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Abstract

Retirement income systems have increasingly attracted academic research and policy

discussion in the light of population aging in developed countries. Management of re-

tirement wealth is of first order importance if sustainable pension systems are to be

maintained while providing desirable retirement living standards. In Australia, employ-

ers have been compelled by the Superannuation Guarantee to make minimum contribu-

tions to retirement accounts on behalf of their employees. Nevertheless, the structure of

superannuation is still being discussed and reformed with the aim of making it a bet-

ter, fairer and more cost-effective system. While there are many empirical studies and

policy reviews, research addressing the impact and efficiency of superannuation from a

theoretical perspective is lacking.

To fill this gap, and to contribute to the wealth management literature, this thesis exam-

ines the impact of mandated contributions into superannuation accounts on individuals’

lifetime consumption, risky asset allocation and wealth using a continuous time dy-

namic life cycle model. First, in Chapter 2, we provide a dynamic model incorporating

the compulsory savings constraint for a representative agent. The agent is endowed with

deterministic labour income, and assumed to rationally make decisions that maximise

his lifetime utility of consumption. Consistent with the primary aim of superannuation,

we clearly identify and conclude that compulsory contributions alter the agent’s con-

sumption behaviour and risky investment to be more conservative, which in turn may

increase the agent’s total wealth over the life cycle.

Building on the model in Chapter 2, we further introduce a life insurance purchase to

hedge the mortality risk of the representative agent in Chapter 3. The dynamic model

in Chapter 3 is an extension of the work of Pliska and Ye (2007), in which we further

consider the forced savings constraint. In addition to the foundational results derived

in Chapter 2, we demonstrate a lower bequest value and lower life insurance demand

under the compulsory savings constraint.

In Chapter 4 we calibrate the theoretical model to the Household, Income and Labour

Dynamics in Australia (HILDA) survey data and conduct a range of policy analyses. In

particular, we can investigate the welfare loss arising from the one-rate-for-all compulsory



ii

contribution rules. Simulations of optimal paths show that the consumption of low-

wealth individuals is severely constrained under current settings, resulting in a sizeable

welfare loss. In response, we propose a time-varying contribution rate for individuals,

which can mitigate the welfare loss while enhancing retirement wealth to achieve a

desired retirement living standard.
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Chapter 1

Introduction

This chapter provides an overview of the research of this thesis. The primary aim of

this thesis is to investigate the impact of mandatary employer superannuation contri-

butions on individuals’ savings behaviour and wealth-accumulation from a theoretical

perspective. To fully address the problem, three main fields needed to be highlighted.

Firstly, bringing a theoretical approach to the underlying problem, we start by review-

ing the literature on life cycle consumption and investment decisions. Secondly, since

the context of this thesis is private pre-funded retirement savings, the setting of retire-

ment income systems, particularly the Australian setting, is discussed. Lastly, when

the mandatory savings constraint is included in a dynamic model, there is generally no

closed-form solution available. We therefore review some solution methods that attempt

to tackle constrained optimal decision making problems. In the last part of this chapter,

we briefly describe the contents of the next chapters.

1.1 Portfolio Allocation

In modern portfolio theory, the starting point of multi-period consumption-investment

decision problems dates back to the seminal work of Samuelson (1969) and Merton

(1969). Applying the method of dynamic programming with the assumption of com-

plete market, log-normally distributed risky asset and constant relative risk aversion

1
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(CRRA) utility functions, Samuelson (1969) and Merton (1969) derive closed-form so-

lutions for the life cycle model1. The classic results show that the agent holds the same

static portfolio as for a single-period investment and consumes a fixed fraction of his

wealth. Among various extensions built on this foundation, there are two main streams,

namely the inclusion of labour income and the consideration of time-varying investment

opportunities2. These two extensions have been raised by Merton (1971) and Merton

(1973) himself and been heavily discussed thereafter. In this thesis, we include labour

income in the model as it is directly linked to retirement wealth-accumulation, and keep

the investment opportunity constant.

1.1.1 Human Capital

Labour income serves as an additional form of wealth of the agent, so it directly affects

the consumption-investment decision problems. The aggregated value of labour income

is widely known as human capital. Individuals generally cannot borrow against human

capital unconditionally3 but can use current earnings to finance consumption or save to

increase financial wealth. The value of human capital is substantial for the young and

is gradually depleted as time passes. In a simple framework of individual wealth, total

wealth consists of human capital and financial wealth. If labour income is deterministic,

human capital is another risk-free asset which boosts risky asset holdings. In one of

the early studies, Bodie et al. (1992) document that when labour income is certain, the

optimal fraction from total wealth allocated into risky assets follows Merton (1969)’s

result—a constant risky asset allocation over time. The difference is that the optimal

fraction invested in risky assets from financial wealth changes over time. As the value

of (deterministic) human capital dominates during the early life of individuals, asset

holdings from financial wealth strongly tilt towards risky assets, and these risky asset

holdings gradually decreases over the life cycle. In many studies4, deterministic labour

income is capitalised and total wealth is adjusted to analyse the underlying research

1Samuelson (1969) derived a closed form solution with a discrete time framework while Merton (1969)
solved the continuous time problem

2In the general case of time-varying investment opportunities, the agent should have another risky
portfolio in addition to the myopic portfolio in order to hedge the changes of investment opportunities.
See, for example, Wachter (2002), Munk and Sørensen (2004).

3While we understand that individuals can conditionally borrow from future income via credit card or
government supportive schemes, we narrow down our discussion by restricting the chance of borrowing
for our modelling purpose.

4For example, Richard (1975), Purcal (1999), Ye (2006) and Kronborg (2014).
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problems. Although making labour income deterministic is a highly restrictive assump-

tion, it provides a simple but indicative insight into the relation between labour income

and consumption-investment decisions.

Consider a general and realistic case where labour income is stochastic, and the uncer-

tainty involves both transitory and permanent shocks. Several studies have modelled

both shocks (Campbell et al., 2001, Cocco et al., 2005, Gomes et al., 2008). However,

Koo (1998) observes that the transitory shocks have negligible impact on the optimal

asset allocation decision, and this finding is also supported by the empirical study of

Angerer and Lam (2009), using U.S. data. The permanent income shock can be fur-

ther decomposed into idiosyncratic and aggregate risks. Although idiosyncratic risk is

uncorrelated with other components in the economy, this risk, unlike other traded fi-

nancial assets, cannot be diversified out because of the non-tradable feature of human

capital. The existence of idiosyncratic risk generally reduces the value of human capital,

and thereby reduces the exposure to risky holdings5 and increases precautionary savings

(Bovenberg et al., 2007, Gourinchas and Parker, 2002). Despite the overall reduction

in risky asset holdings, Cocco et al. (2005) emphasise that the pattern of risky asset

allocation is roughly the same as with risk-free income, and the decreasing trend with

age is mainly driven by the downward-sloping human capital profile.

Meanwhile, many researchers6 have highlighted how aggregate labour income risk, that

is correlated with stock returns or associated with the business cycle, impacts asset allo-

cation. Depending on the degree of correlation, labour income tends to be “stock-like”

when the risk is highly correlated with equity risk or “bond-like” when the correlation is

considerably low (Milevsky, 2009). Viceria (2001) suggests the aggregate risk produces

a hedging property of the risky asset: as the correlation is positive, the agent has a

negative hedging demand for the risky asset in order to hedge his optimal consumption

from unexpected falls in labour income. More recently, a number of studies attempt

to explain the patterns of household asset allocation over the life cycle and over wealth

levels. Benzoni et al. (2007) consider co-integration between aggregate labour and stock

market returns, and show that this co-integration can explain the hump-shaped life

cycle risky asset holding pattern observed by empirical evidence. Approaching from

5There are several studies that include idiosyncratic risk of human capital and reach similar con-
clusions. For example, Heaton and Lucas (1997), Campbell et al. (2001), Purcal (2003), Cocco et al.
(2005), Cairns et al. (2006) and Benzoni et al. (2007).

6For example, Viceria (2001), Ameriks and Zeldes (2004), and Ibbotson et al. (2007).
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another perspective, Lynch and Tan (2011) formulate labour income as depending on

business-cycle fluctuation and end up with qualitatively similar results to Benzoni et al.

(2007). Further, Wachter (2002), Munk and Sørensen (2004) and Moos (2011a) blend

time-varying investment opportunities with dynamic labour income by introducing a

state variable of economic conditions to the life cycle model.

From a modelling perspective, the inclusion of stochastic labour income induces market

incompleteness where there are generally no closed-form solutions available. Working

with the ratio of financial wealth to labour income has become a common practice7. With

this similarity reduction the number of state variables is reduced, but what the trade-off

brings is that it also entails solving highly non-linear partial differential equations that

are complicated to solve. One approach to this problem is to work with the special case

where labour income is positively perfectly correlated with the return innovation of the

risky asset in which the closed-form solutions are achievable.

Other main variations include incorporating flexible labour supply (Bodie et al., 1992,

2004, 2009, Chai et al., 2011, Gomes et al., 2008) and imposing a realistic liquidity

constraint (He and Pages, 1993, Koo, 1998) to the model. Bodie et al. (1992) argue

that the agent will invest more aggressively under flexible than fixed labour supply.

The adjustable labour supply acts as a buffer against future income uncertainty, thus

enhance the capacity of the agent to bear risks. Gomes et al. (2008) document a large

welfare loss when labour supply is fixed compared with baseline flexible unconstrained

labour supply. Farhi and Panageas (2007) also analyse the impact of flexibility of labour

supply; in particular, the choice of retirement time. Consistent with previous works, this

flexibility implies increased capacity for risk-bearing, and therefore there is an incentive

to reinvest gains into risky assets to get the chance of early retirement. Thus, along with

the value and riskiness of labour income, the flexibility of labour supply is also of first-

order importance in the asset allocation model. In another extension, Koo (1998) and

Bodie et al. (2004) include a liquidity constraint that ensures the agent cannot borrow

against future income. Bodie et al. (2004) introduce a Lagrange multiplier to enforce

the constraint. The liquidity constraint, and similarly the minimum capital requirement

constraint, induce the reduction of economic activity and contemporaneous consumption

(Lim and Choi, 2009).

7For example, Koo (1998), Munk (2000), Benzoni et al. (2007), Huang et al. (2008) and Moos (2011a).
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1.1.2 Mortality Risk and Life Insurance

1.1.2.1 Theoretical Life Cycle Models for Life Insurance

Another risky aspect of human capital relates to mortality risk—the premature death

and sudden loss of human capital. The risk is substantial, particularly for the young, for

whom human capital is the dominant asset in total wealth. Purchasing life insurance is a

straightforward way to hedge against mortality risk, but the question about how much to

insure emerges. Huebner (1964) introduces the Human Life Value (HLV) concept, where

the economic value of human capital can be considered as the value for life insurance. In

one of the pioneer works on survival uncertainty, Yaari (1965) concludes that uncertain

lifetimes can be insured using life insurance and life annuity. In the case where agents

do not have a bequest motive, they will always hold their assets in the insurance market

(i.e. purchase an annuity). In the case where they want to leave a bequest, insurance

demand is a function of the weight of the bequest motive relative to consumption. The

later case has been further proved by the study of Fischer (1973). A few years later,

Richard (1975) combines life insurance and consumption-investment decision problems in

a modern life cycle Merton (1969) model, and derives closed-form solutions incorporating

the implication of capitalised risk-free labour income.

After two decades, Purcal (1999) analyses Richard (1975)’s model numerically with a

borrowing constraint. Purcal (1999) highlights that the demand for life insurance is

directly related to consumption instead of the flow of future income as suggested by

Huebner (1964). Due to an active borrowing constraint, the optimal consumption is

reduced, and as a consequence, the amount of life insurance will be reduced accordingly.

Pliska and Ye (2007) point out that the terminal condition in the Richard (1975) model

that a given fixed planning horizon may not be realistic. In this spirit, Pliska and Ye

(2007) formulate a simpler setting where the mortality risk is the sole uncertainty with

a terminal utility. A closely related work is done by Huang et al. (2008); where these

authors model a family unit instead of an individual agent. Working with a family unit,

one does not need to specify the bequest function of the individual agent explicitly. The

central feature and main focus of their model is the inclusion of a stochastic labour

income stream for the breadwinner. Most previous studies consider only deterministic

income and capitalise it into total wealth for the sake of model tractability. Additional
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results due to stochastic labour income indicate that optimal life insurance decreases

with the labour income volatility and the correlation with financial returns.

Departing from dynamic programming methods, several studies approach the life insur-

ance and consumption-investment decision problems via the martingale method. Kwak

et al. (2011) formulate separate utility functions for parents and children within a family

and find that the relative weight of utility of parents to children is a crucial determinant

for life insurance. Kronborg and Steffensen (2013) introduce a capital constraint and

solve it with an option-based portfolio insurance (OBPI) strategy so that whenever the

reserved wealth hits the boundary, the agent will exercise an American option to fulfill

the requirement. Among different model settings and considerations, the demand for

life insurance is intuitive and follows traditional financial planning advice: life insurance

demand is positively related to human capital and negatively related to financial wealth,

and the introduction of a risky asset does not alter the insurance demand in a significant

way (Fischer, 1973). While the majority of studies consider voluntary life insurance for

an individual, Schulenburg (1986) investigates a compulsory insurance scheme assigned

to the agent and analyses the impact on voluntary life insurance demand. Overall, the

existing compulsory insurance coverage drags down the agent’s voluntary life insurance

demand.

1.1.2.2 Empirical Evidence on Life Insurance

Researchers have also attempted to explain the agent’s behaviour in the purchase of life

insurance from empirical data. However, the determinants for life insurance demand

differ widely among different sample periods and economic conditions, which may lead

to inconclusive results. Recognised as one of the major studies, Zietz (2003) provides a

comprehensive survey of the determinants of the demand for life insurance, and Li et al.

(2007) examine the determinants of life insurance demand in OECD countries. In addi-

tion to labour income as the major determinant, socioeconomic factors play a significant

role in insurance demand: the bequest motive and education level are positively related

to demand, whereas life expectancy and social security expenditure exhibit a negative

relationship. Furthermore, the development of the financial markets, particularly the

life insurance sector, is another component that influences the agent’s appetite for life

insurance. Sampling from central and southeastern Europe, Kjosevski (2012) documents
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an insignificant influence of bequest motives on life insurance. Inkmann and Michaelides

(2012) investigate the strength of the bequest motive on insurance, using a structural

modelling approach. With microeconomic data from the United Kingdom, the authors

broaden previous analysis by breaking down life insurance participation into tax and

financial motives and bequests, and document a positive correlation between intentional

bequest motives and life insurance demand.

From a modelling perspective, the functional form of the bequest motive should be

carefully formulated to reflect the incentives for the agent to leave wealth to his heirs.

The amount of bequest significantly impacts the demand for life insurance. A naive

approach is to set the bequest function exactly the same as the utility of consumption8.

This means the agent only insures the amount approximately equal to the last time-

step consumption before death. This assumption is questionable because the idea of life

insurance is usually to provide a similar standard of living to the heirs in the event of the

agent’s premature death, instead of providing only one more period of consumption. To

amend this issue, Purcal (1999) formulates the bequest function based on social norms:

the value of the death benefit should be an amount sufficient to provide two-thirds of

the agent’s current income for life. Kronborg and Steffensen (2013) also consider the

weight factor of the bequest function in accordance with the standard pension practice in

Denmark. Similar arguments have been stated in Huang et al. (2008) where the family

derives the same level of utility no matter whether the primary breadwinner is alive

or not, meaning even when the breadwinner dies, the family can still enjoy the same

level of consumption through the provision of life insurance. The formulations discussed

above are for the bequest function during the wealth-accumulation stage. When one

considers the bequest function during the retirement stage, the formulation could be

more involved, as seen in Lockwood (2012) and Ding et al. (2014), where the bequest

can be modelled as a luxury good.

1.1.2.3 Modelling Mortality Risk

When including life insurance in the model, the formulation of the mortality rate be-

comes a crucial component. By assuming the mortality risk is independent of other

financial risks, the mortality rate can be treated as a discount factor in addition to the

8This is similar to the standard setting when the modelling horizon equals to the terminal date of
the agent’s life.
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subjective time preference. A simple approach is to assume the remaining lifetime of

an agent follows exponential distribution. Under this assumption the force of mortality

is time-invariant. This setting has been applied in the studies of Huang et al. (2008)9

and Moos and Müller (2011)10. Another common approach is to assume that the re-

maining lifetime follows the Gompertz-Makeham law (Milevsky, 2006), which includes

both age-dependent (Gompertz law) and age-independent (Makeham law) components.

The Gompertz law of mortality suggests the instant force of mortality is age-dependent

and increases exponentially with age. In an environment with a low age-independent

hazard rate, the Gompertz law fits well with actual national life table11. Many studies12

apply the Gompertz law for modelling mortality rate. Other than that, Purcal (1999)

and Dobrescu et al. (2014) use empirical life tables, and Pliska and Ye (2007) consider

an arbitrarily chosen linearly increased rate of mortality.

1.1.3 Wealth Decumulation Stage with Longevity Risk

At retirement, the value of human capital reaches zero and the total wealth is mostly

represented by financial wealth. The exposure to market risk becomes greater, which

leads retirees to reduce risky holdings and tilt portfolios towards safe assets (Benzoni

et al., 2007). Despite the risk from the financial market, longevity risk plays a major role

for retirees. With dramatically reduced mortality rates over the past century, longer life

expectancy brings substantial longevity risk for retirees (Milevsky, 2009) and therefore

triggers concern for researchers and policymakers. In theory, retirees can hedge their

longevity risk by purchasing annuities. Yaari (1965) and Davidoff et al. (2005) argue that

under an assumption of complete markets a retiree without utility of bequest should fully

annuitise his wealth as an optimal strategy. Even with incomplete markets, Davidoff

et al. (2005) show that the retiree will still wish to gradually annuitise a substantial

portion of his wealth.

Nevertheless, starting from Modigliani (1986), the observed low rate of private annuiti-

sation has been addressed as an “annuity puzzle”. Blake et al. (2003) find that the age

9Huang et al. (2008) consider a constant mortality rate as a simple case and a Gompertz mortality
distribution in a general case.

10Moos and Müller (2011) consider both working and retirement periods. Although it stays constant,
the input value of mortality rate during retirement is higher than during the wealth-accumulation period.

11One of the caveats for the Gompertz law of mortality is that it cannot fit well for the mortality rate
of very young and very old age groups.

12Including Charupat and Milevsky (2002), Kingston and Thorp (2005) and Huang et al. (2008).
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to annuitise is sensitive to the financial risk appetite, health, the bequest motive and

the retirement wealth of a retiree. Milevsky and Young (2007) is one of the first studies

that incorporates annuity products into portfolio selection with realistic institutional

restrictions. They argue the irreversible and therefore illiquid and inflexible features of

life annuities essentially keep retirees away from annuitisation. If the retiree is allowed

to annuitise any amount at any time, the retiree tends to annuitise a proportion of

wealth at retirement and gradually purchases other annuity contracts as time passes to

keep track of his wealth while retaining the liquidity of his wealth. Kingston and Thorp

(2005) extend the work of Milevsky and Young (2007) by incorporating HARA utility

preferences. In addition to the findings of Milevsky and Young (2007), Kingston and

Thorp (2005) point out that the existence of consumption floor specified from HARA

utility creates incentive for the retiree to annuitise earlier than otherwise. A recent

study from Wang and Young (2012) analyses the willingness of a retiree to annuitise

if a life annuity is commutable, and finds positive result. Other possible reasons for

reluctance to annuitise includes the consideration of leaving some bequest to the heir

(Lockwood, 2012) and a short life expectancy due to personal health status (Brown,

2009) or out-of-pocket health shocks (Sinclair and Smetters, 2004).

From another perspective, Brown (2009) describes the annuity puzzle via behavioural

economics and suggests several policy recommendations to encourage retirement income

security and enhance financial literacy to promote voluntary annuity markets. Benartzi

et al. (2011) however argue that the notion that retirees dislike annuitisation is mislead-

ing. Retirees may already possess some annuities from a public social security system or

from a defined-benefit pension plan. The limited voluntary annuity should be viewed as

a result of institutional factors regarding the availability and types of annuity options.

1.2 Retirement Income System

Retirement income systems are aimed at ensuring individuals have an adequate and

secure income in retirement. While countries have widely varying systems, the systems

are commonly classified into “three pillars” under World Bank’s classification (World

Bank, 1994). The first pillar is to provide a public safety net to reduce poverty among

retirees. The second pillar refers to a mandatory and earning-related savings system, and

the third pillar is a voluntary savings scheme. As the world experiences population aging,
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increased longevity risk together with global economic and financial instability, many

OECD countries have gone through several reforms to improve financial sustainability

of the retirement income systems (OECD, 2015).

The first pillar systems exist in all countries but the structure and the capacity differs

substantially across countries. The second pillar can be roughly categorised into defined-

benefit (DB) and defined-contribution (DC) pension plans. A DB plan promises to pay

a certain amount of money, normally as a percentage of final salary, for the remaining

life of the retiree, whereas a DC plan ensures periodic contributions during the wealth-

accumulation stage to build up a retirement fund for the plan member. Within a DB

plan retirement income depends on the number of years of contributions and individual

earnings while the retirement income is uncertain depending on the contribution and

investment performance in the DC category. In recent decades, retirement systems

world-wide have experienced a large migration from DB plans to DC plans. The main

reasons are based on creating healthy and sustainable systems as population pressures

and life expectancies increase (Milevsky, 2009). At the end of 2014, DC assets account

for nearly 50% of total pension assets among the seven largest pension markets; and in

particular, the DC plan is dominant in Australia (85%) and the United States (58%)

(Tan, 2015). By converting DB to DC plans, retirement income is not guaranteed by a

sponsor or government; instead the responsibility is shifted to retirees themselves.

Under DC plans, the periodic contributions in DC plans are invested in retirement fund

management companies. These companies usually offer a default plan for investment

strategy, and a large number of DC plan participants do not opt out of the default even

though they have the choice to change investment options. For example, studies show

that plan members tend to adopt the default fund by examining the 401(k) pension plan

in the U.S (Agnew et al., 2003, Mitchell et al., 2006). Further, Agnew and Szykman

(2005) find that individuals with low financial knowledge are more likely to stay with

the default option. Similarly, in the United Kingdom, Byrne et al. (2007) mention that

more than 80% of members in DC plans accept the default plan. In Australia, most

members simply accept the default investment strategy (Bird and Gray, 2011, Cooper

et al., 2010, Dobrescu et al., 2014). Gerrans (2012) further reveals that majority of

members did not change the investment strategy in response to the Global Financial

Crisis. All this evidences implies that the design of asset allocation for the default plan

is a crucial contributor for retirement incomes.
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The asset allocation strategy among DC plans can be categorised as a “target-date” fund

or a balanced fund. The target-date fund (also known as a lifecycle fund) implements

the life cycle portfolio choice theory that the proportion of wealth invested in risky assets

should decline with the age of the investor. In this context, contributions are invested

mostly in equities at the beginning of the plan and gradually switch toward bonds as

the plan holder ages. The target-date fund is the most popular plan worldwide13; more

than 70% of 401(k) plans in the U.S. include target-date funds (Holden et al., 2014).

However, the design of the target-date fund receives a lot of criticism. Several studies

have documented the suboptimality of this plan (Basu et al., 2011, Cairns et al., 2006,

Cheung, 2007, Tang and Lin, 2015); in particular, Tang and Lin (2015) argue the loss

from the design of the glide path of target-date funds is larger than the loss from a

suboptimal risky portfolio. To mitigate the suboptimality of target-date funds, Cairns

et al. (2006) and Tang and Lin (2015) propose including a risk-based selection and

consider correlation between labour and equity markets, and Basu et al. (2011) consider

a specific dynamic asset allocation strategy that allows the switching of assets in both

aggressive and conservative directions based on market performance in the retirement

account.

On the other hand, the balanced fund is a diversified fund with a constant investment

mix at a point of time despite the age of the plan holder. This plan is dominant in

Australia, although there is a growing number of (default) lifecycle investment products

after the new legislation of the Superannuation Legislation Amendment (MySuper Core

Provisions) Bill.

In addition to asset allocation strategy, Blake et al. (2014) also examines the optimality

of the contribution rate, which is normally expressed as a percentage of labour income.

These authors argue that as the contribution rate directly depends on the plan member’s

preferences between current and future consumption, the most common extant constant

contribution rate is suboptimal. Instead, they provide an age-related contribution rate

that is believed to better capture the plan member’s incentives to save for retirement.

13It should be noted that the target-date funds are not as common in Australia.
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1.2.1 Australian Retirement Income System

Australian retirement income system has all three pillars defined by the World Bank (?).

The first pillar refers to the publicly funded Age Pension, aiming to provide a safety

net for whom are unable to support themselves after retirement. The eligibility for Age

Pension is subject to means tests, including income, asset and residency tests. The ben-

efit design for age pension is to provide the basic necessities of life. The second pillar is

known as the Superannuation Guarantee (SG) introduced in 1992 via the Superannua-

tion Guarantee (Administration) Act 1992. This specified that most employees are to

receive a minimum level of superannuation from their employer. The third pillar of the

retirement income system is the voluntary savings, supported by taxation concessions.

With an aging population and rising pressure on public expenditures, Australian gov-

ernment strongly encourages individuals to reduce reliance on the Age Pension and at

least partially fund their own retirement income through the channel of the pre-funded

superannuation system and voluntary retirement savings. From the introduction of the

Superannuation Guarantee (SG) in 1992, the pre-funded superannuation has become

the main component of the Australian retirement income system. The purposes of su-

perannuation are to provide an adequate level of retirement income, to relieve pressure

on the Age Pension and to increase national savings. The majority of superannuation

plans are of the DC type, followed by a minority of hybrid and DB plans. Australia has

the second largest pool of DC plans in the world, after the U.S.

The mandated employer contributions require employers to contribute a fixed percentage

of employees’ ordinary time earnings to superannuation accounts on behalf of their

employees. As this contribution is made for the purpose of providing fund members’

retirement wealth, the superannuation account balance generally cannot be accessed

until the preservation age14. After preservation age, the fund is available in the form of

a lump sum or an income stream upon the fund members’ choice15.

There are several types of superannuation funds, each of them emerging from differ-

ent historical and political considerations. Despite the newly emerged self-managed

14The preservation age is defined as the age members are able to access to superannuation benefit.
Before preservation age, the access to superannuation is generally restricted unless other conditions of
release has been met. Currently, the preservation age ranges from 55 to 60, depending on the date of
birth.

15The choice of lump sum withdrawal is favourable for fund members, although the income stream
option is supported by the Age Pension.
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superannuation funds (SMSF), retail funds hold the largest share by assets followed

by industry, public sector and corporate funds in terms of assets under management

(Australian Prudential Regulation Authority, 2014). Most superannuation funds are

primarily regulated by the Australian Prudential Regulation Authority (APRA) except

for the self-managed superannuation funds, which are mainly regulated by the Australian

Taxation Office (ATO).

In addition to the compulsory employer contribution, employees are able to make volun-

tary contributions to their superannuation accounts through salary sacrifice or after-tax

income contribution. These refer to the third pillar of Australian retirement income

system. The government also provides a co-contribution scheme to support low-income

earners and encourage voluntary contributions16. Compulsory employer contribution

and voluntary salary sacrifice are taxed at a 15% concessional rate, subject to a cap of

$30,000 in 2014/15 for individuals under 50 years old17.

Overtime, superannuation assets have increased and now represent the second largest

component of household wealth. The 2015 Intergenerational Report estimated total

Australian superannuation assets at around 116 percent of GDP at the end of 2013/14.

The coverage of the superannuation system is also broad, and over 90% of workers have

savings in a superannuation account (Swoboda, 2014). Nevertheless, the settings of the

superannuation system have often been discussed and reformed over the past decades

in order to work out the most economically efficient way to enhance retirement wealth.

Starting from 1992 and with multiple policy changes along the way, the superannuation

system has become very complex. On top of policy changes, the number of registered

superannuation entities together with the plans offered by each have changed, which

makes it even complicated and difficult for fund members to make decisions on their

wealth management. One of the major directions of reform is to simplify the superan-

nuation system, also known as Simpler Super, announced in 2006 (Warren, 2008). The

Simpler Super aimed to assist people reach desirable retirement living standards by pro-

viding incentives to work and save. More recently, the government announced Stronger

Super reforms which aim to make the superannuation system more efficient and help

maximise retirement income. One part of the Stronger Super reforms is the introduc-

tion of MySuper. MySuper products consist of a simple set of features across registered

16In 2014/15, the government will make a contribution up to a maximum of $500 when a low-income
earner makes a personal after-tax contribution.

17The cap for those over the age of 50 are higher, set as $35,000 in 2014/15.
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superannuation entities, aiming to protect retirement savings. In other words, fund

members and employers are able to compare key differences between superannuation

fund providers and select the most suitable one based on their own circumstances.

The value of superannuation funds, and consequently retirement welfare, is heavily de-

pendent on investment performance as most people in Australia hold DC superannuation

accounts. As mentioned earlier, superannuation entities offer a variety of investment op-

tions for members to select, and default investment options operate when members make

no choice. Although individuals hold the option to select different investment strategies,

many simply accept the default (Bird and Gray, 2011, Cooper et al., 2010, Dobrescu

et al., 2014). The default option nominated by employers will consist of MySuper prod-

ucts after the implementation of the Stronger Super reforms18. By now, the majority

of current MySuper products offer a single diversified investment strategy—a balanced

fund, which is distinct from the target-date funds that are the most common default

strategy in the U.S.19

Connolly (2007) shows that compulsory superannuation savings will raise wealth if

households do not increase consumption to fully offset the growth of their accumula-

tions. Moreover, the compulsory superannuation system can lead to increased voluntary

retirement savings by making individuals more aware of the need to save for retirement

(Gallery and Gallery, 2005). However Davis (2012)surveys individual experiences and

shows that only a quarter of employees make personal voluntary contributions, and most

of them are high-income earners. So despite the fact that general knowledge about su-

perannuation has been improved (Davis, 2012), there is still a large deficit of financial

literacy that can make choosing savings rate and investment options difficult, and cause

reliance on defaults. This is also the main incentive for the government to introduce

MySuper. Because of the simplicity and cost-effectiveness of MySuper products, the

default option has been further strengthened.

We now turn to the question of the adequacy of superannuation. The Treasury estimates

indicate that superannuation accumulations will only reduce the Age Pension spending

by around 6% in 2050 (Chomik and Piggott, 2012) even with the relatively large amount

of superannuation assets. More importantly, the previous 9% compulsory contribution

18By 1st July 2017, all the existing default funds should be transferred to MySuper products.
19Nevertheless, default lifecycle funds have become a larger component under the permission of the

new MySuper regulations. From the report statistics of Chant et al. (2014), around 81% of MySuper
products involve a balanced default plan while 19% have a lifecycle default strategy.
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rate is not sufficient for most individual retirees to reach reasonable replacement ratios

(Enterprise Metrics, 2012). In response, the government has enacted an increase in

the superannuation contribution rate, stipulating a gradual increase to 12% in 2025. To

target the issue of inadequacy, current policy discussions have also focussed on the age at

which individuals can start drawing down their superannuation (the preservation age),

with the Productivity Commission (2015) promoting an increase to above the current

setting at age 60 to enhance retirement wealth.

