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Abstract 

Nowadays, big data means that data sets are so large and complex that they become 

difficult to process with traditional database management systems or traditional data 

processing tools. As important sources of big data sets, modern sensing systems 

generate huge volumes of sensing data beyond the ability of commonly-used software 

tools to capture, manage, and process within a tolerable time length. Big sensing data 

is prevalent in both industry and scientific research applications. The massive size, 

extreme complexity and high speed of big sensing data form new challenges in terms 

of data collection, data storage, data organization, data analysis and data publishing 

in real time when deploying some real world sensing systems. Cloud environment, 

with its massive storage, scalability and powerful computing capability, becomes an 

ideal platform for big sensing data processing. More and more research and industry 

efforts have been devoted to explore ways to process big sensing data on Cloud in 

order to offer better solutions for challenges brought by big sensing data. In this thesis, 

we will concentrate on the data curation and preparation issues under the overall 

theme of big sensing data processing. Especially, under the topic of big sensing data 

curation on Cloud, two important issues including scalable big sensing data cleaning 

and scalable big sensing data compression will be intensively investigated. In terms 

of big sensing data cleaning, a systematic approach will be developed to solve error 

detection and error recovery problems of big sensing data. In terms of big sensing data 

compression, independent techniques will be developed to reduce the size of incoming 

big sensing data, hence, to reduce the cost of Cloud storage, avoid big data set 

navigation and guarantee real time reaction. Different to previous traditional data 

cleaning and compression techniques, big sensing data features, the real time 

requirement, scalability of Cloud, will have huge influence to the techniques 
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developed in this thesis. With those developed techniques, a detailed roadmap for 

achieving scalable big sensing data curation on Cloud will be proposed as our overall 

research outcome. Finally, the different techniques in our proposed big sensing data 

curation roadmap will be tested and verified with real world big sensing data sets on 

Cloud to show their effectiveness, efficiency and other performance gains. We aim to 

demonstrate that with the offered roadmap of big sensing data curation on Cloud, the 

typical challenges within big sensing data curation will be solved through the massive 

computational power and resource support from Cloud.        
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Chapter 1                             

Introduction 

In this chapter, the problems including research background, research motivation, 

general solutions, related platforms, contributions and this thesis organization will be 

introduced.         

1.1 Background       

Nowadays, we have entered the big data era of petabyte. Big data is prevalent in both 

industry and scientific research applications where the data is generated with high 

Volume, Velocity, Variety, Veracity and Value. It is difficult to process using on-hand 

database management tools or traditional data processing applications. Big data sets 

can come from many areas, including meteorology, connectomics, complex physics 

simulations, genomics, biological study, gene analysis and environmental research [1-

2]. According to literature [1-2], since 1980s, generated data doubles its size in every 

40 months all over the world. For example, in the year of 2012, there were 2.5 

quintillion (2.5×1018) bytes of data being generated every day. Currently, data size is 

measured with Exabyte, and in the year of 2015, there were around 10,000 exabytes 

digital data being generated. Following that digital data explosion, the size of big data 

expects to surpass 40,000 exabytes in year 2020 [1-2, 18]. Hence, how to process big 

data has become a fundamental and critical challenge for modern society. More and 

more research interest and effort have been noticed under the theme of big data and 

its related issues. In this thesis, our research will be concentrated on the data curation 
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& preparation [17, 50] technologies for big data sets from modern sensing systems. 

Those data curation technology will be developed and deployed on Cloud platform 

for achieving scalability, massive resource access, and real time data analytics.               

1.1.1 Big Sensing Data  

Modern sensing systems have potential of significantly enhancing people’s ability to 

monitor and interact with their physical environment [4, 6-8]. In real world 

applications, sensing systems are becoming much smaller, smarter with more 

connectivity and more mobile capability. The price for achieving the above functional 

improvement is higher data rate, more data storage and more powerful data analysis. 

As a result, big data sets with high speed, high dimensions and high volume are 

introduced by countless sensing systems deployed in our environment [1-2, 16, 19, 

46]. As important sources of big data sets, sensing systems generate huge volumes of 

sensing data beyond the ability of commonly-used software tools to capture, manage, 

and process within a tolerable length of times. However, to collect, store, organize, 

analyse and publish big sensing data from modern sensing systems in real time are 

critical and essential targets when deploying most of real world sensing systems.    

For example, in aviation industry, a Boeing jet generates 10 terabytes of 

information per engine during every 30 minutes flight, according to Teradata [16]. 

During a single six-hour, cross-country flight from New York to Los Angeles with a 

Boeing 737 jet plane, totally a massive 240 terabytes of data will be generated by 

different sensing monitoring systems. Within the whole United States, there are more 

than 28,000 commercial flights in the sky daily. Different sensing data, from both 

commercial flights and their ground controlling systems, sensing data quickly expands 

to the petabyte scale. Another example for big sensing data is in the social media areas.  

In the next five years, sensing data will hit the crossover point with unstructured data 

generated by social media. According to literature [16, 19], sensing data will dominate 

by factors 10-to-20 times that of social media. To utilize this data will be difficult for 

the time limitation because no standard to ensure the data readability, suitable 

software or algorithm. Big sensing data can also come from traffic monitoring sensing 

systems. For example, a roadway may have traffic monitoring sensors embedded. The 

road and its surroundings may be monitored by sensing systems from satellites to the 
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sensors deployed in each different vehicle. Those mixed data is collected continuously 

in terabytes scale for applications including trying to optimize routes for 

transportation efficiency [16]. All in all, according to [16], the amount of sensing data 

will be continuing to rise. So, to figure out how to manage it, what to keep and how 

to mine it for useful information is becoming increasingly important day by day. 

Effectively utilizing this big sensing data, from energy to fuel consumption to weather 

data, could undoubtedly provide valuable tools or environmental sustainability. Big 

sensing Data is a big opportunity, but it’s also leading to big questions, including how 

to effectively organize and store it, how to effectively detect and recover the errors 

and how to effectively analyse it. The work in thesis will be focused on data cleaning 

and compression techniques for the big sensing data sets with huge size and extreme 

complexity based on Cloud platform. So, before introducing our overall roadmap of 

our on-Cloud data curation, we firstly have a brief review of Cloud computing.      

1.1.2 Cloud 

Currently, cloud computing is one of the most hyped IT innovations, providing a new 

way of delivering computing resources and services and having attracted interests 

from both IT Industry and academic research communities [20-26]. In recent 

technique trend, IT giants such as Amazon, Google, IBM and Microsoft have invested 

huge sums of money in building up their public cloud products, and indeed they have 

developed their own cloud products, e.g., Amazon’s Web Services1 [27], Google 

Compute2, IBM Cloud3 and Microsoft’s Azure4. In addition to the above systems, 

several corresponding open source cloud computing solutions are also developed, 

including Eucalyptus5, OpenStack6 and Apache Hadoop7. Cloud computing can be 

regarded as an ingenious combination of a series of developed or developing ideas 

and technologies, establishing a novel business model for offering IT services using 

economies of scale. The core technologies that cloud computing principally built on 

                                                 
1 http://aws.amazon.com/, accessed on March 30th, 2016 
2 https://cloud.google.com/, accessed on March 30th, 2016  
3 http://www.ibm.com/cloud-computing/au/en/, accessed on March 30th, 2016 
4 http://www.azure.microsoft.com/en-us/, accessed on March 30th, 2016 
5 https://www.eucalyptus.com/, accessed on March 30th, 2016 
6 https://www.openstack.org/, accessed on March 30th, 2016 
7 http://hadoop.apache.org/, accessed on March 30th, 2016 
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include web service technologies and standards, virtualization, novel distributed 

programming models like MapReduce [30-32, 37-41], and much newer Spark [47].   

The Cloud computing definition published by the U.S. National Institute of 

Standards and Technology (NIST) comprehensively covers the commonly agreed 

aspects of cloud computing. Accordingly, cloud computing is defined as a model for 

enabling convenient, on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, applications, services, etc.) that 

can be rapidly provisioned and released with the minimal management effort or 

interactions with service providers. According to the definition, the Cloud model 

consists of five essential characteristics, three service delivery models and four 

deployment models. Especially, the five key features encompass on-demand self-

service, broad network access, resource pooling (multi-tenancy), rapid elasticity and 

measured services. The three service delivery models are Cloud Software as a Service 

(SaaS), e.g., Google Docs8, Cloud Platform as a Service, increase profits, etc.    

1.2 Motivation: Big Sensing Data Curation on Cloud             

As described above, Cloud computing provides a promising platform for big data 

processing with powerful computation capability, storage, scalability, resource reuse 

and low cost, and has attracted significant attention in alignment with big data. The 

inner characteristics of Could Computing determines that it can provide scalable and 

capable large-scale infrastructure for processing, such data applications, e.g. storage 

accommodation and computation. Cloud Computing offers massive computation 

power and storage capacity which enable users to deploy big data processing 

applications without heavy infrastructure investment. Thus, Cloud proves to be an 

ideal answer for dealing with big sensing data. Some work has been done in this area. 

For example, there is high volume of big body sensor data which is generated by the 

body monitoring sensors and uploaded to Cloud by hospitals in USA. How to 

effectively and efficiently use those data for disease analysis becomes a great 

challenge. To face this challenge, Amazon has developed a platform on Cloud to 

                                                 
8 https://docs.google.com/, accessed on March 30th, 2016  



5 
 

effectively handle those medical sensor big data [27]. But the work is far from enough.  

In order to process big sensing data efficiently on Cloud, several critical issues should 

be discussed including reduction of the big data size, data quality and real time query 

of big sensing data. Under the whole map of big data processing, these issues are 

called data curation problems [17, 50]. To cope with the above big sensing data 

curation issues, we aim to propose a systematic solution for it. In brief, big sensing 

data curation on Cloud motivates all the research in this thesis.    

1.2.1 Five Stages Big Sensing Data Processing   

Data Curation or data preparation means that after data collection from distributed 

sensing system, the collected big sensing data should be filtered, cleaned and 

organized, then stored for high level data applications, such as data analysis [17, 50]. 

Based on the definition of NIST data science framework, there are commonly five 

stages for big data processing, including data collection, data curation/preparation, 

data analytics, visualization and access for use. Similarly, to process big sensing data, 

it can also be divided into those five Stages.   

 

 Data Collection Stage: At this stage, modern sensing systems sampling, 

gathering, transmitting, aggregating and simply analysing raw sensing 

data. The main techniques in this stage include hardware sensing systems 

design for sampling, data fusion hardware and software design, 

synchronization of parallel and distributed data gathering, data 

transmission and communication hardware/software design, data 

aggregation techniques development, and lightweight data analysis 

techniques with the support of intelligent sensing chips.  At this stage, big 

sensing data is sampled and merged into data blocks or forming 

continuous data stream.        

 

 Data Curation/Preparation Stage: At this stage, big sensing data sets or 

data stream is already generated. It should be filtered, indexed, organized 

and stored on a certain platform (e.g. Cloud) before being offered to other 

high level applications. Data curation is important because the raw sensing 
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data can have extremely large size, complexity and speed. Especially 

under the topic of big sensing data, data quality should be specifically 

discussed because faults and unreliable data are common and complicated 

in all real world sensing system. Big data sets from sensing systems are 

often subject to corruption and losses due to wireless medium of 

communication and presence of hardware inaccuracies in sensors. 

According to our knowledge, to effectively cope with big sensing data 

errors and large data size, innovative solutions are highly demanded. 

Hence, Data curation/preparation is very important step to guarantee big 

sensing data quality before higher level data applications can effectively 

access it and use it. The main tasks at this stage include data cleaning and 

data compression which will be our research focuses in this thesis.     

 

 Data Analytic Stage: At this stage, all the current popular data analytic 

algorithms, techniques, models, tools and systems can be built on. For 

example, machine learning and data mining are widely data analytic tools 

to extract useful information hidden in the big sensing data ocean. 

However, all these techniques can generate meaningful results only if the 

under layer offered big sensing data is organized efficiently and accurate. 

That is totally dependent to successful and efficient data curation at the 

data processing stage two.            

 

 Visualization Stage: At this stage, the required information or knowledge 

has been extracted by the techniques offered at the stage three. The 

research focus is on data explanation, presentation, view selection and 

data visualization.           

 

 Access for use: At this stage, all application development interfaces and 

all human-computer interactive design tools will be involved. With the 

above stages, we can successfully finish common data processing or big 

sensing data processing on the Cloud platform.   
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1.2.2 On-Cloud Big Sensing Data Curation Roadmap 

In this section, we will introduce a big sensing data curation roadmap on Cloud. The 

components and steps in this roadmap for sensing data curation will motivate different 

research work in this thesis.        

 

 
Figure 1-1 General Roadmap for Big Sensing Data Curation on Cloud   

 

As Shown in Figure 1-1, we further divide the big sensing data curation process 

into three logically continuous steps including large scale distributed data cleaning on 

Cloud, Cloud storage and domain specific optimization. This separation is based on 

the requirement for filtering and preparing big sensing data after being collected by 

sensing systems and before being analysed by higher level data analytic tools, such as 

machine learning and data mining.  
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Data curation is an important step for big data processing. In data curation, there 

are lots of specific research issue for any general data processing applications. 

However, under the theme of big data curation, data compression and data cleaning 

become very important because of the high volume and high variety features of big 

data sets. High volume determines some compression or fast processing techniques 

have to be developed to guarantee the efficiency. High variety and sensing systems 

determine the unreliability of data sets. So, we will intensively discussed them in this 

thesis. 

In Figure 1-1, the first step of data curation roadmap is described as large scale 

distributed data cleaning on Cloud. After big sensing data is collected and push to 

Cloud platform, some data cleaning techniques have to be developed because sensing 

data is much more erroneous, heterogeneous, time stamp messy and redundant. 

Without effective data cleaning process to guarantee the data quality and accuracy, to 

store and analysing big sensing data on Cloud is meaningless.  

In order to clean raw sensing data or data stream, the erroneous or abnormal data 

should be detected and marked firstly [50]. The requirement for error data detection 

and localization motivate the first research task in our big sensing data curation 

roadmap. In Figure 1-1, the research task is defined as scalable fast error detection 

and its related probabilistic error detection models. Following the successful error 

finding and detecting, the second important task for big sensing data curation is to 

recover the erroneous, lost or uncertain data. In the roadmap of Figure 1-1, this second 

task in on-Cloud data cleaning step is described as scalable fast error recovery and its 

related probabilistic error recovery model. In addition to the error detection and 

recovery tasks, at the step of big sensing data cleaning on Cloud, optimization should 

be also conducted to remove data redundancy and concurrency. Compared to the 

traditional data cleaning techniques, the new techniques developed in this thesis will 

put more emphasis on real time and approximate data cleaning due to specific features 

of big sensing data.      

Directly following the step of big sensing data cleaning on Cloud, it comes to the 

step of data storage on Cloud. Due to the high speed and high volume, the storage of 

big sensing data brings new challenges [1-2, 48-49]. There are two great benefits to 

reduce the size of big sensing data before organizing and storing it on Cloud 

environment. The first benefit is the storage saving and cost reduction. It is well 
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known that Cloud is a platform driven by economic cost. Due to its large size, big 

could occupy lots of storage resources which can be pretty expensive when we 

entering Tera-byte era. Reducing the storage size means that money and cost can be 

saved. The Second benefit is the time saving and better real time reaction. The huge 

size of big sensing data stored in a distributed environment means that to locate some 

data by index navigation can be very time consuming. The compressed data set or data 

correlations after compression can offer faster and more efficient data manipulation 

which greatly enhance the real time requirement from most of higher applications.    

 Specifically, there are three main tasks being motivated under the theme our big 

sensing data on-Cloud compression techniques as shown in Figure 1-1. They are 

temporal compression techniques, spatial compression techniques and data chunks 

based data compression techniques. In terms of temporal compression technique for 

big sensing data on Cloud, it focuses on finding the temporal correlations of sensing 

data to reduce the unnecessary data storage on Cloud. The main temporal correlation 

models developed in thesis are data trend model, linear regression model and non-

linear regression model as described in our roadmap of Figure 1-1. In terms of spatial 

compression technique for big sensing data on Cloud, it focuses on finding spatial 

correlations of sensing data to reduce the unnecessary data storage on Cloud. In terms 

of data chunks based sensing data compression technique, it focuses on divide big 

sensing data into suitable frequent data blocks. Then, the compression will be carried 

out based on those frequent data blocks instead of each data unit. Compared to 

traditional data compression, the work in this thesis is more concentrated on the 

requirement of high volume, real time processing and data clusters features.                                

Following the Cloud storage step, it comes to the last step in our proposed big 

sensing data curation roadmap. It is described as the step of domain specified 

optimization in Figure 1-1. Actually, it is the step for offering services to high level 

big sensing data analytic users and applications, such learning or mining applications. 

Because data mining and analytic applications can find some useful domain 

knowledges, features and patterns which could be used for improving data cleaning 

or data compression for certain big sensing data sets during big sensing data 

processing. However, this step is not the main research focus of the thesis.    

In brief, there are totally 5 motivated research tasks to be intensive studied in this 

thesis. They are scalable fast error detection, scalable fast error recovery, temporal 
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compression with different compression models, spatial compression and data chunks 

based compression.              

1.3 Contributions   

The main research contributions in this thesis are centralized on our proposed big 

sensing data curation roadmap in Figure 1-1. To face the challenges for achieving big 

sensing data curation, different main techniques have be proposed or developed by us 

including time series modelling, predicting methods, similarity models, data 

clustering and scheduling, MapReduce based algorithms, Error Classification, 

Complex Network based Algorithms and U-Cloud platform.        

 

 Time Series Analysis: Lots of sensing data can be modelled with time 

series. To carry out basic data compression, time series modelling is an 

essential requirement. Time series modelling is also important in 

predicting and approximating. So, some time series modelling analysis 

techniques (temporal and spatial time series) should be developed. Based 

on effective time series analysis and modelling, statistic methods, 

prediction methods can be further deployed. The author’s publications 2, 

3, 4, 11, 16 and 17 are more or less based on this contribution of time 

series analysis.         

 

 Error Classification: For developing error detection and recovery 

techniques, an important prerequisite is to define the error patterns. Based 

on those patterns, it is possible to develop a series methods for finding, 

locating and recovering them. So, a systematic classification has to be 

offered. In our research, the error types are predefined and concluded 

manually according to common error scenario analysis. However, it can 

also be got through training and mining erroneous data sets. In this thesis, 

totally 9 error types are defined and classified for further developing our 

error detection and recovery on Cloud. The author’s publications 3 and 17 

are totally based on this contribution of sensing data error classification.      
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 Prediction Models: In both big sensing data compression and big sensing 

data cleaning, data prediction models are all used. Specifically, in data 

compression, prediction model is used to predict and approximate the data 

units to be compressed. However, in data cleaning work, prediction 

models are developed to guess or replace the erroneous, uncertain and 

missing data units. The main mathematic prediction models include 

weighted data trend prediction, linear regression and non-linear regression 

models. The author’s publications 2, 3, 4, 16 and 17 are related to this 

contribution of prediction models.   

 

 Similarity Model: To compress the data chunks or data units, we need to 

develop some effective similarity models. The similarity can be based on 

predefined patterns and constraints from domain experts. It can also come 

from the feedbacks of training the on flying big sensing data streams. In 

our work, two types of similarity models are highly involved. They are 

based on “cos similarity” and “Euclidean distance similarity” models. The 

author’s publications 2 and 17 are highly related to this contribution of 

similarity models.      

 

 Scalability with MapReduce: To effectively access the resources offered 

by Cloud platform and guarantee the scalability of our developed 

algorithms for both sensing data cleaning and sensing data compression, 

we have to implement our developed techniques with scalable tools. It is 

also the difference between our data curation and traditional curation. 

MapReduce and Spark are chosen as critical programming models for 

guarantee the scalability of our algorithms. However, how to successfully 

combine and deploy our sensing data compression, error detection and 

error recovery with MapReduce is an important contribution. The author’s 

publications 2, 3, 4, 16 and 17 are related to this contribution scalability 

with MapReduce.       
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 Complex Network and Big Graph Data: Big graph data from complex 

network (sensor networks) can be different to process. As a specific 

instance of Complex Network, the scale-free networks are inhomogeneous 

and only a few nodes have a large number of links. Based on the 

characteristics of Scale-free network, to develop algorithms for fast error 

detection and big graph data compression is also a contribution of this 

thesis. The author’s publication 4 is highly related to this contribution.         

1.4 Thesis Outline  

The rest of this thesis is organized as follows: 

 

 Chapter 2 provides an in-depth literature review of the state-of-the-art 

techniques including big data, Cloud, and their related sensing systems, data 

compression techniques and data cleaning techniques. Through analysis and 

comparison, a general over view of the current research situation of data 

curation on Cloud can be got.    

 

 Chapter 3 investigates the problem of scalable and fast big sensing data error 

detection on Cloud. Based on a data error type classification, the big sensing 

data features are analysed to support fast error detection and location on Cloud. 

In other words, the error detection and location process can be dramatically 

accelerated by analysing characteristics of sensing data from complex network 

systems. Through real sensing data experiments on our cloud computing 

platform of U-Cloud, significant performance gains for error detection and 

location can be achieved.  

 

 Chapter 4 investigates the problem of scalable and fast big sensing data 

recovery on Cloud.  A novel error recovery approach is proposed by predicting 

approximate data for replacing detected errors. This prediction and 

approximation will use coverage information, Euclidean distance to calculate 

a time series prediction curve. With the calculated time series, a detected error 
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can be recovered with a predicted data value approximately. Through the 

experiment with real world meteorological data sets on cloud, the proposed 

error recovery approach can achieve significant performance gains.    

 

 Chapter 5 investigates the problems of big sensing data and big graph data 

compression on Cloud. Big sensing data or big graph data will be compressed 

with spatiotemporal features on Cloud. Specifically, in each time series or a 

single graph edge, temporal data compression is conducted. By exploring 

spatial data correlation, we partition a graph data set into clusters. In a cluster, 

the workload can be shared by the inference based on time series similarity 

with a novel data driven scheduling. Real big sensing data experiments are 

designed to test the effectiveness and efficiency of the proposed technique.  

 

 Chapter 6 investigates the problem of big sensing data compression on Cloud 

with non-linear regression prediction model. In real world applications, such 

as earthquake wave and transmission monitoring, the incoming big sensing 

data can be extremely bumpy and discrete. To face the challenges brought by 

those real world big sensing data, a novel on-Cloud non-linear regression 

prediction model are introduced in this Chapter. Through our real world 

sensing data experiments, this compression based on non-linear regression 

achieves significant storage and time savings compared to previous 

compression models over certain big sensing data sets.    

 

 Chapter 7 investigates the problem of on-Cloud big sensing data compression 

with data chunks. A novel scalable data compression approach based on 

calculating similarity among the partitioned data chunks is developed instead 

of compressing basic data units. To restore original data sets, some restoration 

functions and predictions will be designed and offered in this chapter. With 

real world meteorological big sensing data experiments, the proposed scalable 

compression approach based on data chunk similarity demonstrates significant 

improvement in terms of data compression ratio and data accuracy.      

 

 Chapter 8 concludes the contents in this thesis with an outlook of future work.    
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Chapter 2                                      

Related Work   

It is becoming a practical requirement that we need to process big data from multiple 

data sources in a real time fashion. That is, we enter into the time of data explosion 

which brings about new scientific challenges for big data processing. In general, big 

data [1-2] is a collection of data sets so large and complex that it becomes extremely 

difficult to process with on-hand database management systems or traditional data 

processing tools. It represents the progress of the human cognitive processes, usually 

includes data sets with sizes beyond the ability of current technology, method and 

theory to capture, manage and process the data within a tolerable elapsed time [1-2, 

14-15].       

2.1 General Research Trend  

Big data is not only about the data characteristics themselves, but also about a whole 

new big data technology architecture including new storage, computation models and 

analytic tools, in search of appropriate problems in big data applications to solve [7, 

10]. Advances in big data storage, processing and analysis, regarded as drivers of big 

data, mainly include the rapidly decreasing cost of storage and computation 

infrastructure, the scalability, flexibility and cost-effectiveness of data centres and 

cloud computing, new parallel and distributed computing paradigms and their rapidly 

evolving frameworks such as the Apache Hadoop ecosystem [45]. 
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According to literatures [1-2], since 1980s, generated data doubles its size in every 40 

months all over the world. In the year of 2012, there were 2.5 quintillion (2.5×1018) 

bytes of data being generated every day. Currently, data size is measured with Exabyte, 

and in the year of 2015, there were around 10,000 exabytes digital data being 

generated. Following that digital data explosion, the size of big data expects to surpass 

40,000 exabytes in year 2020 [16]. Big data sets have their size beyond the processing 

capability of current popular data processing technology, tools and theory. Capturing, 

managing, and processing big data within a tolerable elapsed time become quite 

challenging [1-2, 5]. Specifically, big data can be characterised by the 5Vs problems 

[12, 17-19] which are listed and explained as follows.    

 

Volume: It refers to the vast amount of data generated every second. Nowadays, 

about 90 percent of the world’s data is created in the last 2 years. High volume of 

data being collected daily creates an immediate challenge to businesses for real 

time processing. The typical examples include emails, Twitter messages, photos, 

video clips and sensing data that we produce and share every second in even 

zettabytes. Another example is Facebook on which we send 10 billion messages 

per day, make 4.5 billion button clicks and upload 350 million new pictures every 

day. This data explosion makes data sets too large to store and analyse using 

traditional database technology. 

  

Velocity: It refers to the speed at which new data is generated and the speed at 

which data moves around. For instance, social media messages communicate in 

minutes, the speed at which credit card transactions are checked for fraudulent 

activities or the milliseconds it takes trading systems to analyse social media 

networks to pick up signals that trigger decisions to buy or sell shares. The New 

York Stock Exchange captures about 1 terabyte of trade information daily. 

Reacting fast enough and analysing the streaming data is critical to businesses, 

with speeds and peak periods often inconsistent. Big data filtering technology 

should be able to analyse the data without accessing traditional databases.         

 

Variety: It refers to the different types of data could be encountered. In the past 

we focused on structured data that neatly fits into tables or relational databases 
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such as financial data. In fact, 80 percent of the world’s data is unstructured, even 

heterogeneous data. Therefore it can’t simply be put into tables or relational 

databases. For example, big data sets can have images, graphs, video sequences 

or social media updates data at the same time. With big data technology we should 

harness differed types of data including messages, social media conversations, 

photos, sensor data, video/voice data together.   

 

Veracity: It refers to the data uncertainty and impreciseness. With many types of 

big data, quality and accuracy are less controllable. For example, Twitter posts 

with hashtags, abbreviations, typos and colloquial speech. Big data and analytics 

technology should allow people to work with all these types of data. The volumes 

often make up for the lack of quality or accuracy.   

 

Value: It refers to the ability turn our data into value. It is important that 

businesses make a case for any attempt to collect and leverage big data. It is easy 

to fall into the buzz trap and embark on big data initiatives without a clear 

understanding of the business value it will bring. Big data offers incremental value 

to organizations, but tends to have low value density. The value density means 

that the ratio of business is relevant to the scale of the data. The paradox is that it 

is impossible to know a value in a given big data set until certain analysis would 

have been done.    

2.2 Big Data Processing and Cloud 

To handle the above problems brought by big data, scientists are seeking new ways 

and developing novel techniques. Cloud [3, 5, 9, 44, 104] with its computing and 

storage capability provides a promising platform to assist the processing and analysis 

of big data. Cloud has attracted great attention of research community in alignment 

with big data and its related processing [36].     

Cloud computing can be regarded as an ingenious combination of a series of 

developed or developing ideas and technologies, establishing a pay-as-you-go 

business model by offering IT services using economies of scale [21, 25]. Cloud 
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computing is the use of computing resources that are delivered as a service over a 

network. The name comes from the use of a cloud-shaped symbol as an abstraction 

for the complex infrastructure it contains in system diagrams. Cloud computing 

provides an ideal platform for big data storage, dissemination and interpreting with its 

massive computation power [21, 26-27]. In many today’s real world applications, 

such as social networks, complex network monitoring, the scientific analysis of 

protein interactions and modern sensing systems, it is unavoidable to encounter the 

problem of dealing with big data and big data streams on Cloud.  

Specifically, Amazon EC2 [19, 27] infrastructure as a service on Cloud is built up 

for distributed data process. Amazon S3 supports distributed storage. MapReduce [29-

32] is adopted as a programming model for big data processing over Cloud computing. 

Plenty of recent research has investigated the issues of processing incremental data on 

cloud.  Kienzler et al. [25] designed a “stream-as-you-go” approach to access and 

process on incremental data for data-intensive cloud applications via a stream-based 

data management architecture. Aboulnaga et al. [65] discussed the problem of the 

workload management fundamentals. They present tools and techniques for workload 

management in parallel databases and MapReduce on Hadoop cluster. They also 

present some of these tools as case studies and discuss the underlying techniques with 

MapReduce. Workload management for MapReduce is still a fledgling research area 

for big data processing on Cloud.   

The extension of the traditional Hadoop framework [32] to develop a novel 

framework named Incoop by incorporating several techniques like task partition and 

memorization-aware schedule. Olston et al. [29] present a continuous workflow 

system called Nova on top of Pig/Hadoop through stateful incremental data processing. 

MapReduce has been widely revised from a batch processing framework into a more 

incremental framework for analysing huge-volume of incremental data on Cloud. It is 

a framework for processing parallelizable problems of big datasets by using a large 

collective computer cluster where all computers are on the same local network. It is 

capable of sorting a petabyte of data in only a few hours. The parallelism also provides 

some possibility of recovering from partial failure of servers or storage during the 

operation.      
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According to the above literature, most of current big data processing and analysis 

techniques on Cloud focus on the workload distribution, scalability, data filtering 

speed, and query accuracy.       

2.2.1 Big Sensing Data  

With the progress of human technology, large-scale complicated sensing systems 

have been used in different areas, such as environment monitoring, military, disaster 

warning and scientific data collection etc. [1-2, 6]. Consequently, big data sets and 

data streams from those sensing systems are continuously generated. Similar to 

common big data, big sensing data refers to data collection in real world sensing 

systems have been growing tremendously and complicatedly so that traditional data 

processing tools are incapable of handling the data processing including collection, 

storage, processing, mining, sharing, etc., within a tolerable elapsed time. Big sensing 

data is an important big data type in terms of its origin. Big sensing data sets are 

commonly encountered in modern distributed sensing systems deployed around us [6, 

11, 50, 74, 102, 105-106].     

Those sensing systems have significantly enhanced our ability to observe and 

interact with our surrounding environment. In aviation industry, a Boeing jet generates 

10 terabytes of information per engine during every 30 minutes flight, according to 

Teradata [16, 19]. During a single six-hour, cross-country flight from New York to 

Los Angeles with a Boeing 737 jet plane, totally a massive 240 terabytes of data will 

be generated by different sensing monitoring systems. Within the whole United States, 

there are more than 28,000 commercial flights in the sky daily. Different sensing data, 

from both commercial flights and their ground controlling systems, sensing data 

quickly expands to the petabyte scale.  

In the social media areas.  In the next five years, sensing data will hit the crossover 

point with unstructured data generated by social media. According to literature [16, 

19], sensing data will dominate by factors 10-to-20 times that of social media. To 

utilize this data will be difficult for the time limitation because no standard to ensure 

the data readability, suitable software or algorithm. Big sensing data can also come 

from traffic monitoring sensing systems. For example, a roadway may have traffic 

monitoring sensors embedded. The road and its surroundings may be monitored by 
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sensing systems from satellites to the sensors deployed in each different vehicle. 

Those mixed data is collected continuously in terabytes scale for applications 

including trying to optimize routes for transportation efficiency [19].  

All in all, according to [19], the amount of sensing data will be continuing to rise. 

So, to figure out how to manage it, what to keep and how to mine it for useful 

information is becoming increasingly important day by day. Effectively utilizing this 

big sensing data, from energy to fuel consumption to weather data, could undoubtedly 

provide valuable tools or environmental sustainability. Big sensing Data is a big 

opportunity, but it’s also leading to big questions, including how to effectively detect 

and recover the errors from the big sensing data sets with huge size and extreme 

complexity.      

To support sensing data or big sensing data processing, some techniques, 

platforms and framework have also ready been developed. Sensor-Cloud platform [28, 

43, 46] has been developed for processing big sensing data on Cloud, including its 

definition, architecture, and applications. Due to the features of high variety, volume, 

and velocity, big data is difficult to process using on-hand database management tools 

or traditional Sensor-Cloud platform. Big data sets can come from Complex Network 

systems [54], such as social network and large scale sensor networks. In addition, 

under the theme of complex network systems, it may be difficult to develop time-

efficient detecting or trouble-shooting methods for errors in big data sets, hence to 

debug the complex network systems in real time [43]. 

Sensor-Cloud [46] is a unique sensor data storage, visualization and remote 

management platform that leverages powerful cloud computing technologies to 

provide excellent data scalability, fast visualization, and user programmable 

analysis.  Initially, Sensor-Cloud was designed to support long-term deployments of 

MicroStrain wireless sensors. But nowadays, Sensor-Cloud has been developed to 

support any web-connected third party device, sensor, or sensor network through a 

simple OpenData API. Sensor-Cloud [28] can be useful for a variety of applications, 

particularly where data from large sensor networks needs to be collected, viewed, and 

monitored remotely. For example, structural health monitoring and condition-based 

monitoring of high value assets are applications where commonly available data tools 

often come up short in terms of accessibility, data scalability, programmability, or 
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performance. Sensor-Cloud represents a direction for processing and analyzing big 

sensing data using Cloud platform.  

Ma et al. [53] discussed the challenges and opportunity for remote big sensing 

data processing. Remote sensing (RS) data are undergoing an explosive growth 

currently. The proliferation of data also give rise to the increasing complexity of RS 

data, like the diversity and higher dimensionality characteristic of the data. Remote 

sensing is generally defined as the technology of measuring the characteristics of an 

object or surface form a distance. The RS data includes the earth observing data 

continuously obtaining from space-borne and airborne sensors, as well as some other 

data acquisition measurements. According to paper [53], current research work of 

remote sensing big data mainly includes four topics as follows.     

 

 Some supercomputers and Cloud computing platforms optimized for data-

intensive loads  

 

 Parallel file systems and databases take the data availability and locality 

as the main concern 

 

 The data managing tools for memory data placement controlling for 

multilevel data locality 

 

 Task scheduling focusing on large amount of dependent tasks and 

considering data availability 

 

With the exponential growth of data amount and increasing degree of diversity 

and complexity, the remotely sensed data are regarded as RS “Big Data”. Big RS data 

occurs when a large collection of data sets whose volume and rate of data is at a scale 

that is far beyond the state-of-the-art systems and revolutionize the way of seeking 

solutions. This is also the case for the remote sensing and earth sciences domain to 

offer the definition of what RS “Big Data” really is. The RS “Big Data” not merely 

refers to the volume and velocity of data that outstrip the storage and computing 

capacity, but also the variety and complexity of the RS data. There are several aspects 

and features of the RS “Big Data” that need to be discussed: the huge volume and rate 
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of RS data, the diversity of RS data and also the complexity of RS data especially the 

higher dimensionality.   

Amazon [19, 104] has developed a series on-Cloud big data processing 

applications. For example, transportation monitoring systems has been developed 

which collected and analysed the real time traffic monitoring data on Cloud to make 

forecast and avoid traffic accidents. Another big sensing data Cloud processing 

application developed by Amazon’ Big data on AWS projects is medical sensing data 

analytic tool [19, 104]. In this application, sensing data from body sensors and medical 

sensors in all USA can be integrated into Cloud platform for intensive analysis to fulfil 

the tasks such as illness forecasting, government policy aid, diseases spreading 

research and other scientific purposes.        

Opportunities are always followed by challenges. In the prospect of the further 

requirements in the near future, the demand for real time processing, on-demand 

processing as well as the in-transit processing of standard big sensing data products 

with Cloud computing will bring great opportunities.       

