A Technical Roadmap for Achieving Scalable Big Sensing Data Curation on Cloud

by

Chi Yang

B. Sci. (Shandong University) M. Sci. by Research (Swinburne University of Technology)

A thesis submitted to Faculty of Engineering and Information Technology University of Technology Sydney

> for the degree of Doctor of Philosophy

> > May 2016

To my family and my friends

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has never been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written all by myself. Any help that I have received during my research work and this thesis preparation itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

Acknowledgement

First of all, I sincerely appreciate the help from my principle coordinating supervisor, Prof. Jinjun Chen, for his research suggestions, experienced supervision and continuous encouragement for my PhD study. Then, I want to express my appreciation to my co/ex-supervisors, principal research scientist Dr. Surya Nepal from CSIRO, for his supervision and generous support. Without their consistent supports and supervision, it would be very difficult complete my Ph.D study and this thesis.

I also need to express my appreciation to University of Technology Sydney (UTS) and the Faculty of Engineering and IT (FEIT) for offering me the IPRS/APA full Research Scholarship throughout my study. At the same time, appreciation should also be given to CSIRO for providing me with a top-up scholarship, supervisions and extra research facilities for my research.

My Special thanks should go to staff members, research assistants, colleagues, and friends at UTS, for their helps, suggestions, friendships and encouragements, in particular, Prof. Igor Hawryszkiewycz, Indrawati Nataatmadja, Xuyun Zhang, Deepak Puthal, Chang Liu, Ming Liu, Adrian Johannes and Nazanin Borhan.

Last but not least, I am deeply grateful to my parents Zhimin Yang and Peng Gong, my Grandma Qing Li for their long term financial support, generous understanding and emotional encouragement. Finally, I want to express my appreciation to all the friends and relatives who contribute to my life, work and experience which made my Ph.D study colourful and fruitful.

Abstract

Nowadays, big data means that data sets are so large and complex that they become difficult to process with traditional database management systems or traditional data processing tools. As important sources of big data sets, modern sensing systems generate huge volumes of sensing data beyond the ability of commonly-used software tools to capture, manage, and process within a tolerable time length. Big sensing data is prevalent in both industry and scientific research applications. The massive size, extreme complexity and high speed of big sensing data form new challenges in terms of data collection, data storage, data organization, data analysis and data publishing in real time when deploying some real world sensing systems. Cloud environment, with its massive storage, scalability and powerful computing capability, becomes an ideal platform for big sensing data processing. More and more research and industry efforts have been devoted to explore ways to process big sensing data on Cloud in order to offer better solutions for challenges brought by big sensing data. In this thesis, we will concentrate on the data curation and preparation issues under the overall theme of big sensing data processing. Especially, under the topic of big sensing data curation on Cloud, two important issues including scalable big sensing data cleaning and scalable big sensing data compression will be intensively investigated. In terms of big sensing data cleaning, a systematic approach will be developed to solve error detection and error recovery problems of big sensing data. In terms of big sensing data compression, independent techniques will be developed to reduce the size of incoming big sensing data, hence, to reduce the cost of Cloud storage, avoid big data set navigation and guarantee real time reaction. Different to previous traditional data cleaning and compression techniques, big sensing data features, the real time requirement, scalability of Cloud, will have huge influence to the techniques

developed in this thesis. With those developed techniques, a detailed roadmap for achieving scalable big sensing data curation on Cloud will be proposed as our overall research outcome. Finally, the different techniques in our proposed big sensing data curation roadmap will be tested and verified with real world big sensing data sets on Cloud to show their effectiveness, efficiency and other performance gains. We aim to demonstrate that with the offered roadmap of big sensing data curation on Cloud, the typical challenges within big sensing data curation will be solved through the massive computational power and resource support from Cloud.

The Author's Publications

I have authored or co-authored 17 fully-refereed research publications during my Ph.D study, including 1 book chapter (co-authored), 6 ERA ranked A^{*1} journal papers (2 as the first author), 3 ERA ranked A journal papers (1 as the first author), 5 international conference papers (1 as the first author) and other 2 high quality first author research papers under review by top research journals. The impact factor (IF)² of each journal paper is also associated at the end of the paper. We utilize the symbol \dagger to indicate the first author publications which are main research outcome of this thesis.