Other than the issue of the choice of superannuation fund and adequacy, the regulation

of taxation and the integration with the Age Pension are worth addressing to improve

the superannuation system (Bateman et al., 2001). One of the current debating topics

is the fairness of the superannuation system, which mainly refers to the taxation of

superannuation. The current superannuation concessional tax has been criticised as too

generous for high-income earners as it serves as a tax shelter for the wealthy, which

deviates from the original purpose of superannuation and reinforces inequality. Warren

(2008) also argues that policymakers should consider the whole retirement income system

when amending retirement policies to avoid adverse selection.

1.3 Solution Methods

The seminal works of Samuelson (1969) and Merton (1969) employ a dynamic pro-

gramming method to solve multi-period optimisation problems. However, this method

generally does not reach a closed-from solution for constrained problems. Although there

are many studies with various constraints in discrete time model20, they are still in a

developing stage in continuous time settings.

1.3.1 Martingale Representation Technique

An alternative approach is the martingale representation technique, introduced by Pliska

(1986), Cox and Huang (1989). By solving a Merton-type problem with a finite horizon,

Cox and Huang (1989) claim the martingale technique is simpler than dynamic pro-

gramming methods since it only involves a linear partial differential equation. Another

20See, for example, Campbell et al. (2001), Viceria (2001), Haliassos and Michaelides (2003), Cocco
et al. (2005), Gomes et al. (2008) and Campanale et al. (2012).
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advantage of the martingale technique is that it can apply to non-Markovian processes.

Followed by Cox and Huang (1989), several studies consider a liquidity constraint im-

posed on the optimal portfolio problem using the martingale method21. In addition,

El Karoui and Jeanblanc-Picqué (1998) highlights the introduction an American put to

provide insurance against a liquidity constraint with a stochastic labour income compo-

nent.

The idea of introducing an American put option has been further discussed as it links

to the concept of Option Based Portfolio Insurance (OBPI) introduced by Leland and

Rubinstein (1976). El Karoui et al. (2005) prove the optimality of this method for both

European (constraint on terminal wealth) and American (constraint on every interme-

diate date) cases in a Black-Scholes market environment with CRRA utility function.

In a recent study, Kronborg (2014) presents the numerical illustrations for the opti-

mal consumption-investment problem with a capital constraint insured by an American

option.

Using similar methods, Wachter (2002) models a time-varying investment opportunity.

Lakner and Nygren (2006) consider a downside constraint to keep the terminal wealth at

a required level. Lim and Choi (2009) generalise the constrained portfolio selection prob-

lem for an infinite horizon model and conclude that the most portfolio constraints can

be represented with closed-form solutions. However, although the martingale represen-

tation technique is appealing, the requirement of a complete market is a main concern.

As a result, the main stream still follows the method of dynamic programming.

1.3.2 Dynamic Programming Method

As the direct approach of dynamic programming method may be problematic for the

constrained problems, other attempts are to use modified dynamic programming meth-

ods. Vila and Zariphopoulou (1997) consider viscosity solutions22; nonetheless, the proof

of the regularity of viscosity solutions may also be ambiguous. By transforming the non-

linear HJB equation to a linear dual, Di Giacinto et al. (2014) argue the duality method

21For example, He and Pages (1993), El Karoui and Jeanblanc-Picqué (1998) and Barucci and Marazz-
ina (2012). In particular, Barucci and Marazzina (2012), among others, consider an application of the
duality theory of Luenberger (1997).

22A detailed discussion about viscosity solutions can be found in Fleming and Soner (2006).
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is a better way to solve a constrained problem23. In a recent development, Kraft and

Steffensen (2013), by tackling a portfolio constraint similar to Lakner and Nygren (2006),

use control theory and an option price to construct value functions and argue their ap-

proach opens up opportunities to derive closed-form solutions with constrained models.

Meanwhile, Leisen (2015) considers a perturbation approach to compute a closed-form

solution for continuous time portfolio selection problems.

1.3.3 Numerical Approach—Markov Chain Approximation Method

Another aspect of the solution of optimal decisions is really an appeal to numerical

methods. One of the fundamental approaches in continuous time is the Markov chain

approximation method of Kushner (1990). Originally, the classical numerical method is

to solve the partial differential equation (PDE) directly; nevertheless, the HJB equation

from optimal control is highly non-linear, which makes this direct solution extremely

complicated. Kushner (1990) emphasises that the primary interest is to obtain the

optimal value and control functions for the stochastic control problem, instead of solving

the PDE, and therefore brings out this method. The basic idea is to approximate

the original continuous time problem with a simplified discrete time version where the

computation is feasible, and to prove that the computed value function from discrete

time converges to the original continuous time problem as the approximation parameter

goes to the limit. In order to get the appropriate approximation for the value function,

one can employ a finite difference method to construct the transition probabilities of a

Markov chain (Kushner, 1990, Munk, 1997).

Fitzpatrick and Fleming (1991), Hindy et al. (1997) and Munk (2003) adapt the Markov

chain approximation of Kushner (1990) to optimal consumption-investment problems,

and Fitzpatrick and Fleming (1991) also prove the convergence of Markov chain approx-

imation via viscosity solution. All these studies are in an infinite-time horizon setting

and the numerical results are generally very precise compared with associated analyt-

ical solutions except for the values near boundaries. Likewise, this method has been

applied for finite horizon problems: see Purcal (1999) and Moore and Young (2006). As

long as the property of local consistency is preserved, the result from the Markov chain

approximation is trustworthy. Munk (1997), however, states that the limitation of this

23Other studies employing duality method are Cuoco (1997), Schwartz and Tebaldi (2006) and
Milevsky and Young (2007).
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method is that it is only applicable to a single state variable problem. In some cases,

multiple state variables can be reduced to one state variable by similarity reduction if

the indirect utility function has a homogeneous property24.

Two caveats for the Markov chain approximation method are the very limited choice

of CRRA risk aversion parameters and the propagated boundary errors in a finite-time

horizon problem. Ye (2011) develops a logarithmic transformation of the value function

in the Markov chain approximation method. This transformation directly tackles both

of the main caveats in that it works for normal ranges of the risk aversion parameter, and

the boundary condition has been moved to negative infinity, suggesting the imprecise

value near boundaries have been wiped out. Moreover, the transition probabilities in

general do not depend on the state variable explicitly. By choosing appropriate time

and state grids, the transition probabilities are guaranteed to be non-negative, which

means the issue regarding time discretisation has been removed.

The main theoretical focus of this thesis is to work on an optimal life cycle consumption-

investment decision with the consideration of the compulsory superannuation scheme.

By formulating the compulsory savings requirement into the model, we face a constrained

optimisation problem where we adapt similar approach from Ye (2006) to solve our

theoretical model.

1.4 Motivation

Over the decades, the trend of population aging and increased life expectancy in devel-

oped countries has been a concern among academics, practitioners and policymakers.

The increased number of retirees together with longer wealth-decumulation periods high-

light the importance of retirement wealth. To keep the pension system sustainable, the

Australian government urges its residents (citizens) to pre-fund their retirement wealth

through the channel of superannuation. The mandated employer contributions are now

paid on behalf of almost all employees. However, despite the heavily discussed feature

and reforms from each Federal Budget, a theoretical model analysing the impact and

efficiency of superannuation is rarely studied.

24Examples of using the Markov chain approximation method by similarity reduction are Munk (2000),
Andersson et al. (2012) and Bick et al. (2013), among others.
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Therefore, the motivation for this thesis is to investigate the impact of superannuation on

individuals’ savings based on a theoretical argument. Since the life cycle consumption-

investment decision is a dynamic problem, we adapt the foundational tool of the Merton

(1969) model. The classical Merton (1969) model provides a dynamic, stochastic and

forward-looking feature to the underlying problem. As an extension to the Merton

(1969) model, we embed a mandatory savings constraint, in the form of the compulsory

superannuation contribution. To our knowledge, there are only a few studies using this

dynamic programming framework applied to the Australian retirement income system.

On top of that, this constraint on consumption is also rarely researched.

Starting with a simple Merton-type model, we examine the wealth re-allocation due

to the mandatory superannuation contribution. This forced savings constraint compels

individuals to save when young, which in turn boosts retirement wealth. We firstly

confirm the primary aim of compulsory superannuation, to increase retirement wealth,

by a theoretical dynamic model. Secondly, by considering mortality risk during the

working period, we also include an insurance purchase to the model. This particular

model is an extension to the work of Pliska and Ye (2007); we follow a similar approach

to formulate the consumption-investment and insurance choice model, but we extend it

by considering the compulsory superannuation requirement.

Next we fit the structural model to the Household, Income and Labour Dynamics in

Australia (HILDA) survey data to obtain a reliable estimation of overall consumption

behaviour and wealth-accumulation at the individual level. In Australia, policy simu-

lations and macro overlapping generations modelling have been done to assess policy

changes, but structural life cycle analysis including both consumption and investment

choices have been lacking. This part of the study fills in the gap. With reasonably

calibrated parameters, we investigate the welfare loss associated with the compulsory

superannuation constraint. We show that the forcibly reduced early consumption is

against individuals’ interest, and that the percentage lifetime welfare loss is not trivial.

To mitigate the welfare loss we propose an alternate policy design of time-varying super-

annuation contribution rates. Although it is similar to the idea of Thaler and Benartzi

(2004) and Guest (2010), we show that this recommendation is based on the theoretical

foundation in addition to a behavioural argument.
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1.5 Structure of the Thesis

This thesis consists of three main components. Chapter 2 examines a consumption and

investment problem including a compulsory superannuation contribution as applies in

the Australian setting. Chapter 3 is an extension to Chapter 2 where a life insurance

purchase is added to the model. Chapter 4 use a model similar to Chapter 3 to fit

the Australian survey data and provides a welfare analysis of the impact of compulsory

savings. Chapter 5 summarises the main results and policy implications; and discusses

related possible future research. Proofs and alternative settings are presented in appen-

dices.

Chapter 2 analyses the consumption-investment decision with mandatory superannua-

tion contributions, from the perspective of an agent who wishes to maximise his utility of

consumption over a finite lifetime. As a starting point, we consider a simple Merton-type

model with a deterministic labour income process and a time-invariant mortality rate of

the agent. To effectively capture the insight of forced savings on optimal consumption-

investment decisions, we separate the agent’s wealth into two processes—discretionary

wealth where the agent can freely consume and invest, and a superannuation account

that is preserved until retirement. Pinning down the focus on the wealth-accumulation

stage, the terminal date of the modelling horizon is at the time of retirement, which

is given exogenously. To deal with the forced savings constraint on consumption, we

devise a novel numerical method to solve the underlying problem. In this context, we

adapt the method of Markov chain approximation of Kushner and Dupuis (1992) and in-

clude the logarithmic transformation of the value function advocated by Ye (2006). The

logarithmic transformation works well in our model because it directly targets the limi-

tations of the restricted selection of risk averse parameters and the stability of transition

probabilities, which are both crucial for our modelling perspective.

Using this original model, we can clearly identify the effect of mandatory savings on

consumption, particularly at younger ages and with lower initial wealth. In order to

enhance retirement wealth, the agent is compelled to save more than he otherwise wishes

when he has a superannuation account. Compulsory contributions alter the agent’s

consumption behaviour and risky asset allocation to be more conservative. The reduced

consumption in early years may in turn increase the agent’s total wealth over the life
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cycle. To our knowledge, we contribute the first continuous time theoretical analysis of

the welfare implication of the Superannuation Guarantee.

In Chapter 3, we broaden our analysis by introducing a life insurance purchase to the

model. The life insurance premium is heavily dependent on the mortality risk. In

this chapter, instead of a time-invariant mortality rate, we consider a Gompertz law of

mortality which fits well with the actual national life table with low age-independent

hazard rate. Further, the direct incentive to purchase life insurance depends on the

strength of bequest motives. In this content we follow the idea of Huang et al. (2008)

that the agent is willing to provide the exact discounted value of current and future

consumption to his beneficiaries. Moreover, due to the availability of life insurance and

the incentive to leave bequests, the simple assumption about annuitisation at retirement

is not practical. Instead we allow the modelling horizon to extend to the end of the

agent’s life, and the asset allocation for the post-retirement period is treated as the

classical Merton portfolio since there is no more labour income inflow into the agent’s

wealth.

Adding to the results in Chapter 2, we confirm that the voluntary optimal life insur-

ance premium and death benefit with compulsory superannuation follow the real world

practice, with a hump-shaped pattern over the life cycle. More importantly, since the

value of bequest and life insurance is modelled as consumption-dependent, a lower be-

quest value and life insurance demand is documented with the compulsory savings as a

binding constraint. Since the value of bequest consists of financial wealth and a death

benefit in the event of premature death, we argue that by possessing higher financial

wealth from the forced savings constraint, the agent tends to reduce his death benefit

and decreases his life insurance premium.

We show the impact of compulsory superannuation on individuals’ consumption and

retirement wealth in Chapter 2 and Chapter 3 from the theoretical model. In Chapter

4, we tackle the problem from another perspective. As argued by Guest (2010) and

Blake et al. (2014), individuals may lack the willpower and financial expertise needed

to save for retirement. In other words, compelling a constant minimum level of savings

on all workers across all ages might results in welfare losses. We are concerned that a

constant compulsory rate may be suboptimal for some people, most likely the young,

who are most constrained by low wealth outside the superannuation system. Therefore
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we use the theoretical model developed in Chapter 3 to estimate structural unobserved

preference parameters by using the HILDA survey data. We acknowledge that we do

not include life insurance purchase due to the lack of life insurance information from the

HILDA survey.

After obtaining the calibrated unobservable parameters, namely the rate of time pref-

erence and the degree of risk aversion, we go on to analyse the welfare losses arising

from the superannuation system and test counterfactual policy settings on both contri-

bution rates and preservation ages. The compulsory rate and preservation age are being

debated in relation to superannuation adequacy. As expected and has been described

in behavioural analysis by Thaler and Benartzi (2004), the suppressed consumption is

against young individuals’ interest, which results in a sizeable welfare loss. To reduce

the welfare loss while keeping desired retirement wealth to a minimum level, we suggest

and model a time-varying contribution rate, similar to the finding of Blake et al. (2014).

In this context, the compulsory contribution rate for young workers is set at a low point

with a default rate that will gradually increase with time to achieve targeted retirement

wealth. Backed up by our theoretical computations, we advocate a time-varying con-

tribution rate as an alternative policy design to make the superannuation system more

efficient.



Chapter 2

Optimal Portfolio Choice and

Mandatory Retirement Savings

2.1 Introduction

The classical approach to life cycle portfolio allocations is to find optimal strategies for

the agent who maximises his utility of consumption and/or terminal wealth. Building

on the seminal work of Samuelson (1969) and Merton (1969), there have been numerous

extensions in this field1. Yet this optimisation problem is challenging to tackle despite

the apparently easy intuition. One of the major reasons is the nature of an individual’s

life cycle that generally involves two stages, working and retirement, which needs to be

modelled differently2. Another reason is related to the inclusion of extra state variables,

where closed-form solutions generally do not exist. Similarly, to make models more

applicable in the real world, several constraints are needed, such as a liquidity constraint

that ensures the agent has positive liquid wealth. In most cases, embedding constraints

into life cycle models makes the problem intractable for classical dynamic programming

methods. Even though there are recent attempts to find solutions for constrained models

by alternative approaches, various issues remain.

1For example, by considering human capital, flexible labour (Bodie et al., 1992, Gomes et al., 2008),
housing, insurance (Huang et al., 2008, Pliska and Ye, 2007), and tax effects (Moos and Müller, 2011).

2For example, studies combining two stages include Huang et al. (2008), Bodie et al. (2009) and Moos
and Müller (2011).

23
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At the same time, retirement income has increasingly attracted academic interest. Pop-

ulation aging has motivated a shift in retirement pension arrangements world-wide,

gradually shifting the responsibility of managing retirement assets from governments or

corporations to workers themselves. There are only a few studies that consider pension

wealth together with liquid wealth when making decisions for life cycle planning. For

instance, in a seminal study, Campbell et al. (2001) explore retirement savings systems

with life cycle planning in a simple discrete time framework; and Moos and Müller (2011)

consider a constant pension contribution over the wealth-accumulation stage in a contin-

uous time model. However, to our knowledge, no such study focuses on the Australian

retirement income system. In light of the lack of comprehensive studies in this field,

this chapter aims to fill a gap in the literature by studying the effect of pension wealth

on consumption-savings portfolio allocation in Australia. In the Australian retirement

income system, the relevant policy instrument for life cycle wealth planning is the super-

annuation system, where a certain percentage of an employee’s income is mandatorily

delivered to a superannuation account to fund future retirement. Our results clearly

indicate that the existence of superannuation accounts do enhance individual retirement

wealth, which translates to higher retirement income for a retiree.

The theoretical background of this chapter is built on Campbell et al. (2001) and the

model formation is related to Ye (2006). Setting aside life insurance considerations for

the time being, we extend the work of Ye (2006) by embedding a compulsory savings

constraint in a continuous time framework. To effectively capture the impact of superan-

nuation, we apply a similar treatment to Campbell et al. (2001) where we model liquid

(non-preserved) and retirement wealth separately. We define a discretionary wealth

process where the agent can freely consume and invest, and a superannuation account

where the agent is compelled to save for retirement. During working life, the superan-

nuation account is illiquid so that the agent cannot consume or borrow against it. As

the main purpose of this chapter is to explore the impact of mandatory savings on the

wealth-accumulation stage, the terminal date of the modelling horizon is the time of

retirement. At retirement, the fund in the superannuation account is rolled into discre-

tionary wealth and the agent annuitises his total wealth at retirement to enjoy periodic

life annuity payments afterwards, to preclude longevity and investment risks. For the

sake of simplicity, we set the dynamics of labour income as a deterministic process. Al-

though this setting may be simple, the indicative insights into consumption-investment
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decisions are still worthwhile. We believe that the implications of our model under a

riskless income is valid and we can discuss the general impact of a risky income process

and the riskiness of labour income among ages, workforces and demographics. In our

setting, a fixed proportion of riskless labour income is contributed to superannuation

funds with the remainder (disposable income) added to discretionary wealth from which

the agent is free to consume or save as a future resource. The optimal consumption

is obtained by equating the marginal utility of consumption with the marginal value

of discretionary, instead of financial, wealth in the Merton setting, as consumption is

funded by discretionary wealth. Overall, the objective of the agent is to maximise his

utility of intertemporal consumption and utility of retirement wealth by allocating his

discretionary wealth as current consumption or investment while realising the dynamics

of his superannuation fund for retirement.

Since there is generally no closed-form solutions for dynamic programming in the con-

strained case, we search for a numerical method to solve the utility-maximisation prob-

lem. A frequently applied method for low-dimensional problems is the Markov chain

approximation of Kushner and Dupuis (1992), which is closely related to grid-based

search and the finite difference method. We further consider a logarithmic transforma-

tion of the value function as proposed by Ye (2006), to broaden the selection of risk

averse parameters and stabilise transition probabilities. This Markov chain approxima-

tion discretises the value function, and the optimal decisions are achieved by backwards

recursion. Starting from the retirement date, the value function in each time-step is max-

imised by policy iterations, and in the end, we obtain a smooth value function. Similar

to grid search and finite difference methods, the precision of this method depends on

the size of the discretised grid.

The core consideration in this chapter is the inclusion of retirement wealth (superannu-

ation) in a continuous time life cycle model. However, we acknowledge that our model

excludes any Australian government supportive scheme3. We model an illiquid superan-

nuation account as similar to the retirement wealth in Campbell et al. (2001) despite the

fact that they work with a discrete time model. This illiquid account can be translated

as a mandatory savings constraint indicating the minimum level of wealth the agent

has to maintain. Several studies also consider an illiquid asset or liquidity constraint

3The obvious one that impacts the retiree’s wealth is the Age Pension. Considering the impact of
Age Pension on optimal retirement wealth in the model is subject to further research.
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in the modelling: Schwartz and Tebaldi (2006) consider human capital as an illiquid

asset and Ang et al. (2014) include other illiquid risky assets. The optimal consumption

path we derives follows the same spirit of these studies in that the agent will consider

his liquid and illiquid wealth together when making consumption decisions from discre-

tionary wealth; and the agent always consumes a lower fraction of his total financial

wealth than if otherwise unconstrained. Therefore, in our model, we clearly identify the

effect of mandatory savings on consumption, especially at younger ages and with lower

initial wealth. This forcible saving constraint serves as an enhancement of retirement

wealth. Compulsory contributions alter the agent’s consumption behaviour to be more

conservative, which in turn increases the agent’s total wealth over the life cycle.

The main contributions of this chapter are two-fold. First, we use our original model

to solve for a consumption-constrained problem in a continuous time setting. Although

there are a few similar studies in discrete time, there is a lack in a continuous time frame-

work. Considering a constraint imposed on the continuous time model, most existing

literature focuses on portfolio constraint rather than consumption constraints4, so our

study is distinguished by considering a maximum level of consumption. Second, although

the Australian retirement income system has been heavily discussed, most of the works

focuses on the empirical side. We fill the gap by examining the effect on superannuation

based on the theoretical foundations. We wish to bring insights for policymakers and

superannuation providers when considering the appropriate compulsory superannuation

contribution rate and investment plans based on the consumption-constrained case.

The remainder of this chapter is organised as follows: In Section 2.2 we formulate

our model and derive the solution. Benchmark results from numerical computations are

presented in Section 2.3. Several sensitivity analyses are reported in Section 2.4. Finally,

we summarise our findings, and conclude with suggestions in Section 2.5.

2.2 Model

This section describes the continuous time model for an agent who chooses consumption,

and a portfolio allocation over the life cycle. When making decisions, the agent attempts

to maximise his expected utility of consumption, but is subject to a mandatory savings

4Even when there is a consumption constraint imposed on the model, the constraint is normally
expressed as a minimum requirement constraint instead of a maximum constraint in our case.
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constraint during the wealth-accumulation stage. We apply the technique of dynamic

programming to solve the life cycle model. In terms of solution method, we compute a

closed-form solution for the unconstrained model, as a benchmark. Following that we

proceed to formulate the algorithm for the numerical solution to our constrained model.

2.2.1 Wealth Dynamics

We model the optimal portfolio choice for an agent in a finite continuous time framework.

In this chapter, the time-horizon TR is given exogenously and represents the agent’s

retirement date. To capture the effect of compulsory superannuation, we divide the

agent’s wealth into two separate processes: (i) M(t) which represents the discretionary

wealth that he can freely consume or invest; and (ii) S(t) which denotes the value of

the agent’s superannuation account, which cannot be consumed before retirement5. The

agent’s total financial wealth, X(t) = M(t) + S(t), is the sum of these two processes.

The sources of wealth come from labour income and the return on financial investments.

At each time, the agent earns an income L(t) from his labour, a constant proportion of

which, namely zL(t), is mandatorily invested in the superannuation account, while the

remaining part (1− z)L(t) is added to his discretionary wealth. The agent consumes a

portion of his discretionary wealth at each time, and invests the remainder in a portfolio

consisting of a risky asset and a risk-free bond.

There are two control variables in the model, C(t) and π(t). The first of those denotes the

agent’s instantaneous consumption, and is chosen to maximise the sum of his aggregate

utility from consumption up to retirement, and the utility of his terminal wealth at

retirement. The second control variable determines the agent’s asset allocation strategy.

In particular, he allocates a fraction π(t) of his discretionary wealth to the risky asset,

while the remaining 1− π(t) is invested in the risk-free bond.

The price P (t) of the risky asset is modelled as a geometric Brownian motion:

dP (t)

P (t)
= μdt+ σ dB(t),

5Under the Superannuation Guarantee, superannuation is preserved till the preservation age, which
is currently 60 years, for most people. To simplify the analysis, we assume that the retirement age and
the preservation age are the same.
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where μ and σ denote the mean rate of return of the risky asset, and its volatility, while

B(t) is a standard one-dimensional Brownian motion. The parameter r denotes the

constant risk-free interest rate, net of inflation. For tractability, we assume that the

agent’s labour income L(t) is deterministic, with

dL(t)

L(t)
= g dt,

where g denotes the growth rate of his income over time.

Given the above dynamics for the risky asset P (t) and the agent’s labour income L(t),

it follows that his discretionary wealth M(t) and his preserved superannuation process

S(t) are determined by

dM(t) =
[
π(t)(μ− r)M(t) + rM(t) + (1− z)L(t)− C(t)

]
dt+ σπ(t)M(t) dB(t), (2.1)

and

dS(t) = [πs(t)(μ− r)S(t) + rS(t) + zL(t)] dt+ σπs(t)S dB(t). (2.2)

where M(0) = M0 > 0 and S(0) = S0 > 0. We shall assume that the asset allocation

in the superannuation fund is constant, with πs(t) ≡ πs. This is justified by the fact

that the common default investment plan in Australia is a balanced fund with constant

proportions of risky and risk-free investment (Cooper et al., 2010), and the majority of

superannuation fund members accept the default allocation.

The agent’s problem is to identify the optimal consumption strategy C∗(t), and the

optimal asset allocation π∗(t) that maximise his expected utility from inter-temporal

consumption and retirement wealth. The reward function, representing the expected

reward (utility) with admissible control process (π,C) ∈ A(M,S, t) is

J(M,S, t) = E

[∫ TR

t
F̄ (t, s)e−β(s−t)U(C(s)) ds+ F̄ (t, TR)e

−β(TR−t)U(X(TR))K

]
, (2.3)

subject to (2.1) and (2.2). Here U denotes the agent’s utility function, which is assumed

to be increasing and strictly concave, and β > 0 accounts for his impatience. Moreover

A(M,S, t) is an admissible set for all allowable strategies that we will describe below for

different scenarios. The parameter K above is a multiplier that expresses the agent’s
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aggregate retirement consumption. In the following subsection, we will demonstrate how

the value of K can be determined, if we assume that the agent uses all his retirement

wealth to purchase a life annuity. Finally, F̄ (t, s) denotes the probability that the agent

survives up to time s, given that he is alive at time t ≤ s. We model this survival

probability as follows:

F̄ (t, s) = e−
∫ s
t λ(u) du,

where λ(t) is the agent’s instantaneous mortality rate. If we assume that his mortality

is exponentially distributed with respect to age, then his survival probability reduces to

F̄ (t, s) = e−λ(s−t). In this case, the agent’s mortality rate, λ(t) ≡ λ, does not depend

on his age. In this chapter, we assume that λ is time-invariant.

The value function, which is obtained by maximising the agent’s reward function, is

then

V (M,S, t) = max
π,C∈A

J(M,S, t). (2.4)

One reason for separating the agent’s wealth into two processes is to examine the ef-

fective of the mandatory savings constraint, which only allows him to consume from

his discretionary wealth. As Connolly and Kohler (2004) point out, compulsory savings

is apparently effective for increasing net savings when the agent is unable to borrow

in order to finance consumption. Thus, we impose a constraint that the agent’s freely

consumable wealth cannot be negative:

M(t) + (1− z)L(t) ≥ 0.

This implies that the admissible set with mandatory savings constraint is

A = {(π,C) | π(t) ∈ R; 0 ≤ C(t) ≤ M(t) + (1− z)L(t), ∀t ∈ [0, TR]}, (2.5)

which is to say that consumption must be less than liquid wealth at all times. Nor-

mally, households do not have negative net wealth. Even if they have consumption by

borrowing, it is on a very short-term basis and borrowed against labour income, not

superannuation savings. This constraint is the primary difference between our model

and other models of optimal portfolio choice.
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With regard to the agent’s utility function, we follow the standard assumption in the life

cycle portfolio optimisation literature, by assuming that his preferences are determined

by constant relative risk aversion (CRRA):

U(x) =
x1−γ

1− γ
,

where x ∈ {C(t), X(TR)}, and γ > 0 expresses the agent’s risk aversion.

2.2.1.1 Terminal Condition: Annuitisation at Retirement

The multiplier K in the terminal value of (2.4) may be chosen in a number of ways.

For example, Ye (2006) simply fixes K = 1, which implies the agent’s terminal wealth

is approximately equal to his annual consumption immediately prior to the terminal

date. This is reasonable if the terminal date in the agent’s optimal control problem

is his mortality date. However, since the terminal date in our model is the agent’s

retirement date, setting K = 1 does not provide a realistic account of his post-retirement

consumption. Instead, we assume that the agent wishes to maintain his standard of

living after retirement. One way of doing this is by assuming that he annuitises his total

wealth at retirement, and then enjoys risk-free consumption for his remaining life.

As with the current Australian superannuation industry, members have access to their

superannuation balances upon retirement, but are exposed to investment and longevity

risks. The simplest way for them to hedge such risks is to purchase lifetime annuities.

Thus, in this chapter, we simply formulate the terminal value function as if the agent

annuitises his total wealth at retirement and enjoys periodic payments from the life

annuity till the end of his life.

Based on Milevsky (2006), the actuarial present value of a life annuity that pays one

dollar per year is given by the annuity factor

a =

∫ T

0
e−rt dt =

∫ ∞

0
e−rt1{T≥t} dt,
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where T is a random time corresponding to the agent’s remaining lifetime. Given a

constant mortality rate λ. the expected value of the annuity factor is

ā = E

(∫ T

0
e−rt dt

)
= E

(∫ ∞

0
e−rt

IT≥t dt

)

= E

(∫ ∞

0
e−rt

P(T ≥ t) dt

)
= E

(∫ ∞

0
e−rtF̄ (t, 0) dt

)

=

∫ ∞

0
e−rte−λt dt =

1

r + λ
.

Since the agent purchases the life annuity with his entire financial wealth X(TR) at re-

tirement, he is entitled to have a constant risk free consumption at the value of X(TR)/ā

from retirement until death. This setting implies that the aggregate utility of the post-

retirement period, as seen from TR, has the following form:

V (M,S, TR) = E

[∫ ∞

TR

e−β(t−TR)e−λ(t−TR)C
1−γ

1− γ
dt

]

= E

[∫ ∞

0
e−βte−λtC

1−γ

1− γ
dt

]

= E

[∫ ∞

0
e−βte−λt (X(TR)/ā)

1−γ

1− γ
dt

]

= E

[∫ ∞

0
e−βte−λt dt

]
(r + λ)1−γX(TR)

1−γ

1− γ

=
1

β + λ

(r + λ)1−γX(TR)
1−γ

1− γ

= U(X(TR))
(r + λ)1−γ

β + λ
.

(2.6)

This amount can also be interpreted as the sum of the agent’s utility from post-retirement

consumption, discounted back to his retirement date.

In summary, if we assume that the agent purchases a life annuity after retirement, then

the amount K in (2.4) is given by

K =
(r + λ)1−γ

β + λ
. (2.7)

Similar assumptions appear in the models of Kingston and Thorp (2005) and Benzoni

et al. (2007). Finally, we note that by either assuming full annuitization upon retire-

ment, as in this chapter, or by making post-retirement Merton-type consumption and
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investment decisions, as in Benzoni et al. (2007), the post-retirement wealth dynamics

do not affect pre-retirement decisions.