2.2.2 Big Graph Data  

Most of big sensing data comes from complex sensing network systems [49, 106] such 

as wireless sensor networks. It is unavoidable to form the big sensing data set with 

graph features or big graph data because of the locations and communications among 

different sensor nodes. It is well known that in the research community that big graph 

data causes more difficulties because of its carried graphic features [48, 103].       

In computer science and mathematics, graphs are abstract data structures to model 

structural relationships among objects. They are widely used for data modelling in 

application domains for which identifying relationship patterns, rules, and anomalies 

is useful. These domains include the web graph, social networks, the Semantic Web, 

knowledge bases, protein-protein interaction networks, and bibliographical networks, 

among many others. The ever-increasing size of graph-structured data for these 

applications creates a critical need for scalable systems that can process large amounts 

of it efficiently. In other words, big graph data is now creating new challenges in terms 

of efficient data processing for higher level data analytical applications.   
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For example, the web graph is a dramatic a large-scale graph. Google estimates 

that the total number of web pages exceeds 1 trillion; experimental graphs of the 

World Wide Web contain more than 20 billion nodes and 160 billion edges. Graphs 

of social networks are another example. Facebook reportedly consists of more than a 

billion users and more than 140 billion friendship relationships in 2012. The LinkedIn 

network contains almost 8 million nodes and 60 million edges. In the Semantic Web 

context, the ontology of DBpedia (derived from Wikipedia), currently contains 3.7 

million objects and 400 millions facts9. 

To solve the problem of big graph data processing on Cloud, some methods been 

proposed with MapReduce based parallel Cloud computing models [33-34]. With 

Google's MapReduce framework, commodity computer clusters can be programmed 

to perform large-scale data processing in a single pass. MapReduce is not initially 

designed to support online query. MapReduce is optimized for analytics on large data 

volumes partitioned to be deployed on hundreds of machines. Apache Hadoop is an 

open source distributed-processing framework for large data sets with MapReduce 

implementation. It is popular due to its simplicity and scalability.  

Lattanzi et al. [33] offers a solution for big Graph data processing with a filtering 

algorithm. This novel algorithm reduces the size of the data input in a distributed 

fashion to realize much smaller, problem instance which can be solved with a single 

machine. Specifically, this algorithms can be presented for minimum spanning trees, 

maximal matchings, approximate weighted matchings, approximate vertex and edge 

covers and minimum cuts. Lattanzi et al. parameterize our algorithms by the amount 

of memory available on the machines to show the trade-offs between the memory 

available and the number of MapReduce rounds. Finally, the maximal matching 

algorithms were implemented to show that the significant speedup is achieved [33].     

However, MapReduce have big disadvantage when processing big graph data in 

terms of computing efficiency [48-49]. Specifically, MapReduce isolates the 

application developer from the details of running a distributed program, such as issues 

of data distribution, scheduling, and fault tolerance. From the graph-processing point 

of view, the basic MapReduce programming model is inadequate because most graph 

algorithms are iterative and traverse the graph in some way. Hence, the efficiency of 

                                                 
9 http://www.ibm.com/developerworks/library/os-giraph/ 
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graph computations is high correlated to inter-processor bandwidth as graph structures 

are sent over the network iteration after iteration.  

The basic MapReduce programming model does not directly support iterative 

data-analysis applications. To implement iterative programs, programmers might 

manually issue multiple MapReduce jobs and orchestrate their execution with a driver 

program. In practice, the manual orchestration of an iterative program in MapReduce 

has two key problems9. (1) The data must be reloaded and reprocessed at each iteration 

which dramatically enhance the computation cost. (2) The termination condition 

might be used for detecting a fix point. Hence, extra MapReduce job is brought on 

each iteration. It again increases resource use in terms of scheduling extra tasks, 

reading extra data from disk, and data communication. To better process big graph 

data on Cloud, some new technique is developed [48, 103-104] to improve the 

iteration efficiency or avoid unnecessary iteration.   

2.2.3 MapReduce/Spark and Hadoop Applications  

MapReduce and Apache Spark [37, 47] are popular for parallel and distributed large-

scale data processing programming. It has been extensively studied and widely used 

for lots of big data applications [30-31]. It enables huge volume of data to be processed 

in parallel with many low-end commodity computers. Programming simplicity, 

scalability and fault-tolerance are three main salient features of MapReduce. Bing 

integrated with infrastructure resources provisioned by Cloud systems, MapReduce 

achieves more paralleling power, flexibility and cost-efficiency with its characteristics 

of Cloud. A typical example is the Amazon Elastic MapReduce EMR service.  

In general, a MapReduce application is composed with two primitive functions, 

Map and Reduce, denoted with a data structure named key-value pair ( , ). 

The Map function can be formalized as : ( , )  ( , ), i.e., Map takes a 

pair ( , ) as input and then outputs another intermediate key-value pair ( , ). 

These intermediate pairs are consumed by the Reduce function as input. Formally, the 

Reduce function can be represented as : ( , )  ( , ), i.e., Reduce 

takes intermediate  and all its corresponding values ) as input and outputs 

another pair ( , ). Usually, ( , ) list is the results which MapReduce users 

attempt to obtain. Both Map and Reduce functions are specified by users according to 
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their specific applications. An instance running a Map function is called Mapper, and 

that running a Reduce function is called Reducer.  

To make such a simple programming model powerful, MapReduce provides 

many fundamental mechanisms such as data replication and data sorting. Between 

Map phase and Reduce phase exists a Shuffle phase, during which the intermediate 

key-value pairs are sorted according to keys. This mechanism is quite useful for many 

complex applications to improve scalability. Moreover, distributed file systems like 

HDFS (Hadoop Distributed File System) [42] are substantially crucial to make 

MapReduce framework run in a highly scalable and fault-tolerant fashion.  

Initially, the MapReduce framework is designed for batch processing, but it has 

been extensively revised into many variations to for data in various scenarios recently 

[30]. Incoopis [32] proposed for incremental MapReduce computation, which detects 

changes to the input and automatically updates the output by employing an efficient, 

fine-grained result reuse mechanism. Olston et al. [29] presented a continuous 

workflow system called Nova on top of Pig/Hadoop through stateful incremental data 

processing technique.  

Li et al. [41] proposed a Hadoop-based platform to support incremental one-pass 

data analytics by employing hash techniques and a frequent key based technique. 

Because standard MapReduce framework lacks build-in supports for the iterative 

programming paradigm which arises naturally in many applications like data mining, 

web ranking and graph analysis, two platforms HaLoop [35] and Twister [38] are 

designed to mitigate such shortcomings. HaLoop leverages loop-aware task 

scheduling and caching mechanisms to support data reuse across iterations and reduce 

I/O cost of data loading and shuffling, while Twister allows iterative computation via 

utilizing a publish/subscribe messaging infrastructure for communication and data 

transfers.   

MapReduce also greatly contributes to address the scalability problem in real 

world applications. There are three scenarios where MapReduce can be adopted in big 

data applications. In the first scenario, a fully MapReduce based solution can be 

designed. Under this scenario, inherently parallel and the control flow can be 

parallelized, e.g., the word count problem. The second scenario is to leverage certain 

steps of an application with MapReduce to achieve data-intensive computation. Under 

this scenario, we need to analyse and partition the control flow to detect data intensive 
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computation parts. Under the third scenario, data sets need to be partitioned by 

MapReduce and algorithms for an application running on working nodes 

independently in a parallel manner. In other word, clustering methods are performed 

as plug-in in MapReduce workers to clustering big data [39-40]. It should be 

mentioned that the accuracy of results is probably sacrificed for achieving scalability.  

2.3 Big Data Cleaning Techniques     

Big data set from sensing systems is often subject to corruption and losses due to 

wireless medium of communication and presence of hardware inaccuracies in the 

nodes. For a sensing systems applications such as wireless sensor networks (WSN), 

to deduce an appropriate result, it is necessary that the data received is clean, accurate, 

and lossless. However, to effectively detect and recover big sensing data errors are 

challenging issues waiting for innovative solutions [69, 73-78].           

Lots of sensing system can be categorized as a kind of Complex network systems 

[49, 54]. In these complex network systems [54-57], such as WSN and social network, 

data abnormality and error become an annoying issue for the real network applications 

[53, 59, 63, 66-68]. Therefore, the question of how to find data errors in complex 

network systems for improving and debugging the network has attracted the interests 

of researchers.         

2.3.1 Error Detection     

Big sensing data error detection commonly requires powerful real-time processing 

and storing of the massive sensor data as well as analysis in the context of using 

inherently complex error models to identify and locate events of abnormalities. The 

popular Sensor-Cloud [28, 43, 46, 53] platform has been developed for processing 

bulk sensing data on Cloud. Error detection is the first step for the sensing data 

cleaning.         

Mukhopadhyay et al. [57] proposed a way to more accurate sensing data error 

correction with a scalable method of improving the accuracy of data modelling based 

on on-line estimation and model updates. Both error detection and error recovery 
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problems were discussed in this work. Especially, in terms of its method for error 

detection, an error detection approach was proposed based on dynamic modelling of 

common sensing data errors. Finally, a system was offered and implemented to 

demonstrate a notable improvement compared to earlier approaches. But when it 

comes to big sensing data with five ‘V’ characteristics, their method may lose effect.     

Ni et al. [58] provided a list of features which were commonly used for modelling 

sensor data and sensor data faults. With this, a list of commonly exhibited sensor data 

faults was also offered. With those faults, Ni et al. [58] aimed to test a specific fault 

detection system. In addition, Ni et al. presented a systematic way of looking at sensor 

data faults which could ease the next step of fault detection. With this understanding 

of many possible faults, people can then develop more context-specific diagnosis 

systems. This error type classification in paper [58] can be used as an important 

reference when we define our big sensing data error model in this thesis.    

Slijepcevic et al. [60] paid more emphasis on error location discovery problems 

during the process of error detection process. They demonstrated the benefits of 

location error analysis for system software and applications in wireless sensor 

networks. The technical highlight of the work was a statistically validated 

parameterized model of location errors which can be used to evaluate the impact of a 

location discovery algorithm on subsequent tasks. It was demonstrated that the 

distribution of location error can be approximated with a family of Weibull 

distributions. Then, when performing the location discovery task, the nodes in a 

network could estimate the parameters of the distribution.               

Khan et al. [61] presented a tool for uncovering bugs caused by interactive 

complexity in networked sensing applications. Such bugs were not localized to one 

component that was faulty, but rather resulted from complex and unexpected 

interactions between multiple often individually non-faulty components. Because 

these bugs were often not repeatable, they were particularly hard to find. In addition, 

nn extensible framework was developed where a front-end collects runtime data logs 

of the system being debugged and an offline back-end used frequent discriminative 

pattern mining to uncover likely causes of failure. A case study of debugging a recent 

multichannel MAC protocol was developed to exhibit corner cases of poor 

performance. The above tool helped uncover event sequences that lead to a highly 

degraded mode of operation.  
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Lee et al. [67] presented a distributed fault detection algorithm for wireless sensor 

networks. Faulty sensor nodes were identified based on comparisons between 

neighbouring nodes and dissemination of the decision made at each node. They used 

time redundancy for tolerating transient faults during the process of sensing and 

communication. To avoid delay involved in time redundancy scheme, a sliding 

window technique was employed with some storage for previous comparison results.  

Wang et al. [55] offered a detailed classification for network data. Specifically, 

research on measurement error in network data has typically focused on missing data. 

Wang et al. embedded missing data (false negative nodes and edges) in a broader 

classification of error scenarios. The classification includes false positive nodes and 

edges and falsely aggregated and disaggregated nodes. The classified six 

measurement errors were spotted online in real social network and a publication 

citation network to their effects on four node-level measures. Based on the result, 

Wang et al. suggested that in networks with more positively-skewed degree 

distributions and higher average clustering, these measures tend to be less resistant to 

most forms of measurement error. However, the original work in [55] could not be 

directly used for big sensing data, and it would not be suitable for scalable error 

detection unless future improvement is offered.         

Albert et al. [54] investigated the fault tolerance issues thoroughly in many 

complex systems. They argued that complex communication networks displayed a 

surprising degree of robustness. Even key components regularly malfunction, local 

failures rarely led to the loss of the global information-carrying ability of the network. 

The stability complex systems ware often attributed to the redundant wiring of the 

functional [54]. They concluded that such networks displayed an unexpected degree 

of robustness, the ability of their nodes to communicate being unaffected even by 

unrealistically high failure rates. However, error tolerance paid at a high price in that 

these networks are extremely vulnerable to attacks.        

Sheth et al. [59] and Laptev et al. [62] carried out some work for big data analysis 

and error detection in complex networks including intelligence sensors networks. 

There were also some works related to complex network systems data error detection 

and debugging with on-line data processing techniques [43, 46, 69]. Since these 

techniques were not designed and developed to deal with big data on cloud, they were 

unable to cope with current dramatic increase of data size. For example, when big data 
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sets were encountered, previous off-line methods for error detection and debugging 

on a single computer may take a long time and lose real time feedback. Because those 

off-line methods were normally based on learning or mining [13], they often 

introduced high time cost during the process of data set training and pattern matching. 

It can be concluded that current data error detection techniques for complex 

network systems emphasized on in-network detecting with intelligent nodes or off-

line analysis at the root. They ignored the scalability, massive resource and powerful 

computation capability provided by cloud. The proposed error detection approach in 

this thesis aims to address this issue by utilizing the inherent features of Cloud 

Computing to realize fast error detection. In addition, the traditional error detection 

for WSN data sets has not paid enough attention to making use of complex network 

features to improve the error detection efficiency on Cloud. Compared to the previous 

sensor data error detection and localization approach, complex network topology 

features should be explored with the computation power of Cloud for scalable error 

detection with high efficiency and low cost.                   

2.3.2 Error Recovery  

Following the error detection methods and techniques offered in the above papers, it 

comes to recovery stage according to our big sensing data curation road map. 

Generally speaking, there are two ways to achieve data correctness, replacing errors 

with approximate data, or making data set more robust/fault-tolerant. Some research 

work in this direction is reviewed in the rest of this section.       

Tang et al. [73] provided an overview of recent work in different aspects of data 

cleaning: error detection methods, data repairing algorithms, and a generalized data 

cleaning system. It also included some discussion about current efforts of data 

cleaning methods from the perspective of big data, in terms of volume, velocity and 

variety. According to paper [73] Data cleaning was, in fact, a lively subject that had 

played an important part in the history of data management and data analytics, and it 

still was undergoing rapid development. Moreover, data cleaning was considered as a 

main challenge in the era of big data, due to the increasing volume, velocity and 

variety of data in many applications.  
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Muthukumar et al. [99] proposed an effective framework for data cleaning to 

ensure the data quality and reliability for future analysis. Specifically, data became 

the powerhouse of Information for major analysis in public and private entities. 

Petabytes of information were getting stored as big data storage and it posed a biggest 

challenge for analysis and retrieving, such as the major issue of data errors. Unreliable 

data were bound to outages and losses. The proposed big data statistical analysis [99] 

played a vital role in social related hubs like judicial, medical and Education related 

analysis. Decision making on statistical petabytes of big data would be proper and 

closest accurate results derived by this framework. The processing time over petabytes 

data will be reduced by replication and parallelization technique. 

Vuranand et al. [68] proposed a cross-layer methodology for the analysis of error 

control schemes in Wireless Sensor Networks (WSN). The effects of multi-hop 

routing and the broadcast nature of the wireless channel were investigated. Error 

control was of significant importance for WSN because of their severe energy 

constraints and the low power communication requirements. In this paper, the cross-

layer effects of routing, medium access, and physical layers are considered. This 

analysis enabled a comprehensive comparison of forward error correction (FEC) 

codes, automatic repeat request (ARQ), and hybrid ARQ schemes in WSN. The 

validation results showed that the developed framework closely follows simulation 

results. Vuranand et al. [68] also demonstrated that the advantages of FEC codes were 

even more pronounced as the network density increases. At the same time, transmit 

power control resulted in significant savings in energy consumption at the cost of 

increased latency for certain FEC codes. The results of our analysis also indicated the 

cases where ARQ outperforms FEC codes for various end-to-end distance and target 

PER values.    

Ko et al. [71] developed a parallel dataflow programs generate enormous amounts 

of distributed data that are short-lived, yet were critical for completion of the job and 

for good run-time performance. Ko et al. [71] addressed intermediate data as a first-

class citizen, specifically targeting and minimizing the effect of run-time server 

failures on the availability of intermediate data, and thus on performance metrics such 

as job completion time. New design techniques for a new storage system called ISS 

(Intermediate Storage System), implemented these techniques within Hadoop, and 

experimentally evaluated the resulting system. Under no failure, the performance of 
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Hadoop augmented with ISS (i.e., job completion time) turned out to be comparable 

to base Hadoop. Under a failure, Hadoop with ISS outperforms base Hadoop and 

incurred up to 18% overhead compared to base no-failure Hadoop, depending on the 

testbed setup. 

Environmental sensing was becoming a significant way for understanding and 

transforming the environment, given recent technology advances in the Internet of 

Things (IoT). Current environmental sensing projects typically deployed commodity 

sensors, which were known to be unreliable and prone to produce noisy and erroneous 

data. Unfortunately, the accuracy of current cleaning techniques based on mean or 

median prediction was unsatisfactory. Zhang et al. [74] proposed reliability-based 

sensor data cleaning method, called influence mean cleaning (IMC), to weight the 

mean prediction based on individual sensor reliabilities, and incrementally updates 

sensor reliabilities based on the readings in each data collecting iteration. Zhang et al. 

[74] validated this approach extensively by using both synthetic and real datasets. It 

showed that the proposed IMC could significantly improve prediction accuracy over 

the traditional mean and median methods. When there were sensor condition changes 

in the network, our method also accurately captured different types of changes.     

Andoni et al. [70] presented an algorithm for the c-approximate nearest neighbour 

problem in a d-dimensional Euclidean space. In many cases, an approximate nearest 

neighbour was almost as good as the exact one. In particular, if the distance measure 

accurately captured the notion of user quality, then small differences in the distance 

should not matter. Moreover, an efficient approximation algorithm were used to solve 

the exact nearest neighbour problem by enumerating all approximate nearest 

neighbours and choosing the closest point. Their algorithm could achieved query time 

of O(dn1c2/+o(1)) and space O(dn+n1+1c2/+o(1)). The complexity almost matched 

the lower bound for hashing-based algorithm. Andoni et al. [70] also obtained a space-

efficient version of the algorithm which used dn+n×logO(1)n space, with a query time 

of dnO(1/c2). Finally, practical variants were utilized for fast bounded-distance decoders. 

Based on the work of Andoni et al. [70], the most popular algorithms for performing 

approximate search in high dimensions with the concept of locality-sensitive hashing. 

The key idea of determining near neighbours by hashing functions could be used for 

other error data approximation in recovery process.    
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Mukhopadhyay et al [57]. proposed a way to more accurate sensing data error 

correction with a scalable method of improving the accuracy of data modelling based 

on on-line estimation and model updates. Additionally, they proposed enhancements 

to the data correction algorithm to incorporate robustness against dynamic model 

changes and potential modelling errors. The error recovery strategy of the system was 

evaluation through simulations using real sensor data collected from different sources. 

Experimental results demonstrated that the proposed enhancements lead to an 

improvement of up to a factor of 10 over the earlier approach. However, this recovery 

was lack of distributed and parallel support for big data processing.         

In work [101], a framework of fault control for hydrothermal ore systems was 

offered. Where fault ruptures breach overpressured fluid reservoirs, earthquake 

rupture sequences and associated seismogenic permeability enhancement generated 

pathways for fluid redistribution in tight rocks in the upper half of the continental 

crust. Seismogenic permeability enhancement played a key role in controlling the 

architecture of fluid migration associated with the formation of many types of fault-

related ore systems, including mesothermal gold systems, some iron-oxide Cu-Au 

systems and some intrusion related hydrothermal systems. With the increasingly 

widespread deployment of modern seismometer networks, complemented by 

increasingly precise relocation of earthquake hypocenters, unprecedented insights 

were being gained about the architecture of seismogenic permeability enhancement 

and nature of fluid flow associated with earthquake rupture sequences.  

Based on the above error recovery and error control strategies, to our knowledge, 

no systematic approach has been offered yet for big sensing data error recovery with 

a scalable and parallel computing platform such as Cloud.          

2.4 Big Data Compression Techniques  

To offer a fast, scalable and accurate way for big sensing data volume reduction, 

different techniques and models are widely discussed currently according to research 

literature [50, 52, 79-80, 83, 86-91, 100]. According to the detailed techniques 

adopted in those work, they can be categorized into temporal compression and spatial 

compression. According to the data quality loss situation during the process of 
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compression, they can be categorized into lossy compression and lossless 

compression. In addition, there are other data aggregation or reduction techniques 

which will also be review as follows.        

2.4.1 Spatiotemporal Compression 

Spatiotemporal data suppression and its related data clustering, compression 

techniques can be widely found in network data processing area [79-80, 82-83, 90, 93, 

96]. They are useful in terms of data exchange reduction over Cloud platform.  

There are some typical work for compressing sensing data with temporal or spatial 

correlations. Yoon et al. [79] presented the work of CAG for an updated CAG 

algorithm that formed clusters of nodes with similar values within a given threshold 

(spatial sensing data correlations). The formed clusters remained unchanged as long 

as the sensor values stayed within the given threshold (temporal correlations) over 

time. With the clustering technique, every time, there was only one sensor data being 

transmitted; whereas the data aggregation algorithm without clustering required all 

nodes to transmit. CAG was a typical spatiotemporal data compression model which 

took both temporal and spatial data correlations into consideration when carrying out 

data compression.  

Edara et al. [80] proposed a temporal trend based time series prediction model 

which can predict the future data with a small cost in real time. With respect to data 

compression, the temporal and order compression Yang et al. [52] techniques were 

used to reduce the data exchanges within a network topology. It could be further 

calibrated to satisfy the big data set reduction over Cloud platform. Ail et. al [82] 

proposed by Ail, the spatiotemporal based clustering and order compression were 

chosen adaptively for data compression over sensor networks. However, the data 

exchanging model was quite similar to that over a data exchanging network analysed 

with Cloud computing. In other words, the compression idea in WSN had its potential 

to be used on Cloud for reducing the size of big data set and graph data.    

Shang et al. [94] focused their research on the world wide problem of land 

subsidence caused by excessive extraction of groundwater. Sustained decline in 

groundwater level had a direct impact on land surface elevation. However, the impact 

might not be consistent across subsidence areas. The spatially varying relationship 
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between land subsidence and groundwater level variations remained unclear. Shang 

et al. [94] explored the spatiotemporal changes based on the observed data of 

groundwater levels and benchmark elevations from 2002 to 2009 in the Choshuichi 

alluvial fan of central Taiwan and examines the spatial heterogeneity with 

geographically weighted regression (GWR). With the environmental monitoring 

sensing data, the results revealed that the occurrence and development of land 

subsidence was closely related to the groundwater pumping. Moreover, the influence 

of groundwater level on land subsidence was more significant in the inland area. The 

study could help develop predicting model for any spatiotemporal compression model.   

Zhang et al. [96] intensively investigated the problem of big sensing data 

compression with Cloud Computing. Specifically, they postulated that, by and large, 

the complexity of today’s systems was a result of an architecture that neither 

anticipated nor accommodated the particular needs of big data analytics. There was a 

clear division of labour between storage and processing. The responsibility of storage 

was to store data reliably and to provide as much IO-bandwidth to the data as possible. 

However, applications were rarely interested in raw data records. Instead, they 

commonly issued queries against aggregated values (e.g. sum...group by...), which 

could be understood by humans. Most of users’ interests were analytics that “query 

impressions”, i.e., high-value statistics such as majority, mode, top-K and outliers. 

This was especially the case for high dimensional data, a combination of numerous 

data attributes that could typically be represented in a sparse form at little loss of 

fidelity. Zhang et al. [96] demonstrated that for this category of big data analytics—

cases such as top-K analysis and outlier detection that constitutes a large portion of 

production workloads as we observed—new system-level abstractions could yield 

fundamental improvements in performance and scalability. This work was a good 

foundation for on-Cloud compressing big sensing data.    

Handy et al. [81] proposed Low Energy Adaptive Clustering Hierarchy 

("LEACH") [81] to aggregate sensing data according to spatial clusters. It was a 

TDMA-based MAC protocol which is integrated with clustering and a simple routing 

protocol in  networks systems such as WSN. The development goal of LEACH was 

to provide data aggregation for sensor networks while providing energy efficient 

communication that did not predictably deplete some nodes more than others. LEACH 

was a hierarchical protocol in which most nodes transmit to cluster-heads, then the 
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cluster-heads aggregated and compressed the data, finally forwarded it to the base 

station. Each node used a stochastic algorithm at each round to determine whether it 

would become a cluster-head in this round. Nodes that have been selected as cluster-

heads could not become cluster-heads again for next k rounds in LEACH, where k 

was the desired percentage of cluster heads. Hence, each node had a “1/k” probability 

of becoming a cluster-head in each round. At the end of each round, each node that 

was not a cluster head selected the closest cluster-head to join a cluster. Eventually, 

all nodes that were not cluster-heads only communicated with the cluster head 

according to the schedule created by the cluster-head. LEACH offered a possibility to 

automatically select suitable cluster-heads in terms of energy situation and radio 

coverage. It solved the technical issues such as topology construction and routing table 

maintenance. However, all the processing of LEACH was carried out during the stage 

of compressive sensing or networking stage. It had no discussion about the issue of 

scalable storage over large public computing platforms, such as Cloud.     

2.4.2 Lossy and Lossless Compression  

According to the data quality of final compression results, the data compression can 

be categorized as lossy compression and lossless compression. In real world 

applications, most of compression are lossy compression which trade off the data 

accuracy for smaller data size. However, there are also lossy compressions which have 

narrow chance to be adopted in real world applications.  

Lossless compression is commonly used for modelling and problems analysis 

when some assumption can be offered. However, under the theme of big sensing data, 

in order to gain significant data volume reduction, it is almost impossible to deploy 

lossless compression. Lossless compression can be achieved by encoding of data with 

the orders of data units. Yang et al. [52] developed a novel approach to compress the 

in-network aggregate data based on the order compression techniques. Firstly, an 

lossless compression approach was designed and offered to decrease the WSN data 

transmission size based on maintained data history tables. Secondly, it was based on 

the in-network prediction technique and gave further optimization for the previous 

work [80]. Thirdly, previous order compression techniques were used for representing 

specific data values and were often not generalized. Instead of using order for 
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encoding specific values, the order information was used for representing a location 

in the data history table as an index, which was novel in WSN research area. Finally, 

the real sensing data experiments demonstrated significant performance gains of the 

proposed algorithm. The overall compression in this paper was lossy compression. 

However, the basic idea of order compression was originated from encoding and 

decoding data units. It was a lossless compression model.   

Compared to lossless data compression, there are large number of lossy 

compression techniques. Especially for earthquake data sets or high frequency data 

sets where violent changes often occur with unpredictable fluctuations, lossless 

compression will totally lose its effects. Under those situations, successful lossy 

compression becomes important.  

Yu. et al. [92] proposed a way for processing strong motion records from 

earthquakes after earthquake monitoring sensing data had been gathered. Their 

proposed conventional process included: the arrangement, transition, unification of 

data-format, input and the zero-line correction of the original strong motion records, 

and then plotting the time-histories of the uncorrected acceleration records in uniform-

format. Their steps of zero-line correction were as follows. Firstly, calculate the 

average acceleration of the first 20 seconds of the original acceleration record. 

Secondly, the original acceleration record subtract the average acceleration Followed 

by the conventional process. Then, the original records were corrected with different 

bandpass filters separately. Hence, they were integrated to get the velocities and 

displacements, the response. At the same time, Fourier amplitude spectra was also 

calculated routinely. Finally the time-histories of the uncorrected accelerations, the 

corrected accelerations, velocities, displacements, the response and Fourier amplitude 

spectra of the corrected accelerations were plotted in uniform-format. Their method 

for recognizing and approximating strong motion record [92] can be very useful in 

compressing high fluctuated data sets.    

Thomas et al. [95] proposed a hybrid soft computing method combining artificial 

neural network (ANN) and simulated annealing (SA), called SA-ANN  to build a 

prediction model for the peak ground acceleration (PGA). This model applied PGA 

to earthquake source to site distance, earthquake magnitude, average shear-wave 

velocity, faulting mechanisms, and focal depth. This proposed PGA model was 

developed based on an Iran tectonic database containing 179 records. The main 
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contribution of this work was that the proposed SA-ANN relationship provided 

reliable estimation of the PGA and had high degree of accuracy (ρ = 0.0908) and 

better than basic ANN and well-known methods according to the current literature. 

Their parametric study also confirmed that there was no any trend with respect to the 

variables. The closed form of SA-ANN-based design equation provided analysis tool 

for future research. The explicit formula could be easily used in a spreadsheet or hand 

calculations to give predictions of the PGA values. 

Jiang et al. [97] established a compressive network analysis framework by 

connecting the network data analysis to modern statistical learning and signal 

processing theories. Firstly, under the compressive network analysis framework, Jiang 

et al. [97] studied the network clique detection problem. Then, this problem was 

formulated into a compressive sensing problem. They provided theoretical proof 

based on that formulation. Jiang et al. showed that the formulated optimization 

problem can reliably recover the underlying network cliques in a variety of scenarios. 

Secondly, Jiang et al. provided a polynomial time approximation algorithm to solve 

the network clique detection problem in based on the formulation. Based on the 

sparsity assumption, the solution of the optimization problem could be solved 

efficiently, by utilizing the cutting plane methods. Finally, Jiang et al. validated their 

formulation and algorithm with numerous application examples. However, the 

technique in this paper could be extended to big sensing data compression on Cloud.    

Chun et al. [98] discussed two important problems including slow acquisition and 

intrusive acoustic noise. According to the paper [98], parallel MRI (pMRI) techniques 

accelerated acquisition by reducing the duration and coverage of conventional 

gradient encoding. The under-sampled k-space data was detected with several receiver 

coils surrounding the object, using distinct spatial encoding information for each coil 

element to reconstruct the image. However, this scanning was slow compared to 

typical clinical imaging (e.g. X-ray CT). Compressed Sensing (CS), a sampling theory 

based on random sub-sampling showed its potential to further reduce the sampling 

used in pMRI, accelerating acquisition further. Chun et al. [98] proposed a new CS 

SENSE pMRI reconstruction model promoting joint sparsity across channels and 

enhancing mutual incoherence to improve reconstruction accuracy from limited k-

space data. For fast image reconstruction and fair comparisons, all reconstructions 

were computed with split-Bregman and variable splitting techniques. With the 
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introduced methods, reconstruction performance can be crucially improved with 

limited amount of k-space data. However, this compressive sensing strategy have 

promising potential to be improved and extended in terms of scalability for big sensing 

data compression on Cloud.           

2.4.3 Other Compression Techniques   

In order to reduce the volume of big data sets, Sidiropoulos et al. [83] developed a 

different data reduction methods especially for compressive sensing for sparse and 

low-rank tensors. Low-rank tensors were synthesized as sums of outer products of 

sparse loading vectors, and a special class of linear dimensionality-reducing 

transformations that reduced each mode individually. It was proved that interesting 

“oracle” properties exist. The proofs naturally suggested a two-step approach for 

processing big sensing data on Cloud. However, the extension and improvement are 

required to face new issues of big data and Cloud.  

Ramaswamy et al. [84] proposed a data quality (DQ)-centric big data 

infrastructure for federated sensor service clouds was proposed. The paper explored 

the advantages and limitations of current big data technologies in building various 

components of the platform. The trade-off between data size and data quality was 

discussed. 

Cuzzocrea et al. [85] focused on the problems including state-of-the-art analysis 

and open research issues in the context of Cloud-enabled largescale sensor networks. 

This research naturally complemented the emerging big sensing data paradigm. It 

focused in particular on the issue of representing and managing Big Data, with 

emphasis on analytics over Big Data, as well as processes and architectures working 

with such data, with emphasis on Wireless Sensor Networks (WSNs), and drew future 

directions in this field.  

Fang et al. [86] developed recovery algorithms based on compressive sampling 

(CS). Specifically, to speed up the least-squares module, the matrix-inverse-update 

algorithm was adopted. That developed algorithm had the potential to be used for 

compressing big sensing data on Cloud. But it could not be used directly due to the 

new requirement such as extreme high data speed, distributed environment and 

scalability.    
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Wang et al. [87] proposed an anomaly detection technique for through-wall 

human detection to demonstrate the big sensing data processing effectiveness. This 

technique was totally based on compressive sensing. The results showed that the 

proposed anomaly detection algorithm could effectively detect the existence of a 

human being through compressed signals and uncompressed data.  

Wang et al. [88] proposed an adaptive data gathering scheme by compressive 

sensing for wireless sensor networks. By introducing autoregressive (AR) model into 

the reconstruction of the sensed data, the local correlation in sensing data was 

exploited and thus local adaptive sparsity was achieved. Up to about 8dB SNR gain 

could be achieved over conventional CS based method. There was also technique 

focusing on parallel data storing over large-scale distributed storage stock of Cloud 

platform. The stored big graph data or stream data sets would be queried and evaluated 

as the model of distributed data-base in Cloud, such as “Hydoop” [45] and its related 

“Hive”, “HBase”, “Zookeeper”, and so on.    

Based on the above literature, current big sensing data processing or compression 

algorithms work at sampling or data unit navigation level. However, due to the huge 

volume of the big sensing data, the only data size reduction at that level is not enough. 

Novel data compression techniques should be developed to dramatically reduce the 

stored data size and time cost for data manipulation. In addition to compressing data 

unit one by one at sampling stage and traditional compression techniques which 

compare data units at a low level, some compression based on huge data blocks in big 

sensing data should be expected. At the same time, the computation power and the 

scalability feature of Cloud computing should be further exploited within the 

framework of MapReduce/Spark.     

2.5 Related Platforms and Data Sets   

Throughout the rest of this thesis, the real world big sensing data experiments will be 

carried out for testing our proposed new techniques and algorithms. This Cloud 

Computing Platform and all testing big sensing data sets will be introduced for 

analysis first as follows.     
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2.5.1 U-Cloud Platform  

U-Cloud [48-50, 72] is a cloud computing environment constructed at University of 

Technology Sydney (UTS). The system overview of the U-Cloud system is depicted 

in Figure 2-1. The computing facilities of this system are located among several labs 

in the Faculty of Engineering and IT, UTS. On top of the hardware and the Linux 

operating system Ubuntu 10 , we installed KVM virtualization software 11  that 

virtualized the infrastructure and provided unified computing and storage resources. 

To create virtualized data centres, we further installed the OpenStack open source 

Cloud platform which was responsible for virtual machine management, resource 

scheduling, task distribution, interaction with users, etc. OpenStack can support 

various types of virtual machines. This OpenStack Cloud environment is totally based 

on Apache Spark clusters. Furthermore, Hadoop [29, 42, 45, 107-110] clusters is built 

up and installed to facilitate Spark/MapReduce computing paradigm and big data 

processing. Based on the above virtual machines offered by OpenStack, data 

curation/preparation can be realized in a parallel manner as described in the contents 

of this thesis.     

 
Figure 2-1 U-Cloud Environment with Apache Hadoop Cluster 

 

Finally, our whole data curation roadmap is developed and deployed based on U-

Cloud platform. All the experiments are conducted on U-Cloud. Each group of 

                                                 
10 http://www.ubuntu.com/, accessed on March 30th, 2016. 
11 http://www.linux-kvm.org/page/Main_Page, accessed on March 30th, 2016.  
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experiments is designed according to different specific techniques according to their 

different application requirements such as data compression and data cleaning.    

2.5.2 Big Sensing Data Sets   

To test the effectiveness and efficiency of the develop technique in our data curation 

roadmap, a series of real world big sensing data sets are selected based on their 

different data characteristics. In our experiments, those real world sensing data sets 

will be fed to our developed algorithms running on U-Cloud. They are briefly 

categorized into three groups according to their data sources in the real physical world. 

