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ABSTRACT

Probabilistic graphical models (PGMs) as diverse as Bayesian networks and

Markov random fields have provided a fundamental framework to learn and

reason using limited and noisy observations. Examples include, but are not

limited to, hidden Markov models (HMMs), sequential graphical models, and

probabilistic principal component analysis mixture models (PPCA-MM). PGMs

have been used in a wide variety of applications such as speech recognition, nat-

ural language processing, web searching, and image understanding. However,

one potential drawback of using PGMs with traditional learning and inference

methods is that the learned parameters or inferred variables are easily trapped

within local, clustered optima rather than distributed evenly across the whole

space. Taking mixture models as an example, the learned mixing components

might overlap. Consequently, the resulting models might show ambiguity when

clustering is performed based on these overlapping mixing components. This

phenomenon might limit PGM performance.

Although efforts have been made to explore a variety of priors to alleviate this

potential drawback and to enhance PGM performance, diverse priors have yet to

be fully explored and utilized. Diversity is a concept that encourages counterpart

model parameters and variables to repel as much as possible and, in doing so,

spread out model components and decrease overlapping. However, how to ex-

plicitly encode these priors into a PGM and how to solve the resulting diversified

PGMs are two critical problems that must be solved. This thesis proposes a uni-
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fied framework to constrain PGMs with diverse priors. Three different PGMs -

HMMs, time-varying determinantal point processes (TV-DPPs), and PCA-MMs

- are elaborated to demonstrate the proposed diversified PGM framework. For

each PGM, three basic constituent framework elements are examined: which

part of the traditional PGM is diversified, how to formulate the diversity, and

how to solve the diversified version, e.g., parameter learning and inference. In

addition, experiments are conducted using various application scenarios to verify

the effectiveness of the proposed diversified PGMs.

Keywords: Probabilistic graphical models (PGMs), diversity prior, determi-

nantal point processes (DPPs), hidden Markov models (HMMs), time-varying

DPPs, probabilistic principal component analysis (PPCA).
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Chapter 1

Introduction

1.1 Background

1.1.1 Probabilistic graphical models

Probabilistic graphical models (PGMs) are used to represent conditional de-

pendences between variables and are widely applied in information extraction,

speech recognition, gene regulatory network modelling, and many other appli-

cations. A PGM can be classified into two main types depending on whether

its edges are directed or undirected, namely Bayesian networks and Markov net-

works. Here we mainly focus on Bayesian networks, a typical example being of

the form:

p(X,Z,Θ) ∝ f(Θ)p(Z)p(X|Z,Θ). (1.1)

where Θ symbolizes model parameter variables, and X,Z the observable and

latent random variables, respectively. p(X,Z,Θ) represents the joint distribu-

tion over X,Z,Θ, f(Θ) usually represents model parameter information (either

in a deterministic form or in a probabilistic form as a prior distribution), and

p(X|Z,Θ) and p(Z) illustrate conditional dependences that Z has an indepen-
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Chapter 1 1.1. BACKGROUND

dent prior while X is dependent on Z and model parameter Θ.

Several specific PGM examples include, but are not limited to, hidden Markov

models (HMMs), sequential graphical models, and mixture principal component

analysis (PCA) models. On the one hand, these PGMs have successfully been

applied to a variety of applications such as speech recognition (Rabiner, 1989),

sequential modelling (Iwata et al., 2012), and image processing (Li and Tao,

2013). On the other hand, they exhibit one common limitation, namely that

they need more than one independent model parameter sample counterpart. We

explain this phenomenon and illustrate it with these model types below.

Classical HMMs can be thought of as the simplest dynamic Bayesian network

and have three model parameter types: Θ = {π,A,B}, where π is the initial state

distribution parameters (commonly modelled with a multinomial distribution),

A transition distributions, and B emission distributions. Since hidden states

can generate different valued tokens, corresponding transition distribution and

emission distribution counterparts are available. When the transition or emission

distribution counterparts are similar, there is ambiguity when inferring hidden

states. Efforts have been made to explicitly alleviate this ambiguity caused by

emission distributions, but solutions for ambiguity caused by similar transition

distributions for different states have yet to be described.

In the mixture model setting (such as Gaussian mixture models (GMM)

and latent Dirichlet allocation (LDA) models), the model parameters associated

with mixing components are Θ = {θk}Kk=1 and the joint distribution over them is

p(Θ) =
∏

k p(θk), which denotes independence between mixing component dis-

tributions. This situation corresponds to the phenomenon described above, i.e.,

that mixing independent counterparts inferred from the same observations may

produce similar values. In other words, undesirably large overlaps might occur

between the mixing components, which should be avoided since more mixing

2



1.1. BACKGROUND Chapter 1

components may be required to cover the model space, thus increasing the risk

of overfitting.

In contrast to the above two situations, in the sequential model setting, inde-

pendent sampling at each single time stamp (which can be treated as independent

counterparts) may lead to computational redundancy. For example, in an online

news service system, news is first collected from an enormous number of news

sources at each time stamp to form news bases, and then a diverse subset of this

news is displayed on news browsers. However, due to the high overlap between

neighbouring news bases caused by the variable news updating rates of different

news sources, treating diverse subset sampling tasks independently along time

stamps will lead to repetitive determinantal point process (DPP) sampling along

subsequent news subsets, which is time-consuming and inefficient.

In summary, current popular graphical models have potential limitations that

may lead to either ambiguity or redundancy in both models and applications.

In this thesis we aim to overcome these limitations with diversity-encouraging

priors. The diversity-encoding distribution, i.e., DPP, is reviewed below.

1.1.2 Determinantal point processes (DPPs)

A point process P on a discrete ground set S = {1, 2, ..., N} is called a deter-

minantal point process (DPP) with a positive semi-definite matrix K indexed

by the elements of S if, when X is a random subset drawn according to P , for

every x ⊆ S,

P(X ⊇ x) = det(Kx), (1.2)

for K � I. Here, Kx ≡ [Kij]i,j∈x is the restriction of K to the entries indexed by

elements of x, and we adopt the convention that det(K∅) = 1. K is referred to

as the marginal kernel. DPP is clearly a probability measure over all 2|S| subsets

3



Chapter 1 1.1. BACKGROUND

Figure 1.1: Illustration of diverse subset

of the ground set S, with | · | denoting its cardinality.

An example subset sampled by DPP is illustrated in Figure 1.1. It can easily

be seen that the independently sampled data points tend to cluster. In constrast,

the ones sampled from a DPP are evenly distributed over the entire space.

The most relevant construction of a DPP for the purpose of modelling real

data is via L-ensembles (Borodin and Rains, 2005). An L-ensemble defines

a DPP through a positive semi-definite matrix L indexed by the elements of

ground set S as

PL(X = x) =
det(Lx)

det(L+ I)
, (1.3)

where I is the N × N identity matrix. This definition has several practical

advantages over the one defined with a marginal kernel. First, L-ensemble de-

fines the atomic probabilities over every possible instance of X rather than the

marginal probabilities of inclusion as given by marginal kernel K. Second, PL

has a closed-form normalization given by the identity
∑

x⊆S det(Lx) = det(L+I).

The summation over exponentially counting subsets is equal to a tractable deter-

4



1.1. BACKGROUND Chapter 1

minant operator that can be exactly computed with polynomial time complexity.

Third, unlike marginal kernel K, the eigenvalues of the positive semi-definite ker-

nel L do not need to be upper bounded by one, making it far more useful for

real-world data modelling. The relationship between the marginal DPP defini-

tion and L-ensemble construction is that a DPP defined with a marginal kernel

K has an L-ensemble kernel L = K(I −K)−1 (when the inverse exists), and an

L-ensemble can be computed from a marginal kernel K = L(I + L)−1.

Another important constructing representation of a DPP is based on the fact

that a positive semi-definite kernel matrix L can be expressed as a Gram matrix

(Kulesza and Taskar, 2010),

Lij = qiφ
T
i φjqj, (1.4)

where qi, qj ∈ R
+ represent the qualities of elements i, j, and φi, φj ∈ R

n, the

unit length feature vectors, represent the similarity between elements i and j

with φT
i φj ∈ [−1, 1]. With this decomposition, one can independently and si-

multaneously model the quality and diversity of a subset with a unified model.

This encourages a DPP to choose subsets with elements of high quality as well

as dissimilarity.

From above quality-diversity decomposition formulation, the diversity prob-

ability related to the similarity kernel K part can be separated from the quality

term and is:

PK(Y ) ∝ det(KX) = vol2({φ(xi)i∈X}).

It can be seen that the probability defined by a DPP relates to the squared

|Y |-dimensional volume of the parallelepiped spanned by the selected items in

the associated Hilbert space of K. It prefers diverse subsets, because the feature

5



Chapter 1 1.2. RELATED WORKS

Figure 1.2: Demonstration of diversity captured by DPP.

vectors of these diverse items in the Hilbert space are more orthogonal, and

hence span larger volumes, as shown in Figure 1.2.

In summary, DPPs provide a probability measure over every subset config-

uration on data points. Using the data’s similarity matrix and a determinant

operator, DPP assigns higher probabilities to those subsets with dissimilar items

(Kulesza and Taskar, 2012). This corresponds to a phenomenon that naturally

arises in physics (fermions, eigenvalues of random matrices) and in combinatorics

(non-intersecting paths, random spanning trees) (Hough et al., 2006) and is used

to capture the repulsion of particles (Amer-Yahia et al., 2014).

1.2 Related works

Since the graphical models described in this thesis such as HMMs, the sequential

graphical model, and PPCA-MM are well known and described, here we focus

on DPP-related issues that are relevant to this work. We classify these issues

into three categories: DPP-related developments, diversity-extending models,

and diversity-requiring applications.
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1.2.1 DPP-related developments

Efficiency improvements

DPPs are convenient statistical tools for modelling diversity. Their popularity

is in no small part due to their tractability. This reflects the fact that the

DPP inference can be solved with polynomial time complexity and the tractable

inference algorithms include, but are not limited to, normalization, sampling

(Kulesza and Taskar, 2012), marginalization (Affandi, Fox and Taskar, 2013),

generating a diverse set of objects (Kulesza and Taskar, 2011b), and maximizing

a posterior (MAP, (Gillenwater et al., 2012b)).

The exact DPP inference/sampling algorithms are developed based on eigen-

decomposition of DPP’s kernel matrix. Therefore, the time complexity of DPP

sampling is O(N3) (Kulesza and Taskar, 2012), where N is the total num-

ber of possible items in a ground dataset. When N is too large, this time

complexity significantly disadvantages DPP when considering real-time process-

ing, and different approaches have been proposed to address this limitation for

large-scale applications. One notable method is based on the low-rank ker-

nel matrix, i.e., rank D � N . A dual representation is introduced with the

Gram matrix (Kulesza and Taskar, 2012), and the time complexity is reduced

to O(ND + D3). Another example develops a fast approximation of eigen-

decomposition of the kernel matrix (Wang et al., 2014), which is the most time-

consuming DPP sampling operation.This approach employs the matrix ridge

approximation (MRA) to speed up the eigen-decomposition step, and its time

complexity is O(ND2) + Tmultiply(N
2D) with Tmultiply denoting the time com-

plexity of matrix multiplication. This shows that in certain circumstances the

proposed MRA-DPP is far more exact than the one approximated by the Nys-

tröm method (Affandi, Fox, Adams and Taskar, 2013). More recently, a fast DPP
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sampling scheme based on Markov chain Monte Carlo (MCMC) techniques has

also been proposed (Kang, 2013), with a ε-mixing time of O(N log(N/ε)).

DPP variants

Several DPP variants have been developed that adapt the basic DPP from simple

application scenarios to various complex ones such as k-DPP, structured DPP,

Markov DPP, and sequential DPP.

k-DPP (Kulesza and Taskar, 2011a) is DPP modelling over subsets with

fixed cardinality k, which is useful in many situations, such as diverse resource

allocation with a fixed number of resources and search engines returning diverse

retrieval results of fixed number. The only alteration to DPP in k-DPP is the

normalization term, which summarizes over only k-sized subsets rather than each

one in a ground dataset. Its other inference algorithms are directly derived from

the ones used in basic DPP.

A tractable structured DPP (SDPP) (Kulesza and Taskar, 2010) has been

derived to handle scenarios in which each data item is a structural element, which

are ubiquitous in real-world applications such as chain structures for trajectory

and news thread modelling and pictorial structures for human pose modelling.

One difficulty of this extension compared to basic DPP is that its constructed

ground dataset becomes exponentially large and is not easily handled. They

overcome this difficulty by taking advantage of structure factorization and dual

representation techniques.

(Affandi, Fox and Taskar, 2013) developed a Markov DPP (MDPP) for the

scenarios in which multiple diverse sets of items are sequentially requested in on-

line applications. For example, a good news displaying service should provide ev-

ery user with news at fixed-length time intervals that is not only diverse but also

diverse between these intervals. Markov DPP achieves such tasks By enforcing
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diversity over neighbouring variables; its corresponding graphical representation

is shown in Figure 1.3. It derives that individual marginal distributions for each

time interval and joint marginal distributions for pairwise time intervals, and

subsequent conditional distributions following DPP distributions. Such elegant

properties lead to efficient inference algorithms.

Figure 1.3: Graphical representation for Markov DPP

A sequential DPP was developed for real-time video summaries (Gong et al.,

2014); its graphical representation is shown in Figure 1.4. By comparing the

graphical representations of sequential DPP and MDPP, it can easily be seen

that their biggest difference is the ground datasets at each time stamp, where

individual DPPs of MDPP rely on a global ground dataset and the ones of

sequential DPP depend only on local ground datasets. As a result, the inference

algorithms for sequential DPP are likely to be far more efficient than those for

MDPP.

Figure 1.4: Graphical representation for sequential DPP
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1.2.2 Diversity-extending models

Several studies have explored DPPs as priors/regularizers to develop news mod-

els. These can be divided into three main categories in terms of diversity func-

tionality: diversity in latent variable models, diversity for variable selection mod-

els, and diversity for clustering models.

Latent variable models

Zou (Zou and Adams, 2012) introduced DPP priors into latent variable models

(LVMs) such as generative latent Dirichlet allocation (LDA) and mixture models.

This technique is motivated by the limitations of model parameter priors that

the i.i.d. samples are often highly redundant. To reduce this redundancy, the

i.i.d. assumption is replaced with a measure-valued DPP to introduce joint

diversity over the parameter samples. When this strategy is imposed over topic

parameters in the LDA context, diverse topic representations are encouraged

that were well distributed across the topic space. The same semantic diversity is

also achieved in mixture models. Most of our work is inspired by this strategy.

Snoek and Adams (Snoek and Adams, 2013) introduced diverse priors over

sequential latent variables for neural spiking data, in which complex inhibitory

and competitive interactions between neurons naturally exist. However, most

common neural point processes such as Poisson processes and Gamma renewal

processes cannot handle these interactions and correlations. In contrast, a diverse

prior over latent diverse neuron embedding can effectively capture such inhibitory

relationships.

Recently, Xie et al. (Xie et al., 2016) investigated diversified LVMs in

the Bayesian learning paradigm rather than in a frequentist-style regulariza-

tion framework as described above. Instead of directly employing a DPP, they

proposed a diversity-promoting mutual angular distribution as a diverse prior

10
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distribution. They also developed two efficient approximation posterior infer-

ence algorithms based on variational inference and MCMC sampling techniques

for model inference.

Variable selection models

Some works directly construct a DPP via a correlation matrix of variables to

build diverse relationships between them. For example, (Kojima and Komaki,

2014) and (Rocková and George, n.d.) exploited DPPs for variable selection in

a linear regression scenario based on this strategy. The motivation behind this

approach is to avoid a collinear predictor subset that results in an ill-conditioned

predictor matrix. Instead, a diverse subset of predictors is selected to overcome

this problem. Since the predictor correlation matrix is a type of similarity metric

for predictors, it can be used directly as the similarity kernel in a DPP for variable

selection. This strategy of encouraging diversity among spike-and-slab variables

represents a far more straightforward and meaningful use of DPPs.

The same strategy was employed by (Xiong et al., 2016) but for video re-

pair. In this case, latent inducing points compose a small video frame subset to

represent all observed undamaged frames. This subset needs to be diverse and

resistant to context-awareness and be artefact free to benefit video repairing task.

Again, the inducing point correlation matrix provides a direct similarity metric

that can be used as the kernel matrix for a DPP prior over these inducing points.

Experimental results confirmed the effectiveness of this diversity-encouraging

scheme for video repair.

Similarly, Batmanghelich et al. (Batmanghelich et al., 2014) developed a di-

versifying Bayesian sparsity regression model based on the same diversity strat-

egy, i.e., feature covariance, but also proposed a novel strategy to integrate

this diversity into the regression model. Unlike previous works that placed the

11
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diversity-encouraging DPP as a prior over model parameters, this work imposed

the DPP over model parameter posterior distributions during variational infer-

ence. Two real-world cases demonstrated the effectiveness of this strategy.

Clustering models

Clustering tasks aim to divide a ground dataset into groups in which data items

are semantically similar and data items in different groups are dissimilar. Sub-

sets with elements picked from different groups intuitively match subsets sampled

from a DPP that repel each other. From this perspective, DPP provides heuris-

tics for initial centroids of clustering tasks as in (Kang, 2013). This method has

two advantages. First, it can automatically decide the number of clusters and

no pre-defined number of clusters needs to be provided, which is a complex but

important issue in clustering. Second, since these initial centroids from a DPP

are well distributed across the ground dataset, it avoids the situation that two

centroids are so close that the clusters expanded by them need to be merged.

Rather than directly applying a diverse DPP subset as initial centroids, Amar

and Zoubin (Shah and Ghahramani, 2013) developed a novel determinantal clus-

tering process (DCP) by reversing the diversity metric provided by a DPP into

a similarity metric over all possible subsets of the ground dataset. By sam-

pling such a partition of the ground dataset in a semi-supervised setting, DCP

achieved a nonparametric Bayesian approach for clustering without specifying

the cluster number.

1.2.3 Diversity-requiring applications

To provide insights into situations requiring diversity, here we provide several

examples that frequently arise in real-world applications, from diverse summa-

rization to diverse clustering seeds.

12
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Summarization

Video summarization (Gong et al., 2014) is an efficient way to handle large

amounts of daily video captures. The aim is to provide video searchers and

browsers with succinct but informative frames to represent original content-

redundant video clips. Diversity is obviously an important metric to measure

the goodness of a video summary, and a diverse frame set can clearly cover far

more information than repetitive key frame sets. A similar situation arises in

document summarization (Lin and Bilmes, 2012)(Gillenwater et al., 2012a); au-

tomatically selecting sentence subsets to summarize core ideas provides readers

with a quick way to extract useful information from large numbers of complex

documents. Again, diversity is an essential characteristic of the sentence sum-

marizing subsets, since it encourages the subsets to cover more details than just

repetitive key topic sentences and provides more comprehensive perspectives for

the reader.

Recommendation

Diversity also plays a key role in recommendation as well. For example, in

online retail (McSherry, 2002)(Gillenwater et al., 2014), many factors dictate

which product should be recommended to customers such as the rating from all

customers, transaction records. However, the products selected by such factors

may fall into fixed categories that are favoured by each customer. Therefore,

diversity is a good strategy to explore a wider range of customer interests and

ultimately to increase revenue. Another important example influencing every

day’s life is news recommendation (Abel et al., 2013). Many online services such

as Google news try to provide real-time but personalized news package to each

user. A satisfying news recommendation package should contain news that is

not only highly related to the person’s interests but that also exhibits diversity

13
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to provide a good coverage of different aspects of the news events.

Image processing

Diversity has also been shown to be helpful for different image processing tasks

such as image segmentation and human pose estimation. Image segmentation

(Kim et al., 2011) (e.g., separating a given outdoor image into two parts - ‘sky’

and ‘earth’ ) is an essential step in most image-based applications such as image

annotation and objects recognition. This task can be reformulated as a clustering

problem but with the additional clue that the image segments are spatially non-

overlapping. In these circumstances, a diverse image pixel subset is a good

choice for the initial cluster centres. Also, pose estimation (Kulesza and Taskar,

2010) is an essential step in the automatically analysis of group activities in a

human dominant images, where each person is usually represented with pictorial

structures. Since people tend to occupy disjointed locations in space, a group of

spatially diverse pictorial structures is preferred here.

Resource allocation (Guestrin et al., 2005)(Hartline et al., 2008)

Diversity helps to save resources for resource allocation tasks by picking proper

locations. One example is sensor placement tasks for Gaussian processes. Given

a limited budget, it is important to carefully choose the best locations to install

sensors such that the measurements made by these sensors are as informative as

possible about the entire space. Another example is in social network marketing.

An efficient online marketing strategy is referred to as ‘influence-and-exploit’.