Book Chapter:

 Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang and Jinjun Chen, Privacy Preservation over Big Data in Cloud Systems. *Security, Privacy and Trust in Cloud Systems*, pages 239-258, Springer, ISBN: 978-3-642-38585-8, 2013.

Journal Articles:

- [†]Chi Yang and Jinjun Chen, A Scalable Data Chunk Similarity based Compression Approach for Efficient Big Sensing Data Processing on Cloud, IEEE Transactions on Knowledge and Data Engineering (TKDE), in press, 2016. (A, IF: 2.067)
- [†]Chi Yang, Chang Liu, Xuyun Zhang, Surya Nepal and Jinjun Chen, A Time Efficient Approach for Detecting Errors in Big Sensor Data on Cloud, IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 26, no. 2, pp. 329-339, 2015. (A*, IF: 1.796)

 ¹ ERA ranking is a ranking framework for publications in Australia. Refer to <u>http://www.arc.gov.au/</u><u>era/era_2010/archive/era_journal_list.htm</u> for detailed ranking tiers. The 2010 version is used herein. For journal papers: A* (top 5%); A (next 15%). For conference papers (no A* rank): A(top 20%).
² IF: Impact Factor. Refer to <u>http://wokinfo.com/essays/impact-factor/</u> for details and query.

- *Chi Yang, Xuyun Zhang, Changmin Zhong, Chang Liu, Jian Pei, Kotagiri Ramamohanarao, and Jinjun Chen, *A Spatiotemporal Compression based Approach for Efficient Big Data Processing on Cloud*, Journal of Computer and System Sciences (JCSS), vol. 80, no. 8, pp.1563-1583, 2014. (A*, IF : 1.106)
- Xuyun Zhang, Wanchun Dou, Jian Pei, Surya Nepal, Chi Yang, Chang Liu, Jinjun Chen, Proximity-Aware Local-Recoding Anonymization with MapReduce for Scalable Big Data Privacy Preservation in Cloud, IEEE Transactions on Computers, vol. 64, no. 8, pp.2293-2307, 2015. (A*, IF : 1.659)
- Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun Chen, A Hybrid Approach for Scalable Subtree Anonymization over Big Data using MapReduce on Cloud, Journal Computer and System Sciences (JCSS), vol. 80, no. 5, pp. 1008-1020, 2014. (A*, IF : 1.106)
- Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun Chen, SaC-FRAPP: A Scalable and Cost-effective Framework for Privacy Preservation over Big Data on Cloud, Concurrency and Computation: Practice and Experience (CCPE), vol. 25, no. 18, pp. 2561-2576, 2013. ISSN: 1532-0634. (A, IF: 0.845)
- Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, and Jinjun Chen, MuR-DPA: Top-down Levelled Multi-replica Merkle Hash Tree Based Secure Public Auditing for Dynamic Big Data Storage on Cloud, IEEE Transactions on Computers, in press, 2014. (A*, IF : 1.659)
- Chang Liu, Jinjun Chen, Laurence T. Yang, Xuyun Zhang, Chi Yang, Rajiv Ranjan and Kotagiri Ramamohanarao, *Authorized Public Auditing of Dynamic Big Data Storage on Cloud with Efficient Verifiable Fine-grained Updates*, IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 9, pp.2234 - 2244, Sept. 2014. (A*, IF: 1.796)

 Chang Liu, Xuyun Zhang, Chi Yang and Jinjun Chen, CCBKE - Session Key Negotiation for Fast and Secure Scheduling of Scientific Applications in Cloud Computing, Future Generation Computer Systems (FGCS), vol. 29, no. 5, pp. 1300-1308, 2013. ISSN: 0167-739X. (A, IF: 1.864)

Conference Papers:

- 11. †Chi Yang, Chang Liu, Xuyun Zhang, Surya Nepal and Jinjun Chen, *Querying Streaming XML Big Data with Multiple Filters on Cloud*, presented at the 2nd International Conference on Big Data and Engineering (BDSE 2013), pp. 1121-1127, Sydney, Australia, December, 2013.
- 12. Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun Chen, Combining Top-Down and Bottom-Up: Scalable Subtree Anonymization over Big Data using MapReduce on Cloud, presented at the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-13), pp. 501-508, Melbourne, Australia, July, 2013. (A)
- 13. Xuyun Zhang, Chi Yang, Surya Nepal, Chang Liu, Wanchun Dou and Jinjun Chen, A MapReduce Based Approach of Scalable Multidimensional Anonymization for Big Data Privacy Preservation on Cloud, presented at the Third International Conference on Cloud and Green Computing (CGC 2013), pp. 105-112, Karlsurhe, Germany, October, 2013.
- Chang Liu, Rajiv Ranjan, Xuyun Zhang, Chi Yang, Dimitrios Georgakopoulos and Jinjun Chen, *Public Auditing for Big Data Storage in Cloud Computing -- A Survey*, presented at the 2nd International Conference on Big Data and Engineering (BDSE 2013), pp. 1128-1135, Sydney, Australia, December, 2013.
- 15. Chang Liu, Xuyun Zhang, Jinjun Chen and **Chi Yang**, *An Authenticated Key Exchange Scheme for Efficient Security-Aware Scheduling of Scientific Applications in Cloud Computing*, presented at the 2011 IEEE Ninth International

Conference on Dependable, Autonomic and Secure Computing (DASC'11), pp. 372-379, Sydney, Australia, December, 2011.

Papers under Review:

- 16. †Chi Yang, Surya Nepal and Jinjun Chen, A Scalable Non-linear Regression based Approach for Efficient Compression of Big Sensing Data on Cloud, under review by Journal of Computer and System Sciences (JCSS), 2016. (A*, IF : 1.106)
- 17. †Chi Yang and Jinjun Chen, A Scalable Multi-data Sources based Recursive Approximation Approach for Fast Error Recovery in Big Sensing Data on Cloud, to be submitted, 2016.

Table of Contents

Figure	5		xiv
Tables			xvi
Chapte	er 1 I	ntroduction	1
1.1	Backg	round ·····	
	1.1.1	Big Sensing Data	
	1.1.2	Cloud ·····	
1.2	Motiva	ation: Big Sensing Data Curation on Cloud	
	1.2.1	Four Stages Big Sensing Data Processing	
	1.2.2	On-Cloud Big Sensing Data Curation Roadmap	7
1.3	Contri	butions	
1.4	Thesis	Outline	
Chapte	er 2 F	Related Work	14
2.1	Genera	al Research Trend	14
2.2	Big Da	ata Processing and Cloud	16
	2.2.1	Big Sensing Data	
	2.2.2	Big Graph Data	21
	2.2.3	MapReduce/Spark and Hadoop Applications	23
2.3	Big Da	ata Cleaning Techniques	
	2.3.1	Error Detection	
	2.3.2	Error Recovery	
2.4	Big Da	ata Compression Techniques	
	2.4.1	Spatiotemporal Compression	
	2.4.2	Lossy and Lossless Compression	
	2.4.3	Other Compression Techniques	
2.5	Relate	d Platforms and Data Sets	
	2.5.1	U-Cloud Platform	
	2.5.2	Big Sensing Data Sets	
2.6	Summ	ary	
Chapte	er 3 E	Error Detection	43