They are Meteorology Sensing Data, Environment Sensing Data and Earthquake wave 

Sensing Data.               

 

 Meteorology sensing data is important for atmospheric composition research, 

cyclones research, air flow research, observation networks research, weather 

forecasting etc. Meteorology sensing data can come from lots of real world 

measurements. Among them, data sets from sensing or sensor systems are 

commonly encountered in our current everyday life. For example,                     

professional stations may include air quality sensors, flood sensor, lightning 

sensor etc. to calculate useful meteorology information for. One widely used 

technique is remote sensing in meteorology. It is the concept of collecting data 

from remote weather events and subsequently producing weather information. 

The common types of remote sensing are Radar, Lidar, and satellites. In our 

experiments in this thesis, four common types of meteorology sensing data are 

used from open civil data sources including temperature sensing data, 

atmospheric pressure data, relative humidity data and wind speed data. Those 

meteorology sensing data sets are specifically selected for the experiments in 

the Author’s Publication 2 & 17.  

 

 Environmental sensing data becomes widely known with the introduction of 

wireless sensor networks with the progress of modern technology. Over the 

past few years, the most significant trend in environmental sensors has been 

in personal, portable devices that measure air and water quality from our 
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pockets or wrists. For example, by making these sensors small and usually 

Bluetooth or Wi-Fi enabled, merely carrying out our normal daily routines 

could make citizen scientists of us all, significantly increasing the amount and 

precision of environmental data through crowdsourcing. From smartphone 

embedded sensors to those you wear or plug in wherever you are, new personal 

environmental sensors will change the way that data is gathered, analyzed and 

consumed. Everyone may be able to walk around with one or more sensors 

with them, giving scientists and everyone else the ability to see highly 

localized, real-time data on things like temperature, NO2 and particulate levels 

in the air and even detect toxic chemical leaks. With the increased usage of 

large scale wireless sensing systems, big data from those environmental sensor 

networks is becoming a new challenge. However, in our experiments, four 

types of environmental sensing data sets are used including temperature, 

moisture, light and sound. Those four environmental sensing data sets are 

specifically selected for the experiments in the Author’s Publication 3 & 4.   

 

 Earthquake wave sensing data is important for disaster forecast and scientific 

research. Nowadays, sensing systems are widely deployed all over the world 

to monitor earthquake and its related scientific data. Recordings of seismic 

waves from earthquakes led to the discovery of the earth’s core and eventual 

maps of the layers of the Earth’s inside. Just as the prism below refracts light 

at its faces, seismic waves bend, reflect and change speed at the boundaries 

between different materials below the Earth’s surface.  Earthquakes generate 

three types of seismic waves: P (primary) waves, S (secondary) waves and 

surface waves, which arrive at seismic recording stations one after another. 

Both P and S waves penetrate the interior of the Earth while surface waves do 

not. Due to this, P and S waves are known as “body waves”. Surface waves 

arrive last and are the least interesting to seismic tomographers because they 

do not penetrate deep inside the Earth. In out experiments, sensing data sets 

recording both P waves and S waves will be used. Earthquake Sensing Data 

sets are specifically selected for the experiments in the Author’s Publication 

16.            
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In Table 2-1, we compare the important features of three types of data sets which 

are involved in the evaluation in the rest of this thesis.    

 

Table 1-1 Big Sensing Data Sets Comparison    

 Meteorology Data Environment Data Earthquake Data 
Volume  extremely large large  large  
Velocity  high medium extremely high 
Variety  very rich rich rich 
Error Rate medium  medium  high  

 

To guarantee the technical integrity and connectivity of this thesis, the detailed 

features of the specific testing data sets will be intensively discussed when 

encountering them in the following chapters.    

2.6 Summary  

In this chapter, we have reviewed the related work in-depth for our research. Firstly, 

the current research trend and research issues were reviewed and analysed. The 

correspondent five ‘V’s were introduced for better describing big data. Secondly, we 

had an intensive review for techniques, tools and algorithms related to big data 

processing and Cloud. Especially, big sensing data, big graph data and their related 

processing tools, platforms and applications were reviewed. Thirdly, specific issues 

related data cleaning were discussed including error detection and error recovery. 

Fourthly, the data compression techniques were reviewed based on spatiotemporal 

features, lossy and lossless features etc. Finally, our Cloud Computing environment 

set up in UTS, U-Cloud was introduced with the detailed description of our real world 

big sensing data sets. Both U-Cloud and real world big sensing data sets are two 

critical bases for all the experiments and evaluations in the following chapters of this 

thesis.           
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Chapter 3                                         

Error Detection 

From this chapter on, we start to explore research components in our data curation 

roadmap. Specifically, in this chapter, we aim to develop a novel error detection 

approach by exploiting the massive storage, scalability and computation power of 

Cloud to detect errors in big sensing data sets from various sensing systems deployed 

in real world.               

3.1 Introduction 

Based on the literature review, it is well known that erroneous data is pretty common 

in data sets from sensing systems. Therefore, the question of how to find data errors 

in complex network systems for improving and debugging the network has attracted 

the interests of researchers. Some work [59, 62] has been done for big data analysis 

and error detection in complex networks including intelligence sensors networks. 

There are also some works related to complex network systems data error detection 

and debugging with on-line data processing techniques [43, 69]. Since these 

techniques were not designed and developed to deal with big data on Cloud, they were 

unable to cope with current dramatic increase of data size. For example, when big data 

sets are encountered, previous off-line methods for error detection and debugging on 

a single computer may take a long time and lose real time feedback. Because those 
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off-line methods are normally based on learning or mining, they often introduce high 

time cost during the process of data set training and pattern matching.        

Sensing big data error detection commonly requires powerful real-time 

processing and storing of the massive sensor data as well as analysis in the context of 

using inherently complex error models to identify and locate events of abnormalities. 

In this chapter 3, we aim to develop a novel error detection approach by exploiting 

the massive storage, scalability and computation power of cloud to detect errors in big 

data sets from sensor networks. Some work has been done about processing sensing 

data on Cloud [43, 46]. However, fast detection of data errors in big data with Cloud 

remains challenging. Especially, how to use the computation power of Cloud to 

quickly find and locate errors of nodes in WSN needs to be explored.  

3.1.1 Research Problem Analysis  

Currently, Cloud is becoming popular because it provides an open, flexible, scalable 

and reconfigurable platform. We aim to propose an on-Cloud error detection approach 

in this chapter based on the classification of sensing error types. Specifically, 9 types 

of data abnormalities/errors are listed and introduced in our Cloud error detection 

approach. The defined error model will trigger the error detection process. Compared 

to previous error detection of sensor network systems, our approach on Cloud will be 

designed and developed by utilizing the massive data processing capability of Cloud 

to enhance error detection speed and real time reaction.  

In addition, the architecture feature of complex networks will also be analysed to 

combine with the cloud computing with a more efficient way. Based on scale-free 

type and no scale-free features of complex networks, sensing data sets, especially from 

sensor networks can be modelled with a kind of scale-free complex network. In the 

proposed approach in this chapter, the error detection is based on the scale-free 

network topology and most of detection operations can be conducted in limited 

temporal or spatial data blocks instead of a whole big data set. Hence the detection 

and location process can be dramatically accelerated.  

Furthermore, the detection and location tasks can be distributed to Cloud platform 

to fully exploit the computation power and massive storage. The overall research 

contribution of this chapter is to achieve significant time performance improvement 
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in error detection without compromising error detection accuracy. Through the 

experiment on our cloud computing platform of U-Cloud [48-51, 107-110], it is 

demonstrated that our proposed approach can significantly reduce the time for error 

detection and location in big sensing data sets generated by large scale sensor network 

systems with acceptable error detecting accuracy.      

3.1.2 Contents Outline      

The remainder of this chapter is organized as follows. First of all, a sound sensing 

data error classification is offered in Section 3.2. Then, our error detection approach 

for big sensing data is introduced in Section 3.3. In Section 3.4, the related error 

detection and localization algorithms are designed and developed. In Section 3.5, the 

experiments are conducted on real-world data big sensing data sets to evaluate the 

performance of our proposed error detection technique. We summarize this chapter in 

Section 3.6.      

3.2 Sensing Data Errors  

Many systems in nature can be described as large networks (nodes or vertices 

connected by links or edges): Friendship networks, Social networks, computer 

networks, Internet, metabolic networks, power grids, scientific citations, neural 

networks and large scale sensor networks. Network analysis has been troubled by the 

issue of measurement of error for a long time [54-56]. Before deploying an error 

detection approach on cloud, the error models for big data sets from sensing systems 

perspective should be presented first.    

3.2.1 Error Classification  

Under the theme of the big data sets from real world complex networks, there are 

mainly 2 types of data generated and exchanged within networks. (1) The numeric 

data sampled and exchanged between network nodes such as sensor network sampled 

data sets. (2) The text files and data logs generated by nodes such as social network 
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data sets. In this paper, our research will focus on the error detection for numeric big 

data sets from complex networks.    

In the work [55], the errors of complex networks can be classified as six main 

types for both numeric and text data. According to previous work in [1-2], the 

common data error of sensing network systems can be classified as 6 common types. 

For most of complex network systems, this classification is based on the error location 

and describes the topology features of data errors. However, it is not enough to reflect 

the data features of data errors from sensing network systems.   

 

 False negative node data: It refers to the absence of nodes data that 

should be present in a network   

 

 False positive node data: It means nodes data that are erroneously present 

in a network. This error type is quite pervasive    

 

 False negative edge data: It refers to the loss of communication data 

between nodes which should be reported  

 

 False positive edge data: It refers to the communication data between 

nodes is erroneously presented  

 

 False aggregation: two node data A and B are erroneously treated as the 

same one    

 

 False disaggregation: one node data A is erroneously treated as A and B 

from two different nodes     

 

The above error classification can effectively describe the common error types in 

complex network systems. However, when it encounters the errors in wireless sensor 

network data sets, the above classification loses the accuracy in separating node or 

edge data error caused by different wireless data communication failures. In addition, 

it is not enough in describing the error data phenomena in sensing data sets. To better 
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capture the error features of sensor data sets, the above error classification in [55] 

should be extended.    

 
Figure 3-1 Error Scenarios from Sensor Network Systems Data   

 

Considering the specific feature of numeric data errors, there are several abnormal 

data scenarios demonstrated in Figure 3-1. The “flat line faults” indicates a time series 

of a node in a network system keeps unchanged for unacceptable long time duration. 

In real world applications, sampled data and transmitted data always have slight 

changes with the time flow. The “out of data bounds faults” indicates impossible data 

values are observed based on some domain knowledge. In real world applications, if 

a temperature value of water is reported as 300 °C, it can be treated as a data fault 

directly. The “data lost fault” means there are missing data values in a time series 

during the data generation or communication. The time series with “data lost fault” 

normally needs data cleaning. Finally, in Figure 3-1, the “spike faults” indicates in a 

time series data items which are totally out of the prediction and normal changing 

trend. Because the above four types of errors can happen both at data generation and 

exchange stages, the error types can also be categorized into node side and edge side 

separately. Combining the data faults scenarios in Figure 3-1 with the work in paper 

[54-56, 61], we present a more detailed classification of complex network systems 

data errors based on the time series analysis as follows.      

 

flat line faults

data lost faults

out of data bounds faults

spike faults
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 node side flat line error: It is a type of  false positive node data error   

 

 edge side flat line error: It is a type of  false positive edge data error   

 

 node side out of bound error: It is a type of  false positive node data error   

 

 edge side out of bound error: It is a type of  false positive edge data error    

 

 node side spike error: It is a type of  false positive node data error   

 

 edge side spike error: It is a type of  false positive edge data error    

 

 node side data lost error: It is a type of  false negative node data error 

 

 edge side data lost error: It is a type of  false negative edge data error    

 

 Aggregation & Fusion error: It refers to the errors caused by data 

accumulating effects, and drifting 

3.2.2 Error Type Definition  

With the above classification, the definition of each error type is presented to guide 

our error detection algorithm. Suppose that a data record from a network node is 

denoted as r(n, t, f(n, t), g(n, l)), where n is the ID of the node in a network systems. t 

represents the window length of a time series. f(n, t) is the numerical values collected 

within window t from the node n. g(n, l) is a location function which records the 

cluster, the data source node and partition situation related to the node n. g(n, l)  is 

used to calculate the distance between the data source node n and the node l which is 

the initial data source node. g(n, l) indicates that a current detected error data node is 

the initial data source node. Furthermore, g(n, l) is also used to parse the data routing 

between data communication nodes.       
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Definition 1 (node side flat line error). Let ri(ni, ti), f(ni, ti), g(ni, l)) be a time series 

record from node ni, where i is a time stamp. If any element x≡δi, where δi is an 

effective constant during time window t, x f(ni, ti), and g(ni, l)=0, ni is the data source 

node, there is a node side flat line error.  

 

Definition 2 (edge side flat line error). Let ri(ni, ti), f(ni, ti), g(ni, l)) be a time series 

record from node ni, where i is a time stamp. If any element x≡δi, where δi is an 

effective constant during time window t, x f(ni, ti), and g(ni, l)!=0, ni is the data source 

node, there is an edge side flat line error.            

  

Definition 3 (node side data lost error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time series 

record from node ni, where i is a time stamp. If f(ni, ti) = null && ti > τ, ‘τ’ is the time 

duration from outside application requirement, and if g(ni, l)=0, ni is the data source 

node, the error is a node side data lost error.         

 

Definition 4 (edge side data lost error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time series 

record from node ni, where i is a time stamp. If f(ni, ti) = null && ti > τ, ‘τ’ is the time 

duration from outside application requirement, and if g(ni, l)!=0, ni is the data source 

node, the error is an edge side data lost error.                       

 

Definition 5 (node side out of bounds error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time 

series record from node ni, where i is a time stamp. If any element x>θ, x f(ni, ti), θ 

is a threshold defined from the application requirement, and if g(ni, l)=0, ni is the data 

source node, the error is a node side out of bound error.     

 

Definition 6 (edge side out of bounds error). Let ri(ni, ti), f(ni, ti), g(n, l)) be a time 

series record from node ni, where i is a time stamp. If any element x>θ, x f(ni, ti), θ 

is a threshold defined from the application requirement and if g(ni, l)!=0, ni is the data 

source node, the error is an edge side out of bound error.    

 

Definition 7 (node side spike error). Let ri(ni, ti, f(ni, ti), g(n, l)) be a time series record 

from node ni, where i is a time stamp. If  |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable 
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changing trend, fp(ni, ti) is the predicted time series with an adopted prediction model, 

and if g(ni, l)=0, ni is the data source node, the error is a node side spike error.             

             

Definition 8 (edge side spike error). Let ri(ni, ti, f(ni, ti), g(n, l)) be a time series record 

from node ni, where i is a time stamp. If  |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable 

changing trend, fp(ni, ti) is the predicted time series with an adopted prediction model, 

and if g(ni, l)!=0, ni is the data source node, the error is an edge side spike error.          

    

Definition 9 (Aggregation and Fusion error). Let ri(ni, ti),  f(ni, ti), g(n, l)) be a time 

series record from node ni, where i is a time stamp. If ∑i|f(ni, ti) - fp(ni, ti)|/ti > ψ* && 

|f(ni, ti) - fp(ni, ti)|/ti < ψ, where ψ* is a given total acceptable error bound, there is 

an aggregate and fusion error.           

3.3 On-Cloud Error Detection  

In this section, we will introduce the technical details of our proposed error detection 

method based on the above 9 types of classified sensing data errors.     

3.3.1 Scale-free Complex Networks 

For a sensing network system, such as WSN with a hierarchical structure, it is a graph 

denoted as G(V, E), the degree of a vertex V is denoted as deg(v). We define a function 

s(G) in formula (1).  

 

              (1) 

 

If the high degree nodes are connected to other high degree nodes in G, we can 

get formula (2), where the maximum value of s(H), and H are the graphs with degree 

distribution similar to G. S(x) denotes the distribution function corresponding to a 

probability mass function .         

 

                                               (2) 
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Because we assume that the sensor network has a hierarchical structure. If 

S(G)→1, the graph G is called “Scale-free”. The classification and prove for the 

complex networks are as follows. Suppose that there is a graph sequence {Gn}, n [1, 

), we can calculate the vertices. n is the size of vertices in Gn. The proportion of 

vertices with k degree in Gn is noted as .  

 

,                        (3) 

 

In formula (3), is the degree of vertex j  in the graph n. The degree 

sequence of n is given by . The random graph process { n  is sparse for 

the { k  if formula (4) can be satisfied.   

 

                                          (4) 

 

Because the limit  in formula (4) is deterministic, the convergence in formula 

(4) can be taken as convergence in probability or in distribution. And  ends 

up as . In terms of a large value of n, a large number of vertices in Gn have a limited 

degree. Then, a random graph process with the above feature is called scale-free with 

an existing exponent  which can be calculated by formula (5).       

 

                                      (5) 

 

Hence, for a scale-free graph process, its degree converges to a limited probability 

described in formula (4). Under some situation, there is too much restriction for the 

formula (5). For example, when the probability mass function ->  is not smooth, 

the formula (5) can be replaced with (6).  

 

                        (6) 
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Where  is the distribution according to the function { . 

When the formula (7) can be satisfied, we say that a graph process {Gn  has a 

highly clustered structure. If the formula (7) can be satisfied, the WSN graph G carries 

strong features of a scale-free complex network as a cluster-head WSN. 

 

>                           (7)    

 

Based on the above analysis, the scale-free networks are inhomogeneous and only 

a few nodes have a large number of links. In real applications, the cluster-head WSN 

is similar to scale-free networks, which can be described with the scale-free complex 

networks and has the feature of scale-free networks. In Figure 3-2, the instance of 

scale-free networks and exponential networks are compared. It can be concluded that 

the scale-free networks have a more clustered hierarchical nodes topology. Central 

nodes are highly connected by the out-layer nodes has only 1 or 2 links.      

  

 
Figure 3-2 Examples for Scale-free networks and non-scale-free networks 

3.3.2 Model-based on-Cloud Error Detection                 

According to the above analysis, it is clear that complex network systems have a 

similar clustered network topology. During the filtering of big data sets, whenever an 

abnormal data is encountered, the detection algorithm needs to finish two tasks. They 

are depicted as two functions here. “fd(n/e, t)” is a decision making function which 

determines whether the detected abnormal data is a true error. In other words, fd(n/e, 

Scale-free Networks Exponential Networks
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t) has two outputs, “false negative” for detecting a true error and “false positive” for 

selecting a non-error data. “fl(n/e, t)” is a function for tracking and returning the 

original error source. With the results from the above two functions, the error 

detection process can be successfully finalized.  

As shown in Figure 3-3, there is a complex network and Cloud platform for 

running error detecting algorithms. Without any consideration of network features and 

data characteristics, the error detection algorithm needs to filter the whole big data set 

from the network. Whenever, an error types defined in Section 3.2.2 is encountered, 

the algorithm will call fd(n/e, t) and fl(n/e, t) to traverse the whole network big data set 

for the final decision making and error source location. However, based on the 

analysis of Scale-free network systems, it has been proved that scale-free networks 

have a clustering and hierarchical topology. Only a few nodes in the whole network 

have large sets of links to other nodes. So, based on these nodes, the whole networks 

can be partitioned into a group of clusters (red circles in Figure 3-3). If there is certain 

abnormal data occurs for a certain node k, the high opportunity is that most of the 

related data for fd(n/e, t) and fl(n/e, t) will be located in the clusters where the node k 

locates. As a result, fd(n/e, t) and fl(n/e, t) only need to navigate the related clusters for 

error detection result. This is because of the fact that except for a few central nodes, 

most of nodes only have limited links within themselves in their clusters. Hence, the 

proposed clustering can significantly reduce the time cost error locating and final 

decision making by avoiding whole network data processing. In addition, with this 

detection technique, Cloud resources only need be distributed according to each 

partitioned cluster in a scale-free complex network. 

 

 
Figure 3-3 Cluster based Error Detection Strategy on Cloud 

Cloud
computational

services



54 
 

3.4 Algorithms  

To deploy the proposed error detection model and identifying the location of the error, 

our algorithm can be divided into two parts, detection and location. In this section, we 

will introduce the big data error detection/location algorithm, and its deployment 

strategy on Cloud.     

3.4.1 Error Detection  

We propose a Two-Phase approach to conduct the computation required in the whole 

process of error detection and localization. At the phase of error detection, there are 

three inputs for the error detection algorithm. The first is the graph of network. The 

second is the total collected data set D and the third is the defined error patterns p.  

The output of the error detection algorithm is the error set D’. The details of the error 

detection algorithm can be found in following Figure 3-4.       

As shown in the line 1 of Figure 3-4, the network is partitioned into a set of sub-

graphs based on the scale-free complex network and the cluster-head network feature 

as described in lines 2 and 3, respectively. Whenever an abnormal data is encountered, 

the pattern matching is carried out in line 5 based on defined error types. Specifically, 

from line 6 to line 12, if the abnormal data satisfies the pattern of flat line error, it will 

be tagged and added into D’ as shown in line 12. At the same time, the flat line error 

is also divided into edge side E type, and node side V type. From line 13 to line 18, if 

the abnormal data satisfies the pattern of data lost error, it will be tagged and added 

into D’ as shown in line 18. From line 19 to line 24, if the abnormal data satisfies the 

pattern of out of bound error, it will be tagged and added into D’ as shown in line 24. 

From line 25 to line 30, if the abnormal data satisfies the pattern of data error, it will 

be tagged and added into D’ as shown in line 30. However, when it comes to the 

“aggregate & fusion” error, the algorithm changes because the “aggregate & fusion” 

error introduces the data drifting and overlapping. It will evolve over multiple e E 
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and v V for the error detection. After all the data set D is traversed by the detection 

algorithm, the error data set D’ is output.     

Figure 3-4 Error Detection Algorithm 

3.4.2 Error Localization  

After the error pattern matching and error detection, it is important to locate the 

position and source of the detected error in the original WSN graph G(V, E). The input 

of the algorithm in Figure 3-5 is the original graph of a scale-free network G(V, E), 

and an error data D from the algorithm in Figure 3-4. The output of the algorithm in 

Figure 3-5 is G’(V’, E’) which is the subset of the G to indicate the error location and 

source. The details of the error localization algorithm are offered in Figure 3-5.       

ALGORITHM 1. ERROR DETECTION 
Input: a graph , a data set D, an error patterns set p. 
Output: error data set D’. 
01: Partition  into , . 
02: Matching    

03: Matching  

05: While (D ) 
06:    get x D; get p -> ri(ni, ti, f(ni, ti), g(ni, l)) 

07:    If Computation x≡δi, x f(ni, ti) 
08:       If g(ni, l)=0 
09:          flat line error V type 
10:       Else 
11:          flat line error E type 
12:       x->D’ 
13:    If Computation f(ni, ti) = null && ti > τ 
14:       If g(ni, l)=0 
15:          data lost error V type 
16:       Else 
17:          data lost error E type 
18:       x->D’ 
19:    If Computation x>θ, x f(ni, ti) 
20:       If g(ni, l)=0 
21:          out of bound error V type 
22:       Else 
23:          out of bound error E type 
24:       x->D’ 
25:    If Computation |f(ni, ti) - fp(ni, ti)|/ti > ψ 
26:       If g(ni, l)=0 
27:          spike error V type 
28:       Else 
29:          spike error E type 
30:       x->D’ 
31:  If Computation ∑i|f(ni, ti) - fp(ni, ti)|/ti > ψ* &&  

|f(ni, ti) - fp(ni, ti)|/ti < ψ 
32:       x->D’; E&V error type 
33:   Output D’ 
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In the error localization algorithm of Figure 3-5, when an error d D’ is selected, 

its error type is set first. For the “flat line”, “data lost”, “out of bound”, “spike” errors, 

the algorithm traverse the partitioned G as Gm, 1<m<p as shown from line 4 to line 6. 

The localization of the above four types error will be tagged in G’(V’, E’). But if it is 

the edge type error (communication), as shown from line 8 to line 13, the algorithm 

calls the neighbouring function to use multiple paths and routes to set the data error 

source. From line 14 to line 21, when the “aggregate & fusion” type error is 

encountered, the algorithm firstly limits the search within the sub graph Gm G with 

neighbouring function. If it cannot be solved locally, the localization would be 

extended to other Gm, 1<m<p. Finally in line 22 of the algorithm 2, all the located 

edge errors and node errors are output as G’.    

Figure 3-5 Error Localization Algorithm 

3.4.3 Complexity Analysis  

Suppose that there is a sensing network system consisting of n nodes. For the error 

detection approach without considering the scale-free network feature, the error 

detection algorithm will carry out the error pattern matching and localization with 

whole network data by traversing the whole data set. Suppose that there is R nodes on 

the data routing, in the worst case, the detection algorithm without considering the 

scale-free network feature will be executed R×n time for error detection and 

ALGORITHM 2. ERROR LOCALIZATION 
Input: a graph , a error data set D’,  
Output: a error graph G’(V’, E’) 
01: matching D’ and G(V, E); Partition  into ,
02: While (G’!= )      
03:    get d D’  
04:    If “flat line”, “data lost”, “out of bound”, “spike”  V type 
05:       While ( ) 
06:          traverse   
07:       return localization; update (d, G’(V’, E’)) 
08:    Else E type  
09:       While(E type )  
10:          neighboring(d, G)  
11:          While ( ) 
12:             traverse  
13:       return localization; update (d, G’(V’, E’)) 
14:   If “aggregate & fusion”  type 
15:       While ( ) 
16:          traverse   
17:          If(E error) 
18:             neighboring (e ) 
19:          Else 
20:             neighboring (v )) 
21:       return localization; update (d, G’(V’, E’)) 
22:   Output G’  
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localization, denoted as O(R×n), 1≤R≤n. Anyway, with the hierarchical network 

topology, the network can be partitioned in to m clusters.     

Based on our scale-free network definition and our algorithm, in each cluster, the 

nodes which are involved in error detection will be reduced to n/m on average. In 

addition, in each cluster, the data values are highly correlated. The data worst case of 

data traverse times for error detection and localization is determined by O(R× ), 

1≤R≤n/m, 1≤m≤n. Because our scale-free error detection approach limits most of 

computation within each cluster, the communication and data exchange between 

clusters can be ignored. Finally, the worst case algorithm complexity of our scale-free 

error detection approach can outperform the traditional error detection algorithms.          

3.4.4 Algorithm Calibration on Cloud   

The big sensing data error detection and localization algorithms based on the scale-

free topology feature of cluster-head networks are designed and analysed in Section 

3.4.1 and Section 3.4.2. During the development of our scale-free error detection and 

location algorithm, how to make it more suitable for Cloud implementation is already 

taken into consideration with following two steps.    

 

(1) Partition of Sensing Data set 

In order to effectively deploy our proposed algorithm on Cloud, the data sets need to 

be partitioned before feeding to the algorithm on Cloud. There are two points should 

be mentioned when carrying out partitioning. Firstly, the partition process could not 

bring new data errors into a data set; or change and influence the original errors in a 

data set.  That is different to the previous partition algorithm which normally divides 

data set according certain application preference or clustering principles. Secondly, 

due to the scale-free network systems being a special topology, the partition has to 

form the data clusters according to the real world situation of scale-free network or 

Cluster-head based WSN. The partition process is as follows.       

When the whole data set  is partitioned into , , we need to guarantee 

that the distribution of data set in a cluster  is similar to . A sub data set , here 

can be treated as a point in an m-dimension space, where m is the number of sensor 

nodes in a partitioned cluster. According to the partition principle, to avoid the new 
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error or error type change, during the process of partition, light weighted error type 

matching has to be carried out for warning the new abnormalities during the partition. 

Specifically, the defined variables and functions including r(n, t, f(n, t), g(n, l)), ψ, τ, 

θ in Section 3.2.2 will be used again for abnormality warning.     

 

(2) Deployment Strategies for MapReduce 

MapReduce is a framework for processing parallelizable problems across huge 

datasets using a large number of computers (nodes), collectively referred to as a 

cluster (if all nodes are on the same local network and use similar hardware) or a grid 

(if the nodes are shared across geographically and administratively distributed 

systems, and use more heterogeneous hardware). Computational processing can occur 

on data stored either in a filesystem (unstructured) or in a database (structured).   

MapReduce can take advantage of locality of data, processing data on or near the 

storage assets to reduce data transmission. “Map” function: The master node takes the 

input, divides it into smaller sub-problems, and distributes them to worker nodes. A 

worker node may do this again in turn, leading to a multi-level tree structure. The 

worker node processes the smaller problem, and passes the answer back to its master 

node. “Reduce” function: The master node then collects the answers to all the sub-

problems and combines them in some way to form the output – the answer to the 

problem it was originally trying to solve. MapReduce allows for distributed 

processing of the map and reduction operations.      

 

The Standard MapReduce Example:   

function map(String name, String document): 
  // name: document name 
  // document: document contents 
  for each word w in document: 
    emit (w, 1) 
 
function reduce(String word, Iterator partialCounts): 
  // word: a word 
  // partialCounts: a list of aggregated partial counts 
  sum = 0 
  for each pc in partialCounts: 
    sum += ParseInt(pc) 
  emit (word, sum) 
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However, traditional MapReduce is very strict, which limits its application in 

complex systems, such as WSN. The following is a standard MapReduce example, it 

counts words. However, our algorithms in error detection and localization are not so 

ideal and it is hard to directly use one MapReduce to solve perfectly. Based on the 

knowledge for MapReduce and its wide applications, three technical changes are 

commonly adopted to transform the targeting problem for applying MapReduce on it.  

 

(1) Original algorithm  (embedded in) Map()/Reduce() 

(2) Partition the task flow of algorithm  Identify which part of the task flow to 

generate a MapReduce job  MapReduce generated result returns back to the task 

flow    

(3) Complete MapReduce design control flow parallelization/ data 

parallelization    

 

Based on the analysis of the above three strategies and the complicated flow of 

our error detection and location algorithms, in our implementation, we adopt different 

MapReduce strategies in terms of different control flow and data partition in our 

detection and localization algorithms.    

3.5 Experiments  

To verify the time efficiency and the effectiveness of our approach for detecting errors 

in big data with Cloud, experiments are conducted on U-Could (Cloud computing 

environment at the University of Technology Sydney described in Chapter 2) [48-51, 

109-110]. There are three purposes for this experiment. 1) Demonstrate that the 

significant time-saving is achieved in terms of detecting errors from complex network 

big data sets. 2) Demonstrate the effectiveness of our proposed error detection 

approach in terms of different error types. 3) Demonstrate that the false positive ratio 

of our proposed error detection algorithm is limited within a small value.    
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3.5.1 Experiment Settings  

Four types of data values collected by a real WSN (scale-free complex network system) 

are used as the testing data set. The total testing data set size is around 2,000,000 KB, 

including temperature, sound, light and vibration. Even only considering one node, 

four types of testing data are gathered with different frequency. In other words, the 

data sampling from each real world node is heterogeneous. Before the experiment, we 

conduct the normalization for the testing data set. Before running our real sensing data 

experiment, a normalization process is carried out first.  

As shown in Figure 3-6, the original temperature data consists of time series with 

dramatic changes and with its lower and upper bounds from 10 to 40 °C. For a short 

period, the temperature time series keeps unchanged or less changed.  The original 

light data consists of a time series with gradual data changes with its lower and upper 

bounds from 0.2 to 0.5 cd. In a short time period, the light time series has smooth 

changes with less fluctuation.   

 
Figure 3-6 Example: Original Testing Data before Experiment 

 

The original sound data consists of time series with its lower bound and upper 

bound from 0 dB to 80 dB. The original sound time series has dramatic fluctuations 
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compared to the temperature and light time series. The original construction vibration 

time series has the most noticeable fluctuation in the all four types of testing data. The 

lower bound and the upper bound of the original construction vibration time series are 

0 hz and 60 hz respectively.    

However, the four original testing data sets have different data bounds, metrics 

and units. It is difficult to compare the data changes and temporal features under the 

situation where the time series from different data sets have different metrics. So, the 

normalization is conducted. As shown in Figure 3-7, the original testing data sets are 

normalized into the standard data sets. The all normalized time series has their lower 

bound and upper bound from 0 to 100. After the normalization, the data feature of 

different time series can be compared.  
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Figure 3-7 Example: Normalized Heterogeneous Sensing Data Sets  

3.5.2 Experiment Results   

In order to test the false positive ratio of our error detection approach and time cost 

for error findings, we impose five types of data errors following the definition in 

Section III into the normalized testing data sets with a uniform random distribution. 
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These five types of data errors are generated equally. Hence, the percentage of each 

type of errors is 20% from the total imposed errors for testing. The first imposed error 

type is the flat line error. The second imposed error type is out of bound error. The 

third imposed error type is the spike error. The forth imposed error type is the data 

lost error. Finally, the aggregate & fusion error type is imposed. By imposing the 

above listed five types of data error types, the experiment is designed to measure the 

error selection efficiency and accuracy during the on-Cloud processing of data set.        

 
Figure 3-8 Time cost for detecting errors from the testing data set 

 

In Figure 3-8, the testing results show the time performance of our proposed scale-

free error detection algorithm on U-Cloud after 740 seconds. Specifically, ten 

different error rates are imposed into the experimental data set and tested 

independently. The testing error rate changes from 1% to 10% in 10 repetitive 

experiments. After about 100 seconds, the proposed algorithm can detect more than 

60% errors whatever the testing error rate is within the domain between 1% and 10%. 

During the time duration between 0 and 100 second, all error detection rates increase 

dramatically with a steep trend. After the time point of 300 second, the error detection 

rates increase slowly with a flat trend. At the time of 740 second, the proposed error 

detection algorithm on Cloud can find and locate more than 95% imposed errors from 

the testing data sets. When testing error rate is 1%, the best performance gains are 

achieved, as about 99.5% total errors detection. With the increase of the testing error 

rate, the error detection rate decreases.   
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It also can be found in Figure 3-8 that during the first 300 seconds of data 

processing and error detection on Cloud, almost more than 80% of total errors are 

detected whatever the testing error is. This fast detection is due to our scale-free error 

detection approach which only allocates the Cloud computation resources for 

traversing and processing a small chunk of data instead of a whole data set analysis. 

With the testing time longer than 740 seconds, most of imposed errors are detected. 

This result also shows that the algorithm can provide near real time Cloud error 

detection service for most of current scale-free network systems, such as wireless 

sensor networks.         

 
Figure 3-9 Comparison of two error detection strategies 

 

A comparative experiment between our proposed scale-free big data error 

detection in WSN and non scale-free error detection algorithms is conducted. As 

shown in Figure 3-9, when the testing data error rate changes from 1% to 10%, at any 

time slot, our proposed scale-free error detection algorithm achieves significant error 

detection performance gains compared to non scale-free error detection algorithms. 

Our proposed scale-free detection on Cloud can fast detect most of error data (more 

than 80%) after 740 seconds time duration. However, the non scale-free error 

detection algorithm can only achieve as much as 44% error detection rate as the best 

case. So, it can be concluded from the experiment results in Figure 3-9 that the scale-

free detection algorithm on Cloud for big data can significantly outperform non scale-

free error detection algorithms in terms of error finding time cost.     
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Except for time cost, to measure an error or abnormality detecting algorithm, we 

also need to consider other statistic metrics for verifying the quality of an error 

detection algorithm. Suppose that we have n logical “T/F” hypotheses: h1, h2, ..., hi, ..., 

hn. The number of true null hypotheses is denoted as n0, an uncertain parameter. Then 

we can get the number of true alternative hypotheses n-n0. If we further denote the 

null hypothesis being true as T, we can get T is the number of false positives. Hence 

we can calculated the false positive rate T/n0 and the false positive ratio E(T/n0). In 

our experiment, T/n0 and E(T/n0) depicts how many normal data are selected as errors 

during the error detecting process. A smaller false positive ratio in the experiment 

indicates a better accuracy for selecting error data items from the testing data set. 

