

A Technical Roadmap for Achieving
Scalable Big Sensing Data Curation

on Cloud

by

Chi Yang

B. Sci. (Shandong University)

M. Sci. by Research (Swinburne University of Technology)

A thesis submitted to

Faculty of Engineering and Information Technology

University of Technology Sydney

for the degree of

Doctor of Philosophy

May 2016

i

To my family and my friends

ii

CERTIFICATE OF ORIGINAL
AUTHORSHIP

I certify that the work in this thesis has never been submitted for a degree

nor has it been submitted as part of requirements for a degree except as

fully acknowledged within the text.

I also certify that the thesis has been written all by myself. Any help that

I have received during my research work and this thesis preparation itself

has been acknowledged. In addition, I certify that all information sources

and literature used are indicated in the thesis.

Signature of Student:

Date:

iii

Acknowledgement

First of all, I sincerely appreciate the help from my principle coordinating supervisor,

Prof. Jinjun Chen, for his research suggestions, experienced supervision and

continuous encouragement for my PhD study. Then, I want to express my appreciation

to my co/ex-supervisors, principal research scientist Dr. Surya Nepal from CSIRO,

for his supervision and generous support. Without their consistent supports and

supervision, it would be very difficult complete my Ph.D study and this thesis.

I also need to express my appreciation to University of Technology Sydney (UTS)

and the Faculty of Engineering and IT (FEIT) for offering me the IPRS/APA full

Research Scholarship throughout my study. At the same time, appreciation should

also be given to CSIRO for providing me with a top-up scholarship, supervisions and

extra research facilities for my research.

My Special thanks should go to staff members, research assistants, colleagues,

and friends at UTS, for their helps, suggestions, friendships and encouragements, in

particular, Prof. Igor Hawryszkiewycz, Indrawati Nataatmadja, Xuyun Zhang,

Deepak Puthal, Chang Liu, Ming Liu, Adrian Johannes and Nazanin Borhan.

Last but not least, I am deeply grateful to my parents Zhimin Yang and Peng Gong,

my Grandma Qing Li for their long term financial support, generous understanding

and emotional encouragement. Finally, I want to express my appreciation to all the

friends and relatives who contribute to my life, work and experience which made my

Ph.D study colourful and fruitful.

iv

Abstract

Nowadays, big data means that data sets are so large and complex that they become

difficult to process with traditional database management systems or traditional data

processing tools. As important sources of big data sets, modern sensing systems

generate huge volumes of sensing data beyond the ability of commonly-used software

tools to capture, manage, and process within a tolerable time length. Big sensing data

is prevalent in both industry and scientific research applications. The massive size,

extreme complexity and high speed of big sensing data form new challenges in terms

of data collection, data storage, data organization, data analysis and data publishing

in real time when deploying some real world sensing systems. Cloud environment,

with its massive storage, scalability and powerful computing capability, becomes an

ideal platform for big sensing data processing. More and more research and industry

efforts have been devoted to explore ways to process big sensing data on Cloud in

order to offer better solutions for challenges brought by big sensing data. In this thesis,

we will concentrate on the data curation and preparation issues under the overall

theme of big sensing data processing. Especially, under the topic of big sensing data

curation on Cloud, two important issues including scalable big sensing data cleaning

and scalable big sensing data compression will be intensively investigated. In terms

of big sensing data cleaning, a systematic approach will be developed to solve error

detection and error recovery problems of big sensing data. In terms of big sensing data

compression, independent techniques will be developed to reduce the size of incoming

big sensing data, hence, to reduce the cost of Cloud storage, avoid big data set

navigation and guarantee real time reaction. Different to previous traditional data

cleaning and compression techniques, big sensing data features, the real time

requirement, scalability of Cloud, will have huge influence to the techniques

v

developed in this thesis. With those developed techniques, a detailed roadmap for

achieving scalable big sensing data curation on Cloud will be proposed as our overall

research outcome. Finally, the different techniques in our proposed big sensing data

curation roadmap will be tested and verified with real world big sensing data sets on

Cloud to show their effectiveness, efficiency and other performance gains. We aim to

demonstrate that with the offered roadmap of big sensing data curation on Cloud, the

typical challenges within big sensing data curation will be solved through the massive

computational power and resource support from Cloud.

vi

The Author’s Publications

I have authored or co-authored 17 fully-refereed research publications during my

Ph.D study, including 1 book chapter (co-authored), 6 ERA ranked A*1 journal papers

(2 as the first author), 3 ERA ranked A journal papers (1 as the first author), 5

international conference papers (1 as the first author) and other 2 high quality first

author research papers under review by top research journals. The impact factor (IF)2

of each journal paper is also associated at the end of the paper. We utilize the symbol

† to indicate the first author publications which are main research outcome of this

thesis.

Book Chapter:
1. Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang and Jinjun Chen, Privacy

Preservation over Big Data in Cloud Systems. Security, Privacy and Trust in

Cloud Systems, pages 239-258, Springer, ISBN: 978-3-642-38585-8, 2013.

Journal Articles:
2. †Chi Yang and Jinjun Chen, A Scalable Data Chunk Similarity based

Compression Approach for Efficient Big Sensing Data Processing on Cloud, IEEE

Transactions on Knowledge and Data Engineering (TKDE), in press, 2016. (A, IF:

2.067)

3. †Chi Yang, Chang Liu, Xuyun Zhang, Surya Nepal and Jinjun Chen, A Time

Efficient Approach for Detecting Errors in Big Sensor Data on Cloud, IEEE

Transactions on Parallel and Distributed Systems (TPDS), vol. 26, no. 2, pp. 329-

339, 2015. (A*, IF: 1.796)

1 ERA ranking is a ranking framework for publications in Australia. Refer to http://www.arc.gov.au/
era/era_2010/archive/era_journal_list.htm for detailed ranking tiers. The 2010 version is used herein.
For journal papers: A* (top 5%); A (next 15%). For conference papers (no A* rank): A(top 20%).
2 IF: Impact Factor. Refer to http://wokinfo.com/essays/impact-factor/ for details and query.

vii

4. †Chi Yang, Xuyun Zhang, Changmin Zhong, Chang Liu, Jian Pei, Kotagiri

Ramamohanarao, and Jinjun Chen, A Spatiotemporal Compression based

Approach for Efficient Big Data Processing on Cloud, Journal of Computer and

System Sciences (JCSS), vol. 80, no. 8, pp.1563-1583, 2014. (A*, IF : 1.106)

5. Xuyun Zhang, Wanchun Dou, Jian Pei, Surya Nepal, Chi Yang, Chang Liu, Jinjun

Chen, Proximity-Aware Local-Recoding Anonymization with MapReduce for

Scalable Big Data Privacy Preservation in Cloud, IEEE Transactions on

Computers, vol. 64, no. 8, pp.2293-2307, 2015. (A*, IF : 1.659)

6. Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun

Chen, A Hybrid Approach for Scalable Subtree Anonymization over Big Data

using MapReduce on Cloud, Journal Computer and System Sciences (JCSS), vol.

80, no. 5, pp. 1008-1020, 2014. (A*, IF : 1.106)

7. Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun

Chen, SaC-FRAPP: A Scalable and Cost-effective Framework for Privacy

Preservation over Big Data on Cloud, Concurrency and Computation: Practice

and Experience (CCPE), vol. 25, no. 18, pp. 2561-2576, 2013. ISSN: 1532-0634.

(A, IF: 0.845)

8. Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, and Jinjun Chen,

MuR-DPA: Top-down Levelled Multi-replica Merkle Hash Tree Based Secure

Public Auditing for Dynamic Big Data Storage on Cloud, IEEE Transactions on

Computers, in press, 2014. (A*, IF : 1.659)

9. Chang Liu, Jinjun Chen, Laurence T. Yang, Xuyun Zhang, Chi Yang, Rajiv

Ranjan and Kotagiri Ramamohanarao, Authorized Public Auditing of Dynamic

Big Data Storage on Cloud with Efficient Verifiable Fine-grained Updates, IEEE

Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 9, pp.2234

- 2244, Sept. 2014. (A*, IF: 1.796)

viii

10. Chang Liu, Xuyun Zhang, Chi Yang and Jinjun Chen, CCBKE - Session Key

Negotiation for Fast and Secure Scheduling of Scientific Applications in Cloud

Computing, Future Generation Computer Systems (FGCS), vol. 29, no. 5, pp.

1300-1308, 2013. ISSN: 0167-739X. (A, IF: 1.864)

Conference Papers:
11. †Chi Yang, Chang Liu, Xuyun Zhang, Surya Nepal and Jinjun Chen, Querying

Streaming XML Big Data with Multiple Filters on Cloud, presented at the 2nd

International Conference on Big Data and Engineering (BDSE 2013), pp. 1121-

1127, Sydney, Australia, December, 2013.

12. Xuyun Zhang, Chang Liu, Surya Nepal, Chi Yang, Wanchun Dou and Jinjun

Chen, Combining Top-Down and Bottom-Up: Scalable Subtree Anonymization

over Big Data using MapReduce on Cloud, presented at the 12th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications (IEEE TrustCom-13), pp. 501-508, Melbourne, Australia, July,

2013. (A)

13. Xuyun Zhang, Chi Yang, Surya Nepal, Chang Liu, Wanchun Dou and Jinjun

Chen, A MapReduce Based Approach of Scalable Multidimensional

Anonymization for Big Data Privacy Preservation on Cloud, presented at the

Third International Conference on Cloud and Green Computing (CGC 2013), pp.

105-112, Karlsurhe, Germany, October, 2013.

14. Chang Liu, Rajiv Ranjan, Xuyun Zhang, Chi Yang, Dimitrios Georgakopoulos

and Jinjun Chen, Public Auditing for Big Data Storage in Cloud Computing -- A

Survey, presented at the 2nd International Conference on Big Data and Engineering

(BDSE 2013), pp. 1128-1135, Sydney, Australia, December, 2013.

15. Chang Liu, Xuyun Zhang, Jinjun Chen and Chi Yang, An Authenticated Key

Exchange Scheme for Efficient Security-Aware Scheduling of Scientific

Applications in Cloud Computing, presented at the 2011 IEEE Ninth International

ix

Conference on Dependable, Autonomic and Secure Computing (DASC'11), pp.

372-379, Sydney, Australia, December, 2011.

Papers under Review:
16. †Chi Yang, Surya Nepal and Jinjun Chen, A Scalable Non-linear Regression

based Approach for Efficient Compression of Big Sensing Data on Cloud, under

review by Journal of Computer and System Sciences (JCSS), 2016. (A*, IF : 1.106)

17. †Chi Yang and Jinjun Chen, A Scalable Multi-data Sources based Recursive

Approximation Approach for Fast Error Recovery in Big Sensing Data on Cloud,

to be submitted, 2016.

x

Table of Contents

Figures xiv

Tables xvi

Chapter 1 Introduction 1

1.1 Background ··· 1

1.1.1 Big Sensing Data ·· 2

1.1.2 Cloud ··· 3

1.2 Motivation: Big Sensing Data Curation on Cloud ······························· 4

1.2.1 Four Stages Big Sensing Data Processing ······························· 5

1.2.2 On-Cloud Big Sensing Data Curation Roadmap ······················· 7

1.3 Contributions ·· 9

1.4 Thesis Outline ·· 12

Chapter 2 Related Work 14

2.1 General Research Trend ·· 14

2.2 Big Data Processing and Cloud ··· 16

2.2.1 Big Sensing Data ··· 18

2.2.2 Big Graph Data ··· 21

2.2.3 MapReduce/Spark and Hadoop Applications ·························· 23

2.3 Big Data Cleaning Techniques ·· 25

2.3.1 Error Detection ··· 25

2.3.2 Error Recovery ··· 28

2.4 Big Data Compression Techniques ··· 31

2.4.1 Spatiotemporal Compression ··· 32

2.4.2 Lossy and Lossless Compression ·· 34

2.4.3 Other Compression Techniques·· 37

2.5 Related Platforms and Data Sets ·· 38

2.5.1 U-Cloud Platform ·· 39

2.5.2 Big Sensing Data Sets ··· 40

2.6 Summary·· 42

Chapter 3 Error Detection 43

xi

3.1 Introduction ··· 43

3.1.1 Research Problem Analysis ··· 44

4.2.2 Contents Outline ·· 45

3.2 Sensing Data Errors ·· 45

3.2.1 Error Classification ··· 45

3.2.2 Error Type Definition ·· 48

3.3 On-Cloud Error Detection ··· 50

3.3.1 Scale-free Complex Networks ·· 50

3.3.2 Model-based on Cloud Error Detection································ 52

3.4 Algorithms ··· 54

3.4.1 Error Detection ·· 54

3.4.2 Error Localization ··· 55

3.4.3 Complexity Analysis ··· 56

3.4.4 Algorithm Calibration on Cloud ·· 57

3.5 Experiments ··· 59

3.5.1 Experiment Settings ·· 60

3.5.2 Experiment Results ··· 61

3.6 Summary ··· 66

Chapter 4 Error Recovery 67

4.1 Introduction ··· 67

4.1.1 Research Problem Analysis ··· 68

4.1.2 Contents Outline ·· 70

4.2 General Roadmap for Error Recovery ··· 71

4.2.1 Initialization: Partition and Localization ······························ 71

4.2.2 Inter Cluster Strategy for Overlappling Coverage ··················· 72

4.2.3 Intra Cluster Time Series Approximation ····························· 74

4.2.4 Recovery based on Time Series Prediction ··························· 75

4.3 Error Types based Recovery Solutions ·· 77

4.3.1 Recovery for Permanent Errors ··· 77

4.3.2 Recovery for Ephemeral Errors ··· 80

4.3.3 Recovery for Aggregation and Fusion Error (AFe) ·················· 83

4.4 Algorithms ··· 84

4.4.1 Preparation for Error Recovery ··· 84

4.4.2 Scalable Algorithm on Mapper Side ··································· 85

xii

4.4.3 Scalable Algorithm on Reducer Side ··································· 87

4.4.4 Complexity Analysis ·· 88

4.5 Experiments ·· 89

4.5.1 Experimental Settings and Data Sets ···································· 89

4.5.2 Analysis for Error Recovery Accuracy Rate ··························· 91

4.5.3 Analysis for Error Recovery Time Cost ································ 94

4.6 Summary·· 96

Chapter 5 Spatiotemporal Compression 97

5.1 Introduction ·· 97

5.1.1 Research Problem Analysis ·· 98

5.1.2 Contents Outline ··· 100

5.2 Spatiotemporal Compression ·· 101

5.2.1 Spatiotemporal Compression ··· 101

5.2.2 Order Compression with Spatiotemporal Correlations ············· 108

5.3 Data Driven Scheduling on Cloud ·· 111

5.3.1 Different Scheduling Strategies over Cloud ························· 111

5.3.2 Calculation for Weighted Data Exchanging Edges ················· 113

5.4 Algorithms ··· 114

5.4.1 Spatiotemporal Clustering Algorithm ································· 115

5.4.2 Compression Algorithms ··· 116

5.4.3 Scheduling Algorithm ··· 117

5.4.4 Overall Strategy for Cloud Big Data Processing ···················· 118

5.5 Experiments ·· 118

5.5.1 Environments and Data Sets ··· 119

5.5.2 Spatiotemporal Compression Experiment ···························· 121

5.5.3 Time Performance Gains of Scheduling ······························ 123

5.5.4 Data Accuracy Experiment ··· 125

5.6 Summary·· 129

Chapter 6 Regression-based Compression 130

6.1 Introduction ·· 130

6.1.1 Research Problem Analysis ·· 131

6.1.2 Contents Outline ··· 132

6.2 Compression based on Non-linear Regression ································ 133

6.2.1 Non-linear Regression Prediction Model ····························· 134

xiii

6.2.2 Unequal Weighting Methods for Data Points ························ 138

6.3 Algorithms ·· 141

6.3.1 Algorithm for Non-linear Regression ································· 141

6.3.2 Non-linear Regression Compression with MapReduce ············ 142

6.4 Experiments ·· 144

6.4.1 Experimental Data Sets ··· 145

6.4.2 Experiment for the Compression with Non-linear Regression ···· 146

6.4.3 Experiment for Data Loss and Accuracy ····························· 147

6.5 Summary ·· 150

Chapter 7 DataChunk based Compression 151

7.1 Introduction ·· 151

7.1.1 Research Problem Analysis ·· 152

7.1.2 Contents Outline ··· 154

7.2 Data Chunk Similarity and Compression ······································ 154

7.2.1 Similarity Model ··· 154

7.2.2 Data Chunk Generation and Formation ······························· 158

7.2.3 Data Chunks based Big Data Compression ·························· 161

7.3 Data Chunk Similarity based Compression Algorithm ······················ 163

7.3.1 Algorithm based on MapReduce······································· 163

7.3.2 Standard Data Chunks Generation Algorithm ······················· 165

7.3.3 Compression Algorithm ··· 167

7.4 Experiments ·· 170

7.4.1 Experimental Data Sets ··· 170

7.4.2 General Comparison ··· 172

7.4.3 Temporal and Spatial Saving after Compression ···················· 173

7.4.4 Data Accuracy Analysis ··· 175

7.5 Summary ·· 178

Chapter 8 Conclusions and Future Work 180

8.1 Conclusions ·· 180

8.2 Future Work ·· 182

Bibliography 184

xiv

Figures

Figure 1-1 Roadmap for Big Sensing Data Curation on Cloud ························· 7

Figure 2-1 U-Cloud Environment with Apache Hadoop Cluster ······················· 39

Figure 3-1 Error Scenarios from Sensor Network Systems Data ····················· 47

Figure 3-2 Examples for Scale-free networks and no scale-free networks ··········· 52

Figure 3-3 Cluster based Error Detection Strategy on Cloud ··························· 53

Figure 3-4 Error Detection Algorithm ·· 55

Figure 3-5 Error Localization Algorithm ·· 56

Figure 3-6 Example: Original Testing Data before Experiment ························ 60

Figure 3-7 Example: Normalized Heterogeneous Sensing Data Sets ·················· 61

Figure 3-8 Time cost for detecting errors from the testing data set ···················· 62

Figure 3-9 Comparison of two error detection strategies ································ 63

Figure 3-10 False Positive Ratios with Different Detection Algorithms ·············· 64

Figure 3-11 False Positive Ratios with Different Error Types ·························· 65

Figure 4-1 Possible Recovery Strategies for Spike Error ································ 69

Figure 4-2 Location Influence to Error Recovery Strategy ····························· 73

Figure 4-3 Sensing Data Flat Line Errors (permanent) ································· 78

Figure 4-4 Sensing Data Loss Errors (permanent) ······································· 79

Figure 4-5 Sensing Data Out of Bound Errors (permanent) ···························· 80

Figure 4-6 Sensing Data Spike Errors (ephemeral) ······································ 81

Figure 4-7 Sensing Data Loss Errors (ephemeral) ·· 82

Figure 4-8 Sensing Data Out of Bound Errors (ephemeral) ····························· 83

Figure 4-9 Experiment for Recovery Data Accuracy ···································· 93

Figure 4-10 Experiment for Recovery Data Accuracy ··································· 95

Figure 5-1 Requirement for Big Graph Data Cloud Processing ······················ 100

Figure 5-2 Example: Time Series based Clustering ·································· 102

Figure 5-3 Data Changes Influence to a Clustering Algorithm ······················· 106

Figure 5-4 Order Compression with Multiple Attributes ······························ 109

Figure 5-5 Inter-node Order Compression for Data Exchanges ······················ 110

xv

Figure 5-6 Different Mapping Strategies for Resources Scheduling on Cloud ····· 113

Figure 5-7 Computing Model of Spatiotemporal Compression Ratio ··············· 114

Figure 5-8 Heterogeneous Sensing Data Sets from 1 Time Series (KB/sec./node) 120

Figure 5-9 Data Exchanging Reduction for High Frequency Data Sets ············· 121

Figure 5-10 Data Exchanging Reduction for Light and Temperature Data Sets ··· 122

Figure 5-11 Time Cost for Graph Data with A Window Length ‘L’ ················ 124

Figure 5-12 Relationship between Fidelity Loss and Error Bound ·················· 127

Figure 5-13 Worst and Best Case Analysis for Fidelity Loss ························· 128

Figure 6-1 High Data Rate Earthquake Sensing Data ································ 131

Figure 6-2 Non-linear Regression based on Partitioned Trigonometric Function · 133

Figure 6-3 Single Independent Weighted Non-linear Regression ···················· 134

Figure 6-4 Compressed Data Size with Different Predicting Model ················· 146

Figure 6-5 Fidelity Loss with the Increasing Error Bounds ··························· 149

Figure 7-1 Two Types of Geometry Similarities ······································· 153

Figure 7-2 Comparison of Different Geometry Similarities ·························· 156

Figure 7-3 Initial Formation Path for a Standard Data Chunk Set S’ ················ 159

Figure 7-4 Possible Data Chunk States at t=i(a) ·· 161

Figure 7-5 Possible Data Chunk States at t=i(b) ·· 162

Figure 7-6 Programming Model of MapReduce ·· 165

Figure 7-7 Data Size Compressed within 24 Hours Test ······························ 173

Figure 7-8 Compression Ratio for Different ‘r’ ··· 175

Figure 7-9 Relationship between Compression Ratio and Accuracy ················ 178

xvi

 Tables

Table 1-1 Big Sensing Data Sets Comprison ··· 42

Table 7-1 Meteorology Data Formats ·· 171

1

Chapter 1

Introduction

In this chapter, the problems including research background, research motivation,

general solutions, related platforms, contributions and this thesis organization will be

introduced.

1.1 Background

Nowadays, we have entered the big data era of petabyte. Big data is prevalent in both

industry and scientific research applications where the data is generated with high

Volume, Velocity, Variety, Veracity and Value. It is difficult to process using on-hand

database management tools or traditional data processing applications. Big data sets

can come from many areas, including meteorology, connectomics, complex physics

simulations, genomics, biological study, gene analysis and environmental research [1-

2]. According to literature [1-2], since 1980s, generated data doubles its size in every

40 months all over the world. For example, in the year of 2012, there were 2.5

quintillion (2.5×1018) bytes of data being generated every day. Currently, data size is

measured with Exabyte, and in the year of 2015, there were around 10,000 exabytes

digital data being generated. Following that digital data explosion, the size of big data

expects to surpass 40,000 exabytes in year 2020 [1-2, 18]. Hence, how to process big

data has become a fundamental and critical challenge for modern society. More and

more research interest and effort have been noticed under the theme of big data and

its related issues. In this thesis, our research will be concentrated on the data curation

2

& preparation [17, 50] technologies for big data sets from modern sensing systems.

Those data curation technology will be developed and deployed on Cloud platform

for achieving scalability, massive resource access, and real time data analytics.

1.1.1 Big Sensing Data

Modern sensing systems have potential of significantly enhancing people’s ability to

monitor and interact with their physical environment [4, 6-8]. In real world

applications, sensing systems are becoming much smaller, smarter with more

connectivity and more mobile capability. The price for achieving the above functional

improvement is higher data rate, more data storage and more powerful data analysis.

As a result, big data sets with high speed, high dimensions and high volume are

introduced by countless sensing systems deployed in our environment [1-2, 16, 19,

46]. As important sources of big data sets, sensing systems generate huge volumes of

sensing data beyond the ability of commonly-used software tools to capture, manage,

and process within a tolerable length of times. However, to collect, store, organize,

analyse and publish big sensing data from modern sensing systems in real time are

critical and essential targets when deploying most of real world sensing systems.

For example, in aviation industry, a Boeing jet generates 10 terabytes of

information per engine during every 30 minutes flight, according to Teradata [16].

During a single six-hour, cross-country flight from New York to Los Angeles with a

Boeing 737 jet plane, totally a massive 240 terabytes of data will be generated by

different sensing monitoring systems. Within the whole United States, there are more

than 28,000 commercial flights in the sky daily. Different sensing data, from both

commercial flights and their ground controlling systems, sensing data quickly expands

to the petabyte scale. Another example for big sensing data is in the social media areas.

In the next five years, sensing data will hit the crossover point with unstructured data

generated by social media. According to literature [16, 19], sensing data will dominate

by factors 10-to-20 times that of social media. To utilize this data will be difficult for

the time limitation because no standard to ensure the data readability, suitable

software or algorithm. Big sensing data can also come from traffic monitoring sensing

systems. For example, a roadway may have traffic monitoring sensors embedded. The

road and its surroundings may be monitored by sensing systems from satellites to the

3

sensors deployed in each different vehicle. Those mixed data is collected continuously

in terabytes scale for applications including trying to optimize routes for

transportation efficiency [16]. All in all, according to [16], the amount of sensing data

will be continuing to rise. So, to figure out how to manage it, what to keep and how

to mine it for useful information is becoming increasingly important day by day.

Effectively utilizing this big sensing data, from energy to fuel consumption to weather

data, could undoubtedly provide valuable tools or environmental sustainability. Big

sensing Data is a big opportunity, but it’s also leading to big questions, including how

to effectively organize and store it, how to effectively detect and recover the errors

and how to effectively analyse it. The work in thesis will be focused on data cleaning

and compression techniques for the big sensing data sets with huge size and extreme

complexity based on Cloud platform. So, before introducing our overall roadmap of

our on-Cloud data curation, we firstly have a brief review of Cloud computing.

1.1.2 Cloud

Currently, cloud computing is one of the most hyped IT innovations, providing a new

way of delivering computing resources and services and having attracted interests

from both IT Industry and academic research communities [20-26]. In recent

technique trend, IT giants such as Amazon, Google, IBM and Microsoft have invested

huge sums of money in building up their public cloud products, and indeed they have

developed their own cloud products, e.g., Amazon’s Web Services1 [27], Google

Compute2, IBM Cloud3 and Microsoft’s Azure4. In addition to the above systems,

several corresponding open source cloud computing solutions are also developed,

including Eucalyptus5, OpenStack6 and Apache Hadoop7. Cloud computing can be

regarded as an ingenious combination of a series of developed or developing ideas

and technologies, establishing a novel business model for offering IT services using

economies of scale. The core technologies that cloud computing principally built on

1 http://aws.amazon.com/, accessed on March 30th, 2016
2 https://cloud.google.com/, accessed on March 30th, 2016
3 http://www.ibm.com/cloud-computing/au/en/, accessed on March 30th, 2016
4 http://www.azure.microsoft.com/en-us/, accessed on March 30th, 2016
5 https://www.eucalyptus.com/, accessed on March 30th, 2016
6 https://www.openstack.org/, accessed on March 30th, 2016
7 http://hadoop.apache.org/, accessed on March 30th, 2016

4

include web service technologies and standards, virtualization, novel distributed

programming models like MapReduce [30-32, 37-41], and much newer Spark [47].

The Cloud computing definition published by the U.S. National Institute of

Standards and Technology (NIST) comprehensively covers the commonly agreed

aspects of cloud computing. Accordingly, cloud computing is defined as a model for

enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, services, etc.) that

can be rapidly provisioned and released with the minimal management effort or

interactions with service providers. According to the definition, the Cloud model

consists of five essential characteristics, three service delivery models and four

deployment models. Especially, the five key features encompass on-demand self-

service, broad network access, resource pooling (multi-tenancy), rapid elasticity and

measured services. The three service delivery models are Cloud Software as a Service

(SaaS), e.g., Google Docs8, Cloud Platform as a Service, increase profits, etc.

1.2 Motivation: Big Sensing Data Curation on Cloud

As described above, Cloud computing provides a promising platform for big data

processing with powerful computation capability, storage, scalability, resource reuse

and low cost, and has attracted significant attention in alignment with big data. The

inner characteristics of Could Computing determines that it can provide scalable and

capable large-scale infrastructure for processing, such data applications, e.g. storage

accommodation and computation. Cloud Computing offers massive computation

power and storage capacity which enable users to deploy big data processing

applications without heavy infrastructure investment. Thus, Cloud proves to be an

ideal answer for dealing with big sensing data. Some work has been done in this area.

For example, there is high volume of big body sensor data which is generated by the

body monitoring sensors and uploaded to Cloud by hospitals in USA. How to

effectively and efficiently use those data for disease analysis becomes a great

challenge. To face this challenge, Amazon has developed a platform on Cloud to

8 https://docs.google.com/, accessed on March 30th, 2016

5

effectively handle those medical sensor big data [27]. But the work is far from enough.

In order to process big sensing data efficiently on Cloud, several critical issues should

be discussed including reduction of the big data size, data quality and real time query

of big sensing data. Under the whole map of big data processing, these issues are

called data curation problems [17, 50]. To cope with the above big sensing data

curation issues, we aim to propose a systematic solution for it. In brief, big sensing

data curation on Cloud motivates all the research in this thesis.

1.2.1 Five Stages Big Sensing Data Processing

Data Curation or data preparation means that after data collection from distributed

sensing system, the collected big sensing data should be filtered, cleaned and

organized, then stored for high level data applications, such as data analysis [17, 50].

Based on the definition of NIST data science framework, there are commonly five

stages for big data processing, including data collection, data curation/preparation,

data analytics, visualization and access for use. Similarly, to process big sensing data,

it can also be divided into those five Stages.

 Data Collection Stage: At this stage, modern sensing systems sampling,

gathering, transmitting, aggregating and simply analysing raw sensing

data. The main techniques in this stage include hardware sensing systems

design for sampling, data fusion hardware and software design,

synchronization of parallel and distributed data gathering, data

transmission and communication hardware/software design, data

aggregation techniques development, and lightweight data analysis

techniques with the support of intelligent sensing chips. At this stage, big

sensing data is sampled and merged into data blocks or forming

continuous data stream.

 Data Curation/Preparation Stage: At this stage, big sensing data sets or

data stream is already generated. It should be filtered, indexed, organized

and stored on a certain platform (e.g. Cloud) before being offered to other

high level applications. Data curation is important because the raw sensing

6

data can have extremely large size, complexity and speed. Especially

under the topic of big sensing data, data quality should be specifically

discussed because faults and unreliable data are common and complicated

in all real world sensing system. Big data sets from sensing systems are

often subject to corruption and losses due to wireless medium of

communication and presence of hardware inaccuracies in sensors.

According to our knowledge, to effectively cope with big sensing data

errors and large data size, innovative solutions are highly demanded.

Hence, Data curation/preparation is very important step to guarantee big

sensing data quality before higher level data applications can effectively

access it and use it. The main tasks at this stage include data cleaning and

data compression which will be our research focuses in this thesis.

 Data Analytic Stage: At this stage, all the current popular data analytic

algorithms, techniques, models, tools and systems can be built on. For

example, machine learning and data mining are widely data analytic tools

to extract useful information hidden in the big sensing data ocean.

However, all these techniques can generate meaningful results only if the

under layer offered big sensing data is organized efficiently and accurate.

That is totally dependent to successful and efficient data curation at the

data processing stage two.

 Visualization Stage: At this stage, the required information or knowledge

has been extracted by the techniques offered at the stage three. The

research focus is on data explanation, presentation, view selection and

data visualization.

 Access for use: At this stage, all application development interfaces and

all human-computer interactive design tools will be involved. With the

above stages, we can successfully finish common data processing or big

sensing data processing on the Cloud platform.

7

1.2.2 On-Cloud Big Sensing Data Curation Roadmap

In this section, we will introduce a big sensing data curation roadmap on Cloud. The

components and steps in this roadmap for sensing data curation will motivate different

research work in this thesis.

Figure 1-1 General Roadmap for Big Sensing Data Curation on Cloud

As Shown in Figure 1-1, we further divide the big sensing data curation process

into three logically continuous steps including large scale distributed data cleaning on

Cloud, Cloud storage and domain specific optimization. This separation is based on

the requirement for filtering and preparing big sensing data after being collected by

sensing systems and before being analysed by higher level data analytic tools, such as

machine learning and data mining.

Domain Knowledge based
Optimization

Feedback based
Optimization

data trends

linear regression

non-linear regression

Domain Specific
Optimization

Cloud Storage

Large Scale Distributed
Data Cleaning on Cloud

Processed Big Sensing
Data for Applications

Scalable Fast
Error Detection

Scalable Fast
Error Recovery

Optimizaiton
after data cleaning

(consistency, redundancy)

Scalable Compression and
Decompression spacial compression

data chunk based
compression

temporal compression

Big Sensing Data,
Streaming data

Probabilistic Model for
Error Detection

Probabilistic Model for
Error Recovery

8

Data curation is an important step for big data processing. In data curation, there

are lots of specific research issue for any general data processing applications.

However, under the theme of big data curation, data compression and data cleaning

become very important because of the high volume and high variety features of big

data sets. High volume determines some compression or fast processing techniques

have to be developed to guarantee the efficiency. High variety and sensing systems

determine the unreliability of data sets. So, we will intensively discussed them in this

thesis.

In Figure 1-1, the first step of data curation roadmap is described as large scale

distributed data cleaning on Cloud. After big sensing data is collected and push to

Cloud platform, some data cleaning techniques have to be developed because sensing

data is much more erroneous, heterogeneous, time stamp messy and redundant.

Without effective data cleaning process to guarantee the data quality and accuracy, to

store and analysing big sensing data on Cloud is meaningless.

In order to clean raw sensing data or data stream, the erroneous or abnormal data

should be detected and marked firstly [50]. The requirement for error data detection

and localization motivate the first research task in our big sensing data curation

roadmap. In Figure 1-1, the research task is defined as scalable fast error detection

and its related probabilistic error detection models. Following the successful error

finding and detecting, the second important task for big sensing data curation is to

recover the erroneous, lost or uncertain data. In the roadmap of Figure 1-1, this second

task in on-Cloud data cleaning step is described as scalable fast error recovery and its

related probabilistic error recovery model. In addition to the error detection and

recovery tasks, at the step of big sensing data cleaning on Cloud, optimization should

be also conducted to remove data redundancy and concurrency. Compared to the

traditional data cleaning techniques, the new techniques developed in this thesis will

put more emphasis on real time and approximate data cleaning due to specific features

of big sensing data.

Directly following the step of big sensing data cleaning on Cloud, it comes to the

step of data storage on Cloud. Due to the high speed and high volume, the storage of

big sensing data brings new challenges [1-2, 48-49]. There are two great benefits to

reduce the size of big sensing data before organizing and storing it on Cloud

environment. The first benefit is the storage saving and cost reduction. It is well

9

known that Cloud is a platform driven by economic cost. Due to its large size, big

could occupy lots of storage resources which can be pretty expensive when we

entering Tera-byte era. Reducing the storage size means that money and cost can be

saved. The Second benefit is the time saving and better real time reaction. The huge

size of big sensing data stored in a distributed environment means that to locate some

data by index navigation can be very time consuming. The compressed data set or data

correlations after compression can offer faster and more efficient data manipulation

which greatly enhance the real time requirement from most of higher applications.

 Specifically, there are three main tasks being motivated under the theme our big

sensing data on-Cloud compression techniques as shown in Figure 1-1. They are

temporal compression techniques, spatial compression techniques and data chunks

based data compression techniques. In terms of temporal compression technique for

big sensing data on Cloud, it focuses on finding the temporal correlations of sensing

data to reduce the unnecessary data storage on Cloud. The main temporal correlation

models developed in thesis are data trend model, linear regression model and non-

linear regression model as described in our roadmap of Figure 1-1. In terms of spatial

compression technique for big sensing data on Cloud, it focuses on finding spatial

correlations of sensing data to reduce the unnecessary data storage on Cloud. In terms

of data chunks based sensing data compression technique, it focuses on divide big

sensing data into suitable frequent data blocks. Then, the compression will be carried

out based on those frequent data blocks instead of each data unit. Compared to

traditional data compression, the work in this thesis is more concentrated on the

requirement of high volume, real time processing and data clusters features.

Following the Cloud storage step, it comes to the last step in our proposed big

sensing data curation roadmap. It is described as the step of domain specified

optimization in Figure 1-1. Actually, it is the step for offering services to high level

big sensing data analytic users and applications, such learning or mining applications.

Because data mining and analytic applications can find some useful domain

knowledges, features and patterns which could be used for improving data cleaning

or data compression for certain big sensing data sets during big sensing data

processing. However, this step is not the main research focus of the thesis.

In brief, there are totally 5 motivated research tasks to be intensive studied in this

thesis. They are scalable fast error detection, scalable fast error recovery, temporal

10

compression with different compression models, spatial compression and data chunks

based compression.

1.3 Contributions

The main research contributions in this thesis are centralized on our proposed big

sensing data curation roadmap in Figure 1-1. To face the challenges for achieving big

sensing data curation, different main techniques have be proposed or developed by us

including time series modelling, predicting methods, similarity models, data

clustering and scheduling, MapReduce based algorithms, Error Classification,

Complex Network based Algorithms and U-Cloud platform.

 Time Series Analysis: Lots of sensing data can be modelled with time

series. To carry out basic data compression, time series modelling is an

essential requirement. Time series modelling is also important in

predicting and approximating. So, some time series modelling analysis

techniques (temporal and spatial time series) should be developed. Based

on effective time series analysis and modelling, statistic methods,

prediction methods can be further deployed. The author’s publications 2,

3, 4, 11, 16 and 17 are more or less based on this contribution of time

series analysis.

 Error Classification: For developing error detection and recovery

techniques, an important prerequisite is to define the error patterns. Based

on those patterns, it is possible to develop a series methods for finding,

locating and recovering them. So, a systematic classification has to be

offered. In our research, the error types are predefined and concluded

manually according to common error scenario analysis. However, it can

also be got through training and mining erroneous data sets. In this thesis,

totally 9 error types are defined and classified for further developing our

error detection and recovery on Cloud. The author’s publications 3 and 17

are totally based on this contribution of sensing data error classification.

11

 Prediction Models: In both big sensing data compression and big sensing

data cleaning, data prediction models are all used. Specifically, in data

compression, prediction model is used to predict and approximate the data

units to be compressed. However, in data cleaning work, prediction

models are developed to guess or replace the erroneous, uncertain and

missing data units. The main mathematic prediction models include

weighted data trend prediction, linear regression and non-linear regression

models. The author’s publications 2, 3, 4, 16 and 17 are related to this

contribution of prediction models.

 Similarity Model: To compress the data chunks or data units, we need to

develop some effective similarity models. The similarity can be based on

predefined patterns and constraints from domain experts. It can also come

from the feedbacks of training the on flying big sensing data streams. In

our work, two types of similarity models are highly involved. They are

based on “cos similarity” and “Euclidean distance similarity” models. The

author’s publications 2 and 17 are highly related to this contribution of

similarity models.

 Scalability with MapReduce: To effectively access the resources offered

by Cloud platform and guarantee the scalability of our developed

algorithms for both sensing data cleaning and sensing data compression,

we have to implement our developed techniques with scalable tools. It is

also the difference between our data curation and traditional curation.

MapReduce and Spark are chosen as critical programming models for

guarantee the scalability of our algorithms. However, how to successfully

combine and deploy our sensing data compression, error detection and

error recovery with MapReduce is an important contribution. The author’s

publications 2, 3, 4, 16 and 17 are related to this contribution scalability

with MapReduce.

12

 Complex Network and Big Graph Data: Big graph data from complex

network (sensor networks) can be different to process. As a specific

instance of Complex Network, the scale-free networks are inhomogeneous

and only a few nodes have a large number of links. Based on the

characteristics of Scale-free network, to develop algorithms for fast error

detection and big graph data compression is also a contribution of this

thesis. The author’s publication 4 is highly related to this contribution.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

 Chapter 2 provides an in-depth literature review of the state-of-the-art

techniques including big data, Cloud, and their related sensing systems, data

compression techniques and data cleaning techniques. Through analysis and

comparison, a general over view of the current research situation of data

curation on Cloud can be got.

 Chapter 3 investigates the problem of scalable and fast big sensing data error

detection on Cloud. Based on a data error type classification, the big sensing

data features are analysed to support fast error detection and location on Cloud.

In other words, the error detection and location process can be dramatically

accelerated by analysing characteristics of sensing data from complex network

systems. Through real sensing data experiments on our cloud computing

platform of U-Cloud, significant performance gains for error detection and

location can be achieved.

 Chapter 4 investigates the problem of scalable and fast big sensing data

recovery on Cloud. A novel error recovery approach is proposed by predicting

approximate data for replacing detected errors. This prediction and

approximation will use coverage information, Euclidean distance to calculate

a time series prediction curve. With the calculated time series, a detected error

13

can be recovered with a predicted data value approximately. Through the

experiment with real world meteorological data sets on cloud, the proposed

error recovery approach can achieve significant performance gains.

 Chapter 5 investigates the problems of big sensing data and big graph data

compression on Cloud. Big sensing data or big graph data will be compressed

with spatiotemporal features on Cloud. Specifically, in each time series or a

single graph edge, temporal data compression is conducted. By exploring

spatial data correlation, we partition a graph data set into clusters. In a cluster,

the workload can be shared by the inference based on time series similarity

with a novel data driven scheduling. Real big sensing data experiments are

designed to test the effectiveness and efficiency of the proposed technique.

 Chapter 6 investigates the problem of big sensing data compression on Cloud

with non-linear regression prediction model. In real world applications, such

as earthquake wave and transmission monitoring, the incoming big sensing

data can be extremely bumpy and discrete. To face the challenges brought by

those real world big sensing data, a novel on-Cloud non-linear regression

prediction model are introduced in this Chapter. Through our real world

sensing data experiments, this compression based on non-linear regression

achieves significant storage and time savings compared to previous

compression models over certain big sensing data sets.

 Chapter 7 investigates the problem of on-Cloud big sensing data compression

with data chunks. A novel scalable data compression approach based on

calculating similarity among the partitioned data chunks is developed instead

of compressing basic data units. To restore original data sets, some restoration

functions and predictions will be designed and offered in this chapter. With

real world meteorological big sensing data experiments, the proposed scalable

compression approach based on data chunk similarity demonstrates significant

improvement in terms of data compression ratio and data accuracy.

