Optimization of Perceptual Steganography Capacity Using the Human Visual System and Evolutionary Computation

Raniyah Abdullah Wazirali

B.Sc. in Computer Science (Taif University)
M.Sc. in Information Technology (University of Technology, Sydney)

Supervisor: Dr. Zenon Chaczko

A Dissertation submitted to
The University of Technology, Sydney
In fulfillment of the requirements for the degree of
Doctor of Philosophy

School of Computing and Communications
University of Technology, Sydney
Sydney, NSW, AUSTRALIA

March 2016
Dedication

I dedicate this to my parents Abdullah and Afnan for their endless support, sincere prayers and encouragements throughout my life and my PhD

I dedicate this to my husband Abdulrahman and my son Battal for their continuous love, sacrifices and patience throughout my years of study
اهداء

لحظات يقف فيها المرء حائرا عاجزا عن التعبير كما يختلط في صدره من تشкрат لأشخاص
أمدوه بالكثير و الكثير، لحظات صار لابد أن ينطق بها اللسان و يعترف بفضل الآخرين اتجاهه لأنهم و
بصراحة كانوا الأساس المتين الذي بني عليه صرح العلم و المعرفة لديه، و أناروا سبيل بلوغهما
فأهدي ثمرة جهدي التي طالما تمنيت إهدائها و تقديمها في أحق طبق

إلى التي حملتني وهنا على وهن، و قاست و تألمت لألمي، إلى من رعتني بطففها وحنانها و
سمعت طرب الليل من أجل، إلى أول كلمة نطق بها شفتاي أمي الغالية أفان.

إلى الذي عمل وكد و جد فقاس ثم غلب حتى وصلت إلى هذين إلى المصباح الذي لا يبخل إمادي
بالنور، إلى الذي علمني بسلوكه خصالا أعتز بها في حياتي والدي العزيز.

إلى شريك حياتي و توأم روحي الذي شجعني ببهبه و حنانه و دعمه الغير محدود على مواصلة مسيرتي
العلمية، إلى زوجي الحبيب عبد الرحمن

إلى صغيري الذي كان دافعي و مصدر اصراري و قوتي، إلى ابني و فذة كيدي بثال

إلى رياحين حياتي في الشدة و الرخاء إخوتي وأسرتي جميعاً.

ثم إلى كل من علمني حرفاً أصبح سنا برقه يضيء الطريق أمامي.

وفي الأخير أشكر كل من ساهم في إنجاح هذه الرسالة من بعيد أو من قريب.
Originality Statement

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed ..

Date ..
Acknowledgments

All praise is due to Allah (Glorified and Exalted is He), without his boundless favours and blessings none of this work could exist.

Throughout the course of this Thesis, there have been several people who have afforded me with direction, motivation and provision for finishing this work. Firstly, I am indebted to my supervisor Dr. Zenon Chaczko for his continual guidance, support and suggestion. Without his insight, this work would not be possible. I would like also to thank Dr. Roman Danylak for his encouraging comments and suggestions throughout the reviewing stage. His participation was vital to the completion of this thesis.

On the personal front, I would like to express my appreciation to my parents, husband, brothers and sisters, for their nonstop love, truthful prayers and support during the research. I must also express my thanks to all my colleagues and friends in the Department of Computing and Communications at the University of Technology, Sydney.

Lastly, I would like express my thanks to the late King Abdullah of Saudi Arabia for the King Abdullah Foreign Scholarship Program and the Saudi Arabia Culture Mission for providing a chance and funding to engage this research.
Abstract

Efficient solutions for the purpose of delivery of information are called for by the revolution of internet. However concerns and problems over security, distribution of digital content and encapsulation of media artifacts have arisen as a result of these phenomenal developments. Hence, it has become necessary to seek capabilities to transport and secure multimedia with its meta-data in a safe way. Steganography has evolved as an enabler of multimedia applications keeping secret communication and embedded captioning secure.