2.2.2 Solving the Agent’s Problem

Since there is only one stochastic component in our model—the innovation in risky asset

returns—we know that a closed-form solution exists for the unconstrained case, where

the agent is free to consume and invest from his financial wealth without a mandatory

savings constraint. Similar to Merton (1969), we use a dynamic programming approach

to derive this solution for comparison with the solution for the constrained problem.

Thereafter we employ a Markov chain approximation method, with a logarithmic trans-

formation of the value function, to solve the constrained problem numerically.

2.2.2.1 Solving the Unconstrained Problem

We first target the unconstrained model where there is no savings requirement on optimal

decisions. The admissible set for the unconstrained model is simply set as

A = {(π,C) | π(t) ∈ R;C(t) ≥ 0, ∀t ∈ [0, TR]}.

By solving this unconstrained model, we identify the overall consumption and portfo-

lio allocation rules without any restrictions. The dynamic programming approach to

stochastic optimal control identifies the value function (2.4) as the solution to the fol-

lowing Hamilton-Jacobi-Bellman (HJB) equation (see Appendix A.1 for a verification

theorem):

Vt − (β + λ)V + sup
π,C

[(
π(t)(μ− r)M(t) + rM(t) + (1− z)L(t)− C(t)

)
VM

+
1

2
π2(t)σ2M2(t)VMM +

(
πs(μ− r)S(t) + rS(t) + zL(t)

)
VS

+
1

2
πs2σ2S2(t)VSS + πsπ(t)σ2M(t)S(t)VMS + U(C(t))

]
= 0.

(2.8)

It is convenient to rewrite this equation as follows:

Vt − (β + λ)V + L(M,S, t;π∗, C∗) ≡ Vt − (β + λ)V + sup
π,C

L(M,S, t;π,C) = 0, (2.9)
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subject to the boundary condition V (M,S, TR) = U(X(TR))K, where the functional

L(M,S, t;π∗, C∗) is shorthand for the expression inside the square brackets in (2.8). The

boundary condition follows from our assumption that the balance of the superannua-

tion account automatically transfers to the agent’s discretionary wealth at retirement.

Without any constraints, this is a Merton-type problem with two wealth processes and

mortality considerations.

The first order conditions for an interior solution (π∗, C∗) for (2.9) are

LC(M,S, t;π∗(t), C∗(t)) = −VM (M,S, t) + UC(C
∗(t)) = 0,

and

Lπ(M,S, t;π∗(t), C∗(t)) = (μ− r)M(t)VM + π∗(t)σ2M2(t)VMM + πsσ2M(t)S(t)VMS = 0.

These conditions yield a maximum for L(M,S, t;π∗, C∗), since the strict concavity of the

utility function U , and hence of the value function V , ensure that the following second

order conditions are satisfied:

LCC = UCC(C
∗(t)) < 0 and Lππ = σ2M2(t)VMM < 0. (2.10)

Solving the above equations yields the following expressions for the optimal consumption

C∗(t) and asset allocation π∗(t):

C∗(t) = (VM )
− 1/γ, (2.11)

and

π∗(t) = −(μ− r)VM

Mσ2VMM
− πsSVMS

MVMM
. (2.12)

The optimal consumption rule (2.11) corresponds to the the well-known envelope con-

dition that the marginal utility of consumption equals the first derivative of the value

function with respect to wealth. The optimal portfolio rule (2.12) has two components,

the first of which accounts for the agent’s risk tolerance, while the second refers to the
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riskiness of the superannuation fund, and the relative amount of preserved wealth to

liquid wealth.

The next step is to solve the HJB equation (2.8). To this end, we consider a trial solution

where the value function is written as

V (M,S, t) = α(t)
(M + S + f(t)L(t))1−γ

1− γ
, (2.13)

where f(t) is the discount factor of future income. It follows that the agent’s total wealth

at any time is given by M(t) + S(t) + f(t)L(t). Finally, solving (2.11) and (2.12) (see

Appendix A.2) gives

C∗(t) = α(t)
− 1/γ(M + S + f(t)L(t)), (2.14)

π∗(t) =
μ− r

γσ2

(
M + S + f(t)L(t)

M

)
− πs S

M
, (2.15)

where

α(t) =
(eΨ(TR−t) − 1

Ψ
+K

1/γeΨ(TR−t)
)γ

,

f(t) =
1

g − r
(e(g−r)(TR−t) − 1),

and

Ψ = −β + λ

γ
+

1− γ

γ

(
r +

(μ− r)2

2γσ2

)
.

These results are similar to the well-known life cycle optimal controls with several vari-

ations: α(t) is the unit discounted value of utility and Ψ refers to the risky discount

factor. The optimal consumption C∗(t) depends on the agent’s total wealth, instead of

just discretionary wealth. The optimal asset allocation π∗(t) consists of a function of

standard Merton portfolio (μ−r
γσ2 ) with the realisation of superannuation wealth and fu-

ture labour income on discretionary wealth, and an adjusted component for the realised

risky asset holdings in the superannuation account.

To illustrate the wealth and consumption-investment profiles from analytical expressions,

we select the parameter values from a realistic set of economic parameters in Australia:

we assume the representative agent is at 25 years of age at time 0. His initial wealth is
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Figure 2.1: Analytical results from the unconstrained consumption-investment model.
Graphs show the expected unconstrained wealth processes (upper), consumption level
(C∗) (middle) and risky asset allocation (π∗) over discretionary wealth (bottom) over
the life cycle. The parameter values are: M(0) = 37.5, L(0) = 30, γ = 2.5, β = 0.03,

λ = 0.01, r = 0.03, μ = 0.057, σ = 0.15, πs = 0.7, g = 0.016 and z = 0.09.
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set to be $37,500 with an initial income of $30,000 per year. We assume the agent enters

the workforce at age 25, so his initial financial wealth is low. Referencing the median net

worth of the age cohort 15-24 and the age cohort 25-34 from the HILDA survey reported

by Headey et al. (2008), we choose a value between these two cohorts to represent the

agent’s financial wealth. The value of initial income is based on the Grattan Institute

analysis of the ABS Census data (Daley et al., 2014). The retirement time TR is set to

be 40, which implies that the agent will retire at age 65, currently the eligibility age for

the public Age Pension. According to life expectancy data in Australia, the expected

additional lifetime at age 25 was around 57.75 years in 2010–2012 (Australian Bureau of

Statistics, 2013). Thus we fix λ = 0.01, which is roughly computed from the expression

of expected remaining lifetime. The risk aversion coefficient γ is a critical value for

CRRA utility functions. In this chapter we follow Milevsky and Young (2007) by fixing

γ = 2.5. Some literature sets risk aversion as high as five6, while Harrison and Rutström

(2008) document a quite low individual risk aversion. We believe that setting γ = 2.5 is

reasonable to test our model’s implications. We make the subjective discount rate β =

3%, as in Pliska and Ye (2007).

Since the preference parameters, β and γ, are unobservable, we follow previous studies

to set their values in this chapter. In Chapter 4, we perform a structural analysis to

estimate the preference parameters from Australian survey data.

The economic parameters are inflation-adjusted. We fix labour income growth g at

1.6% per annum, based on the modelling result from the Australian Treasury (Gal-

lagher, 2011). The real risk-free interest rate r is set at 3%, as in Gallagher (2011).

We use the equity market index as a proxy for the dynamics of the risky asset, and we

obtain an inflation-adjusted total return μ of 5.7%, and a standard deviation σ of 15%,

based on S&P/ASX 200 monthly data over the period June 1992–April 2013 (Australian

Securities Exchange, 2013)7. Referring to the compulsory savings requirement, we make

the contribution rate z equal to 9%, which is consistent with Australian Superannuation

Guarantee stipulations at the time of writing. The risky asset holding πs in the super-

annuation account, is set to 70%, which is akin to that of the average default investment

option.8.

6See, for example, Campbell et al. (2001); Benzoni et al. (2007).
7We are grateful to Dr. Danny Yeung for providing the data.
8The common setting of a default superannuation plan is with a 70/30 mix of growth/defensive mix

(Bird and Gray, 2011). To be more precise, at June 2014, the average default MySuper balanced option
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Figure 2.1 depicts the optimal wealth processes, consumption level and risky asset al-

location of the analytical solution, based on 10, 000 simulated paths. The upper graph

presents the wealth-accumulation of both discretionary and superannuation wealth. Re-

member that, by definition, financial wealth is the sum of discretionary and superan-

nuation wealth. At retirement TR = 40, we assume the agent withdraws a lump sum

of his superannuation fund by transferring all the money to his discretionary wealth.

To protect against longevity risk, we allow the agent to use his total accumulation to

purchase a life annuity.

The middle graph exhibits a smooth increase of consumption levels over the life cycle.

As the optimal consumption (2.14) is a function of wealth, and labour income is perfectly

foreseeable, the increasing trend in the dollar amount of consumption is expected. We

assume the agent fully annuitises his wealth at retirement, so that he is entitled to the

same amount of consumption from terminal wealth for the remainder of his retirement

life.

The risky asset allocation from discretionary wealth is shown in the bottom graph of

Figure 2.1. The optimal solution has the agent borrowing to an extremely leveraged

position in the risky asset when young, and then progressively reducing the portion of

the risky asset towards the Merton result. Even though the risky allocation is coun-

terfactually large, this finding is well-documented in many earlier studies9 where the

large portion of risky asset holdings is attributed to risk-free human capital. During the

early years, the agent clearly realises the future flow of labour income is risk-free and

the exposure to risk is solely from financial capital. This implies the agent implicitly

holds a large position in the risk-free asset from human capital, which allows him to

hold an extremely aggressive position in the risky asset. As human capital is depleted

over time, the risky allocation is altered to maintain overall constant portfolio weights.

In fact, if we examine the total risky holdings (including the risky holding in the super-

annuation account) over total wealth (financial capital plus human capital) we find the

risky asset allocation stays constant—the Merton result, with μ−r
γσ2 = 0.48 for the chosen

parameters.

consists 55% in overall equity, 9% in property, 7% in infrastructure. A further 16% in fixed income and
9% in cash and 4% in others (Australian Prudential Regulation Authority, 2014).

9See, for example, Bodie et al. (1992).
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In reality, young agents are generally not capable of borrowing large amounts to invest

in the risky asset (Constantinides et al., 2002). In response, we may further impose

a portfolio constraint in our constrained model to ensure the agent holds a long-only

portfolio at all times.

2.2.2.2 Solving the Constrained Problem

In general, since there is no explicit solution for the constrained model, we look for a

numerical method. We adapt the technique of Markov chain approximation, with the

logarithmic transformation of the value function discussed by Ye (2006) to solve our

problem. The admissible set for the savings constrained problem is given by (2.5). If we

consider an additional portfolio constraint in the problem, the admissible set becomes

A = {(π,C) | 0 ≤ π(t) ≤ 1, 0 ≤ C(t) ≤ M(t) + (1− z)L(t), ∀t ∈ [0, TR]}.

As the numerical method described above is generally applicable for one state variable,

we first simplify the formulation by modelling financial wealth X(t) and capitalising

labour income to eliminate the ongoing stream income component in the HJB equation.

That is, we model total wealth W (t) = X(t) + I(t), where X(t) is financial wealth, I(t)

is the present value of labour income, I(t) = f(t)L(t), and W (t) is total wealth at time t.

After a logarithmic transformation of the state variable, we have:

u = lnW,

V̂ (u, t) = V (W, t),

Ĉ(t) =
C(t)

W (t)
= e−uC(t).

We put the above expressions into the original HJB equation (2.8) to get the logarith-

mically transformed HJB equation:

V̂t − (β + λ)V̂

+ sup
πw,Ĉ

[(
πw(t)(μ− r) + r − Ĉ(t)− 1

2
σ2πw2(t)

)
V̂u +

1

2
σ2πw2(t)V̂uu + U(C(t))

]
= 0.

(2.16)
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It should be highlighted here that the investment strategy πw(t) accounts for the fraction

of total risky allocation, namely, πw(t)W (t) = π(t)M(t)+πsS(t). We can easily recover

π(t), since πs is not a control variable.

After the logarithmic transformation, we approximate the value function and its deriva-

tives by an explicit finite difference scheme, to get the discretised HJB equation with

space grid h and time grid δ:

V̂ (u, t) =
1

1 + δβ + δλ

(
sup
πw,Ĉ

[P̂ (u, u+ h)V̂ (u+ h, t+ δ) + P̂ (u, u)V̂ (u, t+ δ)

+ P̂ (u, u− h)V̂ (u− h, t+ δ) + δU(C(t))]
)
,

(2.17)

subject to the terminal condition V̂ (u, TR) = U(u(TR))K, and where

P̂ (u, u+ h) :=
δ

h
(r + πw(μ− r)) +

δ

2h2
σ2πw2,

P̂ (u, u− h) :=
δ

h
Ĉ +

δ

2h
σ2πw2 +

δ

2h2
σ2πw2,

P̂ (u, u) := 1− P̂ (u, u+ h)− P̂ (u, u− h).

P̂ (u, u + h), P̂ (u, u − h), P̂ (u, u) are the transition probabilities of a Markov chain ap-

proximation with the logarithmic transformation of the value function. This problem

is solved by policy function iteration. We can express the policy functions πw∗(t) and

Ĉ∗(t) explicitly using the first order condition:

πw∗(t) = min

(
−μ− r

σ2

V̂ +
u

V̂uu − V̂ −
u

,Kπw(t)

)
, (2.18)

Ĉ∗(t) = min
(
V̂ −
u (W (t))

(1 − γ)/γ,KC(t)
)
. (2.19)

V̂ +
u , V̂ −

u and V̂uu represent the discretised value function derivatives from the finite dif-

ference method:

V̂t(u, t) → V̂ (u, t+ δ)− V̂ (u, t)

δ
,

V̂u(u, t)
+ → V̂ (u+ h, t+ δ)− V̂ (u, t+ δ)

h
for a positive coefficient,

V̂u(u, t)
− → V̂ (u, t+ δ)− V̂ (u− h, t+ δ)

h
for a negative coefficient,

V̂uu(u, t) → V̂ (u+ h, t+ δ) + V̂ (u− h, t+ δ)− 2V̂ (u, t+ δ)

h2
. (2.20)
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The variable Kπw(t) in (2.18) is a positive number, which serves as an upper bound for

the risky asset allocation at time t. This value depends on the corresponding admissible

set among different scenarios. For instance, if we do not have any restriction on the asset

allocation πw ∈ R, then we arbitrarily choose a large enough constant value for Kπw . If

we include short-sale and borrowing constraints, 0 ≤ π(t) ≤ 1, for the risky allocation

from discretionary wealth, we set

Kπw(t) =
1

W (t)
(M(t) + πsS(t)). (2.21)

Similarly, KC(t) from (2.19) represents an upper boundary for numerical computation.

If we ask the model to compute the optimal result without any restriction on consump-

tion for comparison, then KC(t) is simply a large enough arbitrarily chosen constant. If

we implement the mandatory savings constraint from (2.5) to ensure the agent’s discre-

tionary wealth M(t) is non-negative at all times, then we set

KC(t) =
1

W (t)
(W (t)− I(t) + (1− z)L(t)− S(t)) ≥ Ĉ(t), (2.22)

which is followed by the admissible set described in (2.5).

2.3 Results

We are now in a position to implement the algorithm described in Section 2.2.2.2. We

use the same parameter values as in the analytical solution, except for the value of total

wealth W (t) and labour income L(t). Here, we need to discretise the continuous model

with space step h and time step δ. We know that as h → 0 and δ → 0, the solution

of Equation (2.16) can be successfully approximated by Equation (2.17). There is a

trade-off between model accuracy and computation time. Setting h equal to 0.02 and δ

equal to 0.01 appears to generate reasonable outputs10. It should be emphasised that we

need to recover financial wealth X(t) by subtracting I(t) from total wealth W (t). More

importantly, we must also ensure that X(t) = M(t) + S(t) ≥ 0. Incorporating these

conditions, we set the lower bound of initial wealth value W (0) = I(0) + S(0), meaning

10The creditability of the approximated numerical results are attributed to weak convergence discussed
in Kushner (1984). The value of h and δ chosen is in line with other scholarly literatures, including
Kushner (1995) and Ye (2006)
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Figure 2.2: The computation region for the numerical method. The size of the initial
grid is 20, u ∈ {1.12, 1.52}; and the size of the terminal grid, u ∈ {−78.88, 81.52}, is

8021 with space grid h = 0.02 and time grid δ = 0.01.

M(0) = 0 and consider 20 initial grids where the initial wealth value of the upper

bound is around 1.50. As we arbitrarily set L(0) = 0.1, the ratio of initial discretionary

wealth to initial income is between 0 and 15. The mandatory savings constraint is

very sensitive to the initial discretionary wealth and wage, in particular, the ratio of

discretionary wealth over labour income11. The mandatory savings constraint is binding

when this ratio is small, so we believe the range of wealth to income ratio covered here

is sufficient to track the effect of superannuation on consumption.

Since we implement Ye (2006)’s method of logarithmic transformation, we do not specify

the boundary conditions. However, we still need natural boundaries to capture the top

and bottom value functions at each time-step. As a consequence, it is necessary to

expand the matrix at each time-step. In the end, the size of the matrix with initial space

variable u ∈ {1.12, 1.52}12 increases by 2 at each time-step and results in the dimension

of 8021×4000 at the terminal date with the range of space variable u ∈ {−78.88, 81.52}.
We illustrate the computational region in Figure 2.2.

11Several studies use wealth to income ratio to analyse consumption-investment problems. See, for
example, Benzoni et al. (2007), Huang et al. (2008) and Moos (2011b).

12The lower bound value of 1.12 is the logarithm of initial total wealth with zero discretionary wealth
where W (0) = I(0) +S(0). As we consider 20 initial grids, the value of upper bound ends up with 1.52.
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2.3.1 Comparison between Analytical and Numerical Results

In order to examine the accuracy of our numerical scheme, we first analyse the uncon-

strained model with M(0) = 0.125 and L(0) = 0.1, which has the same initial discre-

tionary wealth to labour income ratio as in the closed-form solution. With this initial

setting, the value of the logarithm of total wealth is set to be u = 1.1623, indicating

the amount of total wealth W = 3.1972 at all times.

Figure 2.3 shows the results from both the analytical and numerical solutions, for the

consumption rate Ĉ∗(t) and, the portfolio choice πw∗(t) over a constant total wealth

value W = 3.1972. Since we directly obtain Ĉ∗(t) and πw∗(t) from our numerical

computation, we transform analytical results of C∗(t) and π∗(t) to be represented as

fractions of total wealth for comparison. By discretising the continuous time model,

our results are subject to discretisation error. The degree of these errors depends on

the choice of h and δ. Looking at Figure 2.3, we observe that though the errors seem

to propagate through time, they are reasonably small with our choice of h = 0.02

and δ = 0.01 . The numerical results stably follow the same trend as the closed-form

solutions, which suggests that our numerical scheme is reliable enough to analyse the

constrained problem.

2.3.2 Constrained Numerical Results

In this subsection we compute numerical results for four cases, namely the unconstrained

model, the portfolio constrained model, the mandatory savings constrained model and

the model with both savings and portfolio constraints. In this chapter, we compute the

grid result. By calling the grid result, we mean that we keep the state variable W as a

constant along the time. The input parameter values are the same as with the analytical

solution, except for the state variable W and labour income L(t) where we describe the

setting in the beginning of Section 2.3.

2.3.2.1 Optimal Consumption

In Figure 2.4 we demonstrate the overall result for the optimal consumption level from

the initial computational range, except for the first and last values for stability reasons.
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Figure 2.3: Comparison between analytical and numerical solutions. The graph shows
results of the consumption rate (upper) and risky asset allocation (bottom) over total
wealth. The point selected is at u = 1.1623 which indicatesM(0) = 0.125 as L(0) = 0.1.
Other parameter values are: γ = 2.5, β = 0.03, λ = 0.01, r = 0.03, μ = 0.057, σ = 0.15,

πs = 0.7, g = 0.016, z = 0.09, h = 0.02 and δ = 0.01.

We only present the results from the unconstrained case and the case with both con-

straints to avoid repetition. From the overall result, we find an increased dollar amount

of consumption for both cases over time, and for higher total wealth. However, we also

observe a strong consumption reduction early on and in the low-wealth region, for the

savings and portfolio constrained case, which can be interpreted as the effectiveness of
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Figure 2.4: Overall result for optimal consumption. The vector of total wealth is
from 3.13 to 4.49 which is transformed from u ∈ {1.12, 1.52} excluding the first and
last values for stability reasons. The upper graph presents the result based on an
unconstrained model while the bottom graph shows the result from a both savings and

portfolio constrained case.

the constraints.

To examine the impact of the constraints in detail, we choose two points, namely total

wealth 3.2 and 4.0, to compute the optimal consumption level among the four cases.

Recall that total wealth is dominated by human capital when the agent is young, so the

actual discretionary wealth levels are M(0) = 0.125 (for W = 3.2) and M(0) = 0.912
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(for W = 4.0). As mentioned earlier, the wealth to income ratio is a crucial component

to determine the effectiveness of mandatory savings. Here, the discretionary wealth

to income ratios are around 1.25 and 9 respectively. The ratio of 1.25 is our baseline

measure, which coincides with the discretionary wealth to income ratio in the analytical

solution. We choose the ratio of 9 to represent a wealthier agent who has greater

resources to invest.
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Figure 2.5: Optimal consumption level with W = 3.2 and W = 4.0 over the life cycle.
The left graph shows the results from the low total wealth W = 3.2 while the right
demonstrates the results from high total wealth with W = 4.0. The corresponding
initial discretionary wealth are: M(0) = 0.125 and M(0) = 0.912, indicating the initial
discretionary wealth to income ratios are 1.25 and 9. There are four scenarios in each
graph, namely unconstrained, mandatory savings constrained, portfolio constrained and

both constrained cases.

From the result in Figure 2.5, we clearly identify the effect of the mandatory savings
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constraint that causes an apparent reduction in the dollar amount of consumption in

the early working life. If we only consider the savings constraint (black dotted line),

the reduction in consumption is already conspicuous. Even though the consumption-

constrained agent can in theory borrow to invest in the risky asset, using the already-

owned risky asset as collateral, this is not really achievable in reality, especially for young

agents. We therefore impose a portfolio constraint, in addition to the mandatory savings

constraint. By doing so the agent now seeks a relatively conservative portfolio, which

decreases the probability of achieving higher wealth and having a higher consumption.

This additional portfolio constraint does drag consumption further down, but the impact

is trivial when compared with the savings constraint. Further, we also test the impact

solely from the portfolio constraint where the agent is only portfolio constrained (red

dash-dot line), and document that the consumption reduction can be partly attributed

to the long-only portfolio constraint. However, the main driver is still the compulsory

savings constraint.

As we have seen from 2.4 that the forcible consumption reduction is different among

different wealth levels, we compare the results from different total wealth. The left and

right graphs of Figure 2.5 represent a total wealth of W = 3.2 and W = 4.0 respectively,

indicating the discretionary wealth to income ratio as 1.25 and 9. We observe that the

impact of the portfolio constraint on consumption is similar for different wealth levels,

while the impact of the savings constraint is severe for low wealth, but mild for high

wealth. Overall, the period of consumption reduction is prolonged for the low-wealth

agent.

These results are expected, since the low-wealth agent is financially constrained. In order

to keep a positive discretionary wealth, he is forced to sacrifice current consumption. On

the other hand, when the agent is wealthier, he has more resources to allocate. Possessing

higher wealth means the agent’s voluntary savings are more likely to be larger than the

compulsory savings requirement, which makes the savings constraint non-binding. Here,

we clearly illustrate that wealthier agents are less influenced by the mandatory savings

constraint, which is consistent with theoretical predictions.
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Figure 2.6: Overall result for optimal risky asset allocation. The vector of total
wealth is from 3.13 to 4.49 which is transformed from u ∈ {1.12, 1.52} excluding the
first and last values for stability reasons. The upper graph presents the result based on
an unconstrained model while the bottom graph shows the result from both a savings

and portfolio constrained case.

2.3.2.2 Optimal Risky Asset Allocation

We also compute the overall result of optimal risky asset allocation over discretionary

wealth in Figure 2.6. Focussing on the unconstrained result (upper graph), we show

again the highly leveraged position for the young and the low-wealth agent. As already

mentioned from the analytical results, this is due to perfectly foreseeable labour income,

which makes the agent very aggressive with respect to risky asset holdings. By imposing

a constraint that the agent is prohibited from leveraged position (in the bottom graph of
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Figure 2.6), we observe that the agent will still invest all his discretionary wealth in the

risky asset until the middle of his working life, before gradually reducing to a Merton

myopic allocation as he approaches retirement.

Similar to the demonstration of optimal consumption, we select the same value of total

wealth to illustrate the optimal risky asset allocation for the four cases in Figure 2.7.
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Figure 2.7: Optimal allocation over discretionary wealth with W = 3.2 and W = 4.0.
The left graph shows the results from the low total wealth W = 3.2 while the right
demonstrates the results from high total wealth with W = 4.0. The corresponding
initial discretionary wealth are: M(0) = 0.125 and M(0) = 0.912, indicating the initial
discretionary wealth to income ratios are 1.25 and 9. There are four scenarios in each
graph, namely unconstrained, mandatory savings constrained, portfolio constrained and

both constrained cases.

Comparing the unconstrained case (blue solid line) with the case with the savings con-

straint (black dash-dot line), we find that the savings constraint impacts not only on
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consumption, but simultaneously reduces the agent’s risky asset allocation. By having

a savings constraint, the agent is now constructing a lower-risk portfolio to preserve

his discretionary wealth. However, we also notice that the risky asset holding in the

savings constrained case is still above 100%, which implies that the agent borrows to

invest in the risky asset during the first half of his working life. We argue that this

borrowing tendency is attributed to the risk-free labour income stream over the agent’s

life. With the presence of the portfolio constraint, regardless of the savings constraint,

the optimal risky allocation is capped to a maximum of 100% investment in the risky

asset. The risky investment profiles for portfolio constraints with and without the sav-

ings constraint coincide with each other. This portfolio constraint directly impacts the

risky asset allocation, which leads to a reduction in the consumption rate, as described

above. Examining the effect of total wealth from Figure 2.7, we find that the initial risky

holdings are significantly reduced with higher wealth. However, the risky holdings still

exceed 100% of discretionary wealth without a portfolio constraint. In the left graph of

Figure 2.7 there are some fluctuations around years 5 to 10, due to numerical instability.

To summarise the main results from our numerical computations, we document the im-

pact of compulsory savings on consumption behaviour for young and low-wealth agents.

There are two constraints in the model—the savings constraint and the portfolio con-

straint. Not surprisingly, with the related underlying arguments, the savings constraint

affects consumption behaviour, whereas the portfolio constraint reduces risky asset hold-

ings. Moreover, these two effects are interrelated. The consumption reduction from the

savings constraint shrinks the risky allocation, while the risky asset reduction from the

portfolio constraint reduces consumption.

By consuming less in the early years, the agent expects to enjoy a higher amount of

wealth for his remaining life, as documented in Connolly and Kohler (2004). The effect

of the savings constraint is to transfer resources from when the agent is young to when

he is older, thereby enhancing his retirement wealth. The study of Carroll and Kimball

(2001) shows that a liquidity constraint and a precautionary savings motive are similar as

both affect the concavity of consumption in the same way. One can think our mandatory

savings constraint is a tighter version of a liquidity constraint. Therefore, our result is

analogous to the case where the agent has a precautionary savings motive.



50

2.4 Sensitivity Analysis

Apart from the baseline results, we test the sensitivity of our model by changing the

values of certain parameters. We find that the magnitude of the effect on policy functions

for different parameters are consistent with theoretical predictions.

2.4.1 Risky Asset Allocation within Superannuation

Recall that from the model specification, we fix the asset allocation πs for the superan-

nuation fund to be the most commonly used 70/30 default plan. Here we perform our

computation with πs = 0 and πs = 1. The basic results are as follows: For the model

without any portfolio constraints, the relationship πw(t)W (t) = π(t)M(t) + πs(t)S(t)

holds and πw is a Merton constant, πw(t) ≡ πw. It is straightforward to conclude that

as πs(t) decreases, the agent optimally increases π(t) to meet the constant overall risky

asset allocation πw. On the other hand, with the binding portfolio constraint, the agent

attempts to adjust his risky asset position from discretionary wealth, but is prohibited

from investing more than his discretionary wealth. This makes it infeasible for him

to achieve the optimal overall constant portfolio allocation, and optimal consumption

decreases accordingly. We acknowledge that by choosing a exogenous retirement date

together with annuitisation at retirement assumption reinforces the constant risky as-

set allocation throughout the working life. The agent is free from market risk with

purchasing annuity at retirement however it may not be the best choice for an agent

with high risk tolerance. Making the retirement date endogenous as well as giving the

flexibility of choosing other retirement products can better illustrate the agent’s need

for consumption and risky asset allocation. This extension will be subject to our future

research.

It is important to investigate the agent’s portfolio choice, subject to having another risky

portfolio. Perhaps it would be more informative in practice if we fixed the risky asset

holding for non-preserved wealth and computed the optimal risky asset allocations for

the superannuation fund. In this setting, the managed superannuation fund can design

an appropriate plan to match the agent’s risk attitudes.



51

Age
25 30 35 40 45 50 55 60 65

C
on

su
m

pt
io

n 
R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Unconstrained  = 0.03
Savings + Portfolio Constrained  = 0.03
Unconstrained  = 0.08
Savings + Portfolio Constrained  = 0.08

Figure 2.8: Optimal consumption rate with different impatience parameters. The
optimal consumption over discretionary wealth from an unconstrained and a savings
and portfolio constraint case when β = 0.03 (baseline) and β = 0.08 with total wealth
W = 3.2 implying discretionary wealth M(0) = 0.125. All other parameters remain

the same as in the baseline model.

2.4.2 Time Impatience Parameter

A crucial factor determining the agent’s preference over his life cycle consumption is

the time impatience parameter β. In theory, when the agent is impatient, he tends

to consume more in near periods and saves less for future consumption. To be more

informative and comparable, we plot the consumption to discretionary wealth ratio,

instead of the dollar amount of consumption, from the baseline result in 2.3.2.1. The

sensitivity test is to set the impatience parameter to β = 0.08, which is 5 percentage

points higher than in the baseline model. We present the outputs in Figure 2.8.

Compared with the baseline result (solid line), the high voluntary consumption rate

in the early years (dotted line) due to the agent’s impatience attitude is evident in

Figure 2.8. Although the consumption trend is the same, the agent is very impatient in

this case, and tends to spend nearly 90% of his liquid wealth early on, compared with

around 60% in the baseline case without any constraints. Considering the compulsory

savings requirement, one can infer a stronger binding effect on consumption profiles for

impatient agents. Figure 2.8 also depicts a reduction in optimal initial consumption

of around 50%, relative to the unconstrained (dotted line) and savings and portfolio
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constrained (dashed line) cases, when β = 0.08. The effect of the mandatory savings

constraint is amplified for impatient agents. On the other hand, we note that an increase

in the impatience parameter does not have a significant impact on the risky asset holding,

where the results are similar to baseline case, and thus not presented.