 Chapter 8 concludes the contents in this thesis with an outlook of future work.

14

Chapter 2

Related Work

It is becoming a practical requirement that we need to process big data from multiple

data sources in a real time fashion. That is, we enter into the time of data explosion

which brings about new scientific challenges for big data processing. In general, big

data [1-2] is a collection of data sets so large and complex that it becomes extremely

difficult to process with on-hand database management systems or traditional data

processing tools. It represents the progress of the human cognitive processes, usually

includes data sets with sizes beyond the ability of current technology, method and

theory to capture, manage and process the data within a tolerable elapsed time [1-2,

14-15].

2.1 General Research Trend

Big data is not only about the data characteristics themselves, but also about a whole

new big data technology architecture including new storage, computation models and

analytic tools, in search of appropriate problems in big data applications to solve [7,

10]. Advances in big data storage, processing and analysis, regarded as drivers of big

data, mainly include the rapidly decreasing cost of storage and computation

infrastructure, the scalability, flexibility and cost-effectiveness of data centres and

cloud computing, new parallel and distributed computing paradigms and their rapidly

evolving frameworks such as the Apache Hadoop ecosystem [45].

15

According to literatures [1-2], since 1980s, generated data doubles its size in every 40

months all over the world. In the year of 2012, there were 2.5 quintillion (2.5×1018)

bytes of data being generated every day. Currently, data size is measured with Exabyte,

and in the year of 2015, there were around 10,000 exabytes digital data being

generated. Following that digital data explosion, the size of big data expects to surpass

40,000 exabytes in year 2020 [16]. Big data sets have their size beyond the processing

capability of current popular data processing technology, tools and theory. Capturing,

managing, and processing big data within a tolerable elapsed time become quite

challenging [1-2, 5]. Specifically, big data can be characterised by the 5Vs problems

[12, 17-19] which are listed and explained as follows.

Volume: It refers to the vast amount of data generated every second. Nowadays,

about 90 percent of the world’s data is created in the last 2 years. High volume of

data being collected daily creates an immediate challenge to businesses for real

time processing. The typical examples include emails, Twitter messages, photos,

video clips and sensing data that we produce and share every second in even

zettabytes. Another example is Facebook on which we send 10 billion messages

per day, make 4.5 billion button clicks and upload 350 million new pictures every

day. This data explosion makes data sets too large to store and analyse using

traditional database technology.

Velocity: It refers to the speed at which new data is generated and the speed at

which data moves around. For instance, social media messages communicate in

minutes, the speed at which credit card transactions are checked for fraudulent

activities or the milliseconds it takes trading systems to analyse social media

networks to pick up signals that trigger decisions to buy or sell shares. The New

York Stock Exchange captures about 1 terabyte of trade information daily.

Reacting fast enough and analysing the streaming data is critical to businesses,

with speeds and peak periods often inconsistent. Big data filtering technology

should be able to analyse the data without accessing traditional databases.

Variety: It refers to the different types of data could be encountered. In the past

we focused on structured data that neatly fits into tables or relational databases

16

such as financial data. In fact, 80 percent of the world’s data is unstructured, even

heterogeneous data. Therefore it can’t simply be put into tables or relational

databases. For example, big data sets can have images, graphs, video sequences

or social media updates data at the same time. With big data technology we should

harness differed types of data including messages, social media conversations,

photos, sensor data, video/voice data together.

Veracity: It refers to the data uncertainty and impreciseness. With many types of

big data, quality and accuracy are less controllable. For example, Twitter posts

with hashtags, abbreviations, typos and colloquial speech. Big data and analytics

technology should allow people to work with all these types of data. The volumes

often make up for the lack of quality or accuracy.

Value: It refers to the ability turn our data into value. It is important that

businesses make a case for any attempt to collect and leverage big data. It is easy

to fall into the buzz trap and embark on big data initiatives without a clear

understanding of the business value it will bring. Big data offers incremental value

to organizations, but tends to have low value density. The value density means

that the ratio of business is relevant to the scale of the data. The paradox is that it

is impossible to know a value in a given big data set until certain analysis would

have been done.

2.2 Big Data Processing and Cloud

To handle the above problems brought by big data, scientists are seeking new ways

and developing novel techniques. Cloud [3, 5, 9, 44, 104] with its computing and

storage capability provides a promising platform to assist the processing and analysis

of big data. Cloud has attracted great attention of research community in alignment

with big data and its related processing [36].

Cloud computing can be regarded as an ingenious combination of a series of

developed or developing ideas and technologies, establishing a pay-as-you-go

business model by offering IT services using economies of scale [21, 25]. Cloud

17

computing is the use of computing resources that are delivered as a service over a

network. The name comes from the use of a cloud-shaped symbol as an abstraction

for the complex infrastructure it contains in system diagrams. Cloud computing

provides an ideal platform for big data storage, dissemination and interpreting with its

massive computation power [21, 26-27]. In many today’s real world applications,

such as social networks, complex network monitoring, the scientific analysis of

protein interactions and modern sensing systems, it is unavoidable to encounter the

problem of dealing with big data and big data streams on Cloud.

Specifically, Amazon EC2 [19, 27] infrastructure as a service on Cloud is built up

for distributed data process. Amazon S3 supports distributed storage. MapReduce [29-

32] is adopted as a programming model for big data processing over Cloud computing.

Plenty of recent research has investigated the issues of processing incremental data on

cloud. Kienzler et al. [25] designed a “stream-as-you-go” approach to access and

process on incremental data for data-intensive cloud applications via a stream-based

data management architecture. Aboulnaga et al. [65] discussed the problem of the

workload management fundamentals. They present tools and techniques for workload

management in parallel databases and MapReduce on Hadoop cluster. They also

present some of these tools as case studies and discuss the underlying techniques with

MapReduce. Workload management for MapReduce is still a fledgling research area

for big data processing on Cloud.

The extension of the traditional Hadoop framework [32] to develop a novel

framework named Incoop by incorporating several techniques like task partition and

memorization-aware schedule. Olston et al. [29] present a continuous workflow

system called Nova on top of Pig/Hadoop through stateful incremental data processing.

MapReduce has been widely revised from a batch processing framework into a more

incremental framework for analysing huge-volume of incremental data on Cloud. It is

a framework for processing parallelizable problems of big datasets by using a large

collective computer cluster where all computers are on the same local network. It is

capable of sorting a petabyte of data in only a few hours. The parallelism also provides

some possibility of recovering from partial failure of servers or storage during the

operation.

18

According to the above literature, most of current big data processing and analysis

techniques on Cloud focus on the workload distribution, scalability, data filtering

speed, and query accuracy.

2.2.1 Big Sensing Data

With the progress of human technology, large-scale complicated sensing systems

have been used in different areas, such as environment monitoring, military, disaster

warning and scientific data collection etc. [1-2, 6]. Consequently, big data sets and

data streams from those sensing systems are continuously generated. Similar to

common big data, big sensing data refers to data collection in real world sensing

systems have been growing tremendously and complicatedly so that traditional data

processing tools are incapable of handling the data processing including collection,

storage, processing, mining, sharing, etc., within a tolerable elapsed time. Big sensing

data is an important big data type in terms of its origin. Big sensing data sets are

commonly encountered in modern distributed sensing systems deployed around us [6,

11, 50, 74, 102, 105-106].

Those sensing systems have significantly enhanced our ability to observe and

interact with our surrounding environment. In aviation industry, a Boeing jet generates

10 terabytes of information per engine during every 30 minutes flight, according to

Teradata [16, 19]. During a single six-hour, cross-country flight from New York to

Los Angeles with a Boeing 737 jet plane, totally a massive 240 terabytes of data will

be generated by different sensing monitoring systems. Within the whole United States,

there are more than 28,000 commercial flights in the sky daily. Different sensing data,

from both commercial flights and their ground controlling systems, sensing data

quickly expands to the petabyte scale.

In the social media areas. In the next five years, sensing data will hit the crossover

point with unstructured data generated by social media. According to literature [16,

19], sensing data will dominate by factors 10-to-20 times that of social media. To

utilize this data will be difficult for the time limitation because no standard to ensure

the data readability, suitable software or algorithm. Big sensing data can also come

from traffic monitoring sensing systems. For example, a roadway may have traffic

monitoring sensors embedded. The road and its surroundings may be monitored by

19

sensing systems from satellites to the sensors deployed in each different vehicle.

Those mixed data is collected continuously in terabytes scale for applications

including trying to optimize routes for transportation efficiency [19].

All in all, according to [19], the amount of sensing data will be continuing to rise.

So, to figure out how to manage it, what to keep and how to mine it for useful

information is becoming increasingly important day by day. Effectively utilizing this

big sensing data, from energy to fuel consumption to weather data, could undoubtedly

provide valuable tools or environmental sustainability. Big sensing Data is a big

opportunity, but it’s also leading to big questions, including how to effectively detect

and recover the errors from the big sensing data sets with huge size and extreme

complexity.

To support sensing data or big sensing data processing, some techniques,

platforms and framework have also ready been developed. Sensor-Cloud platform [28,

43, 46] has been developed for processing big sensing data on Cloud, including its

definition, architecture, and applications. Due to the features of high variety, volume,

and velocity, big data is difficult to process using on-hand database management tools

or traditional Sensor-Cloud platform. Big data sets can come from Complex Network

systems [54], such as social network and large scale sensor networks. In addition,

under the theme of complex network systems, it may be difficult to develop time-

efficient detecting or trouble-shooting methods for errors in big data sets, hence to

debug the complex network systems in real time [43].

Sensor-Cloud [46] is a unique sensor data storage, visualization and remote

management platform that leverages powerful cloud computing technologies to

provide excellent data scalability, fast visualization, and user programmable

analysis. Initially, Sensor-Cloud was designed to support long-term deployments of

MicroStrain wireless sensors. But nowadays, Sensor-Cloud has been developed to

support any web-connected third party device, sensor, or sensor network through a

simple OpenData API. Sensor-Cloud [28] can be useful for a variety of applications,

particularly where data from large sensor networks needs to be collected, viewed, and

monitored remotely. For example, structural health monitoring and condition-based

monitoring of high value assets are applications where commonly available data tools

often come up short in terms of accessibility, data scalability, programmability, or

20

performance. Sensor-Cloud represents a direction for processing and analyzing big

sensing data using Cloud platform.

Ma et al. [53] discussed the challenges and opportunity for remote big sensing

data processing. Remote sensing (RS) data are undergoing an explosive growth

currently. The proliferation of data also give rise to the increasing complexity of RS

data, like the diversity and higher dimensionality characteristic of the data. Remote

sensing is generally defined as the technology of measuring the characteristics of an

object or surface form a distance. The RS data includes the earth observing data

continuously obtaining from space-borne and airborne sensors, as well as some other

data acquisition measurements. According to paper [53], current research work of

remote sensing big data mainly includes four topics as follows.

 Some supercomputers and Cloud computing platforms optimized for data-

intensive loads

 Parallel file systems and databases take the data availability and locality

as the main concern

 The data managing tools for memory data placement controlling for

multilevel data locality

 Task scheduling focusing on large amount of dependent tasks and

considering data availability

With the exponential growth of data amount and increasing degree of diversity

and complexity, the remotely sensed data are regarded as RS “Big Data”. Big RS data

occurs when a large collection of data sets whose volume and rate of data is at a scale

that is far beyond the state-of-the-art systems and revolutionize the way of seeking

solutions. This is also the case for the remote sensing and earth sciences domain to

offer the definition of what RS “Big Data” really is. The RS “Big Data” not merely

refers to the volume and velocity of data that outstrip the storage and computing

capacity, but also the variety and complexity of the RS data. There are several aspects

and features of the RS “Big Data” that need to be discussed: the huge volume and rate

21

of RS data, the diversity of RS data and also the complexity of RS data especially the

higher dimensionality.

Amazon [19, 104] has developed a series on-Cloud big data processing

applications. For example, transportation monitoring systems has been developed

which collected and analysed the real time traffic monitoring data on Cloud to make

forecast and avoid traffic accidents. Another big sensing data Cloud processing

application developed by Amazon’ Big data on AWS projects is medical sensing data

analytic tool [19, 104]. In this application, sensing data from body sensors and medical

sensors in all USA can be integrated into Cloud platform for intensive analysis to fulfil

the tasks such as illness forecasting, government policy aid, diseases spreading

research and other scientific purposes.

Opportunities are always followed by challenges. In the prospect of the further

requirements in the near future, the demand for real time processing, on-demand

processing as well as the in-transit processing of standard big sensing data products

with Cloud computing will bring great opportunities.

2.2.2 Big Graph Data

Most of big sensing data comes from complex sensing network systems [49, 106] such

as wireless sensor networks. It is unavoidable to form the big sensing data set with

graph features or big graph data because of the locations and communications among

different sensor nodes. It is well known that in the research community that big graph

data causes more difficulties because of its carried graphic features [48, 103].

In computer science and mathematics, graphs are abstract data structures to model

structural relationships among objects. They are widely used for data modelling in

application domains for which identifying relationship patterns, rules, and anomalies

is useful. These domains include the web graph, social networks, the Semantic Web,

knowledge bases, protein-protein interaction networks, and bibliographical networks,

among many others. The ever-increasing size of graph-structured data for these

applications creates a critical need for scalable systems that can process large amounts

of it efficiently. In other words, big graph data is now creating new challenges in terms

of efficient data processing for higher level data analytical applications.

22

For example, the web graph is a dramatic a large-scale graph. Google estimates

that the total number of web pages exceeds 1 trillion; experimental graphs of the

World Wide Web contain more than 20 billion nodes and 160 billion edges. Graphs

of social networks are another example. Facebook reportedly consists of more than a

billion users and more than 140 billion friendship relationships in 2012. The LinkedIn

network contains almost 8 million nodes and 60 million edges. In the Semantic Web

context, the ontology of DBpedia (derived from Wikipedia), currently contains 3.7

million objects and 400 millions facts9.

To solve the problem of big graph data processing on Cloud, some methods been

proposed with MapReduce based parallel Cloud computing models [33-34]. With

Google's MapReduce framework, commodity computer clusters can be programmed

to perform large-scale data processing in a single pass. MapReduce is not initially

designed to support online query. MapReduce is optimized for analytics on large data

volumes partitioned to be deployed on hundreds of machines. Apache Hadoop is an

open source distributed-processing framework for large data sets with MapReduce

implementation. It is popular due to its simplicity and scalability.

Lattanzi et al. [33] offers a solution for big Graph data processing with a filtering

algorithm. This novel algorithm reduces the size of the data input in a distributed

fashion to realize much smaller, problem instance which can be solved with a single

machine. Specifically, this algorithms can be presented for minimum spanning trees,

maximal matchings, approximate weighted matchings, approximate vertex and edge

covers and minimum cuts. Lattanzi et al. parameterize our algorithms by the amount

of memory available on the machines to show the trade-offs between the memory

available and the number of MapReduce rounds. Finally, the maximal matching

algorithms were implemented to show that the significant speedup is achieved [33].

However, MapReduce have big disadvantage when processing big graph data in

terms of computing efficiency [48-49]. Specifically, MapReduce isolates the

application developer from the details of running a distributed program, such as issues

of data distribution, scheduling, and fault tolerance. From the graph-processing point

of view, the basic MapReduce programming model is inadequate because most graph

algorithms are iterative and traverse the graph in some way. Hence, the efficiency of

9 http://www.ibm.com/developerworks/library/os-giraph/

23

graph computations is high correlated to inter-processor bandwidth as graph structures

are sent over the network iteration after iteration.

The basic MapReduce programming model does not directly support iterative

data-analysis applications. To implement iterative programs, programmers might

manually issue multiple MapReduce jobs and orchestrate their execution with a driver

program. In practice, the manual orchestration of an iterative program in MapReduce

has two key problems9. (1) The data must be reloaded and reprocessed at each iteration

which dramatically enhance the computation cost. (2) The termination condition

might be used for detecting a fix point. Hence, extra MapReduce job is brought on

each iteration. It again increases resource use in terms of scheduling extra tasks,

reading extra data from disk, and data communication. To better process big graph

data on Cloud, some new technique is developed [48, 103-104] to improve the

iteration efficiency or avoid unnecessary iteration.

2.2.3 MapReduce/Spark and Hadoop Applications

MapReduce and Apache Spark [37, 47] are popular for parallel and distributed large-

scale data processing programming. It has been extensively studied and widely used

for lots of big data applications [30-31]. It enables huge volume of data to be processed

in parallel with many low-end commodity computers. Programming simplicity,

scalability and fault-tolerance are three main salient features of MapReduce. Bing

integrated with infrastructure resources provisioned by Cloud systems, MapReduce

achieves more paralleling power, flexibility and cost-efficiency with its characteristics

of Cloud. A typical example is the Amazon Elastic MapReduce EMR service.

In general, a MapReduce application is composed with two primitive functions,

Map and Reduce, denoted with a data structure named key-value pair (,).

The Map function can be formalized as : (,) (,), i.e., Map takes a

pair (,) as input and then outputs another intermediate key-value pair (,).

These intermediate pairs are consumed by the Reduce function as input. Formally, the

Reduce function can be represented as : (,) (,), i.e., Reduce

takes intermediate and all its corresponding values) as input and outputs

another pair (,). Usually, (,) list is the results which MapReduce users

attempt to obtain. Both Map and Reduce functions are specified by users according to

24

their specific applications. An instance running a Map function is called Mapper, and

that running a Reduce function is called Reducer.

To make such a simple programming model powerful, MapReduce provides

many fundamental mechanisms such as data replication and data sorting. Between

Map phase and Reduce phase exists a Shuffle phase, during which the intermediate

key-value pairs are sorted according to keys. This mechanism is quite useful for many

complex applications to improve scalability. Moreover, distributed file systems like

HDFS (Hadoop Distributed File System) [42] are substantially crucial to make

MapReduce framework run in a highly scalable and fault-tolerant fashion.

Initially, the MapReduce framework is designed for batch processing, but it has

been extensively revised into many variations to for data in various scenarios recently

[30]. Incoopis [32] proposed for incremental MapReduce computation, which detects

changes to the input and automatically updates the output by employing an efficient,

fine-grained result reuse mechanism. Olston et al. [29] presented a continuous

workflow system called Nova on top of Pig/Hadoop through stateful incremental data

processing technique.

Li et al. [41] proposed a Hadoop-based platform to support incremental one-pass

data analytics by employing hash techniques and a frequent key based technique.

Because standard MapReduce framework lacks build-in supports for the iterative

programming paradigm which arises naturally in many applications like data mining,

web ranking and graph analysis, two platforms HaLoop [35] and Twister [38] are

designed to mitigate such shortcomings. HaLoop leverages loop-aware task

scheduling and caching mechanisms to support data reuse across iterations and reduce

I/O cost of data loading and shuffling, while Twister allows iterative computation via

utilizing a publish/subscribe messaging infrastructure for communication and data

transfers.

MapReduce also greatly contributes to address the scalability problem in real

world applications. There are three scenarios where MapReduce can be adopted in big

data applications. In the first scenario, a fully MapReduce based solution can be

designed. Under this scenario, inherently parallel and the control flow can be

parallelized, e.g., the word count problem. The second scenario is to leverage certain

steps of an application with MapReduce to achieve data-intensive computation. Under

this scenario, we need to analyse and partition the control flow to detect data intensive

25

computation parts. Under the third scenario, data sets need to be partitioned by

MapReduce and algorithms for an application running on working nodes

independently in a parallel manner. In other word, clustering methods are performed

as plug-in in MapReduce workers to clustering big data [39-40]. It should be

mentioned that the accuracy of results is probably sacrificed for achieving scalability.

2.3 Big Data Cleaning Techniques

Big data set from sensing systems is often subject to corruption and losses due to

wireless medium of communication and presence of hardware inaccuracies in the

nodes. For a sensing systems applications such as wireless sensor networks (WSN),

to deduce an appropriate result, it is necessary that the data received is clean, accurate,

and lossless. However, to effectively detect and recover big sensing data errors are

challenging issues waiting for innovative solutions [69, 73-78].

Lots of sensing system can be categorized as a kind of Complex network systems

[49, 54]. In these complex network systems [54-57], such as WSN and social network,

data abnormality and error become an annoying issue for the real network applications

[53, 59, 63, 66-68]. Therefore, the question of how to find data errors in complex

network systems for improving and debugging the network has attracted the interests

of researchers.

2.3.1 Error Detection

Big sensing data error detection commonly requires powerful real-time processing

and storing of the massive sensor data as well as analysis in the context of using

inherently complex error models to identify and locate events of abnormalities. The

popular Sensor-Cloud [28, 43, 46, 53] platform has been developed for processing

bulk sensing data on Cloud. Error detection is the first step for the sensing data

cleaning.

Mukhopadhyay et al. [57] proposed a way to more accurate sensing data error

correction with a scalable method of improving the accuracy of data modelling based

on on-line estimation and model updates. Both error detection and error recovery

26

problems were discussed in this work. Especially, in terms of its method for error

detection, an error detection approach was proposed based on dynamic modelling of

common sensing data errors. Finally, a system was offered and implemented to

demonstrate a notable improvement compared to earlier approaches. But when it

comes to big sensing data with five ‘V’ characteristics, their method may lose effect.

Ni et al. [58] provided a list of features which were commonly used for modelling

sensor data and sensor data faults. With this, a list of commonly exhibited sensor data

faults was also offered. With those faults, Ni et al. [58] aimed to test a specific fault

detection system. In addition, Ni et al. presented a systematic way of looking at sensor

data faults which could ease the next step of fault detection. With this understanding

of many possible faults, people can then develop more context-specific diagnosis

systems. This error type classification in paper [58] can be used as an important

reference when we define our big sensing data error model in this thesis.

Slijepcevic et al. [60] paid more emphasis on error location discovery problems

during the process of error detection process. They demonstrated the benefits of

location error analysis for system software and applications in wireless sensor

networks. The technical highlight of the work was a statistically validated

parameterized model of location errors which can be used to evaluate the impact of a

location discovery algorithm on subsequent tasks. It was demonstrated that the

distribution of location error can be approximated with a family of Weibull

distributions. Then, when performing the location discovery task, the nodes in a

network could estimate the parameters of the distribution.

Khan et al. [61] presented a tool for uncovering bugs caused by interactive

complexity in networked sensing applications. Such bugs were not localized to one

component that was faulty, but rather resulted from complex and unexpected

interactions between multiple often individually non-faulty components. Because

these bugs were often not repeatable, they were particularly hard to find. In addition,

nn extensible framework was developed where a front-end collects runtime data logs

of the system being debugged and an offline back-end used frequent discriminative

pattern mining to uncover likely causes of failure. A case study of debugging a recent

multichannel MAC protocol was developed to exhibit corner cases of poor

performance. The above tool helped uncover event sequences that lead to a highly

degraded mode of operation.

27

Lee et al. [67] presented a distributed fault detection algorithm for wireless sensor

networks. Faulty sensor nodes were identified based on comparisons between

neighbouring nodes and dissemination of the decision made at each node. They used

time redundancy for tolerating transient faults during the process of sensing and

communication. To avoid delay involved in time redundancy scheme, a sliding

window technique was employed with some storage for previous comparison results.

Wang et al. [55] offered a detailed classification for network data. Specifically,

research on measurement error in network data has typically focused on missing data.

Wang et al. embedded missing data (false negative nodes and edges) in a broader

classification of error scenarios. The classification includes false positive nodes and

edges and falsely aggregated and disaggregated nodes. The classified six

measurement errors were spotted online in real social network and a publication

citation network to their effects on four node-level measures. Based on the result,

Wang et al. suggested that in networks with more positively-skewed degree

distributions and higher average clustering, these measures tend to be less resistant to

most forms of measurement error. However, the original work in [55] could not be

directly used for big sensing data, and it would not be suitable for scalable error

detection unless future improvement is offered.

Albert et al. [54] investigated the fault tolerance issues thoroughly in many

complex systems. They argued that complex communication networks displayed a

surprising degree of robustness. Even key components regularly malfunction, local

failures rarely led to the loss of the global information-carrying ability of the network.

The stability complex systems ware often attributed to the redundant wiring of the

functional [54]. They concluded that such networks displayed an unexpected degree

of robustness, the ability of their nodes to communicate being unaffected even by

unrealistically high failure rates. However, error tolerance paid at a high price in that

these networks are extremely vulnerable to attacks.

Sheth et al. [59] and Laptev et al. [62] carried out some work for big data analysis

and error detection in complex networks including intelligence sensors networks.

There were also some works related to complex network systems data error detection

and debugging with on-line data processing techniques [43, 46, 69]. Since these

techniques were not designed and developed to deal with big data on cloud, they were

unable to cope with current dramatic increase of data size. For example, when big data

28

sets were encountered, previous off-line methods for error detection and debugging

on a single computer may take a long time and lose real time feedback. Because those

off-line methods were normally based on learning or mining [13], they often

introduced high time cost during the process of data set training and pattern matching.

It can be concluded that current data error detection techniques for complex

network systems emphasized on in-network detecting with intelligent nodes or off-

line analysis at the root. They ignored the scalability, massive resource and powerful

computation capability provided by cloud. The proposed error detection approach in

this thesis aims to address this issue by utilizing the inherent features of Cloud

Computing to realize fast error detection. In addition, the traditional error detection

for WSN data sets has not paid enough attention to making use of complex network

features to improve the error detection efficiency on Cloud. Compared to the previous

sensor data error detection and localization approach, complex network topology

features should be explored with the computation power of Cloud for scalable error

detection with high efficiency and low cost.

2.3.2 Error Recovery

Following the error detection methods and techniques offered in the above papers, it

comes to recovery stage according to our big sensing data curation road map.

Generally speaking, there are two ways to achieve data correctness, replacing errors

with approximate data, or making data set more robust/fault-tolerant. Some research

work in this direction is reviewed in the rest of this section.

Tang et al. [73] provided an overview of recent work in different aspects of data

cleaning: error detection methods, data repairing algorithms, and a generalized data

cleaning system. It also included some discussion about current efforts of data

cleaning methods from the perspective of big data, in terms of volume, velocity and

variety. According to paper [73] Data cleaning was, in fact, a lively subject that had

played an important part in the history of data management and data analytics, and it

still was undergoing rapid development. Moreover, data cleaning was considered as a

main challenge in the era of big data, due to the increasing volume, velocity and

variety of data in many applications.

29

Muthukumar et al. [99] proposed an effective framework for data cleaning to

ensure the data quality and reliability for future analysis. Specifically, data became

the powerhouse of Information for major analysis in public and private entities.

Petabytes of information were getting stored as big data storage and it posed a biggest

challenge for analysis and retrieving, such as the major issue of data errors. Unreliable

data were bound to outages and losses. The proposed big data statistical analysis [99]

played a vital role in social related hubs like judicial, medical and Education related

analysis. Decision making on statistical petabytes of big data would be proper and

closest accurate results derived by this framework. The processing time over petabytes

data will be reduced by replication and parallelization technique.

Vuranand et al. [68] proposed a cross-layer methodology for the analysis of error

control schemes in Wireless Sensor Networks (WSN). The effects of multi-hop

routing and the broadcast nature of the wireless channel were investigated. Error

control was of significant importance for WSN because of their severe energy

constraints and the low power communication requirements. In this paper, the cross-

layer effects of routing, medium access, and physical layers are considered. This

analysis enabled a comprehensive comparison of forward error correction (FEC)

codes, automatic repeat request (ARQ), and hybrid ARQ schemes in WSN. The

validation results showed that the developed framework closely follows simulation

results. Vuranand et al. [68] also demonstrated that the advantages of FEC codes were

even more pronounced as the network density increases. At the same time, transmit

power control resulted in significant savings in energy consumption at the cost of

increased latency for certain FEC codes. The results of our analysis also indicated the

cases where ARQ outperforms FEC codes for various end-to-end distance and target

PER values.

Ko et al. [71] developed a parallel dataflow programs generate enormous amounts

of distributed data that are short-lived, yet were critical for completion of the job and

for good run-time performance. Ko et al. [71] addressed intermediate data as a first-

class citizen, specifically targeting and minimizing the effect of run-time server

failures on the availability of intermediate data, and thus on performance metrics such

as job completion time. New design techniques for a new storage system called ISS

(Intermediate Storage System), implemented these techniques within Hadoop, and

experimentally evaluated the resulting system. Under no failure, the performance of

30

Hadoop augmented with ISS (i.e., job completion time) turned out to be comparable

to base Hadoop. Under a failure, Hadoop with ISS outperforms base Hadoop and

incurred up to 18% overhead compared to base no-failure Hadoop, depending on the

testbed setup.

Environmental sensing was becoming a significant way for understanding and

transforming the environment, given recent technology advances in the Internet of

Things (IoT). Current environmental sensing projects typically deployed commodity

sensors, which were known to be unreliable and prone to produce noisy and erroneous

data. Unfortunately, the accuracy of current cleaning techniques based on mean or

median prediction was unsatisfactory. Zhang et al. [74] proposed reliability-based

sensor data cleaning method, called influence mean cleaning (IMC), to weight the

mean prediction based on individual sensor reliabilities, and incrementally updates

sensor reliabilities based on the readings in each data collecting iteration. Zhang et al.

[74] validated this approach extensively by using both synthetic and real datasets. It

showed that the proposed IMC could significantly improve prediction accuracy over

the traditional mean and median methods. When there were sensor condition changes

in the network, our method also accurately captured different types of changes.

Andoni et al. [70] presented an algorithm for the c-approximate nearest neighbour

problem in a d-dimensional Euclidean space. In many cases, an approximate nearest

neighbour was almost as good as the exact one. In particular, if the distance measure

accurately captured the notion of user quality, then small differences in the distance

should not matter. Moreover, an efficient approximation algorithm were used to solve

the exact nearest neighbour problem by enumerating all approximate nearest

neighbours and choosing the closest point. Their algorithm could achieved query time

of O(dn1c2/+o(1)) and space O(dn+n1+1c2/+o(1)). The complexity almost matched

the lower bound for hashing-based algorithm. Andoni et al. [70] also obtained a space-

efficient version of the algorithm which used dn+n×logO(1)n space, with a query time

of dnO(1/c2). Finally, practical variants were utilized for fast bounded-distance decoders.

Based on the work of Andoni et al. [70], the most popular algorithms for performing

approximate search in high dimensions with the concept of locality-sensitive hashing.

The key idea of determining near neighbours by hashing functions could be used for

other error data approximation in recovery process.

31

Mukhopadhyay et al [57]. proposed a way to more accurate sensing data error

correction with a scalable method of improving the accuracy of data modelling based

on on-line estimation and model updates. Additionally, they proposed enhancements

to the data correction algorithm to incorporate robustness against dynamic model

changes and potential modelling errors. The error recovery strategy of the system was

evaluation through simulations using real sensor data collected from different sources.

Experimental results demonstrated that the proposed enhancements lead to an

improvement of up to a factor of 10 over the earlier approach. However, this recovery

was lack of distributed and parallel support for big data processing.

In work [101], a framework of fault control for hydrothermal ore systems was

offered. Where fault ruptures breach overpressured fluid reservoirs, earthquake

rupture sequences and associated seismogenic permeability enhancement generated

pathways for fluid redistribution in tight rocks in the upper half of the continental

crust. Seismogenic permeability enhancement played a key role in controlling the

architecture of fluid migration associated with the formation of many types of fault-

related ore systems, including mesothermal gold systems, some iron-oxide Cu-Au

systems and some intrusion related hydrothermal systems. With the increasingly

widespread deployment of modern seismometer networks, complemented by

increasingly precise relocation of earthquake hypocenters, unprecedented insights

were being gained about the architecture of seismogenic permeability enhancement

and nature of fluid flow associated with earthquake rupture sequences.

Based on the above error recovery and error control strategies, to our knowledge,

no systematic approach has been offered yet for big sensing data error recovery with

a scalable and parallel computing platform such as Cloud.

2.4 Big Data Compression Techniques

To offer a fast, scalable and accurate way for big sensing data volume reduction,

different techniques and models are widely discussed currently according to research

literature [50, 52, 79-80, 83, 86-91, 100]. According to the detailed techniques

adopted in those work, they can be categorized into temporal compression and spatial

compression. According to the data quality loss situation during the process of

32

compression, they can be categorized into lossy compression and lossless

compression. In addition, there are other data aggregation or reduction techniques

which will also be review as follows.

2.4.1 Spatiotemporal Compression

Spatiotemporal data suppression and its related data clustering, compression

techniques can be widely found in network data processing area [79-80, 82-83, 90, 93,

96]. They are useful in terms of data exchange reduction over Cloud platform.

There are some typical work for compressing sensing data with temporal or spatial

correlations. Yoon et al. [79] presented the work of CAG for an updated CAG

algorithm that formed clusters of nodes with similar values within a given threshold

(spatial sensing data correlations). The formed clusters remained unchanged as long

as the sensor values stayed within the given threshold (temporal correlations) over

time. With the clustering technique, every time, there was only one sensor data being

transmitted; whereas the data aggregation algorithm without clustering required all

nodes to transmit. CAG was a typical spatiotemporal data compression model which

took both temporal and spatial data correlations into consideration when carrying out

data compression.

Edara et al. [80] proposed a temporal trend based time series prediction model

which can predict the future data with a small cost in real time. With respect to data

compression, the temporal and order compression Yang et al. [52] techniques were

used to reduce the data exchanges within a network topology. It could be further

calibrated to satisfy the big data set reduction over Cloud platform. Ail et. al [82]

proposed by Ail, the spatiotemporal based clustering and order compression were

chosen adaptively for data compression over sensor networks. However, the data

exchanging model was quite similar to that over a data exchanging network analysed

with Cloud computing. In other words, the compression idea in WSN had its potential

to be used on Cloud for reducing the size of big data set and graph data.

Shang et al. [94] focused their research on the world wide problem of land

subsidence caused by excessive extraction of groundwater. Sustained decline in

groundwater level had a direct impact on land surface elevation. However, the impact

might not be consistent across subsidence areas. The spatially varying relationship

33

between land subsidence and groundwater level variations remained unclear. Shang

et al. [94] explored the spatiotemporal changes based on the observed data of

groundwater levels and benchmark elevations from 2002 to 2009 in the Choshuichi

alluvial fan of central Taiwan and examines the spatial heterogeneity with

geographically weighted regression (GWR). With the environmental monitoring

sensing data, the results revealed that the occurrence and development of land

subsidence was closely related to the groundwater pumping. Moreover, the influence

of groundwater level on land subsidence was more significant in the inland area. The

study could help develop predicting model for any spatiotemporal compression model.

Zhang et al. [96] intensively investigated the problem of big sensing data

compression with Cloud Computing. Specifically, they postulated that, by and large,

the complexity of today’s systems was a result of an architecture that neither

anticipated nor accommodated the particular needs of big data analytics. There was a

clear division of labour between storage and processing. The responsibility of storage

was to store data reliably and to provide as much IO-bandwidth to the data as possible.

However, applications were rarely interested in raw data records. Instead, they

commonly issued queries against aggregated values (e.g. sum...group by...), which

could be understood by humans. Most of users’ interests were analytics that “query

impressions”, i.e., high-value statistics such as majority, mode, top-K and outliers.

This was especially the case for high dimensional data, a combination of numerous

data attributes that could typically be represented in a sparse form at little loss of

fidelity. Zhang et al. [96] demonstrated that for this category of big data analytics—

cases such as top-K analysis and outlier detection that constitutes a large portion of

production workloads as we observed—new system-level abstractions could yield

fundamental improvements in performance and scalability. This work was a good

foundation for on-Cloud compressing big sensing data.

Handy et al. [81] proposed Low Energy Adaptive Clustering Hierarchy

("LEACH") [81] to aggregate sensing data according to spatial clusters. It was a

TDMA-based MAC protocol which is integrated with clustering and a simple routing

protocol in networks systems such as WSN. The development goal of LEACH was

to provide data aggregation for sensor networks while providing energy efficient

communication that did not predictably deplete some nodes more than others. LEACH

was a hierarchical protocol in which most nodes transmit to cluster-heads, then the

34

cluster-heads aggregated and compressed the data, finally forwarded it to the base

station. Each node used a stochastic algorithm at each round to determine whether it

would become a cluster-head in this round. Nodes that have been selected as cluster-

heads could not become cluster-heads again for next k rounds in LEACH, where k

was the desired percentage of cluster heads. Hence, each node had a “1/k” probability

of becoming a cluster-head in each round. At the end of each round, each node that

was not a cluster head selected the closest cluster-head to join a cluster. Eventually,

all nodes that were not cluster-heads only communicated with the cluster head

according to the schedule created by the cluster-head. LEACH offered a possibility to

automatically select suitable cluster-heads in terms of energy situation and radio

coverage. It solved the technical issues such as topology construction and routing table

maintenance. However, all the processing of LEACH was carried out during the stage

of compressive sensing or networking stage. It had no discussion about the issue of

scalable storage over large public computing platforms, such as Cloud.

2.4.2 Lossy and Lossless Compression

According to the data quality of final compression results, the data compression can

be categorized as lossy compression and lossless compression. In real world

applications, most of compression are lossy compression which trade off the data

accuracy for smaller data size. However, there are also lossy compressions which have

narrow chance to be adopted in real world applications.

Lossless compression is commonly used for modelling and problems analysis

when some assumption can be offered. However, under the theme of big sensing data,

in order to gain significant data volume reduction, it is almost impossible to deploy

lossless compression. Lossless compression can be achieved by encoding of data with

the orders of data units. Yang et al. [52] developed a novel approach to compress the

in-network aggregate data based on the order compression techniques. Firstly, an

lossless compression approach was designed and offered to decrease the WSN data

transmission size based on maintained data history tables. Secondly, it was based on

the in-network prediction technique and gave further optimization for the previous

work [80]. Thirdly, previous order compression techniques were used for representing

specific data values and were often not generalized. Instead of using order for

35

encoding specific values, the order information was used for representing a location

in the data history table as an index, which was novel in WSN research area. Finally,

the real sensing data experiments demonstrated significant performance gains of the

proposed algorithm. The overall compression in this paper was lossy compression.

However, the basic idea of order compression was originated from encoding and

decoding data units. It was a lossless compression model.

Compared to lossless data compression, there are large number of lossy

compression techniques. Especially for earthquake data sets or high frequency data

sets where violent changes often occur with unpredictable fluctuations, lossless

compression will totally lose its effects. Under those situations, successful lossy

compression becomes important.

Yu. et al. [92] proposed a way for processing strong motion records from

earthquakes after earthquake monitoring sensing data had been gathered. Their

proposed conventional process included: the arrangement, transition, unification of

data-format, input and the zero-line correction of the original strong motion records,

and then plotting the time-histories of the uncorrected acceleration records in uniform-

format. Their steps of zero-line correction were as follows. Firstly, calculate the

average acceleration of the first 20 seconds of the original acceleration record.

Secondly, the original acceleration record subtract the average acceleration Followed

by the conventional process. Then, the original records were corrected with different

bandpass filters separately. Hence, they were integrated to get the velocities and

displacements, the response. At the same time, Fourier amplitude spectra was also

calculated routinely. Finally the time-histories of the uncorrected accelerations, the

corrected accelerations, velocities, displacements, the response and Fourier amplitude

spectra of the corrected accelerations were plotted in uniform-format. Their method

for recognizing and approximating strong motion record [92] can be very useful in

compressing high fluctuated data sets.

Thomas et al. [95] proposed a hybrid soft computing method combining artificial

neural network (ANN) and simulated annealing (SA), called SA-ANN to build a

prediction model for the peak ground acceleration (PGA). This model applied PGA

to earthquake source to site distance, earthquake magnitude, average shear-wave

velocity, faulting mechanisms, and focal depth. This proposed PGA model was

developed based on an Iran tectonic database containing 179 records. The main

36

contribution of this work was that the proposed SA-ANN relationship provided

reliable estimation of the PGA and had high degree of accuracy (ρ = 0.0908) and

better than basic ANN and well-known methods according to the current literature.

Their parametric study also confirmed that there was no any trend with respect to the

variables. The closed form of SA-ANN-based design equation provided analysis tool

for future research. The explicit formula could be easily used in a spreadsheet or hand

calculations to give predictions of the PGA values.

Jiang et al. [97] established a compressive network analysis framework by

connecting the network data analysis to modern statistical learning and signal

processing theories. Firstly, under the compressive network analysis framework, Jiang

et al. [97] studied the network clique detection problem. Then, this problem was

formulated into a compressive sensing problem. They provided theoretical proof

based on that formulation. Jiang et al. showed that the formulated optimization

problem can reliably recover the underlying network cliques in a variety of scenarios.

Secondly, Jiang et al. provided a polynomial time approximation algorithm to solve

the network clique detection problem in based on the formulation. Based on the

sparsity assumption, the solution of the optimization problem could be solved

efficiently, by utilizing the cutting plane methods. Finally, Jiang et al. validated their

formulation and algorithm with numerous application examples. However, the

technique in this paper could be extended to big sensing data compression on Cloud.

Chun et al. [98] discussed two important problems including slow acquisition and

intrusive acoustic noise. According to the paper [98], parallel MRI (pMRI) techniques

accelerated acquisition by reducing the duration and coverage of conventional

gradient encoding. The under-sampled k-space data was detected with several receiver

coils surrounding the object, using distinct spatial encoding information for each coil

element to reconstruct the image. However, this scanning was slow compared to

typical clinical imaging (e.g. X-ray CT). Compressed Sensing (CS), a sampling theory

based on random sub-sampling showed its potential to further reduce the sampling

used in pMRI, accelerating acquisition further. Chun et al. [98] proposed a new CS

SENSE pMRI reconstruction model promoting joint sparsity across channels and

enhancing mutual incoherence to improve reconstruction accuracy from limited k-

space data. For fast image reconstruction and fair comparisons, all reconstructions

were computed with split-Bregman and variable splitting techniques. With the

37

introduced methods, reconstruction performance can be crucially improved with

limited amount of k-space data. However, this compressive sensing strategy have

promising potential to be improved and extended in terms of scalability for big sensing

data compression on Cloud.