There is a tolerable outcome that occurs between imperceptibility and steganographic capacity that fit right into the mix. For instance, the more subtle elements are hidden within the cover object having higher capacity, the more degradation is exhibited towards the carrier file, resulting in an increase in the distortion attributed to the information being concealed and at the same time, decreasing the stego file quality.

Suitable use of Evolutionary Algorithm and effective use of the weaknesses of Human Visual System in steganography are investigated in this thesis. Firstly, two high capacity steganography approaches are developed with the use of aforementioned features. The first method aims to overcome the limit capacity of edge based steganography in the spatial domain. The second method proposes a proper threshold selection for each coefficient which increase the capacity of transform domain. An estimate of the embedding rate based on image complexity is also proposed. Moreover, since peak signal-to-noise ratio (PSNR) is largely used as a measure of quality of images of stego, the reliability of current quality assessment metrics for stego images is also
evaluated at the third stage. Follow by developing an Anticipatory Quality Assessment Metric for effective imperceptibility measurement.

All proposed methods are aimed to assist the optimization of the statical and visual characteristics in the cover images while hiding large size of information. To reveal impressive imperceptibility and capacity of the proposed method over the existing dilemmas, a broad range of requirements have been carried out. To indicate the utility and value of all techniques proposed, they all have been empirically validated. The main aspects of image steganography are improved by the suggestions and methods, and are revealed by the results.
Nomenclature

AQAM Anticipatory Quality Assessment Metric
BPCS Bits Plan Complexity Structure
BPP Bits per pixel
CSF Contrast Sensitivity Function
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DoG Differences of Gaussian
DWT Discrete Wavelet Transform
EA Evolutionary Algorithm
EBE Edges based data embedding method
GA Genetic Algorithm
GP Genetic Programming
HVS Human Visual System
IQM Image Quality Metric
JND Just Noticeable Distortion
LOG Laplacian of Gaussian
LSB Least Significant Bits Substitution
LSBMR LSB Matching Revisited
MOS Mean Opinion Scores
MSE Mean Square Error
NVF Noise Visibility Function
OPAP Optimal Pixel Adjustment Process
PLCC Pearson Linear Correlation Coefficient
PM1 Plus Minus 1 Algorithm
PSNR Peak Signal to Noise Ratio
PSO Particle Swarm Optimization Algorithm
PVD Pixel Value Differencing
ROI Region of Interest
RPF Random pixel embedding method
SDoG Summation of Differences of Gaussian
SQE Subjective Quality Evaluation
SROCC Spearman Rank Order Correlation Coefficient
SSIM Structural Similarity Index
UIQI Universal Image Quality Index
WPM Watson’s Perceptual Model
wPSNR Weighted Peak Signal to Noise Ratio
Terms and Definitions

- **Steganography** is the science of concealing information within another non-secret information in an invisible way. It is derived from the Greek “steganos”, meaning 'covered'. Graphos is also Greek meaning 'writing'. Steganography mainly aims to hide the presence of the message.

- **Steganalysis** is the science of detecting hidden message using steganography.

- **Watermarking** is a pattern of bits inserted into a digital image, audio or video file that identifies the file’s copyright information (author, rights, etc.).

- **Cryptography** is the science of transforming information into an unreadable format.

- **Embedding/Insertion** is the process of mapping one file into another.

- **Extracting** is the process of obtaining the hidden message.

- **Cover-image/carrier** is the name of the original file that used to hide the message inside it.

- **Stego-image** is the name of the file after the embedding process. The cover image and the stego image must be identical.

- **Multi-dimensional media** is the integration of several types of media into one.

- **Encapsulation** is the process of packing multi-media into a single media.

- **Imperceptibility** is the quality of non perceptibility of the hidden file.

- **Capacity** is the number of allowable bits which can be inserted safely without any visible or statistical degradation.
• **Secret Message** is the name of the file or information that is hidden from general view.