 
Figure 3-10 False Positive Ratios with Different Detection Algorithms 

 

It is demonstrated in Figure 3-10 that, with the testing data error rate changes from 

1% to 10%, our scale-free detection algorithm can achieve similar false positive ration 

compared to the non scale-free algorithms. Initially, the non scale-free detection 

performs slightly better because the whole network data traversing and analyzing 

contribute to improve the decision making correctness for error detection. However, 

with the increase of error data size in the testing data set, the whole network data 

traversing and analysis will bring the influence of other error data from other parts of 

a network into the current error detection decision making. That influence will 

increase the false positive ratio, which is not expected. As shown in Figure 3-10, when 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

scale-free detection: faults positive ratio

non scale-free detection: faults positive ratio

testing data set error rate

false positive ratio



65 
 

the data error rate is larger than 6%, our scale-free detection algorithm can outperform 

the non scale-free algorithm in terms of false positive ratio.      

However, the false positive ratio in Figure 3-10 is the overall testing result. The 

individual testing results for detecting each error type with our proposed error 

detection algorithm are compared in Figure 3-11 It can be got from Figure 3-11 that 

“flat line error”, “out of bound error”, “spike error” and “data lost error” curves of 

false positive ratio are similar to each other. In other words, our proposed error 

detection algorithm achieves similar error detection accuracy in detecting the above 

four types of errors. When it comes to “aggregate & fusion error”, the false positive 

ratio runs slightly higher than the other four types of errors whatever the total imposed 

error rate is. In other words, the error detection accuracy of our proposed algorithm 

decreases when encountering “aggregate & fusion error” in the testing data set. The 

reason is that the “aggregate & fusion error” is caused by the accumulating error effect 

and multi-hop data communication. Lots of data drifting and data approximation may 

be involved in the error detection process, which influences the error detecting 

accuracy of the proposed algorithm for big data on Cloud.        

Based on the above experiment results and analysis, it can be concluded that our 

proposed error detection approach for big data processing on Cloud can dramatically 

increase the error detecting speed without losing error selecting accuracy. Especially, 

when the error rate for a targeting big data set is limited and within a small value (1% 

- 10%), the algorithm can efficiently detect the error with high fidelity. 

 
Figure 3-11 False Positive Ratios with Different Error Types 
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3.6 Summary 

In this chapter, to detect errors in big data sets from sensor network systems, a novel 

approach was developed with cloud computing. Firstly error classification for big data 

sets was presented. Secondly, the correlation between sensor network systems and the 

scale-free complex networks were introduced. According to each error type and the 

features from scale-free networks, we proposed a time-efficient strategy for detecting 

and locating errors in big data sets on cloud. With the experiment results from our 

cloud computing environment U-Cloud, it was demonstrated that 1) the proposed 

scale-free error detecting approach can significantly reduce the time for fast error 

detection in numeric big data sets, and 2) the proposed approach achieved similar error 

selection ratio to non-scale-free error detection approaches. Based on our error 

detection for big sensing data sets on Cloud, we can continue the next work “error 

recovery” within our big sensing data curation roadmap.         
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Chapter 4                                         

Error Recovery 

In this chapter, we aim to develop an error recovery approach on Cloud following the 

error detection technique developed in Chapter 3. By exploiting the neighbouring 

nodes in a topology and adopting a certain similarity model, predicted data will be 

calculated to replace detected errors. This recovery process will be harnessed on 

Cloud to guarantee scalability and real time processing.          

4.1 Introduction    

With our effective and efficient error detection, it is reasonable to offer some 

corresponding approaches to recover the detected errors with suitable recovery 

techniques. Big sensing data is broadly generated and collected from various 

surveillance or sensing systems. Errors often occur during the sensing or data transfer 

processes. How to recover from those errors in an accurate and fast way is challenging 

given that sensing data often comes as fast streams. While cloud provides a promising 

platform for processing big sensing data, scalable and accurate error recovery 

solutions still need to be developed.  

In this chapter, we aim to develop a novel approach to achieve fast error recovery 

in a scalable manner on Cloud. This approach is based on the prediction of a recovery 

replacement data by making multiple data sources based approximation. The 

approximation process will use coverage information carried by data units to limit the 
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algorithm in a small cluster of sensing data instead of a whole data spectrum. 

Specifically, in each sensing data cluster, a Euclidean distance based approximation 

is proposed to calculate a time series prediction curve. With the calculated time series, 

a detected error can be recovered with a predicted data value approximately. At the 

same time, with MapReduce based implementation for scalability, the experimental 

results also show significant efficiency on time saving. According to the effective and 

efficient error detection in our data curation roadmap [49] in Chapter 3, the detection 

algorithm is based on the assumption that the big sensing data are collected from a 

cluster-head organized data graph topology. When it comes to recovery stage, how to 

make use of the cluster-head topology also plays an important role in terms of 

designing an efficient recovery algorithm.    

It is well known that under the assumption of cluster-head topology, the nodes in 

the same cluster will have more data correlations and similarities. Based on 

successfully setting up clusters, different data recovery strategies within a single 

cluster or several local clusters are developed. If we can limit the recovery related 

operation within a very small group of data instead of a whole big sensing data set, 

the processing cost of time and resource will be saved. After constructing a cluster 

based architecture of a whole data network, the inner approach should be develop for 

arrange a group of data time series within each cluster to generate optimized local 

decision making and data approximation for recovering errors.    

4.1.1 Research Problem Analysis    

Based on the previous literature and analysis, some error detection has been designed 

for big sensing data. However, after successfully detecting and locating data errors of 

big sensing data, efficient and effective recovery data should be offered, especially 

over a scalable platform, such as Cloud. As shown in Figure 4-1, suppose that there is 

a “spike type error” detected and located in node_1 and node_2. In the whole area, we 

suppose that the sensing system maintains a 1 sensing coverage. With that we can 

compare different data recovery strategies. Firstly, we assume that the coverage 

information has been known and tagged with each data unit. In other words, the 

coverage situation of big sensing data has been already offered before uploading to 

Cloud. With the offered coverage information, a whole sensing data set can be 
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partitioned into to a group of data clusters. For the first strategy, if the coverage 

information of sensing data is not considered, we need to navigate all the data set to 

set up data correlations for error recovery. For example, in Figure 4-1, to recover the 

errors happening in node_1 and node_2, the first recovery strategy will go through the 

data collected by the whole sensing system to judge which data node has the potential 

to be used for recovering the errors in node_1 and node_2. Under the big data theme 

and Cloud environment, to navigate that whole big sensing data set will bring longer 

time.   

Figure 4-1 Possible Recovery Strategies for Spike Error 

 

With the second strategy, if the coverage information of sensing systems data can 

be used, there exist opportunities to significantly cut the size of data to be involved in 

error data recovery. For example, in Figure 4-1, the whole data source graph is 

partitioned into clusters according to its coverage topology. Especially, there are two 

“spike” type errors detected in node_1 and node_2. Instead of navigating the whole 

big sensing data set, due to the coverage feature, we limit the data recovery process in 

each data cluster. For recovering error in node_2, we can firstly consult the data 

backup and record in cluster_head_1 to calculate possible recovery value with high 

fidelity level. Secondly, if the message from cluster_head_2 is not enough to support 

the error data recovery on node_2, other sibling nodes in the cluster under 

cluster_head_2 will be further utilized to calculate a recovery data value with 

relatively high fidelity.  
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However, the topology situation of node_1 is different to node_2. Because node_1 

locates in the overlapping area of two clusters controlled by two cluster heads, 

cluster_head_1 and cluster_head_2, how to select the best optional data from 

different clusters in an efficient way will dictate the performance of error recovery for 

the error data from node_1. Furthermore, in each data cluster, which node including 

the cluster-head to be selected for error recovery is critical to determine the recovery 

accuracy and local time cost. For example, in Figure 4-1, if cluster_head_2 is not 

enough to calculate a predicted value for replacing the error happening in node_2, the 

nodes in the cluster under cluster_head_2 will be used. However, one new technical 

problem is encountered under this situation. Specifically, some selection process is 

expected to recommend the best nodes in the cluster to carry out approximating the 

missing error data. In this chapter, this selection will be realized by calculating 

Euclidean distance based time series approximation.        

Based on the above analysis, it can be found that the first recovery strategy, whole 

big sensing data set navigating on Cloud is costly and unnecessary. Techniques and 

algorithms should be designed to fully exploit opportunities to avoid whole data set 

navigation. In the rest of this chapter, we will demonstrate our solution based on this 

idea.    

4.1.2 Contents Outline  

The remainder of this chapter is organized as follows. In Section 4.2, the general 

roadmap for our proposed on-Cloud data recovery technique for big sensing data error 

will be introduced. Several critical issues including data sources topology, Euclidean 

distance for time series approximation and data prediction model will be analysed in 

details. In Section 4.3, based on the general recovery roadmap, for each defined big 

sensing data error type, one specific fast approach will be introduced. The 

optimization will be introduced across those specific recovery approaches. In Section 

4.4, the algorithms will be designed. The corresponding algorithmic complexity 

analysis will also be offered. In Section 4.5, in order to demonstrate the significant 

performance gains including error recovery accuracy and its time cost, the 

experimental results will be compared and analysed. In Section 4.6, we summarize 

this chapter.     
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4.2 General Roadmap for Error Recovery   

Similar to the error detection solution developed in Chapter 3, we make the 

assumption that big sensing data comes from sensing systems with cluster-head 

architecture, such as data from friendship networks, Social networks, neural networks 

and large scale high frequency sensor networks. The big sensing data set from cluster-

head topology sensing system which can be denoted as a data graph, G(V, E). Under 

the cluster-head topology assumption, the G(V, E) is satisfied with the scale free 

complex network features [49]. With the cluster-head data topology assumption, we 

will introduce our overall solution for error recovery strategy on Cloud as follows.           

4.2.1 Initialization: Partition and Localization  

Any sensing node in a sensing system has its sensing radius denoted as a sensing range 

S and an interference range I. The sensing range is used to describe the maximum 

sensing radius of a sensor to probe its environment with high confidence. When there 

is a sensing node, nodei is sharing the sensing radius of any other sensing node, nodej, 

at the same time, if nodei is out of the interference range of nodej, we say that nodei is 

fully covered by nodej. So, we can use a coverage function to describe the set of nodes 

with which a nodex can have sensing coverage as Cover(nodex). In addition, a set of 

nodes on which nodex can have interference effects is denoted as Interf(nodex). Based 

on the above function definition and common real world situation, we can get 

Cover(nodex)  Interf(nodex) for any sensing data source, nodex. For example, given 

a pair of  nodex and nodey, if there is another nodez  Interf(nodej)  Cover(nodey), 

then we call that two sensing data sources nodex and nodey have collision at nodez. In 

other words, nodex and nodey can have interference at nodez.     

Based on that coverage definition, we can offer our solution for partitioning big 

sensing data graph into a group of overlapping data sub-graphs (data time series 

clusters). Specifically, a cluster is a set of time series with a selected cluster-head (also 

a time series). Actually, each data source node in the data graph is a single time series. 
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A cluster consists of a bunch of time series. For example, in this paper, we denote a 

bunch of time series (a cluster) i by Si. And we further denoted the cluster-head of Si 

with a computing function as CH(Si). With the assumption that, the coverage 

information and error location are already offered by the big sensing data sets 

explicitly, the initial partitioning process is as follows. Firstly, CH(Si) will be called 

to compute every cluster-head time series in the whole big sensing data set. Then a 

data unit at time stamp t, nodext will be tagged with its additional information such as 

cluster-head ID and coverage situation. Whenever there is an error happening in data 

unit nodext, the localization process offered in [49] will use the Cover(), and CH() 

functions to quickly calculating the important parameters for recovery strategies inter 

clusters or inner a single cluster.                                       

4.2.2 Inter Cluster Strategy for Overlapping Coverage  

In modern sensing systems, it is unavoidable to discuss the problem of sensing 

coverage. For example, an l coverage sensing system normally means that for any 

point in the deployment field of a sensing system there are at least n sensing nodes 

can gather the data related to that point with different confidence levels. Suppose that 

there is one error encountered at nodext. We calculate the coverage situation and 

interference situation of nodext with Cover(nodex) and Interf(nodex). The aim of data 

recovery is to find an approximate value nodext’ for nodext. Suppose that we can get 

Cover(nodex).layer()=l where layer() is a function call to return the overlapping 

coverage layer number of nodex and l is the returned value. It means that the time 

series nodex, can be simultaneously covered by other l-1 neighbor time series.   

In this work, any sensing data source time series, nodex is static. In other words, 

the network topology or cluster-head will not change during big sensing data 

processing. Because there is no change of cluster situation, a set of time series within 

that cluster remains unchanged. Specifically, the big data set can be defined with 

( , ), where  is used to represent the node group under cluster,  at the 

processing time stamp t, and A is the topology architecture of the sensing system. A 

is calculated with A=f(G(V, E)) which totally depends on the architecture of sensing 

system structure. As a result, for any two consecutive states of a cluster Si at its time 
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stamp t and t+1, given ( , ) and ( , ), it can be called that there is a  if 

 = and  at the time slot t+1.   

Figure 4-2 Location Influence to Error Recovery Strategy 

 

If Cover(nodex).layer()=l, l ≥ 1, is calculated as in Figure 4-2, which means that 

any location in the monitored area  has minimum l sensing nodes which can collected 

correlated data for error recovery. Firstly, if l=1 can be got, based on the coverage 

definition, there is no need to find other clusters for error data recovery, because only 

one cluster is related to the detected error. For example, in Figure 4-2, when error 

location is from data source ‘a’, only possible recovery information can only come 

from node group under ‘cluster-head-1’. Under this scenario, our recovery solution 

will directly go to intra cluster time series approximation in Section 4.2.3 for further 

processing. However, when error locations are in data source ‘c’, or data source ‘b’ 

as shown in Figure 4-2, before using the further processing in Section 4.2.3, some 

further steps need to be taken to select the right clusters which will join the recovery 

process.  

Suppose that there is an error data source Si with a coverage, Cover(Si).layer()=l. 

The related coverage cluster-heads calculated with CH(Si). It can be inferred that 

totally there are ‘l’ clustered head should be selected by CH(Si). With that we can list 

those cluster in a matrix as follows. We can get a matrix, C = {cluster_1, cluster_2,…, 

cluster_k,…, cluster_l}, where cluster_k is based on the calculation of CH(Si). With 

the a series from Coverage(cluster_1) to Coverage(cluster_l) can be got. At the same 

time, another series from Interf(cluster_1) to Interf(cluster_l) can be calculated too. 

Then we can further calculate the maximum coverage situation of CH(Si), by 
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Interf(cluster_1)  Cover(cluster_1)  Interf(cluster_2)  Cover(cluster_2)  …  

Interf(cluster_l)  Cover(cluster_l), where ‘ ’ is the operator for merging the final 

summary for calculating comprehensive average performance of a cluster in terms of 

recovery.          

However, when Cover(nodex).layer()=l, l≠1, is calculated, there is no point in the 

monitored area has coverage less than l. In other words, the selection process among 

candidature data recovery clusters is unavoidable. Hence, the expression of 

Interf(cluster_1)  Cover(cluster_1)  Interf(cluster_2)  Cover(cluster_2)  …  

Interf(cluster_l)  Cover(cluster_l), will be called recursively until finding a suitable 

cluster groups for conducting data recovering. If more than two clustered are selected 

during the process, then the data history and the number of possible data recovery 

nodes will be further considered as the second and the third factors for the refinery of 

the selection process. The selection will terminate when there is only one candidature 

data cluster left for future data error recovery. Especially, to make use of the temporal 

information to realize the cluster selection, the expression ( , ) …, ( , ) …, 

( , ), is used. In that expression, ‘ ’ is a recursive operator which sequentially 

computes the historical data and finds the nearest one result for approximating Si at 

time slot ‘t=i’.                                                         

4.2.3 Intra Cluster Time Series Approximation 

In the above content, we introduce the solution of selecting a suitable data cluster for 

carrying out our proposed data error recovery for ‘n’ covered sensing systems. 

However, when entering the above selected cluster, more specific technical problems 

are encounter and more detailed solution should be offered.  

Suppose that whatever the coverage situation is, the most suitable cluster of data 

time series set has be selected by the solution offered in Section 4.2.2. Now we should 

consider the problem that whether all the time series Xk, under the cluster Si, should 

join the next stepped data recovery together. Sometimes, to collect and navigate all 

data unit traversing a long time duration in a same cluster can also bring huge amount 

of time and resource cost. Especially when errors are common in big sensing data sets, 

huge amount inter-cluster operations are involved. Here, we developed a solution 

which selected a sub group of data sources Si’ for Si, denoted as Si’  Si. According to 
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the definition, the error time series happens at Xk Si. Here, we use T to present the 

time series length maintained by the system. To approximate the Xk as close as 

possible, we randomly select an Xj C. Then, the Euclidean distance between two 

vectors, Xk and Xj will be compared according to a pre-offered threshold. Those two 

vectors can be expressed as equation (1) and equation (2).   

 

Xk= , …, ,  …, , …, ;    t  [1, T]              (1) 

Xj= , …, ,  …, , …, ;     t  [1, T]              (2) 

 

The Euclidean distance between two time series Xk and Xj is calculated with a 

distance function and denoted as d(Xk, Xj). This distance can be calculated with 

equation (3) and (4), where is the ‘ ’ operator which calculate the difference of two 

value and connect their square summary together.          

 

)                    (3) 

                                         

        

This Euclidean distance will be calculated recursively for any Xj Si. If d(Xk, 

Xj)≤Threshold can be satisfied, Xj will be added into Si’ for future computing an 

approximating predicting curve for error recovery in Section 4.2.4. 

4.2.4 Recovery based on Time Series Prediction  

With the above Si’ Si, based on all Yk Si’, we can calculate a series average 

values at any time t as (5).   

 

=( , +, ,  +, )/m    (t [1, l], k [1, m])          (5) 

 

Because the data history window is l, totally l average values can be generated for 

predicting recovering error data. This predicting vector is denoted as {Y1, Y2,…, 

Yt, …, Yl}, where t is the time stamp. Hence, we can assign weights for conducting 
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time series based prediction over . To calculate W (a sequence of weights) for the 

final predicting approximate time series, the probability density functions of normal 

distribution needs to be configured. Specifically, according to most of real world 

applications, a data with later time stamp in a data window should have higher 

importance compared to the previous data. Two types of weights distribution are used 

in our work including Gaussian distribution weighting and exponential weighting.     

Under the theme of Gaussian distribution weighting,   ‘3 ’ principle has a 

critical limitation for selecting weights. In our work, only the domain between [0, 3

] is selected to calculate the final weight vector W, and it is enough to guarantee that  

  because over 97% data is in domain of [-(3 ), 3 ]. However, the 

time stamp for sensing data changes from [0, + ] that is not in domain of [-(3 ), 

3 ]. Therefore, this paper changes standard normal distribution with (6) to 

guarantee .      

           

 

 

Assume that the initial time stamp for data collection is 0, we can get =0. So the 

summary value of the whole weights domain is calculated with (7)    

 

 

 

Consequently, for a data history window with its length l, we can distribute m-1 

consecutive to the domain calculated with the equation (7).  In other words, the data 

range between [0, 3 ] is divided into m-1 fragments including [0, ], 

[ ] until the final fragment, 

[ ]. Then any item wi in vector W can be 

calculated with equation (8).   
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W is also arranged as exponential with the equation (9) as an alternative.   

, (i )        (9) 

Finally, to predict a recovery value for one error, expression   is used.  

is a vector which has data trends based on any continuous value in the vector of .      

4.3 Error Types based Recovery Solutions   

In this section, with our general error recovery roadmap in Section 4.2, for each error 

type in our previous work [49], specific solutions are presented as follows.      

Briefly speaking, r(n, t, f(n, t), g(n, l)) represents a data record collected by a 

sensing node whose ID is n. Variable t is defined to represent the size of a time series 

window. The function f(n, t) has a numerical value collected from node n within t. 

The function g(n, l) is defined for representing a location that records the cluster, data 

source node and partition situation related to n. It can compute the distance between 

n and initial data source node l. It can show current error node is the initial one. 

Furthermore, g(n, l) can parse data routing between communication nodes. With such 

notation, totally nine types of errors were defined in Chapter 3. These nine error types 

will be further categorized into two groups. In each group, recovery solutions are 

similar. One group is permanent errors. The other is ephemeral errors. For simplicity, 

we have following statements. 

S0: let ri(ni, ti, f(ni, ti), g(ni, l)) stand for a time series record from a source node ni 

(i: a time stamp; ni and ti: not related)    

S1: let ri((ni, ti), f(ni, ti), g(ni, l)) stand for a time series record from a source node 

ni (i: a time stamp; ni and ti: related)      

4.3.1 Recovery for Permanent Errors      

A permanent error has a relatively longer the error lasting time. In other words, 

viewing it within a time series, duration more than “threshold” consecutive rounds of 

error data units is called a permanent error.      

 

Recovery Strategy for node side flat line error (Nsfle)  
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According to paper [49], with S1, if any element x≡δi where δi is an effective 

constant in time window t, x f(ni, ti), and g(ni, l)=0, a Nsfle occurs. According to 

Figure 4-3, flat line errors can come from both transmission stage (edge side) or 

sampling stage (node side). When errors are caused at sampling stage, it indicates a 

better channel during data communication. More confidence can be given to the 

prediction model when carrying out multi-data sources based predicting and 

approximating recovery. Less time series is enough to be selected for recursive 

approximation predicting proposed in Section 4.2. It can also be noticed that this error 

type normally lasts longer time, expressed with the expression, ti>threshold.           

 
Figure 4-3 Sensing Data Flat Line Errors (permanent)   

 

Recovery Strategy for edge side flat line error (Esfle) 

With S1, if any element x≡δi with δi as an effective constant in time window t, 

x f(ni, ti), and g(ni, l)!=0, an Esfle occurs as defined in Chapter 3. According to Figure 

4-3, when errors are caused at data transmission stage, it indicates a worse 

communication channel during data transmission. Less confidence should be offered 

to the prediction model when carrying out multi-data sources based predicting and 

approximating error recovery proposed in Section 4.2. When conducting recursive 

approximation more time series should be selected. In other words, the expression, 

ti>threshold can also be calculated.             

     

Recovery Strategy for node side data loss error (Nsdle-P)  

With S1, if f(ni, ti) = null && ti > τ, where ‘τ’ is time duration by user requirement, 

and if g(ni, l)=0, a Nsdle-P occurs [49]. According to Figure 4-4, in terms of data loss 

error, there exists the probability of both permanent error and ephemeral error. The 

flat line faults

edge side

node side
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permanent error can be described with the expression τ>threshold. In addition, as it is 

a node side error recovery, more confidence can be given to the prediction model 

when carrying out multi-data sources based predicting and approximating recovery. 

Less time series is enough to be selected for recursive approximation predicting 

proposed in Section 4.2.      

 
Figure 4-4 Sensing Data Loss Errors (permanent)   

 

Recovery Strategy for edge side data loss error (Esdle-P) 

With S1, if f(ni, ti) = null && ti > τ, where ‘τ’ is time duration by user requirement, 

and if g(ni, l)!=0, an Esdle-P occurs as described in Chapter 3. According to Figure 

4-4, in terms of data loss error, there exists the probability of both permanent error 

and ephemeral error. The permanent error can be described with the expression 

τ>threshold. In addition, as it is an edge side error recovery, less confidence can be 

given to the prediction model when carrying out multi-data sources based predicting 

and approximating recovery. More time series should be selected for recursive 

approximation predicting proposed in Section 4.2.           

 

Recovery Strategy for node side out of bounds error (Nsobe-P) 

With S1, if an element x>θ, x f(ni, ti), where θ is a threshold set by user 

requirement, and if g(ni, l)=0, a Nsobe-P occurs as described in Chapter 3. According 

to Figure 4-5, in terms of out of bounds error, the permanent error can be described 

with the expression ti>threshold. In addition, as it is a node side error recovery, more 

confidence can be given to the prediction model when carrying out multi-data sources 

data lost faults

edge side
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based predicting and approximating recovery. Less time series is enough to be 

selected for recursive approximation predicting proposed in Section 4.2.    

 
Figure 4-5 Sensing Data Out of Bound Errors (permanent)  

 

Recovery Strategy for edge side out of bounds error (Esobe-P) 

With S1, if any element x>θ, x f(ni, ti), where θ is a threshold set by user 

requirement, and if g(ni, l)!=0, an Esobe occurs as described in Chapter 3. According 

to Figure 4-5, in terms of out of bounds error, there exists the probability of both 

permanent error and ephemeral error. The permanent error can be described with the 

expression ti>threshold. In addition, as it is an edge side error recovery, less 

confidence can be given to the prediction model when carrying out multi-data sources 

based predicting and approximating recovery. More time series should be selected for 

recursive approximation predicting proposed in Section 4.2.           

4.3.2 Recovery for Ephemeral Errors  

It can be easily inferred from its name, permanent errors have a relatively longer the 

error lasting time. In other words, viewing an ephemeral error within a time series, 

only one time round collected data units are erroneous. Or this condition can be 

relaxed as less than “threshold” consecutive rounds collected data units are erroneous.  

       

Recovery Strategy for node side spike error (Nsse)      

With S0, if  |f(ni, ti) - fp(ni, ti)|/ti > ψ, where ψ is the acceptable changing trend, 

fp(ni, ti) is predicted time series, and if g(ni, l)=0, a Nsse occurs as described in Chapter 

3. According to Figure 4-6, in terms of spike error, the ephemeral error can be 

described with the expression ti<threshold. In addition, as it is a node side error 

out of data bounds faults

edge side

node side
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recovery, more confidence can be given to the prediction model when carrying out 

multi-data sources based predicting and approximating recovery. Less time series is 

enough to be selected for recursive approximation predicting proposed in Section 4.2.               

 
Figure 4-6 Sensing Data Spike Errors (ephemeral)  

 

Recovery Strategy for edge side spike error (Esse)      

With S0, if  |f(ni, ti) - fp(ni, ti)|/ti > ψ, ψ is the acceptable changing trend where fp(ni, 

ti) is the predicted time series, and if g(ni, l)!=0, an Esse occurs as described in Chapter 

3. According to Figure 4-6, in terms of spike error, the ephemeral error can be 

described with the expression ti<threshold. In addition, as it is an edge side error 

recovery, less confidence can be given to the prediction model when carrying out 

multi-data sources based predicting and approximating recovery. More time series is 

enough to be selected for recursive approximation predicting proposed in Section 4.2.     

            

Recovery Strategy for node side data loss error (Nsdle-E)  

With S1, if f(ni, ti) = null && ti > τ with ‘τ’ as time duration by user requirement, 

and if g(ni, l)=0, a Nsdle-E occurs as described in Chapter 3. According to Figure 4-

7, in terms of data loss error, there exists the probability of both permanent error and 

ephemeral error. The ephemeral error can be described with the expression 

τ<threshold. In addition, as it is a node side error recovery, more confidence can be 

given to the prediction model when carrying out multi-data sources based predicting 

and approximating recovery. Less time series is enough to be selected for recursive 

approximation predicting proposed in Section 4.2.     

 

Recovery Strategy for edge side data loss error (Esdle-E) 

spike faults
edge side

node side
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With S1, if f(ni, ti) = null && ti > τ with ‘τ’ as time duration by user requirement; 

and if g(ni, l)!=0, an Esdle-E occurs as described in Chapter 3. According to Figure 

4-7, in terms of data loss error, there exists the probability of both permanent error 

and ephemeral error. The ephemeral error can be described with the expression 

τ<threshold. In addition, as it is an edge side error recovery, less confidence can be 

given to the prediction model when carrying out multi-data sources based predicting 

and approximating recovery. More time series should be selected for recursive 

approximation predicting proposed in Section 4.2.                 

 
Figure 4-7 Sensing Data Loss Errors (ephemeral)  

 

Recovery Strategy for node side out of bounds error (Nsobe-E) 

With S1, if an element x>θ, x f(ni, ti), θ is a threshold set by user requirement, 

and if g(ni, l)=0, a Nsobe-E occurs as described in Chapter 3. According to Figure 4-

8, in terms of out of bounds error, the permanent error can be described with the 

expression ti<threshold. In addition, as it is a node side error recovery, more 

confidence can be given to the prediction model when carrying out multi-data sources 

based predicting and approximating recovery. Less time series is enough to be 

selected for recursive approximation predicting proposed in Section 4.2.              

 

Recovery Strategy for edge side out of bounds error (Esobe-E) 

With S1, if any element x>θ, x f(ni, ti), θ is a threshold set by user requirement 

and if g(ni, l)!=0, an Esobe-E occurs as described in Chapter 3. According to Figure 

4-8, in terms of out of bounds error, there exists the probability of both permanent 

error and ephemeral error. The permanent error can be described with the expression 

data lost faults (ephemeral)

edge side

node side
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ti<threshold. In addition, due to it is an edge side error recovery, less confidence can 

be given to the prediction model when carrying out multi-data sources based 

predicting and approximating recovery. More time series should be selected for 

recursive approximation predicting proposed in Section 4.2.       

 
Figure 4-8 Sensing Data Out of Bound Errors (ephemeral) 

4.3.3 Recovery for Aggregation and Fusion error (AFe)     

To apply our proposed data recovery in Section 4.2, the recovery strategy of 

aggregation and fusion error is different to both permanent error recovery and 

ephemeral error recovery. Because aggregation and fusion operations require multiple 

data units to be joined and connected for error recovery and decision making, a trade-

off has to be calculated to select a suitable data cluster. Specifically, With S1, if ∑i|f(ni, 

ti) - fp(ni, ti)|/ti > ψ* && |f(ni, ti) - fp(ni, ti)|/ti < ψ, where ψ* is an  acceptable error 

upbound, an AFe occurs as described in Chapter 3. There exists probability of both 

permanent error and ephemeral error under the theme of sensing data aggregation and 

fusion error. For permanent errors, “ti ψ* threshold” should be calculated 

recursively. However, for ephemeral errors, “ti threshold” is calculated.            

Based on the above work, with respect to 9 types of errors defined in Chapter 3 

and our paper [49], three solutions can be shared among those error types to deal with 

missing data recovery. In principle, those solutions are recovery techniques based on 

the error time duration (permanent or ephemeral) and complex data aggregation errors.     

out of data bounds faults (ephemeral)

edge side

node side
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4.4 Algorithms  

Based on the general big sensing data error recovery strategy proposed in Section 4.2 

and specific error recovery techniques developed in Section 4.3, the algorithms for 

our proposed on-Cloud error recovery will be introduced in this section.            

4.4.1 Preparation for Error Recovery          

Our recovery algorithms follow error detection algorithm developed in Chapter 3. 

The detection algorithm has three inputs. The output is an error dataset De. To find 

the location and source of a detected error d in De, we assume that all error location 

information has already been offered by the detection algorithms [49]. Generally 

speaking, in an big sensing data graph G(V, E), the input for the detection algorithm 

are original graph G(V, E), and an error data set De. The output is G’(V’, E’) - a subset 

of G to describe error source and location. In other words, an error data set De and a 

graph G’(V’, E’) will be used as the input of new proposed recovery algorithms in this 

paper.      

The recovery algorithms are based on the Spark model which consists of a driver 

program that executes the user’s main function and executes various parallel 

manipulations on a cluster. In terms of error recovery algorithm, Spark can facilitate 

data locality to process data on or near the storage for reducing data transmission. 

With "Mapper" in Spark, the master node takes the input, divides it into smaller sub-

problems, and distributes them to working nodes. A working node may do this again 

in turn, leading to a multi-level tree structure. A working node processes the smaller 

problem, and passes the answer back to its master node. With the "Reducer" in Spark, 

the master node then collects the answers to all the sub-problems and combines them 

in some way to form the output – the answer to the problem it was originally trying to 

solve. MapReduce allows for distributed processing of the map and reduction 

operations. With the programming model of Spark, three strategies can be chosen to 

transform a targeting problem for parallel and distribution.   

(1) Original algorithm  (embedded in) Spark 

(2) Partition algorithm task flow  Identify which parts to design a Spark job 

 Spark execution result returns to task flow    
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(3) Complete Spark design control flow parallelization/data parallelization    

We select different combinations of data partition and control flow.   

We select different combinations of data partition and control flow according to 

the above three strategies. 

4.4.2 Scalable Algorithm on Mapper Side       

Suppose we have a sensing data collecting system with n nodes. The workload of big 

sensing data set error recovery is separated and distributed onto Cloud through 

Mapper function of Spark. The errors in the input sensing data set have been detected 

and located with the previous technique [49].      

 

"Mapper" Side Algorithm:
Input: De={d1, d2, ..., dn}, Gl(V,E);
Output: De'={d1' , d2' , ..., dn'};

(1)     public static class Mapper extends TableMapper <......,......> {
(2)     public Mapper() {}
(3)     @Override
(4)     public Datatype map(Datatype De={d1, d2, ..., dn}, Gl(V,E) )
(5)     throws IOException {
(6)        ImmutableBytesWritable value = null;
(7)        initialize De; // a temporary variable for selecting one error data from {di,...,dj,...,dn};
(8)     while(De!= ) {
(9)        Select di from De;
(10) di.parsing(Gl(V,E)); // parse error information including location and types;
(11)      if(di.parsing(Gl(V,E))=="Ephemeral Error") {   //error type is "Ephemeral Error";
(12)          locating(Gl(V,E));
(13)
(14)
(15)
(16) di.'= di.approximate(Wi,      );  // call approximate function for predicting recovery data;
(17)      }
(18)      if(di.parsing(Gl(V,E))=="Permanent Error") {   //error type is "Permanent Error";
(19)          locating(Gl(V,E));
(20)          initiate{ri(ni, ti), f(ni, ti), g(n, l))};
(21)          for(int T=0; T<ti; T++){
(22)
(23)
(24)
(25) di.'=di.approximate(Wi,      );  // call approximate function for predicting recovery data;
(26)              }
(27)       }
(28)       if(di.parsing(Gl(V,E))=="Fusion Error") {   //error type is "Fusion Error";
(29)          locating(Gl(V,E));
(30)                                                                                                 ;
(31)          if(ti>"time_threshold")  {recursiveParsing();}
(32) di.'= di.approximate(Wi,      );  // call approximate function for predicting recovery data;
(33)       }
(34) update(di, De');     // generate recovering data set De';
(35)    }
(36)  }
(37)}
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Specifically, our “Mapper” side error recovery algorithm has the input of a 

detected error data set De as its input. In addition, error types, locations and sources 

will be offered as a data graph information Gl(V,E), offered by the precious error 

detection technique. The output of our recovery algorithm is a recovery data set De’. 

De’ consists of the recovery data from our Euclidean distance based data 

approximation approach. From Line (1) to Line (4) of the Mapper side algorithm, we 

initialize the parallel processing function of Spark and get two inputs, De and Gl(V,E). 

Line (5) and Line (6) is the IO exception definition of Spark requirement. In Line (7), 

the initialization process is adopted and some temporal variable is defined for 

processing and storing data items in the original De.      

From Line (8) to Line (35), our proposed algorithm for data approximation is 

designed based on calculating the Euclidean distance between multiple data sources. 

Firstly, in Line (8), if in De’, there is still an error di not being recovered, the algorithm 

will select this di to carry out error recovery. In Line (10), the location, error type and 

error source information is got by parsing the input data graph Gl(V,E) which is 

generated by our adopted error detection [49]. According to the Section 4.3, we 

divided the error recovery strategies into three groups including “ephemeral error”, 

“permanent error” and “fusion error”. In Line (11), if the error type of di is “ephemeral 

error”, in Line (12), the specific location is positioned and tagged. From Line (13) to 

Line (15), the time series in the tagged clusters are selected based on the Euclidean 

distance calculation for generating approximation time series for further predicting. 

With the calculated weight and time series in Line (13) to Line (15), in Line (16), the 

recovery prediction is carried out for generating a final recovery data, di’.  