2.4.3 Other Compression Techniques

In order to reduce the volume of big data sets, Sidiropoulos et al. [83] developed a

different data reduction methods especially for compressive sensing for sparse and

low-rank tensors. Low-rank tensors were synthesized as sums of outer products of

sparse loading vectors, and a special class of linear dimensionality-reducing

transformations that reduced each mode individually. It was proved that interesting

“oracle” properties exist. The proofs naturally suggested a two-step approach for

processing big sensing data on Cloud. However, the extension and improvement are

required to face new issues of big data and Cloud.

Ramaswamy et al. [84] proposed a data quality (DQ)-centric big data

infrastructure for federated sensor service clouds was proposed. The paper explored

the advantages and limitations of current big data technologies in building various

components of the platform. The trade-off between data size and data quality was

discussed.

Cuzzocrea et al. [85] focused on the problems including state-of-the-art analysis

and open research issues in the context of Cloud-enabled largescale sensor networks.

This research naturally complemented the emerging big sensing data paradigm. It

focused in particular on the issue of representing and managing Big Data, with

emphasis on analytics over Big Data, as well as processes and architectures working

with such data, with emphasis on Wireless Sensor Networks (WSNs), and drew future

directions in this field.

Fang et al. [86] developed recovery algorithms based on compressive sampling

(CS). Specifically, to speed up the least-squares module, the matrix-inverse-update

algorithm was adopted. That developed algorithm had the potential to be used for

compressing big sensing data on Cloud. But it could not be used directly due to the

new requirement such as extreme high data speed, distributed environment and

scalability.

38

Wang et al. [87] proposed an anomaly detection technique for through-wall

human detection to demonstrate the big sensing data processing effectiveness. This

technique was totally based on compressive sensing. The results showed that the

proposed anomaly detection algorithm could effectively detect the existence of a

human being through compressed signals and uncompressed data.

Wang et al. [88] proposed an adaptive data gathering scheme by compressive

sensing for wireless sensor networks. By introducing autoregressive (AR) model into

the reconstruction of the sensed data, the local correlation in sensing data was

exploited and thus local adaptive sparsity was achieved. Up to about 8dB SNR gain

could be achieved over conventional CS based method. There was also technique

focusing on parallel data storing over large-scale distributed storage stock of Cloud

platform. The stored big graph data or stream data sets would be queried and evaluated

as the model of distributed data-base in Cloud, such as “Hydoop” [45] and its related

“Hive”, “HBase”, “Zookeeper”, and so on.

Based on the above literature, current big sensing data processing or compression

algorithms work at sampling or data unit navigation level. However, due to the huge

volume of the big sensing data, the only data size reduction at that level is not enough.

Novel data compression techniques should be developed to dramatically reduce the

stored data size and time cost for data manipulation. In addition to compressing data

unit one by one at sampling stage and traditional compression techniques which

compare data units at a low level, some compression based on huge data blocks in big

sensing data should be expected. At the same time, the computation power and the

scalability feature of Cloud computing should be further exploited within the

framework of MapReduce/Spark.

2.5 Related Platforms and Data Sets

Throughout the rest of this thesis, the real world big sensing data experiments will be

carried out for testing our proposed new techniques and algorithms. This Cloud

Computing Platform and all testing big sensing data sets will be introduced for

analysis first as follows.

39

2.5.1 U-Cloud Platform

U-Cloud [48-50, 72] is a cloud computing environment constructed at University of

Technology Sydney (UTS). The system overview of the U-Cloud system is depicted

in Figure 2-1. The computing facilities of this system are located among several labs

in the Faculty of Engineering and IT, UTS. On top of the hardware and the Linux

operating system Ubuntu 10 , we installed KVM virtualization software 11 that

virtualized the infrastructure and provided unified computing and storage resources.

To create virtualized data centres, we further installed the OpenStack open source

Cloud platform which was responsible for virtual machine management, resource

scheduling, task distribution, interaction with users, etc. OpenStack can support

various types of virtual machines. This OpenStack Cloud environment is totally based

on Apache Spark clusters. Furthermore, Hadoop [29, 42, 45, 107-110] clusters is built

up and installed to facilitate Spark/MapReduce computing paradigm and big data

processing. Based on the above virtual machines offered by OpenStack, data

curation/preparation can be realized in a parallel manner as described in the contents

of this thesis.

Figure 2-1 U-Cloud Environment with Apache Hadoop Cluster

Finally, our whole data curation roadmap is developed and deployed based on U-

Cloud platform. All the experiments are conducted on U-Cloud. Each group of

10 http://www.ubuntu.com/, accessed on March 30th, 2016.
11 http://www.linux-kvm.org/page/Main_Page, accessed on March 30th, 2016.

40

experiments is designed according to different specific techniques according to their

different application requirements such as data compression and data cleaning.

2.5.2 Big Sensing Data Sets

To test the effectiveness and efficiency of the develop technique in our data curation

roadmap, a series of real world big sensing data sets are selected based on their

different data characteristics. In our experiments, those real world sensing data sets

will be fed to our developed algorithms running on U-Cloud. They are briefly

categorized into three groups according to their data sources in the real physical world.

They are Meteorology Sensing Data, Environment Sensing Data and Earthquake wave

Sensing Data.

 Meteorology sensing data is important for atmospheric composition research,

cyclones research, air flow research, observation networks research, weather

forecasting etc. Meteorology sensing data can come from lots of real world

measurements. Among them, data sets from sensing or sensor systems are

commonly encountered in our current everyday life. For example,

professional stations may include air quality sensors, flood sensor, lightning

sensor etc. to calculate useful meteorology information for. One widely used

technique is remote sensing in meteorology. It is the concept of collecting data

from remote weather events and subsequently producing weather information.

The common types of remote sensing are Radar, Lidar, and satellites. In our

experiments in this thesis, four common types of meteorology sensing data are

used from open civil data sources including temperature sensing data,

atmospheric pressure data, relative humidity data and wind speed data. Those

meteorology sensing data sets are specifically selected for the experiments in

the Author’s Publication 2 & 17.

 Environmental sensing data becomes widely known with the introduction of

wireless sensor networks with the progress of modern technology. Over the

past few years, the most significant trend in environmental sensors has been

in personal, portable devices that measure air and water quality from our

41

pockets or wrists. For example, by making these sensors small and usually

Bluetooth or Wi-Fi enabled, merely carrying out our normal daily routines

could make citizen scientists of us all, significantly increasing the amount and

precision of environmental data through crowdsourcing. From smartphone

embedded sensors to those you wear or plug in wherever you are, new personal

environmental sensors will change the way that data is gathered, analyzed and

consumed. Everyone may be able to walk around with one or more sensors

with them, giving scientists and everyone else the ability to see highly

localized, real-time data on things like temperature, NO2 and particulate levels

in the air and even detect toxic chemical leaks. With the increased usage of

large scale wireless sensing systems, big data from those environmental sensor

networks is becoming a new challenge. However, in our experiments, four

types of environmental sensing data sets are used including temperature,

moisture, light and sound. Those four environmental sensing data sets are

specifically selected for the experiments in the Author’s Publication 3 & 4.

 Earthquake wave sensing data is important for disaster forecast and scientific

research. Nowadays, sensing systems are widely deployed all over the world

to monitor earthquake and its related scientific data. Recordings of seismic

waves from earthquakes led to the discovery of the earth’s core and eventual

maps of the layers of the Earth’s inside. Just as the prism below refracts light

at its faces, seismic waves bend, reflect and change speed at the boundaries

between different materials below the Earth’s surface. Earthquakes generate

three types of seismic waves: P (primary) waves, S (secondary) waves and

surface waves, which arrive at seismic recording stations one after another.

Both P and S waves penetrate the interior of the Earth while surface waves do

not. Due to this, P and S waves are known as “body waves”. Surface waves

arrive last and are the least interesting to seismic tomographers because they

do not penetrate deep inside the Earth. In out experiments, sensing data sets

recording both P waves and S waves will be used. Earthquake Sensing Data

sets are specifically selected for the experiments in the Author’s Publication

16.

42

In Table 2-1, we compare the important features of three types of data sets which

are involved in the evaluation in the rest of this thesis.

Table 1-1 Big Sensing Data Sets Comparison

 Meteorology Data Environment Data Earthquake Data
Volume extremely large large large
Velocity high medium extremely high
Variety very rich rich rich
Error Rate medium medium high

To guarantee the technical integrity and connectivity of this thesis, the detailed

features of the specific testing data sets will be intensively discussed when

encountering them in the following chapters.

2.6 Summary

In this chapter, we have reviewed the related work in-depth for our research. Firstly,

the current research trend and research issues were reviewed and analysed. The

correspondent five ‘V’s were introduced for better describing big data. Secondly, we

had an intensive review for techniques, tools and algorithms related to big data

processing and Cloud. Especially, big sensing data, big graph data and their related

processing tools, platforms and applications were reviewed. Thirdly, specific issues

related data cleaning were discussed including error detection and error recovery.

Fourthly, the data compression techniques were reviewed based on spatiotemporal

features, lossy and lossless features etc. Finally, our Cloud Computing environment

set up in UTS, U-Cloud was introduced with the detailed description of our real world

big sensing data sets. Both U-Cloud and real world big sensing data sets are two

critical bases for all the experiments and evaluations in the following chapters of this

thesis.

43

Chapter 3

Error Detection

From this chapter on, we start to explore research components in our data curation

roadmap. Specifically, in this chapter, we aim to develop a novel error detection

approach by exploiting the massive storage, scalability and computation power of

Cloud to detect errors in big sensing data sets from various sensing systems deployed

in real world.

3.1 Introduction

Based on the literature review, it is well known that erroneous data is pretty common

in data sets from sensing systems. Therefore, the question of how to find data errors

in complex network systems for improving and debugging the network has attracted

the interests of researchers. Some work [59, 62] has been done for big data analysis

and error detection in complex networks including intelligence sensors networks.

There are also some works related to complex network systems data error detection

and debugging with on-line data processing techniques [43, 69]. Since these

techniques were not designed and developed to deal with big data on Cloud, they were

unable to cope with current dramatic increase of data size. For example, when big data

sets are encountered, previous off-line methods for error detection and debugging on

a single computer may take a long time and lose real time feedback. Because those

44

off-line methods are normally based on learning or mining, they often introduce high

time cost during the process of data set training and pattern matching.

Sensing big data error detection commonly requires powerful real-time

processing and storing of the massive sensor data as well as analysis in the context of

using inherently complex error models to identify and locate events of abnormalities.

In this chapter 3, we aim to develop a novel error detection approach by exploiting

the massive storage, scalability and computation power of cloud to detect errors in big

data sets from sensor networks. Some work has been done about processing sensing

data on Cloud [43, 46]. However, fast detection of data errors in big data with Cloud

remains challenging. Especially, how to use the computation power of Cloud to

quickly find and locate errors of nodes in WSN needs to be explored.

3.1.1 Research Problem Analysis

Currently, Cloud is becoming popular because it provides an open, flexible, scalable

and reconfigurable platform. We aim to propose an on-Cloud error detection approach

in this chapter based on the classification of sensing error types. Specifically, 9 types

of data abnormalities/errors are listed and introduced in our Cloud error detection

approach. The defined error model will trigger the error detection process. Compared

to previous error detection of sensor network systems, our approach on Cloud will be

designed and developed by utilizing the massive data processing capability of Cloud

to enhance error detection speed and real time reaction.

In addition, the architecture feature of complex networks will also be analysed to

combine with the cloud computing with a more efficient way. Based on scale-free

type and no scale-free features of complex networks, sensing data sets, especially from

sensor networks can be modelled with a kind of scale-free complex network. In the

proposed approach in this chapter, the error detection is based on the scale-free

network topology and most of detection operations can be conducted in limited

temporal or spatial data blocks instead of a whole big data set. Hence the detection

and location process can be dramatically accelerated.

Furthermore, the detection and location tasks can be distributed to Cloud platform

to fully exploit the computation power and massive storage. The overall research

contribution of this chapter is to achieve significant time performance improvement

45

in error detection without compromising error detection accuracy. Through the

experiment on our cloud computing platform of U-Cloud [48-51, 107-110], it is

demonstrated that our proposed approach can significantly reduce the time for error

detection and location in big sensing data sets generated by large scale sensor network

systems with acceptable error detecting accuracy.

3.1.2 Contents Outline

The remainder of this chapter is organized as follows. First of all, a sound sensing

data error classification is offered in Section 3.2. Then, our error detection approach

for big sensing data is introduced in Section 3.3. In Section 3.4, the related error

detection and localization algorithms are designed and developed. In Section 3.5, the

experiments are conducted on real-world data big sensing data sets to evaluate the

performance of our proposed error detection technique. We summarize this chapter in

Section 3.6.

3.2 Sensing Data Errors

Many systems in nature can be described as large networks (nodes or vertices

connected by links or edges): Friendship networks, Social networks, computer

networks, Internet, metabolic networks, power grids, scientific citations, neural

networks and large scale sensor networks. Network analysis has been troubled by the

issue of measurement of error for a long time [54-56]. Before deploying an error

detection approach on cloud, the error models for big data sets from sensing systems

perspective should be presented first.

3.2.1 Error Classification

Under the theme of the big data sets from real world complex networks, there are

mainly 2 types of data generated and exchanged within networks. (1) The numeric

data sampled and exchanged between network nodes such as sensor network sampled

data sets. (2) The text files and data logs generated by nodes such as social network

46

data sets. In this paper, our research will focus on the error detection for numeric big

data sets from complex networks.

In the work [55], the errors of complex networks can be classified as six main

types for both numeric and text data. According to previous work in [1-2], the

common data error of sensing network systems can be classified as 6 common types.

For most of complex network systems, this classification is based on the error location

and describes the topology features of data errors. However, it is not enough to reflect

the data features of data errors from sensing network systems.

 False negative node data: It refers to the absence of nodes data that

should be present in a network

 False positive node data: It means nodes data that are erroneously present

in a network. This error type is quite pervasive

 False negative edge data: It refers to the loss of communication data

between nodes which should be reported

 False positive edge data: It refers to the communication data between

nodes is erroneously presented

 False aggregation: two node data A and B are erroneously treated as the

same one

 False disaggregation: one node data A is erroneously treated as A and B

from two different nodes

The above error classification can effectively describe the common error types in

complex network systems. However, when it encounters the errors in wireless sensor

network data sets, the above classification loses the accuracy in separating node or

edge data error caused by different wireless data communication failures. In addition,

it is not enough in describing the error data phenomena in sensing data sets. To better

47

capture the error features of sensor data sets, the above error classification in [55]

should be extended.

Figure 3-1 Error Scenarios from Sensor Network Systems Data

Considering the specific feature of numeric data errors, there are several abnormal

data scenarios demonstrated in Figure 3-1. The “flat line faults” indicates a time series

of a node in a network system keeps unchanged for unacceptable long time duration.

In real world applications, sampled data and transmitted data always have slight

changes with the time flow. The “out of data bounds faults” indicates impossible data

values are observed based on some domain knowledge. In real world applications, if

a temperature value of water is reported as 300 °C, it can be treated as a data fault

directly. The “data lost fault” means there are missing data values in a time series

during the data generation or communication. The time series with “data lost fault”

normally needs data cleaning. Finally, in Figure 3-1, the “spike faults” indicates in a

time series data items which are totally out of the prediction and normal changing

trend. Because the above four types of errors can happen both at data generation and

exchange stages, the error types can also be categorized into node side and edge side

separately. Combining the data faults scenarios in Figure 3-1 with the work in paper

[54-56, 61], we present a more detailed classification of complex network systems

data errors based on the time series analysis as follows.

flat line faults

data lost faults

out of data bounds faults

spike faults

48

 node side flat line error: It is a type of false positive node data error

 edge side flat line error: It is a type of false positive edge data error

 node side out of bound error: It is a type of false positive node data error

 edge side out of bound error: It is a type of false positive edge data error

 node side spike error: It is a type of false positive node data error

 edge side spike error: It is a type of false positive edge data error

 node side data lost error: It is a type of false negative node data error

 edge side data lost error: It is a type of false negative edge data error

 Aggregation & Fusion error: It refers to the errors caused by data

accumulating effects, and drifting

3.2.2 Error Type Definition

With the above classification, the definition of each error type is presented to guide

our error detection algorithm. Suppose that a data record from a network node is

denoted as r(n, t, f(n, t), g(n, l)), where n is the ID of the node in a network systems. t

represents the window length of a time series. f(n, t) is the numerical values collected

within window t from the node n. g(n, l) is a location function which records the

cluster, the data source node and partition situation related to the node n. g(n, l) is

used to calculate the distance between the data source node n and the node l which is

the initial data source node. g(n, l) indicates that a current detected error data node is

the initial data source node. Furthermore, g(n, l) is also used to parse the data routing

between data communication nodes.

49

Definition 1 (node side flat line error). Let ri(ni, ti), f(ni, ti), g(ni, l)) be a time series

record from node ni, where i is a time stamp. If any element x≡δi, where δi is an

effective constant during time window t, x f(ni, ti), and g(ni, l)=0, ni is the data source

node, there is a node side flat line error.

Definition 2 (edge side flat line error). Let ri(ni, ti), f(ni, ti), g(ni, l)) be a time series

record from node ni, where i is a time stamp. If any element x≡δi, where δi is an

effective constant during time window t, x f(ni, ti), and g(ni, l)!=0, ni is the data source

node, there is an edge side flat line error.

Definition 3 (node side data lost error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time series

record from node ni, where i is a time stamp. If f(ni, ti) = null && ti > τ, ‘τ’ is the time

duration from outside application requirement, and if g(ni, l)=0, ni is the data source

node, the error is a node side data lost error.

Definition 4 (edge side data lost error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time series

record from node ni, where i is a time stamp. If f(ni, ti) = null && ti > τ, ‘τ’ is the time

duration from outside application requirement, and if g(ni, l)!=0, ni is the data source

node, the error is an edge side data lost error.

Definition 5 (node side out of bounds error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time

series record from node ni, where i is a time stamp. If any element x>θ, x f(ni, ti), θ

is a threshold defined from the application requirement, and if g(ni, l)=0, ni is the data

source node, the error is a node side out of bound error.

Definition 6 (edge side out of bounds error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time

series record from node ni, where i is a time stamp. If any element x>θ, x f(ni, ti), θ

is a threshold defined from the application requirement and if g(ni, l)!=0, ni is the data

source node, the error is an edge side out of bound error.

Definition 7 (node side spike error). Let ri(ni, ti, f(ni, ti), g(n, l)) be a time series record

from node ni, where i is a time stamp. If |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable

50

changing trend, fp(ni, ti) is the predicted time series with an adopted prediction model,

and if g(ni, l)=0, ni is the data source node, the error is a node side spike error.

Definition 8 (edge side spike error). Let ri(ni, ti, f(ni, ti), g(n, l)) be a time series record

from node ni, where i is a time stamp. If |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable

changing trend, fp(ni, ti) is the predicted time series with an adopted prediction model,

and if g(ni, l)!=0, ni is the data source node, the error is an edge side spike error.

Definition 9 (Aggregation and Fusion error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time

series record from node ni, where i is a time stamp. If ∑i|f(ni, ti) - fp(ni, ti)|/ti > ψ* &&

|f(ni, ti) - fp(ni, ti)|/ti < ψ, where ψ* is a given total acceptable error bound, there is

an aggregate and fusion error.

3.3 On-Cloud Error Detection

In this section, we will introduce the technical details of our proposed error detection

method based on the above 9 types of classified sensing data errors.

3.3.1 Scale-free Complex Networks

For a sensing network system, such as WSN with a hierarchical structure, it is a graph

denoted as G(V, E), the degree of a vertex V is denoted as deg(v). We define a function

s(G) in formula (1).

 (1)

If the high degree nodes are connected to other high degree nodes in G, we can

get formula (2), where the maximum value of s(H), and H are the graphs with degree

distribution similar to G. S(x) denotes the distribution function corresponding to a

probability mass function .

 (2)

51

Because we assume that the sensor network has a hierarchical structure. If

S(G)→1, the graph G is called “Scale-free”. The classification and prove for the

complex networks are as follows. Suppose that there is a graph sequence {Gn}, n [1,

), we can calculate the vertices. n is the size of vertices in Gn. The proportion of

vertices with k degree in Gn is noted as .

, (3)

In formula (3), is the degree of vertex j in the graph n. The degree

sequence of n is given by . The random graph process { n is sparse for

the { k if formula (4) can be satisfied.

 (4)

Because the limit in formula (4) is deterministic, the convergence in formula

(4) can be taken as convergence in probability or in distribution. And ends

up as . In terms of a large value of n, a large number of vertices in Gn have a limited

degree. Then, a random graph process with the above feature is called scale-free with

an existing exponent which can be calculated by formula (5).

 (5)

Hence, for a scale-free graph process, its degree converges to a limited probability

described in formula (4). Under some situation, there is too much restriction for the

formula (5). For example, when the probability mass function -> is not smooth,

the formula (5) can be replaced with (6).

 (6)

52

Where is the distribution according to the function { .

When the formula (7) can be satisfied, we say that a graph process {Gn has a

highly clustered structure. If the formula (7) can be satisfied, the WSN graph G carries

strong features of a scale-free complex network as a cluster-head WSN.

> (7)

Based on the above analysis, the scale-free networks are inhomogeneous and only

a few nodes have a large number of links. In real applications, the cluster-head WSN

is similar to scale-free networks, which can be described with the scale-free complex

networks and has the feature of scale-free networks. In Figure 3-2, the instance of

scale-free networks and exponential networks are compared. It can be concluded that

the scale-free networks have a more clustered hierarchical nodes topology. Central

nodes are highly connected by the out-layer nodes has only 1 or 2 links.

Figure 3-2 Examples for Scale-free networks and non-scale-free networks

3.3.2 Model-based on-Cloud Error Detection

According to the above analysis, it is clear that complex network systems have a

similar clustered network topology. During the filtering of big data sets, whenever an

abnormal data is encountered, the detection algorithm needs to finish two tasks. They

are depicted as two functions here. “fd(n/e, t)” is a decision making function which

determines whether the detected abnormal data is a true error. In other words, fd(n/e,

Scale-free Networks Exponential Networks

53

t) has two outputs, “false negative” for detecting a true error and “false positive” for

selecting a non-error data. “fl(n/e, t)” is a function for tracking and returning the

original error source. With the results from the above two functions, the error

detection process can be successfully finalized.

As shown in Figure 3-3, there is a complex network and Cloud platform for

running error detecting algorithms. Without any consideration of network features and

data characteristics, the error detection algorithm needs to filter the whole big data set

from the network. Whenever, an error types defined in Section 3.2.2 is encountered,

the algorithm will call fd(n/e, t) and fl(n/e, t) to traverse the whole network big data set

for the final decision making and error source location. However, based on the

analysis of Scale-free network systems, it has been proved that scale-free networks

have a clustering and hierarchical topology. Only a few nodes in the whole network

have large sets of links to other nodes. So, based on these nodes, the whole networks

can be partitioned into a group of clusters (red circles in Figure 3-3). If there is certain

abnormal data occurs for a certain node k, the high opportunity is that most of the

related data for fd(n/e, t) and fl(n/e, t) will be located in the clusters where the node k

locates. As a result, fd(n/e, t) and fl(n/e, t) only need to navigate the related clusters for

error detection result. This is because of the fact that except for a few central nodes,

most of nodes only have limited links within themselves in their clusters. Hence, the

proposed clustering can significantly reduce the time cost error locating and final

decision making by avoiding whole network data processing. In addition, with this

detection technique, Cloud resources only need be distributed according to each

partitioned cluster in a scale-free complex network.

Figure 3-3 Cluster based Error Detection Strategy on Cloud

Cloud
computational

services

54

3.4 Algorithms

To deploy the proposed error detection model and identifying the location of the error,

our algorithm can be divided into two parts, detection and location. In this section, we

will introduce the big data error detection/location algorithm, and its deployment

strategy on Cloud.

3.4.1 Error Detection

We propose a Two-Phase approach to conduct the computation required in the whole

process of error detection and localization. At the phase of error detection, there are

three inputs for the error detection algorithm. The first is the graph of network. The

second is the total collected data set D and the third is the defined error patterns p.

The output of the error detection algorithm is the error set D’. The details of the error

detection algorithm can be found in following Figure 3-4.

As shown in the line 1 of Figure 3-4, the network is partitioned into a set of sub-

graphs based on the scale-free complex network and the cluster-head network feature

as described in lines 2 and 3, respectively. Whenever an abnormal data is encountered,

the pattern matching is carried out in line 5 based on defined error types. Specifically,

from line 6 to line 12, if the abnormal data satisfies the pattern of flat line error, it will

be tagged and added into D’ as shown in line 12. At the same time, the flat line error

is also divided into edge side E type, and node side V type. From line 13 to line 18, if

the abnormal data satisfies the pattern of data lost error, it will be tagged and added

into D’ as shown in line 18. From line 19 to line 24, if the abnormal data satisfies the

pattern of out of bound error, it will be tagged and added into D’ as shown in line 24.

From line 25 to line 30, if the abnormal data satisfies the pattern of data error, it will

be tagged and added into D’ as shown in line 30. However, when it comes to the

“aggregate & fusion” error, the algorithm changes because the “aggregate & fusion”

error introduces the data drifting and overlapping. It will evolve over multiple e E

55

and v V for the error detection. After all the data set D is traversed by the detection

algorithm, the error data set D’ is output.

Figure 3-4 Error Detection Algorithm

3.4.2 Error Localization

After the error pattern matching and error detection, it is important to locate the

position and source of the detected error in the original WSN graph G(V, E). The input

of the algorithm in Figure 3-5 is the original graph of a scale-free network G(V, E),

and an error data D from the algorithm in Figure 3-4. The output of the algorithm in

Figure 3-5 is G’(V’, E’) which is the subset of the G to indicate the error location and

source. The details of the error localization algorithm are offered in Figure 3-5.

ALGORITHM 1. ERROR DETECTION
Input: a graph , a data set D, an error patterns set p.
Output: error data set D’.
01: Partition into , .
02: Matching

03: Matching

05: While (D)
06: get x D; get p -> ri(ni, ti, f(ni, ti), g(ni, l))

07: If Computation x≡δi, x f(ni, ti)
08: If g(ni, l)=0
09: flat line error V type
10: Else
11: flat line error E type
12: x->D’
13: If Computation f(ni, ti) = null && ti > τ
14: If g(ni, l)=0
15: data lost error V type
16: Else
17: data lost error E type
18: x->D’
19: If Computation x>θ, x f(ni, ti)
20: If g(ni, l)=0
21: out of bound error V type
22: Else
23: out of bound error E type
24: x->D’
25: If Computation |f(ni, ti) - fp(ni, ti)|/ti > ψ
26: If g(ni, l)=0
27: spike error V type
28: Else
29: spike error E type
30: x->D’
31: If Computation ∑i|f(ni, ti) - fp(ni, ti)|/ti > ψ* &&

|f(ni, ti) - fp(ni, ti)|/ti < ψ
32: x->D’; E&V error type
33: Output D’

56

In the error localization algorithm of Figure 3-5, when an error d D’ is selected,

its error type is set first. For the “flat line”, “data lost”, “out of bound”, “spike” errors,

the algorithm traverse the partitioned G as Gm, 1<m<p as shown from line 4 to line 6.

The localization of the above four types error will be tagged in G’(V’, E’). But if it is

the edge type error (communication), as shown from line 8 to line 13, the algorithm

calls the neighbouring function to use multiple paths and routes to set the data error

source. From line 14 to line 21, when the “aggregate & fusion” type error is

encountered, the algorithm firstly limits the search within the sub graph Gm G with

neighbouring function. If it cannot be solved locally, the localization would be

extended to other Gm, 1<m<p. Finally in line 22 of the algorithm 2, all the located

edge errors and node errors are output as G’.

Figure 3-5 Error Localization Algorithm

3.4.3 Complexity Analysis

Suppose that there is a sensing network system consisting of n nodes. For the error

detection approach without considering the scale-free network feature, the error

detection algorithm will carry out the error pattern matching and localization with

whole network data by traversing the whole data set. Suppose that there is R nodes on

the data routing, in the worst case, the detection algorithm without considering the

scale-free network feature will be executed R×n time for error detection and

ALGORITHM 2. ERROR LOCALIZATION
Input: a graph , a error data set D’,
Output: a error graph G’(V’, E’)
01: matching D’ and G(V, E); Partition into ,
02: While (G’!=)
03: get d D’
04: If “flat line”, “data lost”, “out of bound”, “spike” V type
05: While ()
06: traverse
07: return localization; update (d, G’(V’, E’))
08: Else E type
09: While(E type)
10: neighboring(d, G)
11: While ()
12: traverse
13: return localization; update (d, G’(V’, E’))
14: If “aggregate & fusion” type
15: While ()
16: traverse
17: If(E error)
18: neighboring (e)
19: Else
20: neighboring (v))
21: return localization; update (d, G’(V’, E’))
22: Output G’

57

localization, denoted as O(R×n), 1≤R≤n. Anyway, with the hierarchical network

topology, the network can be partitioned in to m clusters.

Based on our scale-free network definition and our algorithm, in each cluster, the

nodes which are involved in error detection will be reduced to n/m on average. In

addition, in each cluster, the data values are highly correlated. The data worst case of

data traverse times for error detection and localization is determined by O(R×),

1≤R≤n/m, 1≤m≤n. Because our scale-free error detection approach limits most of

computation within each cluster, the communication and data exchange between

clusters can be ignored. Finally, the worst case algorithm complexity of our scale-free

error detection approach can outperform the traditional error detection algorithms.

3.4.4 Algorithm Calibration on Cloud

The big sensing data error detection and localization algorithms based on the scale-

free topology feature of cluster-head networks are designed and analysed in Section

3.4.1 and Section 3.4.2. During the development of our scale-free error detection and

location algorithm, how to make it more suitable for Cloud implementation is already

taken into consideration with following two steps.

(1) Partition of Sensing Data set

In order to effectively deploy our proposed algorithm on Cloud, the data sets need to

be partitioned before feeding to the algorithm on Cloud. There are two points should

be mentioned when carrying out partitioning. Firstly, the partition process could not

bring new data errors into a data set; or change and influence the original errors in a

data set. That is different to the previous partition algorithm which normally divides

data set according certain application preference or clustering principles. Secondly,

due to the scale-free network systems being a special topology, the partition has to

form the data clusters according to the real world situation of scale-free network or

Cluster-head based WSN. The partition process is as follows.

When the whole data set is partitioned into , , we need to guarantee

that the distribution of data set in a cluster is similar to . A sub data set , here

can be treated as a point in an m-dimension space, where m is the number of sensor

nodes in a partitioned cluster. According to the partition principle, to avoid the new

58

error or error type change, during the process of partition, light weighted error type

matching has to be carried out for warning the new abnormalities during the partition.

Specifically, the defined variables and functions including r(n, t, f(n, t), g(n, l)), ψ, τ,

θ in Section 3.2.2 will be used again for abnormality warning.

(2) Deployment Strategies for MapReduce

MapReduce is a framework for processing parallelizable problems across huge

datasets using a large number of computers (nodes), collectively referred to as a

cluster (if all nodes are on the same local network and use similar hardware) or a grid

(if the nodes are shared across geographically and administratively distributed

systems, and use more heterogeneous hardware). Computational processing can occur

on data stored either in a filesystem (unstructured) or in a database (structured).

MapReduce can take advantage of locality of data, processing data on or near the

storage assets to reduce data transmission. “Map” function: The master node takes the

input, divides it into smaller sub-problems, and distributes them to worker nodes. A

worker node may do this again in turn, leading to a multi-level tree structure. The

worker node processes the smaller problem, and passes the answer back to its master

node. “Reduce” function: The master node then collects the answers to all the sub-

problems and combines them in some way to form the output – the answer to the

problem it was originally trying to solve. MapReduce allows for distributed

processing of the map and reduction operations.

The Standard MapReduce Example:

function map(String name, String document):
 // name: document name
 // document: document contents
 for each word w in document:
 emit (w, 1)

function reduce(String word, Iterator partialCounts):
 // word: a word
 // partialCounts: a list of aggregated partial counts
 sum = 0
 for each pc in partialCounts:
 sum += ParseInt(pc)
 emit (word, sum)

59

However, traditional MapReduce is very strict, which limits its application in

complex systems, such as WSN. The following is a standard MapReduce example, it

counts words. However, our algorithms in error detection and localization are not so

ideal and it is hard to directly use one MapReduce to solve perfectly. Based on the

knowledge for MapReduce and its wide applications, three technical changes are

commonly adopted to transform the targeting problem for applying MapReduce on it.

(1) Original algorithm (embedded in) Map()/Reduce()

(2) Partition the task flow of algorithm Identify which part of the task flow to

generate a MapReduce job MapReduce generated result returns back to the task

flow

(3) Complete MapReduce design control flow parallelization/ data

parallelization

Based on the analysis of the above three strategies and the complicated flow of

our error detection and location algorithms, in our implementation, we adopt different

MapReduce strategies in terms of different control flow and data partition in our

detection and localization algorithms.

3.5 Experiments

To verify the time efficiency and the effectiveness of our approach for detecting errors

in big data with Cloud, experiments are conducted on U-Could (Cloud computing

environment at the University of Technology Sydney described in Chapter 2) [48-51,

109-110]. There are three purposes for this experiment. 1) Demonstrate that the

significant time-saving is achieved in terms of detecting errors from complex network

big data sets. 2) Demonstrate the effectiveness of our proposed error detection

approach in terms of different error types. 3) Demonstrate that the false positive ratio

of our proposed error detection algorithm is limited within a small value.

60

3.5.1 Experiment Settings

Four types of data values collected by a real WSN (scale-free complex network system)

are used as the testing data set. The total testing data set size is around 2,000,000 KB,

including temperature, sound, light and vibration. Even only considering one node,

four types of testing data are gathered with different frequency. In other words, the

data sampling from each real world node is heterogeneous. Before the experiment, we

conduct the normalization for the testing data set. Before running our real sensing data

experiment, a normalization process is carried out first.

As shown in Figure 3-6, the original temperature data consists of time series with

dramatic changes and with its lower and upper bounds from 10 to 40 °C. For a short

period, the temperature time series keeps unchanged or less changed. The original

light data consists of a time series with gradual data changes with its lower and upper

bounds from 0.2 to 0.5 cd. In a short time period, the light time series has smooth

changes with less fluctuation.

Figure 3-6 Example: Original Testing Data before Experiment

The original sound data consists of time series with its lower bound and upper

bound from 0 dB to 80 dB. The original sound time series has dramatic fluctuations

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

example of temperature testing data from one node in 60 s

example of light testing data from one node in 60 s

(°C)

(cd)(dB)

0

20

40

60

80

100

0

20

40

60

example of sound testing data from one node in 60 s

example of vibration testing data from one node in 60 s
(hz)

61

compared to the temperature and light time series. The original construction vibration

time series has the most noticeable fluctuation in the all four types of testing data. The

lower bound and the upper bound of the original construction vibration time series are

0 hz and 60 hz respectively.

However, the four original testing data sets have different data bounds, metrics

and units. It is difficult to compare the data changes and temporal features under the

situation where the time series from different data sets have different metrics. So, the

normalization is conducted. As shown in Figure 3-7, the original testing data sets are

normalized into the standard data sets. The all normalized time series has their lower

bound and upper bound from 0 to 100. After the normalization, the data feature of

different time series can be compared.

0

20

40

60

80

100

sound

0

20

40

60

80

100

light

time 24 hours time 24 hours

No
rm

al
ize

d
va

lu
e b

et
we

en
[0

, 1
00

]

No
rm

al
ize

d
va

lu
e b

et
we

en
[0

, 1
00

]

0

20

40

60

80

100

120

vibration

0

20

40

60

80

100
temperature

time 24 hours time 24 hours

No
rm

al
ize

d
va

lu
e b

et
we

en
[0

, 1
00

]

No
rm

al
ize

d
va

lu
e b

et
we

en
[0

, 1
00

]

Figure 3-7 Example: Normalized Heterogeneous Sensing Data Sets

3.5.2 Experiment Results

In order to test the false positive ratio of our error detection approach and time cost

for error findings, we impose five types of data errors following the definition in

Section III into the normalized testing data sets with a uniform random distribution.

62

These five types of data errors are generated equally. Hence, the percentage of each

type of errors is 20% from the total imposed errors for testing. The first imposed error

type is the flat line error. The second imposed error type is out of bound error. The

third imposed error type is the spike error. The forth imposed error type is the data

lost error. Finally, the aggregate & fusion error type is imposed. By imposing the

above listed five types of data error types, the experiment is designed to measure the

error selection efficiency and accuracy during the on-Cloud processing of data set.

Figure 3-8 Time cost for detecting errors from the testing data set

In Figure 3-8, the testing results show the time performance of our proposed scale-

free error detection algorithm on U-Cloud after 740 seconds. Specifically, ten

different error rates are imposed into the experimental data set and tested

independently. The testing error rate changes from 1% to 10% in 10 repetitive

experiments. After about 100 seconds, the proposed algorithm can detect more than

60% errors whatever the testing error rate is within the domain between 1% and 10%.

During the time duration between 0 and 100 second, all error detection rates increase

dramatically with a steep trend. After the time point of 300 second, the error detection

rates increase slowly with a flat trend. At the time of 740 second, the proposed error

detection algorithm on Cloud can find and locate more than 95% imposed errors from

the testing data sets. When testing error rate is 1%, the best performance gains are

achieved, as about 99.5% total errors detection. With the increase of the testing error

rate, the error detection rate decreases.

0%

20%

40%

60%

80%

100%

0

testing error = 1%

testing error = 2%

testing error = 3%

testing error = 4%

testing error = 5%

testing error = 6%

testing error = 7%

testing error = 8%

testing error = 9%

testing error = 10%

Time: 740 seconds

Er
ro

r D
et

ec
tio

n
R

at
e

63

It also can be found in Figure 3-8 that during the first 300 seconds of data

processing and error detection on Cloud, almost more than 80% of total errors are

detected whatever the testing error is. This fast detection is due to our scale-free error

detection approach which only allocates the Cloud computation resources for

traversing and processing a small chunk of data instead of a whole data set analysis.

With the testing time longer than 740 seconds, most of imposed errors are detected.

This result also shows that the algorithm can provide near real time Cloud error

detection service for most of current scale-free network systems, such as wireless

sensor networks.

Figure 3-9 Comparison of two error detection strategies

A comparative experiment between our proposed scale-free big data error

detection in WSN and non scale-free error detection algorithms is conducted. As

shown in Figure 3-9, when the testing data error rate changes from 1% to 10%, at any

time slot, our proposed scale-free error detection algorithm achieves significant error

detection performance gains compared to non scale-free error detection algorithms.

Our proposed scale-free detection on Cloud can fast detect most of error data (more

than 80%) after 740 seconds time duration. However, the non scale-free error

detection algorithm can only achieve as much as 44% error detection rate as the best

case. So, it can be concluded from the experiment results in Figure 3-9 that the scale-

free detection algorithm on Cloud for big data can significantly outperform non scale-

free error detection algorithms in terms of error finding time cost.

0%

20%

40%

60%

80%

100%

0

scale-free detection: total error = 1%
scale-free detection: total error = 10%
exponential trivial detection: total error = 1%
exponential trivial detection: total error = 10%

Time: 740 seconds

Er
ro

r D
et

ec
tio

n
Ra

te

nonscale-free detection

algorhtms performance

scale-fre
e detection

algorith
ms performance

64

Except for time cost, to measure an error or abnormality detecting algorithm, we

also need to consider other statistic metrics for verifying the quality of an error

detection algorithm. Suppose that we have n logical “T/F” hypotheses: h1, h2, ..., hi, ...,

hn. The number of true null hypotheses is denoted as n0, an uncertain parameter. Then

we can get the number of true alternative hypotheses n-n0. If we further denote the

null hypothesis being true as T, we can get T is the number of false positives. Hence

we can calculated the false positive rate T/n0 and the false positive ratio E(T/n0). In

our experiment, T/n0 and E(T/n0) depicts how many normal data are selected as errors

during the error detecting process. A smaller false positive ratio in the experiment

indicates a better accuracy for selecting error data items from the testing data set.

Figure 3-10 False Positive Ratios with Different Detection Algorithms

It is demonstrated in Figure 3-10 that, with the testing data error rate changes from

1% to 10%, our scale-free detection algorithm can achieve similar false positive ration

compared to the non scale-free algorithms. Initially, the non scale-free detection

performs slightly better because the whole network data traversing and analyzing

contribute to improve the decision making correctness for error detection. However,

with the increase of error data size in the testing data set, the whole network data

traversing and analysis will bring the influence of other error data from other parts of

a network into the current error detection decision making. That influence will

increase the false positive ratio, which is not expected. As shown in Figure 3-10, when

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

scale-free detection: faults positive ratio

non scale-free detection: faults positive ratio

testing data set error rate

false positive ratio

65

the data error rate is larger than 6%, our scale-free detection algorithm can outperform

the non scale-free algorithm in terms of false positive ratio.

