

Faculty of Engineering and Information Technology

Design and Verification of Novel Powertrain

Management for Multi-Geared Battery Electric

Vehicles

A thesis submitted for degree of

Doctor of Philosophy

Jiageng RUAN September 2016

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date: 30 September 2016

ACKNOWLEDGEMENT

I'd like to take this opportunity to thank the following people and organizations for their assistance and support during my candidature.

My supervisor Professor Nong Zhang, his knowledge and guidance has been invaluable, and together with co-supervisors Professor Peter A. Watterson and Dr. Paul D. Walker have guided me through this research and supported my work.

My UTS colleagues, whose knowledge, advice, and experience have encouraged me to do better and better, Holger Roser, Luo Zhen, Zhu Bo, Zhou Xingxing, Jack Liang, Wu Jinglai, Zhu Sangzhi, Zhang Tianxiao, Fang Yuhong are along with me.

Most importantly my wife, Wang Jingyan, who is always by my side and help me through thick and thin, I couldn't have done this without you; and daughter, Xiran, my pride and joy. Of course, my parents' advice and encouragement are indispensable.

Financial support for my project is provided jointly by the University of Technology Sydney (UTS) and China Scholarship Council (CSC)

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP
ACKNOWLEDGEMENTi
TABLE OF CONTENTSii
LIST OF FIGURES
LIST OF TABLES
GLOSSARY OF TERMS AND NOTATIONSxvi
ABSTRACTxxii
CHAPTER 1 : INTRODUCTION
1.1 PROJECT STATEMENT
1.2 PROJECT OBJECTIVES
1.3 PROJECT SCOPE
1.4 PRESENTATION OF THIS THESIS
1.5 PUBLICATIONS
CHAPTER 2 : BACKGROUD INFORMATION AND LITERATURE REVIEW 10
2.1 BACKGROUD
2.2 LITERATURE REVIEW
2.2.1 The propulsion motor for BEVs15
2.2.2 The multi-speed transmission systems on BEVs

2.2.3 The cooperation of regenerative braking and traditional friction braking23
CHAPTER 3 : MOTOR SELECTIONS FOR BATTERY ELECTRIC VEHICLES 28
3.1 INTRODUCTION
3.2 BRUSHED DC MOTORS
3.3 INDUCTION MOTORS
3.3 SWITCHED RELUCTANCE MOTORS
3.3 PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM)
CHAPTER 4 : ALTERNATIVE TRANSMISSION FOR BATTERY ELECTRIC
VEHICLES
4.1 INTRODUCTION
4.2 CONFIGURATIONS OF SINGLE REDUCTION AND MULTI-SPEED
ELECTRIFIED POWERTRAINS
4.2.1 Fixed ratio single reduction BEV powertrain
4.2.2 Two-Speed DCT Electrified Powertrain
4.2.3 Simplified CVT Electrified powertrain
4.3 GEAR RATIOS DESIGN AND OPTIMIZATION
4.3.1 Ratio design for top speed63
4.3.2 Ratio design for maximum grade63
4.3.3 Ratio design for acceleration time
4.3.4 Gear Ratio design for single reduction, two-speed DCT and CVT67

4.4 CVT OPTIMIZATION FOR BEV POWERTRAIN
4.5 SHIFTING SCHEDULES DESIGN FOR MOTOR BASED MULTI-SPEED
TRANSMISSIONS
4.5.1 Two Speed DCT shifting schedule75
4.5.2 CVT shifting schedule
4.6: ECONOMIC AND DYNAMIC PERFORMANCE SIMULATION OF MULTI-
SPEED BATTERY ELECTRIC VEHICLE
4.6.1 Economy benefit of different transmissions based BEVs
4.6.2 Dynamic performance of different transmission based BEV
CHAPTER 5 : DEVELOPMENT AND CALIBRATION OF TESTING RIG
5.1 INTRODUCTION
5.2 TORQUE SENSORS CALIBRATION FOR TRANSMISSION EFFICIENCY
TESTING
5.3 dSPACE CONTROL SYSTEM AND ELECTRIC CONTROL PANEL
5.4 DYNAMOMETER101
CHAPTER 6 : EXPERIMENTAL RESULTS ANALYSIS OF MULTI-SPEED
ELECTRIFIED POWERTRAIN IN DRIVING CYCLES
6.1 TWO-SPEED DCT TEMPERATURE TESTING104
6.2 DCT EFFICIENCY TESTING
6.3 HWFET TESTING
6.4 ECE TESTING