Chapter 3 Error Detection

3.1			• 43
	3.1.1	Research Problem Analysis	• 44
	4.2.2	Contents Outline ·····	• 45
3.2	Sensir	ng Data Errors ·····	• 45
	3.2.1	Error Classification	
	3.2.2	Error Type Definition	• 48
3.3	On-Cl	oud Error Detection	· 50
	3.3.1	Scale-free Complex Networks	· 50
	3.3.2	Model-based on Cloud Error Detection	
3.4	Algori	thms	• 54
	3.4.1	Error Detection	• 54
	3.4.2	Error Localization	
	3.4.3	Complexity Analysis	
	3.4.4	Algorithm Calibration on Cloud ·····	
3.5	Experi	iments ·····	
	3.5.1	Experiment Settings	
	3.5.2	Experiment Results	• 61
3.6	Summ	ary	• 66
Chapte	er 4 I	Error Recovery	67
4.1	Introd	uction	• 67
	4.1.1	Research Problem Analysis ·····	• 68
	4.1.2	Contents Outline ·····	• 70
4.2	Gener	al Roadmap for Error Recovery	• 71
	4.2.1	Initialization: Partition and Localization	• 71
	4.2.2	Inter Cluster Strategy for Overlappling Coverage	• 72
	4.2.3	Intra Cluster Time Series Approximation	• 74
	4.2.4	Recovery based on Time Series Prediction	• 75
4.3	Error	Types based Recovery Solutions	• 77
	4.3.1	Recovery for Permanent Errors	• 77
	4.3.2	Recovery for Ephemeral Errors	· 80
	4.3.3	Recovery for Aggregation and Fusion Error (AFe)	· 83
4.4	Algori	thms	· 84
	1115011		
	4.4.1	Preparation for Error Recovery	· 84

	4.4.3	Scalable Algorithm on Reducer Side	
	4.4.4	Complexity Analysis	
4.5	Experi	iments ·····	
	4.5.1	Experimental Settings and Data Sets	
	4.5.2	Analysis for Error Recovery Accuracy Rate	91
	4.5.3	Analysis for Error Recovery Time Cost	94
4.6	Summ	ary	
Chapte	er 5 S	Spatiotemporal Compression	97
5.1	Introd	uction ·····	97
	5.1.1	Research Problem Analysis	
	5.1.2	Contents Outline	
5.2	Spatio	temporal Compression ······	
	5.2.1	Spatiotemporal Compression	
	5.2.2	Order Compression with Spatiotemporal Correlations ···	
5.3	Data I	Driven Scheduling on Cloud ·····	
	5.3.1	Different Scheduling Strategies over Cloud	
	5.3.2	Calculation for Weighted Data Exchanging Edges	
5.4	Algori	ithms ·····	
	5.4.1	Spatiotemporal Clustering Algorithm	
	5.4.2	Compression Algorithms	
	5.4.3	Scheduling Algorithm	117
	5.4.4	Overall Strategy for Cloud Big Data Processing	
5.5	Experi	iments ·····	
	5.5.1	Environments and Data Sets	
	5.5.2	Spatiotemporal Compression Experiment	
	5.5.3	Time Performance Gains of Scheduling	
	5.5.4	Data Accuracy Experiment	
5.6	Summ	ary	
Chapte	er 6 I	Regression-based Compression	130
6.1	Introd	uction ·····	
	6.1.1	Research Problem Analysis	
	6.1.2	Contents Outline	
6.2	Comp	ression based on Non-linear Regression	
	6.2.1	Non-linear Regression Prediction Model	

	6.2.2	Unequal Weighting Methods for Data Points	138
6.3	Algorithms		141
	6.3.1	Algorithm for Non-linear Regression	141
	6.3.2	Non-linear Regression Compression with MapReduce	
6.4	Experi	ments	144
	6.4.1	Experimental Data Sets	145
	6.4.2	Experiment for the Compression with Non-linear Regression ·	146
	6.4.3	Experiment for Data Loss and Accuracy	147
6.5	Summ	ary	
Chapte	er7 I	DataChunk based Compression	151
7.1	Introd	uction ·····	151
	7.1.1	Research Problem Analysis	152
	7.1.2	Contents Outline ·····	154
7.2	Data C	Chunk Similarity and Compression	154
	7.2.1	Similarity Model ·····	154
	7.2.2	Data Chunk Generation and Formation	158
	7.2.3	Data Chunks based Big Data Compression	161
7.3	Data C	Chunk Similarity based Compression Algorithm	163
	7.3.1	Algorithm based on MapReduce	163
	7.3.2	Standard Data Chunks Generation Algorithm	165
	7.3.3	Compression Algorithm	… 167
7.4	Experi	ments	170
	7.4.1	Experimental Data Sets	170
	7.4.2	General Comparison	172
	7.4.3	Temporal and Spatial Saving after Compression	173
	7.4.4	Data Accuracy Analysis	175
7.5	Summ	ary	178
Chapte	er 8 (Conclusions and Future Work	180
8.1	Conclu	usions ·····	180
8.2	Future	Work	182
Bibliog	graphy		184