However, the false positive ratio in Figure 3-10 is the overall testing result. The

individual testing results for detecting each error type with our proposed error

detection algorithm are compared in Figure 3-11 It can be got from Figure 3-11 that

“flat line error”, “out of bound error”, “spike error” and “data lost error” curves of

false positive ratio are similar to each other. In other words, our proposed error

detection algorithm achieves similar error detection accuracy in detecting the above

four types of errors. When it comes to “aggregate & fusion error”, the false positive

ratio runs slightly higher than the other four types of errors whatever the total imposed

error rate is. In other words, the error detection accuracy of our proposed algorithm

decreases when encountering “aggregate & fusion error” in the testing data set. The

reason is that the “aggregate & fusion error” is caused by the accumulating error effect

and multi-hop data communication. Lots of data drifting and data approximation may

be involved in the error detection process, which influences the error detecting

accuracy of the proposed algorithm for big data on Cloud.

Based on the above experiment results and analysis, it can be concluded that our

proposed error detection approach for big data processing on Cloud can dramatically

increase the error detecting speed without losing error selecting accuracy. Especially,

when the error rate for a targeting big data set is limited and within a small value (1%

- 10%), the algorithm can efficiently detect the error with high fidelity.

Figure 3-11 False Positive Ratios with Different Error Types

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

flat line error
out of bound error
spike error
data lost error
aggregation & fusion error

imposed error rate

false positive ratio

66

3.6 Summary

In this chapter, to detect errors in big data sets from sensor network systems, a novel

approach was developed with cloud computing. Firstly error classification for big data

sets was presented. Secondly, the correlation between sensor network systems and the

scale-free complex networks were introduced. According to each error type and the

features from scale-free networks, we proposed a time-efficient strategy for detecting

and locating errors in big data sets on cloud. With the experiment results from our

cloud computing environment U-Cloud, it was demonstrated that 1) the proposed

scale-free error detecting approach can significantly reduce the time for fast error

detection in numeric big data sets, and 2) the proposed approach achieved similar error

selection ratio to non-scale-free error detection approaches. Based on our error

detection for big sensing data sets on Cloud, we can continue the next work “error

recovery” within our big sensing data curation roadmap.

67

Chapter 4

Error Recovery

In this chapter, we aim to develop an error recovery approach on Cloud following the

error detection technique developed in Chapter 3. By exploiting the neighbouring

nodes in a topology and adopting a certain similarity model, predicted data will be

calculated to replace detected errors. This recovery process will be harnessed on

Cloud to guarantee scalability and real time processing.

4.1 Introduction

With our effective and efficient error detection, it is reasonable to offer some

corresponding approaches to recover the detected errors with suitable recovery

techniques. Big sensing data is broadly generated and collected from various

surveillance or sensing systems. Errors often occur during the sensing or data transfer

processes. How to recover from those errors in an accurate and fast way is challenging

given that sensing data often comes as fast streams. While cloud provides a promising

platform for processing big sensing data, scalable and accurate error recovery

solutions still need to be developed.

In this chapter, we aim to develop a novel approach to achieve fast error recovery

in a scalable manner on Cloud. This approach is based on the prediction of a recovery

replacement data by making multiple data sources based approximation. The

approximation process will use coverage information carried by data units to limit the

68

algorithm in a small cluster of sensing data instead of a whole data spectrum.

Specifically, in each sensing data cluster, a Euclidean distance based approximation

is proposed to calculate a time series prediction curve. With the calculated time series,

a detected error can be recovered with a predicted data value approximately. At the

same time, with MapReduce based implementation for scalability, the experimental

results also show significant efficiency on time saving. According to the effective and

efficient error detection in our data curation roadmap [49] in Chapter 3, the detection

algorithm is based on the assumption that the big sensing data are collected from a

cluster-head organized data graph topology. When it comes to recovery stage, how to

make use of the cluster-head topology also plays an important role in terms of

designing an efficient recovery algorithm.

It is well known that under the assumption of cluster-head topology, the nodes in

the same cluster will have more data correlations and similarities. Based on

successfully setting up clusters, different data recovery strategies within a single

cluster or several local clusters are developed. If we can limit the recovery related

operation within a very small group of data instead of a whole big sensing data set,

the processing cost of time and resource will be saved. After constructing a cluster

based architecture of a whole data network, the inner approach should be develop for

arrange a group of data time series within each cluster to generate optimized local

decision making and data approximation for recovering errors.

4.1.1 Research Problem Analysis

Based on the previous literature and analysis, some error detection has been designed

for big sensing data. However, after successfully detecting and locating data errors of

big sensing data, efficient and effective recovery data should be offered, especially

over a scalable platform, such as Cloud. As shown in Figure 4-1, suppose that there is

a “spike type error” detected and located in node_1 and node_2. In the whole area, we

suppose that the sensing system maintains a 1 sensing coverage. With that we can

compare different data recovery strategies. Firstly, we assume that the coverage

information has been known and tagged with each data unit. In other words, the

coverage situation of big sensing data has been already offered before uploading to

Cloud. With the offered coverage information, a whole sensing data set can be

69

partitioned into to a group of data clusters. For the first strategy, if the coverage

information of sensing data is not considered, we need to navigate all the data set to

set up data correlations for error recovery. For example, in Figure 4-1, to recover the

errors happening in node_1 and node_2, the first recovery strategy will go through the

data collected by the whole sensing system to judge which data node has the potential

to be used for recovering the errors in node_1 and node_2. Under the big data theme

and Cloud environment, to navigate that whole big sensing data set will bring longer

time.

Figure 4-1 Possible Recovery Strategies for Spike Error

With the second strategy, if the coverage information of sensing systems data can

be used, there exist opportunities to significantly cut the size of data to be involved in

error data recovery. For example, in Figure 4-1, the whole data source graph is

partitioned into clusters according to its coverage topology. Especially, there are two

“spike” type errors detected in node_1 and node_2. Instead of navigating the whole

big sensing data set, due to the coverage feature, we limit the data recovery process in

each data cluster. For recovering error in node_2, we can firstly consult the data

backup and record in cluster_head_1 to calculate possible recovery value with high

fidelity level. Secondly, if the message from cluster_head_2 is not enough to support

the error data recovery on node_2, other sibling nodes in the cluster under

cluster_head_2 will be further utilized to calculate a recovery data value with

relatively high fidelity.

Error Type: Spike

node_1

node_2

K covery network cluster_head_1

cluster_head_2

70

However, the topology situation of node_1 is different to node_2. Because node_1

locates in the overlapping area of two clusters controlled by two cluster heads,

cluster_head_1 and cluster_head_2, how to select the best optional data from

different clusters in an efficient way will dictate the performance of error recovery for

the error data from node_1. Furthermore, in each data cluster, which node including

the cluster-head to be selected for error recovery is critical to determine the recovery

accuracy and local time cost. For example, in Figure 4-1, if cluster_head_2 is not

enough to calculate a predicted value for replacing the error happening in node_2, the

nodes in the cluster under cluster_head_2 will be used. However, one new technical

problem is encountered under this situation. Specifically, some selection process is

expected to recommend the best nodes in the cluster to carry out approximating the

missing error data. In this chapter, this selection will be realized by calculating

Euclidean distance based time series approximation.

Based on the above analysis, it can be found that the first recovery strategy, whole

big sensing data set navigating on Cloud is costly and unnecessary. Techniques and

algorithms should be designed to fully exploit opportunities to avoid whole data set

navigation. In the rest of this chapter, we will demonstrate our solution based on this

idea.

4.1.2 Contents Outline

The remainder of this chapter is organized as follows. In Section 4.2, the general

roadmap for our proposed on-Cloud data recovery technique for big sensing data error

will be introduced. Several critical issues including data sources topology, Euclidean

distance for time series approximation and data prediction model will be analysed in

details. In Section 4.3, based on the general recovery roadmap, for each defined big

sensing data error type, one specific fast approach will be introduced. The

optimization will be introduced across those specific recovery approaches. In Section

4.4, the algorithms will be designed. The corresponding algorithmic complexity

analysis will also be offered. In Section 4.5, in order to demonstrate the significant

performance gains including error recovery accuracy and its time cost, the

experimental results will be compared and analysed. In Section 4.6, we summarize

this chapter.

71

4.2 General Roadmap for Error Recovery

Similar to the error detection solution developed in Chapter 3, we make the

assumption that big sensing data comes from sensing systems with cluster-head

architecture, such as data from friendship networks, Social networks, neural networks

and large scale high frequency sensor networks. The big sensing data set from cluster-

head topology sensing system which can be denoted as a data graph, G(V, E). Under

the cluster-head topology assumption, the G(V, E) is satisfied with the scale free

complex network features [49]. With the cluster-head data topology assumption, we

will introduce our overall solution for error recovery strategy on Cloud as follows.

4.2.1 Initialization: Partition and Localization

Any sensing node in a sensing system has its sensing radius denoted as a sensing range

S and an interference range I. The sensing range is used to describe the maximum

sensing radius of a sensor to probe its environment with high confidence. When there

is a sensing node, nodei is sharing the sensing radius of any other sensing node, nodej,

at the same time, if nodei is out of the interference range of nodej, we say that nodei is

fully covered by nodej. So, we can use a coverage function to describe the set of nodes

with which a nodex can have sensing coverage as Cover(nodex). In addition, a set of

nodes on which nodex can have interference effects is denoted as Interf(nodex). Based

on the above function definition and common real world situation, we can get

Cover(nodex) Interf(nodex) for any sensing data source, nodex. For example, given

a pair of nodex and nodey, if there is another nodez Interf(nodej) Cover(nodey),

then we call that two sensing data sources nodex and nodey have collision at nodez. In

other words, nodex and nodey can have interference at nodez.

Based on that coverage definition, we can offer our solution for partitioning big

sensing data graph into a group of overlapping data sub-graphs (data time series

clusters). Specifically, a cluster is a set of time series with a selected cluster-head (also

a time series). Actually, each data source node in the data graph is a single time series.

72

A cluster consists of a bunch of time series. For example, in this paper, we denote a

bunch of time series (a cluster) i by Si. And we further denoted the cluster-head of Si

with a computing function as CH(Si). With the assumption that, the coverage

information and error location are already offered by the big sensing data sets

explicitly, the initial partitioning process is as follows. Firstly, CH(Si) will be called

to compute every cluster-head time series in the whole big sensing data set. Then a

data unit at time stamp t, nodext will be tagged with its additional information such as

cluster-head ID and coverage situation. Whenever there is an error happening in data

unit nodext, the localization process offered in [49] will use the Cover(), and CH()

functions to quickly calculating the important parameters for recovery strategies inter

clusters or inner a single cluster.

4.2.2 Inter Cluster Strategy for Overlapping Coverage

In modern sensing systems, it is unavoidable to discuss the problem of sensing

coverage. For example, an l coverage sensing system normally means that for any

point in the deployment field of a sensing system there are at least n sensing nodes

can gather the data related to that point with different confidence levels. Suppose that

there is one error encountered at nodext. We calculate the coverage situation and

interference situation of nodext with Cover(nodex) and Interf(nodex). The aim of data

recovery is to find an approximate value nodext’ for nodext. Suppose that we can get

Cover(nodex).layer()=l where layer() is a function call to return the overlapping

coverage layer number of nodex and l is the returned value. It means that the time

series nodex, can be simultaneously covered by other l-1 neighbor time series.

In this work, any sensing data source time series, nodex is static. In other words,

the network topology or cluster-head will not change during big sensing data

processing. Because there is no change of cluster situation, a set of time series within

that cluster remains unchanged. Specifically, the big data set can be defined with

(,), where is used to represent the node group under cluster, at the

processing time stamp t, and A is the topology architecture of the sensing system. A

is calculated with A=f(G(V, E)) which totally depends on the architecture of sensing

system structure. As a result, for any two consecutive states of a cluster Si at its time

73

stamp t and t+1, given (,) and (,), it can be called that there is a if

 = and at the time slot t+1.

Figure 4-2 Location Influence to Error Recovery Strategy

If Cover(nodex).layer()=l, l ≥ 1, is calculated as in Figure 4-2, which means that

any location in the monitored area has minimum l sensing nodes which can collected

correlated data for error recovery. Firstly, if l=1 can be got, based on the coverage

definition, there is no need to find other clusters for error data recovery, because only

one cluster is related to the detected error. For example, in Figure 4-2, when error

location is from data source ‘a’, only possible recovery information can only come

from node group under ‘cluster-head-1’. Under this scenario, our recovery solution

will directly go to intra cluster time series approximation in Section 4.2.3 for further

processing. However, when error locations are in data source ‘c’, or data source ‘b’

as shown in Figure 4-2, before using the further processing in Section 4.2.3, some

further steps need to be taken to select the right clusters which will join the recovery

process.

Suppose that there is an error data source Si with a coverage, Cover(Si).layer()=l.

The related coverage cluster-heads calculated with CH(Si). It can be inferred that

totally there are ‘l’ clustered head should be selected by CH(Si). With that we can list

those cluster in a matrix as follows. We can get a matrix, C = {cluster_1, cluster_2,…,

cluster_k,…, cluster_l}, where cluster_k is based on the calculation of CH(Si). With

the a series from Coverage(cluster_1) to Coverage(cluster_l) can be got. At the same

time, another series from Interf(cluster_1) to Interf(cluster_l) can be calculated too.

Then we can further calculate the maximum coverage situation of CH(Si), by

a

b
c

cluster-head-1 cluster-head-2

cluster-head-3

74

Interf(cluster_1) Cover(cluster_1) Interf(cluster_2) Cover(cluster_2) …

Interf(cluster_l) Cover(cluster_l), where ‘ ’ is the operator for merging the final

summary for calculating comprehensive average performance of a cluster in terms of

recovery.

However, when Cover(nodex).layer()=l, l≠1, is calculated, there is no point in the

monitored area has coverage less than l. In other words, the selection process among

candidature data recovery clusters is unavoidable. Hence, the expression of

Interf(cluster_1) Cover(cluster_1) Interf(cluster_2) Cover(cluster_2) …

Interf(cluster_l) Cover(cluster_l), will be called recursively until finding a suitable

cluster groups for conducting data recovering. If more than two clustered are selected

during the process, then the data history and the number of possible data recovery

nodes will be further considered as the second and the third factors for the refinery of

the selection process. The selection will terminate when there is only one candidature

data cluster left for future data error recovery. Especially, to make use of the temporal

information to realize the cluster selection, the expression (,) …, (,) …,

(,), is used. In that expression, ‘ ’ is a recursive operator which sequentially

computes the historical data and finds the nearest one result for approximating Si at

time slot ‘t=i’.

4.2.3 Intra Cluster Time Series Approximation

In the above content, we introduce the solution of selecting a suitable data cluster for

carrying out our proposed data error recovery for ‘n’ covered sensing systems.

However, when entering the above selected cluster, more specific technical problems

are encounter and more detailed solution should be offered.

Suppose that whatever the coverage situation is, the most suitable cluster of data

time series set has be selected by the solution offered in Section 4.2.2. Now we should

consider the problem that whether all the time series Xk, under the cluster Si, should

join the next stepped data recovery together. Sometimes, to collect and navigate all

data unit traversing a long time duration in a same cluster can also bring huge amount

of time and resource cost. Especially when errors are common in big sensing data sets,

huge amount inter-cluster operations are involved. Here, we developed a solution

which selected a sub group of data sources Si’ for Si, denoted as Si’ Si. According to

75

the definition, the error time series happens at Xk Si. Here, we use T to present the

time series length maintained by the system. To approximate the Xk as close as

possible, we randomly select an Xj C. Then, the Euclidean distance between two

vectors, Xk and Xj will be compared according to a pre-offered threshold. Those two

vectors can be expressed as equation (1) and equation (2).

Xk= , …, , …, , …, ; t [1, T] (1)

Xj= , …, , …, , …, ; t [1, T] (2)

The Euclidean distance between two time series Xk and Xj is calculated with a

distance function and denoted as d(Xk, Xj). This distance can be calculated with

equation (3) and (4), where is the ‘ ’ operator which calculate the difference of two

value and connect their square summary together.

) (3)

This Euclidean distance will be calculated recursively for any Xj Si. If d(Xk,

Xj)≤Threshold can be satisfied, Xj will be added into Si’ for future computing an

approximating predicting curve for error recovery in Section 4.2.4.

4.2.4 Recovery based on Time Series Prediction

With the above Si’ Si, based on all Yk Si’, we can calculate a series average

values at any time t as (5).

=(, +, , +,)/m (t [1, l], k [1, m]) (5)

Because the data history window is l, totally l average values can be generated for

predicting recovering error data. This predicting vector is denoted as {Y1, Y2,…,

Yt, …, Yl}, where t is the time stamp. Hence, we can assign weights for conducting

76

time series based prediction over . To calculate W (a sequence of weights) for the

final predicting approximate time series, the probability density functions of normal

distribution needs to be configured. Specifically, according to most of real world

applications, a data with later time stamp in a data window should have higher

importance compared to the previous data. Two types of weights distribution are used

in our work including Gaussian distribution weighting and exponential weighting.

Under the theme of Gaussian distribution weighting, ‘3 ’ principle has a

critical limitation for selecting weights. In our work, only the domain between [0, 3

] is selected to calculate the final weight vector W, and it is enough to guarantee that

 because over 97% data is in domain of [-(3), 3]. However, the

time stamp for sensing data changes from [0, +] that is not in domain of [-(3),

3]. Therefore, this paper changes standard normal distribution with (6) to

guarantee .

Assume that the initial time stamp for data collection is 0, we can get =0. So the

summary value of the whole weights domain is calculated with (7)

Consequently, for a data history window with its length l, we can distribute m-1

consecutive to the domain calculated with the equation (7). In other words, the data

range between [0, 3] is divided into m-1 fragments including [0,],

[] until the final fragment,

[]. Then any item wi in vector W can be

calculated with equation (8).

77

W is also arranged as exponential with the equation (9) as an alternative.

, (i) (9)

Finally, to predict a recovery value for one error, expression is used.

is a vector which has data trends based on any continuous value in the vector of .

4.3 Error Types based Recovery Solutions

In this section, with our general error recovery roadmap in Section 4.2, for each error

type in our previous work [49], specific solutions are presented as follows.

Briefly speaking, r(n, t, f(n, t), g(n, l)) represents a data record collected by a

sensing node whose ID is n. Variable t is defined to represent the size of a time series

window. The function f(n, t) has a numerical value collected from node n within t.

The function g(n, l) is defined for representing a location that records the cluster, data

source node and partition situation related to n. It can compute the distance between

n and initial data source node l. It can show current error node is the initial one.

Furthermore, g(n, l) can parse data routing between communication nodes. With such

notation, totally nine types of errors were defined in Chapter 3. These nine error types

will be further categorized into two groups. In each group, recovery solutions are

similar. One group is permanent errors. The other is ephemeral errors. For simplicity,

we have following statements.

S0: let ri(ni, ti, f(ni, ti), g(ni, l)) stand for a time series record from a source node ni

(i: a time stamp; ni and ti: not related)

S1: let ri((ni, ti), f(ni, ti), g(ni, l)) stand for a time series record from a source node

ni (i: a time stamp; ni and ti: related)

4.3.1 Recovery for Permanent Errors

A permanent error has a relatively longer the error lasting time. In other words,

viewing it within a time series, duration more than “threshold” consecutive rounds of

error data units is called a permanent error.

Recovery Strategy for node side flat line error (Nsfle)

78

According to paper [49], with S1, if any element x≡δi where δi is an effective

constant in time window t, x f(ni, ti), and g(ni, l)=0, a Nsfle occurs. According to

Figure 4-3, flat line errors can come from both transmission stage (edge side) or

sampling stage (node side). When errors are caused at sampling stage, it indicates a

better channel during data communication. More confidence can be given to the

prediction model when carrying out multi-data sources based predicting and

approximating recovery. Less time series is enough to be selected for recursive

approximation predicting proposed in Section 4.2. It can also be noticed that this error

type normally lasts longer time, expressed with the expression, ti>threshold.

Figure 4-3 Sensing Data Flat Line Errors (permanent)

Recovery Strategy for edge side flat line error (Esfle)

With S1, if any element x≡δi with δi as an effective constant in time window t,

x f(ni, ti), and g(ni, l)!=0, an Esfle occurs as defined in Chapter 3. According to Figure

4-3, when errors are caused at data transmission stage, it indicates a worse

communication channel during data transmission. Less confidence should be offered

to the prediction model when carrying out multi-data sources based predicting and

approximating error recovery proposed in Section 4.2. When conducting recursive

approximation more time series should be selected. In other words, the expression,

ti>threshold can also be calculated.

Recovery Strategy for node side data loss error (Nsdle-P)

With S1, if f(ni, ti) = null && ti > τ, where ‘τ’ is time duration by user requirement,

and if g(ni, l)=0, a Nsdle-P occurs [49]. According to Figure 4-4, in terms of data loss

error, there exists the probability of both permanent error and ephemeral error. The

flat line faults

edge side

node side

79

permanent error can be described with the expression τ>threshold. In addition, as it is

a node side error recovery, more confidence can be given to the prediction model

when carrying out multi-data sources based predicting and approximating recovery.

Less time series is enough to be selected for recursive approximation predicting

proposed in Section 4.2.

Figure 4-4 Sensing Data Loss Errors (permanent)

Recovery Strategy for edge side data loss error (Esdle-P)

With S1, if f(ni, ti) = null && ti > τ, where ‘τ’ is time duration by user requirement,

and if g(ni, l)!=0, an Esdle-P occurs as described in Chapter 3. According to Figure

4-4, in terms of data loss error, there exists the probability of both permanent error

and ephemeral error. The permanent error can be described with the expression

τ>threshold. In addition, as it is an edge side error recovery, less confidence can be

given to the prediction model when carrying out multi-data sources based predicting

and approximating recovery. More time series should be selected for recursive

approximation predicting proposed in Section 4.2.

Recovery Strategy for node side out of bounds error (Nsobe-P)

With S1, if an element x>θ, x f(ni, ti), where θ is a threshold set by user

requirement, and if g(ni, l)=0, a Nsobe-P occurs as described in Chapter 3. According

to Figure 4-5, in terms of out of bounds error, the permanent error can be described

with the expression ti>threshold. In addition, as it is a node side error recovery, more

confidence can be given to the prediction model when carrying out multi-data sources

data lost faults

edge side

node side

80

based predicting and approximating recovery. Less time series is enough to be

selected for recursive approximation predicting proposed in Section 4.2.

Figure 4-5 Sensing Data Out of Bound Errors (permanent)

Recovery Strategy for edge side out of bounds error (Esobe-P)

With S1, if any element x>θ, x f(ni, ti), where θ is a threshold set by user

requirement, and if g(ni, l)!=0, an Esobe occurs as described in Chapter 3. According

to Figure 4-5, in terms of out of bounds error, there exists the probability of both

permanent error and ephemeral error. The permanent error can be described with the

expression ti>threshold. In addition, as it is an edge side error recovery, less

confidence can be given to the prediction model when carrying out multi-data sources

based predicting and approximating recovery. More time series should be selected for

recursive approximation predicting proposed in Section 4.2.

4.3.2 Recovery for Ephemeral Errors

It can be easily inferred from its name, permanent errors have a relatively longer the

error lasting time. In other words, viewing an ephemeral error within a time series,

only one time round collected data units are erroneous. Or this condition can be

relaxed as less than “threshold” consecutive rounds collected data units are erroneous.

Recovery Strategy for node side spike error (Nsse)

With S0, if |f(ni, ti) - fp(ni, ti)|/ti > ψ, where ψ is the acceptable changing trend,

fp(ni, ti) is predicted time series, and if g(ni, l)=0, a Nsse occurs as described in Chapter

3. According to Figure 4-6, in terms of spike error, the ephemeral error can be

described with the expression ti<threshold. In addition, as it is a node side error

out of data bounds faults

edge side

node side

81

recovery, more confidence can be given to the prediction model when carrying out

multi-data sources based predicting and approximating recovery. Less time series is

enough to be selected for recursive approximation predicting proposed in Section 4.2.

Figure 4-6 Sensing Data Spike Errors (ephemeral)

Recovery Strategy for edge side spike error (Esse)

With S0, if |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable changing trend where fp(ni,

ti) is the predicted time series, and if g(ni, l)!=0, an Esse occurs as described in Chapter

3. According to Figure 4-6, in terms of spike error, the ephemeral error can be

described with the expression ti<threshold. In addition, as it is an edge side error

recovery, less confidence can be given to the prediction model when carrying out

multi-data sources based predicting and approximating recovery. More time series is

enough to be selected for recursive approximation predicting proposed in Section 4.2.

Recovery Strategy for node side data loss error (Nsdle-E)

With S1, if f(ni, ti) = null && ti > τ with ‘τ’ as time duration by user requirement,

and if g(ni, l)=0, a Nsdle-E occurs as described in Chapter 3. According to Figure 4-

7, in terms of data loss error, there exists the probability of both permanent error and

ephemeral error. The ephemeral error can be described with the expression

τ<threshold. In addition, as it is a node side error recovery, more confidence can be

given to the prediction model when carrying out multi-data sources based predicting

and approximating recovery. Less time series is enough to be selected for recursive

approximation predicting proposed in Section 4.2.

Recovery Strategy for edge side data loss error (Esdle-E)

spike faults
edge side

node side

82

With S1, if f(ni, ti) = null && ti > τ with ‘τ’ as time duration by user requirement;

and if g(ni, l)!=0, an Esdle-E occurs as described in Chapter 3. According to Figure

4-7, in terms of data loss error, there exists the probability of both permanent error

and ephemeral error. The ephemeral error can be described with the expression

τ<threshold. In addition, as it is an edge side error recovery, less confidence can be

given to the prediction model when carrying out multi-data sources based predicting

and approximating recovery. More time series should be selected for recursive

approximation predicting proposed in Section 4.2.

Figure 4-7 Sensing Data Loss Errors (ephemeral)

Recovery Strategy for node side out of bounds error (Nsobe-E)

With S1, if an element x>θ, x f(ni, ti), θ is a threshold set by user requirement,

and if g(ni, l)=0, a Nsobe-E occurs as described in Chapter 3. According to Figure 4-

8, in terms of out of bounds error, the permanent error can be described with the

expression ti<threshold. In addition, as it is a node side error recovery, more

confidence can be given to the prediction model when carrying out multi-data sources

based predicting and approximating recovery. Less time series is enough to be

selected for recursive approximation predicting proposed in Section 4.2.

Recovery Strategy for edge side out of bounds error (Esobe-E)

With S1, if any element x>θ, x f(ni, ti), θ is a threshold set by user requirement

and if g(ni, l)!=0, an Esobe-E occurs as described in Chapter 3. According to Figure

4-8, in terms of out of bounds error, there exists the probability of both permanent

error and ephemeral error. The permanent error can be described with the expression

data lost faults (ephemeral)

edge side

node side

83

ti<threshold. In addition, due to it is an edge side error recovery, less confidence can

be given to the prediction model when carrying out multi-data sources based

predicting and approximating recovery. More time series should be selected for

recursive approximation predicting proposed in Section 4.2.

Figure 4-8 Sensing Data Out of Bound Errors (ephemeral)

4.3.3 Recovery for Aggregation and Fusion error (AFe)

To apply our proposed data recovery in Section 4.2, the recovery strategy of

aggregation and fusion error is different to both permanent error recovery and

ephemeral error recovery. Because aggregation and fusion operations require multiple

data units to be joined and connected for error recovery and decision making, a trade-

off has to be calculated to select a suitable data cluster. Specifically, With S1, if ∑i|f(ni,

ti) - fp(ni, ti)|/ti > ψ* && |f(ni, ti) - fp(ni, ti)|/ti < ψ, where ψ* is an acceptable error

upbound, an AFe occurs as described in Chapter 3. There exists probability of both

permanent error and ephemeral error under the theme of sensing data aggregation and

fusion error. For permanent errors, “ti ψ* threshold” should be calculated

recursively. However, for ephemeral errors, “ti threshold” is calculated.

Based on the above work, with respect to 9 types of errors defined in Chapter 3

and our paper [49], three solutions can be shared among those error types to deal with

missing data recovery. In principle, those solutions are recovery techniques based on

the error time duration (permanent or ephemeral) and complex data aggregation errors.

out of data bounds faults (ephemeral)

edge side

node side

84

4.4 Algorithms

Based on the general big sensing data error recovery strategy proposed in Section 4.2

and specific error recovery techniques developed in Section 4.3, the algorithms for

our proposed on-Cloud error recovery will be introduced in this section.

4.4.1 Preparation for Error Recovery

Our recovery algorithms follow error detection algorithm developed in Chapter 3.

The detection algorithm has three inputs. The output is an error dataset De. To find

the location and source of a detected error d in De, we assume that all error location

information has already been offered by the detection algorithms [49]. Generally

speaking, in an big sensing data graph G(V, E), the input for the detection algorithm

are original graph G(V, E), and an error data set De. The output is G’(V’, E’) - a subset

of G to describe error source and location. In other words, an error data set De and a

graph G’(V’, E’) will be used as the input of new proposed recovery algorithms in this

paper.

The recovery algorithms are based on the Spark model which consists of a driver

program that executes the user’s main function and executes various parallel

manipulations on a cluster. In terms of error recovery algorithm, Spark can facilitate

data locality to process data on or near the storage for reducing data transmission.

With "Mapper" in Spark, the master node takes the input, divides it into smaller sub-

problems, and distributes them to working nodes. A working node may do this again

in turn, leading to a multi-level tree structure. A working node processes the smaller

problem, and passes the answer back to its master node. With the "Reducer" in Spark,

the master node then collects the answers to all the sub-problems and combines them

in some way to form the output – the answer to the problem it was originally trying to

solve. MapReduce allows for distributed processing of the map and reduction

operations. With the programming model of Spark, three strategies can be chosen to

transform a targeting problem for parallel and distribution.

(1) Original algorithm (embedded in) Spark

(2) Partition algorithm task flow Identify which parts to design a Spark job

 Spark execution result returns to task flow

85

(3) Complete Spark design control flow parallelization/data parallelization

We select different combinations of data partition and control flow.

We select different combinations of data partition and control flow according to

the above three strategies.

4.4.2 Scalable Algorithm on Mapper Side

Suppose we have a sensing data collecting system with n nodes. The workload of big

sensing data set error recovery is separated and distributed onto Cloud through

Mapper function of Spark. The errors in the input sensing data set have been detected

and located with the previous technique [49].

"Mapper" Side Algorithm:
Input: De={d1, d2, ..., dn}, Gl(V,E);
Output: De'={d1' , d2' , ..., dn'};

(1) public static class Mapper extends TableMapper <......,......> {
(2) public Mapper() {}
(3) @Override
(4) public Datatype map(Datatype De={d1, d2, ..., dn}, Gl(V,E))
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) initialize De; // a temporary variable for selecting one error data from {di,...,dj,...,dn};
(8) while(De!=) {
(9) Select di from De;
(10) di.parsing(Gl(V,E)); // parse error information including location and types;
(11) if(di.parsing(Gl(V,E))=="Ephemeral Error") { //error type is "Ephemeral Error";
(12) locating(Gl(V,E));
(13)
(14)
(15)
(16) di.'= di.approximate(Wi,); // call approximate function for predicting recovery data;
(17) }
(18) if(di.parsing(Gl(V,E))=="Permanent Error") { //error type is "Permanent Error";
(19) locating(Gl(V,E));
(20) initiate{ri(ni, ti), f(ni, ti), g(n, l))};
(21) for(int T=0; T<ti; T++){
(22)
(23)
(24)
(25) di.'=di.approximate(Wi,); // call approximate function for predicting recovery data;
(26) }
(27) }
(28) if(di.parsing(Gl(V,E))=="Fusion Error") { //error type is "Fusion Error";
(29) locating(Gl(V,E));
(30) ;
(31) if(ti>"time_threshold") {recursiveParsing();}
(32) di.'= di.approximate(Wi,); // call approximate function for predicting recovery data;
(33) }
(34) update(di, De'); // generate recovering data set De';
(35) }
(36) }
(37)}

);,,,,,,(
1 yyyY

t

m

t

i

tt
k

];,1[],,1[mklt
]);1,0[];,1[(,)1(lii

iW
Y t

k

);,,,,,,(
1 yyyY

t

m

t

i

tt
k

];,1[],,1[mklt
]);1,0[];,1[(,)1(lii

iW
Y t

k

|/),(),(|&&|*/),(),(| ttnftnttnftn iiipiii iiipii ff

Y t
k

86

Specifically, our “Mapper” side error recovery algorithm has the input of a

detected error data set De as its input. In addition, error types, locations and sources

will be offered as a data graph information Gl(V,E), offered by the precious error

detection technique. The output of our recovery algorithm is a recovery data set De’.

De’ consists of the recovery data from our Euclidean distance based data

approximation approach. From Line (1) to Line (4) of the Mapper side algorithm, we

initialize the parallel processing function of Spark and get two inputs, De and Gl(V,E).

Line (5) and Line (6) is the IO exception definition of Spark requirement. In Line (7),

the initialization process is adopted and some temporal variable is defined for

processing and storing data items in the original De.

From Line (8) to Line (35), our proposed algorithm for data approximation is

designed based on calculating the Euclidean distance between multiple data sources.

Firstly, in Line (8), if in De’, there is still an error di not being recovered, the algorithm

will select this di to carry out error recovery. In Line (10), the location, error type and

error source information is got by parsing the input data graph Gl(V,E) which is

generated by our adopted error detection [49]. According to the Section 4.3, we

divided the error recovery strategies into three groups including “ephemeral error”,

“permanent error” and “fusion error”. In Line (11), if the error type of di is “ephemeral

error”, in Line (12), the specific location is positioned and tagged. From Line (13) to

Line (15), the time series in the tagged clusters are selected based on the Euclidean

distance calculation for generating approximation time series for further predicting.

With the calculated weight and time series in Line (13) to Line (15), in Line (16), the

recovery prediction is carried out for generating a final recovery data, di’.

In Line (18), if the error type of di is “permanent error”, in Line (19), the specific

location is positioned and tagged. In Line (20), because “permanent error” has strong

dependency to the temporal factors, the temporal expression is defined for

representing time duration. From Line (21) to Line (26), within the time duration of

“permanent error” lifecycle, a recursive process is carried out for repetitively

predicting recovery data. Within each round of the above recursive process, code

between Line (22) and Line (24) selects the time series in the tagged clusters based

on the Euclidean distance to generate approximation time series for further predicting.

In Line (25), with the calculated weight and time series, the recovery prediction is

carried out for generating a final recovery data, di’. In Line (28), if the error type of di

87

is a “fusion error”, in Line (29), the specific location is positioned and tagged. “Fusion

error” has strong dependency not only to the temporal factors, but also to multiple

overlapped clusters. So temporal and cluster expressions are defined for representing

correlated aggregation and fusion as shown in Line (30). From Line (30) to Line (31),

the time series in the tagged clusters are selected based on the Euclidean distance

calculation for generating approximation time series for further predicting. In addition,

a recursive function is used for time based data fusion in Line (31). In Line (32), with

the calculated weight and time series, the recovery prediction is carried out for

generating a final recovery data, di’. Finally, the generated recovery data di’ is added

into recovery data set De’ for error recovery in Line (34).

4.4.3 Scalable Algorithm on Reducer Side

After offering our “Mapper” side algorithm, a transit data set group

De=De1… …Dei… …Dek which is waiting for combination and merging at the Spark

“Reducer” side algorithm. Compared to the “Mapper” side algorithm, the “Reducer”

side algorithm is relatively simple, which mainly assembles the predicted data units

"Reducer" Side Algorithm:
Input:
Output: De' ={d1' , d2' , ..., dn'};

(1) public static class Reducer extends TableReducer <......,......> {
(2) public Reducer(){}
(3) @Override
(4) public void reduce(Datatype De')
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) Select();
(8) for(int i=0 ; Dei' .recoveryvalue()!= ; i++){
(9) if(Dei' .recoveryvalue()!=){
(10) Dei' .parse();
(11) Dei' .update(di in Dei'); Dei' .localize(di in Dei');
(12) }
(13) }
(14) Dei'.combine(); Dei'.consistencycheck();
(15) return Dei';
(16) if(ti>"time_threshold") {recursiveParsing();}
(17) checking(ri(ni, ti), f(ni, ti), g(n, l)));
(18) generate(De' ={d1' , d2' , ..., dn'}); output(De' ={d1' , d2' , ..., dn'});
(19) for (int i = 0; i < Dei'.length(); i++) {
(20) try {
(21) context.write(elementID,value);
(22) } catch (InterruptedException e) {
(23) throw new IOException(e);
(24) }
(25) }
(26) }

 ; ,... DDDD '
ek

'
e2

'
e1

'
e

 ,... DDDD '
ek

'
e2

'
e1

'
e

88

distributed on Cloud created by “Mapper” instances. Our “Reducer” side scalable

compression algorithm extends the TableRedcuer<> of Spark programming model as

shown in the algorithm Line (1) to Line (3). In Line (4), the “Reducer” function is

initialized with the transit data set group De=De1… …Dei… …Dek as an input

parameter. Line (5) is the IO exception and error processing. In Line (6), variable

initialization and model selection are conducted.

In Line (7), the data set group is collected from all “Mapper” instances. From

Line (8) to Line (13), the algorithm traverses all the temporally generated subset Dei’

to merge them according to ID pairs from “Mapper”. In addition, the Dei’ calls a

“parse()” function to analyse the data overlapping, consistency and collision.

Especially, in Line (11), each processed subset is recursively updated and localized to

guarantee the unique predicted value in every Dei’. Then, in Line (14) and Line (15),

the validation is conducted for updating every Dei’ before generating the final error

recovery data set De’. In Line (16), the combination process continues if the time is

within the limitation of a merging threshold. Following that, in Line (17) and Line

(18), the recovery data set De’ is generated and output against the original error data

set De. Finally, form Line (19) to Line (24), some programming faults and exceptions

are processed by the algorithm for termination.

4.4.4 Complexity Analysis

Suppose we have a big sensing data system containing n multiple data sources di,

i [1,n]. T is the maximum time duration for a certain detected error. If there are m

errors in the error set De, we carry out the algorithm complexity analysis for our

multiple data source approximation based recovery algorithm and the algorithm

without approximation. For the algorithm without any approximation, the worst case

complexity is O() due to the recovery algorithm needs to traverse multiple

time intervals recursively. Under most of situation, it will not occur. However, when

discussing our multiple data source approximation based error recover, for predicting

m errors values against n data sources across time length T, the complexity reduction

comes from several aspects. Firstly, there is no requirement for whole data set De

traverse. So, n can be divided into to a series n/k1 + n/k2+ … + n/kn, (1/k1 + 2/k2+ …

+ 1/kn=1). To make the problem simple, we assume that k1=k2=…=kn=c where c is

89

a constant. The worst case complexity of our proposed multiple data source

approximation based recovery algorithm is O() which significantly

reduce the data set size to be traversed. Compared to the previous worst case, to

computation cost can be reduced exponentially. When there is no fusion error or

permanent error, it means that no join operation or connection happens in error

recovery process. T is equal to 1. In other words, the above 2 complexity can be

simplified as O(m n) and O() which are the worst complexities of

ephemeral error for error recovery.

4.5 Experiments

To verify the performance gains of our big sensing data error recovery strategy on

Cloud, real data experiments are designed in our U-Could environment introduced in

Chapter 2. There are two primary anticipations for designing this experiment. 1)

Compare the difference between error data set and recovery data sets. By analysing

the accuracy rate achieved by our error recovery method, we aim to demonstrate that

the accuracy of the recovering data can satisfy the requirement of real world

applications. 2) Demonstrate significant time-saving can be achieved with respect to

recovering any detected errors from a big sensing data set without losing noticeable

recovery accuracy.

4.5.1 Experimental Settings and Data Sets

With our error recovery strategy, computational processing can occur on data stored

either in an unstructured file-system or a structured database system. In this

experiment, Spark takes advantage of locality of data for processing data on or near

the storage assets. Hence, the related data processing operation can be reduced. In a

"Mapper" function, the input data is taken by a master node. Then, that master node

separates it into a bunch of smaller sub-problems, and distributes those sub-problems

onto leaf nodes. A leaf node may do this recursively to form a tree of multi-level. The

leaf node processes the distributed sub-problem, then sends answer to its master node.

90

In a "Reducer" function, a master node is initialized to gather the answers of all the

sub-problems and integrate them for the final output.

The open source world meteorology big sensing data sets are used including four

data formats, GRIB, BURF, HDF and NetCDF. Due to the different data formats,

before implementing our proposed error detection and error recovery algorithms, a

series of parsers are implemented to preprocess meteorological big sensing data sets

from multiple civil open data sources. With the above preprocessing, the testing

meteorology data sets with different data formats are normalized into our uniform data

format before manually imposing errors in the original data sets. Specifically, 4 kinds

of meteorology data sets are accessed.

(1) Sea Surface Temperature Data Sources (SST):

ftp://polar.ncep.noaa.gov/pub/cdas/eng.YYYYMMDD;

ftp://polar.ncep.noaa.gov/pub/sst/rtg_sst_grb_0.5.YYYYMMDD;

(2) Wireless Electrical Mask Satellite Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t00z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t18z.gpsro.tm00.bufr_d;

(3) Satellite Coverage Rate Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.1bhrs3.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.1bhrs4.tm00.bufr_d;

(4) Satellite Wind Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.satwnd.tm00.bufr_d.unblok

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t18z.satwnd.tm00.bufr_d.unblok

91

Specifically, the big meteorology data set collected in several locations near East

Longitude 151°12’ and South Latitude 33°52’ are used for our experiments. The

coverage radius is around 50 km. The time for data sets stamps is traced back to last

30 years. Totally, around 100 GB of meteorology sensing data were adopted for

testing our multiple data sources approximation based error recovery approach. Four

types of data attributes in the above data sets are extracted used. Specifically, the

numerical temperature is measured with °C. The atmosphere pressure is measured

with kPa. The humidity is measured by relative humidity to calculate a percentage

value in ‘%’. The wind speed is measured by two parameters. One is the km/h, the

other is angle for wind direction.