6.5 ECONOMIC BENEFIT OF MUTI-SPEED TRANSMISSION FOR BATTERY
ELECTRIC VEHICLE
CHAPTER 7 : BLENDED BRAKING SYSTEM ON MULTI-SPEED BEV123
7.1 INTRODUCTION
7.2 MAXIMUM KINETIC ENERGY RECOVERY124
7.3 BRAKING REGULATIONS AND PROPOSED TESTING MANOEUVRES 130
7.4 REGENERATIVE BRAKING CAPABILITY
7.5 STABILITY AND CONTROLLABILITY IN BRAKING134
7.6 SAFETY (MOTOR PRIORITY) STRATEGY
7.7 ECO STRATEGY14
7.8 SPORT STRATEGY142
7.9 MOTOR FAULT INSURANCE STRATEGY143
CHAPTER 8 : BRAKING PERFORMANCE ANALYSIS OF THREE BLENDED
BRAKING STRATEGIES
8.1 INTRODUCTION
8.2 SINGLE STRAIGHT LINE BRAKING145
8.3 THE COOPERATION OF ABS, EBD AND RBS150
8.3.1 RBS with EBD
8.3.2 RBS with ABS
8.4 GEAR SHIFTING DURING BRAKING152

8.5 BRAKING IN TYPICAL CYCLES	
CHAPTER 9 : EXPERIMENTAL RESULTS AND COST SAVING A	NALYSIS OF
REGENERATIVE BRAKING	
9.1 INTRODUCTION	
9.2 REGENERATIVE BRAKING IN NEDC AND HWFET	
9.3 ENERGY RECOVERY AND COST SAVING ANALYSIS	
9.3.1 The cost saving in braking energy recovery	
9.3.2 The cost saving in braking equipment maintenance	
CHAPTER 10 : THESIS CONCLUSIONS	
Further Research	
APPENDIX A: WIRELESS TORQUE SENSOR	177
APPENDIX B: DCT TEMPERATURE VARIATION TESTING	
Bibliography	

LIST OF FIGURES

Figure 2-1: Greenhouse emissions per household application (tons per year)[2]12
Figure 2-2: Percentage shares of world oil demand by sector in 2011[6]13
Figure 2-3: Percentage shares of world oil demand by sector in 2040 [6]14
Figure 3-1: Evaluation and Comparison of Electric Propulsion System
Figure 3-2: Comparison of Different Machine Topologies Choice of Machine Type
[68]
Figure 3-3: Comparison of Different Machine Topologies for Limited Stator Current [68]
Figure 3-4: UQM Powerphase 125
Figure 3-5: (a) UQM 125 Motor with Inverter Torque/Speed and Efficiency Map
(b) UQM 125 Motor with Inverter Power/Speed and Efficiency Map37
Figure 3-6: UQM Powerphase Motor with Inverter Efficiency data in Simulink
model
Figure 4-1: Typical gasoline engine power and torque curves [70]39
Figure 4-2: Single Speed Reduction in BEV Powertrain
Figure 4-3: Two-speed Dual Clutch Transmission in BEV Powertrain

Figure 4-4: Schematics of two-speed DCT, clutch 1 closed, clutch 2 open
Figure 4-5: Schematics of two-speed DCT, clutch 2 closed, clutch 1 open
Figure 4-6: Required flow rate VS clutch angular speed
Figure 4-7: Continuously variable transmission with servo-electromechanical actuator
Figure 4-8: Typical Electric Motor Characteristic Map65
Figure 4-9: The relationship of 0-100 km/h acceleration time and gear ratio based on motor specifications of Table.4-1
Figure 4-10: Speed ratio based torque converter efficiency [97,98]71
Figure 4-11: The relationship of torque ratio and speed ratio in torque converter [97]
Figure 4-12: Remaining power after power loss in each component for a conventional CVT
Figure 4-13: Component efficiency and power loss in CVT74
Figure 4-14: CVT simulation model in Matlab®75
Figure 4-15: Two-speed DCT economy shifting point selection sample76
Figure 4-16: Two-speed DCT all shifting points at different throttle opening77
Figure 4-17: Original two-speed DCT shifting schedule77

Figure 4-18: Optimized two-speed DCT shifting schedule	78
Figure 4-19: CVT shifting strategy for BEV	80
Figure 4-20: Battery electric vehicle Simulink® Model	82
Figure 4-21: Motor operating tracks in efficiency map of BEVs with three d	lifferent
transmission scenarios	86
Figure 4-22: Average motor efficiencies for different driving cycles	87
Figure 4-23: Energy consumed in battery for different driving cycles	87
Figure 5-1: Experimental equipment structure schematic	90
Figure 5-2: Plan view of testing bench	90
Figure 5-3: ATi 2000 series wireless torque sensor	92
Figure 5-4: ATi 2000 series display	92
Figure 5-5: Schematic of torque sensor calibration	93
Figure 5-6: Torque sensor calibration (a)	94
Figure 5-7: Torque sensor calibration (b)	94
Figure 5-8: Torque sensor calibration (c)	95
Figure 5-9: Real torque on the shaft VS sensor display voltage	96

Figure 5-10: dSPACE control system (MicroAutoBox (Left)/ RapidPro (Right))
Figure 5-11: Schematic of control panel
Figure 5-12: Electric control panel in the powertrain testing (left)
Figure 5-13: PC display panel for data acquiring, variables changing in ControDesk®
Figure 5-14: A typical development process
Figure 5-15: Parameters setting in dynamometer
Figure 6-1: Temperature variation of 1 st gear in two-speed DCT104
Figure 6-2: Temperature variation of 2 nd gear in two-speed DCT105
Figure 6-3: 1 st gear efficiency at 3000 rpm input speed with different input torque
Figure 6-4: 1 st gear efficiency at 60Nm input torque with different input speed. 106
Figure 6-5: 2 nd gear efficiency at 3000 rpm input speed with different input torque
Figure 6-6: 2 nd Gear Efficiency at 60Nm Input Torque with Different Input Speed

Figure 6-7: Experimental results of SR and two speeds DCT scenarios in HWFET
Figure 6-8: SOC consumption in HWFET111
Figure 6-9: Experimental results of SR and two speeds DCT model in ECE 113
Figure 6-10: SOC consumption in four ECE cycles
Figure 6-11: Motor efficiency comparison of BEVs equipped with different
powertrains
Figure 6-12: Comparison of power consumption in term of SOC115
rigure o 12. Comparison of power consumption in term of Soc
Figure 7-1: Energy Consumption Distribution in Driving Cycles
Figure 7-2: Energy Consumption Distribution in UDDS at different slope
Figure 7-3: Energy Consumption Distribution in Driving Cycles during braking 126
Eisure 7.4. Schemetic diagrams of a) the Two Speed DCT based DEV assure train
Figure 7-4: Schematic diagrams of: a) the Two-Speed DCT-based BEV powertrain
topology; and b) the test bench
Firms 7.5. Deties of the menuel looks on the front and menuels lo denies hashing
Figure 7-5: Ratio of the normal loads on the front and rear wheels during braking
for a typical city vehicle chassis
Figure 7-6: Available operating region of the motor braking force on the front
wheels in different gears, also showing contours of motor efficiency133

Figure 7-7: Braking force distribution on front and rear wheels for the vehicle of
specification
Figure 7-8: The influence of slip ratio, steering angle ("a" in degrees) and road
condition on friction factor [132]
Figure 7-9: Schematic over-steering and under-steering when wheels lock, shown
in red. Red arrows show lateral forces on unlocked wheels
Figure 7-10: The Cooperation of RBS, EBD and ABS141
Figure 7-11: Motor control & fail-safe strategy144
Figure 8-1: Straight line braking force distribution and wheel slip ratios for: (a) and
(b) Eco strategy; (c) and (d) Eco & Safety strategy; (e) and (f) Sport & Safety
strategy; and (g) and (h) Safety strategy
Figure 8-2: Front/Rear braking force distribution ratios for different strategies 149
Figure 8-3: RBS Cooperating with EBD151
Figure 8-4: Emergency braking force distribution when motor torque is kept153
Figure 8-5: Clutch pressure variation during shifting
Figure 8-6: Braking force distribution for strategies in driving cycles
Figure 8-7: Braking energy recovery rate of strategies in each cycle

Figure 9-1: Motor current and vehicle speed for 'Eco' mode in: a) NEDC and b)
HWFET cycles
Figure 9-2: SOC and motor torque in NEDC cycle for 'Eco" mode over: a) the full
cycle; and b) the final 100 s
Figure 9-3: SOC and motor torque in HWFET cycle for 'Eco' mode over: a) the
full cycle; and b) the final 25 s163
Figure 9-4: Driving range and energy utilization benefit of braking energy
recovering166
Figure 9-5: Lifetime fuel and maintenance cost of BEV in different braking
strategies171

LIST OF TABLES

Table 2-1: Comparisons of Recently Launched BEVs 14
Table 3-1: Selected UQM Powerphase 125 Specification
Table 4-1: Basic Vehicle Specification
Table 4-2: BEV Performance Targets 62
Table 4-3: Road grade based gear ratio
Table 4-4: Gear ratios in different transmission systems
Table 4-5: Typical CVT specifications (A simplified model from Ref. [96])69
Table 4-6: CVT ratio calculation data
Table 4-7: Simulation results for CVT on BEVs with / without Torque Converter
Table 4-8: Dynamic performance of different transmission system based BEVs 88
Table 6-1: Economic performance of BEVs (driving kilometres per kW·h, KPK)
Table 6-2: Estimated gearboxes relative selling price 117
Table 6-3: Required Motor Capacity of different powertrains based BEVs118

Table 6-4: Basic parts manufacturing cost of BEV 119
Table 6-5: Manufacturing Cost, Recommended Retail Price and Maintenance Cost
Table 8-1: Energy recovery rates in term of driving cycles, plus wheel lock risk,
with + indicating a higher risk
Table 9-1: Maximum deceleration in typical driving cycles 160
Table 9-2: Recovered braking energy and mileage per NEDC and HWFET cycle
Table 9-3: Friction brake applications and pedal replacement cost (US\$) 169
Table 9-4: Blended braking system related EV lifetime cost saving summary (US\$)
Table A1: ATi 2000 series wireless torque sensor specifications
Table A2: Calibration data of torque sensors on transmission output shaft
Table A3: Correspondence between torque and display voltage 179
Table B1: Two-speed DCT components temperature variation of 1 st gear
Table B2: Two-speed DCT components temperature variation of 2 nd gear

GLOSSARY OF TERMS AND NOTATIONS

ABBREVIATIONS USED IN THESIS

- EV Electric Vehicle
- BEV Battery Electric Vehicle
- HEV Hybrid Electric Vehicle
- ICE Internal Combustion Engine
- DCT Dual Clutch Transmission
- AT Automatic Transmission
- AMT Automated Manual Transmission
- CVT Continuously Variable Transmission
- PM Permanent Magnet Motor
- IM Induction Motor
- SRM Switched Reluctance Motor
- DC Direct Current
- VCU Vehicle Control Unit
- ABS Anti-Lock Brake System
- EBD Electro Control Brake Distribution
- BAS Brake Assistance System
- RBS Regenerative Brake System
- SOC State of Charge
- RSP Relative selling price

ECE - United Nations Economic Commission for Europe (UNECE) urban driving cycle

- NEDC New European driving cycle
- UDDS Urban dynamometer driving schedule
- LA-92 Los Angeles 92 / Unified cycle driving schedule
- HWFET- Highway fuel economic test
- JP1015 Japan 1015 emission test cycles model
- *KPK* Driving kilometres per kilowatt hour
- MPC Mileage per cycle
- CPK Consumed energy per km
- RPK Braking energy recovered per km

CHAPTER 4 NOTATIONS

m	-	Vehicle mass
Rw	-	Wheel radius
i_g	-	Gear ratio
CR	-	Coefficient of rolling resistance
g	-	Gravity
φ	-	Road incline
Cd	-	Drag coefficient
А	-	Vehicle frontal area
u	-	Vehicle speed
V _{bat}	-	Battery voltage
C _{bat}	-	Battery capacity
E _{bat}	-	Battery energy content
i _m	-	Main reduction ratio
i _{cvt}	-	CVT ratio varying range

i _{converter} -	Torque converter ratio
η_{cvt} -	CVT pulley-belt efficiency
$\eta_{converter}$ -	Torque converter efficiency
P _{loss} -	Power losses in gearbox
$\sum P_{gear_mesh}$ -	Power losses in all gear meshing
P _{con} -	Power losses in concentric shaft
P _{churning} -	Power losses in churning and windage
$\sum P_{Bearing}$ -	Drag torque in bearings
P _{disengage_gear} -	Power losses in disengaged gear set
T _{in} -	Gearbox input torque
- T _{con}	Torque lost in concentric shaft viscous shear resistance
- T _{bearing}	Frag torque generated by bearings
i -	Gear ratios of 1 st , 2 nd and final gear
T _{1_output_outer} -	Output torque of the outer concentric shaft
- Tgearmesh	Torque losses in gear pair meshing
- T _{disengage}	Torque consumed in unengaged wet clutch pairs
T _{churning} -	Drag torque generated by churning
<i>P</i> _m -	Power losses in gear meshing
f_m -	Friction coefficient
v ^j -	Temperature based kinematic viscosity of lubricant in transmission
V^h -	Tangential velocity of pitch line
<i>K^g</i> -	K-factor
<i>T</i> ₁ -	pinion torque
n ₁ -	Pinion rotational speed

β_w	- Operating helix angle
r_{w1}	- Outside pinion radius
$lpha_\omega$	- Transverse operating pressure angle
H _s	- Sliding ratios at the beginning of approach action
H _t	- Sliding ratios at the end of recess action
r	- Ratio of currently meshed gear pair
r _{01/02}	- Pinion outside radius
r _{w1/w2}	- Pinion operating pitch radius
<i>Z</i> _{1/2}	- Gear teeth and pinion teeth.
R_f	- Roughness factor
M_t	- Transverse tooth module
f_g	- Gear dip factor
D	- Outside diameter of gear
F	- Face width
L	- Length of the gear in mm
β	- Generated helix angle
R _{con_o}	- Inner radius of the outer shaft
R _{coni}	- Outer radius of the inner shaft
$\Delta \omega$	- Relative speed between two concentric shafts
$R_{i/o}$	- Inner and outer oil firm radius;
μ	- Viscosity of the lubricant oil
h _c	- Clearance of clutch plate;
v_n \uparrow	- Upshift speed threshold
$v_{n+1}\downarrow$	- Downshift speed threshold.

CHAPTER 5 NOTATIONS

a_0	- Rolling coefficient in dynamometer
<i>a</i> ₁	- Grading coefficient in dynamometer
a_2	- Acceleration coefficient in dynamometer
n	- Dynamometer input speed
Ι	- Coefficient of rotation parts translational equivalent inertia
G_f	- Rolling resistance
G_i	- Grading resistance

CHAPTER 6 NOTATIONS

<i>C_{capacity_SR}</i> powertrain	-	Required battery capacity for 158km range in single reduction
$C_{capacity_DCT}$	-	Required battery capacity for 158km range in single DCT powertrain
$C_{capacity_CVT}$	-	Required battery capacity for 158km range in single CVT powertrain
E _{SR_lifetime}	-	Lifetime electricity consumption for single reduction based BEV
E _{DCT_lifetime}	-	Lifetime electricity consumption for two-speed DCT based BEV
$E_{CVT_lifetime}$	-	Lifetime electricity consumption for simplified CVT based BEV

CHAPTER 7 NOTATIONS

$Brake_{\max_1}$	- Maximum braking force on wheel when vehicle in 1 st gear
Brake _{max_2}	- Maximum braking force on wheel when vehicle in 2 nd gear
F _{bf}	- Braking force on front axle
F_{br}	- Braking force on rear axle

f _{regen}	-	Regenerative braking force
$f_{caliper}$	-	Friction braking force
λ	-	Wheel slip ratio
Regen _{min}	-	Minimum available motor braking force at full brake pedal
<i>Friction_{max}</i>		- Maximum available friction braking force at full brake pedal

CHAPTER 8 NOTATIONS

 Q_{re} - Energy recovery rate

ABSTRACT

Despite the long-term benefit of battery electric vehicles (BEVs) to customers and the environment, the initial cost and limited driving range present the significant barriers for wide spread commercialization. The integration of multi-speed transmission to BEVs' powertrain systems, which is in place of fixed ratio reduction transmission, is considered as a feasible method to improve powertrain efficiency and extend limited driving range for a fixed battery size. Additionally, regenerative braking also extends the mileage by recapturing the vehicle's kinetic energy during braking, rather than dissipating it as heat. Both of these two methods reduce the requirement of battery pack capacity of BEVs without loss of performance. However, the motor-supplied braking torque is applied to the wheels in an entirely different way compared to the hydraulic friction braking systems. Drag torque and response delay may be introduced by transmitting the braking torque from the motor through a multi-speed transmission, axles and differential to the wheels. Furthermore, because the motor is usually only connected to one axle and the available torque is limited, the traditional friction brake is still necessary for supplementary braking, creating a blended braking system. Complicated effects such as wheel slip and locking, vehicle body bounce and braking distance variation, will inevitability impact on the performance and safety of braking. The aim of this thesis is to estimate if the multi-speed transmission and the mechanicelectric blended braking system are worthwhile for the customers, in terms of the price/performance relationship of others' design solutions;

To do so a generic battery electric vehicle is modelled in Matlab/Simulink® to predict motor efficiency, braking performance of different strategies, energy consumption and recovery for single reduction, two-speed Dual Clutch Transmission (DCT) and simplified Continuous Variable Transmission (CVT) equipped BEVs. Braking strategies for different purposes are proposed to achieve a balance between braking performance, driving comfort and energy recovery rate. Special measures are taken to avoid any effects of motor failure. All strategies are analysed in detail for various braking events. Advanced driver assistance systems (ADAS), such as Anti-Lock Brake System (ABS) and Electro Control Brake Distribution (EBD), are properly integrated to work harmoniously with the regenerative braking system (RBS). Different switching plans during braking are discussed. The braking energy recovery rates and brake force distribution details for different driving cycles are simulated.

A credible conclusion is gained, through experimental validation of single speed and two-speed DCT scenarios and reasonable assumptions to support the CVT scenario, that both two-speed DCT and simplified CVT improve the overall powertrain efficiency, save battery energy and reduce customer costs, although each of the configurations has unique cost and energy consumption related trade-offs. Results for two of the cycles in an 'Eco' mode are measured on a drive train testing rig and found to agree with the simulated results to within approximately 10%. Reliable conclusions can thus be gained on the economic and dynamic braking performance. The strategies proposed in this thesis are shown to not only achieve comfortable and safe driving during all conditions but also to significantly reduce cost in both the short and long terms.