• **Metadata** is a set of data that gives details about other data.

• **Optimization** is the process of enhancing and improving the stored results as best possible.

• **Fitness Function** is an objective measure of how close one is to a given solution.

• **Perception** is the ability of noticing something through the senses.
Contents

Originality Statement .. i
Acknowledgment .. ii
Abstract .. iii
Nomenclature ... v

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature</td>
<td>v</td>
</tr>
</tbody>
</table>

1 Introduction .. 7

<table>
<thead>
<tr>
<th>1.1 Overview</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Research Motivation</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Research Problem</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Research Hypothesis</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Research Aim</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3 Research Objectives</td>
<td>11</td>
</tr>
<tr>
<td>1.4 List of Publications</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Organization of the Thesis</td>
<td>12</td>
</tr>
</tbody>
</table>

2 The Art of Steganography 15

| 2.1 Background | 15 |
2.2 Steganographic Architecture .. 19
2.3 Steganographic Properties ... 20
 2.3.1 Robustness (Security) .. 20
 2.3.2 Undetectability (Imperceptibility) 21
 2.3.3 Payload Capacity (Embedding Rates) 21
 2.3.4 Trade-off Between Steganography Properties 22
2.4 Image Steganography Methods 23
 2.4.1 Spatial Domain Technique 25
 2.4.2 Frequency Domain Technique 27
 2.4.3 Adaptive Steganography 34
2.5 Steganographic System Evaluation 42
 2.5.1 Payload Capacity Evaluation 42
 2.5.2 Imperceptibility Evaluation 43
2.6 Summary ... 52

3 Methodological Perspectives of Steganography 54
 3.1 Human Visual System ... 55
 3.1.1 Contrast Sensitivity ... 56
 3.1.2 Contrast Sensitivity Function 57
 3.1.3 Just Noticeable Distortion 59
 3.1.4 Noise Visibility Function (NVF) 60
 3.1.5 Region of Interest .. 62
 3.1.6 Watson’s Perceptual Model 66
 3.2 Edge Detector Techniques .. 69
 3.2.1 Sobel method .. 70
 3.2.2 Prewitt method .. 72
3.2.3 Canny Edge Detector 72
3.2.4 Laplacian of Gaussian method 73
3.3 Evolutionary Algorithm 74
 3.3.1 Overview .. 74
 3.3.2 Genetic Algorithm (GA) 75
 3.3.3 Genetic Programming 79
3.4 Conclusion .. 83

4 Optimized Embedding Rate in Edge based Steganography 85
 4.1 The Problem ... 85
 4.2 Proposed Model .. 87
 4.2.1 The Detection of Edges 88
 4.2.2 Embedding Threshold Using CSF 89
 4.2.3 Optimized Edges Using Genetic Algorithm 92
 4.2.4 Data Embedding 95
 4.3 Results and Discussions 96
 4.3.1 Imperceptibility Evaluation 97
 4.3.2 Detectability Evaluation 98
 4.3.3 Payload Capacity Evaluation 99
 4.3.4 GA Performance Evaluation 101
 4.3.5 Computation Time Evaluation 103
 4.4 The Effectiveness of the proposed approach in a Multimedia
 Sharing App (Case Study) 105
 4.4.1 Steganographic Multimedia Sharing App 109
 4.5 Conclusion ... 116
List of Figures

1.1 Steganography concept 8

2.1 Relationship between steganography and other fields 16
2.2 Embodiment disciplines related to concealing information ... 18
2.3 Architecture of steganography 19
2.4 Trade-off factors in steganography 20
2.5 Image steganography techniques 24
2.6 Switching LSBs to fourth bit plane 27
2.7 Representation of One Byte 27
2.8 Relation between cover image, stego image and the extracted image for various LSBs 28
2.9 Discrete Cosine Transform Diagram 33
2.10 DWT vertical operation 34
2.11 DWT horizontal operation 35
2.12 Flowchart diagram of SSIM for steganography 48
2.13 PSNR-HVS flowchart 50

