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ABSTRACT

Probabilistic graphical models (PGMs) as diverse as Bayesian networks and

Markov random fields have provided a fundamental framework to learn and

reason using limited and noisy observations. Examples include, but are not

limited to, hidden Markov models (HMMs), sequential graphical models, and

probabilistic principal component analysis mixture models (PPCA-MM). PGMs

have been used in a wide variety of applications such as speech recognition, nat-

ural language processing, web searching, and image understanding. However,

one potential drawback of using PGMs with traditional learning and inference

methods is that the learned parameters or inferred variables are easily trapped

within local, clustered optima rather than distributed evenly across the whole

space. Taking mixture models as an example, the learned mixing components

might overlap. Consequently, the resulting models might show ambiguity when

clustering is performed based on these overlapping mixing components. This

phenomenon might limit PGM performance.

Although efforts have been made to explore a variety of priors to alleviate this

potential drawback and to enhance PGM performance, diverse priors have yet to

be fully explored and utilized. Diversity is a concept that encourages counterpart

model parameters and variables to repel as much as possible and, in doing so,

spread out model components and decrease overlapping. However, how to ex-

plicitly encode these priors into a PGM and how to solve the resulting diversified

PGMs are two critical problems that must be solved. This thesis proposes a uni-
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fied framework to constrain PGMs with diverse priors. Three different PGMs -

HMMs, time-varying determinantal point processes (TV-DPPs), and PCA-MMs

- are elaborated to demonstrate the proposed diversified PGM framework. For

each PGM, three basic constituent framework elements are examined: which

part of the traditional PGM is diversified, how to formulate the diversity, and

how to solve the diversified version, e.g., parameter learning and inference. In

addition, experiments are conducted using various application scenarios to verify

the effectiveness of the proposed diversified PGMs.

Keywords: Probabilistic graphical models (PGMs), diversity prior, determi-

nantal point processes (DPPs), hidden Markov models (HMMs), time-varying

DPPs, probabilistic principal component analysis (PPCA).
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