In Line (18), if the error type of di is “permanent error”, in Line (19), the specific 

location is positioned and tagged.  In Line (20), because “permanent error” has strong 

dependency to the temporal factors, the temporal expression is defined for 

representing time duration. From Line (21) to Line (26), within the time duration of 

“permanent error” lifecycle, a recursive process is carried out for repetitively 

predicting recovery data. Within each round of the above recursive process, code 

between Line (22) and Line (24) selects the time series in the tagged clusters based 

on the Euclidean distance to generate approximation time series for further predicting. 

In Line (25), with the calculated weight and time series, the recovery prediction is 

carried out for generating a final recovery data, di’. In Line (28), if the error type of di 
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is a “fusion error”, in Line (29), the specific location is positioned and tagged.  “Fusion 

error” has strong dependency not only to the temporal factors, but also to multiple 

overlapped clusters. So temporal and cluster expressions are defined for representing 

correlated aggregation and fusion as shown in Line (30). From Line (30) to Line (31), 

the time series in the tagged clusters are selected based on the Euclidean distance 

calculation for generating approximation time series for further predicting. In addition, 

a recursive function is used for time based data fusion in Line (31). In Line (32), with 

the calculated weight and time series, the recovery prediction is carried out for 

generating a final recovery data, di’. Finally, the generated recovery data di’ is added 

into recovery data set De’ for error recovery in Line (34).    

4.4.3 Scalable Algorithm on Reducer Side     

 
After offering our “Mapper” side algorithm, a transit data set group 

De=De1… …Dei… …Dek which is waiting for combination and merging at the Spark 

“Reducer” side algorithm. Compared to the “Mapper” side algorithm, the “Reducer” 

side algorithm is relatively simple, which mainly assembles the predicted data units 

"Reducer" Side Algorithm:
Input:
Output: De' ={d1' , d2' , ..., dn'};

(1)    public static class Reducer extends TableReducer <......,......> {
(2)    public Reducer(){}
(3)    @Override
(4)    public void reduce(Datatype De')
(5)    throws IOException {
(6)       ImmutableBytesWritable value = null;
(7)       Select(                                      );
(8)       for(int i=0 ; Dei' .recoveryvalue()!= ; i++){
(9)          if(Dei' .recoveryvalue()!= ){
(10) Dei' .parse();
(11) Dei' .update(di in Dei' ); Dei' .localize(di in Dei' );
(12)         }
(13)      }
(14) Dei'.combine(); Dei'.consistencycheck();
(15)      return Dei';
(16)         if(ti>"time_threshold")  {recursiveParsing();}
(17)            checking(ri(ni, ti), f(ni, ti), g(n, l)));
(18)         generate(De' ={d1' , d2' , ..., dn'}); output(De' ={d1' , d2' , ..., dn'});
(19)      for (int i = 0; i < Dei'.length(); i++) {
(20)      try {
(21)         context.write(elementID,value);
(22)      } catch (InterruptedException e) {
(23)         throw new IOException(e);
(24)         }
(25)      }
(26)   }
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distributed on Cloud created by “Mapper” instances. Our “Reducer” side scalable 

compression algorithm extends the TableRedcuer<> of Spark programming model as 

shown in the algorithm Line (1) to Line (3).  In Line (4), the “Reducer” function is 

initialized with the transit data set group De=De1… …Dei… …Dek as an input 

parameter. Line (5) is the IO exception and error processing. In Line (6), variable 

initialization and model selection are conducted.      

In Line (7), the data set group is collected from all “Mapper” instances. From 

Line (8) to Line (13), the algorithm traverses all the temporally generated subset Dei’ 

to merge them according to ID pairs from “Mapper”. In addition, the Dei’ calls a 

“parse()” function to analyse the data overlapping, consistency and collision. 

Especially, in Line (11), each processed subset is recursively updated and localized to 

guarantee the unique predicted value in every Dei’. Then, in Line (14) and Line (15), 

the validation is conducted for updating every Dei’ before generating the final error 

recovery data set De’. In Line (16), the combination process continues if the time is 

within the limitation of a merging threshold. Following that, in Line (17) and Line 

(18), the recovery data set De’ is generated and output against the original error data 

set De. Finally, form Line (19) to Line (24), some programming faults and exceptions 

are processed by the algorithm for termination.                

4.4.4 Complexity Analysis    

Suppose we have a big sensing data system containing n multiple data sources di, 

i [1,n]. T is the maximum time duration for a certain detected error. If there are m 

errors in the error set De, we carry out the algorithm complexity analysis for our 

multiple data source approximation based recovery algorithm and the algorithm 

without approximation. For the algorithm without any approximation, the worst case 

complexity is O( ) due to the recovery algorithm needs to traverse multiple 

time intervals recursively. Under most of situation, it will not occur.  However, when 

discussing our multiple data source approximation based error recover, for predicting 

m errors values against n data sources across time length T, the complexity reduction 

comes from several aspects. Firstly, there is no requirement for whole data set De 

traverse. So, n can be divided into to a series n/k1 + n/k2+ … + n/kn, (1/k1 + 2/k2+ … 

+ 1/kn=1).  To make the problem simple, we assume that k1=k2=…=kn=c where c is 
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a constant. The worst case complexity of our proposed multiple data source 

approximation based recovery algorithm is O( )  which significantly 

reduce the data set size to be traversed. Compared to the previous worst case, to 

computation cost can be reduced exponentially. When there is no fusion error or 

permanent error, it means that no join operation or connection happens in error 

recovery process. T is equal to 1. In other words, the above 2 complexity can be 

simplified as O(m n) and O( ) which are the worst complexities of 

ephemeral error for error recovery.      

4.5 Experiments        

To verify the performance gains of our big sensing data error recovery strategy on 

Cloud, real data experiments are designed in our U-Could environment introduced in 

Chapter 2. There are two primary anticipations for designing this experiment. 1) 

Compare the difference between error data set and recovery data sets. By analysing 

the accuracy rate achieved by our error recovery method, we aim to demonstrate that 

the accuracy of the recovering data can satisfy the requirement of real world 

applications. 2) Demonstrate significant time-saving can be achieved with respect to 

recovering any detected errors from a big sensing data set without losing noticeable 

recovery accuracy. 

4.5.1 Experimental Settings and Data Sets 

With our error recovery strategy, computational processing can occur on data stored 

either in an unstructured file-system or a structured database system. In this 

experiment, Spark takes advantage of locality of data for processing data on or near 

the storage assets. Hence, the related data processing operation can be reduced. In a 

"Mapper" function, the input data is taken by a master node. Then, that master node 

separates it into a bunch of smaller sub-problems, and distributes those sub-problems 

onto leaf nodes. A leaf node may do this recursively to form a tree of multi-level. The 

leaf node processes the distributed sub-problem, then sends answer to its master node. 



90 
 

In a "Reducer" function, a master node is initialized to gather the answers of all the 

sub-problems and integrate them for the final output.  

The open source world meteorology big sensing data sets are used including four 

data formats, GRIB, BURF, HDF and NetCDF. Due to the different data formats, 

before implementing our proposed error detection and error recovery algorithms, a 

series of parsers are implemented to preprocess meteorological big sensing data sets 

from multiple civil open data sources. With the above preprocessing, the testing 

meteorology data sets with different data formats are normalized into our uniform data 

format before manually imposing errors in the original data sets. Specifically, 4 kinds 

of meteorology data sets are accessed.     

 

(1) Sea Surface Temperature Data Sources (SST): 

ftp://polar.ncep.noaa.gov/pub/cdas/eng.YYYYMMDD; 

ftp://polar.ncep.noaa.gov/pub/sst/rtg_sst_grb_0.5.YYYYMMDD;  

 

(2) Wireless Electrical Mask Satellite Observatory Data Sources:    

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t00z.gpsro.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t18z.gpsro.tm00.bufr_d;    

 

(3) Satellite Coverage Rate Data Sources: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.1bhrs3.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.1bhrs4.tm00.bufr_d; 

  

(4) Satellite Wind Observatory Data Sources:  

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t12z.satwnd.tm00.bufr_d.unblok 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1

.t18z.satwnd.tm00.bufr_d.unblok 
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Specifically, the big meteorology data set collected in several locations near East 

Longitude 151°12’ and South Latitude 33°52’ are used for our experiments. The 

coverage radius is around 50 km. The time for data sets stamps is traced back to last 

30 years. Totally, around 100 GB of meteorology sensing data were adopted for 

testing our multiple data sources approximation based error recovery approach. Four 

types of data attributes in the above data sets are extracted used. Specifically, the 

numerical temperature is measured with °C. The atmosphere pressure is measured 

with kPa. The humidity is measured by relative humidity to calculate a percentage 

value in ‘%’. The wind speed is measured by two parameters. One is the km/h, the 

other is angle for wind direction. 

4.5.2 Analysis for Error Recovery Accuracy Rate    

Similar to our previous work [49], the data accuracy analysis is offered to compare 

the input error data set with the output recovery data set. The accuracy is defined by 

measuring the similarity between two time series: one from real big sensing data graph 

G and the other G’ from filtered data provided by Could. The two time series are data 

items flowing between two nodes inside a cluster. To compute the similarity between 

two nodes, we deploy correlation coefficient model [49]. Suppose we have two time 

series X and Y. We can compute the similarity between them by formula (1).     

     

                  (1) 

 

In (1), we can see the similarity expression resembles to “cos” similarity 

computation. sim(X,Y) has a data domain [-1, 1]. The computing of “cov(time series 

1, time series 2)” is described with following equations (2) to (4).   

 

                    (2) 

 

                                (3) 

 

                     (4) 
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Hence, the similarity between two time series can be computed by equation (5).  

                                     (5) 

 

As we only need to correlate the accuracy and similarity, only data range of [0, 1] 

is selected. The original range [-1, 1] can be normalized into [0, 1] for standing for the 

accuracy 0% ~ 100%. As shown in formula (6), sim(X,Y)’ is computed instead of 

formula (5). sim(X,Y)’  [0, 1].     

 

′                                      (6) 

 

Therefore, the accuracy for an edge in G at a time stamp t can be assessed by 

formula (7). 

 

′                                        (7) 

     

Accuracy = ′                                         (8) 

     

Accuracy =                                           (9) 

 

The final accuracy for “Accuracy” for data service quality between two points can 

be assessed by equation (8). The equation (8) can be further transformed and 

calculated with the equation (10).          

 

Accuracy   (10) 
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Suppose we have S edges in a graph data set G(V, E) (With cluster-head structure, 

there is no edge explosion).  Each edge is indexed by s from [1, S]. We can compute 

the Average Accuracy of Cloud computed Data set ‘G’ against original ‘G’. The 

Average Accuracy is described in equation (11) as recovery data accuracy ratio to 

demonstrate our experiment results in Figure 4-9.       

 

Average_Accuracy=                             (11) 

 

 
Figure 4-9 Experiment for Recovery Data Accuracy  

 

With the definition of our average data accuracy ratio, the accuracy ratio is equal 

to 100% means that a detected error data is cleaned with a recovery data which is 

exactly the same value to the original value before imposing manually generated 

errors into the testing data set. In Figure 4-9, a group of error recovery ratios are tested 

according to the data predicting window length which ranges from 5 to 25. A much 

longer predicting window normally indicates a better predicting accuracy. In the 

experiment demonstrated in Figure 4-9, based on the real world meteorology data sets, 

we impose some manually generated errors for the purpose of accuracy experiment. 

The imposed error quantity is measure with a percentage calculated by the imposed 

error ratio defined as follows.       
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Imposed error ratio=  

 

In the experiment, firstly, we impose the flat line errors as the first error type. The 

second type is out of bound. Spike error is imposed as the third type. The forth type 

is data lost error. Last, aggregate & fusion type is imposed for experiment. The 

experiment is for measuring error recovery accuracy and efficiency of our proposed 

technique in terms of on-Cloud big sensing data processing.          

The imposed error rate changes from 5% to 80% in ‘x’ axis. And ‘y’ axis stands 

for the accuracy ratio. According to the results demonstrated in Figure 4-9, with the 

increase of error rate, the average accuracy ratio of decreases. The reason is that more 

imposed errors bring more unreliable data history and approximation for predicting 

recovery data. For example, if the error rate in a data set is 100%, it means that there 

is no accurate data which can be used as a base for carrying out meaningful data 

prediction. However, when the imposed error rate is less than 25%, the achieved 

accuracy ratio decreases slightly and can satisfy most of real world applications in 

terms of a quality of recovery data set.     

In Figure 4-9, when the imposed error rate is less than 25%, the average accuracy 

ratio of recovery data sets are all higher than 90% no matter what the window length 

is. As the error rate increases to 25% or more, the accuracy ratio of error recovery 

decreases dramatically in Figure 4-9. When the error rate increases to a value larger 

than 80%, the data recovery accuracy ratios drop to unacceptable values in terms of 

most real world applications. However, in the real world application, most of useful 

data sets and their error will not surpass 25%. In terms of an error rate of more than 

80%, the data gathering systems themselves could be described as failures and could 

be improved.         

4.5.3 Analysis for Error Recovery Time Cost      

In Figure 4-10, time cost for different error recovery strategies is compared. 

Specifically, the two implemented error recovery strategies include firstly the 

recovery based on traditional whole data set navigation and secondly the recovery 

based on multiple data sources approximation. The time cost for the first strategy has 
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a linear algorithm complexity with the increase of imposed error rate. However, the 

second recovery strategy developed by us significantly curbs the time cost for 

recovering the imposed errors. For any error rate less than 30%, to recover all the 

imposed errors in the 50 GB data set, the time cost is limited within 20 minutes. 

Compared to the first strategy without approximation, significant processing time 

(maximum 80 minutes) can be saved. This time saving is achieved because our 

proposed second error recovery strategy only accesses a small group of data to 

approximate the original true value of detected errors instead of the whole data set 

traverse.   

 
Figure 4-10 Experiment for Recovery Data Accuracy  

 

However, with the increase of the imposed error rate from 35% to 80% as shown 

in Figure 4-10, the time cost for our proposed novel error recovery strategy in this 

paper increases dramatically. That dramatic time cost increase is caused by the 

recursive approximation embedded in the recovery algorithm. That recursive 

approximation process has a similar exponential correlation with the error rate. But 

even with this dramatic time cost increase, the time cost of the error recovery with 

multiple data source approximation still costs less time compared to the first error 

recovery strategy. Based on the experiment result analysis in Section 4.5.2 and Section 

Time Cost for Recovering 50 G Big Sensing Data Set:   (minutes)

0

20

40

60

80

100

120

140

160

180

200

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

Recovery Time Cost with Traditional Whole Data Navigation
Recovery Time Cost with Multiple Data Sources Approximation 

imposed error rate



96 
 

4.5.3, both high quality recovery data set and quicker recovery time are achieved by 

our multiple data sources approximation based error recovery.  

4.6 Summary 

In this chapter, in order to recover errors in big sensing data on Cloud, we proposed a 

novel approach via multiple data sources based approximation. The coverage 

information was used for carrying out data multiple data sources approximation. 

Instead of using the whole data set for error recovery, this error recovery approach 

limited most data operations related within small subsets from the whole big sensing 

data set. In a selected sensing data subset, a Euclidean distance based approximation 

approach was proposed to calculate an average time series prediction curve. Then, this 

novel error recovery solution was harnessed to specific defined nine error types for 

error recovery. Through real big meteorological data experiments, we demonstrated 

that the accuracy of recovering data satisfied the requirement of real world 

applications. In addition, significant time-saving was also achieved without losing 

noticeable error recovery accuracy via scalability with MapReduce based 

implementation. Based on the research work in this chapter, the data cleaning step in 

our big sensing data curation roadmap was basically built up. In future, under our 

prosed error recovery, the coverage changes and coverage mobility features of big 

sensing data may be taken into consideration when carrying out the Euclidean distance 

based approximation.     
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Chapter 5                                          

Spatiotemporal Compression  

Chapter 3 and Chapter 4 solved the first important step of data cleaning in our big 

sensing data curation roadmap. The second important step in our big sensing data 

curation roadmap is compression and storage saving. In this chapter, we will introduce 

a novel on-Cloud technique for effectively processing big sensing data, especially 

graph data with spatiotemporal data correlations.      

5.1 Introduction 

In lots of real world applications, such as social networks, complex network 

monitoring, the scientific analysis of protein interactions and wireless sensor networks 

self-monitoring, it is avoidable to encounter the problem of dealing with big graph 

data and big graph data streams. Lots of those big graph data comes from modern 

sensing systems [33-34]. To monitor individual sensing nodes, their related 

behaviours and detecting the abnormal operation, huge amount of streaming graph 

data must be processed and analysed. It is well known that the processing of big graph 

data can be costly and inefficient with current typical Cloud Computing techniques or 

tools, such as Map-Reduce [33-34]. Those big graph data processing techniques 

introduce complex and multiple iterations. Those iterations and recursive algorithms 

may cause computation problems such as parallel memory bottlenecks, deadlocks on 

data accessing, algorithm inefficiency [33-34]. In other words, under some 
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circumstances, even with Cloud platform, the task of big data graph processing may 

introduce unacceptable time cost, or even lead to processing failures.     

To curb and avoid the formation of the above problems, in this chapter, we 

propose a novel technique for effectively processing big data, especially streaming 

big graph data from sensing systems on Cloud. Generally speaking, the big data will 

be compressed firstly with its spatiotemporal features on Cloud. By exploring spatial 

correlation of big sensing data, we partition a graph data set into clusters so that, in 

one cluster all edges from the graph have similar time series of data. In each cluster, 

the workload can be shared by the inference based on time series similarity. By 

exploring spatial data correlation, we partition a graph data set into clusters. In a 

cluster, the workload can be shared by the inference based on time series similarity. 

In each time series or a single graph edge, temporal data compression is conducted. A 

novel data driven scheduling is also developed for data processing optimization. The 

experiment results will be used to demonstrate that the spatiotemporal compression 

and scheduling achieve significant performance gains in terms of data size and data 

fidelity loss.   

5.1.1 Research Problem Analysis  

Nowadays, lots research work has been done towards the big data processing on Cloud. 

Cloud itself as a powerful computation and storage platform, also proves to be a 

suitable answer for processing and analysing big data. However, under the theme of 

big graph data processing, current typical techniques such as MapReduce may 

introduce high computation cost [27, 31-33]. More work is still expected to improve 

the effectiveness and efficiency in terms of big graph data processing on Cloud.  

Compared to the too much iteration introduced by MapReduce, we aim to offer 

an optimal solution for streaming big graph data processing for applications with high 

real time requirement. A novel approach to process streaming big data of cluster-head 

architecture over Cloud platform will be developed. This approach consists of two 

important technique parts. The first part focuses on reducing the data size over Cloud 

Computing platform with spatiotemporal compression. Specifically, a clustering 

algorithm is developed based on spatial similarity calculation between multiple time 

series or streams of data. It compares the data streams according to the topology of 
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the streaming data graph topologies from the real world. Under clustered network 

architecture, there are two classes of data interaction between data nodes from a 

complex data exchange network. One is the data interaction flows between the sibling 

nodes. The other is the interaction data flows between the leaf nodes and the cluster-

nodes.  In terms of the data exchange between leaf nodes and a cluster-head, the 

similarity model is relatively simple because it only involves the computation of the 

multiple attributions inside the data. All the similar data streams between a cluster-

head and its leaf data nodes can be approximately inferred with a certain mathematic 

function based on only one or several bilateral data streams. In terms of the data 

exchange between sibling nodes, a data vector should include different origin and 

destination. The correspondent computation of similarity should also be modified with 

the consideration of different data origin and destination. Furthermore, because the 

data items in streaming big data sets are heterogeneous and carry very rich order 

information themselves, we develop an order compression algorithm to further reduce 

the size of big data sets.     

The second part of our proposed big data processing approach focuses on the 

computation resource allocation of the Cloud. For the graph data, especially a big 

graph data set, the data can be heterogeneous and unfairly distributed over the Cloud 

platform. However to mapping this data to the Cloud platform for data processing, we 

need to consider the heterogeneous feature of the data. For example the data size from 

two nodes may be significantly different. To allocate the computing resource of Cloud 

according to node is not reasonable. Therefore we aim to offer a scheduling based on 

the analysis of data size from each node in a data exchange network to achieve shorter 

big data processing time and higher computing resource utility.               

As shown in Figure 5-1, the data streams generated from a complex social 

network pour into Cloud processing platform. To monitor individual nodes, their 

behaviours and detecting the abnormal operation, huge amount of streaming graph 

data must be processed by Cloud. According to different application purposes, the 

processing over this streaming big graph data can be categorized to two types. 

The first one type focuses on parallel data storing over large-scale distributed 

storage stock of Cloud platform. The stored big graph data or stream data sets will be 

queried and evaluated as the model of distributed data-base in Cloud, such as “Hydoop” 

[45] and its related “Hive”, “HBase”, “Zookeeper”, and so on. The data processing 
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results are offered as services to Cloud end users. The other type of applications cares 

more about the real time results and instance monitoring feedbacks over on-fly 

streaming graph data which may be unnecessary to be stored after high velocity data 

filtering. Under theme of this type of data processing, there is no need for permanent 

data storage nodes to intake high volume of data. The graph-based streaming data will 

be directly processed with some efficient filtering and event triggering algorithms. 

The correspondent approach for allocating the resources of Cloud computing is also 

needed to be developed to achieve costless computation and quick reaction time for 

event monitoring. Our approach proposed in this chapter will mainly work in this 

application type to achieve both low computation cost and shorter, quicker processing 

reaction time.           

 
Figure 5-1 Requirement for Big Graph Data Cloud Processing  

5.1.2 Contents Outline    

The rest of this chapter is organized as follows. In Section 5.2, a novel spatiotemporal 

compression technique on Cloud for big data will be introduced to reduce the size of 

big data sets. In Section 5.3, a novel scheduling algorithm is developed to distribute 

the big data, or graph data on the Cloud platform with better fairness for time 

performance gains. This scheduling will be based on the processing results from the 

spatiotemporal compression offered in In Section 5.2. In Section 5.4, we offer the 

integrated approach and the related algorithms for the compression and the scheduling 

proposed in Section 5.2 and 5.3. In Section 5.5, experiment is conducted in three 

aspects to verify the algorithms in terms of data exchange size, the time efficiency and 
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fidelity loss (data processing quality). In Section 5.6, we summarize the work in this 

chapter.      

5.2 Spatiotemporal Compression      

In Chapter 2, some typical big data processing techniques and tools over Cloud has 

been reviewed and analysed. In this section, we will introduce a novel technique based 

on spatiotemporal data correlations to compress big data on Cloud.   

5.2.1 Spatiotemporal Compression      

In this section, we will introduce a clustering technique based on spatiotemporal data 

correlations. It computes the similarity of time series with regression. The definition, 

the similarity computation model and analysis of this similarity computation will be 

offered. It will be used for clustering the nodes in cluster-head network architecture. 

It aims to reduce the data exchange within each cluster by data guessing and inference.   

  

5.2.1.1 Motivation   

As shown by the motivating example in Figure 5-2, there are several time series 

collected by the real world noisy sensor nodes deployed in a public transportation area. 

The sound is measured in standard Decibel (dB).   

Specifically, data time series 1 and 2 are quite similar to each other according to 

the whole sampling period from sample 1 to 90. In other words, time series 1 or 2 can 

be used to approximately represent each other, which is used by most of current 

clustering algorithms to reduce the data size. For example, to report the three time 

series 1, 2 and 3, previous clustering algorithms can divide three time series into 2 

time series groups A and B. In group A, there are time series 1 and 2 from sensor 1 

and sensor 2. In group B, there is time series of sensor 3. However, there is one 

problem in the previous clustering algorithms. The timing of re-clustering for time 

series is not optimal. Because the re-clustering frequency has huge influence for the 

energy cost, for a given data series set, we want to do the minimum re-clustering to 

capture the maximum time series difference.  
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Figure 5-2 Example: Time Series based Clustering   

 

In Figure 5-2, it can be observed that, from sample 65, the data feature of time 

series 1, 2 and 3 changes. The time series before sample 65 is very bumpy. It means 

that, the difference between time series 1, 2 and 3 can change quickly. To capture that 

changing, more clustering operation is required. But after sample 65, time series 1, 2 

and 3 become relatively smooth and static. It means that with less re-clustering 

operation, the partition of time series groups can be done with the satisfaction to 

accuracy requirement. In order to capture these attributes of three time series and carry 

out effective clustering, different method can be adopted. For example, if the data 

window with of each node can be maintained by a cluster-head, we can use normal 

regression to predict the data trend of each time series. Hence, that data trend can be 

used as a criterion for sensor nodes partition in each cluster. Furthermore, how to 

choose an optimal time frequency of re-clustering according to the feedback of 

analysis of data history raises an interesting research topic.    

In this chapter, we develop a clustering algorithm with improved data aggregation. 

Instead of carrying out regression over a set of historical data directly, this clustering 

carries out data aggregation over a consecutively series of weighted data changes. For 

example, in Figure 5-2, to predict the changing trend after sample 65, the prediction 

regression model will not directly work on the data samples before time stamp 65. As 

an alternative, a series of data trends with time stamp from 1 to 64 will be calculated 

for regression. In addition, with our proposed method, the problem of how to choose 

an optimal timing for re-clustering will also be discussed. We will give an approach 
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to choose a suitable data distribution to deploy our proposed clustering. Hence, over 

the unsuitable data distributions, the clustering can be terminated to avoid the cost of 

frequent clustering operations.   

 

5.2.1.2 Similarity and Error Model Influence to Clustering 

Our clustering algorithm based on weighted data changes conducts its decision 

making for node sets partitioning according to whether two time series being similar 

enough. So, firstly, it is important to define the similarities of two time series. Popular 

and direct similarity definition can be based on some average distance of sets of 

previous data belonging to different time series. To calculate that distance for 

measuring similarity and to predicate the future similarity of two time series, temporal 

prediction models should be developed. Current work can be found for temporal 

prediction based data regression. However, there is a main disadvantage for this 

prediction model if applying it for clustering. When two time series have shape similar 

to “cos()” and “sin()” functions, though the regression results of two time series can 

be of high level similarity, the true situation of two time series can be totally different.   
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To overcome the above inaccuracy brought by normal regression model based on 

historical temporal data, we develop a novel regression based data prediction model. 

Suppose that there are two time series, denoted as X1{x11, x12, …, x1m}, and X2{x21, 

x22, …, x2m}. m is the time tamp for each data collection rounds. We aim to predict the 

average dissimilarity of data trend for X1 and X2 in future m rounds. Based on X1 and 

X2, we can calculate a dissimilarity vector D(d1, d2, …, dm), where di=xi-yi. With the 

data trends vector D, we develop a weighted data regression model to calculate the 

average dissimilarity of data changes between time series X1 and time series X2. The 

specific regression model is as follows.       
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X is a data value set with temporal and spatial formed by n sensor vectors. In the 

matrix (1), the values collected buy sensor nodes 1 to n during m data collection 

rounds is described. Then we assign a weight vector for the changing slopes of each 

Xi, denoted as W{w1, w2, …, wm-1} which means that according to a specific time stamp, 

the weight for carrying out regression is different. Then the matrix (1) can be changed 

to a data changing matrix, X’ in (2).  With W X’, we can calculate a weighted data 

changing value matrix V= W X’ in (3). The weights vector is generated with the 

assumption that the importance is of variation of Gaussian distribution with the 

changing of different stamps. In other words, more recent data has more influence for 

prediction.      
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In order to calculate the W for a time flow, the probability density function of 

normal distribution should be configured to describe a time series in which a data with 

newer time stamp should have higher importance. According to 3  principle, in 

Gaussian distribution, we only use the domain between [0, 3 ] to calculate the final 

weight vector W, and it is enough to guarantee that    because more 

according more than 97% data will be within this [-(3 ), 3 ]. However, the time 

stamp for sensing data changes from [0, + ] which is not between the domain of [-

(3 ), 3 ]. So in our work, we change the standard normal distribution as follows 

in (4).  
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Because we assume that the starting time for data collection is 0, we can get =0. 

So the summary value of the whole weights domain is calculated with (5) 
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As a result, for a data history window with m items or a vector Xi, we can distribute 

m-1 consecutive to the domain calculated with formula (5).  Specifically, the data 

range between [0, 3 ] is divided into m-1 fragments as 0 to , 

 to until to the final fragment, 

[ ]. Then any item wk in the weight vector 

W can be calculated as following (6). With the above W, the regression matrix V can 

be evaluated.        
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To compare the similarity of any two time series Xi and Xj based on our data 

changing regression model, we only need to compute the summary difference of 

corresponding Vi and Vj. If |Vi - Vj|<Threshold (threshold is a given error bound from 

application requirement), time series Xi and Xj will be judged as similar enough and 

allocated into the same cluster.   

 

5.2.1.3 Clustering by Exploiting Data Changing   

In Section 5.2.1.3, we introduced our approach for computing the similarity 

between any two time series Xi an Xj. With that similarity, the clustering process can 

be carried out. In this section, we will specify what kind of data distribution is suitable 

our clustering algorithm. As shown in Figure 5-3 (a), under a certain data distribution, 
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if the similarity of time series is of high level, with the time stamp changing from T1 

to T2, the clustering algorithm does reduce the number of reporting node. Specifically, 

in Figure 5-3 (a), at T1, only 3 nodes are selected as cluster-heads and at T2, only 2 

nodes are selected as cluster-heads. However, under some high variation data 

distribution, the effectiveness of clustering algorithm can be not good due to the 

distribution of big data sets. As shown in Figure 5-3 (b), at time stamp T1, the data 

variation is relative steady. However, when it comes to time stamp T2, sensing data 

set is of high volatile and it makes the clustering algorithm divide more cluster-head.    

 

 
Figure 5-3 Data Changes Influence to a Clustering Algorithm   

 

Under some extreme conditions, it can make all the leaf nodes become cluster-

heads as shown in Figure 5-3 (b) when time stamp is equal to T1. So under this scenario, 

we do not want to use the clustering algorithm, because the clustering brings no 

transmission reduction for data exchanging. Furthermore, it introduces further time 

and resources for the data exchange of computing and clustering from cluster-heads 

to leaf nodes. Hence, we develop a method which exploits the trade-off between cost 

and gains brought by clustering algorithm to adaptively deploy our clustering 

algorithm according to underlining data changes. This method is based on the 
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computation resource consumption model which decomposes and analyses the cost of 

different activities and operation over Cloud platform for simulating a big graph data 

set.  

 

 Ms: the size of the new clustering message to be propagated 

 Cb: the time and computation cost to broadcast 1 byte of data  

 Cr: the time and computation cost to receive 1 byte of data  

 Ps: the size of data block 

 h(G, nodeID): the jumps from gateway to leaf nodes 

 Cinstr: computation and time cost for executing instructions for clustering   

 D: duration 

 t: time stamp  

 

In every data stamp for data exchange within a certain network, suppose that there 

are n different nodes. Suppose that totally the clustering algorithm selects x cluster-

heads and n-x leaf nodes. Then for k rounds of data exchange, the data receiving cost 

should be Ps  k  t  (x)  Cr. The data sending cost should be Ps  k  t  (x) Cb. 

However, the time and computation cost for propagating the new clustering should be 

counted. The cost of data exchanging is Ms k t (x) Cr and Ms  k t (x) Cb 

respectively. There also is some cost for clustering algorithm at the final gateway, 

Cinstr.  If k n, it can be observed that no cost will be saved and it also brings new 

clustering energy cost. When the number of x exceeds a certain level, we will not use 

the proposed clustering algorithm to realize saving because it has less effects under 

this scenario. Instead, we use an order compression approach to reduce data size to 

achieve the size reduction for big data on Cloud.           

As described above, under some situation, the proposed clustering algorithm can 

be ineffective. To offer a compensation method which can still bring data exchange 

saving when the clustering algorithm can not achieve performance gains, an order data 

compression approach is developed. The concept of order compression comes from 

the traditional data compression area. It means to use the order information carried 

among a group of data items to compress the data. The order compression can happen 

in a complex data unit or a group of data units in a data exchanging network. It is a 
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kind of spatiotemporal compression exploiting data correlations in for data 

compression. 

5.2.2 Order Compression with Spatiotemporal Correlations     

 

5.2.2.1 Order Compression for Multi-attributes Data       

To compress multiple attributes sensing data with order data information, some 

techniques have been developed in work [52].  As shown in Figure 5-4, there is a data 

sampling and exchanging network. According to the previous techniques [80], when 

there is a data record collected by a node in this network, to send back this data, data 

exchange starts. Based on current techniques, there are only two possible choices for 

the newly collected data. (1) transmit data to the parent node (2) suppress the data 

transmission according to a predefined error range c. The previous technique can 

easily recognize whether there is a suppression and transmission when there is less 

data change happening. As shown in Figure 5-4, the current collected data record has 

no change in its 4th and 5th data attributes. So, the transmission of the 4th and 5th 

attributes will be cancelled according to the in-network data suppression approach 

[80]. But, if there is also no change in the 6th attribute when comparing the data history 

table of the 6th attribute in Figure 5-4, the transmission of the 6th data can not be 

suppressed. In other words, single temporal prediction model loses the opportunity 

for further data exchanging compression. Both data cluster-head and leaf node in a 

network maintain the same data history table which can offers the message of previous 

message for order compression.  

In the example of Figure 5-4, order message of previous attributes can be utilized 

to represent a location of the repetitive data in the data history table in of the 6th 

attribute, there exists the opportunity to cancel the transmission of the 6th attribute to 

reduce the size of the current data record. More specifically, the reporting order of the 

first attributes can have 3!=6 different orders. The unreported attributes 4th and 5th 

have to obey the original order because the cluster-head needs this order for predicting 

the unreported attributes. So, totally, 6 types of reported attribute order can represent 

6 different locations in the data history table of attribute 6th. The second location of 

the data history table of the attribute 6th is equal to the current collected data. Then the 
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order is used to transmit the previous three attributes back to the cluster-head. And the 

cluster-head can infer the value 3 for attribute 6th based on the received attributes order 

and its maintained data history table of the 6th attribute. By the above method, data 

exchanging for the 6th attribute is saved compared to the previous single temporal data 

reduction technique [80].    

 

 
Figure 5-4 Order Compression with Multiple Attributes   

 

5.2.2.2 Order Compression based on Encoding Data Changes  

In section 5.2.2.1, we mainly discuss how to use order information of multiple 

attributes to compression the exchanging data size for a big data graph. In this section, 

the order compression will be used to compression data transmission in tiered tree 

topology. As shown in Figure 5-5, there is a data exchanging network for data 

sampling and communication. Firstly, the tree topology can be divided into a layer 

topology. Our research is carried out on a cluster, such as x0 and all its child nodes, x1 

to xn. Then our proposed compression can be generalized to the whole data collection 

network. In the cluster x0, all the nodes from x0 to xn form a one hop network. If x0 

maintains a data buffer for all its child nodes with their length of L=2, at each data 

gathering round, x0 can have l n previous data for x1 to xn.   

Because the length of the data buffer is L=2; the buffer for a certain child node 

can be indexed with two real data reports. For example, the buffer elements for x5 can 

be represented with the combination order of x1 and x2; and the buffer elements for x6 

can be represented with the combination order of x3 and x4. In addition, the x7 can be 
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represented with the combination order of (x1; x2) and (x3; x4).  With this encoding 

method, it can be calculated that for a given buffer length L, and n child nodes cluster, 

the nodes required to represent a buffer with its length L should be m!≥L. In other 

words, we can calculate how many nodes are required, m to represent another node. 

Then we can determine how many in the node sets with x1 to xn should report and how 

many can be suppressed with the method offered by the in-network prediction model. 