4.5.2 Analysis for Error Recovery Accuracy Rate

Similar to our previous work [49], the data accuracy analysis is offered to compare

the input error data set with the output recovery data set. The accuracy is defined by

measuring the similarity between two time series: one from real big sensing data graph

G and the other G’ from filtered data provided by Could. The two time series are data

items flowing between two nodes inside a cluster. To compute the similarity between

two nodes, we deploy correlation coefficient model [49]. Suppose we have two time

series X and Y. We can compute the similarity between them by formula (1).

 (1)

In (1), we can see the similarity expression resembles to “cos” similarity

computation. sim(X,Y) has a data domain [-1, 1]. The computing of “cov(time series

1, time series 2)” is described with following equations (2) to (4).

 (2)

 (3)

 (4)

92

Hence, the similarity between two time series can be computed by equation (5).

 (5)

As we only need to correlate the accuracy and similarity, only data range of [0, 1]

is selected. The original range [-1, 1] can be normalized into [0, 1] for standing for the

accuracy 0% ~ 100%. As shown in formula (6), sim(X,Y)’ is computed instead of

formula (5). sim(X,Y)’ [0, 1].

′ (6)

Therefore, the accuracy for an edge in G at a time stamp t can be assessed by

formula (7).

′ (7)

Accuracy = ′ (8)

Accuracy = (9)

The final accuracy for “Accuracy” for data service quality between two points can

be assessed by equation (8). The equation (8) can be further transformed and

calculated with the equation (10).

Accuracy (10)

93

Suppose we have S edges in a graph data set G(V, E) (With cluster-head structure,

there is no edge explosion). Each edge is indexed by s from [1, S]. We can compute

the Average Accuracy of Cloud computed Data set ‘G’ against original ‘G’. The

Average Accuracy is described in equation (11) as recovery data accuracy ratio to

demonstrate our experiment results in Figure 4-9.

Average_Accuracy= (11)

Figure 4-9 Experiment for Recovery Data Accuracy

With the definition of our average data accuracy ratio, the accuracy ratio is equal

to 100% means that a detected error data is cleaned with a recovery data which is

exactly the same value to the original value before imposing manually generated

errors into the testing data set. In Figure 4-9, a group of error recovery ratios are tested

according to the data predicting window length which ranges from 5 to 25. A much

longer predicting window normally indicates a better predicting accuracy. In the

experiment demonstrated in Figure 4-9, based on the real world meteorology data sets,

we impose some manually generated errors for the purpose of accuracy experiment.

The imposed error quantity is measure with a percentage calculated by the imposed

error ratio defined as follows.

0

20

40

60

80

100

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

accuracy ratio after recovery (predicting window length: 25)

accuracy ratio after recovery (predicting window length: 20)

accuracy ratio after recovery (predicting window length: 15)

accuracy ratio after recovery (predicting window length: 10)

accuracy ratio after recovery (predicting window length: 5)

imposed error rate

recovery data accuracy ratio

94

Imposed error ratio=

In the experiment, firstly, we impose the flat line errors as the first error type. The

second type is out of bound. Spike error is imposed as the third type. The forth type

is data lost error. Last, aggregate & fusion type is imposed for experiment. The

experiment is for measuring error recovery accuracy and efficiency of our proposed

technique in terms of on-Cloud big sensing data processing.

The imposed error rate changes from 5% to 80% in ‘x’ axis. And ‘y’ axis stands

for the accuracy ratio. According to the results demonstrated in Figure 4-9, with the

increase of error rate, the average accuracy ratio of decreases. The reason is that more

imposed errors bring more unreliable data history and approximation for predicting

recovery data. For example, if the error rate in a data set is 100%, it means that there

is no accurate data which can be used as a base for carrying out meaningful data

prediction. However, when the imposed error rate is less than 25%, the achieved

accuracy ratio decreases slightly and can satisfy most of real world applications in

terms of a quality of recovery data set.

In Figure 4-9, when the imposed error rate is less than 25%, the average accuracy

ratio of recovery data sets are all higher than 90% no matter what the window length

is. As the error rate increases to 25% or more, the accuracy ratio of error recovery

decreases dramatically in Figure 4-9. When the error rate increases to a value larger

than 80%, the data recovery accuracy ratios drop to unacceptable values in terms of

most real world applications. However, in the real world application, most of useful

data sets and their error will not surpass 25%. In terms of an error rate of more than

80%, the data gathering systems themselves could be described as failures and could

be improved.

4.5.3 Analysis for Error Recovery Time Cost

In Figure 4-10, time cost for different error recovery strategies is compared.

Specifically, the two implemented error recovery strategies include firstly the

recovery based on traditional whole data set navigation and secondly the recovery

based on multiple data sources approximation. The time cost for the first strategy has

95

a linear algorithm complexity with the increase of imposed error rate. However, the

second recovery strategy developed by us significantly curbs the time cost for

recovering the imposed errors. For any error rate less than 30%, to recover all the

imposed errors in the 50 GB data set, the time cost is limited within 20 minutes.

Compared to the first strategy without approximation, significant processing time

(maximum 80 minutes) can be saved. This time saving is achieved because our

proposed second error recovery strategy only accesses a small group of data to

approximate the original true value of detected errors instead of the whole data set

traverse.

Figure 4-10 Experiment for Recovery Data Accuracy

However, with the increase of the imposed error rate from 35% to 80% as shown

in Figure 4-10, the time cost for our proposed novel error recovery strategy in this

paper increases dramatically. That dramatic time cost increase is caused by the

recursive approximation embedded in the recovery algorithm. That recursive

approximation process has a similar exponential correlation with the error rate. But

even with this dramatic time cost increase, the time cost of the error recovery with

multiple data source approximation still costs less time compared to the first error

recovery strategy. Based on the experiment result analysis in Section 4.5.2 and Section

Time Cost for Recovering 50 G Big Sensing Data Set: (minutes)

0

20

40

60

80

100

120

140

160

180

200

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

Recovery Time Cost with Traditional Whole Data Navigation
Recovery Time Cost with Multiple Data Sources Approximation

imposed error rate

96

4.5.3, both high quality recovery data set and quicker recovery time are achieved by

our multiple data sources approximation based error recovery.

4.6 Summary

In this chapter, in order to recover errors in big sensing data on Cloud, we proposed a

novel approach via multiple data sources based approximation. The coverage

information was used for carrying out data multiple data sources approximation.

Instead of using the whole data set for error recovery, this error recovery approach

limited most data operations related within small subsets from the whole big sensing

data set. In a selected sensing data subset, a Euclidean distance based approximation

approach was proposed to calculate an average time series prediction curve. Then, this

novel error recovery solution was harnessed to specific defined nine error types for

error recovery. Through real big meteorological data experiments, we demonstrated

that the accuracy of recovering data satisfied the requirement of real world

applications. In addition, significant time-saving was also achieved without losing

noticeable error recovery accuracy via scalability with MapReduce based

implementation. Based on the research work in this chapter, the data cleaning step in

our big sensing data curation roadmap was basically built up. In future, under our

prosed error recovery, the coverage changes and coverage mobility features of big

sensing data may be taken into consideration when carrying out the Euclidean distance

based approximation.

97

Chapter 5

Spatiotemporal Compression

Chapter 3 and Chapter 4 solved the first important step of data cleaning in our big

sensing data curation roadmap. The second important step in our big sensing data

curation roadmap is compression and storage saving. In this chapter, we will introduce

a novel on-Cloud technique for effectively processing big sensing data, especially

graph data with spatiotemporal data correlations.

5.1 Introduction

In lots of real world applications, such as social networks, complex network

monitoring, the scientific analysis of protein interactions and wireless sensor networks

self-monitoring, it is avoidable to encounter the problem of dealing with big graph

data and big graph data streams. Lots of those big graph data comes from modern

sensing systems [33-34]. To monitor individual sensing nodes, their related

behaviours and detecting the abnormal operation, huge amount of streaming graph

data must be processed and analysed. It is well known that the processing of big graph

data can be costly and inefficient with current typical Cloud Computing techniques or

tools, such as Map-Reduce [33-34]. Those big graph data processing techniques

introduce complex and multiple iterations. Those iterations and recursive algorithms

may cause computation problems such as parallel memory bottlenecks, deadlocks on

data accessing, algorithm inefficiency [33-34]. In other words, under some

98

circumstances, even with Cloud platform, the task of big data graph processing may

introduce unacceptable time cost, or even lead to processing failures.

To curb and avoid the formation of the above problems, in this chapter, we

propose a novel technique for effectively processing big data, especially streaming

big graph data from sensing systems on Cloud. Generally speaking, the big data will

be compressed firstly with its spatiotemporal features on Cloud. By exploring spatial

correlation of big sensing data, we partition a graph data set into clusters so that, in

one cluster all edges from the graph have similar time series of data. In each cluster,

the workload can be shared by the inference based on time series similarity. By

exploring spatial data correlation, we partition a graph data set into clusters. In a

cluster, the workload can be shared by the inference based on time series similarity.

In each time series or a single graph edge, temporal data compression is conducted. A

novel data driven scheduling is also developed for data processing optimization. The

experiment results will be used to demonstrate that the spatiotemporal compression

and scheduling achieve significant performance gains in terms of data size and data

fidelity loss.

5.1.1 Research Problem Analysis

Nowadays, lots research work has been done towards the big data processing on Cloud.

Cloud itself as a powerful computation and storage platform, also proves to be a

suitable answer for processing and analysing big data. However, under the theme of

big graph data processing, current typical techniques such as MapReduce may

introduce high computation cost [27, 31-33]. More work is still expected to improve

the effectiveness and efficiency in terms of big graph data processing on Cloud.

Compared to the too much iteration introduced by MapReduce, we aim to offer

an optimal solution for streaming big graph data processing for applications with high

real time requirement. A novel approach to process streaming big data of cluster-head

architecture over Cloud platform will be developed. This approach consists of two

important technique parts. The first part focuses on reducing the data size over Cloud

Computing platform with spatiotemporal compression. Specifically, a clustering

algorithm is developed based on spatial similarity calculation between multiple time

series or streams of data. It compares the data streams according to the topology of

99

the streaming data graph topologies from the real world. Under clustered network

architecture, there are two classes of data interaction between data nodes from a

complex data exchange network. One is the data interaction flows between the sibling

nodes. The other is the interaction data flows between the leaf nodes and the cluster-

nodes. In terms of the data exchange between leaf nodes and a cluster-head, the

similarity model is relatively simple because it only involves the computation of the

multiple attributions inside the data. All the similar data streams between a cluster-

head and its leaf data nodes can be approximately inferred with a certain mathematic

function based on only one or several bilateral data streams. In terms of the data

exchange between sibling nodes, a data vector should include different origin and

destination. The correspondent computation of similarity should also be modified with

the consideration of different data origin and destination. Furthermore, because the

data items in streaming big data sets are heterogeneous and carry very rich order

information themselves, we develop an order compression algorithm to further reduce

the size of big data sets.

The second part of our proposed big data processing approach focuses on the

computation resource allocation of the Cloud. For the graph data, especially a big

graph data set, the data can be heterogeneous and unfairly distributed over the Cloud

platform. However to mapping this data to the Cloud platform for data processing, we

need to consider the heterogeneous feature of the data. For example the data size from

two nodes may be significantly different. To allocate the computing resource of Cloud

according to node is not reasonable. Therefore we aim to offer a scheduling based on

the analysis of data size from each node in a data exchange network to achieve shorter

big data processing time and higher computing resource utility.

As shown in Figure 5-1, the data streams generated from a complex social

network pour into Cloud processing platform. To monitor individual nodes, their

behaviours and detecting the abnormal operation, huge amount of streaming graph

data must be processed by Cloud. According to different application purposes, the

processing over this streaming big graph data can be categorized to two types.

The first one type focuses on parallel data storing over large-scale distributed

storage stock of Cloud platform. The stored big graph data or stream data sets will be

queried and evaluated as the model of distributed data-base in Cloud, such as “Hydoop”

[45] and its related “Hive”, “HBase”, “Zookeeper”, and so on. The data processing

100

results are offered as services to Cloud end users. The other type of applications cares

more about the real time results and instance monitoring feedbacks over on-fly

streaming graph data which may be unnecessary to be stored after high velocity data

filtering. Under theme of this type of data processing, there is no need for permanent

data storage nodes to intake high volume of data. The graph-based streaming data will

be directly processed with some efficient filtering and event triggering algorithms.

The correspondent approach for allocating the resources of Cloud computing is also

needed to be developed to achieve costless computation and quick reaction time for

event monitoring. Our approach proposed in this chapter will mainly work in this

application type to achieve both low computation cost and shorter, quicker processing

reaction time.

Figure 5-1 Requirement for Big Graph Data Cloud Processing

5.1.2 Contents Outline

The rest of this chapter is organized as follows. In Section 5.2, a novel spatiotemporal

compression technique on Cloud for big data will be introduced to reduce the size of

big data sets. In Section 5.3, a novel scheduling algorithm is developed to distribute

the big data, or graph data on the Cloud platform with better fairness for time

performance gains. This scheduling will be based on the processing results from the

spatiotemporal compression offered in In Section 5.2. In Section 5.4, we offer the

integrated approach and the related algorithms for the compression and the scheduling

proposed in Section 5.2 and 5.3. In Section 5.5, experiment is conducted in three

aspects to verify the algorithms in terms of data exchange size, the time efficiency and

Streaming Big Graph Data

Cloud

data clustering driven
streams process engine

for computation distribution

Real Time Results

distributed & paralleled
stored data processing

Services

Large-scale Distributed
Storage Stock

on-fly streaming data
clustering & compression

Data
Node

101

fidelity loss (data processing quality). In Section 5.6, we summarize the work in this

chapter.

5.2 Spatiotemporal Compression

In Chapter 2, some typical big data processing techniques and tools over Cloud has

been reviewed and analysed. In this section, we will introduce a novel technique based

on spatiotemporal data correlations to compress big data on Cloud.

5.2.1 Spatiotemporal Compression

In this section, we will introduce a clustering technique based on spatiotemporal data

correlations. It computes the similarity of time series with regression. The definition,

the similarity computation model and analysis of this similarity computation will be

offered. It will be used for clustering the nodes in cluster-head network architecture.

It aims to reduce the data exchange within each cluster by data guessing and inference.

5.2.1.1 Motivation

As shown by the motivating example in Figure 5-2, there are several time series

collected by the real world noisy sensor nodes deployed in a public transportation area.

The sound is measured in standard Decibel (dB).

Specifically, data time series 1 and 2 are quite similar to each other according to

the whole sampling period from sample 1 to 90. In other words, time series 1 or 2 can

be used to approximately represent each other, which is used by most of current

clustering algorithms to reduce the data size. For example, to report the three time

series 1, 2 and 3, previous clustering algorithms can divide three time series into 2

time series groups A and B. In group A, there are time series 1 and 2 from sensor 1

and sensor 2. In group B, there is time series of sensor 3. However, there is one

problem in the previous clustering algorithms. The timing of re-clustering for time

series is not optimal. Because the re-clustering frequency has huge influence for the

energy cost, for a given data series set, we want to do the minimum re-clustering to

capture the maximum time series difference.

102

Figure 5-2 Example: Time Series based Clustering

In Figure 5-2, it can be observed that, from sample 65, the data feature of time

series 1, 2 and 3 changes. The time series before sample 65 is very bumpy. It means

that, the difference between time series 1, 2 and 3 can change quickly. To capture that

changing, more clustering operation is required. But after sample 65, time series 1, 2

and 3 become relatively smooth and static. It means that with less re-clustering

operation, the partition of time series groups can be done with the satisfaction to

accuracy requirement. In order to capture these attributes of three time series and carry

out effective clustering, different method can be adopted. For example, if the data

window with of each node can be maintained by a cluster-head, we can use normal

regression to predict the data trend of each time series. Hence, that data trend can be

used as a criterion for sensor nodes partition in each cluster. Furthermore, how to

choose an optimal time frequency of re-clustering according to the feedback of

analysis of data history raises an interesting research topic.

In this chapter, we develop a clustering algorithm with improved data aggregation.

Instead of carrying out regression over a set of historical data directly, this clustering

carries out data aggregation over a consecutively series of weighted data changes. For

example, in Figure 5-2, to predict the changing trend after sample 65, the prediction

regression model will not directly work on the data samples before time stamp 65. As

an alternative, a series of data trends with time stamp from 1 to 64 will be calculated

for regression. In addition, with our proposed method, the problem of how to choose

an optimal timing for re-clustering will also be discussed. We will give an approach

30

40

50

60

70

80

90

100 time series 1 time series 2 time series 3(dB)

103

to choose a suitable data distribution to deploy our proposed clustering. Hence, over

the unsuitable data distributions, the clustering can be terminated to avoid the cost of

frequent clustering operations.

5.2.1.2 Similarity and Error Model Influence to Clustering

Our clustering algorithm based on weighted data changes conducts its decision

making for node sets partitioning according to whether two time series being similar

enough. So, firstly, it is important to define the similarities of two time series. Popular

and direct similarity definition can be based on some average distance of sets of

previous data belonging to different time series. To calculate that distance for

measuring similarity and to predicate the future similarity of two time series, temporal

prediction models should be developed. Current work can be found for temporal

prediction based data regression. However, there is a main disadvantage for this

prediction model if applying it for clustering. When two time series have shape similar

to “cos()” and “sin()” functions, though the regression results of two time series can

be of high level similarity, the true situation of two time series can be totally different.

X=

11 12 1

21 22 2

31 32 3

1 2

... ...

... ...

... ...

... ...

m

m

m

n n nm

x x x
x x x
x x x

x x x

 (1)

To overcome the above inaccuracy brought by normal regression model based on

historical temporal data, we develop a novel regression based data prediction model.

Suppose that there are two time series, denoted as X1{x11, x12, …, x1m}, and X2{x21,

x22, …, x2m}. m is the time tamp for each data collection rounds. We aim to predict the

average dissimilarity of data trend for X1 and X2 in future m rounds. Based on X1 and

X2, we can calculate a dissimilarity vector D(d1, d2, …, dm), where di=xi-yi. With the

data trends vector D, we develop a weighted data regression model to calculate the

average dissimilarity of data changes between time series X1 and time series X2. The

specific regression model is as follows.

104

X is a data value set with temporal and spatial formed by n sensor vectors. In the

matrix (1), the values collected buy sensor nodes 1 to n during m data collection

rounds is described. Then we assign a weight vector for the changing slopes of each

Xi, denoted as W{w1, w2, …, wm-1} which means that according to a specific time stamp,

the weight for carrying out regression is different. Then the matrix (1) can be changed

to a data changing matrix, X’ in (2). With W X’, we can calculate a weighted data

changing value matrix V= W X’ in (3). The weights vector is generated with the

assumption that the importance is of variation of Gaussian distribution with the

changing of different stamps. In other words, more recent data has more influence for

prediction.

X’=

2

2 2 2
12 11 13 12 1 1(1)

2 2
22 21 23 22 2 2(1)

2 2 2
32 31 33 32 3 3(1)

2 2 2
2 1 3 2 (1)

() () ()
() () ()
() () ()

() () ()

m m

m m

m m

n n n n nm n m

x x x x x x
x x x x x x
x x x x x x

x x x x x x

 (2)

V=

1 '
...
...

'n

X

X

1

...

...
n

w

w

 (3)

In order to calculate the W for a time flow, the probability density function of

normal distribution should be configured to describe a time series in which a data with

newer time stamp should have higher importance. According to 3 principle, in

Gaussian distribution, we only use the domain between [0, 3] to calculate the final

weight vector W, and it is enough to guarantee that because more

according more than 97% data will be within this [-(3), 3]. However, the time

stamp for sensing data changes from [0, +] which is not between the domain of [-

(3), 3]. So in our work, we change the standard normal distribution as follows

in (4).

105

1

1

m
k

k
w

2

2
()()

3 2

0

2
2

x

e (4)

Because we assume that the starting time for data collection is 0, we can get =0.

So the summary value of the whole weights domain is calculated with (5)

1

1

m
k

k
w

2

2
()

3 2

0

2
2

x

e (5)

As a result, for a data history window with m items or a vector Xi, we can distribute

m-1 consecutive to the domain calculated with formula (5). Specifically, the data

range between [0, 3] is divided into m-1 fragments as 0 to ,

 to until to the final fragment,

[]. Then any item wk in the weight vector

W can be calculated as following (6). With the above W, the regression matrix V can

be evaluated.

kw

2

3 2
1

(1) 3
1

()
22

2

k
m

k
m

x

e (6)

To compare the similarity of any two time series Xi and Xj based on our data

changing regression model, we only need to compute the summary difference of

corresponding Vi and Vj. If |Vi - Vj|<Threshold (threshold is a given error bound from

application requirement), time series Xi and Xj will be judged as similar enough and

allocated into the same cluster.

5.2.1.3 Clustering by Exploiting Data Changing

In Section 5.2.1.3, we introduced our approach for computing the similarity

between any two time series Xi an Xj. With that similarity, the clustering process can

be carried out. In this section, we will specify what kind of data distribution is suitable

our clustering algorithm. As shown in Figure 5-3 (a), under a certain data distribution,

106

if the similarity of time series is of high level, with the time stamp changing from T1

to T2, the clustering algorithm does reduce the number of reporting node. Specifically,

in Figure 5-3 (a), at T1, only 3 nodes are selected as cluster-heads and at T2, only 2

nodes are selected as cluster-heads. However, under some high variation data

distribution, the effectiveness of clustering algorithm can be not good due to the

distribution of big data sets. As shown in Figure 5-3 (b), at time stamp T1, the data

variation is relative steady. However, when it comes to time stamp T2, sensing data

set is of high volatile and it makes the clustering algorithm divide more cluster-head.

Figure 5-3 Data Changes Influence to a Clustering Algorithm

Under some extreme conditions, it can make all the leaf nodes become cluster-

heads as shown in Figure 5-3 (b) when time stamp is equal to T1. So under this scenario,

we do not want to use the clustering algorithm, because the clustering brings no

transmission reduction for data exchanging. Furthermore, it introduces further time

and resources for the data exchange of computing and clustering from cluster-heads

to leaf nodes. Hence, we develop a method which exploits the trade-off between cost

and gains brought by clustering algorithm to adaptively deploy our clustering

algorithm according to underlining data changes. This method is based on the

(a) error bound changing, error type unchanging

Candidature Cluster-head Node

Current Selected Cluster-head

Leaf Node

Server

T1 T2

(b) error types changing

T1 T2

Server

Server Server

Data Exchanging Network
with Hierarchical Structure

Data Exchanging Network
with Hierarchical Structure

Data Exchanging Network
with Hierarchical Structure Data Exchanging Network

with Hierarchical Structure

Each Cluster :
Data forward
Gossip
Overhear
Passive Monitoring
Opportunisitic Error Detection

107

computation resource consumption model which decomposes and analyses the cost of

different activities and operation over Cloud platform for simulating a big graph data

set.

 Ms: the size of the new clustering message to be propagated

 Cb: the time and computation cost to broadcast 1 byte of data

 Cr: the time and computation cost to receive 1 byte of data

 Ps: the size of data block

 h(G, nodeID): the jumps from gateway to leaf nodes

 Cinstr: computation and time cost for executing instructions for clustering

 D: duration

 t: time stamp

In every data stamp for data exchange within a certain network, suppose that there

are n different nodes. Suppose that totally the clustering algorithm selects x cluster-

heads and n-x leaf nodes. Then for k rounds of data exchange, the data receiving cost

should be Ps k t (x) Cr. The data sending cost should be Ps k t (x) Cb.

However, the time and computation cost for propagating the new clustering should be

counted. The cost of data exchanging is Ms k t (x) Cr and Ms k t (x) Cb

respectively. There also is some cost for clustering algorithm at the final gateway,

Cinstr. If k n, it can be observed that no cost will be saved and it also brings new

clustering energy cost. When the number of x exceeds a certain level, we will not use

the proposed clustering algorithm to realize saving because it has less effects under

this scenario. Instead, we use an order compression approach to reduce data size to

achieve the size reduction for big data on Cloud.

As described above, under some situation, the proposed clustering algorithm can

be ineffective. To offer a compensation method which can still bring data exchange

saving when the clustering algorithm can not achieve performance gains, an order data

compression approach is developed. The concept of order compression comes from

the traditional data compression area. It means to use the order information carried

among a group of data items to compress the data. The order compression can happen

in a complex data unit or a group of data units in a data exchanging network. It is a

108

kind of spatiotemporal compression exploiting data correlations in for data

compression.

5.2.2 Order Compression with Spatiotemporal Correlations

5.2.2.1 Order Compression for Multi-attributes Data

To compress multiple attributes sensing data with order data information, some

techniques have been developed in work [52]. As shown in Figure 5-4, there is a data

sampling and exchanging network. According to the previous techniques [80], when

there is a data record collected by a node in this network, to send back this data, data

exchange starts. Based on current techniques, there are only two possible choices for

the newly collected data. (1) transmit data to the parent node (2) suppress the data

transmission according to a predefined error range c. The previous technique can

easily recognize whether there is a suppression and transmission when there is less

data change happening. As shown in Figure 5-4, the current collected data record has

no change in its 4th and 5th data attributes. So, the transmission of the 4th and 5th

attributes will be cancelled according to the in-network data suppression approach

[80]. But, if there is also no change in the 6th attribute when comparing the data history

table of the 6th attribute in Figure 5-4, the transmission of the 6th data can not be

suppressed. In other words, single temporal prediction model loses the opportunity

for further data exchanging compression. Both data cluster-head and leaf node in a

network maintain the same data history table which can offers the message of previous

message for order compression.

In the example of Figure 5-4, order message of previous attributes can be utilized

to represent a location of the repetitive data in the data history table in of the 6th

attribute, there exists the opportunity to cancel the transmission of the 6th attribute to

reduce the size of the current data record. More specifically, the reporting order of the

first attributes can have 3!=6 different orders. The unreported attributes 4th and 5th

have to obey the original order because the cluster-head needs this order for predicting

the unreported attributes. So, totally, 6 types of reported attribute order can represent

6 different locations in the data history table of attribute 6th. The second location of

the data history table of the attribute 6th is equal to the current collected data. Then the

109

order is used to transmit the previous three attributes back to the cluster-head. And the

cluster-head can infer the value 3 for attribute 6th based on the received attributes order

and its maintained data history table of the 6th attribute. By the above method, data

exchanging for the 6th attribute is saved compared to the previous single temporal data

reduction technique [80].

Figure 5-4 Order Compression with Multiple Attributes

5.2.2.2 Order Compression based on Encoding Data Changes

In section 5.2.2.1, we mainly discuss how to use order information of multiple

attributes to compression the exchanging data size for a big data graph. In this section,

the order compression will be used to compression data transmission in tiered tree

topology. As shown in Figure 5-5, there is a data exchanging network for data

sampling and communication. Firstly, the tree topology can be divided into a layer

topology. Our research is carried out on a cluster, such as x0 and all its child nodes, x1

to xn. Then our proposed compression can be generalized to the whole data collection

network. In the cluster x0, all the nodes from x0 to xn form a one hop network. If x0

maintains a data buffer for all its child nodes with their length of L=2, at each data

gathering round, x0 can have l n previous data for x1 to xn.

Because the length of the data buffer is L=2; the buffer for a certain child node

can be indexed with two real data reports. For example, the buffer elements for x5 can

be represented with the combination order of x1 and x2; and the buffer elements for x6

can be represented with the combination order of x3 and x4. In addition, the x7 can be

3 2 4 7 2 3

2 4 5 7 2 2

1 5 3 4 5 3

tim
e s

tam
p

of
str

ea
m

in
g

da
ta

gate way

Cluster-head

d
ef

c
a b

Current Round

History 1

History 2

att1 att2 att3 att4 att5 att6

110

represented with the combination order of (x1; x2) and (x3; x4). With this encoding

method, it can be calculated that for a given buffer length L, and n child nodes cluster,

the nodes required to represent a buffer with its length L should be m!≥L. In other

words, we can calculate how many nodes are required, m to represent another node.

Then we can determine how many in the node sets with x1 to xn should report and how

many can be suppressed with the method offered by the in-network prediction model.

For the unreported data, it will be approximated with the buffered data and its index

is given by the order of the reported data. Theoretically, more nodes are added, more

data compression can be achieved with this method without considering the data

mapping and index cost. Furthermore, this compression approach can be recursively

deployed over the whole data gathering tree topology. For example, in Figure 5-5,

node h can use the order of cluster x0, cluster k and node l to carry out the data

compression operation over it. The advantage of this order compression based on

buffering historical data is that its compression effectiveness is steady under some real

data sets.

Internet
Gateway a

b

c

d

e

f
g

h

i j

k

l

p

q

x0

x1 x2
x3

x4

x5
x6

x7xn

buffer length: 2

x5: (x1; x2)
x6: (x3: x4)
x7: ((x1; x2); (x3: x4))Cloud

Figure 5-5 Inter-node Order Compression for Data Exchanges

For example, for independent temporal based data compression and our proposed

clustering algorithm, if data sets change dramatically, the cost of re-clustering and

independent temporal suppression can be extremely high. However, according to our

knowledge, lots of dramatic changes are periodic, which means that most of current

data have appeared previously. So if the previous repetitive data can be retrieved and

reused, we can greatly decrease the time and resource cost for Cloud computing. In

other words, the buffering based order compression can reduce more data exchange

111

under the data set where tradition temporal suppression and the proposed clustering

algorithm lose their effects.

5.3 Data Driven Scheduling on Cloud

In the previous section, we introduced the approaches for reducing the big data size

with spatiotemporal data suppression. However, a smaller size of data does not

definitely mean a shorter processing time which is quite related to the task division

and workload distribution over Cloud. In order to offer a shorter and quicker

processing time, we will introduce a novel scheduling algorithm based on the

spatiotemporal compressed data sets.

5.3.1 Different Scheduling Strategies over Cloud

To show the necessity and effectiveness of our data driven scheduling and its mapping,

two types of mapping strategies, node based mapping and edge based mapping will

be introduced first for comparison.

Mapping for Cloud Scheduling with Real Network Nodes

The most direct and easy way to distribute and schedule the big data processing

task over Cloud is based on the real work topology of the network itself. Under the

theme of this mapping, the mapping algorithm is pretty simple and the computation

resources are divided and distributed to each node for simulating and analysing data

flows in a real world network. As shown in Figure 5-6 (a), to filter the graph data

stream from a cluster of network nodes, one to one mapping is conducted. For example

all the data flowing through node a, and all the operations from node a will be

allocated with a computation unit on Cloud. This mapping and resource allocation is

fair according to the real world network topology, but it could be extremely unfair in

terms of the distribution of data size under a heterogeneous data exchange network.

For example, in Figure 5-6 (a) compared to node a, node b, c and d may experience

huge data flows within certain time duration which will cost much longer time for

data analysis. After the computation unit allocated to node a has finalized its

112

processing, it has to wait for the results from node b, c and d to form high level services

to end users. In other words, the unfairly distributed workload can significantly delay

the reaction and processing time for processing big data sets over Cloud.

Mapping for Could Scheduling with Data Exchange Edges

Instead of directly allocating the computation resources over Cloud according to

the real world network topology, the mapping can be also carried out based on the

data exchanging edge between nodes. As shown in Figure 5-6 (b), each edge which

has data flows over it in a network will be simulated and analysed with a computation

unit from Cloud. For example, the edge ab, ac and cd will be allocated with similar

computation and storage units respectively. It is clear that the mapping in Figure 5-6

(b) still can not solve the problem of unfair distributed data size over each data

exchanging edge. Furthermore, the number for the network edges may increase

dramatically with the growth of the nodes. Though the cluster-head architecture and

1-hop cluster somehow limit the increasing number for the edges, to process the data

graph in a big cluster itself can be a very time consuming job for the Cloud. So, the

edge mapping and its scheduling for the Cloud computing power is not suitable for

analysing the data exchange cluster in Figure 5-6 either.

Mapping for Could Scheduling with Data Exchange Quantity

Based on the mapping in Figure 5-6 (c), we design a novel mapping based on the

information carried by the compressed data sets after the processing of our proposed

data reduction with spatial clustering, temporal prediction and order compression. As

shown in Figure 5-6 (c), the computation resources are grouped into to some basic

units to offer independent processing power capability. Then, the edges in a network

will be divided into several blocks according to their real workload of data flow. For

example, according to data exchanging size, clustering situation and compression

ratio, the workload for data exchanging and processing over the edges ab, ce, bd, ac

is similar to the half workload over the edge ef. It can be concluded that data exchange

over the edge ef is of high data exchanging density and difficulty to be compressed

and clustered. Hence, the edge ef is grouped into an independent group and allocated

with more computation resources from the Cloud platform. With the data driven

mapping in Figure 5-6 (c), it is clear that the mapping algorithm mainly focuses on

113

how to assign the resources according to the real requirement for dealing with data. It

manages to distribute the workload for data processing more evenly over the Cloud

platform and to make the full use of the computation power of Cloud. Compared to

the mapping strategies in Figure 5-6 (a) and Figure 5-6 (b), it is more optimal in terms

of time saving and resource dispatching.

Figure 5-6 Different Mapping Strategies for Resources Scheduling on Cloud

5.3.2 Calculation for Weighted Data Exchanging Edges

In order to carry out the scheduling strategy introduced in Figure 5-6 (c), we need to

calculate the data exchanging quantity for each edge in a network topology as shown

in Figure 5-7. According to our work introduced in the previous sections, the data set

will be clustered and compressed before being used as a base for offering real time

Cloud services. The calculation of the workload for each edge in a network structure

is as follows.

It has been introduced that during the filtering process of big data set, clustering

and compression have been conducted. With that processing the data suppression ratio

based on clustering, denoted as Cs for an edge is calculated. The data suppression ratio

based on temporal compression, denoted as Ct is also calculated. For example, the

clustering suppression ratio over edge ab is denoted as Csab and the order compression

ratio over edge ab is denoted as Ctab. Because the clustering and compression have

different influence to the data reduction over the edge ab, different weights wsab and

wtab are assigned to Csab and Ctab respectively. With that we can calculate the real

workload of data over edge ab, Dab’=(wsab Csab+wtab Ctab) Dab where wsab+wtab=1.

Could Could

Could

(a) physical node based scheduling (b) edge based scheduling (c) data driven scheduling

a
bc

d

a

b
b

a
c

c
dd

e

f

114

The selection of wsab and wtab can come from application requirement or system

feedback.

Figure 5-7 Computing Model of Spatiotemporal Compression Ratio

Suppose there are n edges in the network, the total real data exchanging size

D’=E(ws Cs+wt Ct), E G(V,E). G is the network graph, V is set for nodes and E is

edge set. Then, we can get the percentage of data processing workload on each edge.

Suppose that the whole computation resource of Cloud is R, the data processing task

can be scheduled for over Cloud according to the calculated

Dxy’=(wsxy Csxy+wtxy Ctxy) Dxy, where x and y are two nodes in a data exchanging

network. As shown in Figure 5-7, the exchanging data size over the edge ef is

Def’=(wsef Csef+wtef Ctef) Def and the that over the edge ab is

Dab’=(wsab Csab+wtab Ctab) Dab.

5.4 Algorithms

Based on the above compression techniques and scheduling detailed in Sections 5.2

and Section 5.3, the overall approach for efficient big data processing on Cloud is

designed in this section. Specifically, we design related separate algorithms and

roadmap for the proposed spatiotemporal Cloud data compressions and afterwards

scheduling.

e
f

a

bc

d

spatial compression ratio: Cs (clustering) / For example: Csab
temporal compression ratio: Ct (temporal, order compression) for example:Ctab
Dab: total data exchange over edge ab during a time duration

Def'=(wsef×Csef+wtef×Ctef)× Def

Dab'=(wsab×Csab+wtab×Ctab)× Dab

115

5.4.1 Spatiotemporal Clustering Algorithm

The clustering algorithm is developed on the cluster-head. It takes time series set X

and similarity threshold d as inputs. The output is a clustering result which specifying

each cluster-head node and its related leaf nodes.

Input: a vector set X ={x1, x2, ... xn}, (vi={vi1, vi2,..., vim}),
 xi is a time series of node i,
 disimilarity threshold: d, clustering round: k, i [1, n], j [1, m];
Output: cluster-head nodes set S and cluster information;

 (1) While (time stamp j<=k)
 (2) if(j%R = = 0 && R ! = 0) // R is for reclustering and not the first round
 (3) Normalize X to V; V=X W;
 (4) select unselected vi from set V;
 (5) initialize a cluster Ci with vi; record vi in S;
 (6) While(existing unselected element in S)
 (7) select unselected xi from set X; transform xi to vi;
 (8) comparesimilarity(vj, S) ;
 (9) if(complaresimilarity(vj, S)>d)
 (10) initialize Cj with vj; record vj in Sj;
 (11) else
 (12) adding vi into the Cl with minimum similarity;
 (13) if (all nodes have been traversed)
 (14) resturen S;

Clustering Algorithm with Data Trend Similarity

As shown in the clustering algorithm, in Line (1), the data exchange time stamp j

is counted from 1 to the data exchange application duration, k. In line (2), if the j is

the time stamp for re-clustering, the clustering process will be executed. In line (3),

the algorithm changes the computation of Matrix X to data change matrix V with the

technique introduced in Section 5.2.2. From line (4) to (5), the algorithm selects any

vector from V to form the first cluster Ci and node xi will be used as the cluster-head

of Ci. From Line (6), the algorithm will carry out the selection of a new vector until

all the vectors are clustered. Specifically, it selects a vector xj from X and transforms

it into vj in line (6) to line (7). In line(8), for each newly selected vj, it will be compared

to previous clustered vectors, if the similarity between the is within the given threshold

d, vi and xi will be added into a previous cluster line (11) to line (12). If the similarity

exceeds the given threshold d, a new cluster Cj will be initialized with vj or xj as its

cluster-head as shown in line (9) to line (10). Finally, it all the nodes have been

116

compared and clustered, the algorithm will return the final clustered nodes set and

clustering information S which is a partition plan for X.

5.4.2 Compression Algorithms

Order Compression

In order to set up the relationship of the reported data and compressed data, the

compression algorithm partitions the n reports from n nodes into two groups Xt and

Xs. After this partition, the algorithm aims to construct a mapping between sets Xt and

Xs. Specifically, for a given historical buffer length L, s is calculated for minimum

report of order information indexing in line 1 and line 2. In line 3, the initialization is

conducted. From line 4 to line 8, the first round partitioning for X and data order

mapping is carried out for indexing the elements in Xt with the combination order of

the elements in Xs. From line 9 to line 10, the algorithm will recursively use the

indexing concept from line 4 to line 8, to map the rest of data in X. The compressed

elements from X will be also sent to Xs.

Temporal Prediction Algorithm

Algorithm: Order Compression
input: a streaming graph data set X={x1, x2, ..., xn}, window size: L;
Output: a partition of data set X, ordered transmission set Xt and suppression set Xs;

1. for an xi X, to index its buffer with L, the required reports size s! L ;
2. return the minimum s;
3. intialize Xt = and Xs= , i=1; j=n;
4. while (sizeof(X)>= s+1)
5. ordering (xi, x(i+1),...x(i+s)) Xt;
6. x(n-i) Xs;
7. delete xi, x(i+1),...x(i+s-1), x(j) from X;
8. i=i+s; j=j-1;
9. while (sizeof(Xt>=s && X!=))
10. iteration ordering(Xt) for each element from X; xk Xs;
11. Return final Xt and Xs;

117

The order compression algorithm is developed based on the data history buffering

strategy. It should be embedded in the original temporal in-network prediction. The

input of the algorithm includes the real-time collected data of each node at time

interval t. In line 1, the prediction coherency c is checked in Line 1 for regular in-

network prediction. In line 2, the compressive algorithm checks the reported attributes.

If there is one attribute attj has a similar value to a certain value, attj stored in its data

history table in line 7 and 8, the order of the previous reported j-1 attributes will be

used to report the location of attj in the data history table. In other words, the order

compression will be carried out inter and inner network nodes.

5.4.3 Scheduling Algorithm

Based on the above definition and computation, the scheduling algorithm is offered

as follows. The algorithm takes the graph data D and its topology G, Could resources

as inputs, outputs a scheduling based on partition of R. From line 1 to line 6, the

algorithm carries out initialization and creates the first partition for scheduling. From

line 7 to 11, a partition can have more edges if the computation power is not fully

used. From line 12 to 13, if there is an overloaded data exchanging edge, more

computational power from Cloud will be allocated. This process will be repeatedly

executed over all the edges from the set E.

Algorithm: Adding Order Compression to Temporal Prediction
input: real-time collected streaming data at, at={att1, att2, ..., attm}
 prediction error bound c
Output: real-time collected data at, at' which has a smaller size than at
, or a suppression of at

1. check the temporal inference error bound c;
2. for(int i=1; i<=m; i++) {
3. if (|attj - attj'| < c)
4. carry out normal in-network prediction;
5. else
6. if (attj attj") // if attj can be found close to a value attj" in history table

7. using the order of previous j-1 attributes to represent the location of "attj";
8. order compression in node and inter nodes
9. } end for

118

5.4.4 Overall Strategy for Cloud Big Data Processing

With the above offered algorithms including compression and scheduling working at

the different stage of our proposed big data Cloud processing stage, the roadmap for

using this approach can be described as follows. 1. Input a big data set to Cloud

platform. 2. Filter the big data set with the data compression algorithms. During the

compression, the spatiotemporal correlations between data are used. The clustering

and order compression are combined together for better suppression effect when

processing data sets with different distributions. 3. The filtered and compressed

data/graph data will be partitioned and distributed on Cloud according to our

scheduling algorithm for further data processing as service providing.