Figures

Figure 1-1 Roadmap for Big Sensing Data Curation on Cloud	7
Figure 2-1 U-Cloud Environment with Apache Hadoop Cluster	
Figure 3-1 Error Scenarios from Sensor Network Systems Data	47
Figure 3-2 Examples for Scale-free networks and no scale-free networks …	52
Figure 3-3 Cluster based Error Detection Strategy on Cloud	53
Figure 3-4 Error Detection Algorithm	55
Figure 3-5 Error Localization Algorithm	56
Figure 3-6 Example: Original Testing Data before Experiment	60
Figure 3-7 Example: Normalized Heterogeneous Sensing Data Sets	61
Figure 3-8 Time cost for detecting errors from the testing data set	62
Figure 3-9 Comparison of two error detection strategies	63
Figure 3-10 False Positive Ratios with Different Detection Algorithms	64
Figure 3-11 False Positive Ratios with Different Error Types	65
Figure 4-1 Possible Recovery Strategies for Spike Error	69
Figure 4-2 Location Influence to Error Recovery Strategy	73
Figure 4-3 Sensing Data Flat Line Errors (permanent)	78
Figure 4-4 Sensing Data Loss Errors (permanent)	79
Figure 4-5 Sensing Data Out of Bound Errors (permanent)	80
Figure 4-6 Sensing Data Spike Errors (ephemeral)	81
Figure 4-7 Sensing Data Loss Errors (ephemeral)	82
Figure 4-8 Sensing Data Out of Bound Errors (ephemeral)	83
Figure 4-9 Experiment for Recovery Data Accuracy	93
Figure 4-10 Experiment for Recovery Data Accuracy	95
Figure 5-1 Requirement for Big Graph Data Cloud Processing	100
Figure 5-2 Example: Time Series based Clustering	102
Figure 5-3 Data Changes Influence to a Clustering Algorithm	106
Figure 5-4 Order Compression with Multiple Attributes	109
Figure 5-5 Inter-node Order Compression for Data Exchanges	110

Figure 5-6 Different Mapping Strategies for Resources Scheduling on Cloud ····· 113
Figure 5-7 Computing Model of Spatiotemporal Compression Ratio 114
Figure 5-8 Heterogeneous Sensing Data Sets from 1 Time Series (KB/sec./node) 120
Figure 5-9 Data Exchanging Reduction for High Frequency Data Sets 121
Figure 5-10 Data Exchanging Reduction for Light and Temperature Data Sets \cdots 122
Figure 5-11 Time Cost for Graph Data with A Window Length 'L' 124
Figure 5-12 Relationship between Fidelity Loss and Error Bound 127
Figure 5-13 Worst and Best Case Analysis for Fidelity Loss 128
Figure 6-1 High Data Rate Earthquake Sensing Data
Figure 6-2 Non-linear Regression based on Partitioned Trigonometric Function \cdot 133
Figure 6-3 Single Independent Weighted Non-linear Regression 134
Figure 6-4 Compressed Data Size with Different Predicting Model 146
Figure 6-5 Fidelity Loss with the Increasing Error Bounds 149
Figure 7-1 Two Types of Geometry Similarities
Figure 7-2 Comparison of Different Geometry Similarities
Figure 7-3 Initial Formation Path for a Standard Data Chunk Set S' 159
Figure 7-4 Possible Data Chunk States at $t=i(a)$
Figure 7-5 Possible Data Chunk States at $t=i(b)$
Figure 7-6 Programming Model of MapReduce
Figure 7-7 Data Size Compressed within 24 Hours Test
Figure 7-8 Compression Ratio for Different 'r' 175
Figure 7-9 Relationship between Compression Ratio and Accuracy178

Tables

Table 1-1 Big Sensing Data Sets Comprison	
Table 7-1 Meteorology Data Formats	