2.4.3 Risk Aversion Parameter
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Figure 2.9: Optimal consumption rate with different risk aversion parameters. The
optimal consumption over discretionary wealth from an unconstrained and a savings
and portfolio constraint case when γ = 2.5 (baseline) and γ = 1.2 with total wealth
W = 3.2 implying discretionary wealth M(0) = 0.125. All other parameters remain

the same as in the baseline model.

The agent’s consumption profile also depends heavily on his relative risk aversion coeffi-

cient. In Figure 2.9 we document the sensitivity of our results to changes in the relative

risk aversion coefficient with the savings and portfolio constraint. Considering the agent

is less risk averse than the baseline case, his risk appetite favours a higher degree of

riskiness. As a result, he decides to have a higher risky asset allocation and consume

more in the early years. As for the tendency to consume earlier, the effect of compulsory

savings enhances the constraint on the agent’s consumption, and this effect is prolonged,

when compared with the baseline model (see upper graph of Figure 2.9).
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2.5 Conclusion and Future Work

Although a country’s retirement system can provide financial assistance to retirees,

governments strongly encourage individuals to save for retirement during the wealth-

accumulation stage. In Australia, the Superannuation Guarantee requires a compulsory

savings scheme for almost all employees. Embedding this requirement in a model, we

examine the impact of compulsory savings on an agent’s consumption and portfolio

decisions over the life cycle.

Firstly we distinguish discretionary and superannuation wealth, in order to track the

maximum value that the agent is allowed to consume before retirement. We solve the

constrained model via a Markov chain approximation, with a logarithmic transformation

introduced by Ye (2006). Our results report a clear reduction of the consumption rate

when the agent is young and with low discretionary wealth. From our sensitivity analysis

we further conclude that the savings constraint strongly impacts an impatient agent

with a low degree of risk aversion. All the findings are consistent with theoretical

implications. In terms of portfolio decisions, the assumption of risk-free labour income

induces a counterfactually aggressive position in the risky asset. By including mandatory

savings, risky holdings are strongly reduced, but can still be above 100% where we

further impose a portfolio constraint requiring the agent to have a long-only portfolio,

the effect of the savings requirement is partly absorbed by the portfolio constraint. The

requirement of compulsory savings can be thought of as a tighter version of a liquidity

constraint. As suggested by Carroll and Kimball (2001), a liquidity constraint and

precautionary savings are related to each other. These two constraints both introduce

market incompleteness into the model, which brings concavity into consumption. In a

complete market setting (unconstrained case), the expected consumption path is affine.

Here we show our findings have a similar effect as a precautionary savings motive, that

is, maintaining a certain level of liquid wealth over the life cycle.

In our results the mandatory savings constraint is binding for at least some agents, which

suggests that some individuals do not have a strong incentive to save for retirement.

Instead, they consume more early on. Since almost all employees in Australia have

enrolled in the superannuation system, designing better policies that benefit more people

is an important topic for policymakers.
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We acknowledge that there are limitations to our model, and possible refinements. One

of the key issues raised in Section 2.1 is the modelling of labour income. Instead of

being a predictable, risk-free income stream, the uncertainty from labour income is

believed to increase the agent’s precautionary savings against income risk. At the same

time, the accumulation of a superannuation fund will be lower than the case of risk-free

income due to the uncertain flow into the superannuation fund at each time. Further,

the correlation between labour income and the risky asset is generally considered to be

positive13. This drives the agent to reduce his voluntary risky asset holdings. Roughly

speaking, the riskiness born from labour income leads the agent to be more conservative,

by maintaining a reserve for an unexpected fall in labour income. Followed by this

reaction, the binding effect of the mandatory savings constraint may be weakened as the

agent already increases the incentive on precautionary savings.

Other extensions that we can implement are as follows: we will include a life insurance

argument where the agent is able to hedge his mortality risk over the life cycle to ensure

a standard of living for his beneficiaries. We formulate this argument in Chapter 3.

Furthermore, we realise the preference parameters of the agent have a major impact

on these optimal decisions. Therefore we attempt to estimate preference parameters,

namely the impatient and risk aversion attitude, by using Australian survey data in

Chapter 4.

13See, Campbell (1996) and Benzoni et al. (2007).



Chapter 3

Optimal Portfolio Choice and

Mandatory Retirement Savings

with Life Insurance

3.1 Introduction

A utility-maximising agent plans optimal consumption and investment strategies by con-

sidering the value of his financial wealth and human capital over the life cycle. However,

a major concern the agent faces is the uncertainty of his lifetime, where unexpected

death can happen at any point in time. Premature death would cause a sudden loss

of human capital and decrease the agent’s expected total wealth. This impact is sub-

stantial for a young agent with financial dependents. If the agent is the breadwinner

of his household, the loss may also alter the dependants’ living standard seriously. To

hedge this mortality risk the agent can approach an insurance company and purchase

life insurance, but the question of how much to insure arises. The Human Life Value

(HLV) concept (Huebner, 1964), addressing the economic value of human capital, can

be considered as the value for the agent’s life insurance. Purcal (1999) argues that

along with the income-generating ability of the agent, the value of life insurance should

also reflect the consumption tastes and the impatience of the agent. Overall the agent

should consider the life insurance decision along with his consumption and investment

strategies.

55
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Therefore, we extend our model developed in Chapter 2 by adding a life insurance pur-

chase. We examine the effect of compulsory savings on consumption, investment and

insurance purchase. Besides the direct extension from Chapter 2, the model formation is

also closely related to Ye (2006) and Huang et al. (2008). To set up the scene, we follow

the idea in Chapter 2 that we model discretionary wealth and superannuation accounts

separately where the agent is prohibited from consuming from his superannuation ac-

count. At retirement, we assume that the agent takes a lump sum withdraw option

where all funds in the superannuation account are rolled into discretionary wealth for

him to consume and investment. Instead of purchasing an annuity as in Chapter 2, we

formulate the agent’s post-retirement process using the classical Merton (1969) model

plus an additional life insurance argument. Before retirement, the agent earns riskless

labour income, with a fixed portion contributed to a superannuation account and the re-

mainder held as discretionary wealth. The agent consumes and purchases life insurance

from his discretionary wealth, and allocates the remainder to either a risky stock port-

folio or a risk-free bond. The optimal strategy is computed as maximising the agent’s

utility of consumption when he is alive and utility of bequest when he faces premature

death at each time-step. In this chapter, we set the death rate to follow a Gompertz

law of mortality where the instant force of mortality is age-dependent and increases

exponentially with age; this distribution fits well with the national life table1 when the

age-independent hazard rate is low. The solution of this utility-maximisation problem is

obtained via the same numerical method described in Chapter 2—the Markov chain ap-

proximation with logarithmic transformation of the value function, since the analytical

solution is generally not available for the constrained dynamic programming problem.

The additional focus in this chapter is on the demand of life insurance where we allow

the agent to voluntarily purchase life insurance from his discretionary wealth to identify

the optimal amount of insurance cover. Recall that the main objective of this thesis is to

assess the impact of the mandatory savings constraint of superannuation. Apart from the

main feature of periodic contribution flow into a superannuation fund, there is a default

insurance plan assigned to the account when the agent first joins a superannuation fund.

The default insurance is being regulated and strengthened by the new law of Stronger

1One of the caveats for the Gompertz law of mortality is it cannot fit the mortality rate of very
young and very old age groups. However, because our model focuses on the agent from working age till
retirement date, the poor estimation for extreme age groups is not a major problem.
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Super reforms2.

As discussed in Chapter 1, the default superannuation plan nominated by employers will

consist of MySuper products. The introduction of MySuper aims to transform existing

default plans to simple, comparable and cost-effective superannuation products. Further,

by legislation, MySuper products must offer life and Total and Permanent Disablement

(TPD) insurance to fund members. The amount of life insurance must be at least the

minimum level set out in the Superannuation Guarantee Regulations. Hence, Australian

agents implicitly have life insurance by simply accepting the default. The insurance

premium is deducted directly from the value of the superannuation account. While

the default insurance cover and premium vary a great deal among different funds3, the

most common automatic insurance is a unit-based cover4 where the premium and cover

exhibit a hump-shaped life cycle pattern to reflect the overall demand.

The purpose of a default insurance is to provide a safety net against unforeseeable events,

and fund members (the agent) have the right to change the insurance option. Many

funds also provide a fixed-cover insurance where the amount covered is constant over

time but the premium varies depending on age and other related determinants. Fund

members can increase or decrease the insurance cover to meet their needs, or they can

elect to totally opt out of the insurance plan and/or purchase insurance cover outside of

superannuation. So the insurance cover computed from our theoretical model represents

the overall need of the agent. By knowing the insurance cover within his superannuation

account, the agent can optimally adjust his voluntary insurance by purchasing it either

within or outside of superannuation.

The main feature of this chapter that distinguishes the analysis from existing life cy-

cle literature is the mandatory savings requirement for the agent, with a voluntary life

insurance purchase. The savings constraint forces the agent to maintain a positive discre-

tionary wealth and prevents him from borrowing against future income for current con-

sumption. We apply a dynamic programming technique to derive the Hamilton-Jacobi-

Bellman (HJB) equation and invoke a Markov chain approximation with a logarithmic

transformation of the value function to solve the agent’s optimal decisions numerically.

2The relevant insurance regulation is under the third tranche of legislation: Superannuation Legisla-
tion Amendment (Further MySuper and Transparency Measures) Bill 2012.

3The variability in the insurance premium are attributed to the level of coverage and other relevant
factors. For instance, age, worker category and health condition of the member, to reflect different
insurance needs.

4The price and the number of unit assigned may change at different life cycle stages.
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After the computation, we readily have the transition probabilities of the state variable

and use them to construct expected paths for the state and control variables.

By having compulsory savings, optimal consumption in early working life is reduced;

meanwhile, the agent possesses higher financial wealth which possibly results in higher re-

tirement wealth. Since the value of bequest and life insurance is modelled as consumption-

dependent, we expect a lower bequest value and life insurance demand when the agent

is young when the savings constraint is binding. The value of bequest consists of fi-

nancial wealth and a death benefit in the event of premature death. By accumulating

higher financial wealth due to the savings constraint, the agent tends to reduce his

death benefit by decreasing his life insurance premium. Overall the voluntary optimal

life insurance premium and death benefit from our constrained computation follow the

real-world practice with a hump-shaped pattern along with the life cycle.

We organise this chapter into the following sections: We formulate our model and derive

the solution in Section 3.2. The baseline results of expected wealth dynamic and control

variables are illustrated and discussed in Section 3.3. We also include a discussion

about voluntary insurance and automatic insurance from the superannuation fund in

this session. Finally, we summarise our findings and conclude with suggestions for future

research in Section 3.4.

3.2 Model

This section describes the continuous time model formulation for the agent who chooses

consumption, a portfolio allocation and life insurance over the life cycle. When mak-

ing decisions, the agent attempts to maximise his expected utility of consumption as

well as the bequest function, but is subject to a mandatory savings constraint during

the wealth-accumulation stage. We apply the technique of dynamic programming to

solve the life cycle model. As the agent’s life cycle involves two stages, we firstly solve

the unconstrained post-retirement period problem analytically then proceed to solve

the constrained pre-retirement problem numerically via a Markov chain approximation

method.
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3.2.1 Wealth Dynamics

There are three important dates in this model: the modelling horizon is denoted by T

which is the end of the agent’s life if premature death does not occur; TR represents

the agent’s retirement date; and τ represents the event of premature death of the agent.

Both T and TR are chosen exogenously while τ is a random variable with dynamics

described below. As the agent’s life cycle involves a working and a retirement period,

we separate the wealth dynamics for these two stages.

3.2.1.1 Pre-retirement Period

We follow the same idea of Chapter 2 to formulate the wealth process in the wealth-

accumulation stage: There are two dynamics of wealth processes—discretionary wealth

M(t) from which the agent can freely consume and invest, and a superannuation pro-

cess S(t) where the fund is preserved until retirement. Therefore, the financial wealth

is X(t) = M(t) + S(t). The agent accumulates his wealth from labour income and in-

vestment returns. We assume labour income is a deterministic process with a constant

growth rate g where dL(t) = gL(t) dt. The agent is required to invest a constant portion

of labour income zL(t) in a superannuation fund, and the remaining part (1− z)L(t) is

added to his discretionary wealth. At each time-step, the agent decides how much to

consume, to purchase life insurance and to invest.

In addition to spending C(t) on aggregate consumption and allocating π(t) of discre-

tionary wealth to a risky asset as in Chapter 2, the agent purchases life insurance with

the premium p(t) to hedge his premature death. The amount of death benefit from

this insurance premium equals to p(t)/λ(t), where λ(t) is the force of mortality that we

will describe below. This implies at the instant of death the legacy Z(t) for the agent’s

beneficiaries equals his current wealth plus the death benefit:

Z(t) = M(t) + S(t) +
p(t)

λ(t)
. (3.1)
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The wealth dynamic processes for discretionary wealth and the superannuation wealth

are similar to Chapter 2 apart from the additional life insurance argument:

dM(t) =
[
π(t)(μ− r)M(t) + rM(t) + (1− z)L(t)− C(t)− p(t)

]
dt+ σπ(t)M(t) dB(t),

(3.2)

and

dS(t) = [πs(μ− r)S(t) + rS(t) + zL(t)] dt+ σπsS dB(t), (3.3)

for all t ∈ {0, TR}, whereM(0) = M0 > 0 and S(0) = S0 > 0. Consistent with Chapter 2,

we assume the investment option offered by a superannuation fund is a balanced fund

where the exposure to risky assets stays as a constant.

3.2.1.2 Post-retirement Period

During the retirement period, there is no labour income flow and the mandatory savings

constraint is now relaxed. We assume the agent chooses the option to withdraw the

lump sum from his superannuation fund. This option of lump sum withdrawal after

preservation age is an advantage to fund members because the accumulated value of

superannuation funds is readily available for the agent to access. We directly model the

financial wealth X(t) for the agent where the dynamics take in a classic form:

dX(t) =
[
π(t)(μ− r)X(t) + rX(t)− C(t)− p(t)

]
dt+ σπ(t)X(t) dB(t), (3.4)

for all t ∈ {TR, T}. The process shows that the agent is free to choose consumption,

investment and life insurance strategies during the post-retirement stage.

3.2.1.3 Objective Function

In this chapter, the agent’s objective is to maximise his expected utility from consump-

tion and bequest along the life cycle by searching for the optimal consumption strategy

C(t), asset allocation choice π(t) and insurance premium p(t). The value function is
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computed as

V (M,S, t) = max
π,C,p∈A

E

[∫ T∧τ

t
e−β(s−t)U(C(s)) ds+ e−βτB(Z(τ))Iτ�T | τ > t

]
,

subject to (3.2), (3.3) and (3.4). τ is the event of premature death, T ∧ τ ≡ min{T, τ},
and Ix is the indicator function of event x. β refers to the impatience parameter, β > 0.

U(C(t)) is the instantaneous utility of consumption at time t and B(Z(τ)) is the utility

of the legacy in the case the agent dies before the time T . Functions U and B are

assumed to be strictly concave on their arguments.

As we treat the mortality rate as independent of financial risk, we can transform the

random horizon problem to a fixed case suggested by Ye (2006) that

V (M,S, t) =

max
π,C,p∈A

E

[∫ T

t
(F̄ (t, s)e−β(s−t)U(C(s)) + λ(s)F̄ (t, s)e−β(s−t)B(Z(s))) ds

]
, (3.5)

where A is the set for all admissible 3-tuple (π,C, p). The admissible set A that accounts

for a preserved superannuation case is

A = {(π,C, p) | π(t) ∈ R; p(t) ∈ R; 0 ≤ C(t) ≤ M(t) + (1− z)L(t)− p(t), ∀t ∈ [0, TR]},
(3.6)

and

A = {(π,C, p) | π(t) ∈ R; p(t) ∈ R;C(t) ≥ 0, ∀t ∈ [TR, T ]}.

The above setting ensures the freely consumable wealth before retirement is non-negative.

If we consider other constraints on asset allocation and life insurance purchase, we will

specify the corresponding admissible set.

Similar to Chapter 2, F̄ (t, s) is the probability of survival at time s, conditional on the

agent being alive at time t ≤ s so that

F̄ (t, s) = e−
∫ s
t λ(u)du, (3.7)

where λ(t) is the instantaneous mortality rate. In this chapter, we consider a more

reasonable mortality distribution where the mortality rate λ(t) increases with time and
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follows the Gompertz law of mortality:

λ(t) =
1

b
exp (

t−m

b
), (3.8)

where the parameters m and b are the mode and dispersion coefficients of the Gompertz

distribution.

The utility functions of consumption and bequest of the agent follow constant relative

risk aversion (CRRA) functions:

U(C(t)) =
C(t)1−γ

1− γ
, and B(Z(t)) =

Z(t)1−γ

1− γ
φ(t),

where (3.1) shows the expression of Z(t). φ(t) is a weight factor representing the strength

of the bequest motive, and γ > 0 represents the relative risk aversion of the agent.

3.2.2 Hamilton-Jacobi-Bellman Equation

Considering a dynamic programming approach, the objective function (3.5) must satisfy

the HJB equation:

Vt − (β + λ(t))V + sup
π,C,p

[(
π(t)(μ− r)M(t) + rM(t) + (1− z)L(t)− C(t)− p(t)

)
VM

+
1

2
π2(t)σ2M2(t)VMM +

(
πs(μ− r)S(t) + rS(t) + zL(t)

)
VS +

1

2
πs2σ2S2(t)VSS (3.9)

+ πsπ(t)σ2M(t)S(t)VMS + U(C(t)) + λ(t)B(Z(t))

]
= 0, ∀t ∈ {t, TR},

and

Vt − (β + λ(t))V + sup
π,C,p

[(
π(t)(μ− r)X(t) + rX(t)− C(t)− p(t)

)
VX (3.10)

+
1

2
σ2π(t)2X(t)2VXX + U(C(t)) + λ(t)B(Z(t))

]
= 0, ∀t ∈ {TR, T},

and the terminal condition is V (M,S, T ) = 0.

In order to determine an interior maximum as optimal decision for the agent, we compute

first order condition with respect to control variables {C,Z, π} ∈ A5 from (3.9) for the

5The sufficient conditions are all satisfied as the second order derivatives with respect to corresponding
control variables are all less than 0 due to the features of CRRA utility functions.
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pre-retirement period:

C∗(t) = (VM )
− 1/γ, (3.11)

Z∗(t) = (VM )
− 1/γφ(t)

1/γ, (3.12)

and

π∗(t) = −(μ− r)VM

σ2MVMM
− πsSVMS

MVMM
, (3.13)

for all t ∈ {t, TR}. Similarly, the optimal controls for the post-retirement period are de-

rived from (3.10) via first order condition with respect to corresponding control variables

are:

C∗(t) = (VX)
− 1/γ, (3.14)

Z∗(t) = (VX)
− 1/γφ(t)

1/γ, (3.15)

and

π∗(t) = −(μ− r)VX

σ2XVXX
, (3.16)

for all t ∈ {TR, T}. The optimal consumption and bequest rules are from the well-defined

envelope condition that the marginal utility of consumption (and bequest) equals the

first derivative of the value function with respect to the corresponding wealth. We also

observe that the expression of (3.12) depends on optimal consumption and the weight

factor φ(t), which implies the importance of the bequest motive on the actual dollar value

of the legacy. By knowing the optimal value of legacy Z∗(t) we can easily calculate the

insurance premium where p(t) = λ(t)(Z(t)−M(t)− S(t)), rearranged from (3.1).

Focussing on asset allocation strategies (3.13) and (3.16), before and after retirement,

we see that the pre-retirement optimal rule is determined by two components: the

first component accounts for risk tolerance based on discretionary wealth while the

second term refers to the riskiness of the superannuation fund; while the post-retirement

investment strategy only involves the risk tolerance component because there is only one

aggregate portfolio for the retired agent.



64

3.2.2.1 The Bequest Function

As we have seen the importance of φ(t), we are now in the position to identify it for the

bequest function. The motivation for leaving bequest is that the agent wishes to provide

a similar standard of living for his beneficiaries even when he faces a premature death.

This is similar to the HLV concept of Huebner (1964) where the life insurance should

reflect the value of future earnings.

Looking at the optimal strategies in (3.11) and (3.12) (and (3.14) and (3.15) from post-

retirement), we observe the relationship that Z∗(t) = φ(t)1/γC∗(t). If we simply set

φ(t) = 1, as Pliska and Ye (2007) do, the optimal value of bequest will just be the

one period consumption prior to death. However, this naive setting cannot adequately

describe the bequest motive discussed above.

In order to formulate the bequest function to fit the social norms discussed in Purcal

(2003), we assume that the agent is willing to provide the discounted value of current

and future consumption to his beneficiaries, meaning φ(t)1/γ = b̂(t). b̂(t) is a discount

factor representing the sum of time impatience and mortality rates:

b̂(t) =

∫ T

t
e−β(s−t)e−

∫ s
t λ(u) du ds.

3.2.3 Solving the Post-retirement Period Problem

Since the post-retirement problem is an unconstrained model with only financial risk,

we solve (3.5) of post-retirement part analytically by considering a trial solution that

V (X, t) = α(t)
X1−γ

1− γ
where α(t) = ξ(t)γ ,

for all t ∈ {TR, T}, and the terminal condition is V (X,T ) = 0. We obtain the optimal

control variables:

C∗(t) = (VX)
− 1/γ =

X(t)

ξ(t)
, (3.17)

Z∗(t) = (VX)
− 1/γφ(t)

1/γ =
X(t)

ξ(t)
φ(t)

1/γ, (3.18)

π∗(t) = −(μ− r)VX

Xσ2VXX
=

μ− r

γσ2
, (3.19)
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where

ξ(t) = e
∫ T
t Ψ(s) ds

∫ T

t
e
∫ T
u −Ψ(s)dsA(u) du,

Ψ(t) =
−(β + λ(t))

γ
+

1− γ

γ

[1
2

(μ− r)2

γσ2
+ r + λ(t)

]
,

and

A(t) = 1 + λ(t)φ(t)
1/γ.

We provide the detailed derivation in Appendix B.1.

These are typical results from the classical Merton (1969) model: the consumption rate

C(t)/X(t) is only influenced by the discount factor ξ(t), in order to provide enough

funds for every period until the terminal date T . The optimal legacy follows a similar

rule to consumption except for the consideration of the weight factor φ(t). The asset

allocation strategy is a constant, which contains the risk-adjusted return and risk aver-

sion parameter of the agent. The properties of optimal consumption and constant asset

allocation strategies are well-documented in the relevant life cycle literature and they

are the classical results for the CRRA utility class.

What is interesting is that when we work back to get the optimal insurance premium

from optimal legacy p(t) = λ(t)(Z(t) − X(t)), we always get a negative value. The

reason for the negative insurance premium is that there is no more human capital flow

to the financial wealth. As the value of human capital approaches zero at retirement,

the incentive to purchase life insurance vanishes. Therefore, instead of purchasing life

insurance, the agent wishes to purchase a life annuity to hedge his longevity risk in

the retirement period when he feels his wealth is above the safety net and enough to

provide the assigned bequest for his beneficiaries. In most developed countries, the

annuity market exists for retirees, so we keep the result with negative insurance during

the post-retirement period as a benchmark case. To make it a complete picture, we also

report the case when the retired agent can only have a non-negative insurance premium

in Appendix B.2.
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3.2.4 Solving the Pre-retirement Period Problem

After computing the value function at retirement, we proceed to work on the pre-

retirement part of (3.5) with a mandatory savings constraint. We solve it numeri-

cally by the Markov chain approximation method of Kushner (1990) with a logarithmic

transformation of the value function. As in Chapter 2, to make this numerical method

applicable, we first simplify the formulation by modelling financial wealth X(t) and cap-

italising labour income to eliminate the ongoing stream of income. That is, we model

total wealth W (t) = X(t)+I(t), where X(t) is financial wealth, I(t) is the present value

of future labour income. After a logarithmic transformation of the state variable, we

have:

u = lnW,

V̂ (u, t) = V (W, t),

Ĉ(t) =
C(t)

W (t)
= e−uC(t),

Ẑ(t) =
Z(t)

W (t)
= e−uZ(t).

Substituting expressions back into the original HJB equation (3.9), we obtain

V̂t − (β + λ(t))V̂ + sup
πw,Ĉ,Ẑ

[(
πw(t)(μ− r) + r + λ(t)− Ĉ(t)− λ(t)Ẑ(t)

− 1

2
σ2πw2(t)

)
V̂u +

1

2
σ2πw2(t)V̂uu + U(C(t)) + λ(t)B(Z(t))

]
= 0.

(3.20)

Next, we approximate the value function and its derivatives by an explicit finite difference

scheme and get the discretised HJB equation with space grid h and time grid δ:

V̂ (u, t) =
1

1 + δβ + δλ(t)

(
sup

πw,Ĉ,Ẑ

[P̂ (u, u+ h)V̂ (u+ h, t+ δ) + P̂ (u, u)V̂ (u, t+ δ)

+ P̂ (u, u− h)V̂ (u− h, t+ δ) + δ(U(C(t)) + λ(t)B(Z(t)))]
)
,

(3.21)

subject to the terminal condition V̂ (u, TR) = V (X,TR), which is determined from the

post-retirement problem. P̂ (u, u+h), P̂ (u, u−h) and P (u, u) are transition probabilities
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of the value function:

P̂ (u, u+ h) :=
δ

h
(r + λ(t) + πw(t)(μ− r)) +

δ

2h2
σ2πw2(t),

P̂ (u, u− h) :=
δ

h
(Ĉ(t) + λ(t)Ẑ(t)) +

δ

2h
σ2πw2(t) +

δ

2h2
σ2πw2(t),

P̂ (u, u) := 1− P̂ (u, u+ h)− P̂ (u, u− h).

We solve this problem by policy iteration. The explicit expressions of the control vari-

ables from the first order condition are:

πw∗(t) = min

(
−μ− r

σ2

V̂ +
u

V̂uu − V̂ −
u

,Kπw(t)

)
,

Ĉ∗(t) = min
(
V̂ −
u (eu)

(1 − γ)/γ,KC(t)
)
,

and

Ẑ∗(t) = min
(
V̂ −
u (eu)

(1 − γ)/γφ(t)
1/γ,KZ

)
,

where V̂u(u, t)
+, V̂u(u, t)

− and V̂uu(u, t) represent the discretised value function deriva-

tives by a finite difference method6.

Similar to Chapter 2, Kπw(t),KC(t) and KZ are positive values, and serve as upper

boundaries for their underlying arguments. These values depend on the specified ad-

missible set representing scenarios with different restrictions. If we compute a general

unconstrained case, the admissible set is

A = {(π,C, p) | π(t) ∈ R; p(t) ∈ R;C(t) ≥ 0, ∀t ∈ [0, TR]},

which indicates Kπw ,KC and KZ are large enough constant values, chosen arbitrarily

for numerical computation.

If we consider a case with a portfolio constraint, a mandatory savings constraint and a

non-negative insurance constraint, we have a tighter admissible set that

A = {(π,C, p) | 0 ≤ π(t) ≤ 1; p(t) ≥ 0; 0 ≤ C(t) ≤ M(t)+(1−z)L(t)−p(t), ∀t ∈ [0, TR]},
6The expression of V̂u(u, t)

+, V̂u(u, t)
− and V̂uu(u, t) can be found in (2.20) from Chapter 2.
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which requires the following values

Kπw(t) =
1

W (t)
(M(t) + πsS(t)),

KC(t) =
1

W (t)
(W (t)− I(t) + (1− z)L(t)− S(t)− p(t)),

with KZ as an arbitrary upper boundary.

3.3 Results

In this section, we firstly describe the input parameters used in the computation. We

apply the analytical results from post-retirement to obtain the terminal value for the

pre-retirement period. We present the baseline case of the expected paths from the

pre-retirement period. Following that, we address the analysis and comparison between

optimal voluntary life insurance and the default insurance policy within a superannua-

tion fund.

3.3.1 Choice of Parameters

Consistent with Chapter 2, we assume the representative agent is at 25 years of age at

time 0. The retirement time TR is set at 40, namely the agent retires at the age of 65,

which is the current Age Pension age in Australia. The terminal time T is set to be long

enough to capture the almost certain probability of death; thereby we set it as at the

age of 110. For preference parameters and parameters related to economic conditions,

we use the same set values as in Chapter 2 (see Table 3.1).

Unlike Chapter 2 where the instantaneous mortality risk is treated as a constant, we

model the force of mortality, λ(t), with a Gompertz distribution in this chapter. We

approximate the relevant parameters m and b of (3.8) using the Australian national life

table for the period 2010–2012 (Australian Bureau of Statistics, 2013). The life table

provides us one-year mortality rates which we can translate to the survival probability.

We perform a regression analysis on the logarithm of survival probability for the sample

age from 25 to 100 and get values of m and b equals to 87.2 and 9.67 respectively (See

the detailed description in Appendix B.3). These estimates are similar to the study

of Kingston and Thorp (2005) where they use Australian Life Tables 1995–1997. The
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Input parameters

Initial Age 25 z 0.09

TR 40 (age of 65) g 0.016

T 85 (age of 110) γ 2.5

r 0.03 β 0.03

μ 0.057 m 87.2

σ 0.15 b 9.67

πs 0.70

Table 3.1: Choice of parameters for Chapter 3.

variable m refers to the age at which people are most likely to die and b refers to

the percentage increase in death rate which is normally between 8% and 10% per year

(Milevsky, 2012). The mortality rate at terminal time T is nearly 1.

When determining the initial discretionary wealth and wage, we need to take care be-

cause the mandatory savings constraint is very sensitive to these values. We assume

that the agent is endowed with an initial wage of $30, 000, growing at a rate of 1.6%

every year. Again, the initial income value is from Grattan Institute analysis of the ABS

Census data (Daley et al., 2014) and growth rate refers to the result from Australian

Treasury (Gallagher, 2011). From this wage profile, we can choose the range of discre-

tionary wealth to construct the grid for our state variable—the logarithm of the total

wealth, u. The ratio of discretionary wealth over wage is a crucial determinant to assess

the effect on compulsory savings, as the savings constraint is deeply binding when this

ratio is small.

We specify our lowest initial wealth value W (0) as equal to I(0) + S(0), the discounted

present value of human capital plus the initial value of the superannuation fund (but

the initial value of the superannuation fund is in fact negligible). This is because we

need to ensure the initial discretionary wealth M(0) is non-negative; recall that W (t) =

M(t) + S(t) + I(t). We consider 20 initial gridpoints for the wealth state variable,

indicating the initial values for our state variable u is between ln(I(0) + S(0)) and

ln(I(0)+S(0))+20h. In all numerical computations we discretise the continuous model

with space step h = 0.02 and time-step δ = 0.01, same as in Chapter 2. These grids

are fine enough to provide reasonable approximation to the continuous time solution7.