Specifically, marketing strategies should be placed on the node subset from one

network that not only contains influential nodes with high-degree connections

but also diversely spread out on the whole network.
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Miscellanies

Two more miscellaneous but important scenarios requiring diversity are infor-

mation retrieval (Kulesza and Taskar, 2011a) and clustering (Kang, 2013). In

an information retrieval task, every search is devoted to selecting items that are

most relevant to users’ queries from a huge image or text dataset via an efficient

ranking system. Most ranking strategies emphasize items of high quality and

prioritize them in the rankings but ignore their relationships/connections. As

a result, similar content may be listed at the top of retrieval results, which is

suboptimal for users. In the worse situation in which query keywords are ambigu-

ous, the retrieval subset containing similar items may be completely irrelevant to

users. Therefore, in addition to a relevance criterion, diversity should be another

important factor in ranking strategies for information retrieval. The diversity

criterion plays a similar role in selecting initial clustering centres in a clustering

task, and it is well known that the initial sample subset chosen as clustering

centres determines the effectiveness of convergence of clustering algorithm, e.g.,

in k-means. Therefore, a sample subset with qualified individuals and a diversity

relationship between them can represent the entire data population and is likely

to improve clustering accuracy. Similarly, (Reichart and Korhonen, 2013) pro-

posed a unified framework for verb clustering that made use of DPP to sample

high quality and diverse verb subsets that flowed into hierarchical clustering as

input seeds.
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1.3 Motivations and research significance

1.3.1 Motivations and contributions

Inspired by the promising results achieved by current diversity-encoded models,

in this thesis we integrate diverse priors into fundamental PGMs to alleviate

their ambiguity/redundancy problems exhibited by them. However, ambiguity

and redundancy problems. However, ambiguity and redundancy mean different

things under different circumstances. For instance, in HMMs, ambiguity in hid-

den states may occur when state transition probabilities are similar, especially

when other HMM parameters are fixed. In a sequential setting, repetitive over-

lapping neighbouring subset sampling will lead to computational redundancy for

recommendation tasks. Another example is in mixture models, where inferred

mixing components from observations may overlap, which may lead to label

ambiguity in terms of clustering tasks. Therefore, this thesis is devoted to intro-

ducing different explicit diversities to these different circumstances to alleviate

the disadvantages of ambiguity and redundancy. The main contributions are as

follows:

• We formulate a diverse prior with probability measure-valued DPP and ex-

plicitly integrate it over state transition probabilities of HMMs to improve

HMM performance. An EM framework is derived to solve the diversified

HMMs. Experiments conducted over sequential labelling tasks, e.g., PoS

tagging and OCR, confirm the effectiveness of the proposed diversified ex-

tension of HMMs.

• We design a new graphical model for sequential diverse subset sampling, re-

ferred to as time-varying determinantal point processes (TV-DPP), to meet

the requirements of several different application scenarios such as recom-
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mending sequentially diverse news subsets for news browsers and discover-

ing diverse networks evolving in employment networks. This setting takes

advantage of the huge overlap between neighbouring ground datasets and

straightforwardly avoids computational redundancy along the timeline.

• We design a matrix-valued DPP diverse prior and integrate it into a prob-

abilistic PCA mixture model (PPCA-MM) to encode desirable repulsion

between mixing components. The learned/inferred mixing components are

thus expected to be well distributed across the whole model space. This

reduces the risk of overlapping between mixing components to the lowest

point. An approximation algorithm based on Jensen’s inequality is de-

rived for learning and inference of the proposed diversified PPCA-MMs.

Empirical results verify the effectiveness of the proposed diversity scheme.

1.3.2 Research significance

This thesis makes three main research contributions:

• We extend PGMs by integrating naturally existing and application-desirable

diverse priors. It significantly enriches the PGM research area and also ex-

tends model application to intrinsically diversity-desirable applications.

• Three specific PGMs are diversified: hidden Markov models (HMMs), se-

quential models, and probabilistic PCA (PPCA), which play fundamental

roles especially in sequential data processing and dimensionality reduction.

Therefore, the diversified versions of these models will have a fundamental

impact on areas relevant to these basic models.

• A single guiding framework for diversifying PGMs is summarized from the

above three models that is helpful for developing future diversified PGMs.
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Diversified PGMs 

Diversified HMMs (Chapter 2) 

Time-Varying DPPs (Chapter 3) 

Diversified PPCA (Chapter 4) 

Conclusion & future work 
 (Chapter 5) 

Figure 1.5: Thesis structure

This framework has three parts: (i) to identify which part of a PGM is

reasonable to be diversified based on either modelling capacity or real-

world application demands; (ii) how to design diverse priors and encode

them into the original model formulations; and (iii) how to derive solving

algorithms for the diversified models.

• The instantiated diversified models presented in this thesis are directly

and successfully applied to various applications. They also establish novel

frameworks for practical applications, e.g., for news recommendation. They

are undoubtedly of important practical significance.

1.4 Thesis Structure

This thesis introduces diversity into traditional PGMs and illustrates it with

three widely used PGMs. The remainder of this thesis elaborates these three

examples. The structure of this thesis is shown in Figure 1.5, and it is organized

as follows. Chapter 2 introduces diversifies hidden Markov models (HMMs)

for sequential learning. Chapter 3 develops a time-varying determinantal point

processes model for sequential diverse subset sampling. Chapter 4 accomplishes

diversified PPCA-MM. Finally, Chapter 5 concludes this thesis and proposes
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some future work.
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Chapter 2

Diversified Hidden Markov Models

for Sequential Labelling

Labelling of sequential data is a prevalent meta-problem for a wide range of

real world applications. While the first-order hidden Markov models (HMMs),

an important member of PGMs, provides a fundamental approach for unsuper-

vised sequential labelling. The basic model does not show satisfying performance

when it is directly applied to real world problems such as part-of-speech tagging

(PoS tagging) and optical character recognition (OCR). Aiming at improving

performance, important extensions of HMMs have been proposed in the liter-

atures. One of the common key features in these extensions is the incorpora-

tion of proper prior information. In this chapter, we propose a new extension

of HMMs, termed diversified hidden Markov models (dHMM), which utilizes a

diversity-encouraging prior over the state-transition probabilities and thus facil-

itates more dynamic sequential labelings. Specifically, the diversity is modelled

by a continuous determinantal point process (DPP), which can be applied to

both unsupervised and supervised scenarios. Learning and inference algorithms

for dHMM are derived. Empirical evaluations on benchmark datasets for unsu-
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pervised PoS tagging and supervised OCR confirm the effectiveness of dHMM,

with competitive performance to state-of-the-art methods.

2.1 Introduction

Sequential labeling is an important meta-problem in many real world applica-

tions, including natural language processing (NLP) tasks (Murveit and Moore,

1990) (Morwal et al., 2012), video analysis (Niu and Abdel-Mottaleb, 2005)(Liu

and Chen, 2003), protein secondary structure(Krogh et al., 2012) (Asai et al.,

1992). It has received considerable attentions in the past years. One of the fun-

damental models for sequential labelling is HMM, which assumes a âĂŸchainâĂŹ

of discrete-valued latent states and each of them depends only on the immedi-

ate neighbouring states. Conditioning on this latent chain, the observations are

probabilistically independent. Take PoS tagging task from NLP as an example,

speech tags (NNS-Noun, plural; MD-Modal; etc) are discrete-valued latent state,

while words (directors; are; etc) are observations.

However, the parameter-learning task in the classical HMM implemented

with expectation-maximization (EM) algorithm performs unsatisfactorily in un-

supervised setting for sequential labeling (Johnson, 2007). A key reason for this

drawback is the well-known fact that maximum likelihood estimation (MLE)

with mixture parameters has the tendency to converge towards a singular esti-

mate at the boundary of the parameter space (Figueiredo and Jain, 2000)(Bishop

et al., 2006), no matter how the observations are actually distributed (e.g. nor-

mally distributed or askew distributed). With improperly estimated parame-

ters, the performance of inference of the latent states can be severely unsatisfied.

Besides, the identifiability of parameters is another issue for HMM parameter

learning with MLE implementation.
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Therefore, a penalized MLE with properly chosen prior distribution over pa-

rameters is essential for the practical applications of HMM. For example, smooth-

ing penalty (Wang and Schuurmans, 2005) and sparse penalty (Tao et al., 2012)

(Li et al., 2014) (Yang et al., 2014) (Long et al., 2014) are two popular priors over

either transition distribution parameters or emission distribution parameters for

sequential labelling.

Different from the early works, we have explored the usage of diversity prior

over a joint distribution of rows of HMM‘s transition matrix, in order to make

these transition distributions more distinct when decoding the sequential latent

states. In the cases, where the transition probabilities become similar, an HMM

model approaches to a static mixture model. We can We can understand this

intuition by considering an extreme case where each rows of a transition proba-

bility matrix are identical. This leads to the same state transitions regardless of

the state we are currently in. Suppose we have a k-state HMM, parameterised

by (π,A,B), i.e., the initial probability π, transition probability matrix A and

emission probability B, if the rows of A are identical and given by vector a, the

joint probability of the hidden states and observations over a sequence of length

T can be calculated as:

P (X, Y |π,A,B) = P (x1|π)
T∏
t=2

P (xt|A(xt−1, :))P (yt|xt, B)

= P (x1|π)
T∏
t=2

P (xt|a)P (yt|xt, B)

It can be seen that the joint probability becomes an independent product of

variables at individual time point, and thus the HMM model becomes a static

mixture model, i.e., the data become exchangeable. In contrast, a prior that

encouraging diversity is able to reserve the dynamics property of HMMs. To

the best of our knowledge, this is the first paper to apply diversity prior over
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HMM parameters. We do so by incorporating a recently introduced determi-

nantal point processes (DPP) (Kulesza and Taskar, 2012) methodology, which

essentially defines a Probability Mass Function (PMF) that assigns higher prob-

ability to a diverse subset of data. Inspired by the work of (Zou and Adams,

2012), we propose a diversified HMM (dHMM) by extending the basic HMM

with determinantal-driven diversity.

Specifically, our contributes can be summarized in the following:

• We extend the HMM to dHMM by incorporating a diversity-encouraging

prior over transition distributions, with which we intend to mitigate the

problem of singular estimate in HMM.

• The use of a prior does not change the E-step of the EM algorithm in a

fundamental way. However, for the M-step of the estimation of dHMM

parameters, we derive a new formulation to incorporate the continuous

DPP prior over the transition probabilities.

• We demonstrate the effectiveness of dHMM under both the unsupervised

and supervised settings by applying dHMM to benchmark sequential la-

belling problems, including: part-of-speech tagging (PoS tagging) and op-

tical character recognition (OCR).

The rest of this chapter is organized as follows. Section 2.2 reviews related

literatures on progresses of statistical HMMs for sequential labelling. Section 2.3

introduces our proposed model in detail. Firstly, we briefly review basic hidden

Markov models (HMMs). Then how diversity-encouraging prior is encoded into

HMMs and how an induced maximum a posterior (MAP) objective problem is

solved are presented. Both simulated and real-world experiments are conducted

in section 2.4. Finally, summary of this chapter is discussed in Section 2.5.

23



Chapter 2 2.2. RELATED WORK

2.2 Related Work

HMM is a fundamental statistic model for modelling sequential dataset and

of significant importance in many other fields, from speech recognition (Ra-

biner, 1989), handwriting recognition (Hu et al., 1992), video analysis (Liu and

Chen, 2003), gesture recognition (Tao et al., 2012), gene sequence prediction

(Krogh et al., 2012), to optical character recognition (OCR) (Feng and Man-

matha, 2006) and part-of-speech tagging (PoS tagging)) (Gael et al., 2009). This

section presents related work of HMMs.

We briefly review the development of HMM for sequential labeling. It is well

known that the HMM parameters contain three parts: (1) initial state distribu-

tion, (2) transition distributions and (3) emission distributions of either discrete

or continuous. Various extensions of HMM have been proposed by incorporating

proper prior information into either one part or all three parts of these parame-

ters.

Supervised sparse HMM (Tao et al., 2012) was proposed to improve the ex-

pressive power for sequential surgical gesture classification and skill evaluation.

It assumes that the emission distributions sparsely and linearly constitute ele-

ments from dictionary of basic surgical motions, no matter the observations are

discrete, Gaussian or factor analysed. Training dataset is needed for dictionary

learning for each gesture together with an HMM grammar describing the tran-

sitions among different gestures. With learned dictionaries and grammar, the

testing motion data is represented and classified.

Supervised large margin continuous density HMM (CD-HMM) for automatic

speech recognition was proposed by Sha and Saul in (Sha and Saul, 2006). The

real-valued observations (such as acoustic feature vectors) are modelled through

Gaussian mixture models. Inspired by support vector machines, margin maxi-

mization is applied as training objective function which is defined over a param-
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eter space of positive semi-definite matrices. This optimization problem can be

solved efficiently with simple gradient-based methods.

Unsupervised learning is a more difficult but important problem, as it elim-

inates the need for expensive manual annotation. It was demonstrated from

the work of (Wang and Schuurmans, 2005) that, smoothing HMM parameters

can achieve significant improvements for PoS tagging. Two strategies have been

applied: the first one is to smooth the emission distributions by computing ob-

served word similarities. The second one is to specify a stationary distribution

for hidden states to constrain the transition distributions.

Unsupervised sparse HMM based on Bayesian framework also has been ex-

plored in several literatures. Unlike supervised sparse HMM (Tao et al., 2012)

where the emission distributions are learned from sparse representation, unsu-

pervised sparse models add priors on transition distributions. (Bicego et al.,

2007) introduces a negative Dirichlet prior on the transition distributions, which

strongly encourages sparseness of the model. Then, maximum a posteriori

(MAP) probability estimation of HMM parameters is devised under a modified

expectation maximization algorithm. Manuele et al. evaluated the proposed

technique on a 2D shape classification task. In (Goldwater and Griffiths, 2007),

for PoS tagging, rather than performing MAP parameters estimation followed by

inferring hidden states, Goldwater and Griffiths directly identify a distribution

over latent variables, without ever fixing particular values for model parameters.

This is achieved by integrating over all possible values of parameters under a

Bayesian approach. The integrating over parameter space permits the usage of

appropriate linguistic priors. For example, the symmetric Dirichlet prior may

prefer equal, uniform or sparse multinomial distributions according to different

settings of its hyper-parameters.

There exist other important extensions of HMM for determining the number
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of hidden states which is a key issue in every clustering task. Non-parametric

Bayesian method is one popular solution for this problem. For instance, Qi et

al. (Qi et al., 2013) applied hierarchical Dirichlet processes prior over transition

matrix to model the number evolution of dynamic community structures. Here

we fix this parameter from experience and we refer to (Gael et al., 2009) (Teh

et al., 2006) for interested readers.

From these previous works, proper prior information (Fang et al., 2015) en-

coded into HMM leads to visible performance increment. Either smooth prior

or sparse prior is somewhat reasonable from a technical view. From an intuitive

view, different states should have different transition distributions, otherwise,

HMM will finally fall to a ’static’ mixture model. To this end, a diversity-

encouraging prior is demanded and also required by many real-world sequential

applications. In next section, we show how this kind of prior is encoded into

HMMs.

2.3 Diversified Hidden Markov Models

In this section, our proposed dHMM and its MAP solution are presented. The

graphical model of the proposed dHMM is illustrated in Fig. (2.1). In order to

make this paper self-contained, we illustrate all of its steps as well as background

knowledge leading to our new work: (1) We first briefly review the basic HMM

models. (2) Then, the probability product kernel is introduced as a basic building

block for DPP. (3) Our dHMM is subsequently represented. (4) Finally, we detail

inference steps for solving the proposed dHMM.
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2.3.1 Kernels for probability diversity

We prepare a probability kernel, which allows us to apply DPP on HMM’s tran-

sition probabilities. In this work, the Probability Product Kernel, which is pro-

posed in (Jebara et al., 2004), defines the kernel function between distributions

Pi and Pj of discrete variables, which are parameterized by Ai, Aj respectively:

K(Ai, Aj; ρ) =< P (x|Ai)
ρ, P (x|Aj)

ρ >

=
∑
x∈X

P (x|Ai)
ρP (x|Aj)

ρ

for ρ > 0 and x runs through all possible values of discrete variable X. The

kernel is computed by summing up the products between the two distributions

in terms of x.

For distributions P (x|Ai) and P (x|Aj), the less ‘correlation’ between them,

the more ‘diversity’ we can gain through the determinant of the kernels. To

remove the scale effects of different probabilistic measurements, the normalized

correlation kernel function is applied:

K̃(Ai, Aj; ρ) =
K(Ai, Aj; ρ)√

K(Ai, Ai; ρ)
√
K(Aj, Aj; ρ)

(2.1)

The final continuous DPP kernel as a building block in our proposed model

is: K̃A = [K̃(Ai, Aj)]i,j∈{1,2,...,d}, where K̃A is d × d matrix, and Ai· ∈ R
d
+ with∑

j Aij = 1 for probability measure.

2.3.2 Log-likelihood function of Hidden Markov Models

Hidden Markov models assume what are being observed are generated by a

Markov process with unobserved hidden states. It is especially known for their

applications in temporal sequential pattern recognition.
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In Fig. (2.1), a hidden Markov model is a k-state Markov chain observed at

discrete time points t = 1, 2, ..., T . Let {A1, A2, ..., Ak} be the finite state space.

One state Ai can be transfered to all other states {Aj, j ∈ {1, 2, ...k}} with

probability distributions parameterized by transition matrix A ≡ [aij], i, j ∈
{1, 2, ..., k}. We use X = {X1, X2, ..., XT} as state variables, and Xt = Ai

means HMM is staying on state Ai at time step t. P (Xt = Aj|Xt−1 = Ai)

denotes the transition probability from Ai to Aj, which is equal to Aij. In

unsupervised setting, hidden variables cannot be observed directly, which are

represented by hollow circles in Fig. (2.1). In contrast, filled circles denote

observations Y = {Y1, Y2, ..., YT}. Each chain observation is parameterized by

i.i.d emission distribution B given hidden states. For each hidden state, its

probability distribution is only dependent on its former state in the first-order

HMM. The joint probability distribution over hidden variables and observations

is parameterized by λ = (π,A,B) (Rabiner, 1989). The likelihood is as follows.

P (X1, ..., XT , Y1, ..., YT |λ) = P (X1; π)
T∏
t=2

P (Xt|Xt−1;A)

×
T∏
t=1

P (Yt|Xt;B)

s.t.
k∑

i=1

πi = 1, πi ≥ 0, i ∈ {1, 2, ..., k}
k∑

j=1

Aij = 1, Aij ≥ 0, i, j ∈ {1, 2, ..., k}

B : probability measure

The linear constraints are required by discrete probability measure. The last

statement above means that parameters B of emission distributions should also

satisfy the requirement of probability measure in either continuous or discrete
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space, decided by various applications.

Since supervised HMM is a special case of unsupervised HMM with known

hidden state for training period and known parameters for test period, here

we just demonstrate the solutions for unsupervised case. Three basic problems

of HMM are identified in (Rabiner, 1989), namely, adjusting parameters given

observations maxλP (Y |λ) for unsupervised setting (or maxλP (Y,X|λ) for super-

vised setting), computing log likelihood logP (Y |λ) for unsupervised setting and

inferring hidden states maxXP (Y,X|λ) given both parameters and observations

for both unsupervised setting and supervised setting during test period.

For unsupervised learning, these three problems are closely associated with

the likelihood, which is computed by marginalizing out the hidden variables from

the joint distribution. The log likelihood for one sequential observation is:

L(Y ;λ) = logP (Y |λ) = log
∑
X

P (X, Y |λ) (2.2)

With Markov assumption of HMM and Jensen’s inequality, the lower bound

of the intractable formula in Eq.(2.2) is:

L(Y ;λ) ≥
∑
X1

q(X1)logP (X1|π)

+
T∑
i=1

∑
Xi

q(Xi)logP (Yi|Xi, B)

+
T∑
i=2

∑
Xi−1,Xi

q(Xi−1, Xi)logP (Xi|Xi−1, A)

−
∑
X

q(X)logq(X) (2.3)

where {q(Xi)}Ti=1 and {q(Xi−1, Xi)}Ti=2 are marginally unary and pairwise distri-

butions of hidden variables.
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Traditional HMM is solved under EM framework. As noted, it usually pro-

duces flatten emission distributions and meaningless transition matrix. In the

next subsection, we detail how to encode the diversity-encouraging prior into the

transition distributions and how to solve the three basic problems identified by

the traditional HMM.

2.3.3 Proposed Diversified HMM

With all the previous concepts in hand, we can now proceed with our proposed

diversified HMM (dHMM).

The HMM’s transition distributions P (Xt|Xt−1) obey multinomial distribu-

tion parameterized by {Aij}ki,j=1, where t is the time index and k is the number

of hidden states. The corresponding normalized correlation kernel function for

rows of A based on Eq.(2.1) is as:

K̃(Ai·, Aj·) =
∑k

x=1(AixAjx)
ρ√∑k

x=1 A
2ρ
ix

√∑k
x=1 A

2ρ
jx

(2.4)

And the corresponding diversity prior of transition parameter matrix of HMM

modelled by determinantal point processes (DPP) is:

P k
K̃
(A) ∝ det(K̃A) (2.5)

where K̃A is |A| × |A| kernel matrix, Ai ∈ R
k
+ with

∑
j Aij = 1. A is a k-size

subset from the k− 1 simplex. P k
K̃

symbols kDPP. For all experiments based on

our proposed dHMM, we set ρ = 0.5.

The graphical model of our proposed model is illustrated in Fig. (2.1). The

bottom chain structure is a standard first-order HMM. Applying conventional

symbols of graphical models, hollow circles indicate hidden states, while filled
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circles are symbols of observations. Similar to (Zou and Adams, 2012), we draw

a double-struck plate to denote the DPP prior placed on the state transition

matrix A. Higher the probability of DPP is, the more diverse of the rows of an

HMM’s transition matrix is.