5.5 Experiments

To verify the effectiveness of the proposed spatiotemporal compression and it related

scheduling strategy for processing big sensing data and graph data over Cloud,

experiments are designed based on U-Could introduced in Chapter 2. The streaming

data set from a real world sensing system is used for testing the performance gains of

the algorithms. The time cost and computation resource cost will be recorded to

measure the performance gains. Compared to previous big data processing techniques

Algorithm: Data Driven Scheduling
input: a big graph G(V,E), a graph data set D, Cloud platform R

Output: a division P of R based on E from G
0. i=0;
1. While(E!= Ø){
2. get exy E;
3. Dxy'=(wsxy×Csxy+wtxy×Ctxy)×Dxy
4. resource allocation based on k=Dxy'/D' R;
5. Create a New Partition Pi;
6. Add exy to Pi;
7. if (exy<k)
8. get new exy E;
9. Dxy'=(wsxy×Csxy+wtxy×Ctxy)×Dxy
10. Add exy to Pi;
11. i++;
12. else if(exy 2k)
13 Pi->2kR;
14 i++;
15. } end While

119

without spatiotemporal compression and its related scheduling, the evaluation is

designed to demonstrate the following gains. (1) The new approach significantly

outperforms previous one in terms of Cloud resource cost by data compression and

avoiding iteration. (2) The new approach can save data processing time significantly

by a fair workload distribution strategy. (3) The new approach will not introduce

unacceptable data quality loss in terms of real world application requirement.

5.5.1 Environments and Data Sets

In this data exchange sensing system for generating our testing data, there are 500

nodes deployed in the physical world to conduct tasks such as data gathering,

information exchanging and mutual interaction. The nodes are organized as a

hierarchical structure with cluster-head and leaf node. Every node collects high

frequency data streams such as sounds and vibration. Every node also collects low

frequency data streams such as light and temperature. Because the system is a sensor

network based on the wireless communication, there exist huge amount of information

errors, loss or redundancy. In each cluster, the data exchange creates a complicated

data graph. If we can use Cloud as a powerful tool to simulate and analyse that

complicated data flows in that data graph, the better WSN design and more efficient

real time query can be offered.

As shown in Figure 5-8, even only considering one node, four types of data can

be gathered with different frequency. For easily computing the similarity between

time series from different nodes, they have been normalized into the same value

domain from 1 to 100. Within a 24 hours window, the vibration and sound time series

have high sampling frequency and experience dramatic changes. The light and

temperature time series have relative smooth data trend and are sampled with a

relatively low frequency. The time duration for the testing data set is 24 hours. In each

second, the sampled data flow over a node is 0.02 KB on average. In total, there are

around 1,000,000 KB data sampled by the whole network. However, under the fine

wireless communication channels environment, to monitor and simulate the network

behavior, the overall exchanging data size between nodes exceeds 5,000,000 KB for

transmitting the collected “vibration”, “sound”, “light” and “temperature” streaming

graph data of 1,000,000 KB. The extra 4,000,000 KB is caused by the communication

120

protocols, gossip between nodes, failures, data loss, re-transmission, overhearing and

redundancy, etc. However, the light and temperature time series experience relatively

smooth changes within time duration of 24 hours. In other words, the data sampling

by each real world node is heterogeneous.

0

20

40

60

80

100

sound

0

20

40

60

80

100

light

time 24 hours time 24 hours

N
or

m
al

iz
ed

 v
al

ue
 b

et
w

ee
n

[0
, 1

00
]

N
or

m
al

iz
ed

 v
al

ue
 b

et
w

ee
n

[0
, 1

00
]

0

20

40

60

80

100

120

vibration

0

20

40

60

80

100
temperature

time 24 hours time 24 hours

N
or

m
al

iz
ed

 v
al

ue
 b

et
w

ee
n

[0
, 1

00
]

N
or

m
al

iz
ed

 v
al

ue
 b

et
w

ee
n

[0
, 1

00
]

Figure 5-8 Heterogeneous Sensing Data Sets from 1 Time Series (KB/sec./node)

According to the curve in Figure 5-8, the high frequency sound and vibration time

series fluctuate dramatically when considering one node. It indicates that regular

temporal prediction may have less effect in compressing the size of the time series.

Specifically, the sampling frequency for vibration is 10 bytes per-second and the

sampling frequency for sound is 8 bytes per-second. However, the data sampling

frequency for light and temperature is relatively low with only 1 byte per-second. In

addition to these data, extra communication consumes large amount of computation

and storage resource on Cloud. According to our approach, before sending these data

streams to Cloud for processing, data sets will be compressed and clustered to reduce

the big data size and the task scale for Cloud platform. In total, three groups of

experiments are carried out over U-Cloud with the above experiment data sets. In the

121

first group, we test the compression effectiveness. In the second group, we test the

effectiveness of the scheduling algorithm. In the third group, we test the accuracy and

data loss problems for our approach through the definitions of data quality, such as

average accuracy.

5.5.2 Spatiotemporal Compression Experiment

Figure 5-9 Data Exchanging Reduction for High Frequency Data Sets

Firstly, we test the clustering algorithm and compression algorithms with high

frequency vibration and sound data sets. As mentioned above, the total real world data

exchange within the whole network exceeds 5,000,000 KB. Because the data

collection is based on a heterogeneous and asynchronous model, the high frequency

data sets of sound and vibration count for 90% data exchange in the real world

network. It can be estimated that the real world network data exchange for vibration

and sound is around 4,500,000 KB. Both compression and clustering data reduction

techniques have a great effect on big streaming data reduction based on the results in

Figure 5-9 (1), Figure 5-9 (2), Figure 5-9 (4) and Figure 5-9 (5). However, clustering

algorithm performs slightly better than order compression for sound data set because

for monitoring a vibration system, such as helicopter blades, in a certain time period,

they maintain a set of similar sound curves which are very suitable for clustering based

data reduction.

0

500000

1000000

1500000

2000000

2500000
vibration

0

500000

1000000

1500000

2000000

2500000
vibration

0

500000

1000000

1500000

2000000

2500000
sound

1 day

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

Clustering

0

500000

1000000

1500000

2000000

2500000
sound

1 day

Compression(1) (2)

0

500000

1000000

1500000

2000000

2500000
sound

0

500000

1000000

1500000

2000000

2500000
vibration

Adaptive

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

1 day

1 day 1 day1 day

Clustering (5) Compression

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

Ex
ch

an
ge

d
D

at
a

Si
ze

: K
B

(3)

(4) (6) Adaptive

122

In Figure 5-9 (3) and Figure 5-9 (6), the adaptively using clustering and order

compression can achieve better performance gains compared to independent

clustering and compression based data reduction algorithms over both sound and

vibration data sets. In Figure 5-9 (3), only 800,000 KB sound data is exchanged, and

in Figure 5-9 (6), around 1,100,000 KB vibration data is exchanged. Compared to the

data size of 4,500,000 KB exchanged in the real world network, significant amount of

data exchange is avoided. In other words, with the clustering and order compression,

around 60% big graph data from the high frequency vibration and sound data sets can

be compressed. This significant reduction will undoubtedly lead to the time cost and

computation source saving when analysing the reduced data sets over Cloud platform.

Figure 5-10 Data Exchanging Reduction for Light and Temperature Data Sets

Secondly, we test the clustering algorithm and compression algorithms with low

frequency light and temperature data sets. According to above analysis, the high

frequency sound and vibration data exchange within the whole network exceeding

4,500,000 KB. It can be easily calculated that the total data exchange for the real world

network low frequency light and sound data sets are around 500,000 KB. According

to experimental results demonstrated in Figure 5-10 (1), Figure 5-10 (2), Figure 5-10

(4) and Figure 5-10 (5), it can be concluded that both clustering and order compression

0

50000

100000

150000

200000

250000
light

0

50000

100000

150000

200000

250000
light

0

50000

100000

150000

200000

250000
temperature

0

50000

100000

150000

200000

250000
temperature

0

50000

100000

150000

200000

250000
temperature

1 day

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

Clustering

1 day

Compression(1) (2)

0

50000

100000

150000

200000

250000
light

Adaptive

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

1 day

1day 1 day1 day

(3)

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

E
xc

ha
ng

ed
 D

at
a

Si
ze

:
K

B

(4) (5) (6)Clustering Compression Adaptive

123

have slightly better reduction effects over the temperature data set than that over the

light data set. The reason is that the temperature within one data of a small area keeps

quite similar and maintains a constant difference between time series which can be

accurately described with our data prediction models for clustering and order

compression. Specifically, with the clustering algorithm, around 65,000 KB data is

exchanged for the temperature data set; and around 100,000 KB data is exchanged for

the light data set. With the order compression algorithm, the exchanged data sizes are

160,000 KB and 150,000 KB for temperature and light data set respectively.

However, in Figure 5-10 (3) and Figure 5-10 (6), the adaptively using clustering

and order compression can achieve better performance gains compared to independent

clustering and compression based data reduction algorithms over both temperature

and light data sets. In Figure 5-10 (3), around 65,000 KB sound data is exchanged,

and in Figure 5-10 (6), around 70,000 KB vibration data is exchanged. Compared to

the data size of 500,000 KB exchanged in the real world network, significant amount

of data exchange is avoided. In other words, with the clustering and order compression,

more than 70% big graph data from the low frequency vibration and sound data sets

can be compressed. Compared to the high frequency data sets in the whole testing big

graph data set, more data is compressed because the low frequency data sets are much

easier to model and predict.

5.5.3 Time Performance Gains of Scheduling

In Section 5.5.2, we demonstrated that the order compression and clustering algorithm

can effectively reduce the data size for future analysis over Cloud platform. A smaller

data set means a smaller problem size over a distributed processing platform. But it

does not definitely mean a shorter processing and reaction time which are normally

determined by the time cost of the final node to finish its task branch in a distributed

system such as Cloud. So, scheduling is necessary to dispatch the tasks more evenly

and optimal over Cloud platform. In other words, the time consumption situation and

real time reaction are good to measure the performance of scheduling algorithm.

As shown in Figure 5-11, the horizontal axis stands for the window length which

is necessary for most streaming data applications. With the data from a given window

length ‘L’, the data analysis algorithm will work on the Cloud to digest it and form

124

the final services to the end users. The vertical axis stands for the time cost calculated

in second. In this experiment, we implement two scheduling algorithms. They are

original scheduling based on the physical topology of the real world network. Because

this scheduling ignores the real workload of each node, some nodes over Cloud may

be overloaded and others may be idle to wait for those overloaded nodes. Especially

after the clustering and order compression, the data stream size flowing through each

real world network node can be extremely different. As a result, this physical topology

node based scheduling costs more time for filtering the whole streaming data set and

simulating the data exchanging compared to our proposed data driven scheduling

algorithm in every different window length from 1 hour to 14 hours. The trend curve

of our node based scheduling keeps running below the trend curve of the node based

scheduling. The larger the window size is, the more filtering time is saved.

Figure 5-11 Time Cost for Graph Data with A Window Length ‘L’

However, it is not reasonable to test the window too larger over 14 hours, because

it causes a very big data graph which may introduce lots of approximation and failures

by magnifying the acceptable errors in our data reduction models. Furthermore, an

extra-longer window size makes the filtering time increase exponentially. For

example, in Figure 5-11, when L=14 hours, the time costs of our data driven

scheduling and the real world node based scheduling are around 30 seconds and 70

0

10

20

30

40

50

60

70

80

L=1
 hour

L=2
 hours

L=3
 hours

L=4
 hours

L=5
 hours

L=6
 hours

L=7
 hours

L=8
 hours

L=9
 hours

L=1
0 h

ours

L=1
1 h

ours

L=1
2 h

ours

L=1
3 h

ours

L=1
4 h

ours

processing time with data driven scheduling

processing time with node based scheduling

trend of node based scheduling

trend of data-driven scheduling

fi
lt

er
in

g
ti

m
e:

se

co
nd

window length for streaming data

125

seconds respectively. Compared to the 7 hours window with the time costs around 8

seconds and 12 seconds, the filtering time and system reaction time is greatly

increased. There is an important point to be mentioned here for the experiment results

in Figure 5-11. With the increase of the stream window length ‘L’, the time cost does

not increase with a linear relationship; whereas an approximate exponential

relationship can be observed. The reason for that exponential increase is that with the

increased window length, more nodes from different time stamps join the network

graph to change the topology with more complexity.

5.5.4 Data Accuracy Experiment

In previous sections, we demonstrated the effectiveness of our clustering and

compression techniques for reducing big data size. In addition, we conducted the

experiment to test our scheduling algorithm with respect to its time cost. However,

because the data reduction process of our techniques is not lossless, the

accuracy/fidelity problem is critical to be discussed to guarantee the service quality

offered to end users. In this section the experiment will be conducted to show the

fidelity loss and data accuracy after deploying our data reduction and scheduling on

Cloud. We aim to prove that under most of applications, our algorithm can achieve

efficient big data processing on Cloud without losing acceptable accuracy for most of

applications.

Accuracy Definition

Before introducing and analyzing the experiment results, we first offer the

definition and method for accuracy. The accuracy is based on measuring the similarity

between two vectors, one from real big data graph G and the other G’ from filtered

data as the service provided by Could. Actually, these two vectors are the data items

flowing between two nodes within a cluster at a certain time stamp. To describe the

similarity between two nodes, we use correlation coefficient model. Suppose that

there are two vectors, X and Y. With Correlation Coefficient method, we can calculate

the similarity between the two vectors, X from G and Y from G’ in equation (7).

 (7)

126

 From (7) we can find that this similarity resembles to the “cos” similarity

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1,

vector2)” is as following formula (8) to (10).

 (8)

 (9)

 (10)

So, the similarity between two vectors can be calculated with following equation

(11).

 (11)

Because we only want to correlate the accuracy and similarity, only [0, 1] data

range is selected. The original data range [-1, 1] could be normalized into [0, 1] for

representing the accuracy from 0% to 100%. As shown in equation (12), sim(X, Y)’ is

calculated instead of equation (11). sim(X, Y)’ [0, 1].

 ′ (12)

Hence the accuracy for an edge in G at a time stamp t can be assessed with the

equation (13).

 Accuracy = ′ (13)

127

The final accuracy for “Accuracy” for data service quality between two points

within a cluster can be assessed with the Accuracy in equation (14). In our example,

T=24 hours is used.

 Accuracy (14)

Suppose that in the graph data set G(V, E), there are total S edges (Because the

cluster-head structure, it avoids the edge explosion) and each edge is index with s

from [1, S]. We can calculate the Average Accuracy of the Cloud computed Data set

G’ against the original G. This Average Accuracy is used in equation (15) to

demonstrate our experiment results in Figure 5-12 and Figure 5-13.

 Average_Accuracy= (15)

Accuracy Results Analysis

Figure 5-12 Relationship between Fidelity Loss and Error Bound

The inaccuracy in our technique based on Cloud is mainly caused by the error

from clustering process and data compression loss. Both data window length L and

0%

20%

40%

60%

80%

100%

error
bound=0

error
bound=1

error
bound=2

error
bound=3

error
bound=4

error
bound=5

error
bound=6

error
bound=7

error
bound=8

error
bound=9

L=1 hour
L=2 hours
L=3 hours
L=4 hours
L=5 hours
L=6 hours
L=7 hours
L=8 hours
L=9 hours
L=10 hours
L=11 hours
L=12 hours
L=13 hours
L=14 hours
L=15 hours

128

prediction error bounds have influence to the accuracy and final service quality. As

shown in Figure 5-12, the data accuracy decreases with the increase of the given

prediction error bound. However, there is another factor, window length ‘L’ which

influences the accuracy. It can be found in Figure 5-12 that with the increase of the

historical data window length ‘L’, the accuracy curve runs totally at a low accuracy

level. That is caused by the large window in which more nodes and data are involved

in simulating the graph data. During that simulating process, the error and failures will

have a magnifying effect when repetitively exchanging among more nodes. From the

experiment result in Figure 5-12, it can be concluded that when the given error bound

is less than 2 (after normalization) and the window length is less than 12 hours, the

accuracy and data quality of service are within an acceptable level, around 95%. With

the error bound larger than 2 and the window length larger than 12 hours, the data

quality for service after processing over Cloud platform decreases dramatically. Due

to the big errors, there is no need to plot the error bound larger than 9 which is totally

useless in real applications. So, we used an empirically study to select 2 as an optimal

number for our algorithm. It is also used in the related experiments for data reduction

and scheduling.

Figure 5-13 Worst and Best Case Analysis for Fidelity Loss

Specifically, we use as the average value from 0 to 9 for accuracy test. As shown

in Figure 5-13, with the increase of window length L, the average accuracy decreases

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

L=
1 h

ou
r

L=
2 h

ou
rs

L=
3 h

ou
rs

L=
4 h

ou
rs

L=
5 h

ou
rs

L=
6 h

ou
rs

L=
7 h

ou
rs

L=
8 h

ou
rs

L=
9 h

ou
rs

L=
10

 ho
ur

s

L=
11

 ho
ur

s

L=
12

 ho
ur

s

L=
13

ho
ur

s

L=
14

 ho
ur

s

L=
15

 ho
ur

s

averageaccuracy Ratio
best case accuracy
worst case accuracy

129

dramatically. Whatever the window length is, the best case accuracy can be achieved

as 100%. The best case accuracy is the highest accuracy of a data item offered as the

service after the processing on Cloud. However, with the increase of the window

length, the worst case accuracy decreases dramatically. The worst case accuracy is the

lowest accuracy of a data item offered as the service after the processing over Cloud.

It is measured and calculated with the correlation coefficient similarity. Especially,

when the window length enlarges to more than 11 hours, the worst cased accuracy

drops from 80% to 0 very quickly. In other words, according to the experiment results

in Figure 5-13, to set a 2-hours or 3-hours data window is better for guaranteeing the

data accuracy and data service quality for deploying our proposed big data

spatiotemporal compression on Cloud.

5.6 Summary

In this chapter, we investigated the problem of on-Cloud spatiotemporal compression

for big sensing data, especially graph data sets. In our proposed compression

technique, the big data was compressed firstly according to its spatiotemporal features

on Cloud. Based on this spatiotemporal compression, a data driven scheduling was

developed to allocate resources including computation and storage of Cloud to

provide better service for upper layer data analytic applications. The experiment was

conducted on U-Cloud platform to demonstrate that the spatiotemporal compression

could significantly reduce the data size compared to the previous big data processing

techniques on Cloud. Furthermore, our data driven scheduling distributed big data

processing workload optimally on Cloud to help achieve significant time performance

gains. Last but not least, the experiment results also demonstrated that the data

processing accuracy and fidelity loss of our proposed approach met most of the

application requirements. In the future, following this techniques, novel dynamic

scheduling technique may be expected.

130

Chapter 6

Regression-based Compression

This chapter investigates the problem of novel prediction model for better

compressing high changing, high data rate big sensing data sets. In lots of real world

applications, such as earthquake wave and transmission monitoring, the incoming big

sensing data can be extremely bumpy and discrete. Thus, compression techniques on

Cloud described in previous chapters may lose effect in terms of scalability and

compression ratio. To improve the effectiveness and efficiency for processing those

real world big sensing data, a novel non-linear regression prediction model is

introduced in this chapter.

6.1 Introduction

Based on the analysis for some real world big sensing data sets, such as earthquake

data sets, it can be noticed that the some sensing data has high changing character. In

lots of current earthquake data sets processing methods, regression can be found.

However, these regression techniques have two insufficient aspects or disadvantage.

(1) They poorly support large volume, scalable big data processing with Cloud

platform. (2) Their focus is on how to predict the future event, but less attention is

paid to utilizing the predicting power of regression for data compression. Hence, in

the following sections, a novel non-linear regression based compression will be

developed and introduced. The related details including regression design, least

131

squares and triangular transform will be discussed. To fully explore the power and

resource offered by Cloud, the proposed non-linear compression is implemented with

MapReduce for achieving scalability.

6.1.1 Research Problem Analysis

Under the topic of processing high changing, high rate big data, such as earthquake

sensing data, regression is a common method adopted for data guessing and predicting.

For example, in paper [91], Non-linear structural identification problems are

discussed. The Bouc-Wen model proved to be effective and efficient when simulating

non-linear structural constitutive characteristic. However, those regression models [91,

92] is not designed for Cloud computing. If those models can be further extended and

calibrated on Cloud, more compression performance gains can be achieved.

Figure 6-1 High Data Rate Earthquake Sensing Data

As shown in Figure 6-1 (a), in a large scale earthquake event, including the main

shock, there were approximately 22000 aftershocks following the June, 1992 Landers

earthquake, California. The dataset covers the period 28 June 1992 to 30 June 2001

[101]. The high data generating rate earth quake data were sampled in different

positions at different time stamps as shown in Figure 6-1 (a). In each sampling point,

132

there is a data time series as shown in Figure 6-1 (b). It can be observed from in Figure

6-1 (b) that even only considering one single time series from the whole deployed

earthquake monitoring systems developed in the area described by Figure 6-1 (a), the

data changing is pretty bumpy and difficult to use traditional data trends or linear

regression model to describe them. For example, the data trend prediction based

compression requires the data generation ratio to be relatively low and the time series

doesn’t change violently.

However, in the real world earthquake data example in Figure 6-1 (b), the data

trend prediction based compression will lose most of its opportunity for data

compression because the violently changed data will force the prediction model to

train the incoming data again and again to guarantee the accuracy. When considering

the linear regression prediction based compression approach, similar problem occurs.

Because under the situation of data set in Figure 6-1 (b), linear regression prediction

should frequently calculate new linear relationship of newly coming data points,

which brings lots of computation and time cost. As a result, the compression approach

may lose its effect.

From the above analysis, we find that, if the time series can be better modeled

with other relationship which can last a relatively longer period, it will greatly reduce

the real data processing required by prediction model training. It means a better data

compression performance can be achieved by predicting more. So, in this chapter, we

aim to develop a non-linear prediction model to better approximate the time series in

Figure 6-1 (b). In other words, the new prediction model can reduce the frequency for

data retraining during the data compression process when encountering big sensing

data sets such as earth quake monitoring data sets.

6.1.2 Contents Outline

The rest work in this chapter is organized as follows. In Section 6.2, a novel big

sensing data compression technique based on non-linear regression model will be

proposed to compress high frequency big sensing data sets such as big sensing data

collected by earthquake sensing systems on Cloud. In Section 6.3, the scalable

algorithm for the proposed non-linear regression based on Mapreduce programming

model will be offered and analyzed. In Section 6.4, experiments based on real world

133

big sensing data are designed on Cloud for testing performances including

compression ratio, time efficiency and data loss rate. In section 6.5, we summarize the

contents in this chapter.

6.2 Compression based on Non-linear Regression

According to the above analysis of typical big data compression techniques and tools

on Cloud, to overcome the problems brought by real world big sensing data, we

develop a novel compression technique on Cloud with non-linear regression

prediction. Suppose that a data time series X={x1, x2, …, xi, …, xn} represents a data

set from a single data source streaming into Could for future processing. In each time

series, the data distribution is quite discrete where it is difficult to model with data

relationship such as data trend. In addition, it may be difficult to find linear

relationship or obvious data distribution within a time series.

Figure 6-2 Non-linear Regression based on Partitioned Trigonometric Function

As shown in Figure 6-2, the earthquake monitoring high frequency data time

series can be very bumpy and unpredictable with traditional data trend model. In

addition, if a simple linear regression prediction line is used, most of real data is

impossible to be predicted and approximated. In other words, those models lose any

effect for compression. Instead of, using a simple linear even non-linear regression

line, if the whole time series can be partitioned into continuous sections, in each

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

strategy: regression with partitioned
 Trigonometric function

134

section, non-linear regression should be carried out for calculating data changing and

values in both efficient and accurate ways. So, the X will be divide into a group of

sections, denoted as X(1,i), …X(i, j), … X(k, n), and X(1,i) X(i, j) … X(k, n) is equal to X.

With this partitioning, the whole high frequency data set can be calculated. However,

with the above definition, to achieve the compression, three issues should be solved.

(1) The non-linear regression model in each partitioned data section. (2) Specific

mathematic function and calculation tools adopted in each data section should be

offered. (3) The principle for partitioning each data section of independent non-linear

regression should be proposed. The solutions for these three issues will be offered step

by step as follows.

6.2.1 Non-linear Regression Prediction Model

Figure 6-3 Single Independent Weighted Non-linear Regression

Due to the complex and variety of real world data, it is very clumsy and inaccurate to

use a simple linear relationship to describe the changing and trend of a time series as

shown in Figure 6-3 (a). The non-linear regression modelling should be used to better

describe those data as shown by the red curve in Figure 6-3 (a). Between each two

partition blocks, a non-linear regression function should be calculated for prediction.

For example, shown Figure 6-3 (b), with the sampled data points from i to i+l, some

function should be calculated by a non-linear regression model for inner section

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

li

0

10

20

30

40

50

60

70

80

90

100

40 45 50 55 60 65 70 75 80

(a) (b)

135

prediction. The prediction should be able to approximately simulate the trend of the

data points between two red points as shown in Figure 6-3 (b).

In general, any single variable regression model is to correlate a variable x and a

function , denoted as Y f(x,). It is actually to relate a response Y to a vector of

predictor variables X=(x1, …, xk, …, xn)T. Under the theme of non-linear regression,

the function is focused on the fact where the prediction depends on one or more

parameters with non-linear functions. With the limitation of single variable, we can

get the non-linear regression model as the following form.

In the above equation, Yk is a response, f is a function which has known to be with

a vector xk=(xk1, …, xkt)T and its parameter series, denoted as T. i is

used for representing random errors brought by model. In general, the non-linear

regression models commonly deployed are exponential decay model, exponential

growth model or logarithmic non-linear regression model. Firstly, the mostly

encountered non-linear regression is exponential decay or growth model as expressed

in equation (1). With equation (1), we can further transform and extend it with Fourier

transform to benefit our regression process.

The logarithmic regression can be described with following equation (2) where c

is a certain constant.

But the real world physical processes often need to be model with higher-order

differential equations which will results in higher-order exponential function

computation models. Specifically, in equation (3), k is the order for the differential

equation.

136

Generally speaking, the equation (3) is the high order transformation and

extension of equation (1). But it is short at describing the relational function in terms

of regression model application. As a result equation (4) is used to approximate large

amount of functional shape.

Furthermore, the monotonic increasing features in real world application can be

located in variable x, such as time and dosage. Under that theme, non-linear regression

models are also called growth models. Pure exponential models are typical growth

model. However, they have short lifetime due to their mathematic limitation. So, they

are often replaced with the following logistic growth curve model in equation (5).

The above equation (5), a symmetric growth curve which asymptotes to when

x and to 0 while x . In this equation (5), the parameter determines the

horizontal position. At the same time, the parameter manipulates the steepness.

This can be transformed into the Gompertz curve which generates an asymmetric

growth curve as follow equation (6).

Under the theme of the logistic curve, determines the asymptotic upper bound.

The parameter determines the horizontal position. And the parameter controls

the steepness. The above set of non-linear regression models are used for catching

data time series curves in our proposed research in terms of data prediction.

137

6.2.1.1 Triangular Transformation

It can be found in the data example in Figure 6-3 that high frequency earthquake

data sets often approximately following some triangular functions relationship. In

other words, if some triangular regression line can be approximately calculated, more

compression effect should be achieved. Hence Fourier transformation could be

suitable solution for approximating the predicting line. Specifically, the above

calculated regression functions such as power or exponential curves will not be

directly used for prediction. Instead, they will be further transformed into a set of

triangular functions with different parameters with the Fourier transform. The Fourier

transform is a generalization of the complex Fourier series. For a given function f(x),

with the continuous F()dk and n/L k, it replaces a discrete set An. The equation is

as following (7) and (8).

With the above transform, the regression based prediction line can better

predicting the earthquake data stream and reduce resource cost because it reduces the

frequency of recalculating curves by better regression models.

6.2.1.2 Non-linear Least Squares

 The calculation of our predicting curve is based on non-linear least squares.

When calculating linear least squares, it can be expressed as following (9) and can

be calculated with the equation (10).

Unlike the linear least square, there is no close-form solution to calculating non-

linear least square problem. To solve the problem, some numerical algorithms are

138

developed to capture the value of the critical parameter . For example, the values are

got by successive approximations as in equation (11). In equation (11), l is an iteration

number. The vector is called the shift vector.

With (11), the equation (12) can be got. J is a function of constants.

As a result, the normal equation can be expressed as following (13). With this

method based on the non-linear least squares, the predicting curves can be calculated

approximately.

6.2.2 Unequal Weighting Methods for Data Points

To better approximate and predict the, unequal weighting methods are developed for

processing and predicting time series. Considering the specific requirement of

earthquake data sets, three types of weighting approaches are adopted in this section.

They are based on geometric sequence, normal distribution and Poisson distribution.

The system will choose the specific weighting approach for incoming earthquake time

series automatically. Those three approaches are introduced as follows.

6.2.2.1 Geometric Sequence based Weighting

The geometric sequence based weighting divides the earthquake data time series

according to the location of a data item in a time series. It is basic principle is pretty

simple as equation (14).

139

With that we can calculate the real world importance of each data item in a time

series. They are denoted as w1, w2, w3,…, wn. In our implementation, the r is set with

0.5. In other words, a more recent data item in a time series will have more influence

to the prediction model because of its higher weight. At the same time, factor is

changed from application to application according to different user application

requirement.

6.2.2.2 Normal Distributed based Weighting

In order to calculate the weight set 1 2 3 n for a time series, the

probability density function of normal distribution should be configured to describe a

time series where a data with more recent time stamp should have higher importance.

Based on 3 principle, in Gaussian distribution, we only use the domain between

[0, 3] to calculate the final weight vector W. It is enough to guarantee that

 because more according more than 97% data will be within the domain

of [-(3), 3]. However, the time stamp for the earthquake sensing data changes

from [0, +] which is not in the domain of [-(3), 3]. Accordingly, we change

the standard normal distribution in (15).

Because we assume that the starting time for data collection is 0, we can get =0.

So the summary value of the whole weights domain is calculated with (16).

Consequently, for a data history window with m units or a vector Xi, we can

distribute m-1 consecutive to the domain calculated with equation (16). The domain

[0, 3] is divided into m-1 fragments. Then any item wk in the weight vector W can

be calculated as following (17).

140

6.2.2.3 Poisson Distribution based Weighing

However, in the real world applications, lots of earthquake data sets can follow

some more complex distribution such as Poisson distribution. Hence, in our automatic

adaptive weighting approach, Poisson weighting method is developed and adopted.

Specifically, weighting by 1/X is a compromising between minimizing the real or

absolute distance squared to minimize the relative distance squared. The situation is

when the X values can be described with a Poisson distribution, the 1/X weighting is

suitable. Weighting with 1/X offers a solution to deal with data distributed according

to a Poisson distribution. However, a better approach is to use a regression technique

which is based on the assumption of Poisson distribution.

With the assumption of incoming data Poisson distribution, we can calculate the

standard deviation among replicated values is approximately equal or similar to the

square root of the calculated mean. In order to fit a curve, finally, we manage to

minimize the sum value of squares of the distance between data and curves separated

with the calculated square roots. In other words, non-linear regression method can

finally minimize the expression as equation (18).

In equation (18), X0 represents a data value and X1 represents a curve value. The

extension and transform of equation (18) show the reason why it is sometimes called

weighting by 1/X of Poisson weighting in (19).

141

6.3 Algorithms

6.3.1 Algorithm for Non-linear Regression

Based on the above compression techniques and scheduling detailed in Section 6.2,

the algorithms for efficient big data processing on cloud are offered in this section.

Specifically, we design the related separate algorithms and roadmap for the proposed

spatiotemporal Cloud data compressions and afterwards scheduling. The algorithm

details are as follows.

The big sensing data set training and analysis for selecting regression model are

conducted in a central model at the starting point of data processing. At this stage, the

predicting curve is also generated for the purpose of future data compression.Before

big sending data compression, adaptive non-linear regression model will be calculated

and calibrated. This data preprocessing normally does not require huge computation

Algorithm: Adaptive Nonlinear Regression
input: big sensing data stream X={x1, x2, ..., xn};
prediction error bound e, and user requirement r;
Output: automatically selected non-linear regression model M, and prediction curve C={y1, y2, ..., yn }.

(1) public void main(X={x1, x2, ..., xn}, int r, int e) throws IOException {
(2) initialize M=null;
(3) initialize(y1, x1) //v1= x1 is used for initializing y1;
(4) if(trainingdata(L)==success && f(x,)= 1exp[- 2exp(- 3x)] && error.absolute<=e)
(5) if(r.m=GeometricSequence)
(6) M=m1;

(7)

(8) if(r.m=NormalDistribution)
(9) M=m2;

(10)

(11) if(r.m=PoissonWeighting)
(12) M=m3;

(13)

(14) Return M;
(15) for (int round=1; round<=e; round ++) {
(16) selecting yi to C;
(17) C(yi, X){
(18) for(int i=1;(Distance(yi, X)<=e)&&length(C)>1;){
(19) i--;
(20) for(int j=1;j>1;j--){
(21) X= ;
(22) C(yj, X);
(23) }
(24) }
(25) }
(26) }

r
rr

n

nk

k

1
)1(1

0
lim

)
2

(
1

3

1
)1(3

2

2

2
2 x

m
k

m
kk ew

)(1
10

0

XX
X

142

resource and power. So, a centralized algorithm is offered firstly. There are two

important inputs big sensing data set X and the general application requirement ‘r’ for

data processing and error control. The output of this algorithm is an approximate curve

data set C which is a subset of approximate points for the original data set X.

As shown in the non-linear regression algorithm, in Line (1), the data exchange

time stamp i is counted from 1 to the data exchange application duration, n. Initially,

n data items are used for calculating the regression results. In line (2), the variable M

is initialized to hold processing modes information. In line (3), y1 is initialized

according to x1. Line (4) is used for determining the regression conditions. When it is

successful, from line (5) to line (13), the different adaptive regression prediction

model is activated according to different application requirement brought by the

parameter r. Finally in line (13), the mode information is returned by M in line (14).

From line (15), the predicting curve C will be calculated according to a computation

approach of least square method. Finally, C is produced.

6.3.2 Non-linear Regression Compression with MapReduce

"Map()" Side Algorithm: Scalable Compression with Non-linear Regression

(1) public static class Mapper extends TableMapper <......,......> {
(2) public Mapper() {}
(3) @Override
(4) public Datatype map(Datatype S={x1, x2, ..., xn}, Datatype C={y1, y2, ..., yk}, M)
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) initialize X; // a temporary variable for storing elements from S;
(8) if(mode.equal(M.m1))
(9) Compression.set(S, C.add(GS));
(10) if(mode.equal(M.m2))
(11) Compression.set(S, C.add(ND));
(12) if(mode.equal(M.m3))
(13) Compression.set(S, C.add(PW));
(14) L=MaxElementSizeof(C'); int start=0;
(15) for(; S'!= ; start=start+L){
(16) X=S'.getlement(start, L);
(17) for(int j=L; j>0; j--){
(18) S'(C.get(yj), X);
(19) tag(C.Error<Threshold);
(20) }
(21) }
(22) return S'; // a tagged data set S' for final compression;
(23) for (int i = 0; i < C.length; i++) {
(24) try {
(25) context.write(compressionID,value);
(26) } catch (InterruptedException e') {
(27) throw new IOException(e');
(28) }
(29) }
(30) }

143

In order to set up the relationship of the reported data and compressed data, the

compression algorithm comparing the data items from the set S to the calculated data

curve C. The scalable compression algorithm based on MapReduce programming

model is offered as follows. The algorithm is divided into two components including

Mapper side compression algorithm and Reducer side compression algorithm. Firstly,

we introduce our Mapper side algorithm.

The Mapper side algorithm takes the S and C as its input. The output of Mapper

side algorithm is a data set S which its data element tagged. All the tagged elements

are able to be compressed and decompressed based on C. Specifically, the Mapper

function is the extension of TableMapper as shown in line (1) and line (2). In line (4),

the map() function is initialized and defined. It has S and C as its inputs. Line (5) is

the IO exception. From line (6) to line (7), some variables are initialized. From line

(8) to line (12), the compression data model is selected and configured. The algorithm

from line (8) to line (13) selects the processing model and carries out the main

operation for compression. The algorithm between from (14) to line (21) the recursive

"Reduce()" Side Algorithm: Scalable Compression with Non-linear Regression

(1) public static class Mapper extends TableReducer <......,......> {
(2) public Reducer(){}
(3) @Override
(4) public void reduce(Datatype S)
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) Compression.set(S, S', C);
(8) for(int i=0 ; S.getelement.tag()!= ; i++){
(9) if(S.getlement(i).tag()!=){
(10) S.getlement(i).compress();
(11) S.update(storage); S.index(decompression path);
(12) }
(13) }
(14) S'.combine(); S'.consistencycheck();
(15) return S';
(16) for (int i = 0; i < S'.length; i++) {
(17) try {
(18) context.write(elementID,value);
(19) } catch (InterruptedException e') {
(20) throw new IOException(e');
(21) }
(22) }
(23) }

144

similarity comparison function is called again to tag any data element in S to find any

xi S which could be compressed. After line (22) the compressed data set S’ is returned.

And the IO exceptions and errors are processed and captured for debugging.

After the processing of map() function of our proposed algorithm, the tagged big

data set S should be significantly compressed. The “Reduce()” side scalable

compression algorithm extends the TableRedcuer<> of MapReduce programming

model as shown in the algorithm line (1) to line (3). In the algorithmic line (4), the

reduce() function is activated. The redcue() function takes tagged big data set, S as its

input in line (4). Line (5) is for IO exception. From line (6) and line (7), variable

initialization and compression model selection are conducted. From line (8) to line

(10), any tagged data element in S is compressed by the compress() function of any

element in C. After each function call of compress(), the storage should be updated

by a function of update(). The compression path should be indexed for future

decompression by a function of index() as show in line (11). In line (14), the combine()

function is called for combination. Finally, the consistency of the compressed data is

also checked from line (16) to (23).

6.4 Experiments

To verify the effectiveness of the proposed compression based on non-linear

regression model, real world big earthquake sensing data experiments are designed

based on U-Could (Cloud computing environment at University of Technology

Sydney) [48-50] in Chapter 2. The big sensing data set from earthquake surveillance

and monitoring systems is used [92]. Compared to previous big data processing

techniques without non-linear regression models, the evaluation is designed to

demonstrate the following gains. 1) The new approach significantly outperforms

previous one in terms of Cloud resource cost and time cost for data processing. 2) The

new approach will not introduce unacceptable data quality loss to most of real world

applications for analysing earth quake data sets.

145

6.4.1 Experimental Data Sets

In our experiment, there are 100 data collecting nodes are used from earthquake data

sources [92] in real world. The nodes are organized as a hierarchical structure with

cluster-head and leaf node. Some data ratio has high frequency. It is a typical

heterogeneous big sensing data set. Earthquake shaking and damage is the result of

three basic types of elastic waves. Two of the three propagate within a body of rock

[92].

The faster of these body waves is called the primary or P wave. Its motion is the

same as that of a sound wave in that, as it spreads out, it alternately pushes

(compresses) and pulls (dilates) the rock. These P waves are able to travel through

both solid rock, such as granite mountains, and liquid material, such as volcanic

magma or the water of the oceans. The slower wave through the body of rock is called

the secondary or S wave. As an S wave propagates, it shears the rock sideways at right

angles to the direction of travel. If a liquid is sheared sideways or twisted, it will not

spring back, hence S waves cannot propagate in the liquid parts of the earth, such as

oceans and lakes. The actual speed of P and S seismic waves depends on the density

and elastic properties of the rocks and soil through which they pass. In most

earthquakes, the P waves are felt first. The effect is similar to a sonic boom that bumps

and rattles windows. Some seconds later, the S waves arrive with their up-and-down

and side-to-side motion, shaking the ground surface vertically and horizontally. This

is the wave motion that is so damaging to structures.

The third general type of earthquake wave is called a surface wave. The reason is

that its motion is restricted to near the ground surface. Such waves correspond to

ripples of water that travel across a lake. Surface waves in earthquakes can be divided

into two types. The first is called a Love wave. Its motion is essentially that of S waves

that have no vertical displacement; it moves the ground from side to side in a

horizontal plane but at right angles to the direction of propagation. The horizontal

shaking of Love waves is particularly damaging to the foundations of structures.

The second type of surface wave is known as a Rayleigh wave. Like rolling ocean

waves, Rayleigh waves wave move both vertically and horizontally in a vertical plane

pointed in the direction in which the waves are travelling. Surface waves travel more

slowly than body waves (P and S); and of the two surface waves, Love waves

146

generally travel faster than Rayleigh waves. Love waves (do not propagate through

water) can effect surface water only insofar as the sides of lakes and ocean bays

pushing water sideways like the sides of a vibrating tank, whereas Rayleigh waves,

because of their vertical component of their motion can affect the bodies of water such

as lakes. P and S waves have a characteristic which effects shaking: when they move

through layers of rock in the crust, they are reflected or refracted at the interfaces

between rock types. Whenever either wave is refracted or reflected, some of the

energy of one type is converted to waves of the other type. A common example; a P

wave travels upwards and strikes the bottom of a layer of alluvium, part of its energy

will pass upward through the alluvium as a P wave and part will pass upward as the

converted S-wave motion. Noting also that part of the energy will also be reflected

back downward as P and S waves. In total, there are around 5 TB data sampled by

the whole network. However, due to the heterogeneous features of big earthquake

sensing data, some normalization process is taken to filter the original data set.