For the unreported data, it will be approximated with the buffered data and its index 

is given by the order of the reported data. Theoretically, more nodes are added, more 

data compression can be achieved with this method without considering the data 

mapping and index cost. Furthermore, this compression approach can be recursively 

deployed over the whole data gathering tree topology.  For example, in Figure 5-5, 

node h can use the order of cluster x0, cluster k and node l to carry out the data 

compression operation over it.  The advantage of this order compression based on 

buffering historical data is that its compression effectiveness is steady under some real 

data sets.   
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Figure 5-5 Inter-node Order Compression for Data Exchanges   

 

For example, for independent temporal based data compression and our proposed 

clustering algorithm, if data sets change dramatically, the cost of re-clustering and 

independent temporal suppression can be extremely high. However, according to our 

knowledge, lots of dramatic changes are periodic, which means that most of current 

data have appeared previously. So if the previous repetitive data can be retrieved and 

reused, we can greatly decrease the time and resource cost for Cloud computing. In 

other words, the buffering based order compression can reduce more data exchange 
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under the data set where tradition temporal suppression and the proposed clustering 

algorithm lose their effects. 

5.3 Data Driven Scheduling on Cloud  

In the previous section, we introduced the approaches for reducing the big data size 

with spatiotemporal data suppression. However, a smaller size of data does not 

definitely mean a shorter processing time which is quite related to the task division 

and workload distribution over Cloud. In order to offer a shorter and quicker 

processing time, we will introduce a novel scheduling algorithm based on the 

spatiotemporal compressed data sets.  

5.3.1 Different Scheduling Strategies over Cloud      

To show the necessity and effectiveness of our data driven scheduling and its mapping, 

two types of mapping strategies, node based mapping and edge based mapping will 

be introduced first for comparison.     

 

Mapping for Cloud Scheduling with Real Network Nodes  

The most direct and easy way to distribute and schedule the big data processing 

task over Cloud is based on the real work topology of the network itself. Under the 

theme of this mapping, the mapping algorithm is pretty simple and the computation 

resources are divided and distributed to each node for simulating and analysing data 

flows in a real world network. As shown in Figure 5-6 (a), to filter the graph data 

stream from a cluster of network nodes, one to one mapping is conducted. For example 

all the data flowing through node a, and all the operations from node a will be 

allocated with a computation unit on Cloud. This mapping and resource allocation is 

fair according to the real world network topology, but it could be extremely unfair in 

terms of the distribution of data size under a heterogeneous data exchange network. 

For example, in Figure 5-6 (a) compared to node a, node b, c and d may experience 

huge data flows within certain time duration which will cost much longer time for 

data analysis. After the computation unit allocated to node a has finalized its 
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processing, it has to wait for the results from node b, c and d to form high level services 

to end users. In other words, the unfairly distributed workload can significantly delay 

the reaction and processing time for processing big data sets over Cloud.      

 

Mapping for Could Scheduling with Data Exchange Edges  

Instead of directly allocating the computation resources over Cloud according to 

the real world network topology, the mapping can be also carried out based on the 

data exchanging edge between nodes. As shown in Figure 5-6 (b), each edge which 

has data flows over it in a network will be simulated and analysed with a computation 

unit from Cloud. For example, the edge ab, ac and cd will be allocated with similar 

computation and storage units respectively. It is clear that the mapping in Figure 5-6 

(b) still can not solve the problem of unfair distributed data size over each data 

exchanging edge. Furthermore, the number for the network edges may increase 

dramatically with the growth of the nodes. Though the cluster-head architecture and 

1-hop cluster somehow limit the increasing number for the edges, to process the data 

graph in a big cluster itself can be a very time consuming job for the Cloud. So, the 

edge mapping and its scheduling for the Cloud computing power is not suitable for 

analysing the data exchange cluster in Figure 5-6 either.              

 

Mapping for Could Scheduling with Data Exchange Quantity      

Based on the mapping in Figure 5-6 (c), we design a novel mapping based on the 

information carried by the compressed data sets after the processing of our proposed 

data reduction with spatial clustering, temporal prediction and order compression. As 

shown in Figure 5-6 (c), the computation resources are grouped into to some basic 

units to offer independent processing power capability.  Then, the edges in a network 

will be divided into several blocks according to their real workload of data flow. For 

example, according to data exchanging size, clustering situation and compression 

ratio, the workload for data exchanging and processing over the edges ab, ce, bd, ac 

is similar to the half workload over the edge ef. It can be concluded that data exchange 

over the edge ef is of high data exchanging density and difficulty to be compressed 

and clustered. Hence, the edge ef is grouped into an independent group and allocated 

with more computation resources from the Cloud platform. With the data driven 

mapping in Figure 5-6 (c), it is clear that the mapping algorithm mainly focuses on 
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how to assign the resources according to the real requirement for dealing with data. It 

manages to distribute the workload for data processing more evenly over the Cloud 

platform and to make the full use of the computation power of Cloud. Compared to 

the mapping strategies in Figure 5-6 (a) and Figure 5-6 (b), it is more optimal in terms 

of time saving and resource dispatching.     

 

 
Figure 5-6 Different Mapping Strategies for Resources Scheduling on Cloud   

5.3.2 Calculation for Weighted Data Exchanging Edges    

In order to carry out the scheduling strategy introduced in Figure 5-6 (c), we need to 

calculate the data exchanging quantity for each edge in a network topology as shown 

in Figure 5-7. According to our work introduced in the previous sections, the data set 

will be clustered and compressed before being used as a base for offering real time 

Cloud services. The calculation of the workload for each edge in a network structure 

is as follows.  

It has been introduced that during the filtering process of big data set, clustering 

and compression have been conducted. With that processing the data suppression ratio 

based on clustering, denoted as Cs for an edge is calculated. The data suppression ratio 

based on temporal compression, denoted as Ct is also calculated. For example, the 

clustering suppression ratio over edge ab is denoted as Csab and the order compression 

ratio over edge ab is denoted as Ctab. Because the clustering and compression have 

different influence to the data reduction over the edge ab, different weights wsab and 

wtab are assigned to Csab and Ctab respectively. With that we can calculate the real 

workload of data over edge ab, Dab’=(wsab Csab+wtab Ctab)  Dab where wsab+wtab=1. 
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The selection of wsab and wtab can come from application requirement or system 

feedback.    

 

 
Figure 5-7 Computing Model of Spatiotemporal Compression Ratio  

 

Suppose there are n edges in the network, the total real data exchanging size 

D’=E(ws Cs+wt Ct), E G(V,E). G is the network graph, V is set for nodes and E is 

edge set. Then, we can get the percentage of data processing workload on each edge. 

Suppose that the whole computation resource of Cloud is R, the data processing task 

can be scheduled for over Cloud according to the calculated 

Dxy’=(wsxy Csxy+wtxy Ctxy) Dxy, where x and y are two nodes in a data exchanging 

network. As shown in Figure 5-7, the exchanging data size over the edge ef is 

Def’=(wsef Csef+wtef Ctef) Def and the that over the edge ab is 

Dab’=(wsab Csab+wtab Ctab) Dab.              

5.4   Algorithms   

Based on the above compression techniques and scheduling detailed in Sections 5.2 

and Section 5.3, the overall approach for efficient big data processing on Cloud is 

designed in this section. Specifically, we design related separate algorithms and 

roadmap for the proposed spatiotemporal Cloud data compressions and afterwards 

scheduling. 

e
f

a

bc

d

spatial compression ratio: Cs (clustering)  / For example: Csab
temporal compression ratio: Ct (temporal, order compression) for example:Ctab
Dab: total data exchange over edge ab during a time duration

Def'=(wsef×Csef+wtef×Ctef)× Def

Dab'=(wsab×Csab+wtab×Ctab)× Dab
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5.4.1 Spatiotemporal Clustering Algorithm   

The clustering algorithm is developed on the cluster-head. It takes time series set X 

and similarity threshold d as inputs.  The output is a clustering result which specifying 

each cluster-head node and its related leaf nodes.  

 

Input: a vector set X ={x1, x2, ... xn}, (vi={vi1, vi2,..., vim}),
            xi is a time series of  node i,
            disimilarity threshold: d, clustering round: k, i  [1, n], j  [1, m];
Output: cluster-head nodes set S and cluster information;

  (1)   While (time stamp j<=k)
  (2)        if(j%R = = 0 && R ! = 0) // R is for reclustering and not the first round
  (3)             Normalize X to V; V=X  W;
  (4) select  unselected vi from set V;
  (5)        initialize a cluster Ci with vi; record vi in S;
  (6)        While(existing unselected element in S)
  (7)             select  unselected xi from set X; transform xi to vi;
  (8)             comparesimilarity(vj, S)  ;
  (9)             if(complaresimilarity(vj, S)>d)
  (10)                initialize Cj with vj; record vj in Sj;
  (11)           else
  (12)               adding vi into the Cl with minimum similarity;
  (13)  if (all nodes have been traversed)
  (14)       resturen S;

Clustering Algorithm with Data Trend Similarity

 
 

As shown in the clustering algorithm, in Line (1), the data exchange time stamp j 

is counted from 1 to the data exchange application duration, k. In line (2), if the j is 

the time stamp for re-clustering, the clustering process will be executed. In line (3), 

the algorithm changes the computation of Matrix X to data change matrix V with the 

technique introduced in Section 5.2.2. From line (4) to (5), the algorithm selects any 

vector from V to form the first cluster Ci and node xi will be used as the cluster-head 

of Ci. From Line (6), the algorithm will carry out the selection of a new vector until 

all the vectors are clustered. Specifically, it selects a vector xj from X and transforms 

it into vj in line (6) to line (7). In line(8), for each newly selected vj, it will be compared 

to previous clustered vectors, if the similarity between the is within the given threshold 

d, vi and xi will be added into a previous cluster line (11) to line (12). If the similarity 

exceeds the given threshold d, a new cluster Cj will be initialized with vj or xj as its 

cluster-head as shown in line (9) to line (10). Finally, it all the nodes have been 



116 
 

compared and clustered, the algorithm will return the final clustered nodes set and 

clustering information S which is a partition plan for X.     

5.4.2 Compression Algorithms  

 

Order Compression  

In order to set up the relationship of the reported data and compressed data, the 

compression algorithm partitions the n reports from n nodes into two groups Xt and 

Xs. After this partition, the algorithm aims to construct a mapping between sets Xt and 

Xs. Specifically, for a given historical buffer length L, s is calculated for minimum 

report of order information indexing in line 1 and line 2. In line 3, the initialization is 

conducted. From line 4 to line 8, the first round partitioning for X and data order 

mapping is carried out for indexing the elements in Xt with the combination order of 

the elements in Xs. From line 9 to line 10, the algorithm will recursively use the 

indexing concept from line 4 to line 8, to map the rest of data in X. The compressed 

elements from X will be also sent to Xs.     

 

 
 

Temporal Prediction Algorithm  

Algorithm: Order Compression
input: a streaming graph data set X={x1, x2, ..., xn}, window size: L;
Output: a partition of data set X, ordered transmission set Xt and suppression set Xs;

1.   for an xi  X, to index its buffer with L, the required reports size s!  L ;
2.   return the minimum s;
3.   intialize Xt =  and Xs=  , i=1; j=n;
4.   while (sizeof(X)>= s+1)
5.         ordering (xi, x(i+1),...x(i+s))  Xt;
6. x(n-i)  Xs;
7.         delete xi, x(i+1),...x(i+s-1), x(j) from X;
8. i=i+s; j=j-1;
9.   while (sizeof(Xt>=s && X!= ))
10.       iteration ordering(Xt) for each element from X; xk  Xs;
11. Return final Xt and Xs;
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The order compression algorithm is developed based on the data history buffering 

strategy. It should be embedded in the original temporal in-network prediction. The 

input of the algorithm includes the real-time collected data of each node at time 

interval t. In line 1, the prediction coherency c is checked in Line 1 for regular in-

network prediction. In line 2, the compressive algorithm checks the reported attributes. 

If there is one attribute attj has a similar value to a certain value, attj stored in its data 

history table in line 7 and 8, the order of the previous reported j-1 attributes will be 

used to report the location of attj in the data history table. In other words, the order 

compression will be carried out inter and inner network nodes.   

 

 

5.4.3 Scheduling Algorithm   

Based on the above definition and computation, the scheduling algorithm is offered 

as follows. The algorithm takes the graph data D and its topology G, Could resources 

as inputs, outputs a scheduling based on partition of R. From line 1 to line 6, the 

algorithm carries out initialization and creates the first partition for scheduling. From 

line 7 to 11, a partition can have more edges if the computation power is not fully 

used. From line 12 to 13, if there is an overloaded data exchanging edge, more 

computational power from Cloud will be allocated. This process will be repeatedly 

executed over all the edges from the set E.    

 

Algorithm: Adding Order Compression to Temporal Prediction
input: real-time collected streaming data at, at={att1, att2, ..., attm}
 prediction error bound c
Output: real-time collected data at, at' which has a smaller size than at
, or a suppression of at

1.      check the temporal inference error bound c;
2.      for(int i=1; i<=m; i++) {
3.         if (|attj - attj'| < c)
4.             carry out normal in-network prediction;
5.         else
6.             if (attj attj") // if attj can be found close to a value attj" in history table

7.                using the order of previous j-1 attributes to represent the location of "attj";
8.                order compression in node and inter nodes
9.     } end for
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5.4.4 Overall Strategy for Cloud Big Data Processing 

With the above offered algorithms including compression and scheduling working at 

the different stage of our proposed big data Cloud processing stage, the roadmap for 

using this approach can be described as follows. 1. Input a big data set to Cloud 

platform. 2. Filter the big data set with the data compression algorithms. During the 

compression, the spatiotemporal correlations between data are used. The clustering 

and order compression are combined together for better suppression effect when 

processing data sets with different distributions. 3. The filtered and compressed 

data/graph data will be partitioned and distributed on Cloud according to our 

scheduling algorithm for further data processing as service providing.     

5.5 Experiments  

To verify the effectiveness of the proposed spatiotemporal compression and it related 

scheduling strategy for processing big sensing data and graph data over Cloud, 

experiments are designed based on U-Could introduced in Chapter 2. The streaming 

data set from a real world sensing system is used for testing the performance gains of 

the algorithms. The time cost and computation resource cost will be recorded to 

measure the performance gains. Compared to previous big data processing techniques 

Algorithm: Data Driven Scheduling
input: a big graph G(V,E), a graph data set D, Cloud platform R

Output: a division P of R based on E from G
0.  i=0;
1.      While(E!= Ø){
2.          get exy E;
3. Dxy'=(wsxy×Csxy+wtxy×Ctxy)×Dxy
4.          resource allocation based on k=Dxy'/D' R;
5. Create a New Partition Pi;
6. Add exy to Pi;
7.          if (exy<k)
8.              get new exy E;
9. Dxy'=(wsxy×Csxy+wtxy×Ctxy)×Dxy
10.            Add exy to Pi;
11. i++;
12.        else if(exy 2k)
13  Pi->2kR;
14 i++;
15.     } end While
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without spatiotemporal compression and its related scheduling, the evaluation is 

designed to demonstrate the following gains. (1) The new approach significantly 

outperforms previous one in terms of Cloud resource cost by data compression and 

avoiding iteration. (2) The new approach can save data processing time significantly 

by a fair workload distribution strategy. (3) The new approach will not introduce 

unacceptable data quality loss in terms of real world application requirement.            

5.5.1 Environments and Data Sets    

In this data exchange sensing system for generating our testing data, there are 500 

nodes deployed in the physical world to conduct tasks such as data gathering, 

information exchanging and mutual interaction. The nodes are organized as a 

hierarchical structure with cluster-head and leaf node. Every node collects high 

frequency data streams such as sounds and vibration. Every node also collects low 

frequency data streams such as light and temperature. Because the system is a sensor 

network based on the wireless communication, there exist huge amount of information 

errors, loss or redundancy. In each cluster, the data exchange creates a complicated 

data graph. If we can use Cloud as a powerful tool to simulate and analyse that 

complicated data flows in that data graph, the better WSN design and more efficient 

real time query can be offered.     

As shown in Figure 5-8, even only considering one node, four types of data can 

be gathered with different frequency. For easily computing the similarity between 

time series from different nodes, they have been normalized into the same value 

domain from 1 to 100. Within a 24 hours window, the vibration and sound time series 

have high sampling frequency and experience dramatic changes. The light and 

temperature time series have relative smooth data trend and are sampled with a 

relatively low frequency. The time duration for the testing data set is 24 hours. In each 

second, the sampled data flow over a node is 0.02 KB on average. In total, there are 

around 1,000,000 KB data sampled by the whole network. However, under the fine 

wireless communication channels environment, to monitor and simulate the network 

behavior, the overall exchanging data size between nodes exceeds 5,000,000 KB for 

transmitting the collected “vibration”, “sound”, “light” and “temperature” streaming 

graph data of 1,000,000 KB. The extra 4,000,000 KB is caused by the communication 
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protocols, gossip between nodes, failures, data loss, re-transmission, overhearing and 

redundancy, etc. However, the light and temperature time series experience relatively 

smooth changes within time duration of 24 hours. In other words, the data sampling 

by each real world node is heterogeneous.     
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Figure 5-8 Heterogeneous Sensing Data Sets from 1 Time Series (KB/sec./node) 

 

According to the curve in Figure 5-8, the high frequency sound and vibration time 

series fluctuate dramatically when considering one node. It indicates that regular 

temporal prediction may have less effect in compressing the size of the time series. 

Specifically, the sampling frequency for vibration is 10 bytes per-second and the 

sampling frequency for sound is 8 bytes per-second. However, the data sampling 

frequency for light and temperature is relatively low with only 1 byte per-second. In 

addition to these data, extra communication consumes large amount of computation 

and storage resource on Cloud. According to our approach, before sending these data 

streams to Cloud for processing, data sets will be compressed and clustered to reduce 

the big data size and the task scale for Cloud platform. In total, three groups of 

experiments are carried out over U-Cloud with the above experiment data sets. In the 
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first group, we test the compression effectiveness. In the second group, we test the 

effectiveness of the scheduling algorithm. In the third group, we test the accuracy and 

data loss problems for our approach through the definitions of data quality, such as 

average accuracy.     

5.5.2 Spatiotemporal Compression Experiment 

 
Figure 5-9 Data Exchanging Reduction for High Frequency Data Sets 

 

Firstly, we test the clustering algorithm and compression algorithms with high 

frequency vibration and sound data sets. As mentioned above, the total real world data 

exchange within the whole network exceeds 5,000,000 KB. Because the data 

collection is based on a heterogeneous and asynchronous model, the high frequency 

data sets of sound and vibration count for 90% data exchange in the real world 

network. It can be estimated that the real world network data exchange for vibration 

and sound is around 4,500,000 KB. Both compression and clustering data reduction 

techniques have a great effect on big streaming data reduction based on the results in 

Figure 5-9 (1), Figure 5-9 (2), Figure 5-9 (4) and Figure 5-9 (5). However, clustering 

algorithm performs slightly better than order compression for sound data set because 

for monitoring a vibration system, such as helicopter blades, in a certain time period, 

they maintain a set of similar sound curves which are very suitable for clustering based 

data reduction.         
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In Figure 5-9 (3) and Figure 5-9 (6), the adaptively using clustering and order 

compression can achieve better performance gains compared to independent 

clustering and compression based data reduction algorithms over both sound and 

vibration data sets. In Figure 5-9 (3), only 800,000 KB sound data is exchanged, and 

in Figure 5-9 (6), around 1,100,000 KB vibration data is exchanged. Compared to the 

data size of 4,500,000 KB exchanged in the real world network, significant amount of 

data exchange is avoided. In other words, with the clustering and order compression, 

around 60% big graph data from the high frequency vibration and sound data sets can 

be compressed. This significant reduction will undoubtedly lead to the time cost and 

computation source saving when analysing the reduced data sets over Cloud platform. 

           

 
Figure 5-10 Data Exchanging Reduction for Light and Temperature Data Sets 

 

Secondly, we test the clustering algorithm and compression algorithms with low 

frequency light and temperature data sets. According to above analysis, the high 

frequency sound and vibration data exchange within the whole network exceeding 

4,500,000 KB. It can be easily calculated that the total data exchange for the real world 

network low frequency light and sound data sets are around 500,000 KB. According 

to experimental results demonstrated in Figure 5-10 (1), Figure 5-10 (2), Figure 5-10 

(4) and Figure 5-10 (5), it can be concluded that both clustering and order compression 
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have slightly better reduction effects over the temperature data set than that over the 

light data set. The reason is that the temperature within one data of a small area keeps 

quite similar and maintains a constant difference between time series which can be 

accurately described with our data prediction models for clustering and order 

compression. Specifically, with the clustering algorithm, around 65,000 KB data is 

exchanged for the temperature data set; and around 100,000 KB data is exchanged for 

the light data set. With the order compression algorithm, the exchanged data sizes are 

160,000 KB and 150,000 KB for temperature and light data set respectively.        

However, in Figure 5-10 (3) and Figure 5-10 (6), the adaptively using clustering 

and order compression can achieve better performance gains compared to independent 

clustering and compression based data reduction algorithms over both temperature 

and light data sets. In Figure 5-10 (3), around 65,000 KB sound data is exchanged, 

and in Figure 5-10 (6), around 70,000 KB vibration data is exchanged. Compared to 

the data size of 500,000 KB exchanged in the real world network, significant amount 

of data exchange is avoided. In other words, with the clustering and order compression, 

more than 70% big graph data from the low frequency vibration and sound data sets 

can be compressed. Compared to the high frequency data sets in the whole testing big 

graph data set, more data is compressed because the low frequency data sets are much 

easier to model and predict.               

5.5.3 Time Performance Gains of Scheduling  

In Section 5.5.2, we demonstrated that the order compression and clustering algorithm 

can effectively reduce the data size for future analysis over Cloud platform. A smaller 

data set means a smaller problem size over a distributed processing platform. But it 

does not definitely mean a shorter processing and reaction time which are normally 

determined by the time cost of the final node to finish its task branch in a distributed 

system such as Cloud. So, scheduling is necessary to dispatch the tasks more evenly 

and optimal over Cloud platform. In other words, the time consumption situation and 

real time reaction are good to measure the performance of scheduling algorithm.  

As shown in Figure 5-11, the horizontal axis stands for the window length which 

is necessary for most streaming data applications. With the data from a given window 

length ‘L’, the data analysis algorithm will work on the Cloud to digest it and form 
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the final services to the end users. The vertical axis stands for the time cost calculated 

in second. In this experiment, we implement two scheduling algorithms. They are 

original scheduling based on the physical topology of the real world network. Because 

this scheduling ignores the real workload of each node, some nodes over Cloud may 

be overloaded and others may be idle to wait for those overloaded nodes. Especially 

after the clustering and order compression, the data stream size flowing through each 

real world network node can be extremely different. As a result, this physical topology 

node based scheduling costs more time for filtering the whole streaming data set and 

simulating the data exchanging compared to our proposed data driven scheduling 

algorithm in every different window length from 1 hour to 14 hours. The trend curve 

of our node based scheduling keeps running below the trend curve of the node based 

scheduling. The larger the window size is, the more filtering time is saved.   

 

 
Figure 5-11 Time Cost for Graph Data with A Window Length ‘L’ 

 

However, it is not reasonable to test the window too larger over 14 hours, because 

it causes a very big data graph which may introduce lots of approximation and failures 

by magnifying the acceptable errors in our data reduction models. Furthermore, an 

extra-longer window size makes the filtering time increase exponentially. For 

example, in Figure 5-11, when L=14 hours, the time costs of our data driven 

scheduling and the real world node based scheduling are around 30 seconds and 70 
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seconds respectively. Compared to the 7 hours window with the time costs around 8 

seconds and 12 seconds, the filtering time and system reaction time is greatly 

increased. There is an important point to be mentioned here for the experiment results 

in Figure 5-11. With the increase of the stream window length ‘L’, the time cost does 

not increase with a linear relationship; whereas an approximate exponential 

relationship can be observed. The reason for that exponential increase is that with the 

increased window length, more nodes from different time stamps join the network 

graph to change the topology with more complexity.      

5.5.4 Data Accuracy Experiment  

In previous sections, we demonstrated the effectiveness of our clustering and 

compression techniques for reducing big data size. In addition, we conducted the 

experiment to test our scheduling algorithm with respect to its time cost. However, 

because the data reduction process of our techniques is not lossless, the 

accuracy/fidelity problem is critical to be discussed to guarantee the service quality 

offered to end users. In this section the experiment will be conducted to show the 

fidelity loss and data accuracy after deploying our data reduction and scheduling on 

Cloud. We aim to prove that under most of applications, our algorithm can achieve 

efficient big data processing on Cloud without losing acceptable accuracy for most of 

applications.     

 

Accuracy Definition  

Before introducing and analyzing the experiment results, we first offer the 

definition and method for accuracy. The accuracy is based on measuring the similarity 

between two vectors, one from real big data graph G and the other G’ from filtered 

data as the service provided by Could. Actually, these two vectors are the data items 

flowing between two nodes within a cluster at a certain time stamp. To describe the 

similarity between two nodes, we use correlation coefficient model. Suppose that 

there are two vectors, X and Y. With Correlation Coefficient method, we can calculate 

the similarity between the two vectors, X from G and Y from G’ in equation (7).   

                    (7) 
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 From (7) we can find that this similarity resembles to the “cos” similarity 

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1, 

vector2)” is as following formula (8) to (10).    

 

                     (8) 

 

                          (9) 

 

                      (10) 

 

So, the similarity between two vectors can be calculated with following equation 

(11). 

 

                                                  (11)        

 

Because we only want to correlate the accuracy and similarity, only [0, 1] data 

range is selected. The original data range [-1, 1] could be normalized into [0, 1] for 

representing the accuracy from 0% to 100%. As shown in equation (12), sim(X, Y)’ is 

calculated instead of equation (11). sim(X, Y)’  [0, 1].     

 

              ′                                     (12)        

 

Hence the accuracy for an edge in G at a time stamp t can be assessed with the 

equation (13). 

 

          Accuracy = ′   (13) 
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The final accuracy for “Accuracy” for data service quality between two points 

within a cluster can be assessed with the Accuracy in equation (14). In our example, 

T=24 hours is used.    

 

   Accuracy                       (14) 

 

Suppose that in the graph data set G(V, E), there are total S edges (Because the 

cluster-head structure, it avoids the edge explosion)  and each edge is index with s 

from [1, S]. We can calculate the Average Accuracy of the Cloud computed Data set 

G’ against the original G. This Average Accuracy is used in equation (15) to 

demonstrate our experiment results in Figure 5-12 and Figure 5-13.          

 

       Average_Accuracy=                                            (15)  

 

Accuracy Results Analysis      

 

 
Figure 5-12 Relationship between Fidelity Loss and Error Bound  

 

The inaccuracy in our technique based on Cloud is mainly caused by the error 

from clustering process and data compression loss.  Both data window length L and 

0%

20%

40%

60%

80%

100%

error
bound=0

error
bound=1

error
bound=2

error
bound=3

error
bound=4

error
bound=5

error
bound=6

error
bound=7

error
bound=8

error
bound=9

L=1 hour
L=2 hours
L=3 hours
L=4 hours
L=5 hours
L=6 hours
L=7 hours
L=8 hours
L=9 hours
L=10 hours
L=11 hours
L=12 hours
L=13 hours
L=14 hours
L=15 hours



128 
 

prediction error bounds have influence to the accuracy and final service quality. As 

shown in Figure 5-12, the data accuracy decreases with the increase of the given 

prediction error bound. However, there is another factor, window length ‘L’ which 

influences the accuracy. It can be found in Figure 5-12 that with the increase of the 

historical data window length ‘L’, the accuracy curve runs totally at a low accuracy 

level. That is caused by the large window in which more nodes and data are involved 

in simulating the graph data. During that simulating process, the error and failures will 

have a magnifying effect when repetitively exchanging among more nodes. From the 

experiment result in Figure 5-12, it can be concluded that when the given error bound 

is less than 2 (after normalization) and the window length is less than 12 hours, the 

accuracy and data quality of service are within an acceptable level, around 95%. With 

the error bound larger than 2 and the window length larger than 12 hours, the data 

quality for service after processing over Cloud platform decreases dramatically. Due 

to the big errors, there is no need to plot the error bound larger than 9 which is totally 

useless in real applications. So, we used an empirically study to select 2 as an optimal 

number for our algorithm. It is also used in the related experiments for data reduction 

and scheduling.               

 

 
Figure 5-13 Worst and Best Case Analysis for Fidelity Loss 

  

Specifically, we use as the average value from 0 to 9 for accuracy test. As shown 

in Figure 5-13, with the increase of window length L, the average accuracy decreases 
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dramatically. Whatever the window length is, the best case accuracy can be achieved 

as 100%. The best case accuracy is the highest accuracy of a data item offered as the 

service after the processing on Cloud. However, with the increase of the window 

length, the worst case accuracy decreases dramatically. The worst case accuracy is the 

lowest accuracy of a data item offered as the service after the processing over Cloud. 

It is measured and calculated with the correlation coefficient similarity. Especially, 

when the window length enlarges to more than 11 hours, the worst cased accuracy 

drops from 80% to 0 very quickly. In other words, according to the experiment results 

in Figure 5-13, to set a 2-hours or 3-hours data window is better for guaranteeing the 

data accuracy and data service quality for deploying our proposed big data 

spatiotemporal compression on Cloud.       

5.6 Summary 

In this chapter, we investigated the problem of on-Cloud spatiotemporal compression 

for big sensing data, especially graph data sets. In our proposed compression 

technique, the big data was compressed firstly according to its spatiotemporal features 

on Cloud. Based on this spatiotemporal compression, a data driven scheduling was 

developed to allocate resources including computation and storage of Cloud to 

provide better service for upper layer data analytic applications. The experiment was 

conducted on U-Cloud platform to demonstrate that the spatiotemporal compression 

could significantly reduce the data size compared to the previous big data processing 

techniques on Cloud. Furthermore, our data driven scheduling distributed big data 

processing workload optimally on Cloud to help achieve significant time performance 

gains. Last but not least, the experiment results also demonstrated that the data 

processing accuracy and fidelity loss of our proposed approach met most of the 

application requirements. In the future, following this techniques, novel dynamic 

scheduling technique may be expected.    

    

 

  



130 
 

 

Chapter 6                                       

Regression-based Compression  

This chapter investigates the problem of novel prediction model for better 

compressing high changing, high data rate big sensing data sets. In lots of real world 

applications, such as earthquake wave and transmission monitoring, the incoming big 

sensing data can be extremely bumpy and discrete. Thus, compression techniques on 

Cloud described in previous chapters may lose effect in terms of scalability and 

compression ratio. To improve the effectiveness and efficiency for processing those 

real world big sensing data, a novel non-linear regression prediction model is 

introduced in this chapter.        

6.1 Introduction 

Based on the analysis for some real world big sensing data sets, such as earthquake 

data sets, it can be noticed that the some sensing data has high changing character. In 

lots of current earthquake data sets processing methods, regression can be found. 

However, these regression techniques have two insufficient aspects or disadvantage. 

(1) They poorly support large volume, scalable big data processing with Cloud 

platform. (2) Their focus is on how to predict the future event, but less attention is 

paid to utilizing the predicting power of regression for data compression. Hence, in 

the following sections, a novel non-linear regression based compression will be 

developed and introduced. The related details including regression design, least 
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squares and triangular transform will be discussed. To fully explore the power and 

resource offered by Cloud, the proposed non-linear compression is implemented with 

MapReduce for achieving scalability.      

6.1.1 Research Problem Analysis    

Under the topic of processing high changing, high rate big data, such as earthquake 

sensing data, regression is a common method adopted for data guessing and predicting. 

For example, in paper [91], Non-linear structural identification problems are 

discussed. The Bouc-Wen model proved to be effective and efficient when simulating 

non-linear structural constitutive characteristic. However, those regression models [91, 

92] is not designed for Cloud computing. If those models can be further extended and 

calibrated on Cloud, more compression performance gains can be achieved.    

 

 
Figure 6-1 High Data Rate Earthquake Sensing Data     

 

As shown in Figure 6-1 (a), in a large scale earthquake event, including the main 

shock, there were approximately 22000 aftershocks following the June, 1992 Landers 

earthquake, California.  The dataset covers the period 28 June 1992 to 30 June 2001 

[101]. The high data generating rate earth quake data were sampled in different 

positions at different time stamps as shown in Figure 6-1 (a). In each sampling point, 
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there is a data time series as shown in Figure 6-1 (b). It can be observed from in Figure 

6-1 (b) that even only considering one single time series from the whole deployed 

earthquake monitoring systems developed in the area described by Figure 6-1 (a), the 

data changing is pretty bumpy and difficult to use traditional data trends or linear 

regression model to describe them. For example, the data trend prediction based 

compression requires the data generation ratio to be relatively low and the time series 

doesn’t change violently.  

However, in the real world earthquake data example in Figure 6-1 (b), the data 

trend prediction based compression will lose most of its opportunity for data 

compression because the violently changed data will force the prediction model to 

train the incoming data again and again to guarantee the accuracy. When considering 

the linear regression prediction based compression approach, similar problem occurs. 

Because under the situation of data set in Figure 6-1 (b), linear regression prediction 

should frequently calculate new linear relationship of newly coming data points, 

which brings lots of computation and time cost. As a result, the compression approach 

may lose its effect.  

From the above analysis, we find that, if the time series can be better modeled 

with other relationship which can last a relatively longer period, it will greatly reduce 

the real data processing required by prediction model training. It means a better data 

compression performance can be achieved by predicting more. So, in this chapter, we 

aim to develop a non-linear prediction model to better approximate the time series in 

Figure 6-1 (b). In other words, the new prediction model can reduce the frequency for 

data retraining during the data compression process when encountering big sensing 

data sets such as earth quake monitoring data sets.       

6.1.2 Contents Outline   

The rest work in this chapter is organized as follows. In Section 6.2, a novel big 

sensing data compression technique based on non-linear regression model will be 

proposed to compress high frequency big sensing data sets such as big sensing data 

collected by earthquake sensing systems on Cloud. In Section 6.3, the scalable 

algorithm for the proposed non-linear regression based on Mapreduce programming 

model will be offered and analyzed. In Section 6.4, experiments based on real world 
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big sensing data are designed on Cloud for testing performances including 

compression ratio, time efficiency and data loss rate. In section 6.5, we summarize the 

contents in this chapter.       

6.2 Compression based on Non-linear Regression    

According to the above analysis of typical big data compression techniques and tools 

on Cloud, to overcome the problems brought by real world big sensing data, we 

develop a novel compression technique on Cloud with non-linear regression 

prediction. Suppose that a data time series X={x1, x2, …, xi, …, xn} represents a data 

set from a single data source streaming into Could for future processing. In each time 

series, the data distribution is quite discrete where it is difficult to model with data 

relationship such as data trend. In addition, it may be difficult to find linear 

relationship or obvious data distribution within a time series.         

 

 
Figure 6-2 Non-linear Regression based on Partitioned Trigonometric Function 

 

As shown in Figure 6-2, the earthquake monitoring high frequency data time 

series can be very bumpy and unpredictable with traditional data trend model. In 

addition, if a simple linear regression prediction line is used, most of real data is 

impossible to be predicted and approximated. In other words, those models lose any 

effect for compression. Instead of, using a simple linear even non-linear regression 

line, if the whole time series can be partitioned into continuous sections, in each 
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section, non-linear regression should be carried out for calculating data changing and 

values in both efficient and accurate ways. So, the X will be divide into a group of 

sections, denoted as X(1,i), …X(i, j), … X(k, n), and X(1,i) X(i, j)  …  X(k, n) is equal to X. 

With this partitioning, the whole high frequency data set can be calculated. However, 

with the above definition, to achieve the compression, three issues should be solved. 

(1) The non-linear regression model in each partitioned data section. (2) Specific 

mathematic function and calculation tools adopted in each data section should be 

offered. (3) The principle for partitioning each data section of independent non-linear 

regression should be proposed. The solutions for these three issues will be offered step 

by step as follows.                                 

6.2.1 Non-linear Regression Prediction Model   

 
Figure 6-3 Single Independent Weighted Non-linear Regression 

 

Due to the complex and variety of real world data, it is very clumsy and inaccurate to 

use a simple linear relationship to describe the changing and trend of a time series as 

shown in Figure 6-3 (a). The non-linear regression modelling should be used to better 

describe those data as shown by the red curve in Figure 6-3 (a). Between each two 

partition blocks, a non-linear regression function should be calculated for prediction. 