7As discussed in Chapter 2, we solve the continuous time model by Markov chain approximation
method. As space step h → 0 and time step δ → 0, the solution of Equation (3.20) can be successfully
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In other words, the vectors of total initial wealth are approximately in the range of

$905, 000 to $1, 350, 000. The highest initial total wealth value is chosen arbitrarily. The

vector of initial total wealth implies we model the discretionary wealth in the range of $0

and $445, 000, and the ratio of initial discretionary wealth over initial wages is between

0 and 15.

As illustrated in Figure 2.2 from Chapter 2, the computational region needs to spread out

at each time-step to capture the top and bottom value functions. As a consequence, we

end up with 8021 gridpoints for the state variable at retirement from 20 initial wealth

gridpoints. The large size of the terminal wealth grid is due to the small time-step,

δ = 0.01, indicating in a 40 year-horizon we have 4000 time-steps. Within such a large-

sized matrix, the relevant gridpoints we are most interested in are the state variables

with values around the vector of initial values. Hence we only save these state variables

over the time horizon to reduce computation size and speed up the computation time.

Further we obtain the terminal value function for the pre-retirement period from post-

retirement’s analytical solution, V̂ (u, TR) = V (X,TR). Another desired property of

the Markov chain approximation method is to provide an expected path of the state

and/or control variables along the time horizon via transition probabilities (Purcal,

1999). From an economic point of view, we are more interested in the life cycle path

of wealth, consumption and other decision-making variables rather than a grid result.

Based on our solution method, the expected paths can be easily determined. The specific

algorithm is as follows:

E[ζ(n, t+1) | Fn,t] = P̂ (u, u+1)ζ(n+1, t)+P̂ (u, u)ζ(n, t)+P̂ (u, u−1)ζ(n−1, t), (3.22)

where ζ(n, t) is a state or control variable at state n and time t. In the following result

presentation, we report expected paths with regard to the variables we are interested in.

3.3.2 Expected Path of Baseline Results

Figure 3.1 demonstrates the expected paths for financial wealth, X(t), with initial value

of X(0) = $36, 900, over the life cycle. The initial value is chosen from the value

between the median net worth of the age cohort 15-24 and the age cohort 25-34 from

approximated by Equation (3.21) With the trade-off between model accuracy and computation time, we
consider h = 0.02 and δ = 0.01 in line with existing literatures, including Kushner (1995) and Ye (2006).
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HILDA survey reported by Headey et al. (2008). We report four scenarios which are

from an unconstrained model, from a portfolio constrained model, from a liquidity and

portfolio constrained case, and from mandatory savings and portfolio constrained case.

The retirement wealth is modelled as in Section 3.2.3. We also compute the expected

financial wealth where the retired agent can only have a non-negative insurance premium

in Appendix B.2. The first three cases do not have a superannuation requirement, while

the last case is our main focus to illustrate the impact of superannuation savings.
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Figure 3.1: Expected path for financial wealth over the life cycle. The graph shows
the expected path for financial wealth over the life cycle with different scenarios: Un-
constrained (red dash-dot line), portfolio constrained (blue dotted line), liquidity con-
strained (magenta dashed line) and mandatory savings and portfolio constrained cases

(black solid line). The initial financial wealth is chosen as X(0) = $36, 900.

Overall, the wealth profile follows a traditional life cycle pattern where the agent ac-

cumulates his financial wealth along his working life until retirement and decumulates

his wealth for retirement spending. Due to the risk-free human capital, our model pro-

duces pretty high retirement wealth with fairly low initial wealth. As time passes, the

value of human capital depletes and financial wealth accumulates to achieve the desired

retirement wealth for the utility-maximising agent at the retirement date. We find the

unconstrained case (red dash-dot line) achieves the highest retirement wealth, which is

attributed to unlimited borrowing. With risk-free income, the agent implicitly has a

large risk-free asset holdings which triggers the highly leveraged position in the risky

asset in order to maximise his utility over the life cycle. This is a common result from

capitalised deterministic labour income, as seen in previous chapters. To deal with
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this counterfactual prediction, we follow the common practice to include a borrowing

constraint on the agent.

Therefore we specify that the agent possesses long-only portfolios in the portfolio con-

strained case (blue dotted line). As a consequence, the expected financial wealth is

apparently reduced because the agent cannot take advantage of highly leveraged invest-

ments. In this case, the agent only starts to accumulate his financial wealth from his

thirties. Since there is no restriction on borrowing to consume (normally on a very

short-term basis), the agent feels safe and adequate with a low financial wealth and uses

the majority of cash inflow as current consumption in the early years. Moving toward

middle age, the agent’s financial wealth is accumulated from higher labour income and

investment returns, and then he starts to have a stronger retirement savings motive.

To make the wealth profile comparable with the mandatory savings constrained formu-

lation, we further consider a liquidity constraint on the top of portfolio constraint to

rule out the chance of borrowing to consume (magenta dashed line). With a liquidity

constraint, the agent accumulates higher financial wealth due to the fact that he under-

stands his consumption can only be funded from his own financial wealth. He tends to

be more conservative by preserving wealth against a fall in investment returns. As a

result, he achieves higher retirement wealth than with the portfolio constrained case.

By considering the mandatory savings constraint with superannuation, the agent’s cur-

rent consumption can only be funded from his discretionary wealth, instead of financial

wealth, during the wealth-accumulation stage. To make it clear, we illustrate the de-

tailed wealth paths with the requirement of superannuation in Figure 3.2 where we plot

the financial, discretionary and superannuation wealth before retirement. The expected

financial wealth in Figure 3.2 is the same as in the savings and portfolio constrained

case (black solid line) in Figure 3.1.

In order to keep a sustainable discretionary wealth during working life, the agent is forced

to sacrifice his current consumption for future usage. By doing so, he is able to enhance

his overall financial wealth from early years and achieve higher retirement wealth as

shown in Figure 3.1 by comparing the liquidity constrained and savings constrained

cases. This effect is the primary goal of superannuation, that it sets aside a fund for

individuals to support their own retirement income.
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Figure 3.2: Expected wealth including the superannuation requirement. The graph
shows the expected path of financial, discretionary and superannuation wealth during
the wealth-accumulation stage. The expected financial wealth is the same as the savings

and portfolio constrained case shown in Figure 3.1.

For this chapter, we mainly focus on the decisions during the wealth-accumulation stage,

so we report the results from the pre-retirement period hereafter. In Figure 3.3, we

plot the expected paths for control variables: the optimal consumption level, risky asset

allocation and the amount of bequest for the agent. The mandatory savings and portfolio

constrained case is the only one having superannuation requirement, whereas in the other

three cases’ discretionary wealth and financial wealth are interchangeable. Among these

graph outputs, the unconstrained case (red dash-dot line) produces the highest value of

optimal control variables, which again is mainly attributed to the nature of unlimited

borrowing. In the following, we discuss the results from other three cases and use the

unconstrained result as a reference only.

The upper graph of Figure 3.3 depicts the optimal consumption path. From this we

find the inclusion of a portfolio constraint reduces the optimal consumption relatively

steadily throughout the wealth-accumulation stage. It suggests the portfolio constraint

has a generic effect on consumption across different ages. On the other hand, the liquid-

ity and mandatory savings constraints both change the shape of consumption path by

suppressing consumption during early years while allowing higher consumption during

late working life. Due to the limitation on borrowing to consume, the agent optimally

reduces his early consumption to preserve a certain amount of financial wealth for the
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Figure 3.3: Expected optimal consumption, risky asset allocation and bequest. The
upper graph shows the optimal consumption, the middle graph represents optimal
risky asset allocation and the bottom one demonstrates bequest during the wealth-
accumulation stage. The initial wealth is set as X(0) 	 M(0) = $36, 900, as the initial
amount of superannuation is negligible. There are four scenarios in each graph, namely
unconstrained (red dash-dot line), portfolio constrained (blue dotted line), liquidity and
portfolio constrained case (magenta dashed line), and mandatory savings and portfolio

constrained cases (black solid line).
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event of sudden investment loss. This is in line with the idea of a precautionary savings

motive. As the agent accumulates higher wealth along the way, the optimal consump-

tion from liquidity constrained case exceeds the one without liquidity constraint. By

comparing the expected paths from the upper graph of Figure 3.3, one can find that

the expected consumption from liquidity constrained (magenta dashed line) turns to be

higher than without liquidity constrained case (blue dotted line) from around eight years

of working life, with our baseline parameter setting.

With the superannuation requirement, the agent is only allowed to consume from dis-

cretionary wealth, rather than financial wealth, which further suppresses the early con-

sumption. In return, the agent is able to enjoy a higher consumption after approximately

15 years of working life, comparing to the liquidity constrained case. This phenomenon

clearly illustrates the impact of the mandatory savings constraint.

The middle graph illustrates the fraction of the discretionary wealth invested in the

risky asset. In the unconstrained case, we observe an extremely leveraged position

where the optimal risky asset allocation reaches around 12 times discretionary wealth

at the beginning of the working life and the allocation gradually reduces to reach a

Merton constant at retirement. As the agent is normally restricted from such highly

leveraged financial position, we impose a portfolio constraint so that the maximum

feasible allocation for the agent is to fully invest his discretionary wealth in the risky

asset. Since the value of human capital is modelled as risk-free, the agent tends to

allocate as much as possible of his financial capital in the risky asset. We find that the

agent fully invests his discretionary wealth in the risky asset until around the age of 55

to 60. After that the portion of risky asset holdings gradually reduces and reaches the

Merton constant at retirement due to the depletion of human capital over time.

The optimal bequest path is illustrated in the bottom graph of Figure 3.3. The liquid-

ity and savings constrained cases cause a hump-shaped optimal bequest. This can be

explained by the consumption reduction in early years. From the first order condition

in (3.12), we know the optimal bequest is determined in line with optimal consump-

tion. The agent wishes to provide a similar standard of living to his dependants rather

than replace the value of his human capital. Again, following the same pattern as the

consumption path, the value of the bequest with the superannuation constrained case

exceeds that without the savings constrained case after around 15 years of working life.
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Figure 3.4: Expected path for optimal life insurance premium. The graph shows
the optimal life insurance premium over the wealth-accumulation stage with initial dis-
cretionary wealth of M(0) = $36, 900. There are four scenarios shown in the graph,
namely unconstrained (red dash-dot line), portfolio constrained (blue dotted line), liq-
uidity and portfolio constrained case (magenta dashed line), and savings and portfolio

constrained cases (black solid line).

The optimal insurance premium can be inferred from the value of bequest according

to (3.1) and we present it in Figure 3.4. What we find in this output is that the insur-

ance premium from all cases follows a similar path.

The overall trend of the optimal life insurance premium is similar to the result docu-

mented by Ye (2006) that the premium keeps increasing and peaks around a few years

prior to retirement and then declines steeply. Nevertheless we spot that the life in-

surance premium turns out to be negative from a few years before retirement. The

negative insurance premium has been seen in Pliska and Ye (2007) and Purcal (1999).

The interpretation for this negative insurance premium is similar to the one we realise

during the post-retirement period. As the agent accumulates financial wealth over time,

he may possess enough financial wealth to fund the bequest in his late working life.

In this case, purchasing life insurance is not attractive to the agent; instead, the agent

wishes to sell insurance to maximise his value function. In other words, the value of the

financial wealth exceeds the required amount of bequest, and the agent wishes to utilise

the surplus amount to provide insurance for other parties. However, it is uncommon for

private individuals to sell insurance in the real world and this cannot be treated as a



77

purchase of life annuity as in the retirement stage. Therefore we impose a restriction to

ensure the amount of life insurance premium is non-negative. We present the restricted

result in Figure 3.5.
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Figure 3.5: Expected path for insurance premium ruling out negative premium. The
graph shows the optimal life insurance premium with the restriction that the insurance
premium cannot be negative over the wealth-accumulation stage with initial discre-
tionary wealth of M(0) = $36, 900. There are four scenarios in each graph, namely un-
constrained (red dash-dot line), portfolio constrained (blue dotted line), liquidity and
portfolio constrained case (magenta dashed line), and mandatory savings and portfolio

constrained cases (black solid line).
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Figure 3.6: Expected path for death benefit ruling out negative premium. The graph
shows optimal death benefit without the possibility of selling the insurance during the
wealth-accumulation stage. The initial discretionary wealth is set as M(0) = $36, 900.

We also illustrate the present value of human capital as a reference.
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Apart from the overall trend, Figure 3.5 also shows that life insurance demand with the

mandatory savings constraint is lower than with the liquidity constrained case at all

times. This is because the agent is forced to save more than his optimal saving plan; he

is in fact financially wealthier, and therefore the incentive for purchasing life insurance

has been suppressed. Similarly, Figure 3.6 shows the amount of the death benefit over

the life cycle. Again, the amount of optimal death benefit from the savings constrained

case stays the lowest along the life cycle.

As argued by Charupat et al. (2012), the upper bound for the death benefit equals the

value of human capital, which is in line with Huebner (1964) concept of Human Life

Value. Hence, we also plot the present value of human capital on the same axis as a ref-

erence. As a result, we find the death benefit exhibits a monotonically decreasing trend

for the unconstrained and portfolio constrained cases. It is fair to say that the idea of

Human Life Value is an effective indicator of death benefit when there is no other re-

strictions on the model. Nonetheless, the death benefit results in a hump-shaped pattern

when we consider restrictions on consumption, either a liquidity or mandatory savings

constraint. This pattern is reflected in the optimal bequest from the bottom graph

of Figure 3.3. Further, the hump-shaped death benefit is a common practice among

the policies offered by insurance companies in the real-world market. This observation

refers back to the argument of Purcal (1999) that in addition to the income-generating

ability of the agent, the value of life insurance should also reflect the agent’s subjective

consumption taste. By having the compulsory savings constraint, the agent is forced

to reduce his consumption in early years which in turn decreases the amount of death

benefit. In other words, we clearly identify the negative impact from the mandatory

savings constraint on insurance demand.

Although we observe a possible negative insurance premium in Figure 3.4 and the neg-

ative value can be relatively large near retirement, the amount of the life insurance

premium compared to the financial wealth is in fact very small. The large impact is

felt when premature death occurs: the agent’s beneficiaries will get the death benefit of

p(t)/λ(t). However when the agent is still alive, the impact from negative or zero insur-

ance premiums is negligible. We compute again the expected path for financial wealth

and optimal consumption, ruling out the possibility of negative insurance premium in

Figure 3.7. Comparing this output to Figure 3.1 for financial wealth and Figure 3.3 for
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Figure 3.7: Financial wealth and consumption path without negative premium. The
upper graph shows the expected financial wealth over the entire life cycle, and the
bottom graph illustrates the optimal consumption for the wealth-accumulation stage.
The initial value of financial wealth is X(0) = $36, 900. There are four scenarios in each
graph, namely unconstrained (red dash-dot line), portfolio constrained (blue dotted
line), both savings and portfolio constrained cases (black solid line) and liquidity and

portfolio constrained case (magenta dashed line).

optimal consumption, we are able to conclude that the non-negative constraint on the

insurance premium will not change our optimal result in a significant way.
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3.3.3 Automatic Insurance within Superannuation

In this subsection we attempt to assess the default automatic insurance inside superan-

nuation funds, in particular, MySuper products. According to the new law of Stronger

Super reforms, the superannuation fund providers have to give life and Total and Per-

manent Disablement (TPD) insurance as a default within their MySuper products. We

focus on MySuper products because they are relatively clear for comparison purpose.

We examine the 22 largest MySuper products, which represent more than 75% of total

MySuper assets (Australian Prudential Regulation Authority, 2015). The default set-

tings of the insurance premium and cover are diverse among different MySuper products.

For each MySuper product, we select the default insurance setting applicable for male

standard cover8. Since we consider dollar amount of insurance premia in our theoretical

model, we calculate the insurance premium from the product disclosure statement of

each MySuper product together with the data reported by Australian Prudential Regu-

lation Authority (2015) as a reference. Overall there are about 35% of MySuper products

having a constant insurance premium and most of them are industry funds, whereas of-

fering a time-varying default insurance premium is popular for retail and public sector

funds. We present the weighted average insurance premium as the corresponding age in

Table 3.2.

Default Insurance Premium

Annual Dollar Amount per $1000 of Default Cover

Age of 30 Age of 50 Age of 30 Age of 50

Model Output $ 166 $ 1035 $ 0.28 $ 2.21

Constant $ 279 $ 279 $ 0.96 $ 2.21

Time-varying $ 230 $ 440 $ 0.85 $ 3.36

Table 3.2: Default insurance premium of MySuper products.

Consistent with the statistics provided from Australian Prudential Regulation Authority

(2015), we show the insurance premium as at age 30 and 50. In addition to the annual

dollar amount, we also report insurance premia as per thousand of default cover. The

corresponding default cover is illustrated in Figure 3.8, in which we collect the default

8For some funds, the default settings vary among genders, worker categories, and personal situations.
We choose male if the default differentiates genders and we choose basic/standard/white-collar if the
default differentiates worker categories.



81

cover for every five years of age from individual product disclosure statements, and

compute the weighted average of covering amount at each reported age.
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Figure 3.8: Default cover of insurance premium. The graph illustrates the default
cover from automatic insurance of MySuper products. The default covering amount
is calculated as a weighted average. The blue dotted line shows the default cover of a
constant insurance premium where as the red dash-dot line reports the default cover
from a time-varying insurance premium. We also plot the optimal death benefit from

our savings constraint model as a comparison (black solid line).

The automatic insurance from MySuper products is designed to provide a basic protec-

tion for fund members against the risk of not being able to accumulate wealth as a result

of terminal illness or death. The cover from a time-varying premium results in a hump-

shaped pattern while the cover from constant premium has a decreasing trend; both

are reasonable outcomes from theoretical point of view. Nevertheless, as our modelling

result indicates a hump-shaped insurance premium as optimal strategy, we argue the

automatic insurance using a time-varying premium is better for fund members. Roughly

speaking, the default cover from a time-varying premium provides half of the desired

death benefit for our representative agent, see Figure 3.8. Because the default insurance

only provides a safety net, which is about half of the optimal value in our analysis,

it follows that the actual dollar amount of insurance premium is less than the model

suggestion, as we can see from Table 3.2. To compare the effective price, we express

insurance premium per thousand dollars of default cover. Overall, the price for older

agents is higher than young agents due to the increasing trend of mortality risk. The

optimal price from model output is lower than the real-world price because our model
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considers a simple fair price and neglects various risks associated with the agent9. Fur-

ther, the default insurance premium of each MySuper product also depends on the risk

associated with the major working category of fund members, especially for industry

funds.

In summary, the provision of default life insurance is a base level for the agent’s optimal

demand. The insurance demand is subjective depending on the bequest motive, or more

specifically, how much the agent is willing to provide to his heirs. By knowing the value

of life insurance within superannuation, the agent should either optimally adjust his

life insurance within his superannuation or purchase voluntary life insurance. Based on

the new law of Stronger Super reforms, fund members are permitted to adjust their

insurance cover from the default amount or totally opt out of default insurance.

Another important issue emerging now is the knowledge of members about their su-

perannuation fund, in particular, the life insurance component. Davis (2012) reports

on individual superannuation experience, arguing that the awareness of superannuation

among individuals has increased over the past decade, but there is still a sizeable number

of people who do not have enough knowledge about their superannuation scheme. It is

likely that there could be many members who are not aware of the life insurance com-

ponent within their superannuation fund. It should be borne in mind that the default

automatic insurance is set as a basic protection; it generally cannot meet an individual

agent’s taste for bequests. Individual agents should adjust the amount accordingly to

maximise their overall utility. Moreover, Schulenburg (1986) points out that the ex-

istence of compulsory insurance coverage tends to decrease the agent’s concern about

purchasing voluntary life insurance. As a result, the agent needs to have enough financial

literacy to determine the purchase of additional life insurance. Otherwise, the utility

loss could be considerable. This issue is similar to the portfolio allocation within and

outside the superannuation fund. In particular, the design of default strategies has been

heavily discussed to meet fund members’ best interests because the default option is the

most popular choice among fund members (Agnew, 2013, Gallery and Gallery, 2005).

9For example, the real-world insurance premium takes into account personal situations, income-
generating abilities and risk associated with working categories.
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3.4 Conclusion and Future Work

Focussing on the second pillar of the retirement income system in Australia, the Super-

annuation Guarantee requires mandated periodic employer contributions on behalf of

their employees as a fund for retirement consumption. In this chapter, we include an

additional life insurance purchase when assessing the impact of compulsory savings on

the employee’s consumption-investment decision over the life cycle.

While the model formulation is similar to Chapter 2, where we distinguish discretionary

and superannuation wealth of the agent to track the maximum available value to con-

sume, we further include a life insurance component to provide protection against the

loss of human capital. The demand for life insurance depends on the probability of

premature death and the wealth that the agent is willing to provide for his beneficiaries.

Extending the analysis from Chapter 2, we consider a Gompertz distribution to formu-

late the mortality rate since this distribution is believed to fit well with national life

table. Moreover, the idea of full annuitisation at retirement as seen in Chapter 2 is not

practical when incorporating a life insurance component into the model. Therefore we

give the agent freedom to choose consumption and investment decisions optimally during

the post-retirement period. In a continuous time setting and using CRRA preferences,

we compute the optimal strategy numerically using a Markov chain approximation with

a logarithmic transformation of the value function. Using this method, we further obtain

expected paths of wealth and control variables via transition probabilities. We find that

the savings constraint effectively reduces optimal consumption in early years and thus

enhances the financial wealth of the agent. The optimal life insurance in early years is

also reduced due to the savings constraint. Since the mandatory savings requirement

causes the agent to save more than the optimal amount, he compensates by reducing

his insurance cover.

The Superannuation Guarantee Regulations also requires superannuation funds to pro-

vide life insurance to their fund members. This default insurance has been strengthened

by the new law of Stronger Super reforms. Therefore, we also analyse the automatic

insurance from MySuper products as they are the designated default superannuation

funds. The purpose of the default insurance cover is to protect fund members against

the risk of loss of income-generating ability or in the extreme, the risk of death, at a
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basic level. We find that although the insurance premium and cover varies among dif-

ferent funds, the overall trend is similar to our modelling result for voluntary insurance

purchase. Based on our model suggestion for the representative agent, the default insur-

ance cover provided by the superannuation fund reaches around half of the optimal value.

Therefore the agent needs to adjust the insurance cover accordingly to the optimal value

either within or outside of superannuation. We acknowledge that in reality, insurance

cover may be less expensive for the member when purchased within the superannuation

fund, and since the insurance premium is directly deducted from superannuation with

automatic insurance this is likely to be more attractive than when the premium is de-

ducted from discretionary wealth outside superannuation, as in our model. Since the

amount of the insurance premium is not a major component of consumption, we believe

the different ways of deducting insurance premium will not alter our general findings in

a significant way. However, we conjecture that in the real-world setting, the agent will

opt for the insurance within superannuation, when the savings constraint is binding, to

increase his consumption from discretionary wealth and because of the additional time

and money costs of outside cover. Thus, the purchase of additional insurance cover

inside superannuation will be a first-order extension for future research.

Apart from the insurance component, there are several interesting components we can

add on to our model to enrich our discussion. In addition to the inclusion of uninsurable

labour income risk discussed in Chapter 2, we may add a subsistence consumption

by considering a HARA utility function. The subsistence consumption represents the

amount the agent needs for a basic living standard. Furthermore, as the superannuation

fund is taxed concessionally, the taxation should also be considered in the model to bring

out insights and suggestions for policymakers.



Chapter 4

The Impact of Compulsory

Retirement Savings Contributions

on Lifetime Welfare

4.1 Introduction

In recent years, retirement savings policy has increasingly attracted both academic and

practitioner interest due to population aging and increased life expectancy. The Aus-

tralian retirement saving system consists of the three pillars classified by World Bank

(1994). From those, the pre-funded superannuation (second pillar) has become the main

component. The majority of superannuation funds are defined-contribution plans1; and

Australia is regarded as the second largest pool of DC pension assets in the world2.

Focussing on the Australian economy, assets under superannuation management have

grown rapidly, already exceeding Australia’s GDP at the end of 2013/14 (Commonwealth

of Australia, 2015). Superannuation also has a broad coverage with over 90% of workers

having savings in a superannuation account, and superannuation assets represent the

second largest household asset, behind real estate.

As Australia is experiencing population aging, the government has urged individuals

to fund their retirement income via superannuation. However, the Treasury estimates

1At the end of 2014, around 85% of Australian superannuation assets are in DC plans (Tan, 2015).
2The largest DC pool is from the U.S.

85
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that superannuation accumulations will only reduce pension spending by around 6%

in 2050 (Chomik and Piggott, 2012), which is lower than expected to substantially

reduce the load on the Age Pension. From the individuals’ point of view, the previous

9% compulsory contribution rate is insufficient to reach reasonable replacement ratios

(Burnett et al., 2014, Enterprise Metrics, 2012). Therefore, the government has enacted

changes in the superannuation contribution rate, stipulating a gradual increase to 12%

in 20253. Furthermore, to target the inadequacy issue, the Productivity Commission

(2015) promotes an increase in the age at which individuals can start drawing down their

superannuation (the preservation age) to enhance retirement wealth. The prevailing view

that accumulations were not large enough has resulted in changes to higher contribution

rates and proposals for later preservation ages.

While attempting to enhance the superannuation savings for retirement, several studies

have argued that individuals, particularly the young, can lack the willpower to save for

retirement (Blake et al., 2014, Davis, 2012, Guest, 2010). We are concerned that the

current constant compulsory minimum level of savings across all age groups might be

suboptimal, especially for the young, who are most constrained by low-wealth outside

the superannuation system, resulting in welfare losses. Therefore, we narrow down the

research question by focussing on the impact of superannuation on individuals’ con-

sumption, retirement wealth and lifetime welfare. Using our theoretical model fitted

to observed panel data, we can analyse any welfare losses arising from the superan-

nuation system and test counterfactual policy settings on both contribution rates and

preservation ages.

We employ the model developed in Chapter 3 while setting aside the insurance pur-

chase to estimate structural unobserved preference parameters. We use wealth, income

and consumption data from the Household, Income and Labour Dynamic in Australia

(HILDA) survey to fit the theoretical model. The reason that we do not consider insur-

ance factors in our model is that we lack of life insurance information from the HILDA

survey. We estimate the model using Simulated Method of Moments4, where this method

3The initial decision was to increase the contribution rate annually from 2013 and reach 12% in
2019/20. However, in the 2014 Federal Budget, the government decided to delay the increase so that the
rate will stall till 2021 and gradually increase to 12% in 2025. The delay has been criticised by Burnett
et al. (2014) because it will trigger increased demands on the Age Pension.

4Several economic and finance studies have adopted this method to estimate a number of variables.
For example, French (2005) fits his economic model to analyse a set of factors on retirement behaviour
and Dobrescu et al. (2014) consider the default behaviour on retirement savings with a structural dynamic
model.
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has been used in the study of Gourinchas and Parker (2002) and Cagetti (2003) for ex-

amining household consumption and wealth accumulation. In our case, the rate of time

preference and the degree of risk aversion are estimated by matching the mean wealth of

each age group with each cohort. These estimates are then used to evaluate the welfare

loss of the superannuation system under several scenarios.

We show that due to the compulsory savings constraint, optimal consumption in early

working life is forcibly reduced, which in turn boosts the agent’s financial wealth and

results in higher retirement wealth, as empirically observed by Connolly (2007). This

outcome fits the policy’s primary intention. However, as the reduction in early consump-

tion is against the agent’s interest, the percentage lifetime welfare loss is not trivial. At

current policy settings, there is a sizeable trade-off between current consumption and

retirement wealth where the percentage welfare loss increases with higher contribution

rates and longer preservation ages. Nevertheless, the increase of contribution rates and

preservation ages are the main policy directions to shrink the inadequacy gap. Therefore,

we propose a remedy to reduce the welfare loss while enhancing retirement wealth at a

sustainable level. Instead of a constant contribution rate, we advocate a time-varying

superannuation contribution rate in line with the idea of “save more tomorrow” designed

by Thaler and Benartzi (2004). In this context, we allow the agent to have a lower con-

tribution rate when young, but the default rate is gradually increased with time in order

to achieve retirement wealth equivalent to a constant contribution rate over the working

life. Our result suggests that the time-varying contribution rate reduces the percentage

welfare loss while achieving similar retirement wealth.

We derive support for increasing future savings rates in a conventional rational ex-

pected utility optimisation setting, but our results line up with recommendations from

behavioural research. Headey et al. (2008) note that the most serious underlying prob-

lem with wealth distribution is that individuals underestimate the savings needed to

maintain their current lifestyle in retirement. In addition, Thaler and Benartzi (2004)

argue that individuals find it extremely difficult to settle on the correct savings rate

and to commit themselves to save at that rate. Procrastination further exacerbates this

issue as individuals tend to postpone challenging decisions. The behavioural remedy for

these problems is consistent with the outcomes from our rational program: that is to

“save more tomorrow” (Thaler and Benartzi, 2004).
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The main contributions of this chapter consist of two parts. Firstly, we use the struc-

tural model fitted to the HILDA survey data, which provides us with reliable estimation

on overall consumption behaviour and wealth accumulation at the individual level in

the Australian setting. Secondly, by examining the welfare loss associated with the

superannuation constraint, we propose an alternate policy design of time-varying super-

annuation contribution rates where the default contribution rate is increasing with age,

and individuals have the choice to opt out of the increasing rate component if facing

financial distress. The opt-out feature provides the flexibility for more personalized ap-

proaches for their retirement savings with regard to individual circumstances5. Although

it is similar to the idea of Thaler and Benartzi (2004) and Guest (2010), we indicate this

recommendation is back up by our modelling output.

We organise this chapter into the following sections: In Section 4.2, we briefly describe

the theoretical model. After that, we estimate the preference parameters by using our

model to structurally fit to the HILDA survey data. Section 4.3 documents the preference

parameter estimates with regard to several settings. Section 4.4 discusses the impact of

superannuation scheme on consumption and retirement wealth. Finally, we summarise

our findings and conclude with suggestions for future research in Section 4.5.

4.2 Method

We firstly review our continuous time model formulation for an agent who wishes to

maximise his expected utility of consumption by choosing consumption and a portfolio

allocation, but is subject to a mandatory savings constraint during the pre-retirement

period. After the model formation, we describe the data selection and estimation pro-

cedure used to obtain preference parameters.

4.2.1 Model

The model proposed here is the original model formulated in Chapter 3, setting aside

life insurance considerations. The exclusion of life insurance in this chapter is mainly

5In general cases, individuals tend to stick with the default policy. They may exercise the opt-out
option when they have obtained some greater financial knowledge and when it is necessary based on
their financial circumstances.
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due to the data limitations where we lack individuals’ life insurance information from

the survey data.

