincide with two important turn points for Enron incorporation.	93
3.12	Three Enron communication networks from different stages de- tected by TV-DPPs	96
4.1	Graphical representations of models: (a) SePCA mixture model; (b) Diversified SePCA mixture model. The only difference be- tween these two models is obviously the priors over K mixture component parameters, i.e., W s. Traditional SePCA assigns inde- pendent isotropic Gaussian distributions, represented by a plate. Comparatively, the proposed diversified SePCA-MM assigns a joint distribution over its component parameter, i.e., $\mathbf{W} = \{W^1, \ldots, W_n\}$ The distribution is a DPP, parameterized with ϱ, ξ, λ and repre- sented by a double-struck	W ^K }. 108

4.2	Illustration of proposed similarity formulations with two orthonor-
	mal matrices including two PCs. The dashed pairwise perpendic-
	ular lines represent PCs of orthonormal matrix Υ^1 , while the solid
	pairwise lines represent PCs of Υ^2 . θ_1 and θ_2 represent angles of
	direct-matching pairwise PCs as shown in all subfigures, while
	θ_3 and θ_4 represent angles of cross-matching pairwise PCs which
	are only demonstrated in the first subfigure and ignored by other
	subfigures to keep their symbols less crowded. From left to right,
	the angles between direct-matching pairwise PCs of the two or-
	thonormal matrices starts from 0° and increases with 45° , while
	the similarities between these two matrices decreases from the
	largest value $e^{2\varrho}$ to the smallest value $e^{-2\varrho}$, which are calculated
	from (4.9)
4.3	Black indicates 0 and white indicate 1
4.4	The first row is the result from traditional PCA-MM, while the
	second row is the result from the proposed diversifed PCA-MM. $d =$
	$12, K = 3 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
4.5	Hinton diagram of diagonal of $\{\Phi^k\}_{k=1}^K$, where white boxes indi-
	cate positive values, and black ones indicate negative values. The
	magnitudes of Φ^k 's are symbolized by the sizes of boxes 127
4.6	Illustrate effectiveness of diversity over model redundancy reduc-
	tion with fixed $d = 4$ and $K = 3$ and $K = 2$ for both traditional
	PCA-MM (the first rows) and diversified PCA-MM (the second
	rows)
4.7	Samples from USPS digits 2, 3, 4
4.8	The fitted three local PCA transformation matrices of our diver-
	sified mixture models with $K = 3, d = 2$. Each row represents
	one PC
4.9	Dominant PCs of two mixing components with dark black pixels
	indicating larger absolute values than light grey pixels 132

LIST OF TABLES

2.1	Comparison of state frequencies and accuracies between dHMM	
	and HMM	43
2.2	Summary of PoS tags of WJS corpus	46
2.3	Examples of OCR dataset	49
3.1	Summary of news categories for different news media sources	77