3.1 Demonstration of the apparent brightness 56
3.2 Example of Michelson contrast with sinusoidal waves 58
3.3 CSF curve ... 59
4.16 Gallery sequence diagram part 2 of multimedia sharing app . 115

5.1 DWT HVS Architecture diagram 121
5.2 CSF masking diagram ... 122
5.3 A five level wavelet decomposion 124
5.4 5-level Bi9/7 wavelet decomposition of CSF for 6-weight mask 125
5.5 Band-average CSF mask with 6 unique weights 126
5.6 CSF curve shown with the 6-weight band-average CSF mask . 127
5.7 Maximum embedding rates in Lenna 135
5.8 Different cover images with different embedding rates 136
5.9 Histogram analysis .. 140
5.10 Quality vs. capacity in Lenna left and Peppers right 141
5.11 Quality vs. capacity in Baboon left and Airplane right 141
5.12 Quality vs. capacity in House left and Tiffany right 142
5.13 Fitness function evaluation for various crossovers 143
5.14 Fitness function evaluation for various mutations 144

6.1 General Architecture of the proposed model 150
6.2 Segmentation Phase Diagram 151
6.3 DCT transform ... 154
6.4 The relation between image complexity and image degradation 161
6.5 Relation between capacity and the number of iterations 162
6.6 Differences between cover and stego image after 50 generations 163
6.7 Differences between cover and stego after 200 generations .. 164
6.8 Differences between cover and stego after 300 generations .. 165

7.1 Normalized subjective and objective score 169
7.2 Subjective assessment scale (a) quality and (b) visual comfort 174
7.3 Normalized image metrics with subjective evaluation 175
7.4 PLCC of PSNR and MOS 176
7.5 PLCC of SSIM and MOS 177
7.6 PLCC of UIQI and MOS 178
7.7 PLCC of AQAM and MOS 179

8.1 Normal Photo App Screen 189
8.2 Taking a picture ... 190
8.3 Photo App Filters .. 191
8.4 Inserting a message .. 192
8.5 Applying an overlay 193
8.6 Saving and loading images 194
8.7 Uploading an image 195
8.8 Gallery.php ... 196
8.9 Login.php .. 196
8.10 LoggedInGallery.php 197
8.11 Search.php ... 197
8.12 Register.php ... 198
List of Tables

2.1 Comparison between steganography, watermarking and cryptography 17
2.2 Quantization table ... 31
2.3 The modified quantization table ... 32
2.4 Key literature on texture features steganography approaches ... 37
2.5 Key literature on HVS steganography approaches ... 39
2.6 Key literature on EA steganography approaches ... 41
2.7 Mean opinion scores rating ... 52
3.1 Table for frequency sensitivity ... 67
4.1 The performance in Lenna image of various quality metrics for different embedding rates ... 99
4.2 The performance in Baboon image of various quality metrics for different embedding rates ... 100
4.3 The performance in Peppers image of various quality metric for different embedding rates ... 101
4.4 The performance in Airplane image of various quality metric for different embedding rates ... 102
4.8 Iteration vs PSNR and wPSNR ... 103
4.9 The computation time for LSB substitution and the proposed method ... 104
4.5 Various Threshold vs Embedding Capacity107
4.6 The capacity (bits) of the proposed and other methods . 108
4.7 Parameter Settings for Genetic Algorithm108

5.1 Adaptive CSF masking for a five-level DWT130
5.2 The quality performance for various embedded rates for the proposed method and other embedding techniques 138
5.3 Maximum embedding capacity141
5.4 Relation between the number of iteration and imperceptibility 142

6.1 GP parameter setting157
6.2 Maximum embedding capacity in bits159
6.3 The effect of different block sizes159
6.4 The effect of different local variance160
6.5 The effect of ROI ...160

7.1 Steganography approaches174
7.2 Performance Comparison using PLCC and SROCC175