Similar to Chapter 3, we consider three important dates in this model: T is the modelling

horizon which is the end of the agent’s life if premature death does not occur; TR

represents the agent’s retirement date; and τ is a random variable which denotes the

premature death of the agent. We pre-set the retirement date TR to mimic a regulated

pension eligibility or preservation age and compute the wealth dynamics for the working

and retirement periods separately.

During the working stage, the financial wealth, X(t), involves a discretionary wealth,

M(t) and a superannuation process, S(t), and the wealth dynamics are:

dX(t) = dM(t) + dS(t), (4.1)

where

dM(t) =
[
π(t)(μ− r)M(t) + rM(t) + (1− z)L(t)− C(t)

]
dt+ σπ(t)M(t) dB(t),

and

dS(t) = [πs(t)(μ− r)S(t) + rS(t) + zL(t)] dt+ σπs(t)S dB(t),

(4.2)

for all t ∈ {0, TR}, where M(0) = M0 > 0 and S(0) = S0 > 0. Parameters μ and σ

denote the constant mean return and volatility of a risky asset, and B(t) is a standard

one-dimensional Brownian motion process of the risky asset. L(t) represents the wage

earned by the agent, among which a constant portion z is required to be invested in

a superannuation fund. The variables π(t) and πs(t) are the fraction of corresponding

wealth variables invested in a risky asset, with the remainder invested in a risk-free asset

with a constant rate of return, r. Here, in line with the popular default superannuation

plan in Australia, we set πs(t) ≡ πs as a constant such that the risky allocation within

the superannuation fund will not change with age, consistent with a balanced Strategic

Asset Allocation (SAA) default strategy. Consistent with the same treatment as previous
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chapters, the mandatory savings constraint is

C(t) ≤ M(t) + (1− z)L(t), ∀t ∈ {t, TR},

which implies consumption should be less than liquid wealth at each instant before

retirement.

For the post-retirement phase, the wealth dynamic is simplified as

dX(t) =
[
π(t)(μ− r)X(t) + rX(t)− C(t)

]
dt+ σπ(t)X(t) dB(t), (4.3)

for all t ∈ {TR, T}. Understanding wealth dynamics for both before and after retirement,

we write the objective function of the utility-maximising agent as

V (M,S, t) = max
π,C∈A

E

[∫ T

t
F̄ (t, s)e−β(s−t)U(C(s)) ds

]
, (4.4)

= max
π,C∈A

E

[∫ TR

t
F̄ (t, s)e−β(s−t)U(C(s)) ds+ F̄ (t, TR)e

−β(TR−t)U(X(TR))A

]
,

subject to the wealth dynamics described in (4.1) and (4.3). The paired decision (π,C) ∈
A(M,S, t) where A is an admissible set for all allowable pairs of (π,C),

A = {(π,C) | 0 ≤ π(t) ≤ 1; 0 ≤ C(t) ≤ M(t) + (1− z)L(t), ∀t ∈ [0, TR]}, (4.5)

and

A = {(π,C) | π(t) ∈ R;C(t) ≥ 0, ∀t ∈ [TR, T ]}.

where we consider a portfolio constraint and a mandatory savings constraint for the agent

during the wealth-accumulation stage, and relax these constraints for post-retirement.

Here U(C(t)) and U(X(TR)) are the instantaneous utility of consumption at time t, and

the utility function at retirement, respectively. Both utility functions are assumed to

be strictly concave in the corresponding underlying argument and within the constant

relative risk aversion (CRRA) class that U(x) = x1−γ

1−γ , x ∈ {C(t), X(TR)}, with γ as

the relative risk aversion coefficient, γ > 0. Because there is no constraint for the post-

retirement stage, we simply represent the utility of retirement consumption as a single

function at TR with A as a multiplier that expresses the agent’s aggregate retirement
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consumption. The detailed setting of A is described below. β accounts for the impatience

parameter (subjective discount factor) of the agent, β > 0. F̄ (t, s) is the survival

probability where we assume the instantaneous mortality rate following a Gompertz

distribution as in Chapter 3.

We are able to compute the analytical expression for the optimal utility of financial

wealth at the time of retirement for our terminal condition. Therefore, the multiplier A

in Equation (4.4) takes the expression:

A = ξ(TR)
γ ,

ξ(TR) = e
∫ T
TR

Ψ(s) ds
[

∫ T

TR

e
∫ T
u −Ψ(s) ds du],

and

Ψ(t) = −β + λ(t)

γ
+

1− γ

γ

(
r +

(μ− r)2

2γσ2

)
.

Turning to the pre-retirement period problem, we employ a Markov chain approxima-

tion with logarithmic transformation of the value function to solve numerically for a

constrained optimum. The detailed description of the numerical method is discussed

in Session 2.2.2 in Chapter 2. By doing so, we obtain grids of transition probabilities.

The advantage of the Markov chain approximation method is that we are able to use

these transition probabilities to easily compute the expected paths of state and control

variables6.

4.2.2 Calibration

To make our model fit the real world, we wish to estimate the unobserved parameter

vector θ ≡ (β, γ) using empirical data. We firstly estimate parameters that can be

set without the model, and present them in Table 4.1. Note that the retirement date

is set to be at age 60 instead of 65 from previous chapters. This adjusted setting is

attributed to two reasons. First, we find that many people in the 60-65 age group in

the data are partially and completely retired. We may lose many data points if we

set the retirement age as 65 since we model full-time workers throughout the sample

period. Second, the current preservation age of superannuation is 60, which conveys a

6The algorithm of the expected path is from (3.22) in Chapter 3.
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strong signal to set this as an end date for examining the effect of superannuation. The

economic parameters are inflation-adjusted values close to historical averages, and are

similar to previous chapters.

To estimate the parameter vector θ, we apply a Simulated Method of Moments (SMM)

algorithm, where we find the parameter estimates that minimise the criterion

min
θ

(Md −Mm(θ))′W (Md −Mm(θ)), (4.6)

where Md is the empirical moment (data moment) while Mm represents the model

moments.

The objective function is a quadratic form which accounts for the deviation between

the model moments Mm, evaluated at θ and the parameter values set above, and the

empirical counterparts, Md. W is a positive definite weighting matrix. In the first stage,

we simply use the identity matrix as a weighting matrix, W = I, which is consistent

but not efficient. In the second-stage we update the weighting matrix using the same

method as Cagetti (2003) where the weighting matrix is set equal to the inverse of

variance of model moments: W = diag(V ar(Mm))−1. By using this weighting matrix,

the minimisation process assigns more weight to better matched, and less weight to

poorer matched, moments.

Input parameters

Initial Age, t = 0 25

Retirement Date, TR 35 (age of 60)

Terminal Date, T 85 (age of 110)

Risk Free Rate, r 0.03

Risky Asset Return, μ 0.06

Risky Asset Volatility, σ 0.20

Risky Allocation in Superannuation, πs 0.70

Contribution Rate, z 0.09

Mode of Gompertz Distribution, m 87.2

Dispersion of Gompertz Distribution, b 9.67

Table 4.1: Choice of baseline parameters for Chapter 4.
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The usual approach of SMM needs simulation samples to compute model moments due

to the non-existence of analytical expressions for the value function. However, as we are

able to compute the expected paths for state and control variables from transition prob-

abilities as described above, we do not necessarily need to generate artificially simulated

data. In our case, the Mm is the mean value of the expected paths of the state variable.

4.2.3 Data

We use data collected by the Household, Income and Labour Dynamic in Australia

(HILDA) survey to estimate the parameters of the model. The HILDA survey started

in 2001 and, subject to some attrition, the same households are interviewed annually.

The HILDA survey collects information about sociodemographic characteristics, wealth,

labour market dynamics and a range of household and personal characteristics. The

survey modules of wealth (wave 2, 6 and 10, which were conducted in 2002, 2006 and

2010 respectively) are of particular interest in our calibration as these modules collected

detailed household financial and non-financial asset and liabilities.

The initial sample size for each wave consists of over 20,000 individuals (from over 7,000

households). From these we only select the individuals who currently receive wages and

salaries and are at the ages of 25 to 52 in 2002 (the same set of individuals are at the

age of 33 to 60 in 2010), and have been interviewed in all three waves. We exclude

individuals over the age of 60 because most people have begun to reduce their work load

at these ages, many being partially retired. Unlike many similar studies, our theoretical

model is formulated on an individual basis instead of using the household as a decision-

making unit. While the HILDA survey records income-related variables at the individual

level, it only provides almost all wealth variables at the household-level. Therefore, we

have to convert the wealth variables from household-level to person-level. To adjust for

this, we divide wealth variables by the square root of the weighted sum of the number

of household members. Household members are assigned different weights according

to age: 1 for adult, 0.6 for dependent child at the age of 15 to 24, 0.3 for the age of

10 to 14 and 0.1 for those aged under nine years7. We restrict households to typical

families, as in Chakrabarty et al. (2008), where households with other adults, multiple

7We also compute the equivalised wealth variables using the ABS method of dividing household-level
variables by a weighted sum of the number of household members. The weighted sum is constructed as
follows: 1 for the first person, 0.5 for adult thereafter and 0.3 for person under the age of 15. We show
the result based on this method in Appendix C.1, and we argue the results are not materially affected.
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and group households are excluded to make the sample data clearer. The resulting

sample contains 2137 individuals. Each individual is weighted according to the cross-

sectional weight provided in each wave of the survey to make a sample representing the

population8.
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Figure 4.1: The mean value of total net worth for each cohort. The graph represents
the average of total net worth for each cohort. X-axis indicates the age of each cohort
group in 2002. Blue long dashed line represents wealth in 2002, red dash-dot line
represents in 2006 and green solid line displays the mean wealth in 2010. All in nominal

value.

In order to track the wealth of different cohorts, we split the sample into seven four-year

cohorts based on the age in wave 2 (2002): 25-28, 29-32, 33-36, 37-40, 41-44, 45-48, 49-

52. For each cohort we compute the mean of total net worth to be the empirical wealth

moments, for which we have 21 moments. The net worth accounts for both financial and

non-financial assets minus liabilities. Figure 4.1 and Table 4.2 illustrate the mean value

of net worth for each cohort for all three waves. As expected, average total net worth

increases over time across all cohort groups, and increases with cohorts. Nevertheless

the rate of increase between 2006 and 2010 is notably less than between 2002 and 2006

in general.

In our model, non-superannuation assets can be traded freely, earning an investment

return, and are considered liquid for consumption purposes. However, we understand

some assets are not as fungible as others; for example, there could be penalties to

8We also test our model without considering the person weight in Appendix C.1, and the overall
result does not vary a great deal.
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Mean wealth value among age and cohort groups

Age (in 2002) 25-28 29-32 33-36 37-40 41-44 45-48 49-52

Wave 2 158.32 198.17 253.91 290.58 359.64 389.34 491.94
Wave 6 284.65 297.12 388.42 411.72 471.92 519.45 654.25
Wave 10 364.69 375.17 462.52 484.97 564.21 594.39 729.72

Table 4.2: The table presents the mean wealth value among age and cohort groups
from HILDA. The age indicated is the age in 2002.

withdrawing money from a long-term investment. Further, primary housing may be

highly illiquid and rarely serves a consumption purpose. Several previous studies have

excluded housing wealth from net wealth. Nevertheless, as our model does not separately

consider housing wealth and other illiquid wealth, we simply choose net worth as the

empirical wealth moment and interpret our results cautiously.

4.2.3.1 Labour Income Process

As the labour income process deviates widely from individual to individual, using a

model with a given constant income growth rate for all makes it extremely hard to cap-

ture each individual’s earning profile and superannuation balance over time. As further

suggested by Dynan et al. (2004), current income consists of permanent and transitory

components, and, in theory, only the permanent component makes a consistent pre-

diction of consumption. Thus, instead of a single constant income growth rate set in

previous chapters, we estimate the labour income process, L(t), as follows:

Wagei = b1 ∗ agei + b2 ∗ age2i + F (genderi, educationi) + εi, (4.7)

where b1 and b2 represent labour income growth modelled as a first-and second-degree

polynomial in age. We also control for gender and education level. The separation of

educational groups is based on the education history variable in the HILDA survey: the

high educational group has a bachelor degree or above, the middle educational group

has a certificate III, IV or diploma, and the low educational group has their highest

education at year 12 or below. Using the setting above, we end up with six labour

income profiles; each accounts for different gender and education levels. The variable

Wagei is the individual i’s annual wage and salary, net of tax. Other earnings apart

from wage and salary are reflected in the investment return. Because we extract the
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employer’s compulsory superannuation contribution directly from the income process,

the income variable of wage and salary would be the best estimate to capture the value

of compulsory superannuation.

At this point, we should acknowledge that due to model limitations we can only con-

sider a deterministic earnings process. Without labour income uncertainty, there is no

precautionary savings in response to job insecurity.

4.2.4 Matching Procedure

For each vector θ, we compute the results of the value function and optimal controls

from our theoretical model. We use the full sample of 2137 individuals to compute

the expected wealth paths for each individual using the age and net worth in wave 2

together with gender and education level as initial conditions. We have three wealth

values for each individual from the HILDA survey, and we use the first observation as

the initial input value. We extract the corresponding point estimates of wealth from

expected wealth paths, aiming to match the empirical counterparts. Similar to the

computation of empirical moments, we consider seven cohorts and compute the mean of

wealth produced by the model for each wave for the model moments.

The computation ends when the optimal θ is found, which fulfils the criterion in (4.6)

to minimise the weighted distance between model and empirical moments.

4.3 Results

In this section, we first present our baseline results where we fit the wealth variable of

our structural model to the HILDA dataset. Following that, we compute the expected

consumption path based on the baseline parameter estimates. We also perform some

sensitivity analysis with different input values, and for each cohort.
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Panel I. Estimated Results

Final First Stage
β γ β γ

Baseline (Full sample) 0.0352 3.8451 0.0443 3.7466

Panel II. Sub-group Results

High education 0.0291 3.9146 0.0463 3.7241
Mid education 0.0443 3.9253 0.0608 3.7326
Low education 0.0667 4.0697 0.0415 2.5845

Table 4.3: The baseline result of parameter estimates. The table presents parameter
estimates from both second-stage weighting matrix, where W = diag(V ar(Mm))−1

(final result), and first-stage unweighed matrix, W = I (first-stage result). The first
panel reports the overall result while the second panel reports the results for different

educational groups.

4.3.1 Baseline Result

The first column of Table 4.3 contains the final results of the baseline estimation, while

the second column reports the results from first-stage computation to serve as a compari-

son. The parameter estimates are within reasonable ranges when compared with related

studies9. The final full sample gives us an estimate of β = 0.0352 and γ = 3.8451.

Comparing the results between first and final stages, we find that the optimal weighting

matrix adjusts the unweighted output in a way that reduces the time impatience param-

eter β and increases the risk aversion parameter γ. This is because with an unweighted

approach the criterion in (4.6) reduces to a linear matching scheme. As the wealth value

at older ages is generally higher than at younger ages, the system will be biased toward

older ages in order to minimise the overall distance between model and empirical mo-

ments. Moreover, higher wealth at older ages tends to have a large dispersion which may

reduce the accuracy of estimates. To deal with this, we allow the second-stage weighting

matrix to use the inverse of the variance of the mean wealth on the diagonal. In other

words, we assign more weight to the moments with low variance and less weight to high

variance moments. The updated weighting matrix is a diagonal matrix instead of a full

variance covariance matrix10. Since we only use actual data with a different number of

9Within most life cycle portfolio allocation literature the value of risk aversion coefficient γ is set
between 0.5 and and the value of the impatience parameter β is typically in the range of 0 to 0.05 as a
baseline result (Huang et al., 2008, Moos and Müller, 2011, Munk, 2000, Ye, 2006).

10Although the full variance-covariance matrix is popular among other studies, a diagonal matrix
that only considers variance has been used in computation as well. For example, Cagetti (2003) and
Lockwood (2012).
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observations in each cohort, the covariance is inapplicable. We also perform robustness

tests using alternative moments and present the results in Appendix C.1.
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Figure 4.2: Overall wealth moments for baseline result. The upper graph represents
age groups of 25-28, 33-36, 41-44 and 49-52, while the bottom graph contains age groups
of 29-32, 37-40 and 45-48 in Wave 2 (2002). Blue lines represent the data moments

while red lines indicate model moments.

Figure 4.2 illustrates the wealth profiles from the empirical moments and model output

for different cohorts, separated into two figures. The upper graph of Figure 4.2 represents

cohort 1 (aged 29-32 in Wave 2), 3, 5, and 7 while the bottom graph contains cohort 2, 4

and 6. Overall, the matching procedure goes quite well when we compare data moments

to model moments. However, we observe the relatively poor matches among the older

cohorts in wave 10. This finding could be attributed to the overall market downturn

during 2006 to 2010 where negative or poor investment returns11 affected the older

generation more seriously. Furthermore, since our model only captures discretionary

and superannuation wealth, the deviation could also result in the interaction of Age

Pension12.

Next, consider the second panel of final results in Table 4.3, where the parameter esti-

mates are generated for different educational groups. This is a similar approach with

Cagetti (2003) and Munk and Sørensen (2010) where we embed a function of age and

11This refers to the sequencing risk.
12As pension eligibility is subject to asset and income tests, individuals may wish to reduce wealth to

get the Age Pension.
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education to represent the income variation over the life cycle for different educational

groups. With different level of income variation and income generation abilities, we

wish to analyse the preference parameters among different educational groups. Here,

we clearly identify increasing impatience and risk aversion as the education level de-

creases. The impatience parameter is around 0.0291 for highly educated people, 0.0443

for middle educated, and increases to 0.0667 for people who do not obtain a high school

degree. At the same time, the coefficient of risk aversion increases as the education level

drops, though the degree is not large. That higher education is associated with higher

patience has been documented in previous studies13. We also find that risk aversion

appears to decrease with education, though the difference is small in value. Findings

about the relationship between risk aversion and education are mixed. Similar to our

result, Riley Jr and Chow (1992) document the negative relationship between education

and risk aversion. However, Cagetti (2003), using PSID and SCF data, finds that risk

aversion decreases at low levels of education. Halek and Eisenhauer (2001) argue that

the relationship between risk aversion and education is unclear: although education has

a positive effect on the propensity to take risk, the direction of causation is unclear.

The expected wealth profile for high, middle and low educational groups respectively is

depicted in Figure 4.3. Unsurprisingly, having a higher degree of education is related

to an overall higher wealth due to higher income levels and growth, and higher finan-

cial literacy. Using Australian data, the study of Finlay and Price (2014) investigates

household saving behaviour and finds that the savings ratio tends to increase with in-

come and education. Within the framework of our model, these behaviours translate

to a higher average patience parameter. Chakrabarty et al. (2008), testing their pro-

posed theory with the HILDA dataset, also document a positive relationship between

permanent income and savings after controlling for life cycle characteristics.

On the other hand, estimated impatience for the low educational group, at 0.0667, is

more than double their high education counterparts. There are two main explanations.

First, people within this group may have to spend most of their income to get a proper

standard of living. After essential consumption, they do not have much left to save for

future usage, which translates to high impatience parameter in our modelling framework.

Further, social welfare programs may play a role in explaining the low degree of patience

13See, for example, Lawrance (1991) and Cagetti (2003).
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Figure 4.3: The mean wealth value for different educational groups. These graphs
represent overall wealth moment for high (upper), middle (middle), and low (bottom)
educational group, respectively. For each educational group, the upper one indicates
age group of 25-28, 33-36, 41-44 and 49-52, while the bottom one contains age group
of 29-32, 37-40 and 45-48 in Wave 2 (2002). Blue lines represents the data moments

while red lines indicates model moments.

since the low lifetime income individual (or household) can seek support from social

welfare programs, which induces them to hold little in the way of financial assets.
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Although our theoretical model is not rich enough to capture many aspects of an in-

dividual’s behaviour, several existing studies propose arguments that explain different

rates of time preference across groups. Deaton (2001) reports that the probability of

death over the age of 50 has a decreasing trend with income level, which suggests that

low-income individuals do not have as strong an incentive to save for future consump-

tion. The concept of precautionary savings also plays a role in savings behaviour: if the

individual views income as less secure, he tends to be patient and saves against future

income uncertainty.

4.3.1.1 Consumption

In the baseline results, we match expected wealth from the theoretical model with the

empirical counterparts without considering the consumption match. Here in Figure 4.4,

we illustrate empirical consumption and expected consumption computed from the the-

oretical model with the corresponding β and γ from Table 4.3. It should be noted that

the HILDA dataset only reports consistent expenditure variables from Wave 6. Conse-

quently, we only have two point estimates for each cohort. Overall we find that actual

consumption is higher than model predictions for early years of the sample, in particular,

the first and the second cohorts. Moreover, the actual consumption paths have a mild

declining trend over time for the whole sample and sub-sample groups, while our model

predicts a steady and slightly upward trend.

The largest disparity occurs for the first cohort. Because of mandatory superannuation,

the theoretical model predicts that individuals will reduce consumption early in the life

cycle in order to maximise the utility of consumption at each time-step. However, we

can see from Figure 4.4 that the observed consumption is quite high compared with

model predictions. This implies that although there is a superannuation requirement,

individuals tend to spend quite a large amount of money at younger ages.

This behaviour might be related to hyperbolic discounting, where individuals tend to

overvalue current consumption and struggle to make long-term retirement plans. In

reality, many individuals do not consciously plan for retirement income (Lusardi and

Mitchell, 2011). Young individuals tend to view retirement as distant and uncertain.

Similar arguments have been addressed in Blake et al. (2014). In their model, there is no

incentive for young investors before their mid-thirties to contribute to pension wealth.
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Figure 4.4: Observed consumption and expected consumption for each cohort. These
graphs depict the observed consumption (red line) from the HILDA dataset and ex-
pected consumption (blue line) from theoretical model based on corresponding baseline
parameter estimates for each cohort. We present the results of the full sample and

among different educational groups.

Nevertheless, financial advice urges individuals to plan for their retirement before it

is too late to improve personal financial well-being as well as for the broader good of

society. There are still many unresolved questions regarding consumption smoothing and

retirement wealth accumulation, with many of the arguments referring to behavioural

economics.

For sub-group consumption, we find that the largest disparity occurs for the low edu-

cation group, where the superannuation constraint is deeply binding. Interestingly, the

actual consumption for the low education group drops significantly from the first cohort

to the second cohort and then becomes quite sticky until retirement. This phenomenon

could be explained by low resources, especially for the low education group.

On the other hand, actual consumption is lower than the model’s predictions for later

cohorts. As wealth is accumulated throughout the working life, older generations are

able to spend larger amount of money if they only consider the factors in our model.

However, this cohort of individuals do not spend as much as they could. One factor

we need to be aware of is that we model wealth including primary housing wealth. In

normal situations, individuals or households do not draw down on housing equity, so we

should expect a lower actual consumption compared with model predictions. Further,

the consumption gap can be partly explained by older cohorts amassing precautionary

savings or bequests.
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4.3.2 Analysis

In this subsection, we perform some analysis using alternative parameter settings to

compare with our baseline results, illustrating these for different cohorts.

4.3.2.1 Estimates for Different Input Values

We test the effect of input values on parameter estimates by first modifying the values

of the risky asset parameters then the mandatory superannuation contribution rate in

Table 4.4.

Parameter Estimates with Different Risky Asset and Superannuation Settings

β γ Δz

Low Risk Asset (μ = 0.05, σ = 0.15) 0.0307 3.9023
High Risk Asset (μ = 0.08, σ = 0.30) 0.0402 3.7850
Superannuation Rate (z + Δz) 0.0389 3.8048 0.00125

Table 4.4: Parameter estimates based on different input values. The first two rows
show estimated parameters at alternative risk and return settings for the market portfo-
lio. The last row shows estimated parameters for a linearly time-varying superannuation

rate.

As the risky asset is the only source of financial uncertainty in our model, we conduct the

analysis by varying return and risk settings to see the impact on preference parameters.

From the first two rows of Table 4.4, we find impatience increasing along with risk while

risk aversion decreases. On average, a higher-risk and -return fund will generate a high

expected wealth compared to a low-risk and -return counterpart. Higher wealth due to

higher returns allows individuals to consume more, which is related to higher impatience

and less risk aversion, keeping other things unchanged.

In the last row of Table 4.4, we introduce an extra variable Δz that allows the super-

annuation contribution rate to change linearly over time. The initial rate is set at 9%

as in the baseline setting, and this rate can increase linearly with Δz. The optimal

value we get for Δz is 0.00125% for each year. In other words, the model tells us the

optimal superannuation rate should increase 0.00125% each year rising to approximately

13.5% just before retirement. For our sample period from 2002 to 2010, the compulsory

superannuation rate was set constant at 9%; the increased rate could be thought of

as reflecting individuals’ additional voluntary savings. More importantly, an increasing
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rate of the compulsory superannuation rate could be a guide for policy on contribu-

tions. This result is also in line with Blake et al. (2014), who propose that individuals

will increase their awareness of the need to save as they age. Apart from changing the

superannuation rate, we find the core preference parameter estimates stay close to the

baseline results. We will expand on the effects of an upward trend in the superannuation

contribution rate as shown in Table 4.4 in the following section.

4.3.2.2 Estimates for Each Cohort

We now break down the estimation for each cohort to examine the parameter values for

different age groups and cohorts. The results are displayed in Table 4.5. Each cohort

represents the same group of individuals with three observations for wealth and two

observations for consumption. We perform both wealth and consumption matching in

this part since the total number of moments is just five and the matches are less noisy.

Parameter Estimates with Different Cohorts

β γ

Cohort 1 (aged 25-28 in 2002) 0.0486 0.5042
Cohort 2 (aged 29-32) 0.0333 2.3356
Cohort 3 (aged 33-36) 0.0246 2.4892
Cohort 4 (aged 37-40) 0.0355 3.9070
Cohort 5 (aged 41-44) 0.0424 4.1636
Cohort 6 (aged 45-48) 0.0358 4.0579
Cohort 7 (aged 49-52) 0.0124 4.3091

Table 4.5: The parameter estimates from each cohort. The table presents parameter
estimates from each cohort where the moments used in this computation include both

wealth and consumption.

In this experiment we allow impatience and risk aversion parameters to be non-constant

over the life cycle. Estimating by cohort, we can illustrate the general trends of spending

behaviour among different age groups. For the results above, the overall matching errors

are all very small except for the first cohort. Within each computation, the worst-fitting

moment is wealth in Wave 10 for all cohorts.

We find the most impatient individuals are in the youngest cohort, whereas the oldest

cohort is the most patient. Impatience is higher for middle-life cohorts probably because

of higher spending by families with children and the expenses of buying a house. The

risk aversion parameter clearly increases among older cohorts. However, it should be
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noted that each cohort includes the same group of individuals, so the results could also

be influenced by the personal characteristics of that particular cohort group, thus also

depending on the experiences accumulated during past economic cycles.

4.4 Discussion

In this section, we use our baseline preference parameter estimates (β = 0.0352 and

γ = 3.8451) from Table 4.3 to study several scenarios. Since we have structurally fitted

our model to observed data, we are able to make predictions about counterfactual regu-

latory and policy settings. We start by presenting the theoretical optimal consumption

path to show the impact of compulsory savings on consumption. We then look at some

amendments to superannuation policy, including changing the superannuation rate, and

changing preservation ages. Further, we allow for the time-varying contribution rate in-

spired by Blake et al. (2014) and our result from Table 4.4. In the last part of discussion,

we calculate and compare the welfare loss under different market conditions as well as

among different educational groups.

4.4.1 Consumption Path

Figure 4.5: Optimal consumption by initial discretionary wealth and age. The left
graph shows results from a liquidity constrained model and the right graph is from a
compulsory savings constraint model. Both cases embed a portfolio constraint to ensure

the agent has long-only portfolios.

Firstly, we compute optimal consumption for different initial discretionary wealth and

ages considering two scenarios in Figure 4.5. Seeing the result from Chapter 3, we find

the effect of the compulsory savings is directly reflected from the comparison between a
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liquidity constraint and a mandatory savings constraint case, with both being portfolio

constrained to rule out the impact from leveraged position on optimal consumption.

Due to the fact that individuals cannot consume from the preserved superannuation

fund, optimal consumption from the mandatory savings case is dampened in the early

stages, comparing the result from the liquidity constrained scenario in Figure 4.5. The

compulsory savings constraint is still binding for high-initial-wealth individuals, though

the effect is minor compared with low-initial-wealth. We will present the welfare loss in

the following subsections. The aim of superannuation is to enhance the savings behaviour

of individuals: by restricting consumption early in the life cycle, individuals can enjoy

higher consumption later in working life as well as during retirement. Although the

idea of enhancing retirement wealth has been promoted, we wish to further examine

the influence of the superannuation system in terms of welfare losses. What we find

empirically is that young individuals tend to have large incentives to spend now rather

than save for retirement. By examining the welfare losses, we wish to come up with an

improved strategy that can benefit both younger and older generations. In the following

subsections, we use the left output in Figure 4.5 (the theoretical model with liquidity

and portfolio constraint) as the benchmark against which we can analyse the welfare

losses due to the compulsory savings constraint14.

4.4.2 Increasing Contribution Rates

Based on the new legislation introduced by the Australian government, the minimum

mandatory contribution will increase gradually and reach 12% in 2025. We test the

model with a lower (5%) and a higher (12%) superannuation rate together with baseline

(9%) requirement. We report the graphical results on consumption, financial wealth,

the value function and welfare loss in Figure 4.6.

Overall, it is clear that the higher superannuation rate constrains consumption at

younger ages more seriously while providing higher consumption in later years. Ini-

tially, at the age of 25, the superannuation constraint does reduce consumption, how-

ever, the impact is more apparent between approximately the ages of 30 to 35. As

we consider a low-initial-wealth of $40,00015 to start with, the no-borrowing constraint

14We do not use the right output in Figure 4.5 as a benchmark because we are going to analyse the
result when varying the compulsory savings constraint.

15The choice of initial discretionary wealth is similar to the value from previous chapters.
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Figure 4.6: Comparison between different compulsory savings rates. The upper left
figure shows the consumption path, and the upper right indicates the financial wealth
path with initial discretionary wealth set as $40,000. The bottom figures depict per-
centage welfare loss with respect to total wealth (left) and financial wealth (right).

already limits optimal consumption in order to keep a sustainable level of wealth, and

the further compulsory savings adds to the constraint. With wealth accumulating over

time, we can see the impact of superannuation increases mainly during the first half of

the working life. Because individuals are forced to save more than they otherwise would

at younger ages, the optimal consumption they can achieve in later working life exceeds

the no-superannuation-contribution case. The highest superannuation contribution rate

achieves the highest retirement wealth.

We also calculate the percentage welfare loss with respect to initial total wealth and

initial financial wealth, and present the results in the bottom graphs of Figure 4.6. As

expected, the welfare loss increases with superannuation rate and generally decreases

with initial wealth. Nevertheless, we observe a slightly hump-shaped patten for the

percentage welfare loss with respect to initial total wealth. This pattern is attributed to

the limited consumption constraint at the beginning of working life that we addressed

above. For total wealth, a baseline 9% contribution rate reaches a maximum 3.2%
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welfare loss, while a high contribution rate of 12% peaks at more than 4.5%, and a low

rate of 5% incurs a maximum loss of around 1.5% of lifetime welfare.