For example, shown Figure 6-3 (b), with the sampled data points from i to i+l, some 

function should be calculated by a non-linear regression model for inner section 
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prediction. The prediction should be able to approximately simulate the trend of the 

data points between two red points as shown in Figure 6-3 (b).            

In general, any single variable regression model is to correlate a variable x and a 

function , denoted as Y f(x, ). It is actually to relate a response Y to a vector of 

predictor variables X=( x1, …, xk, …, xn)T. Under the theme of non-linear regression, 

the function is focused on the fact where the prediction depends on one or more 

parameters with non-linear functions. With the limitation of single variable, we can 

get the non-linear regression model as the following form.   

 

In the above equation, Yk is a response, f is a function which has known to be with 

a vector xk=(xk1, …, xkt)T and its parameter series, denoted as T. i is 

used for representing random errors brought by model. In general, the non-linear 

regression models commonly deployed are exponential decay model, exponential 

growth model or logarithmic non-linear regression model. Firstly, the mostly 

encountered non-linear regression is exponential decay or growth model as expressed 

in equation (1).  With equation (1), we can further transform and extend it with Fourier 

transform to benefit our regression process.   

 

 

 

The logarithmic regression can be described with following equation (2) where c 

is a certain constant.   

 

  

But the real world physical processes often need to be model with higher-order 

differential equations which will results in higher-order exponential function 

computation models. Specifically, in equation (3), k is the order for the differential 

equation.    
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Generally speaking, the equation (3) is the high order transformation and 

extension of equation (1). But it is short at describing the relational function in terms 

of regression model application. As a result equation (4) is used to approximate large 

amount of functional shape.        

 

 

 

Furthermore, the monotonic increasing features in real world application can be 

located in variable x, such as time and dosage. Under that theme, non-linear regression 

models are also called growth models. Pure exponential models are typical growth 

model. However, they have short lifetime due to their mathematic limitation. So, they 

are often replaced with the following logistic growth curve model in equation (5).  

    

 

 

The above equation (5), a symmetric growth curve which asymptotes to  when 

x and to 0 while x . In this equation (5), the parameter  determines the 

horizontal position. At the same time, the parameter  manipulates the steepness. 

This can be transformed into the Gompertz curve which generates an asymmetric 

growth curve as follow equation (6).     

      

 

 

Under the theme of the logistic curve,  determines the asymptotic upper bound. 

The parameter  determines the horizontal position. And the parameter  controls 

the steepness. The above set of non-linear regression models are used for catching 

data time series curves in our proposed research in terms of data prediction.    
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6.2.1.1 Triangular Transformation   

It can be found in the data example in Figure 6-3 that high frequency earthquake 

data sets often approximately following some triangular functions relationship. In 

other words, if some triangular regression line can be approximately calculated, more 

compression effect should be achieved. Hence Fourier transformation could be 

suitable solution for approximating the predicting line. Specifically, the above 

calculated regression functions such as power or exponential curves will not be 

directly used for prediction. Instead, they will be further transformed into a set of 

triangular functions with different parameters with the Fourier transform. The Fourier 

transform is a generalization of the complex Fourier series. For a given function f(x), 

with the continuous F( )dk and n/L k, it replaces a discrete set An. The equation is 

as following (7) and (8).     

 

 

 

 

With the above transform, the regression based prediction line can better 

predicting the earthquake data stream and reduce resource cost because it reduces the 

frequency of recalculating curves by better regression models.    

 

6.2.1.2 Non-linear Least Squares      

 The calculation of our predicting curve is based on non-linear least squares. 

When calculating linear least squares, it can be expressed as following (9) and  can 

be calculated with the equation (10).  

 

 

 

 

Unlike the linear least square, there is no close-form solution to calculating non-

linear least square problem. To solve the problem, some numerical algorithms are 
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developed to capture the value of the critical parameter . For example, the values are 

got by successive approximations as in equation (11). In equation (11), l is an iteration 

number. The vector  is called the shift vector.         

       

 

 

With (11), the equation (12) can be got. J is a function of constants.  

 

 

 

As a result, the normal equation can be expressed as following (13). With this 

method based on the non-linear least squares, the predicting curves can be calculated 

approximately.      

 

 

6.2.2 Unequal Weighting Methods for Data Points  

To better approximate and predict the, unequal weighting methods are developed for 

processing and predicting time series. Considering the specific requirement of 

earthquake data sets, three types of weighting approaches are adopted in this section. 

They are based on geometric sequence, normal distribution and Poisson distribution. 

The system will choose the specific weighting approach for incoming earthquake time 

series automatically. Those three approaches are introduced as follows.      

 

6.2.2.1 Geometric Sequence based Weighting        

The geometric sequence based weighting divides the earthquake data time series 

according to the location of a data item in a time series. It is basic principle is pretty 

simple as equation (14).    
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With that we can calculate the real world importance of each data item in a time 

series. They are denoted as w1, w2, w3,…, wn. In our implementation, the r is set with 

0.5. In other words, a more recent data item in a time series will have more influence 

to the prediction model because of its higher weight. At the same time, factor  is 

changed from application to application according to different user application 

requirement.     

 

6.2.2.2 Normal Distributed based Weighting    

In order to calculate the weight set 1 2 3 n  for a time series, the 

probability density function of normal distribution should be configured to describe a 

time series where a data with more recent time stamp should have higher importance. 

Based on 3  principle, in Gaussian distribution, we only use the domain between 

[0, 3 ] to calculate the final weight vector W. It is enough to guarantee that  

  because more according more than 97% data will be within the domain 

of [-(3 ), 3 ]. However, the time stamp for the earthquake sensing data changes 

from [0, + ] which is not in the domain of [-(3 ), 3 ]. Accordingly, we change 

the standard normal distribution in (15).  

 

 

 

Because we assume that the starting time for data collection is 0, we can get =0. 

So the summary value of the whole weights domain is calculated with (16).   

 

 

 

Consequently, for a data history window with m units or a vector Xi, we can 

distribute m-1 consecutive to the domain calculated with equation (16).  The domain 

[0, 3 ] is divided into m-1 fragments. Then any item wk in the weight vector W can 

be calculated as following (17).   
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6.2.2.3 Poisson Distribution based Weighing      

However, in the real world applications, lots of earthquake data sets can follow 

some more complex distribution such as Poisson distribution. Hence, in our automatic 

adaptive weighting approach, Poisson weighting method is developed and adopted.  

Specifically, weighting by 1/X is a compromising between minimizing the real or 

absolute distance squared to minimize the relative distance squared. The situation is 

when the X values can be described with a Poisson distribution, the 1/X weighting is 

suitable. Weighting with 1/X offers a solution to deal with data distributed according 

to a Poisson distribution. However, a better approach is to use a regression technique 

which is based on the assumption of Poisson distribution.  

With the assumption of incoming data Poisson distribution, we can calculate the 

standard deviation among replicated values is approximately equal or similar to the 

square root of the calculated mean. In order to fit a curve, finally, we manage to 

minimize the sum value of squares of the distance between data and curves separated 

with the calculated square roots. In other words, non-linear regression method can 

finally minimize the expression as equation (18).            

 

 

 

In equation (18), X0 represents a data value and X1 represents a curve value. The 

extension and transform of equation (18) show the reason why it is sometimes called 

weighting by 1/X of Poisson weighting in (19).   
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6.3 Algorithms  

6.3.1 Algorithm for Non-linear Regression  

Based on the above compression techniques and scheduling detailed in Section 6.2, 

the algorithms for efficient big data processing on cloud are offered in this section. 

Specifically, we design the related separate algorithms and roadmap for the proposed 

spatiotemporal Cloud data compressions and afterwards scheduling. The algorithm 

details are as follows.      

 

 
 

The big sensing data set training and analysis for selecting regression model are 

conducted in a central model at the starting point of data processing. At this stage, the 

predicting curve is also generated for the purpose of future data compression.Before 

big sending data compression, adaptive non-linear regression model will be calculated 

and calibrated. This data preprocessing normally does not require huge computation 

Algorithm: Adaptive Nonlinear Regression
input: big sensing data stream X={x1, x2, ..., xn};
prediction error bound e, and user requirement r;
Output: automatically selected non-linear regression model M, and prediction curve C={y1, y2, ..., yn }.

(1)    public void main(X={x1, x2, ..., xn}, int r, int e) throws IOException {
(2)       initialize M=null;
(3)       initialize(y1, x1)   //v1= x1 is used for initializing y1;
(4)       if(trainingdata(L)==success && f(x, )= 1exp[- 2exp(- 3x)] && error.absolute<=e)
(5)          if(r.m=GeometricSequence)
(6) M=m1;

(7)

(8)          if(r.m=NormalDistribution)
(9) M=m2;

(10)

(11)         if(r.m=PoissonWeighting)
(12) M=m3;

(13)

(14)      Return M;
(15)      for (int round=1; round<=e; round ++) {
(16) selecting yi to C;
(17)      C(yi, X){
(18)         for(int i=1;(Distance(yi, X)<=e)&&length(C)>1;){
(19) i--;
(20)            for(int j=1;j>1;j--){
(21)               X=         ;
(22)               C(yj, X);
(23)            }
(24)         }
(25)      }
(26)   }
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resource and power. So, a centralized algorithm is offered firstly. There are two 

important inputs big sensing data set X and the general application requirement ‘r’ for 

data processing and error control. The output of this algorithm is an approximate curve 

data set C which is a subset of approximate points for the original data set X.    

As shown in the non-linear regression algorithm, in Line (1), the data exchange 

time stamp i is counted from 1 to the data exchange application duration, n. Initially, 

n data items are used for calculating the regression results. In line (2), the variable M 

is initialized to hold processing modes information. In line (3), y1 is initialized 

according to x1. Line (4) is used for determining the regression conditions. When it is 

successful, from line (5) to line (13), the different adaptive regression prediction 

model is activated according to different application requirement brought by the 

parameter r. Finally in line (13), the mode information is returned by M in line (14). 

From line (15), the predicting curve C will be calculated according to a computation 

approach of least square method. Finally, C is produced.      

6.3.2 Non-linear Regression Compression with MapReduce     

 

"Map()" Side Algorithm: Scalable Compression with Non-linear Regression

(1)    public static class Mapper extends TableMapper <......,......> {
(2)    public Mapper() {}
(3)    @Override
(4)    public Datatype map(Datatype S={x1, x2, ..., xn}, Datatype C={y1, y2, ..., yk}, M)
(5)    throws IOException {
(6)       ImmutableBytesWritable value = null;
(7)       initialize X; // a temporary variable for storing elements from S;
(8)       if(mode.equal(M.m1))
(9)          Compression.set(S, C.add(GS));
(10)      if(mode.equal(M.m2))
(11)         Compression.set(S, C.add(ND));
(12)      if(mode.equal(M.m3))
(13)         Compression.set(S, C.add(PW));
(14) L=MaxElementSizeof(C'); int start=0;
(15)      for( ; S'!= ; start=start+L){
(16) X=S'.getlement(start, L);
(17)         for(int j=L; j>0; j-- ){
(18) S'(C.get(yj), X);
(19)             tag(C.Error<Threshold);
(20)         }
(21)      }
(22)      return S'; // a tagged data set S' for final compression;
(23)      for (int i = 0; i < C.length; i++) {
(24)      try {
(25)         context.write(compressionID,value);
(26)      } catch (InterruptedException e') {
(27)         throw new IOException(e');
(28)         }
(29)      }
(30)   }
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In order to set up the relationship of the reported data and compressed data, the 

compression algorithm comparing the data items from the set S to the calculated data 

curve C. The scalable compression algorithm based on MapReduce programming 

model is offered as follows. The algorithm is divided into two components including 

Mapper side compression algorithm and Reducer side compression algorithm. Firstly, 

we introduce our Mapper side algorithm.     

 

 
 

The Mapper side algorithm takes the S and C as its input. The output of Mapper 

side algorithm is a data set S which its data element tagged. All the tagged elements 

are able to be compressed and decompressed based on C. Specifically, the Mapper 

function is the extension of TableMapper as shown in line (1) and line (2). In line (4), 

the map() function is initialized and defined. It has S and C as its inputs. Line (5) is 

the IO exception. From line (6) to line (7), some variables are initialized. From line 

(8) to line (12), the compression data model is selected and configured. The algorithm 

from line (8) to line (13) selects the processing model and carries out the main 

operation for compression. The algorithm between from (14) to line (21) the recursive 

"Reduce()" Side Algorithm: Scalable Compression with Non-linear Regression

(1)    public static class Mapper extends TableReducer <......,......> {
(2)    public Reducer(){}
(3)    @Override
(4)    public void reduce(Datatype S)
(5)    throws IOException {
(6)       ImmutableBytesWritable value = null;
(7)       Compression.set(S, S', C);
(8)       for(int i=0 ; S.getelement.tag()!= ; i++){
(9)          if(S.getlement(i).tag()!= ){
(10) S.getlement(i).compress();
(11) S.update(storage); S.index(decompression path);
(12)         }
(13)      }
(14) S'.combine(); S'.consistencycheck();
(15)      return S';
(16)      for (int i = 0; i < S'.length; i++) {
(17)      try {
(18)         context.write(elementID,value);
(19)      } catch (InterruptedException e') {
(20)         throw new IOException(e');
(21)         }
(22)      }
(23)   }
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similarity comparison function is called again to tag any data element in S to find any 

xi S which could be compressed. After line (22) the compressed data set S’ is returned. 

And the IO exceptions and errors are processed and captured for debugging. 

After the processing of map() function of our proposed algorithm, the tagged big 

data set S should be significantly compressed. The “Reduce()” side scalable 

compression algorithm extends the TableRedcuer<> of MapReduce programming 

model as shown in the algorithm line (1) to line (3).  In the algorithmic line (4), the 

reduce() function is activated. The redcue() function takes tagged big data set, S as its 

input in line (4). Line (5) is for IO exception. From line (6) and line (7), variable 

initialization and compression model selection are conducted. From line (8) to line 

(10), any tagged data element in S is compressed by the compress() function of any 

element in C. After each function call of compress(), the storage should be updated 

by a function of update(). The compression path should be indexed for future 

decompression by a function of index() as show in line (11). In line (14), the combine() 

function is called for combination. Finally, the consistency of the compressed data is 

also checked from line (16) to (23).         

6.4 Experiments  

To verify the effectiveness of the proposed compression based on non-linear 

regression model,  real world big earthquake sensing data experiments are designed 

based on U-Could (Cloud computing environment at University of Technology 

Sydney) [48-50] in Chapter 2. The big sensing data set from earthquake surveillance 

and monitoring systems is used [92].  Compared to previous big data processing 

techniques without non-linear regression models, the evaluation is designed to 

demonstrate the following gains. 1) The new approach significantly outperforms 

previous one in terms of Cloud resource cost and time cost for data processing. 2) The 

new approach will not introduce unacceptable data quality loss to most of real world 

applications for analysing earth quake data sets.    
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6.4.1 Experimental Data Sets  

In our experiment, there are 100 data collecting nodes are used from earthquake data 

sources [92] in real world. The nodes are organized as a hierarchical structure with 

cluster-head and leaf node. Some data ratio has high frequency. It is a typical 

heterogeneous big sensing data set. Earthquake shaking and damage is the result of 

three basic types of elastic waves. Two of the three propagate within a body of rock 

[92].  

The faster of these body waves is called the primary or P wave. Its motion is the 

same as that of a sound wave in that, as it spreads out, it alternately pushes 

(compresses) and pulls (dilates) the rock. These P waves are able to travel through 

both solid rock, such as granite mountains, and liquid material, such as volcanic 

magma or the water of the oceans. The slower wave through the body of rock is called 

the secondary or S wave. As an S wave propagates, it shears the rock sideways at right 

angles to the direction of travel. If a liquid is sheared sideways or twisted, it will not 

spring back, hence S waves cannot propagate in the liquid parts of the earth, such as 

oceans and lakes. The actual speed of P and S seismic waves depends on the density 

and elastic properties of the rocks and soil through which they pass. In most 

earthquakes, the P waves are felt first. The effect is similar to a sonic boom that bumps 

and rattles windows. Some seconds later, the S waves arrive with their up-and-down 

and side-to-side motion, shaking the ground surface vertically and horizontally. This 

is the wave motion that is so damaging to structures.   

The third general type of earthquake wave is called a surface wave. The reason is 

that its motion is restricted to near the ground surface. Such waves correspond to 

ripples of water that travel across a lake. Surface waves in earthquakes can be divided 

into two types. The first is called a Love wave. Its motion is essentially that of S waves 

that have no vertical displacement; it moves the ground from side to side in a 

horizontal plane but at right angles to the direction of propagation. The horizontal 

shaking of Love waves is particularly damaging to the foundations of structures. 

The second type of surface wave is known as a Rayleigh wave. Like rolling ocean 

waves, Rayleigh waves wave move both vertically and horizontally in a vertical plane 

pointed in the direction in which the waves are travelling. Surface waves travel more 

slowly than body waves (P and S); and of the two surface waves, Love waves 
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generally travel faster than Rayleigh waves. Love waves (do not propagate through 

water) can effect surface water only insofar as the sides of lakes and ocean bays 

pushing water sideways like the sides of a vibrating tank, whereas Rayleigh waves, 

because of their vertical component of their motion can affect the bodies of water such 

as lakes. P and S waves have a characteristic which effects shaking: when they move 

through layers of rock in the crust, they are reflected or refracted at the interfaces 

between rock types. Whenever either wave is refracted or reflected, some of the 

energy of one type is converted to waves of the other type. A common example; a P 

wave travels upwards and strikes the bottom of a layer of alluvium, part of its energy 

will pass upward through the alluvium as a P wave and part will pass upward as the 

converted S-wave motion. Noting also that part of the energy will also be reflected 

back downward as P and S waves.  In total, there are around 5 TB data sampled by 

the whole network. However, due to the heterogeneous features of big earthquake 

sensing data, some normalization process is taken to filter the original data set. 

6.4.2 Experiment for the Compression with Non-linear Regression  

 
Figure 6-4 Compressed Data Size with Different Predicting Model  
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In Figure 6-4 (b), we implemented the compression with linear regression prediction 

and fed it with the same big earthquake sensing data set. In total 5 TB data volume, 

this compression technique achieves similar compression effect in terms of data size, 

100,000 MB. In other words, this experiment results show that the linear regression 

based big sensing data compression can not achieve significant performance gains 

when encountering earthquake sensing data sets.    

In Figure 6-4 (c), the proposed non-linear regression based compression is 

implemented and tested. Specifically, around 2,300,000 MB of data from the total 5 

TB testing data is compressed. In other 46% of compression ratio can be achieved. It 

significantly reduced the original data size on Cloud. It will undoubtedly lead to the 

time cost and computation source saving when analysing the reduced data sets over 

Cloud platform.         

6.4.3 Experiment for Data Loss and Accuracy   

Because the data reduction process of our techniques is not lossless, the accuracy 

problem is critical to be discussed to guarantee the higher layer data service quality 

offered to other applications on Cloud. In this section the experiment will be 

conducted to show the accuracy loss and data quality after deploying our data 

compression over Cloud platform. We aim to prove that under most of applications, 

our algorithm can achieve efficient big data processing on Cloud with acceptable 

accuracy.               

 

6.4.3.1 Accuracy Model  

We can calculate the similarity between the two vectors with the following 

equation (20).      

 

       (20) 

 

From (20) we can find that this similarity resembles to the “cos” similarity 

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1, 

vector2)” is as following equation (21) to (23).  
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So, the similarity between two vectors can be calculated with following equation 

(24).     

 

 

Because we only need to correlate the accuracy and similarity, only [0, 1] data 

range is selected. The original data range [-1, 1] could be normalized into [0, 1] for 

representing the accuracy from 0% to 100%. In equation (25), sim(X, Y)’ is calculated 

instead of equation (17), sim(X,Y)’  [0, 1].         

 

 

Hence the accuracy for an edge in G at a time stamp t can be assessed with the 

equation (26).     

 

 

The final accuracy for “Accuracy” for data service quality between two points 

with the Accuracy in equation (27). In our example, the duration of the used 

earthquake data set is used.        
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This Average Accuracy is used in equation (28) to demonstrate our experiment 

results in Figure 6-5.     

 

 

6.4.3.2 Data Accuracy Analysis   

 

 
Figure 6-5 Fidelity Loss with the Increasing Error Bounds 
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to conduct accuracy test. As shown in Figure 6-5, with the increase of compression 

ratio from 0% to 90%, the data accuracy decreases dramatically. In Figure 6-5 that 
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that with larger L, better accuracy result can be achieved. It means that more data units 

are involved in regression, more accurate the prediction model is. However, according 

to our empirical study, when L getting larger than 50, less accuracy improvement can 

be achieved. With the real world earthquake big sensing data experiments on U-Cloud 

platform, we demonstrate that our proposed scalable compression significantly 

improves data compression ratio with affordable data accuracy loss.   

6.5 Summary  

Cloud promises an ideal platform with massive computation power and storage 

capacity for processing big data that is of high variety, volume, veracity, and velocity. 

To reduce the quantity and the processing time of big data sets encountered by the 

current typical Cloud big data processing techniques, in this chapter, by exploring 

temporal data correlation with a novel non-linear regression prediction model, 

scalable data compression was achieved.  Specifically, the real world data sets were 

compressed according to non-linear regression based prediction. During the 

regression process, some triangular transform and least squares computation were 

adopted. The output for this novel non-linear regression model is to generate a 

prediction curve for compressing big sensing data sets, such as high frequency 

earthquake data set. The evaluation was conducted over our U-Cloud platform to 

demonstrate that the proposed compression model could significantly reduce the data 

size compared to the previous big data processing techniques on Cloud. With the real 

world earthquake big sensing data set experiment, the evaluation results also 

demonstrated that the data processing quality and fidelity loss of our proposed 

approach met most of the application requirements.          
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Chapter 7                                          

Data Chunk based Compression  

This chapter mainly investigates the problem of compressing big sensing data by 

generated standard data chunks. A novel scalable data compression approach will be 

proposed based on calculating similarity among the partitioned data chunks. Instead 

of compressing basic data units, this compression will be conducted over partitioned 

data chunks and blocks to improve the compressing effectiveness. To restore original 

data sets, some restoration functions and predictions will be designed. MapReduce is 

used for algorithm implementation to achieve extra scalability on Cloud.      

7.1 Introduction 

To overcome the processing difficulties caused by five ‘V’s, of big sensing data, the 

trend to deploy big data processing on Cloud is getting popular day by day. Cloud 

computing provides a promising platform for big data processing with its powerful 

computation capability, storage, scalability, resource reuse and low cost, and has 

attracted significant attention in alignment with big data. In Amazon’s recent real 

world big sensing data processing on Cloud projects [19, 46], most of big data sets 

come from sensing systems. However, to process big sensing data can still be costly 

in terms of space and time even on Cloud platform. To reduce the overall time and 

space cost for big data, especially big sensing data processing on Cloud, different 

compression techniques have been proposed and developed according to our analysis 
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in Chapter 2. But due to the size and speed of big sensing data in real world, those 

data compression and reduction techniques still need to be improved.     

In this chapter, we will propose a novel technique based on data chunk 

partitioning for effectively processing big data, especially streaming big sensing data 

on Cloud. With this novel technique, big sensing data stream will be filtered to form 

standard data chunks at first based on our predefined similarity model. Then, the 

coming sensing data stream will be compressed according to the generated standard 

data chunks. With the above data compression, we aim to improve the data 

compression efficiency by avoiding traditional compression based on each data unit, 

which is space and time costly due to low level data traverse and manipulation. At the 

same time, because the compression happens at a higher data chunk level, it reduces 

the chance for introducing too much usage of iteration and recursion which prove to 

be main trouble in processing big sensing data and big graph data.           

7.1.1 Research Problem Analysis 

According to the literature review in Chapter 2, it can be noticed that most of current 

compression and storage saving techniques working during the process of data unit 

filtering or traversing. However, we aim to offer an approach working at a more hybrid 

level which can treat data block or data chunk as basic data compression unit. As  

As offered in Section 2.1, big sensing data normally streams in with high speed 

in real time. It may take the form of graph data sometimes [33, 48]. Traditional data 

compression and current popular data compression techniques work at low basic data 

unit levels show their weakness and inefficiency when encountering big sensing data 

sets in the following aspects. (1) Most of traditional data compression techniques 

require whole data set navigation which costs huge amount of space and time during 

the compression and decompression [33]. Normally, compression algorithms work at 

a level which counts each basic data unit for their relationship. (2) Traditional data 

compression algorithm can not make full use of scalability of Cloud. The centralized 

compression and decompression algorithms should be organized on the scalable 

platform such as Cloud in a more efficient way.    

To compare different strategies for data compression, the example in Figure 7-1 

is used. As shown in Figure 7-1 (a), a sensing system is deployed for collecting data 
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from 12 different data sources. All the collected sensing data will be transmitted back 

to node 0. With a traditional data storage strategy, the data collected from sensing 

node 1 to sensing node 12 will be stored one by one with a certain predefined order. 

Under this storage theme, the traditional compression happens at each sensing node 

level. For instance, the data collected in node 1 will be analysed and used for possibly 

compressing the data from node 3.  

 

 
Figure 7-1 Two Types of Geometry Similarities 

 

However, the above compression approach working at sensing node level can be 

inefficient especially when the data volume and velocity is high. If more attention is 

paid to the topology of the sensing system in Figure 7-1 (a), it can be found that the 

there are two similar sub-clusters under sensing node 0 as shown in Figure 7-1 (b). If 

the data from node1 to node 6 and node 7 to node 12 has certain correlations, the two 

data structures in Figure 7-1 (b) can be used to calculate each other, we can use a 

similarity model to describe this relationship between two sub-structures. As shown 

in Figure 7-1 (c), because the two data chunks Chunk_1 and Chunk_2 have a certain 

similarity which is described with Distance(Chunk_1, Chunk_2)<T. In other words, 

if the compression model based on data chunks can be adopted as shown in Figure 7-

1 (c), the efficiency of big sensing data compression can be dramatically increased 

due to data manipulation based on large data blocks and clusters.     
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7.1.2 Contents Outline  

The remainder of this chapter is organized as follows. In Section 7.2, a data similarity 

model will be defined and introduced. With that similarity model, the formation 

process of standard data chunks will be offered by training initial data stream. Then, 

we will introduce our streaming sensing data compression according to the standard 

data chunks. In Section 7.3, all the related scalable algorithms are offered, including 

scalability with Mapreduce, standard data chunk generation algorithm and scalable 

compression algorithm. In Section 7.4, the experimental results will be analysed to 

show significant data compression performance gains. In addition, the accuracy loss 

will also be discussed in relation to compression effectiveness. In Section 7.5, we will 

summarize the contents in this chapter.                              

7.2 Data Chunk Similarity and Compression   

In this Section, the similarity models for our compression and clustering will be 

developed. The similarity model is critical and fundamental for deploying the data 

chunk based data compression because the similarity model is used for generating the 

standard data chunks.      

7.2.1 Similarity Model   

Currently, there are five types of models are commonly used including common 

element approach, template models, geometric models, feature models and Geon 

theory. However, the following proposed models are related to geometric model and 

common element approach in terms of numerical data and text data respectively. Our 

similarity models work on two types of data sets, multi-dimensional numerical data 

and text data.     

 

7.2.1.1 Similarity Model for Numerical Data    

Suppose that there are two numerical data vectors =(x1, x2, x3, …, xn) and 1

2 3 n . We can calculate that the matrix norm  and  with equation (1) 

and (2).   
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=        (1) 

 

=        (2) 

 

The geometric approach is the representation of similarity relationships among 

the members of a set of objects.  Geometric similarity is given by distance between 

objects in this geometric space; the closer together two objects are, the more similar 

they are. Normally, the similarity is described with a  between two vectors and 

fraction between two matrix norms  and . Based on the above analysis, we 

offer two similarity definitions as follows. From equation (3) to (5), the numerical 

data similarity of  is defined and denoted as Simn1( ) .          

Simn1( ) =                                             (3) 

 

 

 

 

From equation (6) to (7), the numerical data similarity of matrix norms is defined 

and denoted as Simn1( ).    

 

  

 

 

Considering that in most of real world applications, the preferences of 

applications are different. So, different weight should be assigned to different attribute 

for calculating the Similarities as following (8) and (9).    
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Based on the above definition and analysis, now we explain the influence of the 

above two similarities for compression. For calculating Simn1( ) of , it is critical 

to measure the similarity between two vectors, when Simn1( ) 1, the two vectors 

are more similar to each other. However, when Simn2( ) 1, it can not be concluded 

that  are similar because the two vector can be totally different.       

 

 
Figure 7-2 Comparison of Different Geometry Similarities  

 

As shown in Figure 7-2 (a), for Similarity Simn1( ) of , if the Simn1( ) 1, 

it means the . In other words, the two vectors can be inferred with each other 

because their each attribute is similar. If the  is bigger, it means the two vectors are 

more different as shown in Figure 7-2 (b).      

However, when it comes to Simn2( ) of the matrix norms , even the norms 

of two vectors are quite similar to each other, their attributes could be totally different 

as shown in Figure 7-2 (d). Whereas, even Simn2( ) are quite different or smaller 

than 1, if the  can be calculated, the two vectors can be inferred to each other as 

shown in Figure 7-2 (c).        
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The above similarity computation can be categorized as a typical geometry data 

similarity finding process. It is designed from the common cosine similarity model. 

The cosine similarity between two vectors (or two documents on the Vector Space) is 

a measure that calculates the cosine of the angle  between them. To measure 

similarity between two vectors x and y, a popular similarity function is the inner 

product including the cosine similarity, Pearson correlations, and OLS coefficients. 

The inner product is unbounded. One way to make it bounded between -1 and 1 is to 

divide by the vectors’ norms. It is called the cosine similarity. In this paper, we choose 

the cosine similarity model because it can measure the big data chunk similarity more 

accurately under our big sensing data feature assumption. Compare to other similarity 

checking model, such as similarity based on pure Euclidean distance, the cosine 

similarity not only measures the length distance but also the angle distance between 

two vectors. This checking is more objective and brings more accuracy guarantee for 

describing the similarity according to our data assumption.   

 

7.2.1.2 Similarity Model for Text Data  

For string type and text type similarity, a dual variable length hidden Markov 

model is used and updated in our work for calculating similarity between text data. 

Suppose there are a string pair p(str1, str2), and a time stamp series t= t1, t2, …, tn. We 

can define the joint probability PR of each pair by the state time stamp series with 

equation (10).  In (10), pi stands for the paper of text string with the similar time series 

stamp ti where i is the state.    

 

                                            (11) 

Equation (11) is the parameters consisting of states of the initial, transition, and 

output probabilities.      

                                              (12) 

Generally there are multiple state transitions that produce a given pair of strings. 

If the set of state sequences that produces a pair p is denoted as  (p). Then the string 

similarity of the pair p is defined as the maximum alignment probability (12).  With 
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the transitions and states calculated with (10) to (12), the model can describe the string 

similarity. This compression technique can be considered as a type of common 

element similarity computation techniques.      

 

7.2.1.3 Similarity of Topology   

In our data chunk based compression, data sets should be compression block by 

block. For big graph data and lots of network data, the topology and structure 

information has big influence for data processing and it should not be ignored. 

Because we assume the data has a topology of leaf nodes and cluster head, the 

similarity has following features.  

For two tree topology based graphs, T1<V1, E1> and T2<V2, E2>, their topology 

similarity is basically determined by the number of the leaf nodes. Based on the cluster 

head topology, the T<V, E> has n v and n-1 e.   

If T1<V1, E1> has m v and m-1 e, and T2<V2, E2> has n v and n-1 e, the 

comparison value of similarity is calculated with following equation (13) and (14).    

 

                                   (13) 

 

                             (14) 

 

In equation (13) and (14), |m-n| calculates the different of v between two trees. 

On the contrary, Max selects the bigger number between (m, n) and (m-1, n-1). When 

comparing the two vectors Simn1( ), the calculated  and  

will be added into as new attributes with a weight offered by application requirement 

or users to calculate overall similarities.       

7.2.2 Data Chunk Generation and Formation  

With the above definition of similarity model, we will give the techniques for data 

chunk generation. In the problem analysis, we have introduced the basic idea of data 

chunk based compression. Under that theme, the data will not be compressed by 

encoding or data prediction one by one. It is similar to high frequent element 



159 
 

compression. The difference is that the frequent element compression recognizes only 

simple data units; whereas our data chunk based compression recognizes complex 

data partitions and patterns during the compression process. Similar to chess games, 

variations and patterns are well studied and predefined, and most of operations will 

happen at variation level.         

Suppose that a data unit in a big data set S is denoted as Xi, and the first data unit 

should be denoted as X1. In other words, S is a stream data series, denoted as S={X1, 

X2, …, Xm}, where m is the number of data units streaming in. If the following data 

unit vectors X2 and X1, can be used to calculated Simn1( ) and Simn2( ). At 

the same time, if it is text type data, the dual variable length hidden Markov model 

will be used to calculate similarity. Then, the topology similarities,  and 

 will be calculated and added into original vectors as new attributes. 

With the big data set pre-processing, we aim to generate a standard initial set S’ which 

is used in the following compression process. According to our predefined similarity 

model, we need to generate the first initial standard data chunk set S’ for the big data 

set S. We denote each time slot for calculating a new standard data chunk as t, and t

. The selection process of S’ forms a selection path.       

 

 
Figure 7-3 Initial Formation Path for a Standard Data Chunk Set S’ 

 

As shown in Figure 7-3, at t=1, X1 is selected and set as the first standard data 

chunk and added into S’. Following that, at t=2, X2 will be compared to X1 based on 
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function Dis( ) is used to describe the difference between any two vectors. If the 

result of Dis( )>T can be calculated, it means that the two chunks, X1 and X2 are 

quite different two each other. Then a newly generated data chunk X1 X2 should be 

added to S’ as the second standard data chunk. The above ‘+’ operator between X1 and 

X2 means an adding operation between two vectors. At the time stamp, S’ has two 

elements, denoted as S’={X1, X1 X2}. On the contrary, at t=2, if Dis( ) T can 

be got, it means X1 and X2 are close enough and can be used to infer each other. Then, 

X2 will be discarded and all the X2 will be inferred from X1 during the big data set 

processing. So, at the end of t=2, there are two possible states for S’ including {X1} 

and {X1, X1 X2}. In other words, there two paths connecting the possible states at t=1 

to states at t=2. At t=3, there are seven possible states and related paths evolved from 

the states at t=2. To find a similarity data chunk, we always use the largest data chunk 

for comparison at first. For example, in Figure 7-3, at t=3, at data block X3+X4 is 

selected first to be compared with block X1+X2. If Dis( , )<T can be 

calculated, the data block of X3 and X4 will be compressed and represented by X1 and 

X2. If Dis( , )>T is calculated, the sub-components of data block X3 

and X4 will be calculated to be compared with the standard data chunks already 

generated at t=2. Suppose that the length of a coming data block is denoted as L. The 

length of the data block of X3 to X4 L3-4=2. There are =2 sub-blocks X3 and X4. The 

sub-blocks X3 and X4 will be compared to X1. With this data sub-block comparison, at 

following t>3, the data decomposing and sub-block will be conducted recursively for 

calculating any standard data chunk at t=i as shown in Figure 7-4.                             

Specifically in Figure 7-4, there are a series of possible standard chunks at t=i. 

The original length of coming data is L=i. In the similarity comparing process, If any 

“Dis()>T” is calculated, there are totally + + +…+ + = -1 sub-blocks 

which probably should be compared to the standard data chunks generated at t=i-1 in 

a recursive style.         