Unsupervised setting

To model the unsupervised sequential labelling, Maximum A Posterior (MAP)

problem needs to be solved since it incorporates diversity-encouraging prior over

parameters of rows the transition matrix. The new objective function is formu-

lated as:
maxλ L(Y ;λ) + αlog|K̃A|

s.t.
k∑

i=1

πi = 1, πi ≥ 0, i ∈ {1, 2, ...k}
k∑

j=1

Aij = 1, Aij ≥ 0, i, j ∈ {1, 2, ..., k}

B : probability measure

(2.6)

where λ = (π,A,B) is the parameters of our proposed dHMM and we adopt the

same symbols with the traditional HMM. Note that we ignore the normaliza-

tion constant of the DPP prior distribution, since it is irrelated to measuring the

diversity of parameters of rows of transition matrix, as well as estimating param-

eters of initial distribution and emission distributions. And α > 0 is used to bal-

ance the weights between measurements of likelihood and diversity-encouraging

prior. When α = 0, no diversity-encouraging prior will distract the estimation of

transition matrix from Maximum Likelihood Estimation (MLE) learning. With

α goes up, the weight of diversity-encouraging prior increases, and the diversity-

encouraging prior will dominate the estimation of the parameters of transition

matrix.
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Supervised setting

For modelling supervised sequential labelling, as the hidden states are given

during training period, parameters λ = (π,A,B) can be learned in a count man-

ner. Specifically, π = Ai is the ratio between the frequency of state Ai and

the total number of sequences. Aij is the proportion of the pairwise states

(Xt−1 = Ai, Xt = Aj) among all pairwise states appearing in the training

sequences. B can be learned in a discriminative manner, since the observa-

tions are independent given hidden states. Obviously, the learned parame-

ters fit the training dataset best, rather than the test dataset. To general-

ize the counting-computed parameters of transition matrix A0 by incorporating

diversity-encouraging prior, we construct the new objective function as below:

maxλ L(Y,X;λ) + αlog|K̃A| − αA||A− A0||22

s.t.
k∑

i=1

πi = 1, πi ≥ 0, i ∈ {1, 2, ...k}
k∑

j=1

Aij = 1, Aij ≥ 0, i, j ∈ {1, 2, ..., k}

B : probability measure

(2.7)

where A0 is the trained parameters by λ0 = maxλL(Y,X;λ) with λ0 = (π0, A0, B0),

αA is used to control how far the final A can drift from A0.

2.3.4 Solutions

In this subsection, we mainly focus on how to learn parameters from unsupervised

setting with objective function Eq.(2.6) and supervised setting with objective

function Eq.(2.7).
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Unsupervised setting

Traditionally, Expectation-Maximization (EM) framework (Fang et al., 2014) is

applied to learn HMM parameters. Here, our procedure is only different with

traditional EM in M-step. This is because in a MAP setting, the diversity-

encouraging prior term, i.e., log(λ) is irrelated to the hidden states X, which

can be taken out of the integration in E-step.

E-step:

Given old parameters λold = (Aold, Bold, πold), we apply forward-backward

algorithm to do inference for hidden variables.

In the forward pass of HMM chain, it inductively summarizes all information

before time step t into marginal distribution over each hidden variable Xt and

all past observation variables {Y1, ..., Yt}, namely,

α(Xt) ∝ P (Xt, Y1, Y2, ..., Yt;λ
old)

α(Xt+1) ∝
(∑

Xt

α(Xt)P (Xt+1|Xt)

)
× P (Yt+1|Xt+1) (2.8)

Similarly, in the backward pass, it summaries information over all future

observation variables after time step t, {Yt+1, ..., YT}, namely,

β(Xt) ∝ P (Yt+1, ..., YT |Xt;λ
old)

β(Xt−1) ∝
∑
Xt

(β(Xt)P (Xt|Xt−1)P (Yt|Xt)) (2.9)

The initializations for both forward and backward pass are:

α(X1) ∝ P (X1|πold)× P (Y1|X1, B
old)

β(XT ) = 1
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The conditionally marginal probabilities for hidden variables (required by

likelihood in Eq.(2.3)) and likelihood can be computed by combining the for-

ward and backward summarizations. The unary and pairwise hidden states

distributions as well as the normalization are formulated as:

q(Xt) ∝ α(Xt)β(Xt)

q(Xt−1, Xt) ∝ α(Xt−1)P (Xt|Xt−1)P (Yt|Xt)β(Xt)

P (Y1, Y2, ..., YT ) =
∑
Xt

α(Xt)β(Xt)

M-step: In this step, dHMM optimizes the below objective function to

update the parameters λold = (πold, Aold, Bold) given N training sequences.

maxπ,A,BL(π,A,B|Y,X)

=
N∑

n=1

⎛⎝ Tn∑
t=2

∑
Xnt,Xn,t−1

q(Xnt, Xn,t−1)logP (Xnt|Xn,t−1, A)

⎞⎠
+

N∑
n=1

(
Tn∑
t=1

∑
Xnt

q(Xnt)logP (Ynt|Xnt, B)

)

+
N∑

n=1

(∑
Xn1

q(Xn1)logP (Xn1|π)
)

+ αlog(|K̃A|)

s.t.
k∑

i=1

πi = 1, πi ≥ 0, i ∈ {1, 2, ..., k}
k∑

j=1

Aij = 1, Aij ≥ 0, i, j ∈ {1, 2, ..., k}

B : probability measure

where, Xnt, Ynt denote hidden state and observation of the nth sequence at time
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step t respectively, Tn denotes the length of the n-th sample sequence. Note that,

the last term of Eq.(2.3), which is the entropy of marginal distribution q(X), is

irrelated to model parameters λ, is simply ignored in M-step.

As both log function and log det function are concave, we directly apply the

Lagrange multipliers method to solve the maximization problem in Eq.(2.6). The

Lagrange function is given below:

Λ(π,A,B, β) =L(π,A,B|Y,X)

−β0(
k∑

i=1

πi − 1)−
k∑

i=1

βi(
k∑

j=1

Aij − 1)

where βi, i ∈ {0, 1, ..., k} is the Lagrange multipliers.

As the gradients for both π and B are the same with traditional HMM, we

just list the results. For π,

πi, i ∈ {1, 2, ..., k}

πi =

∑N
n=1 q(Xn1 = i)

N

For emission distribution, in our experiments, it obeys either Gaussian dis-

tribution or multinomial distribution. For Gaussian distribution, Yt|Xt = Ai ∼
N (B.μi, B.σi), i ∈ {1, 2, ..., k}, the updating parameters for B are:

B.μi

μi =

∑N
n=1

∑Tn

t=1 Yntq(Xnt = Ai)∑N
n=1

∑Tn

t=1 q(Xnt = Ai)
(2.10)

B.σ2
i

σ2
i =

∑N
n=1

∑Tn

t=1 q(Xnt = Ai)(Ynt − μi)
2∑N

n=1

∑Tn

t=1 q(Xnt = Ai)
(2.11)
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For multinomial distribution, Yt|Xt = Ai ∼ Multi(B.bi), i ∈ {1, 2, ..., k}, and

the updating parameters for B are:

B.bi

bij =

∑N
n=1

∑Tn

t=1 q(Xnt = Ai)δ(Ynt = j)∑k
j=1

∑N
n=1

∑Tn

t=1 q(Xnt = Ai)δ(Ynt = j)

where δ(·) is the Dirac delta function. The same results are applied when the

emission distributions obey the Bayes Bernoulli distribution since Bernoulli dis-

tribution is a special case of multinomial distribution. Namely, Yt = yj|Xt =

Ai ∝ b
yj
ij (1− b

1−yj
ij ) with yj ∈ {0, 1} and parameters 0 ≤ bij ≤ 1.

When handling with transition matrix A, the situations for traditional HMM

and dHMM are different. Let ΛA be the Lagrange function related to parameters

A, namely,

ΛA =
N∑

n=1

Tn∑
t=2

∑
Xn,t−1,Xn,t

(q(Xn,t−1, Xn,t)log(P (Xn,t|Xn,t−1, A)))

+ αlog|K̃A| −
k∑

i=1

βi(
k∑

j=1

Aij − 1)

(2.12)

The gradients corresponding to parameters A are computed by

∇Aij
ΛA = 0 (2.13)

When α = 0, the updates for A are the same with traditional HMM:

Aij =

∑N
n=1

∑Tn

t=2 q(Xn,t−1 = i, Xnt = j)∑N
n=1

∑T2

t=2

∑
j q(Xn,t−1 = i, Xnt = j)

When α > 0, the solution for Eq.(2.13) has no closed form. We iteratively

maximize Eq.(2.12) with projected gradient ascend method. First the gradients
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are computed by:

∂LAij
=

N∑
n=1

Tn∑
t=2

q(Xn,t−1, Xnt)

Aij

+ α∇Aij
log|K̃A| (2.14)

with ∇Aij
log|K̃A| = 1

2

∑k
m=1

(
[K̃−1

A ]mi

√
(Amj)√
(Aij)

)
. The updates for A are

Anew = Aold + γ · ∂LA (2.15)

where γ is the step size, and here we apply adaptive step in our implementation.

Then we project all rows of A onto the k − 1 probability simplex by finding

a nearest point in the simplex for Anew, equally, we try to solve the following

optimization problem:

minai ||ai − Anew
i· ||2 i = 1, ..., k

s.t.aTi 1 = 1, ai ≥ 0
(2.16)

We refer readers to Algorithm 1 in (Wang and Carreira-Perpinán, 2013) for more

details.

The overall procedure for updating transition parameter matrix is summa-

rized in Algorithm 2.1.

The rows of input Aold is initialized by samples from Dirichlet distribution

and as shown, our stop criterion is based on the likelihood contributed by pa-

rameters A. The most time-consuming step is to compute the gradients, which

are obtained by matrix inversion operation. Fortunately, we usually maintain a

small transition matrix to be manipulated.
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Algorithm 2.1: updating A for dHMM
Require: Initialization Aold, initial step γ, error threshold δ
1: Anew = Aold, Lold

A

2: repeat
3: Compute gradient ∂LA

4: find the suitable step size γ
5: Anew ← Aold + ∂LA × γ
6: Project onto the probability simplex:
7: Anew ← ProjSimplex(Anew) (Algorithm 1 in (Wang and

Carreira-Perpinán, 2013))
8: compute Lnew

A with Anew

9: if |Lnew
A − Lold

A | < δ then
10: break;
11: end if
12: Aold ← Anew, Lold

A ← Lnew
A

13: until |Lnew
A − Lnew

A | < δ
14: return Anew

Supervised setting

To solve the optimization problem in Eq.(2.7), again the projected gradient

ascend method is applied. And the gradients with regard to Aij are computed

as:

∂LAij
=

N∑
n=1

Tn∑
t=2

δ(Xn,t−1 = i, Xn,t = j)

Aij

+ α∇Aij
log|K̃A|

− 2αA(Aij − A0ij)

(2.17)

From above, the pairwise hidden states are counted rather than inferred in the

supervised setting. ∇Aij
log|K̃A| is the same as in the unsupervised setting.

Again, we iteratively update A with the initialization A0 by gradient ascend

method until converged.

Finally, we apply Viterbi algorithm to find the most likely hidden state se-

quences by solving the problem maxXP (X, Y |λ) for unlabelled sequential obser-

vations under both unsupervised and supervised settings.
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Convergence analysis

In the unsupervised setting, we maximize L(Y ;λ) + α log |K̃A| which is lower

bounded by L(q, λ) + α log |K̃A| (Bishop et al., 2006). The E-step is the same

with the general EM algorithm for HMMs. With fixed λold = (πold, Aold, Bold), in

E-step, the exact posterior distributions of hidden states are derived by maximiz-

ing the lower bound of the likelihood L(q, λ), i.e., L(q�, λold) ≥ L(q, λold), where

q� is the optimal posterior distributions. In M-step, L(qold, λ)+α log |K̃A| is max-

imized by using the gradient ascend algorithm, i.e., L(qold, λ�) + α log |K̃A� | ≥
L(qold, λold)+α log |K̃Aold |, where λ� corresponds to the local maximum of the ob-

jective function. Therefore, we can conclude that the EM optimization produces

a sequence of objective value that converges to a local maximum.

Similarly, in the supervised setting, the sequence of the objective value pro-

duced by the gradient ascend method will also converge to a local maximum.

Algorithm complexity analysis

From the above parameter learning and inference procedure, the computation

for each related equation is simple but relevant to all N sequence observations.

In addition, the computation for transition matrix in the proposed dHMM is

more complex than the traditional HMMs, and its time complexity is ©(k3)

with k the number of hidden states. Therefore, when it comes to large-scale

datasets with either big N or big k, the proposed model can be accelerated with

different techniques such as parallel computing in blockwise and matrix inversion

approximation Soleymani (2012).
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2.4 Experimental results

In this section, we demonstrate the effectiveness of our proposed diversified HMM

(dHMM) by conducting experiments on both simulated and real-world datasets.

2.4.1 Toy experiments

For simulated dataset, {1, 2, 3, 4, 5} as state space, where the cardinality of the

state space is k = 5. For the ground-truth initial hidden state distribution, it

is set as π = (0.0101, 0.0912, 0.2421, 0.0652, 0.5914). The transition matrix

A is shown in the first column of Fig. (2.2a). The emission probabilities are

chosen to be single mode Gaussian distributions. The parameters of means

and variances for k Gaussian distributions are set as B.μ = (1, 2, 3, 4, 5), and

B.σi = 0.025, i ∈ {1, 2, 3, 4, 5}.
300 observation sequences were randomly generated from the ground-truth

parameters above. For simplicity, we equally set length of all sequences as six,

namely, Tn = 6, n ∈ {1, 2, ..., 300}. The EM framework represented in Sec 2.3.4

was applied to learn parameters λ = (π,A,B) for both the traditional HMM and

dHMM. The parameters of mean and variance of the emission distributions were

initialized with samples from Gaussian distribution and Gamma distribution

respectively. Initial state distribution and rows of transition matrix were sampled

from a Dirichlet distribution Dir(ηi), where the concentration parameters are set

as ηi = 3, i ∈ {1, 2, 3, 4, 5}. For diversified HMM, the balance parameter is set

as α = 1. The learned parameters are shown in Fig.(2.2).

dHMM vs. HMM on Toy dataset

Since no label information for the learned parameters, alignment between learned

parameters and the ground-truth is applied for visualization of the intuitive com-
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parison. The rows of learned transition matrix are aligned by minimizing the

distance between the learned transition matrix and the ground-truth transi-

tion matrix. The learned initial distribution and emission distributions are also

aligned with the ground-truth ones accordingly.

In Fig.(2.2a), each column corresponds to one 5×5 transition matrix and each

row corresponds to one state’s transition distribution. The first column denotes

the ground-truth transition distribution, and the last two columns are transition

matrices learned from the traditional HMM and diversified HMM respectively.

Comparing to the result of traditional HMM (the middle column), the diversity-

encouraging prior takes effect as illustrated in the third column: The transition

distributions of different states are mutually distinct. Until now, it is still hard

to decide which model infers the hidden states better, since different hidden

structures inferred by different models may inherit different meanings.

In Fig.(2.2b), each row illustrates the other two kinds of parameters (π,B.μ,B.σ)

- the first column denotes the state initial distribution while the other two

columns denote the means and covariances of the five emission Gaussian dis-

tributions. The first row shows the ground-truth. The second row shows the

MLE result learned from the traditional HMM. The last row shows the MAP

result learned from the proposed dHMM. From the figure, the traditional HMM

identifies only two groups of patterns: The states 1, 2, 3, 4 are in the first group,

which have quite similar emission distributions in terms of their Gaussian means

and variances. The state 5 is in the second group, which has very different Gaus-

sian parameters comparing to the others. In this case, hidden states 1, 2, 3, 4 are

difficult to be differentiated, which can lead to ambiguous labelling results. In

contrast, our proposed diversified HMM shows superiority in terms of its higher

discriminative ability for differentiating the hidden states involved. This is re-

vealed in the third row of Fig.(2.2b), which shows that different hidden states
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induce distinct emission components. From the results obtained, the claim that

the proposed diversity-encouraging prior over rows of transition matrix indirectly

increases the discrimination of hidden states is justified.

We also compared the proposed diversified HMM with traditional HMM in

terms of sequential labelling accuracy. Given the learned parameters, the most

likely sequential labels are inferred for each observed sequence by Viterbi algo-

rithm. Both the inferred state frequencies and labelling accuracies of sequential

labelling for different models are summarized in Table (2.1). The histograms of

the sequential labels (i.e., the frequencies of hidden states in the given dataset) in-

ferred from ground-truth parameters, parameters learned from traditional HMM

and parameters learned from diversified HMM are shown in the second row of

Table (2.1). The ground-truth histogram distributes almost equally amongst the

five states, while the statistic of hidden states inferred from traditional HMM

tends to be highly biased which favors one dominant state. This problem is some-

what rectified by the proposed diversified HMM. Shown in the third column, the

histogram of hidden states inferred from dHMM shows more resemblance to the

ground-truth than the histogram inferred from traditional HMM.

To compute the 1-to-1 accuracy of sequential labelling, labels inferred by

parameters learned from both the traditional HMM and diversified HMM are

aligned to the ground-truth by Hungarian algorithm. As shown in the third row

of Table (2.1), the proposed dHMM outperforms traditional HMM by a large

margin.

More explanations on dHMM’s superiority over HMM

Further, in this subsection, the superiority of our proposed dHMM over tradi-

tional HMM is statistically illustrated especially in the case where the emission

distributions are almost flatten. Under this situation, the hidden states are am-
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Table 2.1: Comparison of state frequencies and accuracies between dHMM and
HMM

biguous and less discriminative, which leads to that traditional HMM identifies

less hidden states than the ground-truth, i.e. the learned transition matrix con-

tains more similar rows than the ground-truth transition matrix does. Not only

intuitively but also experimentally, our proposed dHMM mitigates this issue to

some extent.

All ground-truth parameters of HMM take the same setting as above ex-

cept the variances of the emission distributions B.σi, i ∈ {1, 2, 3, 4, 5}. The

variances of the Gaussian distributions are gradually enlarged to ‘flatten’ the

emission distributions. In here, we used a sequence of variance parameters

{Bt.σi, i ∈ 1, ..., 5}Tt=1, T = 50, where Bt.σi = 0.025+0.1× (t−1). For each t, we

generated the experimental sequences by the same method described above. The

experimental results are averaged over 10 runs with independent initializations.

We apply averaged Bhattacharyya distance over all pairwise of rows of tran-

sition matrix as diversity measure. Higher Bhattacharyya distance means more

diversity of rows of transition matrix. The quantized diversities of rows of tran-

sition matrix is shown in Fig. (2.3). The green line shows the diversity of the

ground-truth transition matrix whose value is 0.531. The red curve below the
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green line and the blue curve above the green line show the diversities of the

transition matrices learned by traditional HMM and proposed dHMM respec-

tively. The effectiveness of diversity-encouraging prior is obvious: The dHMM

consistently outperforms the HMM, no matter what the parameters of variances

are set.

Higher diversity of transition matrix implies more inferred hidden states. One

example of the histogram of the inferred states is shown in Fig.(2.4), in which the

number of states is identified by omitting the labels whose frequencies are below

certain threshold σF . In our case, we set the threshold as σF = 50 indicated by

the black line. We show that the dHMM (coloured as Green) identifies all five

states, while the HMM (coloured as Red) identifies only two states, since the

frequencies of states 2, 3, 4 are below the threshold σF .

We summarize the statistical results in Fig.(2.5). From the left part of the

curve, the emission Gaussian distributions start with low variance. The hid-

den states can be easily identified and the dHMM performs on par with HMM.

However, along with the increasing of the variance, the emission Gaussian dis-

tributions are becoming increasingly ‘flattened’, which make the states severely

ambiguous and hard to identify. Shown in the right half part of the curve, the

advantage of our dHMM is becoming more obvious as it identifies more hidden

states than the traditional HMM does.

2.4.2 Real-world experiments

In this section, our proposed diversified HMM (dHMM) is applied to solve real-

world sequential labelling problems: PoS tagging under unsupervised setting and

OCR under supervised setting.
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PoS tagging

Part-of-Speech tagging (PoS tagging) (Mitkov, 2003) has been used in the linguis-

tics community for a long time. The task is to automatically assign contextually

appropriate grammatical descriptors to words in texts. In fact, PoS tagging

usually produces low level semantic information, which can serve as a precur-

sor towards more abstract levels of analysis, e.g., text indexing and retrieval,

as nouns and adjectives are better candidates for index terms than adverbs or

pronouns are.