However as the total wealth consists of financial wealth and human capital, and the

value of non-consumable human capital is dominant at the beginning of working life, the

percentage welfare loss with respect to initial financial wealth could be more meaningful.

In this context, the percentage welfare loss is very high for low initial financial wealth

simply because the value of the denominator is very small. What we can conclude is

the welfare loss increases with the contribution rate, particularly for low-initial-wealth

individuals, and the welfare loss converges and approaches zero as wealth increases

regardless of the compulsory superannuation rate.

4.4.3 Increasing Preservation Age

From the most recent discussion of the Productivity Commission (2015), the increase of

the preservation age can be regarded as an important policy lever in managing the fiscal

implication population aging in Australia. The proposed effects of raising the preser-

vation age are to keep individuals in the workforce and to increase overall productivity

at a national level, and increase personal superannuation balances at the same time as

reducing calls on the Age Pension. As the preservation age provides a signal to retire, we

simply make the preservation age the same as the retirement date in our model. Even if

the preservation age is earlier than the retirement date, the overall result will not vary

in a significant way because the superannuation constraint will have the same binding

power for young individuals.

In this subsection, we analyse the impact on consumption and welfare loss if the preser-

vation age of superannuation is longer than the current practice. Instead of retiring at

age 60, we model individuals retiring at the age of 65 and at the age of 70 for com-

parison. For all cases, we keep the terminal date, T , the same. Since we consider an

exponentially increased mortality rate, and have a reasonably long horizon, any increase

to the terminal date will not affect the result. We also investigate the impact of super-

annuation by changing the contribution rate for retiring at the age of 65. The results

are illustrated in Figure 4.7.
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Figure 4.7: Comparison of different retirement dates and superannuation rates. The
upper figure shows the constrained optimal consumption for retirement at age 60 (base-
line), 65 and 70. The middle figure indicates the optimal consumption with different
superannuation rates when retiring at the age of 65. Both are with the initial dis-
cretionary wealth for consumption set as $40,000. The bottom figure illustrates the

percentage welfare loss with respect to initial financial wealth.
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As we set the preservation age to be the same as the retirement date, higher preservation

age also means individuals have to work longer. In this case, the value of human capital

for young individuals will be greater, which induces young individuals to have a high

preference for spending for now rather than later. However, the consumption capacity

has been deeply constrained by the superannuation requirement. From the upper graph

of Figure 4.7, we observe that the resulting constrained consumption among different

retirement dates are quite similar for the first 15 years. The superannuation constraint

becomes non-binding as time passes by, thereby individuals who plan to work longer are

able to enjoy higher consumption.

Next we consider the consumption path when the retirement age is set to 65 with different

contribution rates, which is illustrated in the middle graph of Figure 4.7. As for the

baseline case from Figure 4.6, we find the higher the superannuation rate, the lower the

consumption for the young is, and vice versa for the old. The percentage welfare loss

with respect to initial financial wealth is also presented in the bottom graph of Figure 4.7.

Not surprisingly, the welfare loss for the high contribution rate (red dashed line) is larger

than the one with 9% baseline rate (black dotted line). Considering a low initial financial

wealth, the percentage welfare loss reaches more than 100% for the 12% contribution

rate and around 80% for the baseline 9% rate when individuals plan to retire at age

65. Moreover, we identify the impact of changing the preservation age on welfare loss.

Keeping the contribution rate the same, the welfare loss at the baseline preservation

age of 60 (blue solid line) is approximately 5% less for low-wealth individuals compared

with the welfare loss at a preservation age of 65 (black dotted line). Again, the welfare

loss is attributed to the prolonged superannuation requirement. In short, we document

that higher preservation and higher compulsory contribution rates lead to larger welfare

losses, which indicates that there is a critical trade-off between spending now and saving

for retirement income for young and lower-wealth individuals.

4.4.4 Time Varying Contribution Rate

To tackle the problem of the critical trade-off we have seen in previous subsections, we

now introduce some amendments to policy that aim to relieve the tight tension on early

consumption while still achieving desirable retirement wealth. Inspired by the optimal

time-varying contribution rate we obtained in Table 4.4, together with the argument that
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young individuals prefer consuming now to saving for retirement, we construct several

scenarios that reduce the initial contribution rate but allow the rate to increase with

time. Consistent with this line of argument, we reduce the initial contribution rate and

fix it at 6%. To make the scenario simple but informative, we make the contribution rate

linearly increasing and fit the amount of superannuation accumulated at retirement to

match the amount from the constant baseline 9% accumulation. We display the welfare

loss based on this setting in Figure 4.8.

We firstly compare the time-varying and baseline constant contribution rate with the

preservation age of 60. The linearly increased contribution rate starts at 6% and ends at

13.56%, with Δz = 0.0021% increase each year in order to achieve the same accumulation

of superannuation wealth at retirement as in the baseline model. Individuals are able

to withdraw from superannuation after the preservation age, therefore it is the final

amount instead of the accumulation process that impacts the retirement wealth.

In the time-varying contribution rate case, the compulsory savings constraint is not as

severe as in the baseline case for younger individuals, which gives them more capacity to

spend. To compensate for the initial low contribution rate, individuals are automatically

escalated into contributing a higher portion of wages and salaries later in their working

life to fund their own retirement spending. Empirical evidence suggests that people tend

to think about retirement wealth from middle age (possibly influenced by their fund

advices or employer educational sessions), so individuals are in general more willing to

contribute to their superannuation plan from middle age (Bateman et al., 2014). From

the upper graphs of Figure 4.8, we illustrate the welfare loss with regard to initial total

wealth and financial wealth respectively. From this analysis we discover that the time-

varying contribution rate does reduce welfare loss, suggesting that individuals are likely

to favour low initial and gradually increasing contribution rates.

Similarly, we observe the same pattern as we increase the preservation age to 65 years.

With a longer working life, the initial contribution rate is set at 6% with an increasing

rate of Δz = 0.0019% each year to reach the same amount of superannuation wealth

at retirement. Again, we observe a reduction of welfare loss in the middle graphs of

Figure 4.8. The reduced welfare loss with respect to initial financial wealth is at most

around 20% for low-wealth individuals, which is better than for the preservation age of

60 case, where the largest reduction is about 15%. Some argue that although individuals
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Figure 4.8: The welfare loss with respect to initial total and financial wealth. For all
figures, the left shows the welfare loss with respect to initial total while the right shows
the welfare loss with respect to initial financial wealth. The upper figures depict the
welfare loss for a baseline 9% contribution rate and a time-varying superannuation rate
at the preservation age of 60. The middle figures depict the welfare loss for a baseline
9% rate and a time-varying superannuation rate at the preservation age of 65. The
bottom figures depict the welfare loss for a baseline rate for the preservation age of 60

and a time-varying superannuation rate at the preservation age of 65.

are aware of the need to accumulate savings during their working phase to fund retire-

ment spending, the amounts most people accumulate is far from adequate for the entire

retirement for most individuals (Davis, 2012, Enterprise Metrics, 2012). Therefore, the

Productivity Commission (2015) report suggests that policymakers should increase the

preservation age to allow individuals to accumulate more funds, as well as encouraging
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people to delay retirement. Our results support an increase to the preservation age as a

way to enhance retirement wealth: we observe a better than 20% increase of the amount

of superannuation at retirement from our model prediction16. However, at the same

time, the increase in the preservation age also exacerbates individuals’ welfare loss as

we have seen in the discussion above. We suggest that while increasing the preserva-

tion age to accumulate adequate retirement wealth, policymakers should also consider

modifying the contribution rate to reduce welfare loss, particularly for low-initial-wealth

individuals.

In the bottom graphs of Figure 4.8, we compare a baseline case of 9% contribution rate

with preservation age of 60 and a time-varying contribution rate with the preservation

at age of 65. The intention of this exercise is the following: if we assume the amount

of superannuation accumulated at the age of 60 is sufficient based on the constant

9% contribution rate, we would like to see what will be the result if we reduce the

initial contribution rate and increase the preservation age. Therefore, we fix the initial

contribution rate at 6% with an increasing rate of Δz = 0.0009% per year to reach

9.6% at the age of 65. By comparing these two scenarios, we find that the alternative

setting reduces welfare loss for low-wealth individuals while increasing welfare loss for

rich individuals.

This interesting result brings up another argument about changing the superannuation

policy. To maintain a proper current living standard, low-wealth individuals may be

reluctant to save for retirement. In this case, the current constant rate could be a burden

while the alternative setting would probably benefit them. If the superannuation policy

allows this group of people to opt for a low initial contribution rate (and an overall low

rate) while committing to working longer to accumulate retirement wealth, this would

probably make them better off. However, the current constant rate setting will still be

better for middle-class and rich individuals. Because these groups have enough wealth to

consume, the current setting will not change their lifestyle a great deal while providing

earlier access to the superannuation wealth.

16Based on our model specification, the superannuation accumulated at age of 60 is $341,092, while
the amount grows to $431,709 at the age of 65.
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4.4.5 Market Performance and Individual Preference

Apart from calculating the welfare loss from the policy side, we also wish to compare the

welfare loss under different market conditions as well as with different education groups.

In this subsection, we show the impact of market conditions and individual preferences

on lifetime welfare loss.

4.4.5.1 Market Performance

By using the baseline preference estimates, we compute the percentage welfare loss in

terms of financial wealth under different market conditions, shown in Table 4.6. The

dynamic of the market portfolio is the same as in the analysis of Table 4.4. Though

the difference of welfare loss among different market portfolios is moderate, it exhibits a

clear trend. The welfare loss for the high-risk and -return portfolio is always higher than

the baseline, followed by the low-risk and -return portfolio. Here, we observe that the

welfare loss is positively correlated with the Sharpe ratio. When the market portfolio

is more attractive, rational individuals wish to possess higher risky asset holdings to

grow their financial wealth. By doing so, the (unconstrained) optimal consumption also

increases as it depends on individuals’ financial positions. However, the high incentive

to consume in early years will cause high welfare loss as individuals are forced to save

into a superannuation account. The welfare loss will gradually disperse with high initial

financial wealth as we have documented above.

Percentage Welfare Loss with Market Performance

Initial Financial Wealth 50,000 75,000 100,000 150,000 200,000

Baseline (μ = 0.06, σ = 0.20) 69.89% 49.07% 38.73% 26.73% 19.80%
High Return (μ = 0.08, σ = 0.30) 71.24% 50.19% 39.75% 27.64% 20.65%
Low Return (μ = 0.05, σ = 0.15) 68.70% 48.09% 37.85% 25.94% 19.06%

Table 4.6: Percentage welfare loss among different market performance.

In this scenario, we keep the superannuation investment the same as in our baseline

model, mimicing the average setting of a balanced plan. Even if we modify the risky

holdings among superannuation, we will get a similar result on welfare loss from the

compulsory savings constraint. There is no doubt that the risky asset holdings have a

direct impact on the value of superannuation at retirement, however, this impact is fairly
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mild for the young (when the savings constraint is binding) as both income level and

superannuation value are still low. Further, with a model considering forward-looking

optimal decisions on consumption and asset allocation, any suboptimal asset allocation

in superannuation account will be compensated by the risky holdings from discretionary

wealth in order to provide an overall optimal decision on financial wealth.

4.4.5.2 Preferences among Different Education Groups

Since we have identified the impatience and risk aversion among different education

groups in Table 4.3, we wish to compare the welfare loss among different preferences in

this subsection. Table 4.7 shows the welfare loss for different preferences, where we use

the parameter estimates in the second panel of Table 4.3 for corresponding education

groups.

Percentage Welfare Loss among Education Groups

Initial Financial Wealth 50,000 75,000 100,000 150,000 200,000

High Education 68.87% 48.09% 37.76% 25.74% 18.81%
Mid Education 71.09% 50.54% 40.37% 28.59% 21.75%
Low Education 71.07% 51.54% 42.01% 31.15% 24.90%

Table 4.7: Percentage welfare loss among different education groups.

From the structurally fitted model, the preference parameter estimates exhibit an in-

creasing trend of impatience and risk aversion as education level decreases. With this

characteristic, we find in general the largest welfare loss happens in the lowest education

group, and the welfare loss alleviates with education level even with the same amount

of initial financial wealth. Generally, individuals with high education are more patient

because they have potentially high income and high financial resources to distribute,

and may have better understanding of retirement wealth. Therefore, in terms of welfare

loss, this group is better off than other education groups. On the other hand, we show

the low education group is severely impacted by the compulsory savings contribution

from the aspect of preference choices regardless of the fact that this group is expected

to accumulate relatively less wealth compared with other counterparts. This obser-

vation emphasises again that young individuals with low-initial-wealth together with

low education suffer a lot from the generic compulsory superannuation designed for all

employees.
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4.5 Conclusion and Future Work

In this chapter, we examine the impact of superannuation on individuals’ consumption

and retirement wealth with a continuous time model calibrated to empirical data. Using

the theoretical model we built in Chapter 3, we are able to structurally estimate the

preference parameters by fitting the model to the HILDA survey data.

With this realistically calibrated model, we compute the optimal consumption over the

life cycle and find that consumption has been constrained, especially for young and

low-initial-wealth individuals. Consistent with the primary goal of the superannuation

scheme, higher retirement wealth is achieved by restricting consumption in the earlier

years of a worker’s life. However, the suppressed consumption is against young indi-

viduals’ interest. Our result indicates a sizeable welfare loss from the trade-off between

current consumption and future retirement wealth for some individuals. The impact is

increasingly severe for low-wealth individuals. From the model, we identify the welfare

loss from compulsory savings, which is in line with the empirical observation that young

individuals have very limited incentives to save for retirement.

To reduce the welfare loss to a minimum level while keeping desired retirement wealth,

we suggest and model a time-varying contribution rate. In this context, the compulsory

contribution rate for young workers is set at a low point with a default rate that will

gradually increase with time to achieve targeted retirement wealth. By implementing

this time-varying rate pattern, welfare losses are largely reduced. Although the time-

varying plan follows in the spirit of the “save more tomorrow” of Thaler and Benartzi

(2004), we argue that this recommendation is based on a rational theoretical foundation

as well as behavioural observations. Furthermore, under the time-varying scheme, we

can introduce some flexibilities, including the choice of increasing rate, into the policy

design for individuals to consider their consumption decisions.

We acknowledge that we use a simple calibrated model to illustrate the current issues.

There are several interesting components to be added to enrich the discussion. One

noticeable issue is the design of superannuation which rewards individuals with continu-

ous periods of employment. However, a number of studies argue that this design brings

larger gender inequality as the career paths for females tend to involve breaks (Basu

and Drew, 2009, Burnett et al., 2014). Basu and Drew (2009) target this problem by
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advocating a gender-sensitive superannuation design to either increase females’ contri-

bution rate or implement an aggressive asset allocation strategy. Relating their idea

to our time-varying contribution scheme, we admit that we do not separate the gender

effect in current study. One of our further steps is to blend the gender effect into the

model to prevent the possibility of widening the gender inequality from current purposed

time-varying scheme.

Furthermore, we are aware that there are several limitations that we are not able to

accommodate in current model set-up. One important issue is the assumption of de-

terministic labour income process. We understand that individuals view their future

income with some degree of uncertainty, including the risk of unemployment. We sur-

mise that the present value of human capital would fall, and individuals will have higher

precautionary savings motives against income risk. The detailed interaction with risky

income process on consumption and wealth accumulation will be subjected to future re-

search. Similarly, the availability of the Age Pension for retirees may play a crucial role

for individuals’ consumption-wealth decision. It would be interesting to see individuals’

behaviour with the interaction of the Age Pension.

Turning the focus to the current policy side, we could embed the tax treatment of

superannuation. One of the incentives for investing in a superannuation account is the

tax concessions it attracts. Under current policy, the funds in superannuation accounts

are taxed at a flat 15% of a capped value, which is generally lower than the normal income

tax rate. Considering such incentives in the model, individuals may be willing to save

more in their superannuation accounts17. Moreover, as raised by Warren (2008), the

whole retirement income system should be considered together when revising retirement

policies to avoid adverse selection. We can also include an option in the model so that

the retirees are able to call on the Age Pension if they are eligible to apply for it. All the

points discussed here will be the future directions of our research. We hope by blending

more relevant factors in our model, we can bring out clear insights and suggestions for

policymakers.

17However, in the real world, the superannuation taxation has been criticised that the concessional rate
has become a tax shelter for wealthy people, which deviates from the original purpose of superannuation
to improve household savings and provide retirement incomes. The fairness of the superannuation system
is also an ongoing debated issue.
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Conclusion

Managing a sustainable retirement provision system in countries with aging populations

is a key concern of public policymakers. One of the major policy directions put in place

in response is to compel or encourage individuals to fund their own retirement spending

by accumulating preserved savings during their working lives1. The relevant policies vary

among different nations. For example, in Australia, the Superannuation Guarantee is the

relevant policy; in the U.S., 401(k) plans are the most common type of retirement savings

plans. Funds in these schemes are dominated by defined-contribution pension plans.

By now, Australia has become the second largest DC plan pool in the world2. While

pursuing a similar purpose and sharing several similarities, the key difference between

401(k) plans and superannuation is that the superannuation is compulsory in nature,

requiring a mandatory retirement savings contribution to be made on behalf of most

workers by their employers. Currently, the superannuation system has a broad coverage

with more than 90% of employees enrolled. The overall assets under superannuation

management has exceeded Australian GDP, and on average, superannuation represents

the second largest household asset.

However, even with such a large pool of pension plans, one of the noticeable issues is the

current insufficiency of retirement savings (Enterprise Metrics, 2012, Productivity Com-

mission, 2015). The inadequate retirement savings not only challenges an individual’s

1This refers to the second pillar under World Bank’s three pillar classification (World Bank, 1994).
2The largest pool is the U.S. However, in terms of percentage, the DC plan is most dominant in

Australia, followed by the U.S.
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retirement wealth but economic and social welfare. In addition to the issue of inade-

quacy, the fairness of superannuation has been extensively discussed in recent decades.

In response, policymakers have often attempted to amend the superannuation system,

where we have seen reforms from nearly every Federal Budget announcement, in order

to work out the most efficient and impartial way to enhance retirement wealth.

Therefore, this thesis has addressed the question about the impact of mandated su-

perannuation contributions on individuals’ lifetime investment and consumption. As

almost all workers in Australia have savings in at least one superannuation account, this

issue becomes substantial for household wealth, national savings and consequently inter-

generational financial well-being. Our goal was to provide analysis for superannuation

policy discussion from a theoretical background of modern financial theory. We started

by building on a theoretical model in a continuous time framework and ended up with

policy analysis from a realistically calibrated model. Our main methodology was based

on the classical Merton (1969) model with the consideration of superannuation wealth.

To represent the superannuation wealth, we defined a superannuation account from

which the agent cannot withdraw until the preservation age. This treatment is similar

to Campbell et al. (2001), where they analyse retirement wealth in a discrete time

model. By having a superannuation account and a normal discretionary wealth process,

we modelled a representative agent who wishes to maximise his utility of consumption

by choosing consumption and investment options in Chapter 2.

During the wealth-accumulation stage, the agent earns a labour income which is mod-

elled as a deterministic process. This setting is simple, but the indicative insights into

the consumption-investment decisions are worthwhile. Focussing on decisions during

the agent’s working life, we assumed the agent exercises a lump-sum withdrawal option

for his superannuation account and annuitises his total wealth at retirement to preclude

the investment and longevity risk after retirement. We solved this model by adapting

the Markov chain approximation method of Kushner and Dupuis (1992) with a further

logarithmic transformation of the value function of Ye (2006). The theoretical result

from our original model indicates the optimal consumption for a young agent has been

suppressed, especially when initial wealth is low. This forcible savings constraint alters

the agent’s behaviour to be more conservative. It serves as an enhancement of retirement
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wealth from the trade-off between current consumption and retirement wealth, which

coincides with the primary purpose of superannuation.

In Chapter 3, we further introduced a life insurance purchase in addition to the model

formed in Chapter 2. Life insurance serves as a hedging argument for the mortality

risk of the agent. Extending the analysis from Chapter 2, we formulated the mortality

rate with a Gompertz distribution where we found that, consistent with related litera-

ture, this distribution fits well with the Australian national life table. We also relaxed

the post-retirement setting by letting the agent make consumption, investment and in-

surance decisions instead of full annuitisation at retirement. We observed a consistent

negative life insurance demand after retirement. This negative demand is expected when

the value of human capital drops to zero, and we can translate it to be the demand for

partial annuitisation for the retired agent. For the pre-retirement period, we computed

the result based of the same numerical method described in Chapter 2. After obtain-

ing the numerical result, we further constructed expected paths of wealth and control

variables via transition probabilities, as suggested by Purcal (1999). In addition to

the results in Chapter 2, we documented that the optimal life insurance in early years

has correspondingly reduced due to the impact of the savings constraint, which reduces

early-year consumption. We argue that as the agent is compelled to save more, he is

financially wealthier, therefore he compensates by reducing his insurance cover.

In this chapter, we further investigated the default insurance within superannuation

funds since this default has been strengthened by the recent reforms of Stronger Super.

We collected the statistics of default insurance within MySuper products, and found

the overall trend of insurance premia and cover is similar to our modelling result for

voluntary insurance purchase. Compared with our model suggestions, we observed that

the average MySuper default cover provides roughly half of the optimal value for our

representative agent. It should be noted that the tastes for life insurance heavily depend

on an individual’s subjective preference, in particular, the bequest motive. The provision

of default insurance from MySuper products is designed as a safety net, which implies

that the rational agent should optimally adjust the insurance cover either within or

outside of superannuation. We conjecture that in the real-world setting, increasing the

insurance cover within superannuation would be a preferable choice for the rational agent

because the insurance premium is directly deducted from his superannuation account
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instead of his discretionary wealth and because of the elimination of additional effort to

obtain an insurance offer outside of superannuation.

Finally in Chapter 4, we applied the theoretical model we built in Chapter 3 to struc-

turally estimate the preference parameters by fitting the model to the HILDA survey

data. From Chapter 2 and Chapter 3, we identified the redistribution of wealth over

the life cycle due to preserving current wealth for future usage. Although this obser-

vation fulfills the primary aim of the superannuation scheme, we want to ask if this is

in the best interest of individuals across age groups by conducting a welfare analysis.

The motivation for this analysis is that empirical evidence suggests young individuals

have very limited incentives to save for retirement. For the young, retirement seems to

be far away and full of uncertainty, and they prefer spending more now with relative

fewer resources. From our welfare analysis, we showed that suppressed consumption is

against young individuals’ interest, which results in sizeable welfare loss for the young

and low-wealth individuals; this finding has been backed up with empirical observation.

Referring back to the current issue of retirement saving insufficiency, policy directions

are to increase compulsory contribution rate and the preservation age of superannua-

tion. We warned that while raising the contribution rate and the preservation age can

be a remedy for inadequacy, the adverse effects will exacerbate lifetime welfare loss for

consumption-constrained individuals. To mitigate this issue, we came up with a time-

varying contribution proposal to reduce the welfare loss while keeping desired retire-

ment wealth. In this context, we modified the contribution rate to be age-dependent.

We lowered the default rate for young workers, which effectively provides them with

more accessible resources, to better match their consumption tastes. The default rate

will gradually increase to achieve a targeted retirement wealth; in the general case, we

reached a rate higher than the policy implementation of 12% at retirement. The in-

creased rate during middle age is not a major concern as the awareness of retirement

income magnifies with age. By implementing this time-varying rate pattern, welfare

losses are substantially reduced. In line with the “save more tomorrow” of Thaler and

Benartzi (2004), we demonstrated that a time-varying contribution plan better captures

individuals’ savings motive across age groups, which might bring some insight for poli-

cymakers when assessing superannuation policies. We also acknowledge that this result

is suggested from a modelling perspective. In real world practise, there would be some

other unintended consequences. An obvious case would be that employers may have
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less incentive to hire older workers because they need to provide more funds for older

workers. One mitigated approach might be to provide a base superannuation contri-

bution rate and an automatic opt-in for age-based contribution rate from the worker’s

remuneration package3.

5.1 Future Research

In discussing the impact of superannuation on individuals’ consumption, retirement

wealth and lifetime welfare, we narrowed down our focus by examining the compulsory

savings based on a theoretical life cycle model. To avoid dealing with complex numeri-

cal solutions for high-dimensional problems, we kept our model simple by assuming that

labour income is a foreseeable deterministic process. One fruitful future extension is to

introduce some degree of risk into the income process, since superannuation balance is

directly related to the income-generating ability. In addition to the risk associated with

the stock market as considered and modelled by various literatures, the risk of unem-

ployment and involuntary retirement will have a direct impact on superannuation wealth

and consequently on retirement well-being (Australian Bureau of Statistics, 2016). In

particular, this detrimental impact could be amplified with our proposed time-varying

contribution scheme. Therefore, a decent examination of the underlying risk of labour

income is believed to provide more insights on superannuation policy settings.

Further, the design and regulation of retirement income systems is a broad and current

topic. The issue of funding for retirement dramatically impacts overall global finan-

cial stability. When analysing the impact of superannuation and proposing alternative

policies, we shall consider the current retirement system as a whole, especially the avail-

ability of the Age Pension, to prevent the possibility of adverse selection. Deviating

from the current focus on contribution rates, questions regarding the design of default

options and fund management in the Australian Superannuation Guarantee should all

be subject to thorough research to maintain a sustainable retirement income systems in

coming decades. Another important issue we have seen from the analysis in Chapter 4

is that there is large heterogeneity across individuals in terms of consumption taste and

3This idea is similar to some existing systems which encourage employees to contribute voluntarily
(salary sacrifice). The system works as whenever there is a pay rise, a certain percentage of the pay
rise will automatically be contributed to the relevant superannuation account. Instead of pay rise, we
consider the automatic additional contributions based on employee’s age.
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retirement savings. The “one-rate-for-all” design is mostly likely to be inappropriate.

On the contrary, policies and investment plans that provide flexibility and tailored fea-

tures considering personal circumstances could benefit individuals, and also reduce the

cost on the broad economy.



Appendix A

Appendix for Chapter 2

A.1 The Verification Theorem

We have shown that if V (M,S, t) is the optimal value function then V (M,S, t) satis-

fies (2.9), in this way, the HJB equation is derived by a necessary condition. We need

to verify the sufficient condition for optimality. By using the verification technique, we

start with the dynamic programming principle and attempt to find a solution. This so-

lution coincides with the value function from the optimal control problem, which verifies

the control is indeed optimal.

Theorem A.1. Let H : [0, TR] → R be a twice differentiable smooth function, and sup-

pose that H(M,S, t) solves HJB equation (2.9), with terminal condition H(M,S, TR) =

U(X(TR))K. Then for all t ∈ [0, TR] and M,S ∈ R
+ :

H(M,S, t) � J(M,S, t;π,C),

for any (π,C) ∈ A(M,S, t), and therefore H(M,S, t) � V (M,S, t). Furthermore, sup-

pose there exists (π∗, C∗) ∈ A(M,S, t), with corresponding M∗ and S∗, for all t ∈ [0, TR],

Ht(M
∗, S∗, t)− (β + λ)H(M∗, S∗, t) + sup

π(t),C(t)∈A
L(M∗, S∗, t;π(t), C(t)) = 0.

Then H(M,S, t) = J(M,S, t;π∗, C∗) = V (M,S, t).

Lemma A.2. Let H(M,S, t) be as in Theorem A.1 and let (t+ h) ∈ [t, TR].
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1. If (π,C) ∈ A with corresponding state processes M and S, then

H(M,S, t) � E

[∫ t+h

t
F̄ (t, s)e−β(s−t)U(C(s)) ds+ F̄ (t, t+ h)e−βhH(M,S, t+ h)

]
.

2. If there exists (π∗, C∗) ∈ A as in Theorem A.1 with corresponding state processes

M∗ and S∗, then

H(M,S, t) = E

[∫ t+h

t
F̄ (t, s)e−β(s−t)U(C∗(s)) ds+F̄ (t, t+h)e−βhH(M∗, S∗, t+h)

]
.

Proof. For an arbitrarily chosen (π,C) ∈ A with corresponding state processes, we apply

Ito’s formula to the function F̄ (t, t+ h)e−βhH(M,S, t+ h):

F̄ (t, t+ h)e−βhH(M,S, t+ h) =

H(M,S, t) +

∫ t+h

t
F̄ (t, s)e−β(s−t)

[
Ht − (β + λ)H + L(M,S, s;π,C)− U(C(s))

]
ds+

∫ t+h

t
F̄ (t, s)e−β(s−t)

[
σπ(u)M(u)HM + σπsSHS

]
dB(s).

Adding
∫ t+h
t F̄ (t, s)e−β(s−t)U(C(s)) ds to both sides and taking expectations, we obtain

E

[
F̄ (t, t+ h)e−βhH(M,S, t+ h)

]
+ E

∫ t+h

t
F̄ (t, s)e−β(s−t)U(C(s)) ds =

H(M,S, t) + E

∫ t+h

t
F̄ (t, s)e−β(s−t)

[
Ht − (β + λ)H + L(M,S, s;π,C)

]
ds.

Rearranging the above expression, we end up with

H(M,S, t) = E

∫ t+h

t
F̄ (t, s)e−β(s−t)U(C(s)) ds+ E

[
F̄ (t, t+ h)e−βhH(M,S, t+ h)

]

− E

∫ t+h

t
F̄ (t, s)e−β(s−t)

[
Ht − (β + λ)H + L(M,S, s;π,C)

]
ds.

which implies

H(M,S, t) ≥ E

[∫ TR

t
F̄ (t, s)e−β(s−t)U(C(s)) ds+ F̄ (t, TR)e

−β(TR−t)H(M,S, TR)

]

= E

[∫ TR

t
F̄ (t, s)e−β(s−t)U(C∗(s);π∗, C∗) ds+ F̄ (t, TR)e

−β(TR−t)U(X∗(TR))K

]
.
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Since H(M,S, t) solves (2.9), H(M,S, t) ≥ J(M,S, t;π,C). Thus it is true for the

optimal control values

H(M,S, t) = J(M,S, t;π∗(t), C∗(t)) = V (M,S, t),

and

Vt(M
∗, S∗, t)− (β + λ)V (M∗, S∗, t) + sup

π,C∈A
L(M∗, S∗, t;π(t)∗, C(t)∗) = 0.

A.2 A Detailed Solution for the Unconstrained Problem

In this section we provide a detailed derivation of the expression (2.14) and (2.15) for

the optimal consumption and investment plan (C∗, π∗), in the case where the agent faces

no constraints. We begin by substituting (2.11) and (2.12) into the HJB equation (2.8),

to get

Vt − (β + λ)V +
(
rM(t) + (1− z)L(t)

)
VM +

(
πs(μ− r)S(t) + rS(t) + zL(t)

)
VS

(A.1)

+
1

2
π2σ2S2VSS − 1

2

1

VMM

(
μ− r

σ
VM + πsσSVMS

)2

+
γ

1− γ
V

(γ − 1)/γ
M = 0,

subject to the boundary condition V (M,S, TR) = U(X(TR))K. Next we observe that

the partial derivatives of the trial value function (2.13) are given by

Vt = α′(t)
(M + S + f(t)L(t))1−γ

1− γ
+ α(t)(M + S + f(t)L(t))−γf ′(t)L(t)

+ α(t)(M + S + f(t)L(t))−γf(t)L′(t),

VM = VS = α(t)(M + S + f(t)L(t))−γ ,

VMM = VSS = VMS = α(t)(−γ)(M + S + f(t)L(t))−γ−1.

(A.2)

Using these expressions, the optimal controls from (2.11) and (2.12) can be written as

C∗(t) = α(t)−1/γ(M + S + f(t)L(t)),
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and

π∗(t) = −(μ− r)VM

Mσ2VMM
− πsSVMS

MVMM

=
μ− r

γσ2

(
M + S + f(t)L(t)

M

)
− πs S

M
.

Moreover, once the expressions in (A.2) are substituted into (A.1), and divided by

(M + S + f(t)L(t))1−γ we obtain

γ

1− γ
α(t)

(γ − 1)/γ − α(t)
β + λ

1− γ
+ α′(t)

1

1− γ
+

α(t)

M + S + f(t)L(t)
(f ′(t)L(t) + f(t)gL(t))

+ α(t)r + α(t)
−rf(t)L(t) + L(t)

M + S + f(t)L(t)
+ α(t)

1

2

(μ− r)2

γσ2
= 0. (A.3)

Note that if α(t) and f(t) satisfy the following two coupled ODEs, then (A.3) will be

satisfied as well:

f ′(t) + (g − r)f(t) + 1 = 0, (A.4)

and

γ

1− γ
α(t)

(γ − 1)/γ − α(t)
β + λ

1− γ
+ α′(t)

1

1− γ
+ α(t)r + α(t)

1

2

(μ− r)2

γσ2
= 0, (A.5)

subject to the boundary condition f(TR) = 0. It is easy to verify that

f(t) =
1

g − r
(e(g−r)(TR−t) − 1), (A.6)

satisfies (A.4), together with the boundary condition f(TR) = 0.

Finally, to obtain an expression for α(t), we introduce the function ξ(t), which is defined

implicitly by setting

α(t) = ξ(t)γ , (A.7)

in which case

α′(t) = ξ(t)γ−1γξ′(t).
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Substituting these expression into (A.5) gives

− β + λ

γ
ξ(t) + ξ′(t) +

1− γ

γ

[
r +

(μ− r)2

2γσ2

]
ξ(t) + 1 = 0. (A.8)

For simplicity, we introduce a new parameter Ψ, which is defined by setting

Ψ = −β + λ

γ
+

1− γ

γ

(
r +

(μ− r)2

2γσ2

)
.

This allows us to rewrite (A.8) more compactly, as follows:

Ψξ(t) + ξ′(t) + 1 = 0.

The general solution for this equation is given by

ξ(t) = Ce−Ψt − 1

Ψ
,

where C is some constant.

In order to determine the value of C, we use the trial solution of (2.13) to get

V (M,S, TR) = α(TR)
(M + S)1−γ

1− γ
,

since f(TR) = 0, by virtue of (A.6). On the other hand, it follows from (2.6) that

V (M,S, TR) = U(M(TR) + S(TR))K,

with K given by (2.7). Combining these expressions, we get α(TR) = K, where

ξ(TR) = K
1/γ,

according to (A.7). Hence, C = eΨTR
(
1
Ψ +K1/γ

)
. This enables us to solve for ξ(t) that

ξ(t) =
eΨ(TR−t)(1 + ΨK1/γ)− 1

Ψ
, (A.9)

and

α(t) =
(eΨ(TR−t) − 1

Ψ
+ eΨ(TR−t)K

1/γ
)γ

. (A.10)
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Appendix for Chapter 3

B.1 A Detailed Derivation for the Post-retirement Solu-

tion

In this section, we provide a detailed derivation of the expressions (3.17), (3.18) and (3.19)

for the optimal decisions during the post-retirement stage. We start by substituting the

first order condition with associated control variables (3.14), (3.15) and (3.16) back into

the post-retirement HJB equation (3.10), where we get

Vt − (β + λ(t))V +

(
rX(t)− λ(t)

(
(
VX

φ(t)
)
− 1/γ −X(t)

))
VX − 1

2

(μ− r)VX

σ2VXX
(B.1)

+
(
1 +

λ

γ
φ(t)

1/γ
) γ

1− γ
V

(γ − 1)/γ
X = 0,

with the terminal condition V (X,T ) = 0.

We consider a trial solution that

V (X, t) = α(t)
X1−γ

1− γ
, (B.2)

where

α(t) = ξ(t)γ , (B.3)

(B.4)
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for all t ∈ {TR, T}.

The partial derivatives of (B.2) are given by

Vt = α′(t)
X1−γ

1− γ
,

Vx = α(t)X−γ , (B.5)

Vxx = α(t)(−γ)X−γ−1.

We substitute (B.2) and associated partial derivatives (B.5) to (B.1) to obtain

(
1 + λ(t)φ(t)

1/γ
) γ

1− γ
X1−γα(t)

(γ − 1)/γ + α′(t)
X1−γ

1− γ

− (β + λ(t))α(t)
X1−γ

1− γ
+

[
r + λ(t) +

1

2

(μ− r)2

γσ2

]
α(t)X1−γ = 0.

We divide the above expression by γX1−γ

1−γ ,

(
1 + λ(t)φ(t)

1/γ
)
α(t)

(γ − 1)/γ +
α′(t)
γ

− β + λ(t)

γ
α(t) +

1− γ

γ

[
r + λ(t) +

1

2

(μ− r)2

γσ2

]
α(t) = 0.

In order to reduce the above expression to a first-order ODE, we bring the expression

of (B.3) and its derivative
(
α′(t) = ξ(t)γ−1γξ′(t)

)
in, and divide the expression by

ξ(t)γ−1,

(
1 + λ(t)φ(t)

1/γ
)
+ ξ′(t)− β + λ(t)

γ
ξ(t) +

1− γ

γ

[
r + λ(t) +

1

2

(μ− r)2

γσ2

]
ξ(t) = 0. (B.6)

Now, we introduce two new variables to simplify the expression, which are:

Ψ =
−(β + λ(t))

γ
+

1− γ

γ

[
r + λ(t) +

1

2

(μ− r)2

γσ2

]
,

and

A(t) = 1 + λ(t)φ(t)
1/γ.

With the above two variables, we can rewrite (B.6) in a compact form that

Ψξ(t) + ξ′(t) = −A(t),
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with the terminal condition ξ(T ) = 0.

By having an integrating factor expressed as, exp(
∫ T
t −Ψ(s) ds), we solve for the Bernoulli

type equation and obtain that

ξ(t) = e
∫ T
t Ψ(s) ds

∫ T

t
e
∫ T
u −Ψ(s) dsA(u) du,

and

α(t) =

(
e
∫ T
t Ψ(s) ds

∫ T

t
e
∫ T
u −Ψ(s) dsA(u) du

)γ

.

B.2 A Solution for the Post-retirement Problem without

Negative Insurance

In this section, we consider a supplementary case that the agent is restricted from having

a negative insurance premium. From Section 3.2.3, we observe that the retired agent

will always have a negative insurance purchase, and we wish to rule out this opportunity.

To do that, instead of choosing the value of bequest optimally by the model, we match

the value of bequest to financial wealth, that is, Z(t) = X(t). Examining the optimal

result from (3.18), we understand that making φ(t)1/γ = ξ(t) will result in Z(t) = X(t).

Therefore, the bequest function becomes

B(Z(t)) =
X(t)1−γ

1− γ
ξ(t)γ = α(t)

X(t)1−γ

1− γ
,

which coincides with the trial solution (B.2).

The post-retirement HJB equation without negative insurance is further simplified as

Vt +max
π,c

(
(rX + π(t)(μ− r)X − C(t))VX +

1

2
VXXσ2π2X2 + U(C(t))

)
= 0.

By putting the optimal control variables (3.14) and (3.16) back to the above HJB equa-

tion, we obtain

Vt − 1

2

(
μ− r

σ

)2 V 2
X

VXX
+ rXVX +

γ

1− γ
V

(γ − 1)/γ
X = 0.
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This is a pure Merton problem without the consideration of the force of mortality.

Following similar steps as in Section B.1, we get

−β

γ
ξ(t) + ξ′(t) +

1− γ

γ

[1
2

(μ− r

σ

)2 1
γ
+ r

]
ξ(t) + 1 = 0.

We rewrite the above expression in a compact form that

Ψξ(t) + ξ(t)′ + 1 = 0,

with the terminal condition ξ(T ) = 0, and Ψ = −β
γ + 1−γ

γ

[
1
2

(μ−r
σ

)2 1
γ + r

]
. By employing

the same integrating factor, exp(
∫ T
t −Ψ ds) = exp(−Ψ(T − t)), as in Section B.1, we

solve again for the Bernoulli type equation that

ξ(t) =
eΨ(T−t) − 1

Ψ
.

Here, we obtain a simpler expression of ξ(t) compared with Section B.1 because Ψ ends

up to be a constant under no (negative) insurance case. We plot the wealth profile in

Figure B.1 where the pre-retirement wealth processes follow the same argument as in

Section 3.3.2.
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Figure B.1: Expected path for financial wealth over the life cycle. The graph shows
the expected path for financial wealth over the life cycle with different scenarios: Un-
constrained (red dash-dot line), portfolio constrained (blue dotted line), liquidity con-
strained (magenta dashed line) and mandatory savings and portfolio constrained cases

(black solid line). The initial financial wealth is chosen as X(0) = $36, 900.
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B.3 Estimation of Gompertz Parameters

In this section, we present the estimation of the parameters m and b from the Gompertz

law of mortality (3.8). To obtain an estimated equation, we substitute (3.8) back to the

the probability of survival function (3.7):

F̄ (t, s) = e−
∫ s
t λ(u)du,

= exp

[
−
∫ s

t

1

b
exp (

u−m

b
)du

]
,

= exp

[
−1

b

(
b exp

(s−m

b

)
− b exp

( t−m

b

))]
,

= exp

[
exp

(
t−m

b

)(
1− exp

(s− t

b

))]
.

We estimate the mode m and dispersion b parameters via non-linear least squares from

the discrete mortality data of the Australian Life Tables 2010–2012 (Australian Bureau

of Statistics, 2013). We report the estimation results for the whole sample in Table B.1.

Estimated Equation: log(F̄ (t)) = exp
(
t−m
b

)(
1− exp(1b )

)
Sample: 25 - 100 years

Coefficient Std. Error t-Statistic Prob.

m̂ 87.201 0.2308 377.80 0.000

b̂ 9.667 0.1221 79.168 0.000

R2 0.9961

Table B.1: Estimated Gompertz parameters.
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Appendix for Chapter 4

C.1 Alternative Moments for Parameter Estimates

In this section, we wish to test the validity of our baseline parameter estimates by

choosing alternative moments as well as considering different sample selections. We

present the estimated results in Table C.1.

Panel I:
Parameter Estimates with Alternative Moments

β γ

Mean wealth match—baseline 0.0352 3.8451
Median wealth match 0.0502 3.1731
Mean wealth and consumption match 0.0269 2.7951

Panel II:
Parameter Estimates with Alternative Sample Selections

β γ

ABS method for person-level variables 0.0503 3.6801
No cross-sectional weight 0.0474 3.6929
Couple only 0.0362 3.8124

Table C.1: The analysis of parameter estimates based on alternative moments
(Panel I) and alternative sample selections (Panel II).

Within the first panel of Table C.1, the first row shows the baseline result as a bench-

mark, the second row represents the result from a match to median wealth, and the

last row considers both wealth and consumption match. For the median wealth match,

134



135

we calculate the standard deviation of the median based on a bootstrap method. The

parameter estimates from median match exhibit a higher impatience and lower risk aver-

sion compared with the baseline mean wealth match. This trend has been documented

in Cagetti (2003), where he argues that because wealth has a highly skewed distribution,

the mean value of wealth will be above the median, which will imply that individuals

are conservative with lower impatience and higher risk aversion. Although the mean of

wealth inherits this issue, we still consider mean wealth match as our baseline result.

This is because we want to study the trend and the different parameter estimates among

different groups rather than the meaning of the exact number. Further, the design of the

matching procedure discussed in the Section 4.2.2 is related to the method of moments.

We believe the mean wealth match is valid for our study so long as we interpret the

numbers with care.

In the last row of the first panel of Table C.1, we add a mean consumption moment

into the system. As described earlier, the HILDA dataset records consistent expenditure

variables from Wave 6, which means we only have two observations of mean consumption

for each cohort. The result from this specification indicates both lower impatience and

risk aversion. From Figure 4.4, we see that there is an obvious consumption disparity,

so the system assigns lower impatience and risk aversion parameters in order to reduce

the distance between the actual and model consumption paths. However, this comes at

the cost of increasing the matching error for the wealth moments. More importantly,

the degree of disparity for consumption is still considerable. Due to the higher matching

error, we still refer the mean wealth matching scheme as our main result.

Turning to the second panel of Table C.1, we estimate preference parameters with

alternative sample treatments and selections. Firstly, as we have mentioned in Sec-

tion 4.2.3 that we need convert several wealth-related variables from household-level

data to person-level, we consider a family weight, that is, dividing wealth variables by

the square root of the weighted sum of the number of household members in our main

result. Here we also present the estimated results considering equivalised wealth vari-

ables using the method of Australian Bureau of Statistics in the first row of Panel II.

Similarly, from Section 4.2.3, we take into account the cross-sectional weight provided by

the HILDA survey for our baseline estimates. The idea of using cross-sectional weight

is to make a sample to represent the population. In an alternative test, we compute the

sample result regardless of the cross-sectional weight in the second row of Panel II. Both
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results indicate a higher impatience and lower risk aversion outcome than in the baseline

case. Although we end up with different values, we believe that the overall results and

conclusion are not materially affected from that degree of variation.

Finally, we restrict our sample’s marital status to be couple only to rule out the possible

variation from different family compositions. By restricting the sample to couple only in

three waves, we lose several sample points. Nevertheless, we observe that this particular

setting does not have an influential impact on parameter estimates so we still keep our

baseline result.
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N. El Karoui, M. Jeanblanc-Picqué, and V. Lacoste. Optimal portfolio management

with American capital guarantee. Journal of Economic Dynamics and Control, 29(3):

449–468, 2005.

Enterprise Metrics. Retirement outcome projection under 12% SGC. Australian Institute

of Superannuation Trustees, 2012.

E. Farhi and S. Panageas. Saving and investing for early retirement: A theoretical

analysis. Journal of Financial Economics, 83(1):87–121, 2007.

R. Finlay and F. Price. Household saving in Australia. Reserve Bank of Australia, 2014.

S. Fischer. A life cycle model of life insurance purchases. International Economic Review,

pages 132–152, 1973.

B. Fitzpatrick and W. H. Fleming. Numerical methods for an optimal investment-

consumption model. Mathematics of Operations Research, 16(4):823–841, 1991.

W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions.

Springer New York, second edition, 2006.

E. French. The effects of health, wealth, and wages on labour supply and retirement

behaviour. The Review of Economic Studies, 72(2):395–427, 2005.

P. Gallagher. Treasury measurement of retirement income adequacy. Department of the

Treasury (Australia), February 2011.

G. Gallery and N. Gallery. Paradox of choice in a mandatory pension savings system:

Challenges for Australian retirement income policy. Policy & Politics, 33(3):519–532,

2005.

P. Gerrans. Retirement savings investment choices in response to the global financial

crisis: Australian evidence. Australian Journal of Management, 37(03):415–439, 2012.

F. J. Gomes, L. J. Kotlikoff, and L. M. Viceira. Optimal life-cycle investing with flexible

labor supply: A welfare analysis of life-cycle funds. National Bureau of Economic

Research, No. w13966, April 2008.

P.-O. Gourinchas and J. A. Parker. Consumption over the life cycle. Econometrica, 70:

47–89, 2002.



Bibliography 143

R. Guest. Policy forum—Saving for retirement: Policy options to increase retirement

saving in Australia. Australian Economic Review, 43(3):293–301, 2010.

M. Halek and J. G. Eisenhauer. Demography of risk aversion. Journal of Risk and

Insurance, pages 1–24, 2001.

M. Haliassos and A. Michaelides. Portfolio choice and liquidity constraints. International

Economic Review, 44(1):143–177, 2003.

G. W. Harrison and E. E. Rutström. Risk aversion in the laboratory. Research in

Experimental Economics, 12:41–196, 2008.

H. He and H. F. Pages. Labor income, borrowing constraints, and equilibrium asset

prices. Economic Theory, 3(4):663–696, 1993.

B. Headey, D. Warren, and M. Wooden. The structure and distribution of household

wealth in Australia: Cohort differences and retirement issues. Social Policy Research

Paper Series, (33), 2008.

J. Heaton and D. Lucas. Market frictions, savings behavior, and portfolio choice. Macroe-

conomic Dynamics, 1(01):76–101, January 1997.

A. Hindy, C.-F. Huang, and S. H. Zhu. Optimal consumption and portfolio rules with

durability and habit formation. Journal of Economic Dynamics and Control, 21(2):

525–550, 1997.

S. Holden, J. VanDerhei, L. Alonso, S. Bass, and A. Pino. 401(k) plan asset allocation,

account balances, and loan activity in 2013. ICI research perspective, 20(10), December

2014.

H. Huang, M. A. Milevsky, and J. Wang. Portfolio choice and life insurance: The CRRA

case. Journal of Risk and Insurance, 75(4):847–872, 2008.

S. S. Huebner. Human life values–Role of life insurance. Life Insurance, 1964.

R. G. Ibbotson, M. A. Milevsky, P. Chen, and K. X. Zhu. Lifetime financial advice:

Human capital, asset allocation, and insurance. Research Foundation of CFA institute,

2007.

J. Inkmann and A. Michaelides. Can the life insurance market provide evidence for a

bequest motive? Journal of Risk and Insurance, 79(3):671–695, 2012.



Bibliography 144

G. Kingston and S. Thorp. Annuitization and asset allocation with HARA utility.

Journal of Pension Economics and Finance, 4(03):225–248, 2005.

J. Kjosevski. The determinants of life insurance demand in Central and Southeastern

Europe. International Journal of Economics and Finance, 4(3):237–246, 2012.

H. K. Koo. Consumption and portfolio selection with labor income: A continuous time

approach. Mathematical Finance, 8(1):49–65, 1998.

H. Kraft and M. Steffensen. A dynamic programming approach to constrained portfolios.

European Journal of Operational Research, 229:453–461, 2013.

M. T. Kronborg. Optimal consumption and investment with labor income and Euro-

pean/American capital guarantee. Risks, 2(2):171–194, 2014.

M. T. Kronborg and M. Steffensen. Optimal consumption, investment and life insurance

with surrender option guarantee. Scandinavian Actuarial Journal, 2013.

H. J. Kushner. Approximation and weak convergence methods for random processes,

with applications to stochastic systems theory, volume 6. MIT press, 1984.

H. J. Kushner. Numerical methods for stochastic control problems in continuous time.

SIAM Journal on Control and Optimization, 28(5):999–1048, 1990.

H. J. Kushner. Numerical Methods for Stochastic Control Problems in Finance. Lefschetz

Center for Dynamical Systems and Center for Control Sciences, Division of Applied

Mathematics, Brown University, 1995.

H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control Problems

in Continuous Time. Springer-Verlag, 1992.

M. Kwak, Y. H. Shin, and U. J. Choi. Optimal investment and consumption decision of

a family with life insurance. Insurance: Mathematics and Economics, 48(2):176–188,

2011.

P. Lakner and M. L. Nygren. Portfolio optimization with downside constraints. Mathe-

matical Finance, 16(2):283–299, 2006.

E. C. Lawrance. Poverty and the rate of time preference: Evidence from panel data.

Journal of Political economy, pages 54–77, 1991.



Bibliography 145

D. Leisen. A perturbation approach to continuous-time portfolio selection. Available at

SSRN 2331434, 2015.

H. Leland and M. Rubinstein. Portfolio insurance: A guide to dynamic hedging. The

evolution of portfolio insurance, 1976.

D. Li, F. Moshirian, P. Nguyen, and T. Wee. The demand for life insurance in OECD

countries. Journal of Risk and Insurance, 74(3):637–652, 2007.

B. H. Lim and U. J. Choi. Optimal consumption and portfolio selection with portfolio

constraints. International Sciences, 4:293–309, 2009.

L. M. Lockwood. Bequest motives and the annuity puzzle. Review of Economic Dynam-

ics, 15(2):226–243, 2012.

D. G. Luenberger. Optimization by vector space methods, 1997.

A. Lusardi and O. S. Mitchell. Financial literacy around the world: An overview. Journal

of Pension Economics and Finance, 10(04):497–508, 2011.

A. W. Lynch and S. Tan. Labor income dynamics at business-cycle frequencies: Impli-

cations for portfolio choice. Journal of Financial Economics, 101:333–359, 2011.

R. C. Merton. Lifetime portfolio selection under uncertainty: The continuous-time case.

The Review of Economics and Statistics, 51(3):247–257, 1969.

R. C. Merton. Optimal consumption and portfolio rules in a continuous-time model.

Journal of Economic Theory, 3:373–413, 1971.

R. C. Merton. An intertemporal capital asset pricing model. Econometrica: Journal of

the Econometric Society, pages 867–887, 1973.

M. A. Milevsky. The Calculus of Retirement Income. Cambridge University Press, 2006.

M. A. Milevsky. Are You a Stock or a Bond? FT Press, first edition, 2009.

M. A. Milevsky. The 7 Most Important Equations for Your Retirement: The Fascinating

People and Ideas Behind Planning Your Retirement Income. John Wiley & Sons, 2012.

M. A. Milevsky and V. R. Young. Annuitization and asset allocation. Journal of

Economic Dynamics and Control, 31:3138–3177, 2007.



Bibliography 146

O. S. Mitchell, G. R. Mottola, S. P. Utkus, and T. Yamaguchi. The inattentive par-

ticipant: Portfolio trading behavior in 401 (k) plans. Michigan Retirement Research

Center Research Paper No. WP, 115, 2006.

F. Modigliani. Life cycle, individual thrift, and the wealth of nations. The American

Economic Review, 76(3):297–313, 1986.

K. S. Moore and V. R. Young. Optimal insurance in a continuous-time model. Insurance:

Mathematics and Economics, 39(1):47–68, 2006.

D. Moos. Optimal Consumption and Portfolio Choice with Dynamic Labor Income. PhD

thesis dissertation, University of St. Gallen, 2011a.

D. Moos. Life-cycle models with stock and labor market cointegration: Insights from

analytical solutions. November 2011b.

D. Moos and H. Müller. A life cycle model with pension benefits and taxes. University

of St. Gallen, 2011.

C. Munk. Numerical methods for continuous-time, continuous-state stochastic control

problems. Publications from department of management, Odense University, 1997.

C. Munk. Optimal consumption/investment policies with undiversifiable income risk and

liquidity constraints. Journal of Economic Dynamics and Control, 24(9):1315–1343,

2000.

C. Munk. The Markov chain approximation approach for numerical solution of stochastic

control problems: Experiences from Merton’s problem. Applied Mathematics and

Computation, 136(1):47–77, 2003.

C. Munk and C. Sørensen. Optimal consumption and investment strategies with stochas-

tic interest rates. Journal of Banking and Finance, 28(8):1987–2013, 2004.

C. Munk and C. Sørensen. Dynamic asset allocation with stochastic income and interest

rates. Journal of Financial economics, 96(3):433–462, 2010.

OECD. Pensions at a glance 2015 - OECD and G20 indicators. 2015.

S. R. Pliska. A stochastic calculus model of continuous trading: Optimal portfolios.

Mathematics of Operations Research, 11(2):371–382, 1986.



Bibliography 147

S. R. Pliska and J. Ye. Optimal life insurance purchase and consumption/investment

under uncertain life time. Journal of Banking and Finance, 31:1307–1319, 2007.

Productivity Commission. Superannuation policy for post-retirement. Commission Re-

search Paper, Australian Government, 2015.

S. Purcal. Optimal consumption, portfolio selection and life insurance for financial

planning. School of Actuarial Studies, University of New South Wales, 1999.

S. Purcal. A stochastic control model for individual asset-liability management. Uni-

versity of New South Wales, 2003.

S. F. Richard. Optimal consumption, portfolio and life insurance rules for an uncertain

lived individual in a continuous time model. Journal of Financial Economics, 2(2):

187–203, June 1975.

W. B. Riley Jr and K. V. Chow. Asset allocation and individual risk aversion. Financial

Analysts Journal, 48(6):32–37, 1992.

P. A. Samuelson. Lifetime portfolio selection by dynamic stochastic programming. The

Review of Economics and Statistics, 51(3):239–246, 1969.

J. M. G. Schulenburg. Optimal insurance purchasing in the presence of compulsory

insurance and uninsurable risks. Geneva Papers on Risk and Insurance, pages 5–16,

1986.

E. S. Schwartz and C. Tebaldi. Illiquid assets and optimal portfolio choice. National

Bureau of Economic Research, No. w12633, 2006.

S. Sinclair and K. A. Smetters. Health Shocks and the Demand for Annuities. Congres-

sional Budget Office, 2004.

K. Swoboda. Major superannuation and retirement income changes in Australia: A

chronology. Parliamentary Library, Parliament of Australia, 2014.

N. Tan. Global pensions asset study 2015. Towers Watson, 2015.

N. Tang and Y.-T. Lin. The efficiency of target-date funds. Journal of Asset Manage-

ment, 16(2):131–148, 2015.

R. H. Thaler and S. Benartzi. Save more tomorrow™: Using behavioral economics to

increase employee saving. Journal of Political Economy, 112(1):164–187, 2004.



Bibliography 148

L. M. Viceria. Optimal portfolio choice for long-horizon investors with nontradable labor

income. Journal of Finance, 56:433–470, 2001.

J.-L. Vila and T. Zariphopoulou. Optimal consumption and portfolio choice with bor-

rowing constraints. Journal of Economic Theory, 77(2):402–431, 1997.

J. A. Wachter. Portfolio and consumption decisions under mean-reverting returns: an

exact solution for complete markets. Journal of Financial and Quantitative Analysis,

37(1):63–91, 2002.

T. Wang and V. R. Young. Maximizing the utility of consumption with commutable life

annuities. Insurance: Mathematics and Economics, 51:352–369, 2012.

D. Warren. Australia’s retirement income system: Historical development and effects

of recent reforms. Melbourne Institute of Applied Economic and Social Research, The

University of Melbourne, 2008.

World Bank. Averting the old age crisis: Policies to protect the old and promote growth.

World Bank. New York: Oxford University Press, 1994.

M. E. Yaari. Uncertain lifetime, life insurance and the theory of the consumer. The

Review of Economic Studies, 32(2):137–150, 1965.

J. Ye. Optimal Life Insurance Purchase, Consumption and Portfolio under an Uncertain

Life. PhD thesis dissertation, University of Illinois at Chicago, 2006.

J. Ye. A numerical method for consumption-portfolio problems. Available at SSRN

1895492, 2011.

E. N. Zietz. An examination of the demand for life insurance. Risk Management and

Insurance Review, 6(2):159–191, 2003.


	Title Page
	Abstract
	Certificate of Authorship and Originality
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Portfolio Allocation
	1.1.1 Human Capital
	1.1.2 Mortality Risk and Life Insurance
	1.1.2.1 Theoretical Life Cycle Models for Life Insurance
	1.1.2.2 Empirical Evidence on Life Insurance
	1.1.2.3 Modelling Mortality Risk

	1.1.3 Wealth Decumulation Stage with Longevity Risk

	1.2 Retirement Income System
	1.2.1 Australian Retirement Income System

	1.3 Solution Methods
	1.3.1 Martingale Representation Technique
	1.3.2 Dynamic Programming Method
	1.3.3 Numerical Approach—Markov Chain Approximation Method

	1.4 Motivation
	1.5 Structure of the Thesis

	2 Optimal Portfolio Choice and Mandatory Retirement Savings
	2.1 Introduction
	2.2 Model
	2.2.1 Wealth Dynamics
	2.2.1.1 Terminal Condition: Annuitisation at Retirement

	2.2.2 Solving the Agent’s Problem
	2.2.2.1 Solving the Unconstrained Problem
	2.2.2.2 Solving the Constrained Problem


	2.3 Results
	2.3.1 Comparison between Analytical and Numerical Results
	2.3.2 Constrained Numerical Results
	2.3.2.1 Optimal Consumption
	2.3.2.2 Optimal Risky Asset Allocation


	2.4 Sensitivity Analysis
	2.4.1 Risky Asset Allocation within Superannuation
	2.4.2 Time Impatience Parameter
	2.4.3 Risk Aversion Parameter

	2.5 Conclusion and Future Work

	3 Optimal Portfolio Choice and Mandatory Retirement Savings with Life Insurance
	3.1 Introduction
	3.2 Model
	3.2.1 Wealth Dynamics
	3.2.1.1 Pre-retirement Period
	3.2.1.2 Post-retirement Period
	3.2.1.3 Objective Function

	3.2.2 Hamilton-Jacobi-Bellman Equation
	3.2.2.1 The Bequest Function

	3.2.3 Solving the Post-retirement Period Problem
	3.2.4 Solving the Pre-retirement Period Problem

	3.3 Results
	3.3.1 Choice of Parameters
	3.3.2 Expected Path of Baseline Results
	3.3.3 Automatic Insurance within Superannuation

	3.4 Conclusion and Future Work

	4 The Impact of Compulsory Retirement Savings Contributions on Lifetime Welfare
	4.1 Introduction
	4.2 Method
	4.2.1 Model
	4.2.2 Calibration
	4.2.3 Data
	4.2.3.1 Labour Income Process

	4.2.4 Matching Procedure

	4.3 Results
	4.3.1 Baseline Result
	4.3.1.1 Consumption

	4.3.2 Analysis
	4.3.2.1 Estimates for Different Input Values
	4.3.2.2 Estimates for Each Cohort


	4.4 Discussion
	4.4.1 Consumption Path
	4.4.2 Increasing Contribution Rates
	4.4.3 Increasing Preservation Age
	4.4.4 Time Varying Contribution Rate
	4.4.5 Market Performance and Individual Preference
	4.4.5.1 Market Performance
	4.4.5.2 Preferences among Different Education Groups


	4.5 Conclusion and Future Work

	5 Conclusion
	5.1 Future Research

	Appendices
	A Appendix for Chapter 2
	A.1 The Verification Theorem
	A.2 A Detailed Solution for the Unconstrained Problem

	B Appendix for Chapter 3
	B.1 A Detailed Derivation for the Post-retirement Solution
	B.2 A Solution for the Post-retirement Problem without Negative Insurance
	B.3 Estimation of Gompertz Parameters

	C Appendix for Chapter 4
	C.1 Alternative Moments for Parameter Estimates


	Bibliography