6.4.2 Experiment for the Compression with Non-linear Regression

Figure 6-4 Compressed Data Size with Different Predicting Model

0

500000

1000000

1500000

2000000

2500000
Data Trend Compression

0

500000

1000000

1500000

2000000

2500000
Linear Regression(a) (b)

compressed data size (MB) compressed data size (MB)

0

500000

1000000

1500000

2000000

2500000
Non-linear Regression (c)

compressed data size (MB)

Duration for earthquake data Duration for earthquake data

Duration for earthquake data

147

In Figure 6-4 (b), we implemented the compression with linear regression prediction

and fed it with the same big earthquake sensing data set. In total 5 TB data volume,

this compression technique achieves similar compression effect in terms of data size,

100,000 MB. In other words, this experiment results show that the linear regression

based big sensing data compression can not achieve significant performance gains

when encountering earthquake sensing data sets.

In Figure 6-4 (c), the proposed non-linear regression based compression is

implemented and tested. Specifically, around 2,300,000 MB of data from the total 5

TB testing data is compressed. In other 46% of compression ratio can be achieved. It

significantly reduced the original data size on Cloud. It will undoubtedly lead to the

time cost and computation source saving when analysing the reduced data sets over

Cloud platform.

6.4.3 Experiment for Data Loss and Accuracy

Because the data reduction process of our techniques is not lossless, the accuracy

problem is critical to be discussed to guarantee the higher layer data service quality

offered to other applications on Cloud. In this section the experiment will be

conducted to show the accuracy loss and data quality after deploying our data

compression over Cloud platform. We aim to prove that under most of applications,

our algorithm can achieve efficient big data processing on Cloud with acceptable

accuracy.

6.4.3.1 Accuracy Model

We can calculate the similarity between the two vectors with the following

equation (20).

 (20)

From (20) we can find that this similarity resembles to the “cos” similarity

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1,

vector2)” is as following equation (21) to (23).

148

So, the similarity between two vectors can be calculated with following equation

(24).

Because we only need to correlate the accuracy and similarity, only [0, 1] data

range is selected. The original data range [-1, 1] could be normalized into [0, 1] for

representing the accuracy from 0% to 100%. In equation (25), sim(X, Y)’ is calculated

instead of equation (17), sim(X,Y)’ [0, 1].

Hence the accuracy for an edge in G at a time stamp t can be assessed with the

equation (26).

The final accuracy for “Accuracy” for data service quality between two points

with the Accuracy in equation (27). In our example, the duration of the used

earthquake data set is used.

149

This Average Accuracy is used in equation (28) to demonstrate our experiment

results in Figure 6-5.

6.4.3.2 Data Accuracy Analysis

Figure 6-5 Fidelity Loss with the Increasing Error Bounds

The inaccuracy and error in our proposed compression with non-linear regression

mainly come from regression prediction computation model and compression error

bound based processing. The testing results are demonstrated in Figure 6-5.

Specifically, we use as the parameter L from 10 to 50 data items used for regression

to conduct accuracy test. As shown in Figure 6-5, with the increase of compression

ratio from 0% to 90%, the data accuracy decreases dramatically. In Figure 6-5 that

larger the L is, better the data accuracy can be achieved. The reason is that a larger L

means more standard data history window, hence a more refined similarity

comparison to guarantee better data accuracy. It can also be observed in Figure 6-5

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

L=50 L=40 L=30 L=20 L=10
Accuracy

Compression Ration

150

that with larger L, better accuracy result can be achieved. It means that more data units

are involved in regression, more accurate the prediction model is. However, according

to our empirical study, when L getting larger than 50, less accuracy improvement can

be achieved. With the real world earthquake big sensing data experiments on U-Cloud

platform, we demonstrate that our proposed scalable compression significantly

improves data compression ratio with affordable data accuracy loss.

6.5 Summary

Cloud promises an ideal platform with massive computation power and storage

capacity for processing big data that is of high variety, volume, veracity, and velocity.

To reduce the quantity and the processing time of big data sets encountered by the

current typical Cloud big data processing techniques, in this chapter, by exploring

temporal data correlation with a novel non-linear regression prediction model,

scalable data compression was achieved. Specifically, the real world data sets were

compressed according to non-linear regression based prediction. During the

regression process, some triangular transform and least squares computation were

adopted. The output for this novel non-linear regression model is to generate a

prediction curve for compressing big sensing data sets, such as high frequency

earthquake data set. The evaluation was conducted over our U-Cloud platform to

demonstrate that the proposed compression model could significantly reduce the data

size compared to the previous big data processing techniques on Cloud. With the real

world earthquake big sensing data set experiment, the evaluation results also

demonstrated that the data processing quality and fidelity loss of our proposed

approach met most of the application requirements.

151

Chapter 7

Data Chunk based Compression

This chapter mainly investigates the problem of compressing big sensing data by

generated standard data chunks. A novel scalable data compression approach will be

proposed based on calculating similarity among the partitioned data chunks. Instead

of compressing basic data units, this compression will be conducted over partitioned

data chunks and blocks to improve the compressing effectiveness. To restore original

data sets, some restoration functions and predictions will be designed. MapReduce is

used for algorithm implementation to achieve extra scalability on Cloud.

7.1 Introduction

To overcome the processing difficulties caused by five ‘V’s, of big sensing data, the

trend to deploy big data processing on Cloud is getting popular day by day. Cloud

computing provides a promising platform for big data processing with its powerful

computation capability, storage, scalability, resource reuse and low cost, and has

attracted significant attention in alignment with big data. In Amazon’s recent real

world big sensing data processing on Cloud projects [19, 46], most of big data sets

come from sensing systems. However, to process big sensing data can still be costly

in terms of space and time even on Cloud platform. To reduce the overall time and

space cost for big data, especially big sensing data processing on Cloud, different

compression techniques have been proposed and developed according to our analysis

152

in Chapter 2. But due to the size and speed of big sensing data in real world, those

data compression and reduction techniques still need to be improved.

In this chapter, we will propose a novel technique based on data chunk

partitioning for effectively processing big data, especially streaming big sensing data

on Cloud. With this novel technique, big sensing data stream will be filtered to form

standard data chunks at first based on our predefined similarity model. Then, the

coming sensing data stream will be compressed according to the generated standard

data chunks. With the above data compression, we aim to improve the data

compression efficiency by avoiding traditional compression based on each data unit,

which is space and time costly due to low level data traverse and manipulation. At the

same time, because the compression happens at a higher data chunk level, it reduces

the chance for introducing too much usage of iteration and recursion which prove to

be main trouble in processing big sensing data and big graph data.

7.1.1 Research Problem Analysis

According to the literature review in Chapter 2, it can be noticed that most of current

compression and storage saving techniques working during the process of data unit

filtering or traversing. However, we aim to offer an approach working at a more hybrid

level which can treat data block or data chunk as basic data compression unit. As

As offered in Section 2.1, big sensing data normally streams in with high speed

in real time. It may take the form of graph data sometimes [33, 48]. Traditional data

compression and current popular data compression techniques work at low basic data

unit levels show their weakness and inefficiency when encountering big sensing data

sets in the following aspects. (1) Most of traditional data compression techniques

require whole data set navigation which costs huge amount of space and time during

the compression and decompression [33]. Normally, compression algorithms work at

a level which counts each basic data unit for their relationship. (2) Traditional data

compression algorithm can not make full use of scalability of Cloud. The centralized

compression and decompression algorithms should be organized on the scalable

platform such as Cloud in a more efficient way.

To compare different strategies for data compression, the example in Figure 7-1

is used. As shown in Figure 7-1 (a), a sensing system is deployed for collecting data

153

from 12 different data sources. All the collected sensing data will be transmitted back

to node 0. With a traditional data storage strategy, the data collected from sensing

node 1 to sensing node 12 will be stored one by one with a certain predefined order.

Under this storage theme, the traditional compression happens at each sensing node

level. For instance, the data collected in node 1 will be analysed and used for possibly

compressing the data from node 3.

Figure 7-1 Two Types of Geometry Similarities

However, the above compression approach working at sensing node level can be

inefficient especially when the data volume and velocity is high. If more attention is

paid to the topology of the sensing system in Figure 7-1 (a), it can be found that the

there are two similar sub-clusters under sensing node 0 as shown in Figure 7-1 (b). If

the data from node1 to node 6 and node 7 to node 12 has certain correlations, the two

data structures in Figure 7-1 (b) can be used to calculate each other, we can use a

similarity model to describe this relationship between two sub-structures. As shown

in Figure 7-1 (c), because the two data chunks Chunk_1 and Chunk_2 have a certain

similarity which is described with Distance(Chunk_1, Chunk_2)<T. In other words,

if the compression model based on data chunks can be adopted as shown in Figure 7-

1 (c), the efficiency of big sensing data compression can be dramatically increased

due to data manipulation based on large data blocks and clusters.

(b) (c)

1

2
3

4
5

6

0

7
8

9 10
11

12

(a)

1

2
3

0

4 5

6 0

7

8
9 10

11

12

Chunk_1

Chunk_2

Distance(Chunk_1, Chunk_2)<T

154

7.1.2 Contents Outline

The remainder of this chapter is organized as follows. In Section 7.2, a data similarity

model will be defined and introduced. With that similarity model, the formation

process of standard data chunks will be offered by training initial data stream. Then,

we will introduce our streaming sensing data compression according to the standard

data chunks. In Section 7.3, all the related scalable algorithms are offered, including

scalability with Mapreduce, standard data chunk generation algorithm and scalable

compression algorithm. In Section 7.4, the experimental results will be analysed to

show significant data compression performance gains. In addition, the accuracy loss

will also be discussed in relation to compression effectiveness. In Section 7.5, we will

summarize the contents in this chapter.

7.2 Data Chunk Similarity and Compression

In this Section, the similarity models for our compression and clustering will be

developed. The similarity model is critical and fundamental for deploying the data

chunk based data compression because the similarity model is used for generating the

standard data chunks.

7.2.1 Similarity Model

Currently, there are five types of models are commonly used including common

element approach, template models, geometric models, feature models and Geon

theory. However, the following proposed models are related to geometric model and

common element approach in terms of numerical data and text data respectively. Our

similarity models work on two types of data sets, multi-dimensional numerical data

and text data.

7.2.1.1 Similarity Model for Numerical Data

Suppose that there are two numerical data vectors =(x1, x2, x3, …, xn) and 1

2 3 n . We can calculate that the matrix norm and with equation (1)

and (2).

155

= (1)

= (2)

The geometric approach is the representation of similarity relationships among

the members of a set of objects. Geometric similarity is given by distance between

objects in this geometric space; the closer together two objects are, the more similar

they are. Normally, the similarity is described with a between two vectors and

fraction between two matrix norms and . Based on the above analysis, we

offer two similarity definitions as follows. From equation (3) to (5), the numerical

data similarity of is defined and denoted as Simn1() .

Simn1() = (3)

From equation (6) to (7), the numerical data similarity of matrix norms is defined

and denoted as Simn1().

Considering that in most of real world applications, the preferences of

applications are different. So, different weight should be assigned to different attribute

for calculating the Similarities as following (8) and (9).

156

Based on the above definition and analysis, now we explain the influence of the

above two similarities for compression. For calculating Simn1() of , it is critical

to measure the similarity between two vectors, when Simn1() 1, the two vectors

are more similar to each other. However, when Simn2() 1, it can not be concluded

that are similar because the two vector can be totally different.

Figure 7-2 Comparison of Different Geometry Similarities

As shown in Figure 7-2 (a), for Similarity Simn1() of , if the Simn1() 1,

it means the . In other words, the two vectors can be inferred with each other

because their each attribute is similar. If the is bigger, it means the two vectors are

more different as shown in Figure 7-2 (b).

However, when it comes to Simn2() of the matrix norms , even the norms

of two vectors are quite similar to each other, their attributes could be totally different

as shown in Figure 7-2 (d). Whereas, even Simn2() are quite different or smaller

than 1, if the can be calculated, the two vectors can be inferred to each other as

shown in Figure 7-2 (c).

Simn1

Simn2

(a) (b)

(c) (d)

157

The above similarity computation can be categorized as a typical geometry data

similarity finding process. It is designed from the common cosine similarity model.

The cosine similarity between two vectors (or two documents on the Vector Space) is

a measure that calculates the cosine of the angle between them. To measure

similarity between two vectors x and y, a popular similarity function is the inner

product including the cosine similarity, Pearson correlations, and OLS coefficients.

The inner product is unbounded. One way to make it bounded between -1 and 1 is to

divide by the vectors’ norms. It is called the cosine similarity. In this paper, we choose

the cosine similarity model because it can measure the big data chunk similarity more

accurately under our big sensing data feature assumption. Compare to other similarity

checking model, such as similarity based on pure Euclidean distance, the cosine

similarity not only measures the length distance but also the angle distance between

two vectors. This checking is more objective and brings more accuracy guarantee for

describing the similarity according to our data assumption.

7.2.1.2 Similarity Model for Text Data

For string type and text type similarity, a dual variable length hidden Markov

model is used and updated in our work for calculating similarity between text data.

Suppose there are a string pair p(str1, str2), and a time stamp series t= t1, t2, …, tn. We

can define the joint probability PR of each pair by the state time stamp series with

equation (10). In (10), pi stands for the paper of text string with the similar time series

stamp ti where i is the state.

 (11)

Equation (11) is the parameters consisting of states of the initial, transition, and

output probabilities.

 (12)

Generally there are multiple state transitions that produce a given pair of strings.

If the set of state sequences that produces a pair p is denoted as (p). Then the string

similarity of the pair p is defined as the maximum alignment probability (12). With

158

the transitions and states calculated with (10) to (12), the model can describe the string

similarity. This compression technique can be considered as a type of common

element similarity computation techniques.

7.2.1.3 Similarity of Topology

In our data chunk based compression, data sets should be compression block by

block. For big graph data and lots of network data, the topology and structure

information has big influence for data processing and it should not be ignored.

Because we assume the data has a topology of leaf nodes and cluster head, the

similarity has following features.

For two tree topology based graphs, T1<V1, E1> and T2<V2, E2>, their topology

similarity is basically determined by the number of the leaf nodes. Based on the cluster

head topology, the T<V, E> has n v and n-1 e.

If T1<V1, E1> has m v and m-1 e, and T2<V2, E2> has n v and n-1 e, the

comparison value of similarity is calculated with following equation (13) and (14).

 (13)

 (14)

In equation (13) and (14), |m-n| calculates the different of v between two trees.

On the contrary, Max selects the bigger number between (m, n) and (m-1, n-1). When

comparing the two vectors Simn1(), the calculated and

will be added into as new attributes with a weight offered by application requirement

or users to calculate overall similarities.

7.2.2 Data Chunk Generation and Formation

With the above definition of similarity model, we will give the techniques for data

chunk generation. In the problem analysis, we have introduced the basic idea of data

chunk based compression. Under that theme, the data will not be compressed by

encoding or data prediction one by one. It is similar to high frequent element

159

compression. The difference is that the frequent element compression recognizes only

simple data units; whereas our data chunk based compression recognizes complex

data partitions and patterns during the compression process. Similar to chess games,

variations and patterns are well studied and predefined, and most of operations will

happen at variation level.

Suppose that a data unit in a big data set S is denoted as Xi, and the first data unit

should be denoted as X1. In other words, S is a stream data series, denoted as S={X1,

X2, …, Xm}, where m is the number of data units streaming in. If the following data

unit vectors X2 and X1, can be used to calculated Simn1() and Simn2(). At

the same time, if it is text type data, the dual variable length hidden Markov model

will be used to calculate similarity. Then, the topology similarities, and

 will be calculated and added into original vectors as new attributes.

With the big data set pre-processing, we aim to generate a standard initial set S’ which

is used in the following compression process. According to our predefined similarity

model, we need to generate the first initial standard data chunk set S’ for the big data

set S. We denote each time slot for calculating a new standard data chunk as t, and t

. The selection process of S’ forms a selection path.

Figure 7-3 Initial Formation Path for a Standard Data Chunk Set S’

As shown in Figure 7-3, at t=1, X1 is selected and set as the first standard data

chunk and added into S’. Following that, at t=2, X2 will be compared to X1 based on

their similarity and the application specified threshold T. Here, we use a distance

{X1}

t=1

{X1, X1+X2}

t=2

{X1}

incremental formation path of a standard data chunk set S' from t=1 to t=3

Distance(X1, X2)<T

Distance(X1, X2)>T

t=3

Distance(X1, X3)<T

Distance(X1, X3)>T

Distance(X1+ X2, X3+ X4)>T

Distance(X1+ X2, X3+ X4)<T

{X1}

{X1, X1+X3}

Distance(X1, X3)<T

Distance(X1, X3)>T

{X1, X1+X2}

Distance(X1, X4)<T

Distance(X1, X4)>T

Distance(X1, X4)<T

Distance(X1, X4)>T {X1, X1+X2, X1 X2 X3 X4}

{X1, X1+X2, X1 X2 X3}

{X1, X1+X2, X1 X2 X4}

{X1, X1+X2}

160

function Dis() is used to describe the difference between any two vectors. If the

result of Dis()>T can be calculated, it means that the two chunks, X1 and X2 are

quite different two each other. Then a newly generated data chunk X1 X2 should be

added to S’ as the second standard data chunk. The above ‘+’ operator between X1 and

X2 means an adding operation between two vectors. At the time stamp, S’ has two

elements, denoted as S’={X1, X1 X2}. On the contrary, at t=2, if Dis() T can

be got, it means X1 and X2 are close enough and can be used to infer each other. Then,

X2 will be discarded and all the X2 will be inferred from X1 during the big data set

processing. So, at the end of t=2, there are two possible states for S’ including {X1}

and {X1, X1 X2}. In other words, there two paths connecting the possible states at t=1

to states at t=2. At t=3, there are seven possible states and related paths evolved from

the states at t=2. To find a similarity data chunk, we always use the largest data chunk

for comparison at first. For example, in Figure 7-3, at t=3, at data block X3+X4 is

selected first to be compared with block X1+X2. If Dis(,)<T can be

calculated, the data block of X3 and X4 will be compressed and represented by X1 and

X2. If Dis(,)>T is calculated, the sub-components of data block X3

and X4 will be calculated to be compared with the standard data chunks already

generated at t=2. Suppose that the length of a coming data block is denoted as L. The

length of the data block of X3 to X4 L3-4=2. There are =2 sub-blocks X3 and X4. The

sub-blocks X3 and X4 will be compared to X1. With this data sub-block comparison, at

following t>3, the data decomposing and sub-block will be conducted recursively for

calculating any standard data chunk at t=i as shown in Figure 7-4.

Specifically in Figure 7-4, there are a series of possible standard chunks at t=i.

The original length of coming data is L=i. In the similarity comparing process, If any

“Dis()>T” is calculated, there are totally + + +…+ + = -1 sub-blocks

which probably should be compared to the standard data chunks generated at t=i-1 in

a recursive style.

The last problem is the termination of the above standard data chunk generation

process. With the processing of in-coming data, suppose that the original selected data

length from L at time t=i. If after r rounds, when it comes to t=i+r, there is no new

change added to the S’, the S’ is used as the final standard data chunks set for data

compression in future. The time round ‘r’ is set or offered by outside application

161

requirement. The size of the standard data chunk is controlled by selecting the

parameter ‘r’ which determines when to terminate the recursive process of generating

new data chunks. As a matter of fact, the generated standard data chunks after initial

selection have different size to each other. In this data chunk generation, the recursive

process will increase the size of selected standard data chunks step by step. If the

terminating condition is not reached, the algorithm will continuously find new

standard chunks with bigger size compared to any standard chunk which has already

been selected. When the terminating condition is reached according to the given ‘r’,

the final selected standard data chunk is always the largest one in terms of size.

Figure 7-4 Possible Data Chunk States at t=i (a)

7.2.3 Data Chunks based Big Data Compression

With the generated standard data chunks, we develop a new data compression

technique which recursively compresses in-coming data from big data set S according

to generated S’. Suppose that the ith vector in S is denoted as ui and the jth vector in S’

is denoted as vj.

As shown in Figure 7-5, to compress the big data set S from vector uj, there is no

need for the compression algorithm to navigate uj one by one. Whereas, the standard

chunks stored in S’ will be used to compress the in-coming vectors series uj chunks

by chunks. For example, with the generated standard chunks set S’, a whole block of

data uj to uj+r will be compared to vr in S’ firstly. If the distance between vr and uj+r,

Dis(vr , {uj,…, uj+r})>T can be calculated, the uj+r will be recursively decomposed with

the sequence of subsets from {uj, uj+1, uj+2, …, uj+r}. Totally, there are , , ,…,

, different subsets based on the vector set {uj, uj+1, uj+2, …, uj+r}. These subsets

......

{X1}
t=i

{X1, X1+X2}

{X1, X1+Xi}

...

{X1, X1+X2, X1 X2 X3}

...

{X1, X1+X2, X1 X2 Xi}

...
...

..

{X1, X1+X2, X1 X2 X3, + ... + X1 X2 X3+... +Xi-1}
{X1, X1+X2, X1 X2 X3, + ... + X1 X2 X3+... +Xi-1, + X1 X2 X3+... +Xi-1+Xi}

162

will have opportunity to be compared with vr-1 to v1 repetitively to detect some similar

data chunks in the data block {uj, …, uj+r}. This recursive processing for computing

Dis(vk , {uj,…, uj+k}) will only happening under the following conditions.

Figure 7-5 Possible Data Chunk States at t=i (b)

(1) Dis(vr , {uj,…, uj+r})<T: It means that vr and {uj,…, uj+r} are similar to each

other and vr can be used to compress the data block {uj,…, uj+r}.

(2) Dis(v1 , {u1})<T, Dis(vk , {uk,…, uj+l})<T, …, Dis(vp, {up,…, uj+p})<T;

{v1 … vk … vp}=S’ & {u1} … {uk,…, uj+l} … {up,…, uj+p}=S: It means that all

the subsets in {uj,…, uj+r} can be compressed by vectors in S’.

(3) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp, {up,…, uj+p})>T, Dis(v1 ,

uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk , u j+k)>T, … Dis(vr , uj+r)>T: It means that in the

set and subsets of data block {uj,…, uj+r} there is no similarity data chunk which can

be found in S’. In other words, no compression happens here and data block should

be stored.

(4) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp, {up,…, uj+p})>T, Dis(v1 ,

uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk , u j+k)>T, … Dis(vr , uj+r)>T; Dis(v2 , {u2})<T,

Dis(vk+1 , {uk+1,…, uj+l})<T, …, Dis(vp+1, {up+1,…, uj+p+1})<T, Dis(v2 , uj+2)<T, Dis(v2 ,

uj+2)<T, …, Dis(vk+1 , u j+k+1)<T, … Dis(vr-1 , uj+r-1)<T: It means that some vector

subsets of data block {uj,…, uj+r} can be compressed with the elements vi from S’; and

others should be stored because there is no similar vi being matched in S’. With the

formed S’ and a recursive process, the big sensing data stream will be compressed for

both space and time efficiency.

{v1, v2, v3, ..., vi, ..., vr}S'

S { ..., uj, uj+1, u2, u3, ..., uj+r, ..., uk, uk+1, ...}

Cr
rCr

r
1Ci

rCr
3Cr

2Cr
1

163

7.3 Data Chunk Similarity based Compression Algorithm

To deploy our proposed big sensing data compression on Cloud, two important stages,

standard chunk generation and chunk based compression are essential. So the

algorithms are developed respectively to conduct the related data processing for the

above two stages.

At the first stage, the standard data chunks are generated. The algorithm for

selecting those chunks can be performed before the real data compression by

centralized computer systems. So, a centralized algorithm is offered for describing the

whole process of standard data chunk generation. At the second stage of big data

compression, the storage and time saving is mainly achieved by chunk based

compression and scalability of Cloud. The chunk based compression is introduced by

the algorithm itself, and the scalability is introduced by designing the compression

algorithm with MapReduce. In other words, the compression algorithms conclude two

parts, “Mapper” side algorithm and “Reducer” side algorithm. In following content of

this Section 7.3, all the above algorithms will be offered and analysed.

7.3.1 Algorithm based on MapReduce

To guarantee the scalability of the proposed data compression algorithm based on data

chunks, MapReduce programming model and Hadoop platform are adopted for

implementation.

7.3.1.1 MapReduce

MapReduce is a framework for processing parallelizable and scalable problems

across huge datasets using a large number of computers (nodes), collectively referred

to as a cluster (if all nodes are on the same local network and use similar hardware)

or a grid (if the nodes are shared across geographically and administratively

distributed systems, and use more heterogeneous hardware). Computational

processing can occur on data stored either in a filesystem (unstructured) or in a

database (structured). MapReduce can take advantage of locality of data, processing

data on or near the storage assets to reduce data transmission. “Map” function: The

master node takes the input, divides it into smaller sub-problems, and distributes them

164

to worker nodes. A worker node may do this again in turn, leading to a multi-level

tree structure. The worker node processes the smaller problem, and passes the answer

back to its master node. “Reduce” function: The master node then collects the answers

to all the sub-problems and combines them in some way to form the output – the

answer to the problem it was originally trying to solve. MapReduce allows for

distributed processing of the map and reduction operations.

7.3.1.2 Algorithm Designing Principle

However, traditional MapReduce is very strict, which limits its application in

complex systems, such as meteorology sensing systems. Sometimes, it is hard to

directly use one MapReduce to solve a data processing issue perfectly. In other words

we have to revise the MapReduce or use its functionality alternatively.

Based on our knowledge for MapReduce and its wide applications, three technical

changes are commonly adopted to transform the targeting problem for applying

MapReduce on our proposed data chunk compression algorithms. With those

transformation techniques, a data processing issue can be changed or partially

changed into several scalable or centralized parts. The MapReduce programming

model will be applied on those scalable parts.

(1) Original algorithm (embedded in) Map()/Reduce().

(2) Partition the task flow of algorithm Identify which part of the task flow to

generate a MapReduce job MapReduce generated result returns back to the task

flow.

(3) Complete MapReduce design control flow parallelization/ data

parallelization/ flow scalability/ data scalability.

Based on the analysis of the above three strategies and the complicated flow of

our data chunk compression algorithms, in our implementation, we adopt different

MapReduce strategies in terms of different control flow, data navigation, data

comparison for data compression and storage process.

In our work, the compression algorithm is embedded into the Mapper and Reducer,

and to check the soundness of the semantics of the newly generated scalable data

chunk compression algorithm with MapReduce. Specifically, the flow of our

compression MapReduce programming model can be described with KV pairs as

shown in Figure 7-6. The output of Mapper goes through shuffle and sort; then it

165

becomes the input of the Reducer. So, the compression algorithms should be

embedded in both Mapper and Reducer stages. In addition, the shuffle and sort should

be further reformed to fit the data chunk partitioning and compression algorithms.

With the above analysis, we offer the following detailed algorithms for data chunks

generation and data compression.

Figure 7-6 Programming Model of MapReduce

7.3.2 Standard Data Chunks Generation Algorithm

Before the start of data compression, a standard data chunks set will be generated

based on our defined similarity model. This process is a pre-processing before the

compression which normally does not require huge computation resource. So, a

centralized algorithm is offered firstly. After this centralized algorithm, the scalable

compression algorithm based on MapReduce will be offered.

In the standard data chunks generation algorithm, there are two important inputs

big sensing data set S and the maximum limitation ‘r’ for data generation control. The

output of this algorithm is a data chunk set S’ which is a subset of S containing all the

generated standard data chunks for future data compression. From line (1) to line (4),

the initialization process is conducted including S’ and its first element v1, a combined

data type X which is used for temporal storing vector data elements from S. From line

(5) to line (9), the similarity mode is calculated and selected according to application

requirement. Specifically, the algorithm from line (5) to line (6) is used for choosing

the processing model of numerical data type vectors. The algorithm between from (7)

to line (8) is used for choosing the processing model of text data type vectors. In line

(9), the topology information of a selected data vector is calculated and attached into

(K1, V1)
 Mapper
list(K2, V2)

sort
(K2, list(V2))
 Reducer
list(K3,V3)

166

the data vector as numerical attributes with the transformation computation parameter

offered in Section 7.2.1.3. In line (10), the first element, x1 in big data set S is selected

as the first element in the standard data chunks set S’. At the same time, the length of

the S’ (number of elements in S’) l is set as 1 in line (11). From line (12) to line (28),

the algorithm is designed for recursively calculating standard data chunks.

Specifically, line (12) is the maximum rounds limitation which controls the

ending condition for generating new standard data chunks recursively. In line (13),

Algorithm: Standard Data Chunks Generation
input: a streaming big sensing data set S={x1, x2, ..., xn};
maximum time threshold for chunk evolvement: r
Output: Standard data chunk set S' whick is a subset of S; S'={v1, v2, ..., vk}

(1) public void main(S={x1, x2, ..., xn}, int r) throws IOException {
(2) initialize S'= ;
(3) initialize(v1, x1) //v1= x1 is used for initializing v1;
(4) initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};
(5) if(mode.equal(numerical_data))
(6) {Distance()}={Simn1(,), Simn2(,)};
(7) if(mode.equal(text_data))
(8) {Distance()}={Simn1(,), Simn2(,), };
(9) Attach(Distance(), SimV(,), , SimE(,));
(10) S'=x1 S'; // x1 is the first elemet in S' ;
(11) initialize l=1; // the maximum elemet length in S' is l;
(12) for (int round=1; round<=r; round ++) {
(13) X=select (xi, l);
(14) if (Distance(vi, X)<Threshold)
(15) i=i+l;
(16) else{
(17) i--;
(18) for(;i!=0&&Distance(vi, X)>Threshold){
(19) Distance(,)=C(vi, X);
(20) if (Distance(,)<Threshold)
(21) break;
(22) extract(X', X);
(23) }
(24) vi+1=vi+X';
(25) S'= vi+1 S';
(26) }
(27) }
(28) }

Recursive Similarity Comparison Function:
(29) C(vi, X){
(30) for(int i=1;(Distance(vi, X)<=Threshold)&&length(X)>1;){
(31) i--;
(32) for(int j=1;j>1;j--){
(33) X= ;
(34) C(vj, X);
(35) }
(36) }
(37) }

C jX
X

167

the temporal variable X is set at the first time. In line (14), the similarity model is first

calculated to compare the similarity between X and vi. If the two vectors, X and vi are

similar enough, X will be replace with vi; whereas if the distance between X and vi are

larger an offered threshold, X will be decomposed recursively to compare with other

elements in standard data chunks set S’. From line (18) to line (23), the recursive

similarity comparison function C(vi, X) is called. The details of C(vi, X) starts in line

(29) as follows. In line 30, the termination condition of a for() loop is offered. This

loop will terminate only when there is no similar vi in S’ can be found, or X is

decomposed by similar chunks in S’. Between line (32) and line (35), the recursive

function C(vi, X) is called to find any data subset within X which could be similar to

any vi in S’. After the recursive function call of C(vi, X), the algorithm return to line

(24) and line (25) which generate a new standard data chunk vi and add it into the

standard data chunks set S’. Suppose that L is the size of the formed standard data

chunk S’. The worst case complexity of the algorithm () can be calculated due to

recursive decomposition and similarity checking in several rounds. However, L is a

very small and ignorable value compared to the size of incoming big sensing data set

and it will not change in the following compression process. So, in the following

compression algorithm, it can be viewed as a constant when analysing the algorithm

complexity.

7.3.3 Compression Algorithm

With the generated standard data chunks set S’ in the above Section 7.3.2, the scalable

compression algorithm based on MapReduce programming model is offered as

follows. The algorithm is divided into two components including Mapper side

compression algorithm and Reducer side compression algorithm.

7.3.3.1 Compression Algorithm: “Map()” Side

The Mapper side algorithm takes the S and S’ as its input. The output of Mapper

side algorithm is a data set S which its data element tagged. All the tagged elements

are able to be compressed and decompressed based on S’. Specifically, the Mapper

function is the extension of TableMapper as shown in line (1) and line (2). In line (4),

the map() function is initialized and defined. It has S and S’ as its inputs. Line (5) is

168

the IO exception processing. In line (6) and line (7), some variables are initialized.

From line (8) to line (12), the compression data model is selected and configured. The

algorithm from line (8) to line (9) is used for choosing the processing model of

numerical data type vectors. The algorithm between from (10) to line (11) is used for

choosing the processing model of text data type vectors. In line (12), the topology

information of a selected data vector is calculated and attached into the data vector as

numerical attributes with the parameter introduced in Section 7.2.

In line (13), the total number of elements in the standard data chunks set, S’ is

calculated and stored in L. Because during the compression process, the data vectors

from S is selected chunk by chunk with the length L, the algorithm needs to record the

starting point of the data element, denoted as start=0 in line (13). From line (14) to

line (20), the recursive similarity comparison function is called again to tag any data

element in S to find any xi S which could be compressed. After line (20), the data

"Map()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1) public static class Mapper extends TableMapper <......,......> {
(2) public Mapper() {}
(3) @Override
(4) public Datatype map(Datatype S={x1, x2, ..., xn}, Datatype S'={v1, v2, ..., vk})
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};
(8) if(mode.equal(mumerical_data))
(9) Compression.set(Simn1(,), Simn2(,));
(10) if(mode.equal(text_data))
(11) Compression.set(Simn1(,), Simn2(,),);
(12) Compression.set(Simn1(,), Simn2(,), , SimE(,), SimV(,));
(13) L=MaxElementSizeof(S'); int start=0;
(14) for(; S!= ; start=start+L){
(15) X=S.getlement(start, L);
(16) for(int j=L; j>0; j--){
(17) C(vj, X);
(18) tag(X.Distance<Threshold);
(19) }
(20) }
(21) return S; // a tagged data set S for final compression;
(22) for (int i = 0; i < S'.length; i++) {
(23) try {
(24) context.write(compressionID,value);
(25) } catch (InterruptedException e) {
(26) throw new IOException(e);
(27) }
(28) }
(29) }

169

elements which could be compressed are tagged in map() function. In line (21), the

tagged big data set S is returned and separated within map() function for distribution.

From line (22) to line (28), the IO exceptions and errors are processed and captured

for debugging. The worst case complexity of the algorithm is (n), L n where

n is the size of the big data set, L is a small number for the size of the standard data

chunk set. As introduced in Section 7.3.2, after the formation of standard data chunk

set, can be treated as a constant during the compression process. The worst case

algorithm complexity is (n).

7.3.3.2 Compression Algorithm: “Reduce()” Side

After the processing of map() function of our proposed algorithm, the tagged big

data set S should be compressed and calculated for final data compression result.

Our “Reduce()” side scalable compression algorithm extends the TableRedcuer<>

of MapReduce programming model as shown in the algorithm line (1) to line (3). In

the algorithmic line (4), the reduce() function is initialized and defined. The redcue()

"Reduce()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1) public static class Mapper extends TableReducer <......,......> {
(2) public Reducer(){}
(3) @Override
(4) public void reduce(Datatype S)
(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) Compression.set(Simn1(,), Simn2(,), , SimE(,), SimV(,));
(8) for(int i=0 ; S.getelement.tag()!= ; i++){
(9) if(S.getlement(i).tag()!=){
(10) S.getlement(i).compress();
(11) S.update(storage); S.index(decompression path);
(12) }
(13) }
(14) S.combine(); S.consistencycheck();
(15) return S;
(16) for (int i = 0; i < S.length; i++) {
(17) try {
(18) context.write(elementID,value);
(19) } catch (InterruptedException e) {
(20) throw new IOException(e);
(21) }
(22) }
(23) }

170

function takes tagged big data set, S as its input as shown in line (4). Line (5) is the

IO exception and error processing. In line (6) and line (7), variable initialization and

compression model selection are conducted. From line (8) to line (10), any tagged

data element in S is compressed by the compress() function of any element in S. After

each function call of compress(), the storage should be updated by a function of

update() and the compression path should be indexed for future decompression by a

function of index() as show in line (11). In line (14), the combine() function is called

for centralization. Furthermore, the consistency of the compressed data is also

checked. Finally, the compressed data set S is returned by the algorithm in line (15).

Form line (16) to line (22), the IO errors and exceptions are detected and captured.

With the above three algorithms, we implement a big sensing data compression

system based on calculating similarity between data chunks. With that system, we can

process real big sensing data sets to test the effectiveness and efficiency of the above

algorithms.

7.4 Experiments

To verify the time efficiency and the effectiveness of our approach for compressing

big sensing data on Cloud, experiments are conducted on U-Could (Cloud computing

environment at the University of Technology Sydney) [48-49, 107-109] in Chapter 2.

There are three purposes for this experiment. 1) Demonstrate that the significant

storage saving is achieved due to compressed data blocks. 2) Demonstrate that the

significant time saving is achieved because lots of real big data blocks can be inferred

instead of real search and navigation. 3) Compared to significant time and space

performance gains, only tiny data loss is introduced in terms of accuracy.

7.4.1 Experimental Data Sets

In our experiment, the world meteorology big sensing data sets are used. In the civil

network meteorology data set, there are four types of commonly used data formats,

including GRIB, BURF, HDF and NetCDF as shown in Table. 1. Due to the different

data formats, before conducting our experiment, a series of parsers are implemented

171

to pre-process meteorological big sensing data sets from the following civil open data

source. After our pre-processing, all the meteorology data sets with different data

formats are transformed into our uniform data format for further data compression.

Specifically, 4 kinds of meteorology data sets are accessed in open civil meteorology

sources in different data format as follows.

(1) Sea Surface Temperature Data Sources (SST):

ftp://polar.ncep.noaa.gov/pub/cdas/eng.YYYYMMDD;

ftp://polar.ncep.noaa.gov/pub/sst/rtg_sst_grb_0.5.YYYYMMDD;

(2) Satellite Coverage Rate Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.1bmhs.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bamua.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bhrs3.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bhrs4.tm00.bufr_d;

(3) Wireless Electrical Mask Satellite Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t00z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t18z.gpsro.tm00.bufr_d;

(4) Satellite Wind Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t00z.satwnd.tm00.bufr_d.unblok

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.satwnd.tm00.bufr_d.unblok

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.satwnd.tm00.bufr_d.unblok

Table 7-1 Meteorology Data Formats

Format

versions coding type feature

GRIB multiple binary self described,
compressed

BURF 1 binary self described

HDF multiple multi-objects scientific data,
independent

NetCDF 1 multi-attributes
variables

6 data types,
data files

More specifically, from the open big meteorology sensing data sources, the big

meteorology data set collected around East Longitude 151°12’31’’ and South Latitude

33°52’06’’ is used. The coverage radius is around 50 km. The time for data sets stamps

is traced back to last 20 years. Totally, around 10 terabytes of meteorology sensing

data were gathered and downloaded for testing our data chunks similarity based

compression algorithms.

Whatever the data format is, with our data parsers and their offered normalization,

four types of data attributes in the above data sets are extracted and organized again

172

into a universal data format including temperature, atmosphere pressure, humidity and

wind speed. Specifically, the numerical temperature is measured with Celsius degree.

The atmosphere pressure is measured with kPa. The humidity is measured by relative

humidity to calculate a percentage value in ‘%’. The wind speed is measured by two

parameters. One is the m/s, the other is angle for wind direction. Each meteorological

sensing data set has the approximate size of 2.5 terabytes respectively.

7.4.2 General Comparison

Firstly, according to the above experimental data analysis, on average, each type of

meteorological data has the size of around 2.5 terabytes. So, after processed by our

compression algorithm, different compression ratios will be shown in terms of

different meteorological data sets. By analysing and concluding the data features of

those data sets, we aim to show the advantages and disadvantages of our proposed

data chunk compression algorithm. In addition to the compression ratio brought in

each data type, the overall compression effectiveness over the whole data set (10

terabytes) will also be analyzed to demonstrate the performance gains of our data

chunks similarity based data compression.

Secondly, under the theme of big data storage on Cloud platform, to reduce the

data size also means the time saving for navigating and decompressing those data

units. Instead, fast computation can be used for data restoration can complex data

manipulation such as distributed join and block data operation. Through the

experiment, we also want to demonstrate that the time and space saving can

dramatically contribute to big sensing data processing performance on Cloud.

Thirdly, even the main designing target of our compression algorithm based on

data chunks similarity is to reduce the data size and volume, we also consider the data

quality and fidelity loss after deploying our proposed compression and decompression.

Because the compression is based on a certain data similarity model, it is unavoidable

to bring errors and approximation to original data sets. However, those approximation

and errors should be kept within an acceptable range in terms of most application

requirement.

173

7.4.3 Temporal and Spatial Saving after Compression

Figure 7-7 Data Size Compressed within 24 Hours Test

The main development purpose of our compression algorithm based on data chunks

similarity is to reduce the volume of data, hence to save data storage and related data

operation time cost on Cloud. As shown in Figure 7-7, four data types are used for

testing our compression algorithm. Specifically, in Figure 7-7 (1a), the limitation

rounds R for generating standard data chunks set is offered as 50. With the time flow

from 0 to 24 hours, the compressed temperature data size increase from 0 terabyte to

around 1.2 terabytes. However, when R increases to 100 rounds, the compression ratio

of the temperature data experiment reaches to around 1.7 terabytes after 24 hours

processing as shown in Figure 7-7 (1b). It means that with the increase of R, more

standard data chunks are generated, higher opportunity exists to compress more data

blocks in the testing big temperature data set.

In Figure 7-7 (2a), the limitation rounds R for generating standard data chunks set

is offered as 50. With the time flow from 0 to 24 hours, the compressed pressure data

size increase from 0 terabyte to around 1.6 terabytes. However, when R increases to

100 rounds, the compression ratio of the pressure data experiment reaches to around

2.0 terabytes after 24 hours processing as shown in Figure 7-7 (2b). It means that with

the increase of R, more standard data chunks are generated, higher opportunity exists

to compress more data blocks in the testing big atmosphere pressure data set.