The last problem is the termination of the above standard data chunk generation 

process. With the processing of in-coming data, suppose that the original selected data 

length from L at time t=i. If after r rounds, when it comes to t=i+r, there is no new 

change added to the S’, the S’ is used as the final standard data chunks set for data 

compression in future. The time round ‘r’ is set or offered by outside application 
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requirement. The size of the standard data chunk is controlled by selecting the 

parameter ‘r’ which determines when to terminate the recursive process of generating 

new data chunks. As a matter of fact, the generated standard data chunks after initial 

selection have different size to each other. In this data chunk generation, the recursive 

process will increase the size of selected standard data chunks step by step. If the 

terminating condition is not reached, the algorithm will continuously find new 

standard chunks with bigger size compared to any standard chunk which has already 

been selected. When the terminating condition is reached according to the given ‘r’, 

the final selected standard data chunk is always the largest one in terms of size.     

 

 
Figure 7-4 Possible Data Chunk States at t=i (a) 

7.2.3 Data Chunks based Big Data Compression   

With the generated standard data chunks, we develop a new data compression 

technique which recursively compresses in-coming data from big data set S according 

to generated S’. Suppose that the ith vector in S is denoted as ui and the jth vector in S’ 

is denoted as vj.    

As shown in Figure 7-5, to compress the big data set S from vector uj, there is no 

need for the compression algorithm to navigate uj one by one. Whereas, the standard 

chunks stored in S’ will be used to compress the in-coming vectors series uj chunks 

by chunks. For example, with the generated standard chunks set S’, a whole block of 

data uj to uj+r will be compared to vr in S’ firstly. If the distance between vr and uj+r, 

Dis(vr , {uj,…, uj+r})>T can be calculated, the uj+r will be recursively decomposed with 

the sequence of subsets from {uj, uj+1, uj+2, …, uj+r}. Totally, there are , , ,…, 

, different subsets based on the vector set {uj, uj+1, uj+2, …, uj+r}. These subsets 

...... ......

{X1}
t=i

{X1, X1+X2}

{X1, X1+Xi}

...

{X1, X1+X2, X1 X2 X3}

...

{X1, X1+X2, X1 X2 Xi}

...
...

..

{X1, X1+X2, X1 X2 X3, + ... + X1 X2 X3+... +Xi-1}
{X1, X1+X2, X1 X2 X3, + ... + X1 X2 X3+... +Xi-1, + X1 X2 X3+... +Xi-1+Xi}
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will have opportunity to be compared with vr-1 to v1 repetitively to detect some similar 

data chunks in the data block {uj, …, uj+r}. This recursive processing for computing 

Dis(vk , {uj,…, uj+k}) will only happening under the following conditions.               

 

 
Figure 7-5 Possible Data Chunk States at t=i (b)      

 

(1) Dis(vr , {uj,…, uj+r})<T: It means that vr and {uj,…, uj+r} are similar to each 

other and vr can be used to compress the data block {uj,…, uj+r}.  

(2) Dis(v1 , {u1})<T, Dis(vk , {uk,…, uj+l})<T, …, Dis(vp, {up,…, uj+p})<T; 

{v1 … vk … vp}=S’ & {u1} … {uk,…, uj+l} … {up,…, uj+p}=S: It means that all 

the subsets in {uj,…, uj+r} can be compressed by vectors in S’.  

(3) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp, {up,…, uj+p})>T, Dis(v1 , 

uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk , u j+k)>T, … Dis(vr , uj+r)>T: It means that in the 

set and subsets of data block {uj,…, uj+r} there is no similarity data chunk which can 

be found in S’. In other words, no compression happens here and data block should 

be stored.   

(4) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp, {up,…, uj+p})>T, Dis(v1 , 

uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk , u j+k)>T, … Dis(vr , uj+r)>T; Dis(v2 , {u2})<T, 

Dis(vk+1 , {uk+1,…, uj+l})<T, …, Dis(vp+1, {up+1,…, uj+p+1})<T, Dis(v2 , uj+2)<T, Dis(v2 , 

uj+2)<T, …, Dis(vk+1 , u j+k+1)<T, … Dis(vr-1 , uj+r-1)<T: It means that some vector 

subsets of data block {uj,…, uj+r} can be compressed with the elements vi from S’; and 

others should be stored because there is no similar vi being matched in S’. With the 

formed S’ and a recursive process, the big sensing data stream will be compressed for 

both space and time efficiency.       

{v1, v2, v3, ..., vi, ..., vr}S'

S { ..., uj, uj+1, u2, u3, ..., uj+r, ..., uk, uk+1, ...}
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7.3 Data Chunk Similarity based Compression Algorithm  

To deploy our proposed big sensing data compression on Cloud, two important stages, 

standard chunk generation and chunk based compression are essential. So the 

algorithms are developed respectively to conduct the related data processing for the 

above two stages.  

At the first stage, the standard data chunks are generated. The algorithm for 

selecting those chunks can be performed before the real data compression by 

centralized computer systems. So, a centralized algorithm is offered for describing the 

whole process of standard data chunk generation. At the second stage of big data 

compression, the storage and time saving is mainly achieved by chunk based 

compression and scalability of Cloud. The chunk based compression is introduced by 

the algorithm itself, and the scalability is introduced by designing the compression 

algorithm with MapReduce. In other words, the compression algorithms conclude two 

parts, “Mapper” side algorithm and “Reducer” side algorithm. In following content of 

this Section 7.3, all the above algorithms will be offered and analysed. 

7.3.1 Algorithm based on MapReduce 

To guarantee the scalability of the proposed data compression algorithm based on data 

chunks, MapReduce programming model and Hadoop platform are adopted for 

implementation.      

 

7.3.1.1 MapReduce 

MapReduce is a framework for processing parallelizable and scalable problems 

across huge datasets using a large number of computers (nodes), collectively referred 

to as a cluster (if all nodes are on the same local network and use similar hardware) 

or a grid (if the nodes are shared across geographically and administratively 

distributed systems, and use more heterogeneous hardware). Computational 

processing can occur on data stored either in a filesystem (unstructured) or in a 

database (structured). MapReduce can take advantage of locality of data, processing 

data on or near the storage assets to reduce data transmission. “Map” function: The 

master node takes the input, divides it into smaller sub-problems, and distributes them 
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to worker nodes. A worker node may do this again in turn, leading to a multi-level 

tree structure. The worker node processes the smaller problem, and passes the answer 

back to its master node. “Reduce” function: The master node then collects the answers 

to all the sub-problems and combines them in some way to form the output – the 

answer to the problem it was originally trying to solve. MapReduce allows for 

distributed processing of the map and reduction operations.     

 

7.3.1.2 Algorithm Designing Principle  

However, traditional MapReduce is very strict, which limits its application in 

complex systems, such as meteorology sensing systems. Sometimes, it is hard to 

directly use one MapReduce to solve a data processing issue perfectly. In other words 

we have to revise the MapReduce or use its functionality alternatively.     

Based on our knowledge for MapReduce and its wide applications, three technical 

changes are commonly adopted to transform the targeting problem for applying 

MapReduce on our proposed data chunk compression algorithms. With those 

transformation techniques, a data processing issue can be changed or partially 

changed into several scalable or centralized parts. The MapReduce programming 

model will be applied on those scalable parts.        

(1) Original algorithm  (embedded in) Map()/Reduce(). 

(2) Partition the task flow of algorithm  Identify which part of the task flow to 

generate a MapReduce job  MapReduce generated result returns back to the task 

flow.    

(3) Complete MapReduce design control flow parallelization/ data 

parallelization/ flow scalability/ data scalability.     

Based on the analysis of the above three strategies and the complicated flow of 

our data chunk compression algorithms, in our implementation, we adopt different 

MapReduce strategies in terms of different control flow, data navigation, data 

comparison for data compression and storage process.         

In our work, the compression algorithm is embedded into the Mapper and Reducer, 

and to check the soundness of the semantics of the newly generated scalable data 

chunk compression algorithm with MapReduce. Specifically, the flow of our 

compression MapReduce programming model can be described with KV pairs as 

shown in Figure 7-6. The output of Mapper goes through shuffle and sort; then it 
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becomes the input of the Reducer. So, the compression algorithms should be 

embedded in both Mapper and Reducer stages. In addition, the shuffle and sort should 

be further reformed to fit the data chunk partitioning and compression algorithms. 

With the above analysis, we offer the following detailed algorithms for data chunks 

generation and data compression.         

 

 
Figure 7-6 Programming Model of MapReduce 

7.3.2 Standard Data Chunks Generation Algorithm 

Before the start of data compression, a standard data chunks set will be generated 

based on our defined similarity model. This process is a pre-processing before the 

compression which normally does not require huge computation resource. So, a 

centralized algorithm is offered firstly. After this centralized algorithm, the scalable 

compression algorithm based on MapReduce will be offered.  

In the standard data chunks generation algorithm, there are two important inputs 

big sensing data set S and the maximum limitation ‘r’ for data generation control. The 

output of this algorithm is a data chunk set S’ which is a subset of S containing all the 

generated standard data chunks for future data compression. From line (1) to line (4), 

the initialization process is conducted including S’ and its first element v1, a combined 

data type X which is used for temporal storing vector data elements from S. From line 

(5) to line (9), the similarity mode is calculated and selected according to application 

requirement. Specifically, the algorithm from line (5) to line (6) is used for choosing 

the processing model of numerical data type vectors. The algorithm between from (7) 

to line (8) is used for choosing the processing model of text data type vectors. In line 

(9), the topology information of a selected data vector is calculated and attached into 

(K1, V1)
                   Mapper
list(K2, V2)

sort
(K2, list(V2))
                   Reducer
list(K3,V3)
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the data vector as numerical attributes with the transformation computation parameter 

offered in Section 7.2.1.3. In line (10), the first element, x1 in big data set S is selected 

as the first element in the standard data chunks set S’. At the same time, the length of 

the S’ (number of elements in S’) l is set as 1 in line (11). From line (12) to line (28), 

the algorithm is designed for recursively calculating standard data chunks.     

 

 
 

Specifically, line (12) is the maximum rounds limitation which controls the 

ending condition for generating new standard data chunks recursively. In line (13), 

Algorithm: Standard Data Chunks Generation
input: a streaming big sensing data set S={x1, x2, ..., xn};
maximum time threshold for chunk evolvement: r
Output: Standard data chunk set S' whick is a subset of S; S'={v1, v2, ..., vk}

(1)    public void main(S={x1, x2, ..., xn}, int r) throws IOException {
(2)       initialize S'= ;
(3)       initialize(v1, x1)   //v1= x1 is used for initializing v1;
(4)       initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};
(5)       if(mode.equal(numerical_data))
(6)          {Distance( )}={Simn1( , ), Simn2( , )};
(7)       if(mode.equal(text_data))
(8)          {Distance()}={Simn1( , ), Simn2( , ), };
(9)       Attach(Distance(), SimV( , ), , SimE( , ));
(10)      S'=x1 S';  // x1 is the first elemet in S' ;
(11)      initialize l=1; // the maximum elemet length in S' is l;
(12)      for (int round=1; round<=r; round ++) {
(13) X=select (xi, l);
(14)         if (Distance(vi, X)<Threshold)
(15) i=i+l;
(16)         else{
(17) i--;
(18)             for(;i!=0&&Distance(vi, X)>Threshold){
(19)                Distance( , )=C(vi, X);
(20)                if (Distance( , )<Threshold)
(21)                   break;
(22)                   extract(X', X);
(23)             }
(24) vi+1=vi+X';
(25)             S'= vi+1 S';
(26)         }
(27)      }
(28)   }

Recursive Similarity Comparison Function:
(29)   C(vi, X){
(30)      for(int i=1;(Distance(vi, X)<=Threshold)&&length(X)>1;){
(31) i--;
(32)         for(int j=1;j>1;j--){
(33)            X=         ;
(34)            C(vj, X);
(35)         }
(36)      }
(37)   }

C jX
X
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the temporal variable X is set at the first time. In line (14), the similarity model is first 

calculated to compare the similarity between X and vi. If the two vectors, X and vi are 

similar enough, X will be replace with vi; whereas if the distance between X and vi are 

larger an offered threshold, X will be decomposed recursively to compare with other 

elements in standard data chunks set S’. From line (18) to line (23), the recursive 

similarity comparison function C(vi, X) is called. The details of C(vi, X) starts in line 

(29) as follows. In line 30, the termination condition of a for() loop is offered. This 

loop will terminate only when there is no similar vi in S’ can be found, or X is 

decomposed by similar chunks in S’. Between line (32) and line (35), the recursive 

function C(vi, X) is called to find any data subset within X which could be similar to 

any vi in S’. After the recursive function call of C(vi, X), the algorithm return to line 

(24) and line (25) which generate a new standard data chunk vi and add it into the 

standard data chunks set S’. Suppose that L is the size of the formed standard data 

chunk S’. The worst case complexity of the algorithm ( ) can be calculated due to 

recursive decomposition and similarity checking in several rounds. However, L is a 

very small and ignorable value compared to the size of incoming big sensing data set 

and it will not change in the following compression process. So, in the following 

compression algorithm, it can be viewed as a constant when analysing the algorithm 

complexity.   

7.3.3 Compression Algorithm  

With the generated standard data chunks set S’ in the above Section 7.3.2, the scalable 

compression algorithm based on MapReduce programming model is offered as 

follows. The algorithm is divided into two components including Mapper side 

compression algorithm and Reducer side compression algorithm.    

 

7.3.3.1 Compression Algorithm: “Map()” Side 

The Mapper side algorithm takes the S and S’ as its input. The output of Mapper 

side algorithm is a data set S which its data element tagged. All the tagged elements 

are able to be compressed and decompressed based on S’. Specifically, the Mapper 

function is the extension of TableMapper as shown in line (1) and line (2). In line (4), 

the map() function is initialized and defined. It has S and S’ as its inputs. Line (5) is 
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the IO exception processing. In line (6) and line (7), some variables are initialized. 

From line (8) to line (12), the compression data model is selected and configured. The 

algorithm from line (8) to line (9) is used for choosing the processing model of 

numerical data type vectors. The algorithm between from (10) to line (11) is used for 

choosing the processing model of text data type vectors. In line (12), the topology 

information of a selected data vector is calculated and attached into the data vector as 

numerical attributes with the parameter introduced in Section 7.2.  

 

 
 

In line (13), the total number of elements in the standard data chunks set, S’ is 

calculated and stored in L. Because during the compression process, the data vectors 

from S is selected chunk by chunk with the length L, the algorithm needs to record the 

starting point of the data element, denoted as start=0 in line (13). From line (14) to 

line (20), the recursive similarity comparison function is called again to tag any data 

element in S to find any xi S which could be compressed. After line (20), the data 

"Map()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1)    public static class Mapper extends TableMapper <......,......> {
(2)    public Mapper() {}
(3)    @Override
(4)    public Datatype map(Datatype S={x1, x2, ..., xn}, Datatype S'={v1, v2, ..., vk})
(5)    throws IOException {
(6)       ImmutableBytesWritable value = null;
(7)       initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};
(8)       if(mode.equal(mumerical_data))
(9)          Compression.set(Simn1( , ), Simn2( , ));
(10)      if(mode.equal(text_data))
(11)         Compression.set(Simn1( , ), Simn2( , ), );
(12)      Compression.set(Simn1( , ), Simn2( , ), , SimE( , ), SimV( , ));
(13) L=MaxElementSizeof(S'); int start=0;
(14)      for( ; S!= ; start=start+L){
(15) X=S.getlement(start, L);
(16)         for(int j=L; j>0; j-- ){
(17)             C(vj, X);
(18)             tag(X.Distance<Threshold);
(19)         }
(20)      }
(21)      return S; // a tagged data set S for final compression;
(22)      for (int i = 0; i < S'.length; i++) {
(23)      try {
(24)         context.write(compressionID,value);
(25)      } catch (InterruptedException e) {
(26)         throw new IOException(e);
(27)         }
(28)      }
(29)   }



169 
 

elements which could be compressed are tagged in map() function. In line (21), the 

tagged big data set S is returned and separated within map() function for distribution. 

From line (22) to line (28), the IO exceptions and errors are processed and captured 

for debugging. The worst case complexity of the algorithm is (n ), L n where 

n is the size of the big data set, L is a small number for the size of the standard data 

chunk set. As introduced in Section 7.3.2, after the formation of standard data chunk 

set,  can be treated as a constant during the compression process. The worst case 

algorithm complexity is (n).    

 

7.3.3.2 Compression Algorithm: “Reduce()” Side     

After the processing of map() function of our proposed algorithm, the tagged big 

data set S should be compressed and calculated for final data compression result.   

 

 
 

Our “Reduce()” side scalable compression algorithm extends the TableRedcuer<> 

of MapReduce programming model as shown in the algorithm line (1) to line (3).  In 

the algorithmic line (4), the reduce() function is initialized and defined. The redcue() 

"Reduce()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1)    public static class Mapper extends TableReducer <......,......> {
(2)    public Reducer(){}
(3)    @Override
(4)    public void reduce(Datatype S)
(5)    throws IOException {
(6)       ImmutableBytesWritable value = null;
(7)       Compression.set(Simn1( , ), Simn2( , ), , SimE( , ), SimV( , ));
(8)       for(int i=0 ; S.getelement.tag()!= ; i++){
(9)          if(S.getlement(i).tag()!= ){
(10) S.getlement(i).compress();
(11) S.update(storage); S.index(decompression path);
(12)         }
(13)      }
(14) S.combine(); S.consistencycheck();
(15)      return S;
(16)      for (int i = 0; i < S.length; i++) {
(17)      try {
(18)         context.write(elementID,value);
(19)      } catch (InterruptedException e) {
(20)         throw new IOException(e);
(21)         }
(22)      }
(23)   }
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function takes tagged big data set, S as its input as shown in line (4). Line (5) is the 

IO exception and error processing. In line (6) and line (7), variable initialization and 

compression model selection are conducted. From line (8) to line (10), any tagged 

data element in S is compressed by the compress() function of any element in S. After 

each function call of compress(), the storage should be updated by a function of 

update() and the compression path should be indexed for future decompression by a 

function of index() as show in line (11). In line (14), the combine() function is called 

for centralization. Furthermore, the consistency of the compressed data is also 

checked. Finally, the compressed data set S is returned by the algorithm in line (15). 

Form line (16) to line (22), the IO errors and exceptions are detected and captured.   

With the above three algorithms, we implement a big sensing data compression 

system based on calculating similarity between data chunks. With that system, we can 

process real big sensing data sets to test the effectiveness and efficiency of the above 

algorithms.   

7.4 Experiments  

To verify the time efficiency and the effectiveness of our approach for compressing 

big sensing data on Cloud, experiments are conducted on U-Could (Cloud computing 

environment at the University of Technology Sydney) [48-49, 107-109] in Chapter 2. 

There are three purposes for this experiment. 1) Demonstrate that the significant 

storage saving is achieved due to compressed data blocks. 2) Demonstrate that the 

significant time saving is achieved because lots of real big data blocks can be inferred 

instead of real search and navigation. 3) Compared to significant time and space 

performance gains, only tiny data loss is introduced in terms of accuracy.    

7.4.1 Experimental Data Sets  

In our experiment, the world meteorology big sensing data sets are used. In the civil 

network meteorology data set, there are four types of commonly used data formats, 

including GRIB, BURF, HDF and NetCDF as shown in Table. 1. Due to the different 

data formats, before conducting our experiment, a series of parsers are implemented 
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to pre-process meteorological big sensing data sets from the following civil open data 

source. After our pre-processing, all the meteorology data sets with different data 

formats are transformed into our uniform data format for further data compression. 

Specifically, 4 kinds of meteorology data sets are accessed in open civil meteorology 

sources in different data format as follows.  

 
(1) Sea Surface Temperature Data Sources (SST): 

ftp://polar.ncep.noaa.gov/pub/cdas/eng.YYYYMMDD; 

ftp://polar.ncep.noaa.gov/pub/sst/rtg_sst_grb_0.5.YYYYMMDD;  

(2) Satellite Coverage Rate Data Sources: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.1bmhs.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bamua.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bhrs3.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.1bhrs4.tm00.bufr_d; 

(3) Wireless Electrical Mask Satellite Observatory Data Sources:    

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t00z.gpsro.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.gpsro.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.gpsro.tm00.bufr_d; 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t18z.gpsro.tm00.bufr_d; 

(4) Satellite Wind Observatory Data Sources:  

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t00z.satwnd.tm00.bufr_d.unblok 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t06z.satwnd.tm00.bufr_d.unblok 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMMDD/gdas1.t12z.satwnd.tm00.bufr_d.unblok   

 

Table 7-1 Meteorology Data Formats  

 

Format                 

versions coding type feature 

GRIB multiple binary self described, 
compressed 

BURF 1 binary self described 

HDF multiple multi-objects scientific data, 
independent 

NetCDF 1 multi-attributes 
variables 

6 data types, 
data files 

 

More specifically, from the open big meteorology sensing data sources, the big 

meteorology data set collected around East Longitude 151°12’31’’ and South Latitude 

33°52’06’’ is used. The coverage radius is around 50 km. The time for data sets stamps 

is traced back to last 20 years. Totally, around 10 terabytes of meteorology sensing 

data were gathered and downloaded for testing our data chunks similarity based 

compression algorithms.  

Whatever the data format is, with our data parsers and their offered normalization, 

four types of data attributes in the above data sets are extracted and organized again 
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into a universal data format including temperature, atmosphere pressure, humidity and 

wind speed. Specifically, the numerical temperature is measured with Celsius degree. 

The atmosphere pressure is measured with kPa. The humidity is measured by relative 

humidity to calculate a percentage value in ‘%’. The wind speed is measured by two 

parameters. One is the m/s, the other is angle for wind direction. Each meteorological 

sensing data set has the approximate size of 2.5 terabytes respectively.  

7.4.2 General Comparison  

Firstly, according to the above experimental data analysis, on average, each type of 

meteorological data has the size of around 2.5 terabytes. So, after processed by our 

compression algorithm, different compression ratios will be shown in terms of 

different meteorological data sets. By analysing and concluding the data features of 

those data sets, we aim to show the advantages and disadvantages of our proposed 

data chunk compression algorithm. In addition to the compression ratio brought in 

each data type, the overall compression effectiveness over the whole data set (10 

terabytes) will also be analyzed to demonstrate the performance gains of our data 

chunks similarity based data compression.  

Secondly, under the theme of big data storage on Cloud platform, to reduce the 

data size also means the time saving for navigating and decompressing those data 

units. Instead, fast computation can be used for data restoration can complex data 

manipulation such as distributed join and block data operation. Through the 

experiment, we also want to demonstrate that the time and space saving can 

dramatically contribute to big sensing data processing performance on Cloud.    

Thirdly, even the main designing target of our compression algorithm based on 

data chunks similarity is to reduce the data size and volume, we also consider the data 

quality and fidelity loss after deploying our proposed compression and decompression. 

Because the compression is based on a certain data similarity model, it is unavoidable 

to bring errors and approximation to original data sets. However, those approximation 

and errors should be kept within an acceptable range in terms of most application 

requirement.   
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7.4.3 Temporal and Spatial Saving after Compression 

 
Figure 7-7 Data Size Compressed within 24 Hours Test 

 

The main development purpose of our compression algorithm based on data chunks 

similarity is to reduce the volume of data, hence to save data storage and related data 

operation time cost on Cloud. As shown in Figure 7-7, four data types are used for 

testing our compression algorithm. Specifically, in Figure 7-7 (1a), the limitation 

rounds R for generating standard data chunks set is offered as 50. With the time flow 

from 0 to 24 hours, the compressed temperature data size increase from 0 terabyte to 

around 1.2 terabytes. However, when R increases to 100 rounds, the compression ratio 

of the temperature data experiment reaches to around 1.7 terabytes after 24 hours 

processing as shown in Figure 7-7 (1b). It means that with the increase of R, more 

standard data chunks are generated, higher opportunity exists to compress more data 

blocks in the testing big temperature data set.      

In Figure 7-7 (2a), the limitation rounds R for generating standard data chunks set 

is offered as 50. With the time flow from 0 to 24 hours, the compressed pressure data 

size increase from 0 terabyte to around 1.6 terabytes. However, when R increases to 

100 rounds, the compression ratio of the pressure data experiment reaches to around 

2.0 terabytes after 24 hours processing as shown in Figure 7-7 (2b). It means that with 

the increase of R, more standard data chunks are generated, higher opportunity exists 

to compress more data blocks in the testing big atmosphere pressure data set.      
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In Figure 7-7 (3a), the limitation rounds R for generating standard data chunks set 

is offered as 50. With the time flow from 0 to 24 hours, the compressed relative 

humidity data size increase from 0 terabyte to around 0.6 terabytes. However, when 

R increases to 100 rounds, the compression ratio of the humidity data experiment 

reaches to around 1.1 terabytes after 24 hours processing as shown in Figure 7-7 (3b). 

It means that with the increase of R, more standard data chunks are generated, higher 

opportunity exists to compress more data blocks in the testing big humidity data set. 

In Figure 7-7 (4a), the limitation rounds R for generating standard data chunks set is 

offered as 50. With the time flow from 0 to 24 hours, the compressed wind speed data 

size increase from 0 terabyte to   around 1.0 terabytes. With the time flow from 0 to 

24 hours, the compressed wind speed data size increase from 0 terabyte to around 1.0 

terabytes. However, when R increases to 100 rounds, the compression ratio of the 

wind speed data experiment reaches to around 1.3 terabytes after 24 hours processing 

as shown in Figure 7-7 (4b). It means that with the increase of R, more standard data 

chunks are generated, higher opportunity exists to compress more data blocks in the 

testing big wind speed data set.  Based on the above experiment result comparison, it 

can be got that with the increase of R, the compression ratio increases under all data 

experiments whatever data type is. It should be noticed that when applying our 

compression algorithm, more effectiveness or larger compression ratio can be 

achieved in processing   the   temperature   and   pressure    data    sets compared to 

the humidity and wind speed data sets. The reason is that the temperature and pressure 

data set have relatively predictable data trends in their time series; whereas the 

humidity and wind speed data sets have more unpredictable changes in their time 

series. R is also has great impact on the data inference for data decompression. In 

principle, a much larger value is set for R, more standard data chunks will be selected. 

Hence, more data will be compressed. At the same time, during the process of 

decompression.       

In terms of time saving, it can be inferred indirectly from the compression 

experiment according the results with the increase of R from 50 to 100 rounds 

limitation in Figure 7-7. Specifically, after setting a data compression size target, we 

compare the time cost for suppressing that data size when using different data 

processing strategies. Under our proposed compression, more time can be saved when 

successfully compressing the same amount of meteorological sensing data including 
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temperature, pressure, humidity and wind speed data as shown in Figure 7-7. In other 

words, the compression and big data processing time cost can be dramatically reduced. 

With the result analysis of Figure 7-7, it can be concluded that significant performance 

gains are achieved in terms of space and time cost saving.    

 

 
Figure 7-8 Compression Ratio for Different ‘r’ 

 

In Figure 7-8, the overall compression effectiveness of our proposed data 

compression is demonstrated. The X axis stands for the incoming big sensing data 

size for testing. The Y axis stands for the compression achieved by deploying our 

compression algorithm. There are two important testing findings should be indicated. 

(1) With the increase of R from 10 to 90 rounds, the compression ratio increases 

whatever the testing data size is from 1 terabytes to 10 terabytes. In other words, the 

larger R brings more compression ratio and performance gains to our compression 

algorithm. (2) It can be noticed that with the increase of testing data size, the 

compression ratio decreases whatever the value of R is. This result indicates that with 

more data gathered for testing, more heterogeneous data blocks could be found in 

meteorological big sensing data set. In other words, more new data blocks which are 

not compressible with the standard data chunks set could be detected.    

7.4.4 Data Accuracy Analysis 
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In this section, we present data accuracy analysis. Similar to previous chapters, the 

accuracy definition is offered based on measuring the similarity between two vectors, 

one from real big data graph G and the other from G’ filtered data as the service 

provided by Cloud. There are two vectors at a certain time stamps. To describe the 

similarity between two nodes, correlation coefficient model is used. Suppose X from 

G and Y from G’ are two vectors. With Correlation Coefficient method, we can 

calculate the similarity between them by formula (15).      

 

                  (15) 

 

From (15) we can find that this similarity resembles to the “cos” similarity 

computation. sim(X,Y) has a data range [-1, 1]. The calculation of “cov(vector1, 

vector2)” is as following formula (16) to (18). 

 

 

So, the similarity between two vectors can be calculated with following formula 

(19). 

 

 

As we only need to correlate accuracy and similarity, only [0, 1] data range is 

selected. The original data range [-1, 1] can be normalized to [0, 1] for representing 

the accuracy from 0% to 100%. As shown in formula (20), sim(X,Y)’ is calculated 

instead of formula (19). sim(X,Y)’  [0, 1].     
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Hence the accuracy for an edge in G at a time stamp t can be assessed with formula 

(21). 

 

 

The final accuracy for “Accuracy” between two points within a cluster can be 

assessed by formula (22). In our example, T=24 hours is used. The formula (22) and 

(23) can be further transformed and calculated with formula (24).      

 

 

Suppose that in graph data set G(V, E), there are total S edges (with cluster-head 

structure, edge explosion is avoided)  and each edge is indexed with s from [1, S]. We 

can calculate the Average Accuracy of the Cloud computed Data set ‘G’ against the 

original ‘G’. This Average Accuracy is used in formula (25) to demonstrate our 

experiment results in Figure 7-9.        

 

 

With the definition of above data accuracy, the data accuracy test is designed and 

conducted. The testing results are demonstrated in Figure 7-9. Specifically, we use as 

the parameter R from 10 to 100 rounds for conducting accuracy test. As shown in 

Figure 7-9, with the increase of compression ratio from 0% to 80%, the data accuracy 

decreases dramatically. However, it can be found in Figure 7-9 that higher the R is, 

better the data accuracy can be achieved. The reason is that a larger R means more 
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standard data chunks, hence a more refined similarity comparison to guarantee better 

data accuracy.    

 

 
Figure 7-9 Relationship between Compression Ratio and Accuracy 

 

At the same time, with the increase of the standard chunks generation limitation 

round R, whatever the compression is, better data accuracy can be achieved. One 

important point should be mentioned. The experimental results in Figure 7-9 show 

that for achieving 30% compression ratio, we can choose different combination of R 

and accuracy to realize this goal. In general, if we can set R>70 rounds and keep a 

compression ratio around 30%, the algorithm will always guarantee the data accuracy 

larger than 95% which will comes to the requirement of lots of real world applications. 

In other words, our compression algorithm can guarantee the acceptable data accuracy 

when make significant performance gains in data compression.  

7.5 Summary    

In this chapter, we proposed a novel scalable data compression based on similarity 

calculation among the partitioned data chunks with Cloud computing. A similarity 

model was developed to generate the standard data chunks for compressing big data 
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sets. Instead of compression over basic data units, the compression was conducted 

over partitioned data chunks. The MapReduce programming model was adopted for 

the algorithms implementation to achieve some extra scalability on Cloud. With the 

real meteorological big sensing data experiments on our U-Cloud platform, it was 

demonstrated that our proposed scalable compression based on data chunk similarity 

significantly improved data compression performance gains with affordable data 

accuracy loss. The significant compression ratio brought dramatic space and time cost 

savings. With the popularity of Spark and its specialty in processing streaming big 

data set, in future, new way to implement our compression algorithm based on data 

chunks similarity with Spark can be expected.   
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Chapter 8                                        

Conclusions and Future Work 

With the above contents in five chapters (from Chapter 3 to Chapter 7), the main 

modules of our proposed big sensing data curation roadmap have been constructed. 

In this chapter, we conclude the thesis by reemphasizing major research contributions 

of each chapter. Following that, we will list some promising future work which 

deserves to be explored. The conclusions are offered in Section 8.1, and the future 

work is presented in Section 8.2.   

8.1 Conclusions 

Big data analytics supported by Cloud computing platform have greatly impacted 

information technology industry and computer science research. To effectively and 

efficiently support those big data analytics applications, a data curation roadmap with 

several important modules was designed in this thesis. The critical modules or steps 

in this data curation roadmap were intensively investigated within different chapters 

to solve specific problems as follows.        

 

 In Chapter 2, we have provided an in-depth literature review of the state-of-

the-art techniques including big data, Cloud, and its related sensing systems, 

data compression techniques and data cleaning techniques. Through analysis 

and comparison, a general over view of the current research situation of data 
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curation on Cloud was achieved. In addition, the related U-Cloud platform for 

our big data processing and related big sensing data sets were introduced. 

Based on those comparison and analysis, we validated the importance of our 

research in this thesis.       

 

 In Chapter 3, we investigated the problem of scalable and fast big sensing data 

error detection on Cloud. With our data error type classification, the big 

sensing data features were analysed to support fast error detection and location 

on Cloud. In other words, by analysing characteristics of sensing data from 

complex network systems, our error detection method was capable of 

dramatically accelerating error detection and location process. Through real 

sensing data experiments on our cloud computing platform of U-Cloud, 

significant performance gains for error detection and localization were 

achieved.  

 

 In Chapter 4, we investigated the problem of scalable and fast big sensing data 

recovery on Cloud following the error detection technique developed Chapter 

3.  A novel error recovery approach was proposed by predicting approximate 

data for replacing detected errors. This prediction and approximation made use 

of coverage information, Euclidean distance to calculate a time series 

prediction curve. With the calculated time series, a detected error would be 

recovered with a predicted data value approximately. The experiment was 

carried out on U-Cloud platform over real world meteorological data sets. The 

results demonstrated that out proposed error recovery approach achieved 

significant performance gains by comparing with traditional error recovery 

techniques.     

 

 In Chapter 5, we investigated the problems of big sensing data and big graph 

data compression on Cloud. Big sensing data or big graph data was 

compressed with spatiotemporal features on Cloud. In each time series or a 

single graph edge, temporal data compression was conducted. By exploring 

spatial data correlation, we partitioned a graph data set into a group of clusters. 

In a cluster, the workload was shared by the inference based on time series 
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similarity with a novel data driven scheduling. Based on U-Cloud platform 

and real environmental sensing data, experiments were designed to test the 

effectiveness and efficiency of the proposed technique. Great data saving can 

be achieved by using our proposed on-Cloud compression.    

 In Chapter 6, we investigated the problem of big sensing data compression on 

Cloud with non-linear regression prediction model. To cope with the 

challenges brought by those real world big sensing data with high volume and 

velocity, a novel on-Cloud non-linear regression prediction model were 

introduced in this Chapter. With the real world earthquake sensing data 

experiments, this compression based on non-linear regression achieved 

significant storage and time savings compared to previous compression 

models over big sensing data sets with both high changing feature and high 

data rate. 

 

 In Chapter 7, we investigated the problem of on-Cloud big sensing data 

compression with data chunks. A novel scalable data compression approach 

based on calculating similarity among the partitioned data chunks was 

developed instead of compressing basic data units. To restore original data sets, 

some restoration functions and predictions were designed and offered in this 

compression technique. By using real world meteorological big sensing data, 

our proposed scalable compression approach based on data chunk similarity 

achieved both high data compression ratio and satisfactory data accuracy.                            

8.2 Future Work   

Based on the roadmap of Figure 1-1 in Chapter 1, our research mainly focused on data 

cleaning module and Cloud storage module. However, there are several issues still 

worth being investigated.  

    

 Under the theme of data cleaning, after successful error detection and error 

recovery, the data redundancy and consistency issues still exist. So, 
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optimization procedures are still expected to remove those redundancy and 

guarantee data consistency.   

 

 Following the module of data cleaning and Cloud storage, there is a module 

of Domain Specific Optimization. In this module (stage), the domain 

knowledge and feedback from high level data analytical applications can be 

further used for improve data storage and organization. This is a future 

direction demanding more research exploration.    

 

 Currently, all the work is based on the data constraints from big sensing 

systems. However, if we relax those constraints from big sensing system, the 

proposed algorithms and models may be further improved for processing more 

generalized data sets, such as heterogeneous data.     

  

 Currently, Spark has become a popular scalable tool for big data processing 

on Cloud. The techniques proposed in this thesis are only partially 

implemented in Spark. In the future work, we can manage to put all the above 

techniques to Spark coded ones for better scalability and compatibility with 

Cloud.   
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