The Penn Treebank Wall Street Journal (WSJ) corpus ((Marcus et al., 1993))

is one of the most widely used datasets for evaluating performance of the statis-

tical language models. The training corpus, tagged by gold standard PoS tags,

is utilized to evaluate proposed diversified HMM (dHMM) for Part-of-Speech

(PoS) tagging task under unsupervised setting. The vocabulary size of the cor-

pus is around 10K. In Table (2.2), the PoS tags appeared in the WSJ corpus are

listed. Detailed definitions of the abbreviation of tags are annotated in (Marcus

et al., 1993). The tags are preprocessed to reduce the hidden state size from

46 to 15 by combining similar tags. The idx column shows the indexes of the

reduced tag set. The PoS column shows the semantic title of the tags. The

frequency column shows the frequencies of all tags. From this statistics, 25%

tags account for nearly 85% words. All of 3828 sentences are used in our ex-

periment, and the sequential length is between 2 ∼ 250. An example sentence

with true sequential PoS tags is illustrated in Fig. 2.6, where the true tags lay

behind the corresponding words. Naturally, the transition distribution for differ-

ent tags are different. Take tags /NNP and /VB as an example, the /NNP has

higher probability to be followed or following the same /NNP tag. By contrast,

/VB is usually followed by /DT or /IN, and follows /MD, /TO or /RB. This

discriminative prior information considered by our model is significantly helpful
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Table 2.2: Summary of PoS tags of WJS corpus

idx PoS frequency idx PoS frequency
1. NNP 9408 6. VBD 3043
1. NNPS 244 6. VBN 2134
1. NNS 6047 6. VBP 1321
1. NN 13166 6. VBG|NN 1
1. SYM 1 7. DT 8165
2. , 4886 7. PDT 27
2. – 712 7. WDT 445
2. ” 693 8. IN 9959
2. : 563 8. CC 2265
2. . 3874 8. TO 2179
2. $ 724 9. FW 4
2. ( 120 10. WRB 178
2. ) 126 10. RB 2829
2. LS 13 10. RBS 35
2. # 16 10. RBR 136
3. CD 3546 11. UH 3
4. JJS 182 12. WP 241
4. JJ 5834 12. WP$ 14
4. JJR 381 12. PRP 1716
5. MD 927 12. PRP$ 766
6. VBZ 2125 13. POS 824
6. VB 2554 14. EX 88
6. VBG 1459 15. RP 107

for sequential labelling, which is verified and demonstrated in detail below.

The number of hidden states is set as k = 15 as enumerated in Table (2.2).

Afterwards, the initial state distribution π is a 15-dimension vector and the tran-

sition distribution is parameterized by A which is a 15×15 matrix. The words in

the vocabulary are treated as observations and the emission distributions are pa-

rameterized by B which is a k×V matrix, where V is the size of vocabulary. The

π, each row of A and each row of B are randomly initialized by samples from

the Dirichlet distribution. We apply the 1-to-1 accuracy measure to quantize
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our experimental results. Similar with the simulated experiment, the Hungarian

algorithm is utilized to map the inferred labels to the ground-truth ones.

First, we test the effectiveness of diversity-encouraging prior over rows of

transition matrix in terms of prior weights, namely, α values. The labelling

accuracies with regard to αs are plotted in Fig.(2.7). The setting α = 0 corre-

sponds to the setting of traditional HMM. Traditional HMM gets an accuracy

of 0.4475, while our proposed dHMM achieves the best accuracy of 0.4688 with

α = 100. Larger weight (α) will overemphasize the diversity-encouraging prior

over rows of transition matrix and will lead to decreasing the sequential labelling

accuracy, as shown with a sharp drop when α increases to 1000 in Fig.(2.7).

Then, we qualitatively demonstrate the effectiveness of our diversity prior

by comparing the transition parameters matrix learned from dHMM (α = 100)

to the parameters learned from the baseline - traditional HMM. The diversity

measurements (Bhattacharyya distance) between tag 1 and the other tags are

shown in Fig. (2.8). The proposed dHMM identifies that tag 1 (NOUN) is most

different from tag 11 (Interjection), while HMM identifies that tag 1 (NOUN) is

most different from tag 5 (MODAL). Since the frequency of tag 11 (Interjection)

is only 3, intuitively, the transition distribution of this tag is quite different from

the transition distributions of other tags. The same situation is applied to tag

9 (Foreign word, whose frequency is 4). From Fig. (2.8), the proposed dHMM

identifies more accuracy result, which indicates that the transition distributions

of both tags 11 and 9 are most different from tag 1 (NOUN), than the result

learned from the traditional HMM.

Finally, we show how the diversity-encouraging prior indirectly rectifies the

emission distributions learned from traditional HMM to fit the dataset better,

as illustrated in Fig. (2.9). Here, we choose α = 100 to explain the behaviour

of the proposed dHMM. Three curves are plotted. The statistics of the ‘ground-
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truth’ curve is obtained through the inferred hidden labels by the true param-

eters. 1 From the ‘ground-truth’ curve, small portion of tags explain majority

of the words, which is pointed out as skewed long-tail distribution (Johnson,

2007). ‘dHMM’ curve learned by our proposed diversified HMM reflects this

phenomenon especially for the less frequent 10 tags and shows promising re-

sult for unsupervised sequential labeling task. To some extent, the diversified

transition prior latently adjusts the flatten distributions for the less frequent

10 tags obtained from traditional HMM to a better trend approaching the true

distributions.

OCR

Optical character recognition (OCR) is a task of converting images of typewrit-

ten or printed texts (which are the common forms of scanned data, e.g., passport,

receipts) into computer-readable texts. It can be applied to many real-world ap-

plications, such as efficient data entry for business documents, automatic number

plate recognition. To achieve this aim, one has to perform both character seg-

mentation and recognition tasks. In this work, we assume every character has

been segmented out and stored in its own image patch, so that we focus on the

recognition task, which is referred to as sequential labelling here.

We apply the OCR dataset processed by (Taskar et al., 2003). They select

clean subset from the handwritten words collected by Rob Kassel at the MIT

Spoken Language Systems Group. By removing the first capitalized letters, Ben

et al. rasterized and normalized images of the rest lowercase letters into 16× 8

images. There are in total 6877 words containing 1 ∼ 14 letters. Three word

1obtained by counting the starting tags, the pairwise tags, and the tag-word pairs of each
sentence through the whole corpus, these three statistics are corresponding to physical mean-
ings of the HMM parameters λ = (π,A,B): initial distribution, transition distribution and
emission distributions.
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Table 2.3: Examples of OCR dataset

examples are listed in Table (2.3). The first two columns show two different

handwritten patterns from different persons for the word listed in the third

column. Apparently, each letter has different probability being transferred to

other letters. As highlighted in Table (2.3), letter ‘m’ has high probability to be

followed by ‘m’, ‘a’ or ‘b’, while letter ‘n’ will prefer to be transferred to ‘d’, ‘g’

or ‘i’. Intuitively, we suppose our proposed model will take effect on this dataset

and we verify it in the following.

We apply the true number of lowercase English letters as the size of the

hidden state space, namely k = 26. Accordingly, the initial state distribution

π is a 26-d vector , and the transition matrix A is a 26 × 26 matrix. Each

observed letter image is reshaped into a binary 1× 128 vector. For the emission

distributions, Naive Bayes assumption is applied and each dimension of binary

vector is independently modelled by Bernoulli distribution, parameterized by

pd, d ∈ 1, 2, ..., 128, measuring the probability of that the current pixel value is

equal to 1. Finally, emission distributions B is modelled by 26 ∗ 128 = 3328

parameters. In supervised setting, the parameters λ = (π,A0, B) are learned by

MLE from the training set. All of our experiments are run with 10-fold cross
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validation.

Like PoS experiment, we first test the effectiveness of our proposed diversity-

encouraging prior with a range of αs. The test accuracies are shown in Fig.

(2.10). The results are given by the averages across 10 runs. Another parameter

αA, which tries to drag A to A0, has been chosen through the 1-to-1 accuracy

criterion and is fixed as 1e5. α = 0 corresponds to the traditional HMM and

it gets an accuracy of 0.7102 while our proposed dHMM obtains an accuracy

of 0.7203 with α = 10. That an increasing trend is gained demonstrates the

effectiveness of dHMM though larger α will decrease the performance.

Our proposed model is compared to three baseline algorithms for supervised

sequential labeling: Naive Bayes, traditional HMM and Optimized HMM (Kre-

vat and Cuzzillo, 2006). The average accuracies with standard deviations are

shown in Fig. (2.11). Naive Bayes algorithm ignores the relationship between

neighbor letters and achieves the lowest accuracy of 62.7% with a standard devi-

ation of 1.1%. Incorporating one-order chain structure of letters, HMM achieves

a 70.6% accuracy rate with a standard deviation of 1.3%. With other tricks, the

optimized HMM obtains limited improvement. By contrast, by adding diversity-

encouraging prior over the rows of transition matrix of traditional HMM, our

proposed dHMM achieves an accuracy of 72.06 with a standard deviation of

2.2% which apparently gains a significant margin.

Finally, a qualitative demonstration of the diversity is shown in Fig. (2.12).

The transition matrix A is trained from the setting of α = 10, αA = 1e5.

Fig.(2.12a) (Fig. (2.12b)) shows the diversity measurements (Bhattacharyya

distance) between transition distribution of character ‘x’ (‘y’) and transition

distribution of the other 25 letters. From the curves, the total trends almost are

the same everywhere between traditional HMM and our proposed dHMM, except

that dHMM heights the pairwise diversities between transition distributions of
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(‘x’,‘g’), (‘x’,‘j’) and (‘y’,‘f’), which we conclude contributes to the improvement

of test accuracies in some extent .

2.5 Summary

Based on the methodology of traditional HMM, a diversified HMM (dHMM)

for sequential labelling was proposed in this chapter. Instead of explicitly con-

straining the parameters associated with observations, we placed a diversity-

encouraging prior over parameters of transition distributions, modelled by de-

terminantal point processes (DPP), which is an essential part of a traditional

HMM. To facilitate this variation of HMM, a new maximum a posterior (MAP)

scheme was proposed under both unsupervised setting and supervised setting.

For unsupervised setting, maximum a posterior with marginal likelihood was

solved based on an EM framework that is similar to the one for the traditional

HMMs, but with a modified M-step. For supervised setting, maximum a poste-

rior with joint likelihood was trained directly through a gradient descend method.

We verified the effectiveness of the proposed dHMM through both simulated and

real-world datasets (e.g., unsupervised PoS tagging and supervised OCR).

Future work will involve with the development of a non-parametric extension

to dHMM, which simultaneously learns the number of hidden states, as well as all

HMM parameters. We will carry out a theoretical study into the effectiveness of

the number of states as well as diversity-encouraging prior over rows of transition

matrix under our setting with regard to labelling accuracy.
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Figure 2.1: Graphical model of diversified HMM
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Figure 2.2: Parameters of ground-truth, learned by proposed dHMM and by
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Figure 2.6: Sentence example with PoS tags
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Figure 2.7: Effectiveness of α for PoS tagging
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Figure 2.8: Transition diversity comparison between dHMM and HMM for tag
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Figure 2.10: Effectiveness of α for OCR
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Figure 2.11: Test accuracies of different classifiers
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Figure 2.12: Transition diversity comparison between dHMM and HMM
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Chapter 3

Fast Sampling for Time-Varying

Determinantal Point Processes

Determinantal point processes (DPPs) are stochastic models which assign each

subset of a base dataset with a probability proportional to the subset’s degree of

diversity. It has been shown that DPPs are particularly appropriate in data sub-

set selection and summarization tasks, e.g., news display, video summarization.

DPPs prefer diverse subsets while other conventional models cannot offer. How-

ever, DPPs inference algorithms have a polynomial time complexity which makes

it difficult to handle large and time-varying datasets, especially when real-time

processing is required. To address this limitation, we developed a fast sampling

algorithm for DPPs which takes advantage of the nature of the time-varying set-

ting (e.g. news corpora updating, communication network evolving), where the

data changes between time stamps are relatively small. The proposed algorithm

is built upon the simplification of marginal density functions over successive time

stamps and the sequential Monte Carlo (SMC) sampling technique. Evaluations

on both a real-world news dataset and the Enron Corpus dataset confirm the

efficiency of the proposed algorithm.
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3.1 Introduction

Determinantal point processes (DPPs) naturally model repulsive interaction

where diverse subsets are preferred. It arises as an important tool in random ma-

trix theory (Ginibre, 1965), physics (fermions, eigenvalues of random matrices)

(Macchi, 1975) and in Combinatorics (non-intersecting paths, random spanning

trees) (Hough et al., 2006). Recently, it has been introduced to the machine

learning field, and shown to be particularly valuable in many data mining ap-

plications such as text summarization (Kulesza and Taskar, 2011b), document

thread revealing (Gillenwater et al., 2012a), topic model (Zou and Adams, 2012),

information retrieval (Kulesza and Taskar, 2011a), pose estimation (Kulesza and

Taskar, 2012), and neural inhibition (Snoek and Adams, 2013).

DPPs have exact inference/sampling algorithms, and they are developed

based on eigen-decomposition of DPPs’ kernel matrix. Therefore, the time com-

plexity of DPPs sampling is O(N3) (Kulesza and Taskar, 2012), where N is the

total number of items in the dataset. Such time complexity makes DPPs infeasi-

ble for real-time processing, especially when N is large. In order to improve the

efficiency of DPP inference algorithms, different approaches have been proposed.

Dual representation is introduced when the kernel matrix is low-rank (e.g., rank

D � N) based on Gram matrices (Kulesza and Taskar, 2012), and the time

complexity is reduced to O(ND + D3). Nyström approximation and Matrix

Ridge Approximation (MRA) (Wang et al., 2014) have also been introduced to

enhance the efficiency of eigen-decomposition of a kernel matrix, which is the

most time-consuming operation for DPP sampling. Most recently, a scheme

based on an Markov Chain Monte Carlo (MCMC) technique for DPP sampling

has been proposed by (Kang, 2013), and its ε-mixing time is O(N log(N/ε)).

The above approaches aim to improve the efficiency of DPPs’ computation

by focusing on its inference algorithms. However, they do not take into con-
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sideration the structure of the data itself, which potentially can be exploited as

a valuable source of efficiency improvement (Rakthanmanon et al., 2013). One

such data structure can be often found in a setting where there are sequential

changes occurring in a dataset, but the changes in each time interval are rela-

tively small when compared to the entries of the entire dataset. This structure

has been seen in many online services (Abel et al., 2013). Taking online news

services as an example, the services strive to sequentially display a diverse sub-

set of news sampled from the most recently updated news corpora from many

third-party sources. It is easily observed that any real-time updates of the news

corpora are relatively small in a short time interval.

In this chapter, we derive a fast sampling algorithm to improve the efficiency

of time-varying DPPs for handling large-scale datasets. In a time-varying setting,

records are collected from many information sources at each time stamp, and

the whole dataset is built sequentially. Because the update rates of different

information sources vary, only a small proportion of them have new information

feeds during a short time interval. Such relatively small changes are utilized to

develop a fast sampling scheme for time-varying DPPs (TV-DPPs). We improve

sequential DPP sampling efficiency by incorporating a simplified computation of

successive marginal density functions into an SMC framework. Our contributions

are summarized as follows.

• We propose a novel time-varying determinantal point processes (TV-DPPs)

setting to accomplish real-time diverse subset sampling task with making

use of successive, proportionally small updates of information sources be-

tween two successive time stamps, with respect to the overall large-scale

dataset.

• We embed a simplification computation over successive marginal density

functions into the framework of sequential Monte Carlo sampling tech-
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niques to obtain a fast DPP sampling algorithm for a sequentially collected

large-scale dataset.

• We evaluate the accuracy and efficiency of the proposed algorithm on two

real-world scenarios, including news recommendation and Enron event dis-

covery.

The rest of this chapter is arranged as follows. Section 3.2 presents related

works. Section 3.3 introduces the background of the sequential Monte Carlo

method. The proposed TV-DPPs setting and its fast sampling algorithm are

detailed in Section 3.4, and the experimental results on two real-world datasets

are reported in Section 3.5. Section 3.6 concludes this chapter and provides

discussions on future work.

3.2 Related Work

Directly applying DPP to complex application scenarios has limitations. For

example, structural elements are ubiquitous in many application domains such

as chain structures for trajectories and news threads, and pictorial structures

for human poses. Based on factorization of structures, both quality and simi-

larity can be directly constructed. However, due to high-dimensional variables

in structures, the size of a base set will become exponentially large. Taking ad-

vantage of dual representation, (Kulesza and Taskar, 2010) derives a tractable

structure DPP.

Another example is for sequential application scenarios, and here we list two

instances. One instance is an online news service system. It tries to provide ev-

ery user with sequential news subsets, where diversity not only applies to news

articles at any individual point in timeline, but also needs to be addressed tem-

porally. In order to fulfil such requirements, Markov DPP is developed (Affandi,
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Fox and Taskar, 2013; Liu et al., 2016). It models a sequence of random sets

which come from a large-scale base set, and maintains two kinds of margin DPPs:

one at each single time stamp and the other for pairwise time stamps, and one

kind of conditional DPPs for the transitional probability distributions. There-

fore, existing inference algorithms for DPPs can be directly applied. However,

the inference algorithms could not be effective for a large-scale dataset, since the

size of kernel matrices for each DPP is as large as the cardinality of the base

set, which presents itself as a major bottleneck. The other instance of sequen-

tial application scenarios is large-scale video summarization. Recently, (Gong

et al., 2014) developed a sequential DPP which incorporates the concept of di-

versity for extracting succinct subsets to summarize large-scale videos. Instead

of taking whole frames as a base set as Markov DPPs do, the sequential DPP

employs a divide-and-conquer strategy. It first partitions the whole video into

disjoint yet consecutive segments, and then maintains margin DPPs for a union

of two neighbouring segments. Consequently, the inference for a sequential DPP

is more efficient. This setting is different from what we have proposed in this

chapter, because of the following two reasons: (1) each segment is sequentially

collected from a single source (i.e., the same video) rather than synchronously

collected from different information sources, and (2) its divisions do not overlap.

Sequential subset selection techniques based on other criteria rather than

diversity have also been developed in different areas, and we refer interested

readers to works (Chen and Hsu, 1991; Tollefson et al., 2014; Rao et al., 2003;

Liu and Tao, 2016; Xu et al., 2015).
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3.3 Review of Sequential Monte Carlo

Sequential Monte Carlo (SMC) sampling techniques can be used to sample from

a sequence of distributions π1(x1), ..., πt(xt) for variables X1:t = {x1, x2, ..., xt},
where {1, . . . , t} are time indexes. It improves sequential important sampling

with introducing auxiliary variables and artificial backward Markov kernels with

density {Lk(xk+1, xk)}t−1
k=1. It applies importance sampling (IS) technique (Del Moral

et al., 2006; Wu et al., 2013; Kantas et al., 2009), between an artificial joint dis-

tribution π̃t(X1:t) = γ̃(X1:t)/Zt and a proposed joint importance distribution

ηt(X1:t) = η1(x1)
∏t

k=2 Kk(xk−1, xk), where Zt is a normalization constant, and

γ̃t(X1:t) = γ̃t(xt)
∏t−1

k=1 Lk(xk+1, xk), to collect samples. Note that both joint dis-

tributions - the artificial one and the proposed joint one - are decomposed in a

sequential multiplying manner. The backward Markov kernels {Lk(xk+1, xk)}t−1
k=1

in the artificial joint distribution play roles as backward conditional distributions

γ̃(xk−1|xk). Similarly, forward Markov kernels {Kk(xk−1, xk)}tk=2 in the proposed

joint importance distribution play roles as forward conditional distributions, i.e.,

η(xk|xk−1). The samples from the proposed importance distribution are usually

biased from the “true” distribution. Importance sampling (IS) is applied to cor-

rect the discrepancy between them by weighting the samples with the matching

degree to the “true” distribution. The likelihood ratios are usually applied as

matching criteria, and are formulated as

wt(X1:t) =
γ̃t(X1:t)

ηt(X1:t)

= wt−1(X1:t−1)w̃t(xt−1, xt),

(3.1)

where

w̃t(xt−1, xt) =
γ̃t(xt)Lt−1(xt, xt−1)

γ̃t−1(xt−1)Kt(xt−1, xt)
. (3.2)
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From Eq. (3.1), it can be easily seen that the importance weights are calculated

in a recursive form. At a given time stamp, the joint weight over the time period

1 ∼ t - wt(X1:t) - is computed by multiplying two components: One is the joint

weight accumulated to t− 1, i.e., wt−1(X1:t−1), and the other is the incremental

weight from the local pairwise joint distributions with consecutive time stamps,

i.e. w̃t(xt−1, xt). Clearly, at each time stamp, instead of computing the whole

joint weight from the beginning, SMC updates it with local incremental weights.

Thus, the overall computation is efficient. From the definition in Eq. (3.2), the

incremental weight relates to not only the marginal distribution, but also the

backward and forward Markov kernels. How to choose these two kernels are a

crucial step to achieve high approximation results. The marginal distributions

{πt(xt)} can be approximated by the sequentially sampled N particle-weight

pairs {X(i)
1:t , w

(i)
t }Ni=1 (Ohsaka et al., 2014),

πN
t =

N∑
i=1

w
(i)
t δ(x

(i)
t ), (3.3)

where δ is the Dirac Delta function.

3.4 Time Varying Determinantal Point Processes

Sequential data is ubiquitous in real-world scenarios. We represent sequence

data with variables X1:t = {x1, x2, ..., xt}, and their corresponding probability

measures are denoted as π1(x1), ..., πt(xt), where t is time indexes. We focus

on sequentially sampling from separate distributions {πi}ti=1, rather than from a

joint distribution Π(X1:t). This is suitable for some applications that require real-

time results at each single time stamp. For example, a news provider needs to

sample a diverse news subset from all its information sources in order to display
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what is currently happening to its clients. Since its clients change from time

to time, only diverse subsets at single time stamps are essential. No temporal

diversity is needed to be considered. Under this case we sequentially sample

subsets by starting with π1, then π2 and so on.

A time-varying structure assumes the neighbouring ground datasets are largely

overlapped. In other words, the difference between them is subtle. Consequently,

the probability measures built on the ground datasets are almost the same. Such

a property makes it feasible to exploit sequential Monte Carlo (SMC) sampling

technique to design a fast sampling algorithm for time-varying samples.

A time-varying determinantal point process (TV-DPP) integrates DPPs into

the time-varying setting, whose marginal distribution at each time stamp t obeys

Determinantal Point Processes (DPPs) (Kulesza and Taskar, 2012). Formally,

π(X = xt) =
det(Lt,xt)

det(Lt + It)
. (3.4)

Here, It is the identity matrix of the same dimension with Lt. xt ⊆ St, where

St is the ground dataset at time stamp t. Lt,xt is a submatrix of an L-ensemble

kernel matrix Lt, whose indexes are restricted to the elements in xt. Typically,

Lt = XtX
T
t is constructed from data features Xt = (xt1, ..., xtNt)

T , xti ∈ RD.

Due to the time-varying structure, the ground dataset Xt differs from Xt+1 by

only a few elements. As a result, Lt slightly differs from Lt−1 by a few rows and

columns, which implies πt−1 ≈ πt. TV-DPPs are given an illustrative example

in Figure 3.1a, and its graphical representation is shown in Figure 3.1b.

We apply the SMC framework introduced in Background section of this chap-

ter to achieve the sequential sampling task. We make use of a fast DPP sampler

(Kang, 2013) to collect samples at t = 1. We employ MCMC kernels proposed

in (Kang, 2013) as the forward Markov kernels {Kt(xt−1, xt)}, where they are

invariant to distributions πt and make use of a standard Metropolis-Hasting al-
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(a) Illustration of time varying DPPs with news dataset.

 

    

    

(b) Graphical representation for TV-DPPs.

Figure 3.1: Time Varying DPPs: In the first diagram, the first row represents
the news updating process along time stamps. Six different news sources are
schematically listed, i.e. ‘The Daily Telegraph’, ‘Daily Mail’, ‘ABC NEWS’,
‘The Guardian’, ‘Reuters’ and ‘Indiatimes’. From time to time, only a small
portion of the news sources are updated. The arrows make which news sources
are updating clear: It starts at a news source with old news and points to the
same source with new headlines -bordered in cyan - at the next time stamp. The
second row shows the evolution of DPP marginal kernel L along with the news
updates. The difference between two successive L-s is highlighted with different
colours and is apparently tiny. The third row shows explanatory diverse subsets
outputted by TV-DPPs. In the second diagram, the solid circles represent the
observations, which correspond to the news dataset shown in the first row of
the above figure, and the hollow circles represent the variables obeying the DPP
distribution, one example of which can be found in the third row of the above
figure. One important truth is that given the observations {X1, X2, ..., XT}, the
variables {Y1, Y2, ..., YT} are independent.
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gorithm. Regarding the unequal cardinality case, i.e., |Xt−1| �= |Xt|, we can

dynamically maintain the elements in samples during the Metropolis-Hasting al-

gorithm: (1) when the cardinality increases, the selected elements to be included

in a new sample should choose from the new, enlarged ground dataset; and (2)

when the cardinality decreases, a new sample transited from the old one should

first exclude the elements those do not appear in the new ground dataset. Based

on the choice for forward Markov kernel, one good approximation for optimal

backward Markov kernel Lt−1 in Eq.(3.2) is given by (Del Moral et al., 2006)

Lt−1(xt, xt−1) =
πt(xt−1)Kt(xt−1, xt)

πt(xt)
. (3.5)

From the artificial joint distribution, one marginal distribution πt(xt) can be

computed by:

πt(xt) ∝
∫

γ̃t(xt)Lt−1(xt, xt−1)dxt−1. (3.6)

Finally, the unnormalized incremental weight is derived as follow via substi-

tuting Eq.(3.5) and Eq.(3.6) into Eq. (3.2),

w̃t(xt−1, xt) =
γ̃t(xt−1)

γ̃t−1(xt−1)
. (3.7)

Clearly the incremental weight relates to two successive marginal distributions

πt−1 and πt over the sampled particles {x(i)
t−1}Ni=1 at time stamp t− 1. In conclu-

sion, under the SMC framework (3.1), we sequentially move sampling particles

forward with transitional kernel Kt(xt−1, xt), and compute their weights at each

time stamp t: {w(i)
t }Ni=1 with particle weights at time stamp t − 1: {w(i)

t }Ni=1

as well as the incremental weights from time stamp t − 1 to time stamp t:

{w̃t(x
(i)
t−1, x

(i)
t )}Ni=1.

There are two time-consuming steps in the above sampling procedure. One
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is the particle moving-forward step, which actually samples from a marginal

DPP distribution, and a fast sampling algorithm (Kang, 2013) is applied as

we have already introduced. The other step is responsible for updating the

incremental weights, and it accomplishes this by computing the likelihood ratios

between two consecutive DPP distributions. Due to the possibility of large-scale

ground datasets, direct computing the likelihoods is impractical. We show how

to make use of the proposed time-varying setting (slight changes between two

successive distributions) to accelerate this computation. Specifying the general

likelihoods with DPP distributions, the incremental particle weights for TV-

DPPs are computed with the following determinantal ratio

w̃t(xt−1, xt) =
det(Lt,xt−1)/ det(Lt + I)

det(Lt−1,xt−1)/ det(Lt−1 + I)

∝ det(Lt,xt−1)/ det(Lt−1,xt−1).

(3.8)

Since the term det(Lt−1 + I)/ det(Lt + I) is constant over all particles {x(i)}Ni=1,

we simply ignore it and focus on the computation for unnormalized incremental

weights.

From time-varying structure, the difference between Lt and Lt−1 has been

small. Therefore, many elements of the set
{
det

(
L
t,x

(i)
t−1

)
/det

(
L
t−1,x

(i)
t−1

)}N

i=1

are equal to 1, which is a significant speed-up factor in our work. For the rest

elements of
{
det

(
L
t,x

(i)
t−1

)
/det

(
L

t−1,x
(i)
t−1

)}
, whose values are not equal to 1, we

compute them as follows. We drop particle indexes (i) for clarity. Let Lcc denote

the shared submatrix between Lt,xt−1 and Lt−1,xt−1 . Then, Lt,xt−1 can be decom-

posed as

⎡⎣Lcc Lct

Ltc Ltt

⎤⎦, where Lct, Ltc and Ltt are the rest submatrices for Lt,xt−1 .

Similarly, we decompose Lt−1,xt−1 with symbols Lcc, Lc,t−1, Lt−1,c, Lt−1,t−1. Let

k1 = |Lcc| and k2 = |Ltt| (or k2 = |Lt−1,t−1|) be the cardinalities for shared sub-

matrix and dissimilitude respectively, and k1 � k2, based on the time-varying
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structure. Then, the determinant ratio in Eq. (3.8) can be computed efficiently

by applying the determinant formula of partitioned block matrices which is mul-

tiplicative in the Schur complement, without computing the nominator and de-

nominator explicitly. By cancelling the shared det(Lcc), the weight can be com-

puted as follows.

w̃t(xt−1, xt) ∝ det(Ltt − Ltc(Lcc)−1Lct)

det(Lt−1,t−1 − Lt−1,c(Lcc)−1Lc,t−1)
, (3.9)

where Ltt, Lcc, Ltc, Lt−1,t−1, Lt−1,c are submatrix of Lt,xt−1 or Lt−1,xt−1 . It is easily

observed that the complexity has reduced from O((k1 + k2)
3) to k3

2. However,

when the changes occur between time intervals t−1 and t become large, namely,

k2 growing up, the complexity will increase at an exponential rate. The worst

situation for our setting is an extreme case where two contiguous data sets are

completely non-overlapping, and then our model degenerates to the case of in-

dividually sampling DPP.

As shown in the above formula, the computation of incremental weight re-

lates to matrix addition and multiplication, as well as the inverse for the shared

submatrix (Lcc)−1. Based on our assumption - neighbouring shared submatrix

(e.g. Lcc
t−1 and Lcc

t ) are slightly different with several elements - we are able to

efficiently update the inverse of shared submatrix by repeatedly applying both

matrix block inverse formula and matrix inverse lemma. We elaborate this up-

date step by step. Suppose the shared submatrix of Lcc
t−1 and Lcc

t is Lcomm, and

the unshared ones are A,AT , B. There are two cases for updating the inverse

from Lcc
t−1 to Lcc

t . One case is when elements are added, i.e., Lcomm = Lcc
t−1.

Therefore, Lcc
t =

⎡⎣Lcomm A

AT B

⎤⎦. Since (Lcomm)−1 is currently known, the inverse

of Lcc
t can be expanded by first applying matrix block inverse formula (Golub

72



3.4. TIME VARYING DETERMINANTAL POINT PROCESSES Chapter 3

and Van Loan, 2012):

(Lcc
t )

−1 =

⎡⎣Lcomm A

AT B

⎤⎦−1

=

⎡⎣ (Lcomm − AB−1AT )−1 −(Lcomm)−1A(B − AT (Lcomm)−1A)−1

−B−1AT (Lcomm − AB−1AT )−1 (B − AT (Lcomm)−1A)−1

⎤⎦ .

(3.10)

It is easily observed that most inverses are either known (i.e., (Lcomm)−1 ) or

easily to be computed due to its small sizes (e.g., (B − AT (Lcomm)−1A)−1 ),

except the inverse of a correction form of Lcomm. Here matrix inverse lemma is

applied to convert computing the inverse of a correction form to computing the

correction of the original matrix, namely,

(Lcomm − AB−1AT )−1

=(Lcomm)−1 + (Lcomm)−1A(B − AT (Lcomm)−1A)−1AT (Lcomm)−1
(3.11)

The other case is when elements are deleted, i.e., Lcomm = Lcc
t , and Lcc

t−1 =⎡⎣Lcomm A

AT B

⎤⎦. Since (Lcc
t−1)

−1 is known, we set (Lcc
t−1)

−1 ≡
⎡⎣ E F

F T G

⎤⎦. Equally,

⎡⎣Lcomm A

AT B

⎤⎦ =

⎡⎣ E F

F T G

⎤⎦−1

. (3.12)

Again, applying matrix block inverse formula to the left hand of above equation,

we obtain (E − FG−1F T )−1 = Lcc
t , and therefore,

(Lcc
t )

−1 = (E − FG−1F T ). (3.13)

Note: Usually the variance of the incremental weight has an increasing tendency

73



Chapter 3 3.4. TIME VARYING DETERMINANTAL POINT PROCESSES

along the timeline, resulting in a potential degeneracy of the particle approxima-

tion. Routinely, the degeneracy is measured by the Effective Sample Size (ESS)

criterion (Sahlin, 2011). When the ESS is smaller than a predefined threshold

α ·N (α is a predefined ratio), we re-sampling the particles with a multinomial

distributions parameterized by the normalized particle weights. To make the re-

sampled particles more diverse, we further randomly move the equally weighted

particles with an MCMC kernel of stationary distribution πt (Gilks and Berzuini,

2001). The whole process of SMC is illustrated in Figure 3.2.

To sum up, we start the SMC process by initializing particles {x(i)
1 } of

marginal distribution π1. We sample {x(i)
1 ∼ π1(X = x

(i)
1 )}Ni=1 using a fast

DPPs sampling algorithm proposed in (Kang, 2013). Then, at each time t, we

update these samples from {x(i)
t−1}Ni=1 using the above customized SMC sampling

scheme. The proposed fast sampling algorithm for time-varying DPPs (TV-
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Figure 3.2: Illustration of Sequential Monte Carlo: At time stamp t − 1, 10
particles in red with equal weights are given, i.e. {x(i)

t−1}10i=1. At this stage, two
computations will be done - One is computing the incremental weights; the other
is computing the particles for the next time stamp. For the incremental weight of
each particle at time t−1, according to Eq. (3.7), it is simply the likelihood ratio
between time stamps t and t− 1. The corresponding relationship is denoted by
the dashed line connecting two neighbour distributions and the weight for each
particle is illustrated by size of blue solid circle. For the particle’s location
at next time stamp t, usually, a Markov transition kernel is used to qualify
the transition job between two slightly different neighbour distributions. The
transition relationship is indicated by solid line with arrow. For the particle’s
weight at time stamp t, it is gained by multiplying the weight at time stamp
t − 1 by the incremental weight. To alleviate the degeneracy of the algorithm
which is measured by effective sample size (ESS), a re-sampling step is applied
when NESS < α · N . High weighted particles will re-birth as several equal
weighted particles, while particles with low weights may disappear. To increase
the samples’ diversity, a move step is followed. Once particle’ locations and
weights at t are prepared, it will recursively carry out the whole above procedure.
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DPPs) is shown in Algorithm 2 1, 2.

Algorithm 3.1: Fast sampling for TV-DPPs
Data: {Li}ti=1

Result: {{x(i)
k ,W

(i)
k }Ni=1}tk=1

{x(i)
1 ∼ det(L

1,x
(i)
1
)}Ni=1 by (Kang, 2013) or (Kulesza and Taskar, 2012) ;

{W (i)
1 = 1/N}Ni=1;

k = 1;

repeat

k = k+1 ;

{w̃k(x
(i)
k−1, x

(i)
k ) = det(L

k,x
(i)
k−1

)/ det(L
k−1,x

(i)
k−1

)}Ni=1;

{W (i)
k = W

(i)
k−1w̃

(i)
k /

∑N
i=1(W

(i)
k−1w̃

(i)
k )}Ni=1 ;

{x(i)
k ∼ K(x

(i)
k−1, x

(i)
k )}Ni=1;

Nk,ESS = {∑N
i=1(W

(i)
k )2}−1 (Sahlin, 2011);

if Nk,ESS < α ·N then

{x(i)
k ∼ Multi(W

(1)
k , ...,W

(N)
k )}Ni=1;

{W (i)
k = 1/N}Ni=1 ;

move {x(i)
k }Ni=1 by πk invariant MCMC kernel Kπk

(x
(i)
k , ·) (Kang,

2013);

until k = t;

3.5 Experimental Results

In this section, we report experimental results of our proposed fast sampling

for TV-DPPs when applied to a real-world news dataset and the Enron Corpus

(Diesner and Carley, 2005).

1We use W
(i)
k and w̃

(i)
k to replace Wk(x

(i)
1:k) and w̃k(x

(i)
k−1, x

(i)
k ) for simplicity

2Multi(W
(1)
k , ...,W

(N)
k ) stands for the multinomial distribution parameterized by {W (i)

k }Ni=1
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Table 3.1: Summary of news categories for different news media sources

A D1 D2 G I R
sport

√ √ √ √ √
news

√ √ √ √
politics

√ √ √
business

√ √ √ √ √
sciencetech

√
femail

√
tvshowbiz

√
technology

√ √ √ √
global

√
world

√ √
entertainment

√
markets

√
others

√ √ √ √

3.5.1 News recommendation

We collect the news dataset from six news websites with different topics as

resources during the period of 12: 16am 2 Jun, 2014 ∼8: 13am 5 Jun, 2014.

The websites and topics are summarized in Table 3.1 3 . The topic titles are

directly named from the categories of the news website.

There are 33 topics in each time stamp. At the beginning t = 1, we collect

each resource’s latest news corpora St=1 = {dt=1,k}33k=1. At next time stamp,

there are n topics are updated. We recorded the latest news corpora for these

n topics as well as the news for unchanged topics as St=2 = {dt=2,k}33k=1. In this

manner, we record the sequential news corpora St:T = {dt,k}33k=1,
T
t=3. Herein, we

choose n = 5, T = 1000 for experimental demonstration.

We extract normalized TF-IDF (short for Term Frequency-Inverse Document

Frequency) feature vectors (Wu and Luk., 2008; Xuan et al., 2015) to represent

news articles. All news corpora S1:T are employed to compute the IDF. We

3A-ABC, D1-Dailymail, D2-Dailytelegraph, G-Guardian, I-Indiantimes, R-Reuters
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apply cosine similarity (Gillenwater et al., 2012a) to construct kernel matrix L.

L(di, dj) = cos-sim(di, dj) and cos-sim(di, dj) is defined as

∑
w∈W tfdi(w) tfdj(w) idf

2(w))

2

√∑
w∈W tf2di(w) idf

2(w) 2

√∑
w∈W tf2dj(w) idf

2(w)
, (3.14)

where W is a subset of the words found in the two documents. The TF-IDF is

usually sparse, thus the distances amongst TF-IDFs are quite small and will lead

to poor diversity. We re-feature each news article referred to as d̃i with binary

vector where the j-th coordinate of di is 1 if news article j is amongst the Nnei

nearest neighbors of news article i according to the cosine similarities, and 0 oth-

erwise. The L-ensemble kernel matrix is computed by L(i, j) = e−α·cos-sim(d̃i,d̃j).

We fix Nnei = 700 and α = 1 throughout the experiment.

Sampling Analysis at t = 1

We apply the Markov Chain Monte Carlo (MCMC) method - a fast DPPs sam-

pling algorithm - to initialize our particles. The mixing of likelihood of the

sampled subsets is shown in Figure 3.3a. In our experiment, the burn-in period

is used to wait for the mixing of the Markov chain. At the beginning, the starting

subset is smaller (such as containing one single element) than the subset when it

is mixed. In this case, the likelihood of the starting subset is usually high. In the

following several iterations, it is highly possible that more elements will be added

into the starting subset, which will lead to lower likelihood. This phenomenon

leads to decreasing tendencies of sequential likelihoods, which matches the be-

ginning curve in Figure 3.3a. Afterwards, when it approaches to mixing, the

Markov chain will collect subsets by alternative operations of adding and delet-

ing elements and the sequential likelihood is expected in oscillation tendency, as

shown in Figure 3.3a. We set the burn-in period as 10, 000 in our experiment.
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Figure 3.3: Analysis for fast DPPs sampling algorithm at t = 1
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The consecutive samples are not independent due to the Markov property.

We compute the AutoCorrelation Function (ACF) parameterized by lag k to

determine the interval between two independent samples xt, xt+k. We apply

indirect measure Q to define the autocorrelation coefficient (Sandvik, 2013) at

lag k:

rQ(k) = (< QtQt+k > − < Qt >
2)/(< Q2

t > − < Qt >
2). (3.15)

And, in our experiment, we set the measurement Qt for sample xt (sampled at

time stamp t) as its diversity likelihood, namely

Qt = det(xt). (3.16)

The plot of the autocorrelation function is shown in Figure 3.3b. As expected,

the sample autocorrelation coefficient is decreasing with the increasing of lag

k. When the rQ(kACF ) is below τ , we claim that the sampled subset xt is

independent with subset xt+kACF
. Here, we set τ = 0.02 and kACF = 80. We

collect N = 100 independent samples by extracting one sample subset every

kACF iterations as initial particles for TV-DPPs sampling.

In the next section, we analyse the performance of our proposed fast TV-

DPPs sampling with both qualitative and quantitative demonstrations.

Quantitative Analysis

We analyse the diversity and time complexity of our algorithm (SMC-DPPs) by

comparing to the baseline algorithm, namely, separate fast DPPs (sep-DPPs)

sampling algorithm at each time stamp.

Accuracy Analysis: We compare TV-DPPs and the baseline sep-DPPs

with regards to diverse probabilities and cosine similarities of subsets that ap-
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proximate the maximal mode of DPP distributions. At each given time stamp,

for TV-DPPs, we measure each particle with ground-truth DPP distribution,

and find the particle with the maximal diverse probabilities. We do the same

selection for sep-DPPs’ samples. The comparison result is shown in Figure 3.4a.

For clear visualization, here we illustrate 100 time stamps by taking one every 10

time stamps. The curves declare that our speedup TV-DPPs sampling algorithm

is comparable to sep-DPPs in terms of diverse accuracy.

To further demonstrate the accuracy of our algorithm, we also compute the

cosine similarities of news articles in the subsets owning the maximal diverse

probabilities at each given time stamp. The cosine similarities of pairwise news

articles are computed with TF-IDF feature vectors. The results for both TV-

DPPs and sep-DPPs are plotted in Figure 3.4b. Clearly, our TV-DPPs algorithm

performs comparably. These results illustrate the effectiveness of our algorithm

to some extent.

Time Complexity Analysis: We also compute the time complexity of

TV-DPPs and sep-DPPs. We directly apply the mixing time in (Kang, 2013)

for burn-in time of every fast DPPs sampling. For sep-DPPs, N independent

samples of diverse subsets are sampled by collecting one sample per kACF steps

at one given time stamp. Then, the total time cost by the T -length sequence is:

T × [|S| log(|S|/ε)+N × kACF ], where S = 33 in our case. For TV-DPPs, at the

beginning t = 1, one sep-DPPs procedure is applied and N independent particles

are prepared. After that, each particle costs constant time to move to the next

time stamp. The total time complexity is summarized as |S| log(|S|/ε) + N ×
kACF + N × (T − 1). Whether the algorithm is less time-consuming depends

on |S|, N , kACF , as well as T . The time costs in log-space for comparison of

sep-DPPs and TV-DPPs in our experiment are plotted in Figure 3.5.

At the beginning point, TV-DPPs (in blue) costs the same time as sep-
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Figure 3.4: Diversity comparison of news subsets selected by sep-DPPs and TV-
DPPs with regard to both diverse probability and cosine similarity.
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Figure 3.5: Time cost comparison between sep-DPPs and TV-DPPs for news
recommendation. X-axis indicates the time stamps, while Y-axis shows the
accumulated seconds over time.
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DPPs (in red). With the t increasing, TV-DPPs algorithm performs much more

efficiently than the sep-DPPs scheme.

Qualitative Analysis

To give an intuitive sense of diversity of sampled news article subset from the

TV-DPPs samples, one news article subset randomly selected at t = 12 is visu-

alized in Figure 3.6. Since news articles with high-dimensional TF-IDF features

are difficult to visualize, here PCA was applied to reduce dimensions. There are

16 articles in total, thus the maximal dimension after PCA is 15. A parallel co-

ordinates plot with 15 coordinates is displayed in Figure 3.6a. Different coloured

curves represent different news articles, and their corresponding news titles are

listed in Figure 3.6b. There are two strong information which strongly suggest

the diversity property of the selected news article subset. First, any two different

coloured curves are not overlapped, as clearly seen in Figure 3.6a. Second, there

are no two news titles listed in Figure 3.6b textually the same. Obviously, this

result qualitatively demonstrates the effectiveness of TV-DPPs.

We also plot the sequential sampling results from both TV-DPPs and sep-

DPPs to give a holistic analysis in Figure 3.10. The X-axis represents time

stamps, while the Y -axis denotes the indexes of news articles. As a particle

filtering alike algorithm, TV-DPPs algorithm gives smoother samples of news

articles along the timeline (shown in Figure 3.10a) than samples of the inde-

pendent selection of sep-DPPs scheme (shown in Figure 3.10b). Thus, it can

be concluded that the TV-DPPs algorithm gives more consistent subsets along

time stamps.
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(a) A parallel coordinates plot of a set containing sixteen news articles is displayed,
with X-axis representing the feature indices and Y-axis the coordinate values. Each
curve represents one news article, and the non-overlapping phenomenon validates the
diversity of the news article set.

(b) Sixteen news titles with topic tags are listed. Each news title corresponds to one
curve in the above plot with the same colour. This textual information further confirms
the diversity of the news article set.

Figure 3.6: Demonstration of diverse subset of news articles sampled by TV-
DPPs.
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(a) Sequential diverse subsets of news dataset sampled by sep-DPPs.
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(b) Sequential diverse subsets of news dataset sampled by the pro-
posed TV-DPPs.

Figure 3.7: Demonstration of news topic drift: Comparing sequential subsets
from TV-DPPs with the subsets from sep-DPPs, it extracts a more smooth
news evolvement.
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Figure 3.8: One example of Enron communication network.

3.5.2 Enron corpus

The Enron email corpus 4 contains a large set of email messages amongst the

employees of the Enron corporation, and appeals to many researchers (The titles

and indexes of its employees are also publicly accessible 5,6). Various aspects of

the Enron corpus have been investigated such as natural language processing 7

(Klimt and Yang, 2004), email classification 8, and quantitative analysis of social

networks generated from the corpus (Zhong et al., 2014)(Mcauley and Leskovec,

2014) (Iwata et al., 2012)(Shetty and Adibi, 2004). Here we focus on discovering

the dynamic event developments from its communication network.

The communication network is extracted as nodes and edges, where the nodes

represent the employees in Enron and the edges represent undirected correspon-
4http://www.enron-mail.com/email/
5http://enrondata.org/assets/edo_enron-custodians-data.html
6http://enrondata.org/assets/edo_enron-custodians.txt
7http:www.ceas.cc/papers-2004/168.pdf
8http://www.cs.umass.edu/~ronb/
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dences from senders to recipients. There are 150 nodes in total. Note that to

avoid asymmetric distance between two correspondents, we simply drop the di-

rection of each edge, and we also drop the communication frequencies between

the correspondents. Email correspondences exclusively to or from addresses

outside the Enron or Andersen domains are removed from our network. As in-

troduced in (Diesner et al., 2005), the number of emails and people involved in

email communication between May 1999 and March 2002 were relatively high,

therefore we selectively focus on the period from August 1, 2001 to December

1, 2001. At each day, a snapshot of the communication network with fixed 150

nodes and edges is extracted from the correspondences between the 150 em-

ployees. Rather than from one single day’s correspondence, here the edges are

extracted from the past accumulating 30 days. It will not only artificially create

overlaps between subsequent time stamps, but also stabilize the communication

network at each time stamp. This will facilitate the detection of dynamic events

happening in the Enron incorporation along the time line.

One example of the extracted communication network is shown in Figure

3.8. It is drawn by the NetDraw software provided by (Borgatti, 2002). The

two columns of separate points demonstrate the employees who did not send or

receive any email messages to or from other Enron employees during a period

of around one month. The connected points show a hierarchical structure, i.e.,

the peripheral points tend to communicate with second-peripheral points, while

the points in the centre of the communication network mutually connects each

other and tend to have higher communication degrees.

We prepare the L-ensemble kernel matrix for DPP at each time stamp by a

Gram matrix construction. First we calculate shortest path distances for every

pairwise nodes based on the network structure. Then, the distance measurement

is transformed into similarity through an exponential operator. Finally, we in-
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troduce degree of each node, which is the number of edges incident to the node,

as a qualification term. The degree exhibits how many employees this node is

communicating with, which naturally qualifies the importance of the represent-

ing employee in Enron incorporation. Formally, the entry of Lij in L-ensemble

kernel matrix is computed by

Lij = di × exp{−λ · dist(i, j)} × dj, (3.17)

where di represents the degree of node i, dist(i, j) is the shortest path distance

between the two nodes i and j, and λ is the parameter to adjust the relative

similarity.

Quantitative Analysis

Because the sampling analysis at t = 1 is quite similar to the analysis for news

recommendation and is not the main concern of this chapter, we simply skip this

step and directly proceed to analyse the efficiency of the proposed TV-DPPs.

Like the experimental setting for news recommendation, we compare the pro-

posed model with baseline sep-DPPs, which samples subset at each time stamp

by performing separate DPP sampling algorithms. We sequentially sample sub-

sets for a period of one year starting from January 1, 2011 and the demonstrating

chart is shown in Figure 3.9.

At the beginning t = 1, the two different schemes take exactly the same time

to do diverse subset sampling, since sep-DPPs apply the fast MCMC sampling

algorithm to do sampling for each times stamp while TV-DPPs apply the same

fast MCMC sampling algorithm to initialize particles for the subsequent SMC

sampling scheme. After that, sep-DPPs scheme repeats the same sampling al-

gorithm which always cost around 57 seconds for a 150 nodes communication
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Figure 3.9: Time cost comparison between sep-DPPs and TV-DPPs for Enron
communication network. X-axis represents the day stamps, while Y-axis shows
the accumulated seconds.
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network. But, for the proposed TV-DPPs scheme, it costs less than 0.2 seconds

to get a subsequent diverse subset. In a long-time run, our proposed TV-DPPs

scheme significantly improves the efficiency of time-varying diverse subset sam-

pling task. The sampling results are explained in next section.

Qualitative Analysis

The sequential sampling results of both sep-DPPs and TV-DPPs along the time-

line from August 1, 2001 to December 1, 2001 are plotted in Figure 3.11.

From Figure 3.11a, at each day, a diverse subset out of a 150 employees is

coloured in purple. For the holistic time period, it can be seen that points are

randomly scattered and it is hard to discover any events happening within the

company. Comparatively, from Figure 3.11b, it can be easily seen that three

clearly separated stages are obtained with smooth diverse subsets in each stage.

Two separating points - one is around 2001-Oct-01 and the other around 2001-

Nov-10 - are easily noticeable. Actually, these three stages coincide with different

important events happening in Enron incorporation, and they are (Diesner et al.,

2005): 1). Before October 2001, the communication topic is not indicated in

related references. 2). In October 2001, Andersen criminally instructed Enron

to destroy any documentation related to the circumstance. 3). In December

2001, Enron became insolvent and was forced to file for bankruptcy.

Although the TV-DPPs scheme is supposed to smoothly sample diverse sub-

sets along time stamps, the resampling step in the time-varying DPP sampling

procedure is designed to suddenly change the samples of diverse subset when

these samples no longer correctly represent the present DPP distribution. This

is the reason why three clearly different stages appear in the sampling results of

the proposed TV-DPPs.

We detail each stage with a concrete time stamp of diverse sample shown

91



Chapter 3 3.5. EXPERIMENTAL RESULTS

Time

N
ew

s 
A

rti
cl

e 
In

de
x

10 20 30 40 50

50

100

150

200

250

300

(a) Sequential diverse subsets of news dataset sampled by sep-DPPs.
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(b) Sequential diverse subsets of news dataset sampled by the pro-
posed TV-DPPs.

Figure 3.10: Demonstration of news topic drift: Comparing sequential subsets
from TV-DPPs with the subsets from sep-DPPs, it extracts a more smooth news
evolvement.
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(a) Sequential diverse subsets of Enron employees sampled by
sep-DPPs.

(b) Sequential diverse subsets of Enron employees sampled
by the proposed TV-DPPs.

Figure 3.11: Demonstration of Enron communication drift: No communication
patterns or events can be detected from the above figure. However, three different
stages are clearly obtained with smoothness at each stage. Two separating points
- one is around 2001-Oct-01 and the other around 2001-Nov-10 - coincide with
two important turn points for Enron incorporation.
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in Figure 3.12a-d, i.e., September 10, 2001 for the first stage, October 20, 2001

for the second stage and November 20, 2001 for the third stage respectively. In

each sub-figure, there are 150 nodes in total, and the subset highlighted by bigger

cyan circles is one diverse subset sample outputted from the proposed algorithm.

From the three examples of diverse subset, we claim that the DPP model at

each time stamp prefers to select ‘leader’ points of peripheral branch, rather than

points owning highest degrees. This is due to the combination of points’ degree

measurement and pairwise shortest distance measurement for the construction

of the kernel matrix for sequential DPPs. In Figure 3.12a, the communication

amongst Enron employees is not that active, and a diverse subset containing

only 6 nodes is sampled and the related titles are N/A, N/A, Trader, Vice

President, Vice President, Senior Analyst respectively. In Figure 3.12b, maybe

due to Andersen’s criminal command, the email communication amongst Enron

employees was becoming more active during October in 2001, and a larger diverse

subset is sampled by the proposed scheme. The position titles for the sampled

nodes are N/A, Trader, Manager Director of UK, Vice President, Employee,

Senior Analyst, and Senior Specialist respectively. It can be seen that more

employees in important positions are involved. Finally, in Figure 3.12c, along

with the event of filing for bankruptcy, more and more employees from different

branches of Enron incorporation are involved and selected, and their titles are

N/A, Manager, Employee, Director, CEO, Vice President, President and Senior

Analyst respectively.

To conclude, using these reasonable explanation, we claim the effectiveness

of the proposed scheme. And we infer that the proposed TV-DPPs can be

broadly applied to real-world applications with similar settings to the Enron

communication network.
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3.6 Summary

We proposed a fast sampling algorithm for DPPs for subset selection from a big

dataset with time-varying structures. The algorithm uses the simplification of

marginal density functions over successive time stamps, and also utilizes the Se-

quential Monte Carlo (SMC) sampling technique. The proposed algorithm pro-

vides us with a real-time diverse sampling scheme by utilizing the phenomenon

in which typically only proportionally small changes occur at each time stamp

with respect to the entire dataset. The most prominent application of our work

is the online news service, in which news corpora are updated from the multiple

sources continuously, before the most diverse subset is selected to be shown to the

viewers. Another application mentioned in this chapter is Enron corpus which is

based on online network structures. There are many other potential applications

of our work to benefit the data mining community. One potential application

is the modelling of latent attributes associated with a person-of-interest (POI)

in a social network such as the POI’s community membership over time. In

this scenario, the POIâĂŹs friends in social network sites such as Facebook or

Instagram can be treated as information sources (similarly to the online news

setting) where their interests are constantly updated using text and/or images.

At any given time stamp, we can select a diverse subset of all interests from his

social circle as an additional important cue to infer the POIâĂŹs attributes.
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(a) 2001-Sep-10

(b) 2001-Oct-20

(c) 2001-Nov-20

Figure 3.12: Three Enron communication networks from different stages detected
by TV-DPPs.
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Chapter 4

Diverse Learning for Mixtures of

Exponential Family PCA Model

Exponential family principal component analysis (PCA) is one of the most ubiq-

uitous techniques for general-typed data analysis, e.g., binary values and integers.

A natural extension of it is a mixture model of local exponential family PCA in

order to handle more data complexity, rather than only linearity in its essential

forms. However, amongst mixing components of mixture models there may exist

overlapping which may lead to model redundancy. To alleviate this problem,

diversity is explicitly exploited in this paper to encourage repulsiveness amongst

the mixing components. To the best of our knowledge, such a diversity prior

has not been applied by existing works for mixture models of exponential family

PCA. We encode this attractive attribute into a Bayesian scheme to obtain a

new model, i.e., diversified exponential family PCA mixture model, wherein a

determinantal point process (DPP) is exploited as a diversity prior distribution

over joint local PCAs, where a similarity kernel between local PCAs is specified

with a designed matrix-valued measure. Furthermore, �1 constraints are dedi-

catedly placed on transformation matrices of local PCAs to develop a systematic
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way to address an important issue in traditional PCAs - selecting effective PCs

of local hidden spaces. An iterative EM algorithm is derived to accomplish tasks

of parameter learning and hidden variable inference. Experiments conducted on

both synthetic and real-world datasets confirm the effectiveness of the proposed

model.

4.1 Introduction

Principal component analysis (PCA) has been one of the most classic tool for

linear data analysis, especially for dimensionality reduction (Jolliffe, 2002) and

data distribution estimation (Anzai, 2012), and has been widely adopted in a va-

riety of application scenarios, i.e., image analysis (Turaga and Chen, 2002; Geladi

et al., 1989), image visualization (Kambhatla and Leen, 1997), data compression

(Du and Fowler, 2007) and time series prediction (Ku et al., 1995). Previous

works have developed many of its variants such as probabilistic PCA (Tipping

and Bishop, 1999b), kernel PCA (Schölkopf et al., 1997), robust PCA (Candès

et al., 2011), and sparse PCA (Zou et al., 2006). Amongst these variants, prob-

abilistic PCA (PPCA) is a remarkable one. It formulates a deterministic PCA

into a probabilistic framework with a Gaussian latent variable model, within

which systematic statistical tools can be directly applied. As a result, several

practical advantages are brought in, such as efficient parameter estimation.

Extensions based on a probabilistic version of PCA can straightforwardly ad-

dress several tough concerns existing in traditional PCA. First, selecting a proper

number of principal components is a crucial issue which is difficult to be system-

atically solved in traditional PCA. An important Bayesian extension to PPCA,

i.e., Bayesian PCA (BPCA) (Nounou et al., 2002), is proposed to address this

problem. Such a Bayesian version can also code with over-fitting problems. Sec-
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ond, PCA and PPCA can only model continuous data in the observation space,

and cannot handle other general data types such as discrete and binary, which are

very common in real-world applications. An exponential family PCA (EPCA)

(Collins et al., 2001) has been developed to address above issue by replacing

the Gaussian distribution for observation likelihood with more general exponen-

tial families. Correspondingly, a Bayesian version of EPCA (Mohamed et al.,

2009) has also been established to take advantage of Bayesian inference under

the probabilistic framework. Furthermore, a simple version of above Bayesian

EPCA has been proposed by J. Li and D. Tao (Li and Tao, 2013) to address

the model selection problem with an automatic relevant determination (ARD)

(MacKay, 1995) scheme. In this chapter, we focus on general data types, i.e.,

discrete and binary, and its related applications.

Due to the linear projection defined by PCA, it is limited to only simple data

structure. This has naturally motivated various nonlinear developments of PCA

to encode more complex data structure such as principal curve (Tibshirani, 1992)

and GTM (Bishop et al., 1998). An alternative extension under probabilistic

framework is mixing local exponential family PCA to increase model capacity

(Li and Tao, 2013). However, there exist two significant limitations of mixture

models. Firstly, traditional mixture models may exhibit model redundancy and

severe model over-fitting problem. Intuitively, mixing components work together

to cover an observation space. But the mixture models treat mixing components

rather independently. Therefore, due to lack of explicit repulsive constraints

amongst them, the learned components may overlap with each other. Thus, it

may require more number of mixing components than it really needs to cover

the observation space, which may lead to model redundancy and aggravate the

over-fitting problem. Secondly, how to effectively determine both the number of

mixing components and the number of effective principal components (PCs) are
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still important but yet solved problems in practice for exponential family PCA

mixture models. The work (Li and Tao, 2013) applies an ARD as a prior scheme

over PCs to automatically set the number of PCs for each mixing component in

an independent way, rather than in a holistic manner.

In this chapter, we address above mentioned issues with a diversified expo-

nential family PCA mixture model. Diversity should be a solution to the above

overlapping problem amongst mixing components. It encourages the mixing

components to be as far with each other as possible in the model space to explic-

itly force each mixing component handle different part of the data space. As a

result, overlapping problem can be alleviated. At the same time, it will also in-

tuitively increase model generalization ability and reduce model overfitting risk.

Recently DPP has been a popular statistical tool for diversity in machine learning

area (Kulesza and Taskar, 2012). (Zou and Adams, 2012) provides a framework

to encode DPP prior into generative latent variable model. Specifically, it ap-

plies a probability measure valued similarity kernel, i.e., to define DPP a concept

of repulsion. Then DPP employs a determinant operator to assign probability

values to each subset, the more repulsive, the higher values. Similarly, here

to adopt DPP to exponential family PCA-MM, we have three challenges to be

solved: 1) How to encode DPP into exponential family PCA-MM; 2) how to

define a similarity kernel to measure repulsiveness amongst exponential family

PCA mixing components; 3) how to do model selection, namely, determining

effective numbers of PCs for each mixing component.

Regarding these challenges, we address them one by one and construct a

holistic framework for extending the exponential family PCA mixture models

with a diverse prior. The contribution of this chapter is summarized as below.

• We propose a framework to diversify the mixing components of a expo-

nential family PCA-MM, As a result of which, the model redundancy and
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over-fitting problems are expected to be alleviated.

• We design a reasonable matrix-valued similarity kernel as an input to a

DPP prior to define the diversity amongst mixing components of exponen-

tial family PCA mixture model. In addition, with the decomposition of

the transformation matrix of one mixing component, it not only keeps the

orthogonality amongst PCs, but also generates an order of PCs similar to

the variance order of these PCs.

• We dedicatedly incorporate a �1 term into the similarity kernel for two

purposes. First, it contributes to the definition of repulsiveness amongst

mixing components. Second, it provides clues for model selection, namely,

selecting dimensions of PCs for each mixing component.

• We derive an iterative EM algorithm for parameter estimation and infer-

ence.

• Both verification and comparison experiments confirm the effectiveness of

the proposed method.

This chapter is organized as follows. Section 4.2 review relevant works in-

cluding both mixture models and diversity-related topics. Section 4.3 briefly

introduce technical background. Our proposed model is developed in Section

4.4, and its parameter learning and inference is derived in Section 4.5. Finally,

demonstrating experimental results and comparisons with related techniques are

presented in Section 4.6, and Section 4.7 summarizes this chapter.
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4.2 Related Work

4.2.1 PCA and its Mixture Extensions

We categorize existing PCA mixture extensions into two sets, one from a de-

terministic perspective, the other from a probabilistic perspective. One main

commonality between these two categories is their motivation that they are try-

ing to find better ways for data representations. PCA outputs a compact and

decorrelated representation space, but is limited by its linearity. While mixture

models is nonlinear, but may be negatively impacted by data noise in the origi-

nal data feature space. Therefore, integrating PCA and mixture model together

will mutually complement each other and retain both advantageous sides. The

main difference between them is the strategies they adopt to integrate PCA and

mixture model. (Turaga and Chen, 2002) is classified into the first category. It

applies a mixture of eigenspaces to achieve a linear extension to the traditional

PCA, and its objective is to minimize reconstruction errors. Since Tipping and

Bishop has generalized PCA into a probabilistic framework to maximize likeli-

hood. Most of the PCA mixture models are under the probabilistic framework.

For example, (Tipping and Bishop, 1999a) naturally extends the traditional PCA

to a well-defined mixture model, using the same way as Gaussian mixture mod-

els (GMM). And each mixing component represents one PCA subspace. Similar

works are (Mahantesh et al., 2014; Zhang, 2004; Wang and Tang, 2005). A dif-

ferent work is proposed by (Watanabe et al., 2009), where it impose the mixture

model on the subspace, rather than the observable PC mixing components.

One limitation of traditional PCA-MMs is that the likelihood is formulated

with Gaussian distributions, which are only appropriate for continuous data.

To handle integer or binary data type, Collins et al. (Collins et al., 2001) has

generalized traditional PPCA to exponential family (EPCA). Subsequently, a
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natural extension to EPCA is its corresponding mixture models. (Watanabe

et al., 2009) assumes the mixing property comes from lower dimensional sub-

spaces, and derives a variational Bayes approximation algorithm for learning.

Comparatively, SePCA, proposed by Li and Tao (Li and Tao, 2013), is a simple

version of Bayesian exponential family PCA. Unlike a Bayesian EPCA (Mo-

hamed et al., 2009), it assigns prior distributions to its PCA’s transformation

matrix, and does not give prior over the hidden variables representing lower di-

mensional space. This strategy focuses on its PC loadings, rather than lower

dimensional subspaces. Correspondingly, its mixture extension is formed with

several PC loadings as mixing components, which is quite different from the

above mentioned method. In this chapter, we adopt this strategy to focus on

mixing transformation matrices. There also exist a branch of mixture models

of exponential families, whereas no PCA is applied. Here we only list several

works for interested readers, (Anaya-Izquierdo and Marriott, 2007; Akaho, 2008;

McCULLAGH, 1994; Ardeshiri et al., 2013).

Finally, model selection has always been an important topic for PCA-MM,

and has been explored by researchers. (Zhao, 2014) provides a hierarchical BIC

to do efficient model selection, where each BIC is penalized by its own effective

sample size, rather than the larger whole sample size. (Li and Tao, 2013) imposes

an automatic relevance determination (ARD) over latent transformation matrix

variables to determine the effective number of PCs. (Huang et al., 2004) explores

a general notation of dimensionality in mixture models, and introduces a robust

MED criterion to address the model selection. (Kim et al., 2001) proposes a fast

and sub-optimal method of model order selection, and achieves model selection

by pruning insignificant PCA bases.
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4.3 Background

In this section, we briefly review related techniques as building blocks for our

method, and they are simple exponential family PCA (SePCA), SePCA mixture

models (SePCA-MM) and DPP.

4.3.1 Simple Exponential Family PCA (SePCA)

Simple exponential family PCA (SePCA, (Li and Tao, 2013)) has several ad-

vantages over the other PCA-related art-of-the-state methods. It can handle

general observation data types, e.g., discrete and binary. As under a Bayesian

framework, it inherits all of Bayesian inference advantages such as dealing with

over-fitting problem and automatically determine the effective number of PCs.

We adopt SePCA as one of the basic building block.

Given a set of observations X = {xn}Nn=1, where xn ∈ ZD or 2D and D is

the feature dimension, the SePCA distribution over joint variable set containing

observable variables X, latent variables Y = {yn}Nn=1 and transformation matrix

W ∈ RD×d is formulated as

p(X, Y,W ;α) = p(X|Y,W )p(Y )p(W ;α), (4.1)

where yn ∈ Rd represents low-dimentinal representations, with d representing

lower space dimension and d � D.

We elaborate the three distributions on the right-hand of the above equation

one by one. The first probability distribution on the right-hand of the above

equation is the likelihood of observations. Given both latent representations and

PCs, the distribution for each observation is independent with each other. As

the name of SePCA indicated, the likelihood function employs an exponential
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family, and its formulation for one observation is

p(xn|yn,W ) = exp{xT
nWyn + g(Wyn) + h(xn)}. (4.2)

Here, a canonical form of an exponential family is adopted, where Wyn encodes

natural parameters, g(·) and h(·) are known functions given a specific member

of the exponential family. The second term of (4.1) represents a prior distribu-

tion over latent low-dimensional representations. It is assigned an isotropic unit

Gaussian distribution, i.e., yn ∼ N (yn|0, I). The third term represents a prior

over transformation matrix W , which is composed by PCs. As required by PCA,

this transformation matrix should be orthogonal in order to retain the uncor-

related property amongst PCs. Therefore, each column of the transformation

matrix, i.e., each PC wi, is independent with each other, and is assigned with an

isotropic Gaussian prior controlled by a precision hyper-parameter. Formally,

p(W ;α) =
d∏

i=1

N (0, α−1
i I). (4.3)

The model selection for effective number of PCs is motivated by ARD (MacKay,

1995), and is implemented by switching on or off each wi with learned αi accord-

ing to the rule that smaller the αi, less significant the wi.

4.3.2 SePCA Mixture Models (SePCA-MM)

Proportionally mixing basic probability distributions is a simple and effective

way to increase model complexity in order to handle with complex data struc-

tures. A relevant example is the mixture extension of SePCA (SePCA-MM).

There are many complicated situations where a simple single PCA is incapable

to handle but a mixture model of several PCAs is competent. For example,
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groups of observations in a high-dimensional space might not be separable any

more after being transformed into a low-dimensional space by a single SePCA.

This is caused by the definition of a PCA whose projection axises are linear

and dominated by variances of observations from all groups containing all ob-

servations. Unlikely, SePCA-MM fits groups of observations with different local

SePCAs, and then integrates them with a mixing coefficient vector. Each mixing

component of the mixture model, with different PCs from other mixing compo-

nents, handles one group of observations independently. As a result, different

groups of observations will be projected into different low-dimensional spaces,

thus the separability exhibiting in the original space is preserved in several low-

dimensional spaces. Therefore, a mixture model is able to solve the linearity of

single component PCA to some extent, and also is a natural choice for above

situation.

Formally, a layer of hidden discrete-valued variables Z = {zn}Nn=1 is intro-

duced to SePCA to observations to indicate to which component they belong,

where K is the number of mixing components and zn ∈ 2K indexed by mix-

ing components. A graphical representation for SePCA-MM is shown in Fig

4.1a. Comparing to traditional SePCA, K rather than 1 transformation ma-

trices W = {W 1, . . . ,WK} are introduced, and represented by a plate symbol.

The joint distribution over both observable and hidden variables is formulated

as below.

p(X, Y, Z,W; π, λ)

=p(X|Y,W, Z)p(Y )p(W;λ)p(Z; π). (4.4)

As most of the probability distributions are the same with SePCA, we briefly

summarize the changes with SePCA-MM. The first term defines the likelihood of
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observations under one mixing component, specified by the values of Z and other

hidden variables and parameters. It has the same form with (4.2) for an individ-

ual observation, but instituting W with a component specific W zn . The second

term assigns isotropic unit Gaussian priors to each hidden low-dimensional rep-

resentations, the same with the above. The third term gives prior over K mixing

transformation matrices W. It assumes each mixing component is independent

from each other, and each PC within each mixing component is also independent

to encode the orthogonality of a transformation matrix, and has the same prior

distribution with (4.3). The fourth term presents a multinomial prior for binary

indicator variables, and p(Z; π) =
∏N

n=1 p(zn; π) with
∑K

k=1 πk = 1. Finally, the

mixing concept is reflected by a proportional integration over probabilities of all

mixing components, and is formally given as

p(xn|yn,W) =
∑
zn

p(zn)p(xn|yn,Wzn). (4.5)

However, mixture models have limitations and cannot always do well for

different application scenarios. For instance, the fitted mixing components may

overlap with each other and can not be properly separated. As a result, this

may not be tolerated by ’gaps’ required applications, e.g. species delimitation

(Yang and Rannala, 2010). Furthermore, it may need more components than

it really needs to cover the whole space, which may easily leads to over-fitting.

Under those circumstances, a diverse prior encouraging repulsiveness over mixing

components is in demand to mitigate this problem. In this chapter, we focus on

alleviating the above ’overlapping’ problem, and show how to define a diversity

prior for SePCA-MM as well as how to do model inference and parameter learning

in next sections. Before that, we briefly introduce the DPP utilized to build a

diversity prior in our method below.
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(b) Diversified SePCA-MM

Figure 4.1: Graphical representations of models: (a) SePCA mixture model;
(b) Diversified SePCA mixture model. The only difference between these two
models is obviously the priors over K mixture component parameters, i.e., W s.
Traditional SePCA assigns independent isotropic Gaussian distributions, repre-
sented by a plate. Comparatively, the proposed diversified SePCA-MM assigns a
joint distribution over its component parameter, i.e., W = {W 1, . . . ,WK}. The
distribution is a DPP, parameterized with �, ξ, λ and represented by a double-
struck.
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4.4 The proposed model

In this section, we first introduce the core building blocks for our model, i.e.,

matrices-valued DPP. Then, based on it, the proposed diversified SePCA-MM is

presented.

4.4.1 Motivation for Matrices-valued DPP

To reduce overlapping amongst mixing components of a SePCA-MM, parameter-

ized with a set of matrix W, it is natural to impose a diverse prior over matrices

W to achieve diversity amongst them. However, it does not exist a proper L-

ensemble diversity kernel defined over mixing components of the SePCA-MM

in current literatures. Although a probability measure based kernel matrix can

be considered applicable (Zou and Adams, 2012) when combining with a prior

distribution for each transformation matrix applied in (Li and Tao, 2013), it is

not ideal for our situation. On one hand, when the prior distribution employs an

isotropic Gaussian distribution controlled by precision hyper-parameters, these

parameters are used to automatically determine the effective number of PCs via

an ARD scheme. On the other hand, as the means of the isotropic Gaussian pri-

ors are all fixed to 0, it is ambiguous to infer group labels for samples around 0.

Furthermore, a diversity kernel matrix constructed with a probability measure

over such prior distributions is only relevant to those precision hyper-parameters,

and has no relevant terms for transformation matrices W themselves. Conse-

quently, this kind of kernel cannot provide an intuitive geometric explanation

for diversity amongst these mixing components. Overall, a similarity kernel over

transformation matrices, i.e., mixing components of SePCA-MM, serving as a

fundamental block of a diversity prior needs to be customised.
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4.4.2 Matrices-valued DPP

In this subsection, we define a diversity prior over mixing components of SePCA-

MM, i.e., W = {W 1, . . . ,WK} with three steps - decomposing transformation

matrix into quality and similarity parts, formulating quality and similarity terms,

and defining diversity prior under DPP framework.

Decomposition

We decompose each transformation matrix W into two parts: An orthonormal

matrix Υ ∈ RD×d representing PCs and a diagonal matrix Φ ∈ Rd×d, each of

whose entries representing variances along each PC. Formally,

W = ΥΦ, (4.6)

with ΥTΥ = I and Φ = diag(φ1, . . . , φd). For a set of transformation matrices

W, we symbolize the orthonormal matrix set and the variance matrix set with

bold font, namely, Υ = {Υ1, . . . ,ΥK} and Φ = {Φ1, . . . ,ΦK} respectively.

Such a decomposition splits orthogonality and variance of a transformation

matrix, and is motivated by three advantages. First, the orthonormal parts

explicitly keep the orthogonality amongst PCs within PCAs. In other words,

the features in low-dimensional space transformed by these PCs are retained

uncorrelated, which is a fundamental characteristic of PCAs for dimensional-

ity reduction. Second, the variance parts play the role of determining which

PCs keep maximum empirical variances, whose value can be straightforwardly

employed to retain important PCs and cut insignificant ones. In this view, it

constructs an efficient way to automatically select effective number of PCs. Fi-

nally, it provides a convenient way to separate quality term and similarity term

for defining a diversity kernel, as presented in subsequent sections.
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Formulation for quality and similarity terms

Similar to (Kulesza and Taskar, 2012), a quality-similarity decomposition is em-

ployed to construct a similarity kernel for diversity prior. Such a decomposition

explicates the tradeoff between similarity and diversity in a DPP prior. These

two terms in our case are respectively defined over variance and orthonormality

matrices from above decomposition.

Quality: The quality term of transformation matrix W is defined over a

variance term Φ referred to as quality features as:

Q(W ) = exp(−1

2
ξ||Φ||1), (4.7)

where ξ is a scale parameter to control two kinds of tradeoffs - between quality

and diversity as well between diversity and likelihood. We will emphasize this

point again after the whole model is established.

An �1-norm is applied to the diagonal matrix Φ. High quality scores can only

be obtained with small �1-norm of variance matrix, which usually encourages

sparsity for Φ. Under our case, the PCs corresponding to small-valued variance

entries will be abandoned. In other words, this quality function highly values

low-dimensional hidden space. In addition, as above mentioned, it automatizes

the process of model selection.

Similarity: We refer to the orthonormal matrix Υ as similarity features for

a transformation matrix W . One entry of a similarity function S over pairwise

transformation matrices {W 1,W 2} is constructed via their separable orthonor-

mal parts {Υ1,Υ2}, and is defined as

S(W 1,W 2) = exp(−1

2
�

d∑
i,j=1

||Υ1
·i −Υ2

·j||22), (4.8)
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Figure 4.2: Illustration of proposed similarity formulations with two orthonormal
matrices including two PCs. The dashed pairwise perpendicular lines represent
PCs of orthonormal matrix Υ1, while the solid pairwise lines represent PCs of
Υ2. θ1 and θ2 represent angles of direct-matching pairwise PCs as shown in all
subfigures, while θ3 and θ4 represent angles of cross-matching pairwise PCs which
are only demonstrated in the first subfigure and ignored by other subfigures
to keep their symbols less crowded. From left to right, the angles between
direct-matching pairwise PCs of the two orthonormal matrices starts from 0◦ and
increases with 45◦, while the similarities between these two matrices decreases
from the largest value e2� to the smallest value e−2�, which are calculated from
(4.9)..

s.t. Υ1TΥ1 = Id,

Υ2TΥ2 = Id.

Here � is a scale parameter, and || · ||2 symbols the vector L2 norm. Id is a

d × d-sized identity matrix with d the dimension of hidden spaces. The two

constraints guarantee the orthonormality of Υs.

Expanding the vector L2 norm, the similarity function S is derived as:

S(W 1,W 2) = exp(−1

2
�(

d∑
i,j=1

D∑
k=1

(Υ1
ki −Υ2

kj)
2))

∝ exp(�
d∑

i,j=1

cos(< Υ1
·i,Υ

2
·j >)). (4.9)

Here D is the number of dimensions in the observation space. Note that the only
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difference between (4.9) and (4.8) is a constant term. This term is exactly the

same for all entries of the similarity matrix, therefore does not make contributions

to diversity modelling and is ignored in the following modelling procedure.

Geometrical explanation for similarity formulation: As it is easily

seen from (4.9), the similarity between two transformation matrices is positively

related to the sum of cosine values of angles formed by pairwise normalized PCs,

which is, in other words, negatively correlated with the angle value between

them. This similarity formulation is illustrated in Figure 4.2 with two orthonor-

mal matrices, each with two columns. When the two matrices are the same, i.e.,

Υ1 = Υ2, the angle values for direct-matching pairwise PCs Υ1
·1-Υ2

·1 and Υ1
·2-Υ2

·2

are 0◦, and the angle values for cross-matching pairwise PCs Υ1
·1-Υ2

·2 and Υ2
·1-Υ1

·2

are 90◦ due to the orthonormality of Υs. Calculating via (4.9), the similarity

between them is exp(2�), which is the largest. The similarities of two transfor-

mation matrices with other angle values for direct-matching pairwise PCs such

as 45◦, 90◦, and 135◦, are e
√
2�, 1, and e−

√
2� respectively. Similarly, when each

column Υ1
·j of a matrix Υ1 is totally different with direct-matching column Υ2

·j of

matrix Υ2, the angle value formed by them is 180◦ and the corresponding cosine

value is −1, and the resulting similarity between the two matrix is e−2�, which

is the smallest.

Diversity prior

Each entry of an L-ensemble kernel K required by a DPP distribution repre-

sents the similarity of its indexed two transformation matrices, and is defined by

multiplying the quality term with similarity term, just like (Kulesza and Taskar,

2012). Formally,

K(W 1,W 2) = Q(W 1)S(W 1,W 2)Q(W 2). (4.10)
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A DPP distribution over transformation matrices is defined via a determinant

operator over the L-ensemble kernel K. We take a two-element subset {W 1,W 2}
as an example. Its DPP probability is computed as

PK({W 1,W 2}) ∝ Q2(W 1)Q2(W 2) det(S({W 1,W 2})) (4.11)

= exp(−ξ(||Φ1||1 + ||Φ2||1))

×
{
1− exp(2�

d∑
i,j=1

cos(< Υ1
·i,Υ

2
·j >))

}
, (4.12)

where S({W 1,W 2}) represents the similarity submatrix indexed by W 1 and W 2.

Note that the normalization term is ignored here. since it is a constant for various

subsets once the parameters ξ and � are given.

We draw two characteristics of above definition: 1). The computations for

quality term and similarity term are independent due to a nice property of the

determinant operator. 2). From (4.12), the diverse probability over a transfor-

mation matrix subset increases along with the increment of the quality of each

element, as well as with the decrement of the joint similarities amongst them.

In summary, the DPP distribution prefers subsets of transformation matrices

that each element within it has small number of PCs while these elements are

diverse with each other.

4.4.3 Diversified SePCA-MM

Until now, combining the established diverse prior over mixing components into a

SePCA-MM framework, a diversified SePCA-MM is composed. The correspond-

ing graphical representation is shown in Figure 4.1b, where two bold vertical

lines drawing over W represent a DPP prior over the joint mixing components.

Finally, the joint distribution over both observable and hidden variables is for-
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mulated as:

p(X, Y, Z,W; π,λ, �, ξ)

∝
N∏

n=1

p(zn; π)p(yn)p(xn|yn,W zn)Pλ
K(W; �, ξ) (4.13)

s.t. W k = ΥkΦk, k = 1, . . . , K,

ΥkTΥk = Id, (4.14)

Φk = diag(φk
1, . . . , φ

k
d),

K∑
k=1

πk = 1,

where W is a K-sized transformation matrix set, each element W k of which is

decomposed into an orthonormal matrix Υk and a diagonal matrix Φk, repre-

senting diverse features and quality features respectively. K is the number of

mixture components. The constraint for π is to satisfy a discrete categorical

distribution.

The parameters and their functionalities are summarized as follows. ξ and �

are introduced in the diversity prior (4.12), wherein ξ is for quality measure of

individual transformation matrix and � is for similarity measure of joint trans-

formation matrix subset. When combined into the diversity prior, they can be

adjusted to balance between quality and similarity. Furthermore, these two pa-

rameters play a trade-off role when they are as a part of the whole model in

(4.13), where they are utilized to balance between diversity of W and the model

fitness of datasets in different application scenarios. We separate the trade-off

role of these two parameters from their balancing role by introducing a new pa-

rameter λ as shown in (4.13). It makes no substantial change to the original

model, since it is actually extracted from the expression of ξ and �. Changing
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the value of λ gives a clear way to demonstrate the efficacy of the proposed

diversity prior in the experimental section.

Note that the parameters ξ and � are fixed in the model and for parameter

learning and inference , but can be chose to be adapted to real-world dataset.

Actually, this is a simplification for our model to avoid intractable learning for

these two parameters, since they exist in the normalization term of the DPP

prior. One drawback of this simplification is that it limits us to a point estimation

for W, whose learning and inference procedure are shown in next section.

4.5 Learning and inference

We address parameter learning and inference of the proposed model within an

expectation-maximization (EM) framework.

4.5.1 Learning Parameters: M-step

Learning π

The objective of log-likelihood maximization in terms of π is

max
π

log p(X; π) =
N∑

n=1

log
∑
zn

p(xn|zn)p(zn; π), (4.15)

s.t.
∑
k

πk = 1. (4.16)

Directly applying Lagrange multiplier method is intractable due to the integra-

tion over zn inside the log operator. Therefore, we approximate the above log-

likelihood with its lower bound function obtained by Jensen’s inequality, which
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is

LqZ (π) =
N∑

n=1

∑
zn

q(zn) log p(xn|zn) (4.17)

+
N∑

n=1

∑
zn

q(zn) log p(zn; π) +Hqzn ,

where q(zn) is a distribution over zn, and it makes the above lower bound equal

to the (4.15) when it is the posterior distribution over zn. Hqzn is the entropy for

q(zn). In above equation, the first term expressing an expectation over condi-

tional log-likelihood in terms of q(zn) and the third term symbolized the entropy

of q(zn) are irrelevant to the parameters π. Therefore, they are simply ignored

when learning for π. Only the second term, which is an expectation over log-zn

prior in terms of q(zn), combined with the normalization constraint (4.16) is used

to learn π. Its analytic solution is obtained with Lagrange multiplier method

and is:

πk =

∑
n q(zn = k)∑

k

∑
n q(zn = k)

=
Nk

N
. (4.18)

Here N refers to as the number of all samples, while Nk =
∑

n q(zn = k),

summarizing over probabilities of all samples being labeled as group k. It can

be seen that πk updates the ratio of samples in each component in the mixture

model with posterior inference of hidden variables Z.
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4.5.2 Inference: E-step

Posterior inference on Z

The posterior distributions over Z are computed through the Bayes’ rule, namely,

q(Z) = p(Z|X; π) =
p(Z; π)p(X|Z)∑
Z p(Z; π)p(X|Z) . (4.19)

Here p(Z; π) is Z’s prior distribution. p(X|Z) is a Z-conditional likelihood,

which is also needed in (4.17). It can be computed by integrating over two other

hidden variables Y and W from their known joint distribution. Formally

p(X|Z) =
∫
Y

∫
W

p(Y )pK(W)p(X|Y,W, Z). (4.20)

However, either of the two integrations has closed-form. As for the integra-

tion over Y , there is a generalised exponential family term in the {Y,W, Z}-
conditional likelihood p(X|Y,W, Z), and is not conjugated with its prior distri-

bution. Similarly, for the integration over W, its DPP-based prior distribution

has no conjugate property with exponential family terms. One intuitive approx-

imation to the two integrations is adopting a Monte Carlo method. It firstly

draws two sets of samples from Y and W’s prior distributions respectively, and

secondly substitutes the samples for variables to compute the conditional likeli-

hood, and finally replaces the integration with a tractable average operator over

those samples’ likelihoods. However, although the prior distribution of p(Y )

can be easily sampled, the joint transformation matrix set W cannot be easily

obtained from its DPP-based prior distribution.

Therefore, we again approximate the above {Y,W}-marginalized conditional

likelihood with its lower bound approximation in log space. With Jensen’s in-
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equality, one lower bound to (4.20) in log space is obtained as

Lq(W, Y ) = {HqW +HqY

+

∫
W

∫
Y

q(W)q(Y ) log p(X, Y,W|Z)
}
. (4.21)

Here q(W) and q(Y ) are W and Y ’s posterior distributions respectively. The

first two terms HqW and HqY are entropies of posterior distributions of W and

Y respectively. The third term computes the expectation over log Z-conditional

joint distribution in terms of posterior distributions of W and Y . Instead of inte-

grating over W and Y ’s posterior distribution, which is intractable, we simplify

it by substituting the expectations with MP estimations from their posterior

distributions, namely

Lq(W, Y ) ≈ log p(X, Y MP,WMP|Z) + const. (4.22)

Here the const summarizes over entropy terms. In the next two subsections, we

detail the alternative mode estimations for posterior distributions of W and Y .

Posterior mode estimation for W

The posterior distribution over W is formulated by its prior distribution and

likelihood via Bayes’ rule, namely,

q(W) = p(W|X) ∝ pK(W)p(X|W).

Given Y MP , the objective for mode estimation of posterior distribution of W in

log-space is

max
W

Lq(W) = log pK(W) +
∑
Z

q(Z) log p(X, Y MP , Z|W), (4.23)
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where the first term is related to W’s diverse prior distribution, and the second

term is an expectation over log-likelihood of W in terms of q(Z).

We apply a coordinate ascend method to iteratively search the optimal solu-

tion for the transformation matrix set {W k}Kk=1. Within each coordinate, since

each W k composes of two components, i.e., similarity orthonormal matrix Υk

and quality diagonal matrix Φk, we alternatively update them.

For Υ: Due to the orthonormal constraints (4.14), we search its optimal along

the Grassmann manifold. The derivation in Euclidean space is

∂Lq(W)

∂Υk
ij

= λtrace{K−1(W)Q(W)
∂S(W)

∂Υk
ij

Q(W)+

(q(Z = k))Tdiag

(
g′T (ΥkΦkY MP ) ·

(
∂Υk

∂Υk
ij

ΦkY MP

))

+ trace(XT ∂Υk

∂Υk
ij

ΦkY MPdiag(q(Z = k))), (4.24)

with each entry of ∂S(W )

∂Υk
ij

from

∂S(W k,W k′)

∂Υk
ij

= S(W k,W k′) · � ·
∑
m

(Υk′
im −Υk

ij),

Let G(Υk) = ∂−Lq(W)

∂Υk , the derivation on the Grassmann manifold is defined as:

GG(Υk) = G(Υk)−ΥkΥkTG(Υk).

At point Υk with direction GG(Υk), the corresponding geodesic equation is

Υk(t) = ΥkV cos(Σt)V T + U sin(Σt)V T , (4.25)

where matrices U , Σ, and V are from the compact SVD of GG(Υk), namely,
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GG(Υk) = UΣV T . The optimal searching is along the geodesic defined by

(4.25). This is actually a one-dimensional searching with respect to variable t,

namely, mint −Lq(Υ
k(t)φk). Suppose it reaches the minimum value at t′, then

the corresponding point on the Grassmann manifold is Υk′ = Υk(t′).

For Φ: We iteratively update them with gradient ascend method. Each entry of

their derivative over Φ is listed as below, and the details are derived in Appendix.

∂Lq(W)

∂Φk
ii

= trace{K−1(W)
∂Q(W)S(W)Q(W)

∂Φk
ii

}

+ trace(XTΥk ∂Φ
k

∂Φk
ii

Y MPdiag(q(Z = k)))+

qT (Z = k)diag

(
g′T (ΥkΦkY MP ) ·Υk ∂Φ

k

∂Φk
ii

Y MP

)
. (4.26)

For term ∂Q(Wk)S({Wk,Wk′})Q(Wk′ )
∂Φk

ii
, when k = k′, it is

∂ exp(−ξ(||Φk||1))
∂Φk

ii

= exp(−ξ(||Φk||1)) · −ξ · ∂|Φ
k
ii|

∂Φk
ii

;

otherwise, it is computed as

S({Wk,Wk′})Q(Wk′) exp(−1

2
ξ(||Φk||1)) · −1

2
ξ · ∂|Φ

k
ii|

∂Φk
ii

.

Due to the term ||Φk||1 = trace(|Φk|), the derivation for Φk
ii involves all other

elements {Φk
jj}j �=i. Therefore, we iteratively update the diagonal elements of Φk

one by one. A sub-gradient method at point 0 is applied, where the objective

is nondifferientiable, and that the term ∂|Φk
ii|

∂Φk
ii

is −1 or 1 or 0 depends on which

increases the objective most.
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Posterior mode estimation for Y

Similarly to W, the posterior distribution on Y is computed as

q(Y ) ∝ p(Y )p(X|Y ).

Given WMP , the objective for mode estimation of posterior distribution on Y

in log-space is

max
Y

Lq(Y ) = log p(Y ) +
∑
Z

q(Z) log p(X,WMP , Z|Y ).

To achieve the optimal of each independent yn, the gradient ascend method is

applied and its gradient is computed as below.

Lq(yn)

∂yn
= −yn +

∑
zn

q(zn)
(
(xT

nW
MP,zn)T +(g′T (WMP,znyn) ·WMP,zn)T

)
.

4.5.3 Algorithm Summary and Bernoulli Distributions

The whole procedure of parameter learning and inference for the proposed method

under an EM framework is summarized in Algorithm 4.1.

One simple example from exponential family is Bernoulli distribution, and is

designated to handle binary-typed data sets. We apply this kind of distribution

throughout our experimental section. To make our chapter self-contained, we

briefly instantiate the general terms in our model, e.g., g(WY ) and g′(WY ),

with Bernoulli distribution.

For Bernoulli distribution with parameter α, the distribution is p(x|α) =

αx(1 − α)1−x and its corresponding natural parameters are θ = log α
1−α

, g(θ) =
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Algorithm 4.1: Parameter Learning and Inference
Data: Observations X, fixed parameters ξ, �, stopping criterion ε.
Result: WMP , Y MP ,Lnew, q(Z), π.
Randomly initialization π, ΦMP , ΥMP , Y MP ;
W k,MP = Υk,MPΦk,MP , k = 1, . . . , K;
q(Z) ← (4.19) and p(X, Y MP ,WMP |Z);
Lnew = Eq(Z)(log p(Z; π) + log p(X, Y MP ,WMP |Z));
repeat

Lold = Lnew ;
M-step:
π ← (4.18) and q(Z);
E-step:
Lnew

0 = Eq(Z)(log p(Z; π) + log p(X, Y MP ,WMP |Z));
repeat

Lold
0 = Lnew

0 ;
q(Z) ← (4.19) and p(X, Y MP ,WMP |Z) ;
Alternatively update Υk and Φk with (4.24) and (4.26);
W k,MP = Υk,MPΦk,MP , k = 1, . . . , K;
Y MP ← (4.27);
Lnew

0 = Eq(Z)(log p(Z; π) + log p(X, Y MP ,WMP |Z));
until |Lnew

0 − Lold
0 | < ε;

Lnew = Eq(Z)(log p(Z; π) + log p(X, Y MP ,WMP |Z));
until |Lnew − Lold| < ε;

− log(1 + eθ), h(x) = 0, and α = eθ

eθ+1
. Therefore,

g(W znyn) =
D∑
i=1

g([W znyn]i), (4.27)

g′(W znyn) =

⎡⎢⎢⎢⎣
1

1+e[W
znyn]1

− 1
...

1
1+e[W

znyn]D
− 1

⎤⎥⎥⎥⎦ . (4.28)

4.5.4 Algorithm Complexity Analysis

We analysis the proposed model’s scaling ability by analyzing its time complexity

of its learning and inference algorithm. Inside each loop of Algorithm 4.1 the
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most time-consuming steps are updating Υ (4.24), Φ (4.26), and Y MP (4.27).

For Υ, its complexity is ©(KDd× (N2D+K3+Dd2)), where the first term just

before the symbol × counts the matrix elements of K orthonormal matrices, and

the second term is the complexity for each matrix element update with one term

for matrix multiplications, the second term for diverse kernel inversion and the

third term for derivation computation on the Grassmann manifold with single

value decomposition (SVD). For Φ, its complexity is ©(Kd × (N2d + K3)),

where again the first term counts the matrix elements of K diagonal matrices

decomposed from the mixing transformation matrices, and the second term is

the complexity for each diagonal element update. For Y MP , its complexity is

©(N×D×d), where N is for each data point and D×d for matrix multiplication.

Consequently, when it comes to scale analysis, either large-scale datasets (big

N) or high-dimensional datasets (big D) has squared time complexity since the

largest term of all these time complexities is ©(KN2D2d).

4.6 Experimental Results

In this section, we verify the proposed diversified exponential family PCA mix-

ture models on both a synthetic dataset and a real-world dataset, i.e., USPS

hand-written digit dataset.

4.6.1 Synthetic Experiments

In this subsection, we mainly focus on verifying the effectiveness of the �1 con-

straints for selecting dominant PCs and of the diversity prior over mixing compo-

nents for model redundancy reduction via a synthetic dataset. We first introduce

the generating process of our synthetic dataset and experimental settings, and

then present the experimental results.
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We generated our synthetic dataset in a similar way with Mohamed et al.

(2009). The reason for that we did not directly use their datasets is that they

are used to verify a single PCA component, rather than a mixture models of

PCAs. Therefore, we developed our own complex dataset in three steps. First,

three Bernoulli distributions with mean parameters 0.9, 0.5 and 0.1 are used

to generate three categories of binary data, each of which contains three 16-D

binary prototype vectors with each bit independently drawn from {0, 1} with

the same Bernoulli distribution. Then, 40 duplicate copies of each prototype

are made, composing a dataset with 360 samples in total. One data sample

generated from these steps is illustrated in Figure 4.3a. Each bit is flipped with

probability 0.1 to generate a noisy sample as training dataset. One such sample

is shown in Figure 4.3b.
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(b) Noisy data

Figure 4.3: Black indicates 0 and white indicate 1.

Our experimental settings are listed below. We fixed ξ = 0.1, and ρ = 0.1.

Because parameters K, d, λ are associated with model redundancy, we postpone

their specifications in each verifying experiments later. Regarding initialization,

we set π with a normal distribution, {Φk}Kk=1 with a random diagonal matrix, and

{Υk}Kk=1 with a orthonormal matrix whose entries are randomly generated and

processed with a Gram-Schmidt process. Since these initializations may have

impact on model optimas, to make fair comparisons we set these initializations
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Figure 4.4: The first row is the result from traditional PCA-MM, while the
second row is the result from the proposed diversifed PCA-MM.d = 12, K = 3

for the proposed diversified PCA-MM exactly the same as set in the baseline

algorithm - PCA-MM.

Automatic determine dominating PCs: We fixed K = 3 which is supposed

to be the true number of mixing components, and d = 12 which may be higher

than what the synthetic dataset is actually required to be reconstructed. The

reconstructed mean parameters from baseline algorithm PCA-MM and the pro-

posed diversified PCA-MM are shown in Figure 4.4. Comparing to the true

noisy data sample, both of them achieve adequate results as shown in the first

column. However, their conditional likelihoods shown in the second column in-

dicate that the baseline algorithm PCA-MM accomplishes slightly better result

than the proposed diversified PCA-MM. We attributes its better performance

to its full employment of high-dimensional hidden spaces, whose dimensionali-

ties are determined by transformation matrix cardinalities, which are indirectly

controlled by magnitudes of diagonal quality features {Φ}. The diagonal values
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(a) Traditional PCA-MM

(b) Diversified PCA-MM

Figure 4.5: Hinton diagram of diagonal of {Φk}Kk=1, where white boxes indicate
positive values, and black ones indicate negative values. The magnitudes of Φk’s
are symbolized by the sizes of boxes.

of quality features for both traditional and diversified PCA-MM are visualized

with Hinton diagram and shown in Figure 4.5. It can be easily seen that the Φ

values for the traditional PCA-MM are quite the same indicated with the sizes

of the boxes, while the Φs values for the diversified PCA-MM are varies from

extremely small sizes to quite large sizes. In other words, the former model sim-

ply employs all available PCs to reconstruct the training data, while the latter

model, the proposed one, automatically chooses only dominating PCs to achieve

reconstructing tasks in despite of slight performance sacrifice. In conclusion,

the proposed model with �1 constraints over Φs arms itself with the power of

automatically determining the dominant PCs in the mixture models.

Diversity verification: We fixed d = 4 and varied the number of mixing com-

ponent K to verify the impact of diversity prior on model redundancy reduction.
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(a) K=3

(b) K=2

Figure 4.6: Illustrate effectiveness of diversity over model redundancy reduction
with fixed d = 4 and K = 3 and K = 2 for both traditional PCA-MM (the first
rows) and diversified PCA-MM (the second rows).
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We compare reconstructing results of the proposed diversified PCA-MM with

λ = 1000 to the results of traditional PCA-MM with λ = 0 in situations when

K = 2 and K = 3. The reconstructed mean parameters and their training con-

ditional likelihoods are shown in Figure 4.6. From this figure, when K = 3, both

models (the baseline model results shown in the first row in Figure 4.6a, and

the proposed diversified PCA-MM results in its second row) achieve promising

and comparable results, with the traditional PCA-MM slightly better than ours

in terms of conditional likelihood (again we attribute the inferior of our model

to less dominating PCs); however, when K = 2, the traditional PCA-MM can

not reconstruct the training noisy, but our proposed diversified version achieves

the task perfectly, as supported by both qualitative result (shown in left-bottom

of Figure 4.6b) and quantitative result (shown in right-bottom of Figure 4.6b).

This can be explained by that due to potential overlap amongst learned mixing

components of traditional PCA-MM, it needs more mixing components to cover

the entire data space. In contrast, by introducing diversity prior, our model

has effectively produced more compact model to reconstruct the noisy data. We

conclude that when fixed d = 4, the best number of mixing component required

to reconstruct the training data is 2, namely K = 2.

4.6.2 Real-world Dataset experiment

USPS digits:

We tested our model by conducting experiments on a real-world dataset, i.e.,

the USPS hand-written digits. We choose to use part of this dataset to train the

diversified mixture models, as the same with Li and Tao (2013): Images from

three digit categories of 2, 3 and 4 compose our training dataset. Two hundred

images of each category are randomly selected, and the size of each binary image
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Figure 4.7: Samples from USPS digits 2, 3, 4.

is 16× 16. Sample images from this dataset are shown in Figure 4.7.

We fixed ξ = 5e−3, ρ = 0.1. These two parameters are roughly set according

to Eq. (4.12), where we need to keep the value inside an exponential operator

neither too big nor too small to implement algorithms properly. In addition,

we fixed K = 3, d = 2, λ = 100. Regarding initalization, again we set π with

a normal distribution, and Φ and Υ randomly. The fitted three local PCA

transformation matrices are shown in Figure 4.8. It can be easily seen that with

extremely small hidden space d = 2, our diversified scheme is still able to capture

the main shape for each digit represented by each mixing component, as plotted

in each column.

Cora:

We also test our model in a text clustering scenario. The dataset we applied is

the Cora dataset 1. It consists of machine learning papers and two categories

out of seven, i.e., Case-Based and Genetic-Algorithms, are chosen to train the

mixture model. 200 papers are randomly selected from each category as training

samples, and 50 papers from the rest are treated as testing samples. Each

1http://linqs.umiacs.umd.edu/projects/projects/lbc/
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Figure 4.8: The fitted three local PCA transformation matrices of our diversified
mixture models with K = 3, d = 2. Each row represents one PC.

paper is represented by a high-dimensional vector - 1433 binary vector, where

each dimension stands for a unique word with value 1 showing existence of its

corresponding unique word while value 0 representing its non-existence.

The experimental setting for our model is: ξ = 1e − 3, ρ = 0.1, K = 2, d =

2, λ = 1e5, and for the traditional mixture model, λ = 0. The dominant PCs

of the fitted transformation matrices for both the traditional setting and the

diversified setting are shown in Figure 4.9. Comparatively, the PCs of two mixing

components of the diversified model are not only diverse with each other, but

also as succinct as possible, as most of their values are much smaller than the

dominant ones (shown as dark black pixels). Further, the effectiveness of the

diversity is verified by clustering accuracy of test papers where the diversified

version improves the baseline by 4.25%. We attribute this superiority to the fact

that the true representations of text clusters repel with each other.
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(a) Learned from the traditional mixture model with test clustering accuracy
54.5%.

(b) Dominant PCs of two mixing components learned from the diversified PCA-
MM, and its test clustering accuracy is 58.75%.

Figure 4.9: Dominant PCs of two mixing components with dark black pixels
indicating larger absolute values than light grey pixels.
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4.7 Summary

In this chapter, we have proposed a diversified exponential family PCA mixture

models. The proposed model is considered powerful due to three advantages.

First, it is capable of handling with general data types such as binary and inte-

ger, rather than limited to continuous data type. Second, the mixing develop-

ment makes it competent to deal with complex general data-typed structures.

Third, the diversified extension effectively alleviates one of the potential draw-

backs mixture models exhibit, namely, inferred overlapping mixing components.

The third advantage is achieved by this chapter. How to explicitly encode diverse

prior over mixing components of SePCA-MM and how to solve the diversified

model are our main contributions. In addition, due to the proposed diversify-

ing strategy, the proposed model provides a straightforward way to do model

selection, namely, determining the effective number of PCs of each mixing PCA

component. Empirical results verify the effectiveness of the proposed model.

Our future work will mainly focus on solving the proposed model using more

accurate approximations such as Monte Carlo methods and variational inference

methods.
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Conclusion and Further Study

This chapter first concludes the whole thesis, and then proposes several further

research directions of the topic.

5.1 Conclusions

This thesis proposes a diversified framework to extend traditional probabilistic

graphical models to alleviate potential overlapping problems. Different formats

of diverse priors for different forms of probabilistic graphical models (PGMs)

have been designed in this thesis. By explicitly encoding these diverse priors

into traditional PGMs, three different diversified PGMs have been elaborated

and applied to various application scenarios.

In Chapter 2, diversified hidden Markov models have been proposed based

on the assumption that the state-transition probabilities should be diversified

to reinforce the discriminability amongst hidden states. Therefore, the diver-

sity is imposed over transition matrix of each HMM. In addition, to satisfy the

normalization constraint of each row of transition matrix, a probability-valued

DPP measure is applied to construct the diverse prior. The resulted diversified
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HMMs are solved in an EM-framework and its performance is verified by com-

petitive results when comparing to the state-of-the-arts in sequential labelling

application scenarios, i.e., PoS tagging and OCR.

In Chapter 3, a time-varying determinantal point processes (TV-DPP) has

been proposed to serve the purpose of diverse sequential subset recommendation.

Diversity is naturally required by news readers or other information extractors

not only at one specific time stamp but also along a timeline. Therefore, a

diversity prior should be imposed over both individual data subsets as well as

neighbouring data subsets along the timeline. By taking advantage of one ob-

servation that the data changes between time stamps are relatively small, this

chapter proposes a fast sampling algorithm based on sequential Monte Carlo

techniques for diverse subset selection. Empirical results on diverse news rec-

ommendation and Enron Corpus communication network evolving confirm the

efficiency of the proposed diverse scheme.

In Chapter 4, diversified exponential family principal component analysis

mixture models have been proposed with the intention of reducing overlapping

amongst mixing components. Straightforwardly, a diverse prior is imposed over

mixing components of the mixture models to encourage repulsiveness amongst

them. As each mixing component is actually a probabilistic PCA (PPCA), a

transformation-matrix-valued diverse prior has been designed. An approxima-

tion EM-framework based on Jensen’s inequality has been derived for parameter

learning and inference. Experimental results on both a synthetic dataset and a

real handwritten digits image dataset confirm the effectiveness of the proposed

model.
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5.2 Further study

Although the presented diversified models in this thesis have achieved promising

results to some extent, some issues still remain open and need to be explored

further as future studies:

• The parameter learning for the proposed diversified PGMs is actually point

estimation. Bayesian estimation will be an important extension for current

version, which will inherit all advantages from Bayesian inference, such as

avoiding overfitting. However, one tough nut to crack is how to efficiently

and accurately calculate the non-conjugate prior-likelihood objective of the

diversified PGMs. One can resort to approximation algorithms, such as ef-

ficient variational inference, accurate sampling approximation algorithms.

• The experimental results demonstrate that the proposed diversified frame-

work has achieved initial success in three different specific PGMs, namely,

HMMs, TV-DPPs and PPCA. In the light of this, expanding this frame-

work to more other forms of PGMs which exhibit similar problems as

existing in these three will expect to effectively alleviate the drawback of

these models and improve their performance.

• The proposed diversified framework has already been successfully applied

to various application scenarios, from optical character recognition (OCR),

part-of-speech tagging (PoS tagging), news recommendation to hand-written

digits reconstruction. However, as mentioned in Introduction chapter, di-

versity is favoured by a extremely large amount of applications. Therefore,

it is believed that the proposed diversified framework will definitely benefit

more application scenarios to be explored.
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