0

500000

1000000

1500000

2000000

2500000
temperature

24 hours big sensing data processing

R=50

0

500000

1000000

1500000

2000000

2500000
pressure (Atm)(1a) (2a)

0

500000

1000000

1500000

2000000

2500000
humidity (3a)R=50 R=50

0

500000

1000000

1500000

2000000

2500000
wind speed

compressed data size (MB) compressed data size (MB) compressed data size (MB) compressed data size (MB)
R=50(4a)

0

500000

1000000

1500000

2000000

2500000
temperature R=100

0

500000

1000000

1500000

2000000

2500000
pressure (Atm)(1b) (2b)

0

500000

1000000

1500000

2000000

2500000
humidity (3b)R=100 R=100

0

500000

1000000

1500000

2000000

2500000
wind speed

compressed data size (MB) compressed data size (MB) compressed data size (MB) compressed data size (MB)
R=100(4b)

24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing

24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing

174

In Figure 7-7 (3a), the limitation rounds R for generating standard data chunks set

is offered as 50. With the time flow from 0 to 24 hours, the compressed relative

humidity data size increase from 0 terabyte to around 0.6 terabytes. However, when

R increases to 100 rounds, the compression ratio of the humidity data experiment

reaches to around 1.1 terabytes after 24 hours processing as shown in Figure 7-7 (3b).

It means that with the increase of R, more standard data chunks are generated, higher

opportunity exists to compress more data blocks in the testing big humidity data set.

In Figure 7-7 (4a), the limitation rounds R for generating standard data chunks set is

offered as 50. With the time flow from 0 to 24 hours, the compressed wind speed data

size increase from 0 terabyte to around 1.0 terabytes. With the time flow from 0 to

24 hours, the compressed wind speed data size increase from 0 terabyte to around 1.0

terabytes. However, when R increases to 100 rounds, the compression ratio of the

wind speed data experiment reaches to around 1.3 terabytes after 24 hours processing

as shown in Figure 7-7 (4b). It means that with the increase of R, more standard data

chunks are generated, higher opportunity exists to compress more data blocks in the

testing big wind speed data set. Based on the above experiment result comparison, it

can be got that with the increase of R, the compression ratio increases under all data

experiments whatever data type is. It should be noticed that when applying our

compression algorithm, more effectiveness or larger compression ratio can be

achieved in processing the temperature and pressure data sets compared to

the humidity and wind speed data sets. The reason is that the temperature and pressure

data set have relatively predictable data trends in their time series; whereas the

humidity and wind speed data sets have more unpredictable changes in their time

series. R is also has great impact on the data inference for data decompression. In

principle, a much larger value is set for R, more standard data chunks will be selected.

Hence, more data will be compressed. At the same time, during the process of

decompression.

In terms of time saving, it can be inferred indirectly from the compression

experiment according the results with the increase of R from 50 to 100 rounds

limitation in Figure 7-7. Specifically, after setting a data compression size target, we

compare the time cost for suppressing that data size when using different data

processing strategies. Under our proposed compression, more time can be saved when

successfully compressing the same amount of meteorological sensing data including

175

temperature, pressure, humidity and wind speed data as shown in Figure 7-7. In other

words, the compression and big data processing time cost can be dramatically reduced.

With the result analysis of Figure 7-7, it can be concluded that significant performance

gains are achieved in terms of space and time cost saving.

Figure 7-8 Compression Ratio for Different ‘r’

In Figure 7-8, the overall compression effectiveness of our proposed data

compression is demonstrated. The X axis stands for the incoming big sensing data

size for testing. The Y axis stands for the compression achieved by deploying our

compression algorithm. There are two important testing findings should be indicated.

(1) With the increase of R from 10 to 90 rounds, the compression ratio increases

whatever the testing data size is from 1 terabytes to 10 terabytes. In other words, the

larger R brings more compression ratio and performance gains to our compression

algorithm. (2) It can be noticed that with the increase of testing data size, the

compression ratio decreases whatever the value of R is. This result indicates that with

more data gathered for testing, more heterogeneous data blocks could be found in

meteorological big sensing data set. In other words, more new data blocks which are

not compressible with the standard data chunks set could be detected.

7.4.4 Data Accuracy Analysis

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

R=10 R=30 R=50 R=70 R=90

Compression Ratio

Total Sensing Data Size: terabyte

176

In this section, we present data accuracy analysis. Similar to previous chapters, the

accuracy definition is offered based on measuring the similarity between two vectors,

one from real big data graph G and the other from G’ filtered data as the service

provided by Cloud. There are two vectors at a certain time stamps. To describe the

similarity between two nodes, correlation coefficient model is used. Suppose X from

G and Y from G’ are two vectors. With Correlation Coefficient method, we can

calculate the similarity between them by formula (15).

 (15)

From (15) we can find that this similarity resembles to the “cos” similarity

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1,

vector2)” is as following formula (16) to (18).

So, the similarity between two vectors can be calculated with following formula

(19).

As we only need to correlate accuracy and similarity, only [0, 1] data range is

selected. The original data range [-1, 1] can be normalized to [0, 1] for representing

the accuracy from 0% to 100%. As shown in formula (20), sim(X,Y)’ is calculated

instead of formula (19). sim(X,Y)’ [0, 1].

177

Hence the accuracy for an edge in G at a time stamp t can be assessed with formula

(21).

The final accuracy for “Accuracy” between two points within a cluster can be

assessed by formula (22). In our example, T=24 hours is used. The formula (22) and

(23) can be further transformed and calculated with formula (24).

Suppose that in graph data set G(V, E), there are total S edges (with cluster-head

structure, edge explosion is avoided) and each edge is indexed with s from [1, S]. We

can calculate the Average Accuracy of the Cloud computed Data set ‘G’ against the

original ‘G’. This Average Accuracy is used in formula (25) to demonstrate our

experiment results in Figure 7-9.

With the definition of above data accuracy, the data accuracy test is designed and

conducted. The testing results are demonstrated in Figure 7-9. Specifically, we use as

the parameter R from 10 to 100 rounds for conducting accuracy test. As shown in

Figure 7-9, with the increase of compression ratio from 0% to 80%, the data accuracy

decreases dramatically. However, it can be found in Figure 7-9 that higher the R is,

better the data accuracy can be achieved. The reason is that a larger R means more

178

standard data chunks, hence a more refined similarity comparison to guarantee better

data accuracy.

Figure 7-9 Relationship between Compression Ratio and Accuracy

At the same time, with the increase of the standard chunks generation limitation

round R, whatever the compression is, better data accuracy can be achieved. One

important point should be mentioned. The experimental results in Figure 7-9 show

that for achieving 30% compression ratio, we can choose different combination of R

and accuracy to realize this goal. In general, if we can set R>70 rounds and keep a

compression ratio around 30%, the algorithm will always guarantee the data accuracy

larger than 95% which will comes to the requirement of lots of real world applications.

In other words, our compression algorithm can guarantee the acceptable data accuracy

when make significant performance gains in data compression.

7.5 Summary

In this chapter, we proposed a novel scalable data compression based on similarity

calculation among the partitioned data chunks with Cloud computing. A similarity

model was developed to generate the standard data chunks for compressing big data

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

r=100 r=90 r=80 r=70 r=60

r=50 r=40 r=30 r=9 r=10

Accuracy

Compression Ration based on Similarity Threshold: t

179

sets. Instead of compression over basic data units, the compression was conducted

over partitioned data chunks. The MapReduce programming model was adopted for

the algorithms implementation to achieve some extra scalability on Cloud. With the

real meteorological big sensing data experiments on our U-Cloud platform, it was

demonstrated that our proposed scalable compression based on data chunk similarity

significantly improved data compression performance gains with affordable data

accuracy loss. The significant compression ratio brought dramatic space and time cost

savings. With the popularity of Spark and its specialty in processing streaming big

data set, in future, new way to implement our compression algorithm based on data

chunks similarity with Spark can be expected.

180

Chapter 8

Conclusions and Future Work

With the above contents in five chapters (from Chapter 3 to Chapter 7), the main

modules of our proposed big sensing data curation roadmap have been constructed.

In this chapter, we conclude the thesis by reemphasizing major research contributions

of each chapter. Following that, we will list some promising future work which

deserves to be explored. The conclusions are offered in Section 8.1, and the future

work is presented in Section 8.2.

8.1 Conclusions

Big data analytics supported by Cloud computing platform have greatly impacted

information technology industry and computer science research. To effectively and

efficiently support those big data analytics applications, a data curation roadmap with

several important modules was designed in this thesis. The critical modules or steps

in this data curation roadmap were intensively investigated within different chapters

to solve specific problems as follows.

 In Chapter 2, we have provided an in-depth literature review of the state-of-

the-art techniques including big data, Cloud, and its related sensing systems,

data compression techniques and data cleaning techniques. Through analysis

and comparison, a general over view of the current research situation of data

181

curation on Cloud was achieved. In addition, the related U-Cloud platform for

our big data processing and related big sensing data sets were introduced.

Based on those comparison and analysis, we validated the importance of our

research in this thesis.

 In Chapter 3, we investigated the problem of scalable and fast big sensing data

error detection on Cloud. With our data error type classification, the big

sensing data features were analysed to support fast error detection and location

on Cloud. In other words, by analysing characteristics of sensing data from

complex network systems, our error detection method was capable of

dramatically accelerating error detection and location process. Through real

sensing data experiments on our cloud computing platform of U-Cloud,

significant performance gains for error detection and localization were

achieved.

 In Chapter 4, we investigated the problem of scalable and fast big sensing data

recovery on Cloud following the error detection technique developed Chapter

3. A novel error recovery approach was proposed by predicting approximate

data for replacing detected errors. This prediction and approximation made use

of coverage information, Euclidean distance to calculate a time series

prediction curve. With the calculated time series, a detected error would be

recovered with a predicted data value approximately. The experiment was

carried out on U-Cloud platform over real world meteorological data sets. The

results demonstrated that out proposed error recovery approach achieved

significant performance gains by comparing with traditional error recovery

techniques.

 In Chapter 5, we investigated the problems of big sensing data and big graph

data compression on Cloud. Big sensing data or big graph data was

compressed with spatiotemporal features on Cloud. In each time series or a

single graph edge, temporal data compression was conducted. By exploring

spatial data correlation, we partitioned a graph data set into a group of clusters.

In a cluster, the workload was shared by the inference based on time series

182

similarity with a novel data driven scheduling. Based on U-Cloud platform

and real environmental sensing data, experiments were designed to test the

effectiveness and efficiency of the proposed technique. Great data saving can

be achieved by using our proposed on-Cloud compression.

 In Chapter 6, we investigated the problem of big sensing data compression on

Cloud with non-linear regression prediction model. To cope with the

challenges brought by those real world big sensing data with high volume and

velocity, a novel on-Cloud non-linear regression prediction model were

introduced in this Chapter. With the real world earthquake sensing data

experiments, this compression based on non-linear regression achieved

significant storage and time savings compared to previous compression

models over big sensing data sets with both high changing feature and high

data rate.

 In Chapter 7, we investigated the problem of on-Cloud big sensing data

compression with data chunks. A novel scalable data compression approach

based on calculating similarity among the partitioned data chunks was

developed instead of compressing basic data units. To restore original data sets,

some restoration functions and predictions were designed and offered in this

compression technique. By using real world meteorological big sensing data,

our proposed scalable compression approach based on data chunk similarity

achieved both high data compression ratio and satisfactory data accuracy.

8.2 Future Work

Based on the roadmap of Figure 1-1 in Chapter 1, our research mainly focused on data

cleaning module and Cloud storage module. However, there are several issues still

worth being investigated.

 Under the theme of data cleaning, after successful error detection and error

recovery, the data redundancy and consistency issues still exist. So,

183

optimization procedures are still expected to remove those redundancy and

guarantee data consistency.

 Following the module of data cleaning and Cloud storage, there is a module

of Domain Specific Optimization. In this module (stage), the domain

knowledge and feedback from high level data analytical applications can be

further used for improve data storage and organization. This is a future

direction demanding more research exploration.

 Currently, all the work is based on the data constraints from big sensing

systems. However, if we relax those constraints from big sensing system, the

proposed algorithms and models may be further improved for processing more

generalized data sets, such as heterogeneous data.

 Currently, Spark has become a popular scalable tool for big data processing

on Cloud. The techniques proposed in this thesis are only partially

implemented in Spark. In the future work, we can manage to put all the above

techniques to Spark coded ones for better scalability and compatibility with

Cloud.

184

Bibliography

[1] S. Tsuchiya, Y. Sakamoto, Y. Tsuchimoto, V. Lee, “Big Data Processing in

Cloud Environments,” FUJITSU Science and Technology Journal, vol. 48, no.

2, pp. 159-168, 2012.

[2] “Big data: science in the petabyte era: Community cleverness Required,”

Nature, vol. 455 no. 7209, pp. 1, 2008.

[3] N. Karthick and X. A. Kalarani, “A Survey on Data Aggregation in Big Data

and Cloud Computing,” International Journal of Computer Trends and

Technology (IJCTT), vol. 17, no. 1, pp. 28-32, 2014.

[4] N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, W. K. M. Ali, M. Alam, M.

Shiraz and A. Gani, “Big Data: Survey, Technologies, Opportunities, and

Challenges, ” The Scientific World Journal, vol. 2014, no. 712826, 2014.

[5] C. Ji, Y. Li, W. Qiu, U. Awada and K. Li, Big Data Processing in Cloud

Environemtns, in Proceedings of 2012 International Symposium on Pervasive

Systems, Algorithms and Networks, 2012, pp. 17-23.

[6] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya and W. Jie, “Remote

Sensing Big Data Computing: Challenges and Opportunities,” Future

Generation Computer Systems, vol. 51, pp. 47-60, 2015.

[7] S. J. Samuel, K. RVP, K. Sashidhar and C. R. Bharathi, “A Survey on Big Data

and Its Research Challenges,” ARPN Journal of Engineering and Applied

Sciences, vol. 10, no. 8, pp. 3343-3347, 2015.

[8] T. Zhu, S. Xiao, Q. Zhang, Y. Gu, P. Yi and Y. Li, “Emergent Technologies

in Big Data Sensing: A Survey,” International Journal of Distributed Sensor

Networks, vol. 2015, no. 902982, 2015.

185

[9] S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey of large scale data

management approaches in cloud environments,” Communications Surveys &

Tutorials, IEEE, vol. 13, no. 3, pp. 311–336, 2011.

[10] V. Borkar, M.J. Carey and C. Li, “Inside "Big Data Management": Ogres,

Onions, or Parfaits?,” In Proc. the 15th International Conference on Extending

Database Technology (EDBT'12), pp. 3-14, 2012.

[11] J. Gehrke, R. Ramakrishnan and V. Ganti, “Rainforest-A Framework for Fast

Decision Tree Construction of Large Datasets,” In Proc. the International

Conference on Very Large Data Bases (VLDB'98), pp. 416-427, 1998.

[12] A. Labrinidis and H. Jagadish, “Challenges and Opportunities with Big Data,”

Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2032-2033, 2012.

[13] X. Wu, X. Zhu, G.-Q. Wu and W. Ding, “Data Mining with Big Data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 1, pp. 97-107,

2014.

[14] Balancing Opportunity and Risk in Big Data, A Survey of Enterprise Priorities

and Strategies for Harnessing Big Data,

http://www.informatica.com/Images/1943_big-data-survey_wp_en_US.pdf ,

accessed on March 01, 2016.

[15] Real Time Big Data Processing with GridGain, http: // www.gridgain.com

/book /book. html, accessed on February 28, 2016.

[16] TeraData, http://www.teradata.com.au/?LangType=3081&Lang Select=true,

accessed on February 28, 2016.

[17] Data Science for NIST Big Data Framework,

http://semanticommunity.info/Data_Science/Data_Science_for_NIST_Big_D

ata_Framework, accessed on February 28, 2016.

[18] The Big Data Big Bang, https://en.wikipedia.org/wiki/Exabyte, accessed on

December 28, 2015.

[19] Big Data on AWS, https://aws.amazon.com/ training/ course-descriptions/

bigdata/, accessed on December 28, 2015.

[20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, “A View of Cloud

Computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

186

[21] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud computing

and emerging it platforms: Vision, hype, and reality for delivering computing

as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp.

599-616, 2009.

[22] L. Wang, J. Zhan, W. Shi, Y. Liang, “In cloud, can scientific communities

benefit from the economies of scale?” IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no. 2, pp. 296-303, 2012.

[23] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, C. Fu,

“Cloud computing: A perspective study, ” New Generation Computing, vol.

28, no. 2, pp. 137-146, 2010.

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters, ” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[25] R. Kienzler, R. Bruggmann, A. Ranganathan, N. Tatbul, “Stream as you go:

The case for incremental data access and processing in the cloud,” IEEE ICDE

International Workshop on Data Management in the Cloud (DMC'12), 2012.

[26] P. Mell and T. Grance, The Nist Definition of Cloud Computing (Version 15),

U.S. National Institute of Standards and Technology, Information Technology

Laboratory, 2009. URL: http://www.nist.gov/itl/cloud/upload/ cloud-def-

v15.pdf, accessed on: 01 April, 2016.

[27] Amazon Web Services, Aws Service Pricing Overview ,

http://aws.amazon.com/pricing/, accessed on: 01 April, 2014.

[28] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A.

Hossain, “A Survey on Sensor-Cloud: Architecture, Applications, and

Approaches,” International Journal of Distributed Sensor Networks, vol. 2013,

pp. 1-18, 2013.

[29] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann,

V.B.N. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang,

“Nova: Continuous pig/hadoop workflows,” in Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD'11),

pp. 1081-1090, 2011.

[30] K. H. Lee, Y.J. Lee, H. Choi, Y.D. Chung, B. Moon, “Parallel data processing

with mapreduce: A survey,” ACM SIGMOD Record, vol. 40, no. 4, pp. 11-20,

2012.

187

[31] K. Shim, “MapReduce Algorithms for Big Data Analysis,” Proc. of the VLDB

Endowment. 5(12), pp. 2016-2017. 2012.

[32] P. Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar and R. Pasquin, “Incoop:

MapReduce for Incremental Computations,” In Proc. the 2nd ACM

Symposium on Cloud Computing (SoCC'11), pp. 1-14, 2011.

[33] S. Lattanzi, B. Moseley, S. Suri and S. Vassilvitskii, “Filtering: A Method for

Solving Graph Problems in MapReduce,” in Proc. 23th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA’11), San Jose, California,

USA., 2011.

[34] J. Conhen, “Graph Twiddling in a MapReduce World,” IEEE Computing in

Science & Engineering. 11(4), pp. 29-41. 2009.

[35] Y. Bu, B. Howe, M. Balazinska and M.D. Ernst, “The Haloop Approach to

Large-Scale Iterative Data Analysis,” The VLDB Journal, vol. 21, no. 2, pp.

169-190, 2012.

[36] S. Chaudhuri, “What Next?: A Half-Dozen Data Management Research Goals

for Big Data and the Cloud,” In Proc. the 31st Symposium on Principles of

Database Systems (PODS'12), pp. 1-4, 2012.

[37] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing Tool,”

Communications of the ACM, vol. 53, no. 1, pp. 72-77, 2010.

[38] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu and G. Fox,

“Twister: A Runtime for Iterative MapReduce,” In Proc. the 19th ACM

International Symposium on High Performance Distributed Computing

(HDPC'10), pp. 810-818, 2010.

[39] A. Ene, S. Im and B. Moseley, “Fast Clustering Using MapReduce,” In Proc.

the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD'11), pp. 681-689, 2011.

[40] R.L. Ferreira Cordeiro, C. Traina Junior, A.J. Machado Traina, J. López, U.

Kang and C. Faloutsos, “Clustering Very Large Multi-Dimensional Datasets

with MapReduce,” In Proc. the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD'11), pp. 690-698, 2011.

[41] B. Li, E. Mazur, Y. Diao, A. McGregor, P. Shenoy, “A platform for scalable

one-pass analytics using mapreduce,” in Proceedings of the ACM SIGMOD

188

International Conference on Management of Data (SIGMOD'11), pp. 985-996,

2011.

[42] K. Shvachko, K. Hairong, S. Radia and R. Chansler, “The Hadoop Distributed

File System,” In Proc. 2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST'10), pp. 1-10, 2010.

[43] M. Yuriyama and T. Kushida, “Sensor Cloud Infrastructure,” Proceedings of

the 13th International Conference on Netowrk-Based Information Systems

(NBiS), pp.1-8, 2010.

 [44] Big Data Beyond MapReduce: Google's Big Data Papers,

http://architects.dzone.com/articles/big-data-beyond-mapreduce, accessed on

March, 01, 2016.

[45] Hadoop, http://hadoop.apache.org, accessed on March 01, 2016.

[46] Sensor Cloud, http://www.sensorcloud.com/, accessed on October 30, 2015.

[47] Spark, http://spark.apache.org/, accessed on February 28, 2016.

[48] C. Yang, X. Zhang, C. Liu, J. Pei, K. Ramamohanarao and J. Chen, “A

Spatiotemporal Compression based Approach for Efficient Big Data

Processing on Cloud,” Journal of Computer and System Sciences (JCSS), vol.

80, no. 8, pp.1563-1583, 2014.

[49] C. Yang, C. Liu, X. Zhang, S. Nepal and J. Chen, “A Time Efficient Approach

for Detecting Errors in Big Sensor Data on Cloud,” IEEE Transactions on

Parallel and Distributed Systems (TPDS), vol. 26, no. 2, pp. 329-339, 2015.

[50] C. Yang and J. Chen, “A Scalable Data Chunk Similarity based Compression

Approach for Efficient Big Sensing Data Processing on Cloud,” IEEE

Transactions on Knowledge and Data Engineering (TKDE), in press, 2016.

[51] C. Yang, C. Liu, X. Zhang, S. Nepal and J. Chen, “Querying Streaming XML

Big Data with Multiple Filters on Cloud,” in Proceeding of the 2nd

International Conference on Big Data and Engineering (BDSE 2013), pp.

1121-1127, Sydney, Australia, December, 2013.

[52] C. Yang, Z. Yang, K. REN and C. LIU, “Transmission Reduction based on

Order Compression of Compound Aggregate Data over Wireless Sensor

Networks,” in Proc. 6th International Conference on Pervasive Computing

and Applications (ICPCA’11), pp. 335-342, 2011.

189

[53] J. Preethi and R. Logapriya, “Survey on Error Detection in Bulk Data

Transmission on Wireless Sensor Network,” International Journal of

Engineering Research & Technology (IJERT), vol. 5, no. 2, pp. 281-285, 2016.

[54] R. Albert, H. Jeong, and A. L. Barabasi, “Error and attack tolerance of complex

networks,” Nature, vol. 406, pp. 378-382, July, 2000.

[55] D. J. Wang, X. Shi, D. A. Mcfarland, and J. Leskovec, “Measurement Error

in Network Data: A re-classification,” Social Networks, vol. 34(4), pp. 396-

409, October, 2012.

[56] D. Xiong, M. Zhang, and H. Li, “Error detection for statistical machine

translation using linguistic features,” Proceeding of the 48th Annual Meeting

of the Association for Compuatational Linguistics (ACL’10), pp. 604-611,

2010.

[57] S. Mukhopadhyay, D. Panigrahi, and S. Dey, “Model Based Error Correction

for Wireless Sensor Networks,” IEEE Transaction on Mobile Computing, vol.

8(4), pp. 528-543, September, 2008.

[58] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, G.

Pottie, M. Hansen, M. Srivastava, and E. Kohler, “Sensor Network Data Fault

Types,” ACM Transactions on Sensor Networks (TOSN), vol. 5(3), May,

2009.

[59] A. Sheth, C. Hartung, and Richard Han, “A Decentralized Fault Diagnosis

System for Wireless Sensor Netowrks,” The 2nd IEEE Conference on Mobile

Ad-hoc and Sensor Systems (MASS’05), November, 2005.

[60] S. Slijepcevic, S. Megerian, and M. Potkonjak, “Charaterization of Location

Error in Wireless Sensor Networks: Analysis and Application,” Proceeding of

the 2nd International Conference on Information Processing in Sensor

Networks (IPSN’03), pp. 593-608, 2003.

[61] M. M. H. Khan, H. H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han,

“Dustminer: Troubleshooting interactive complexity bugs in sensor networks,”

Proceedings of the 6th ACM conference on Embedded network sensor

systems (SenSys '08), pp. 99-112, 2008.

[62] N. Laptev, K. Zeng and C. Zaniolo, “Very fast estimation for result and

accuracy of big data analytics: The EARL system,” Proceedings of the 29th

190

IEEE International Conference on Data Engineering (ICDE), pp. 1296-1299,

2013.

[63] X. L. Dong and D. Srivastava, “Big data integration,” Proceedings of the 29th

IEEE International Conference on Data Engineering (ICDE), pp. 1245-1248,

2013.

[64] T. Condie, P. Mineiro, N. Polyzotis and M. Weimer, “Machine learning on Big

Data,” Proceedings of the 29th IEEE International Conference on Data

Engineering (ICDE), pp. 1242-1244, 2013.

[65] A. Aboulnaga, S. Babu, “Workload management for Big Data analytics,”

Proceedings of the 29th IEEE International Conference on Data Engineering

(ICDE), pp. 1249, 2013.

[66] S. Mukhopadhyay, D. Panigrahi and S. Dey, “Data aware, low cost error

correction for wireless sensor networks,” Proceedings of the IEEE Wireless

Communications and Networking Conference (WCNC’04), pp.2494-2497,

2004.

[67] M. H. Lee and Y. H. Choi, “Fault detection of wireless sensor networks,”

Computer Communications, 31(14), pp.3469-3475, 2008.

[68] M. C. Vuranand and I. F. Akyildiz, “Error Control in Wireless Sensor Networks:

A Cross Layer Analysis,” IEEE Transactions on Networking, 17(4), pp.1186-

1199, 2009.

[69] E. Elnahrawy and B. Nath, “Online Data Cleaning in Wireless Sensor

Networks,” Proceedings of the 1st International Conference on Embedded

Networked Sensor Systems (ACM Sensys’03), pp.294-295, 2003

[70] A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for Approximate

Nearest Neighbor in High Dimensions,” Communications of the ACM, vol.

51, no. 1, pp. 117-122, 2008.

[71] S. Y. Ko, I. Hoque, B. Cho and I. Gupta, “Making Cloud Intermediate Data

Fault-Tolerant,” In Proc. the 1st ACM Symposium on Cloud Computing

(SoCC'10), pp. 181-192, 2010.

[72] X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou and J. Chen, “A Hybrid Approach

for Scalable Subtree Anonymization over Big Data Using MapReduce on

Cloud,” Journal of Computer and System Science (JCSS), vol. 80, no. 5, pp.

1008-1020, 2014.

191

[73] N. Tang, “Big Data Cleaning,” Proceeding of the 16th Asia-Pacific Web

Conference (APWeb 2014), pp. 13-24, 2014.

[74] Y. Zhang, C. Szabo and Q. Sheng, “Cleaning Environmental Sensing Data

Streams Based on Individual Sensor Reliability,” in Proceeding of Web

Information System Engineering (WISE’14), pp. 405-414, 2014.

[75] E. Elnahrawy and B. Nath, “Cleaning and Querying Noisy Sensors,” in

Proceeding of ACM WSNA’03, 2003.

[76] Talend, https://www.talend.com/resource/data-cleaning.html, accessed on

March 28, 2016.

[77] Novel Online Data Cleaning Protocols for Data Streams in Trajectory, Wireless

Sensor Networks, PhD Thesis, http://digitalcommons.fiu.edu/etd/1004/,

accessed on December 28, 2015.

[78] Y. L. Tan, V. Sehgal and H. H. Shahri, “SesnoClean: Handling Noisy and

Incomplete Data in Sensor Networks using Modeling,” Technical Report,

accessed on March 01, 2016.

[79] S. H. YOON and C. Shahabi, “An Experimental Study of the Effectiveness of

Clustered Aggregation (CAG) Leveraging Spatial and Temporal Correlations

in Wireless Sensor Networks,” ACM Transactions on Sensor Networks

(TOSN), vol. 3, no. 1, pp. 1-39, March, 2007.

[80] P. Edara, A. Limaye and K. Ramamritham, “Asynchronous In-network

Prediction: Efficient Aggregation in Sensor Networks,” ACM Transactions on

Sensor Networks (TOSN), vol. 4, no. 4, article 25, pp. 1-34, August, 2008.

[81] M. J. Handy, M. Haase, and D. Timmermann, “An Low Energy Adaptive

Clustering Hierarchy with Deterministic Cluster-Head Selection,” in Proc. 4th

International Workshop on Mobile and Wireless Communications Network

(MWCN), pp. 368-372, 2002.

[82] A. Ail, A. Khelil, P. Szczytowski and N. Suri, “An Adaptive and Composite

Spatio-Temporal Data Compression Approach for Wireless Sensor Networks,”

in Proc. of ACM MSWiM’11, pp. 67-76, 2011.

[83] N. Sidiropoulos and A. Kyrillidis, “Multi-Way Compressed Sensing for Sparse

Low-Rank Tenors,” IEEE Signal Processing Letters, vol. 19, no. 11, pp. 757-

760, 2012.

192

[84] L. Ramaswamy, V. Lawson and S. V. Gogineni, “Towards A Quality-Centric

Big Data Architecture for Federated Sensor Services,” in Proceedings of IEEE

International Congress on Big Data, pp. 86-93, 2013

[85] A. Cuzzocrea, G. Fortino and O. Rana, “Managing Data and Processes in

Cloud-Enabled Large-Scale Sensor Networks: State-Of-The-Art and Future

Research Directions,” Proceedings of the 13th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pp. 583-588, 2013.

[86] Y. Fang, L. Chen, J. Wu and B. Huang, “GPU Implementation of Orthogonal

Matching Pursuit for Compressive Sensing,” in Proceedings of the 17th IEEE

International Conference on Parallel and Distributed Systems (ICPADS’11),

IEEE Computer Society, pp. 1044-1047, Washington, DC, USA, 2011.

[87] W. Wang, D. Lu, X. Zhou, B. Zhang and J. Wu, “Statistical Wavelet-based

Anomaly Detection in Big Data with Compressive Sensing,” EURASIP

Journal on Wireless Communication and Networking, 2013.

[88] J. Wang, S. Tang, B. Yin and X. Li, “Data Gathering in Wireless Sensor

Networks Through Intelligent Compressive Sensing,” in Proceedings of IEEE

INFOCOM, pp. 603–611, March, 2012.

[89] C. Peng, J. Yang, Y. Zheng, Z. Xu and X. Jiang, “Early magnitude estimation

for the MW7.9 Wenchuan earthquake using progressively expanded P-wave

time window,” Nature, Scientific Reports 4, article no. 6770, October, 2014.

[90] C. Yang, Y. Xu and D. Nebert, “Redefining the Possibility of Digital Earth

and Geosciences with Spatial Cloud Computing,” International Journal of

Digital Earth, vol. 6, no. 4, pp. 297-312, 2013.

[91] J. Zhang, S. Tadanobu and L. Susumu, “Non-linear System Identification of

the Versatile-typed Structures by A Novel Signal Processing Technique,”

Journal of Earthquake Engineering & Structural Dynamics, vol. 36, pp. 909-

925, 2007.

[92] H. Yu, W. Jiang, Y. Yang, Q. Xie, L. Huang, P. Tan and L. Li, “Data Processing

and Analysis of Strong Motion Records from the Ms.80 Wenchuan, China

Earthquake,” in Proceedings of the 15th WCEE, 2012.

[93] P. H. Yu and J. G. Lay, “Exploring Non-Stationarity of Mechanism of Crime

Events with Spatial-temporal Weighted Regression,” 2011 IEEE International

193

Conference on Spatial Data Mining and Geographical Knowledge Services

(ICSDM), pp. 106-111, June, 2011.

[94] R. K. Shang, Y. S. Shiu and K. C. Ma, “Using Geographically Weighted

Regression to Explore the Spatially Varying Relationship between Land

Subsidence and Groundwater Level Variations: A Case Study in the

Choshuichi Alluvial Fan, Taiwan,” 2011 IEEE International Conference on

Spatial Data Mining and Geographical Knowledge Services (ICSDM), pp. 21-

25, June, 2011.

[95] S. Thomas, G. N. Pillai, K. Pal and M. Zuhair, “Prediction of Peak Ground

Acceleration (PGA) Using Artificial Neural Networks,” in Proceedings of

International Conference on Advances in Computer Science (AETACS), pp.

270-276, 2013.

[96] J. Zhang, Y. Yan, L. J. Chen, M. Wang, T. Moscibroda and Z. Zhang,

“Impression Store: Compressive Sensing-based Storage for Big Data

Analytics,” in Proceedings of the 6th USENIX Conference on Hot Topics in

Cloud Computing, pp. 1-6, 2014.

[97] X. Jiang, Y. Yao, H. Liu and L. Guibas, “Compressive Network Analysis,”

IEEE Transactions on Automat Control, vol. 59, no. 11, pp. 2946-2961,

November, 2014.

[98] I. Y. Chun, B. Adcock and T. Talavage, “Efficient Compressed Sensing

SensepMRI Reconstruction with Joint Sparsity Promotion,” IEEE

Transactions on Medical Imaging, vol. 35, no. 1, pp. 354-368, January, 2016.

[99] S. Muthukumar and R. J. Kannan, “Framework for Data Cleaning on

Weaknesses and To Eradicate Biases in Their Interpretation of the Big Data,”

International Journal of Innovative Science, Enigeering $ Technology

(IJISET), vol. 1, no. 2, April, 2014.

[100] N. Mitrovic, M. T. Asif, J. Dauwels and P. Jaillet, “Compressed Prediction of

Large-Scale Urban Traffic,” in Proceedings of IEEE International Conference

on Acoustic, Speech and Signal Processing (ICASSP'14), pp. 6025-6029, 2014.

 [101] Permeability and Fluid Pathways in Fault – Controlled Hydrothermal Ore

Systems – A Seismogenic Framewor, http:// rses.anu.edu.au/ highlights/

view.php?article=330, accessed on March 01, 2016.

194

[102] R. Qiu and M. Wicks, “Cognitive Networked Sensing and Big Data,” ISBN

978-1-4614-4544—9, DOI 10.1007/978-1-4614-4544-9, 2013.

[103] Managing and Mining Billion-Node Garphs, http: //kdd2012.sigkdd.org/ sites

/images/ summerschool/Haixun-Wang.pdf, accessed on March, 01, 2016.

[104] Big Data and Cloud Solutions in Amazon, http://aws.amazon.com/big-data/,

accessed on March, 01, 2016.

[105] NASA NEX, http://aws.amazon.com/nasa/nex/, accessed on March, 01, 2016.

[106] Smart City with Internet of Things (Sensor Networks) and Big Data,

http://www.academia.edu/5276488/Smart_City_with_Internet_of_Things_Se

nsor_networks_and_Big_Data, accessed on accessed on March, 01, 2016.

[107] X. Zhang, C. Liu, S. Nepal and J. Chen, “An Efficient Quasi-identifier Index

based Approach for Privacy Preservation over Incremental Data Sets on

Cloud,” Journal of Computer and System Sciences (JCSS), vol. 79, no. 5, pp.

542-555, 2013.

[108] X. Zhang, C. Liu, S. Nepal, S. Pandey and J. Chen, “A Privacy Leakage Upper-

bound Constraint based Approach for Cost-effective Privacy Preserving of

Intermediate Datasets in Cloud,” IEEE Transactions on Parallel and

Distributed Systems (TPDS), vol. 24, no. 6, pp. 1192-1202, 2013.

[109] X. Zhang, T. Yang, C. Liu and J. Chen, “A Scalable Two-Phase Top-Down

Specialization Approach for Data Anonymization using Systems, in

MapReduce on Cloud,” IEEE Transactions on Parallel and Distributed, vol.

25, no. 2, pp. 363-373, 2014.

[110] X. Zhang, W. Dou, J. Pei, S. Nepal, C. Yang, C. Liu, J. Chen, “Proximity-

Aware Local-Recoding Anonymization with MapReduce for Scalable Big

Data Privacy Preservation in Cloud”, IEEE Transactions on Computers(TC),

vol. 64, no. 8, pp. 2293-2307, 2015.

	Title Page
	Certificate of Original Authorship
	Acknowledgement
	Abstract
	The Author’s Publications
	Book Chapter
	Journal Articles
	Conference Papers
	Papers under Review

	Table of Contents
	Figures
	Tables
	Chapter 1 Introduction
	1.1 Background
	1.1.1 Big Sensing Data
	1.1.2 Cloud

	1.2 Motivation: Big Sensing Data Curation on Cloud
	1.2.1 Five Stages Big Sensing Data Processing
	1.2.2 On-Cloud Big Sensing Data Curation Roadmap

	1.3 Contributions
	1.4 Thesis Outline

	Chapter 2 Related Work
	2.1 General Research Trend
	2.2 Big Data Processing and Cloud
	2.2.1 Big Sensing Data
	2.2.2 Big Graph Data
	2.2.3 MapReduce/Spark and Hadoop Applications

	2.3 Big Data Cleaning Techniques
	2.3.1 Error Detection
	2.3.2 Error Recovery

	2.4 Big Data Compression Techniques
	2.4.1 Spatiotemporal Compression
	2.4.2 Lossy and Lossless Compression
	2.4.3 Other Compression Techniques

	2.5 Related Platforms and Data Sets
	2.5.1 U-Cloud Platform
	2.5.2 Big Sensing Data Sets

	2.6 Summary

	Chapter 3 Error Detection
	3.1 Introduction
	3.1.1 Research Problem Analysis
	3.1.2 Contents Outline

	3.2 Sensing Data Errors
	3.2.1 Error Classification
	3.2.2 Error Type Definition

	3.3 On-Cloud Error Detection
	3.3.1 Scale-free Complex Networks
	3.3.2 Model-based on-Cloud Error Detection

	3.4 Algorithms
	3.4.1 Error Detection
	3.4.2 Error Localization
	3.4.3 Complexity Analysis
	3.4.4 Algorithm Calibration on Cloud

	3.5 Experiments
	3.5.1 Experiment Settings
	3.5.2 Experiment Results

	3.6 Summary

	Chapter 4 Error Recovery
	4.1 Introduction
	4.1.1 Research Problem Analysis
	4.1.2 Contents Outline

	4.2 General Roadmap for Error Recovery
	4.2.1 Initialization: Partition and Localization
	4.2.2 Inter Cluster Strategy for Overlapping Coverage
	4.2.3 Intra Cluster Time Series Approximation
	4.2.4 Recovery based on Time Series Prediction

	4.3 Error Types based Recovery Solutions
	4.3.1 Recovery for Permanent Errors
	4.3.2 Recovery for Ephemeral Errors
	4.3.3 Recovery for Aggregation and Fusion error (AFe)

	4.4 Algorithms
	4.4.1 Preparation for Error Recovery
	4.4.2 Scalable Algorithm on Mapper Side
	4.4.3 Scalable Algorithm on Reducer Side
	4.4.4 Complexity Analysis

	4.5 Experiments
	4.5.1 Experimental Settings and Data Sets
	4.5.2 Analysis for Error Recovery Accuracy Rate
	4.5.3 Analysis for Error Recovery Time Cost

	4.6 Summary

	Chapter 5 Spatiotemporal Compression
	5.1 Introduction
	5.1.1 Research Problem Analysis
	5.1.2 Contents Outline

	5.2 Spatiotemporal Compression
	5.2.1 Spatiotemporal Compression
	5.2.2 Order Compression with Spatiotemporal Correlations

	5.3 Data Driven Scheduling on Cloud
	5.3.1 Different Scheduling Strategies over Cloud
	5.3.2 Calculation for Weighted Data Exchanging Edges

	5.4 Algorithms
	5.4.1 Spatiotemporal Clustering Algorithm
	5.4.2 Compression Algorithms
	5.4.3 Scheduling Algorithm
	5.4.4 Overall Strategy for Cloud Big Data Processing

	5.5 Experiments
	5.5.1 Environments and Data Sets
	5.5.2 Spatiotemporal Compression Experiment
	5.5.3 Time Performance Gains of Scheduling
	5.5.4 Data Accuracy Experiment

	5.6 Summary

	Chapter 6 Regression-based Compression
	6.1 Introduction
	6.1.1 Research Problem Analysis
	6.1.2 Contents Outline

	6.2 Compression based on Non-linear Regression
	6.2.1 Non-linear Regression Prediction Model
	6.2.2 Unequal Weighting Methods for Data Points

	6.3 Algorithms
	6.3.1 Algorithm for Non-linear Regression
	6.3.2 Non-linear Regression Compression with MapReduce

	6.4 Experiments
	6.4.1 Experimental Data Sets
	6.4.2 Experiment for the Compression with Non-linear Regression
	6.4.3 Experiment for Data Loss and Accuracy

	6.5 Summary

	Chapter 7 Data Chunk based Compression
	7.1 Introduction
	7.1.1 Research Problem Analysis
	7.1.2 Contents Outline

	7.2 Data Chunk Similarity and Compression
	7.2.1 Similarity Model
	7.2.2 Data Chunk Generation and Formation
	7.2.3 Data Chunks based Big Data Compression

	7.3 Data Chunk Similarity based Compression Algorithm
	7.3.1 Algorithm based on MapReduce
	7.3.2 Standard Data Chunks Generation Algorithm
	7.3.3 Compression Algorithm

	7.4 Experiments
	7.4.1 Experimental Data Sets
	7.4.2 General Comparison
	7.4.3 Temporal and Spatial Saving after Compression
	7.4.4 Data Accuracy Analysis

	7.5 Summary

	Chapter 8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography

