
 

 

Faculty of Engineering and Information Technology 

 

Modelling and State-of-Charge Estimation for 
Ultracapacitors in Electric Vehicles 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy 

 

Lei ZHANG 

(2016) 

  



 

 

Title of the thesis: 

Modelling and State-of-Charge estimation for ultracapacitors in electric vehicles 

 
Ph.D. student:  
Lei Zhang 
E-mail: Lei.Zhang-15@student.uts.edu.au 
 

 

Supervisor: 
Dr. Li Li 
E-mail: Li.Li@uts.edu.au 
 
 
Co-Supervisor: 
A.Prof. Youguang Guo 
E-mail: Youguang.Guo-1@uts.edu.au 
 

 

External Supervisor: 
Prof. David G. Dorrell 
E-mail: dorrelld@ukzn.ac.za 
 
 
 
 
Address: 
School of Electrical, Mechanical and Mechatronic Systems 
University of Technology, Sydney, 15 Broadway, Ultimo, NSW 2007, Australia 
 



 

i 
 

Certificate of Original Authorship 
 

I certify that the work in this thesis has not previously been submitted for a degree nor has it 

been submitted as part of requirements for a degree except as fully acknowledged within the 

text.  

I also certify that the thesis has been written by me. Any help that I have received in my 

research work and the preparation of the thesis itself has been acknowledged. In addition, I 

certify that all information sources and literature used are indicated in the thesis. 

Signature of Student:  

 

Lei Zhang 

Date: 

  



 

ii 
 

Acknowledgments 
I would express my deep gratitude to both of my principal Professors David. G. Dorrell, 

formerly with UTS, now with The University of Kwazulu-Natal, and Zhenpo Wang, with BIT, 

for their guidance and encouragement during my studies. I also would like to thank my other 

supervisors, Prof. Fengchun Sun, Dr. Li Li, A. Prof. Youguang Guo, for their help and advice. 

I am extremely thankful to my friend Prof. Xiaosong Hu. He discussed research points in 

detail, and gave me insightful advice. I also appreciate his efforts in reviewing this thesis. 

I would like to thank my friends and colleages, Xingxing Zhou, Jinglai Wu, Yu Wang, 

Sangzhi Zhu, Tianxiao Zhang, Guangzhogn Xu, Jiageng Ruan, Shuo Wang, Bo Zhu, Jianwei 

Zhang, Linfeng Zheng, for their support in daily life. 

Finally, my deepest thanks go to my family. Without their potent understanding and 

support, it is not possible for me to complete this thesis. 

 

  



 

iii 
 

Publications and Conference Contributions 
 

The following publications are part of the thesis. 

1. Published journal papers 

[1] L. Zhang*, X. Hu, Z. Wang, D. G. Dorrell, Experimental Investigation of Ultracapacitor 

Impedance Characteristics. Energy Procedia 75 (2015) 1888-1894. 

[2] L. Zhang*, X. Hu, Z. Wang, F. Sun, D. G. Dorrell, Fractional-Order Modeling and State-

of-Charge Estimation for Ultracapacitors. Journal of Power Sources 314 (2016) 28-34. 

[3] L. Zhang*, X. Hu, Z. Wang, F. Sun, D. G. Dorrell, Experimental Impedance Investigation 

of an Ultracapacitor at Different Conditions for Electric Vehicle Applications. Journal of 

Power Sources 287 (2015) 129-138.  

[4] L. Zhang*, Z. Wang, X. Hu, F. Sun, D. G. Dorrell, A Comparative Study of Equivalent 

Circuit Models of Ultracapacitors for Electric Vehicles. Journal of Power Sources 274 

(2015) 899-906.  

[5] L. Zhang*, Z. Wang, F. Sun, D. G. Dorrell, Online Parameter Identification of 

Ultracapacitor Models Using the Extended Kalman Filter. Energies 2014, 07, 3204-3217. 

2. Journal papers under review 

[6] L. Zhang*, X. Hu, Z. Wang, F. Sun, J. Deng, D. G. Dorrell, Multi-Objective optimal 

sizing of hybrid energy storage system for electric vehicles. IEEE Transactions on 

Vehicular Technology, 2016  

[7] L. Zhang*, X. Hu, Z. Wang, F. Sun, D. G. Dorrell, A Survey of ultracapacitor modeling, 

estimation and applications. Journal of Power Sources, 2016  

3. Published conference paper 

[1] L. Zhang*, X. Hu, S. Su, D. G. Dorrell, Robust State-of-Charge Estimation of 



 

iv 
 

Ultracapacitors for Electric Vehicles. The 13th IEEE International Conference on 

Industrial Informatics (INDIN), Cambridge, UK, 2015. 

 

 

 

 

  



 

v 
 

Abstract 
 

In order to cope with the global challenges like fossil fuel depletion and environmental 

pollution, electrified vehicles (EVs) have been widely accepted as an enabling option for 

future ground mobility. In comparison to conventional combustion engine vehicles, EVs have 

the advantage of high efficiency, environment-friendly operation and excellent control 

flexibility. There is a proviso here that the electricity used by the EV is from a green source 

such as hydro, wind or solar. The energy storage system (ESS) is a key ingredient of an EV, 

and significantly affects its driving performance and cost-effectiveness. The exploration of a 

vehicular ESS poses a formidable challenge, because of high power/energy demands and 

unpredictable driving environments. Li-ion batteries represent a main choice for this use, but 

suffer the drawbacks of low power density and poor recyclability. Recently, ultracapacitors 

(UCs), also referred to as supercapacitors (SCs) or electric double-layer capacitors (EDLCs), 

have gained increasing attention in the energy storage community, thanks to their high power 

density, high efficiency, fast charge, wide temperature window and excellent recyclability. 

These advantages make UCs a good augmentation to high-energy ESSs (e.g., fuel cells, 

lithium-ion batteries). This combination represents a hybrid energy storage system (HESS) 

that can fully leverage the synergistic benefits of each constituent device. To ensure efficient, 

reliable and safe operations of UC systems, numerous challenges including modelling and 

characterization, and State-of-Charge (SOC) estimation should be effectually surmounted. In 

order to meet the above mentioned challenges, the main research presented in this dissertation 

includes: 
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1. A special test rig for UC characteristic investigation has been established. A test 

procedure is proposed to collect comprehensive test data. A plethora of tests have been 

conducted on this test rig including capacity calibration, experimental impedance 

investigation under different temperatures and SOC values, and dynamic cycling including 

pulse tests and driving-cycle-based tests under different temperatures, resulting in a wide-

ranging UC database. 

2.  The impedance characteristics of UCs are experimentally investigated under different 

temperatures and SOC values. The results show that the impedance is highly sensitive to 

temperature and SOC; and the temperature effect is more significant. In particular, the 

coupling effect between the temperature and SOC is illustrated, and the high-efficiency SOC 

window is highlighted. 

3. For UC modelling, three commonly used equivalent circuit models are systematically 

examined in terms of model accuracy, complexity and robustness in the context of EV 

applications. A genetic algorithm (GA) is employed to extract the optimal model parameters 

based on the Hybrid Pulse Power Characterization (HPPC) test data. The performance of 

these models is then evaluated and compared by measuring the model complexity, accuracy, 

and robustness against “unseen” data collected in the Dynamic Stress Test (DST) and a self-

designed pulse (SDP) test. The validation results show that the dynamic model has the best 

overall performance for EV applications. 

4. Online parameter identification of UC models is researched. The extended Kalman 

Filter (EKF) is proposed to recursively estimate the model parameters using the DST dataset, 

in which the dynamic model is used to represent the UC dynamics. The effectiveness and 

robustness of the proposed method is validated using another driving-cycle-based dataset. 



 

vii 
 

5. A novel robust H-infinity observer is presented to realize UC SOC estimation in real-

time. In comparison to the state-of-the-art Kalman filter-based (KF-based) methods, the 

developed robust scheme can ensure high estimation accuracy without prior knowledge of 

process and measurement noise statistical properties. More significantly, the proposed H-

infinity observer proves to be more robust to modelling uncertainties arising from the change 

of thermal conditions and/or cell health status. 

6. A novel fractional-order model is put forward to emulate the UC dynamics. In contrast 

to integer-order models, the presented fractional-order model has the merits of better model 

accuracy and fewer parameters. It consists of a series resistor, a constant-phase-element 

(CPE), and a Warburg-like element. The model parameters are optimally extracted using GA, 

based on the time-domain Federal Urban Driving Schedule (FUDS) test data acquired through 

the established test rig. By means of this fractional-order model, a fractional Kalman filter is 

synthesized to recursively estimate the UC SOC. Validation results show that the proposed 

fractional-order modelling and state estimation scheme is accurate and outperforms the 

current practice based on integral-order techniques. 

7. An optimal HESS sizing method using a multi-objective optimization algorithm is 

presented, in which the primary goal is reducing the ESS cost and weight while prolonging 

battery life. To this end, a battery state-of-health (SOH) model is incorporated to 

quantitatively investigate the impact of component sizing on battery life. The wavelet-

transform-based power management algorithm is adopted to realize the power coordination 

between the battery and UC packs. The results provide prudent insights into HESS sizing with 

different emphases. 
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1 Introduction 

1.1 Background and Motivation 
The number of vehicles on road has seen a huge increase due to continuously advancing 

manufacturing techniques (making vehicles affordable) and rising living standards since the 

Second World War. The overwhelming majority of the existing vehicles are powered by the 

Internal Combustion Engines (ICEs). They convert fossil-fuel energy into mechanical work 

and heat while producing environmentally-damaging emissions and greenhouse gases. This 

poses a huge threat to the sustainable supply of energy and environmental protection that 

concerns both governments and citizens around the world. Taking the US for example, nearly 

a third of energy consumed annually is in the transportation sector, 97% of which is petroleum 

[1]. Light-duty vehicles claimed 60% of this energy and 45% of the total US petroleum use 

in 2009 [2]. It was estimated that the daily consumption of fossil oil would reach 130 million 

barrels by 2030. Vehicles also account for a large proportion of the pollutant emissions: 53% 

of CO, 31% of NOx, 24% of VOCs, 1.7% of PM2.5 in 2011, as shown in Fig. 1.1 [3]. 

Additionally, transportation is responsible for 31% of the total CO2 emission in 2009 [2]. The 

global CO2 emission trend in recent years is shown in Fig. 1.2 [4]. 

 

Fig. 1.1 Percentage contribution of vehicle tailpipe emissions to total emissions in US in 2011 [3]. 
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Fig. 1.2 Global CO2 emission trend [4]. 

In order to ease oil-depleting, global warming and environmental protection issues, 

electrified vehicles, including Battery Electric Vehicles (BEVs), Hybrid Electric Vehicle 

(HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) represent a promising alternative to 

the ICE vehicles to expedite a paradigm shift towards a sustainable transportation. Generally 

speaking, EVs can make use of the electricity stored or generated on board to power the 

electrical drivetrain. The electricity can be generated from renewable sources including 

nuclear power, solar power, wind power, and hydro power, as well as other energy sources. 

The penetration of EVs will help to spur a synergic development of the renewable energy 

sector [5]. 

There is a noteworthy distinction in powertrain configuration between an electric vehicle 

and a conventional ICE vehicle, that is, an energy storage system (ESS) is employed with the 

purpose of storing electricity for the future use. The energy density in these storage devices 

is somewhat less than the energy density of petrol or diesel fuel. The exploration for a 

sufficient vehicular ESS poses a formidable challenge, since electric vehicles simultaneously 

demand sufficient amounts of energy and power, while ensuring safe, reliable, and durable 

operation under demanding and unpredictable driving conditions. Many potential energy 
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storage devices have been reported and analyzed in the literature [6]. Of all the mentioned 

devices, Li-ion batteries provide the best performance with regards to specific energy, while 

exhibiting no memory effect, offering long cycle-life and having low self-discharge rate when 

idle [7]. These properties, as well as decreasing cost, have established Li-ion batteries as a 

leading candidate for the next generation of automotive and aerospace applications [8]. 

However, a Li-ion battery-based ESS suffers from several limitations in terms of delivering 

high power transients due to its comparatively lower power density. A possible solution to 

the problem is that the vehicle may deploy more batteries than is strictly necessary; or the 

system may be highly stressed by high-power delivery in harsh accelerations and 

decelerations. Additionally, high-load conditions are a tough challenge for an energy 

management system to effectively tackle due to thermal issues, which have an adverse effect 

on battery life. The situation is especially severe when the energy storage system is exposed 

to high-rate charge and discharge [9][10]. Therefore, it is necessary to seek for an alternative 

feasible solution to offset the drawback of poor power density. 

Ultracapacitors (UCs), also known as supercapacitors (SCs) or electric double-layer 

capacitors (EDLCs), are electrical energy storage devices that can offer higher power density 

and efficiency, and much longer cycle-life than electrochemical batteries [11]. UCs are 

characterized by fast charging time and wide operating temperature range. These 

characteristics have made UCs a promising candidate in a wide range of applications such as 

uninterruptible power supplies, electric vehicles and personal cell-phones [12]. The electric 

double-layer (EDL) phenomenon was firstly described by Helmoltz in 1853, and patented by 

Becker (General Electric Company) in 1957, who used porous carbon material with high 

specific area as electrodes for double-layer structure formation. The Nippon Electric 



 

4 
 

Company (or NEC) developed and licensed an UC product as a memory backup device that 

marked the first commercial application in 1971. Structurally, the UC consists of two 

electrodes, a membrane separator, and associated electrolyte, as shown in Fig. 1.3 [13]. The 

two electrodes are insulated by the membrane separator and impregnated with the electrolyte. 

The membrane separator only permits ion mobility but prevents electric contact. UCs store 

electrical energy mainly through the formation of the so-called double-layer capacitor 

structure at the interface between the electrodes and the electrolyte. This energy storage 

mechanism involves no chemical phase or composition changes, apart from the fast and 

reversible Faradaic reactions existing on the electrode surfaces, which also contribute to the 

total capacitance and is termed as pseudo-capacitance. The characteristic of electrostatic 

charge transfer results in a high degree of recyclability. Compared to conventional capacitors, 

the high capacitance of UCs originates from the high specific area of the electrodes, which 

are largely determined by the used electrode materials and their physical properties (e.g. 

conductivity and porosity) [14]. 
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Fig. 1.3 The UC structure [13]. 
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Taking advantages and limits of both batteries and UCs into consideration, the 

coordinated use of batteries and UCs as a hybrid energy storage system (HESS) has gained 

increasing interest from both academia and industry [15][16][17][18][19], since the HESS 

can store sufficient energy and also provide sufficient transient power at a reasonable cost. 

This contributes to better driving performance compared to the individual use of either energy 

source independently. During practical operation of an HESS, the battery pack is assigned to 

supply a near constant power to fulfil the average power demands while making the UCs work 

as a power buffer to meet the dynamic power demands. Such a power allocation allows the 

battery to avoid working under high-load and frequent high-rate charge-discharge operations, 

which will extend its cycle-life [20]. 

Due to low energy density and cell voltage of a UC, UC packs are always formed through 

series-parallel connections of cells. A capable ultracapacitor management system (UMS) is 

therefore necessary to ensure safe, efficient and reliable operation of such UC pack, whose 

functionalities are illustrated in Fig 1.4. The main tasks of UMS are listed as follows: 

(1) Voltage monitoring: Realize real-time supervision of cell voltage to prevent over-

charge/over-discharge. 

(2) Current monitoring: Realize real-time supervision of cell current to prevent 

overcurrent. 

(3) Thermal management: Realize real-time supervision of cell temperature and maintain 

the temperature in a reasonable range through appropriate control of cooling or heating 

systems. 



 

6 
 

(4) State estimation: Based on the detected voltage, current and temperature information, 

realize real-time State-of-Charge (SOC) estimation and correspond it to the control unit for 

power control. 

(5) Equalization management: Based on the voltage and SOC information, realize the cell 

equalization within the pack. 

(6) Safety protection: Trigger the protection mechanism when detecting abnormal voltage, 

current, temperature or SOC. 

(7) Power coordination: On the basis of SOC information, realize power coordination 

between the battery and UC packs when a HESS is deployed. 

To ensure efficient, reliable and safe operations of UC systems, numerous challenges 

including modelling and characterization, and SOC estimation, should be addressed.  
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Fig. 1.4 Schematic of UC energy management system. 
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1.2 Literature Review 

1.2.1 Ultracapacitor models 
Modelling of UCs is essential for design prediction, state monitoring and control 

synthesis. Numerous UC models have been proposed in the literature for different purposes 

including electrochemical models, equivalent circuit models, intelligent models and 

fractional-order models. 

1.2.1.1 Electrochemical models 

Helmholtz discovered the electric-double-layer (EDL) phenomenon and described it with 

a model in which all the charges were assumed to be adsorbed at the electrode surface [21]. 

This is identical to the conventional dielectric capacitor structure [22]. Gouy [23] and 

Chapman [24] further modified the Helmholtz model to account for the ion mobility in the 

electrolyte solution as a result of diffusion and electrostatic forces. Boltzmann distribution 

equation was utilized to analytically depict the relationship between the ionic concentration 

and the local electrical potential in the diffuse layer. Stern combined the Helmholtz model 

and the Gouy-Chapman model, and divided the EDL into two characteristically distinct layers, 

i.e., the Stern layer (Helmholtz layer) and the diffuse layer (Gouy-Chapman layer), as shown 

in Fig. 1.5. The Stern layer takes care of the specific absorption of the ions on the electrode 

surface whilst the diffuse layer serves to incorporate the Gouy-Chapman model [25]. The total 

capacitance of EDL can be treated as the series connection of the Stern layer and the diffuse 

layer capacitances. However, unrealistic ion centration value may be reached by deriving the 

Poission-Boltzmann (PB) equation; this model treats the ions as point charges by ignoring 

their physical size, but the point-charge assumption is only valid for low ion concentration 
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and low electrical potential [26][27]. Bikerman [28] reformulated the Poission-Boltzmann 

model by incorporating the influence of finite ion size under equilibrium conditions where 

the anions and cations in the electrolyte were assumed to have different size with identical 

valence. Verbrugge and Liu [29] proposed a one-dimensional one-domain mathematical 

model based on the dilute-solution theory and porous electrode analysis, where the UC was 

regarded as a continuum entity with homogeneous and isotropic physical properties. Allu et 

al. [30] further extended it into a three-domain model based on the uniform formulation of 

electrode-electrolyte system. This illustrated the benefits of capturing the irregular geometric 

configuration, charge transport and related performance in higher dimensions, and 

introducing spatio-temporal variations, anisotropic physical properties and upstream 

parameters into simulations. Wang and Pilon [31] developed a three-dimensional (3D) model 

for UCs, which simultaneously considers 3D electrode morphology, finite ion size and field-

dependent electrolyte dialectic permittivity. A general set of boundary conditions were 

derived to describe the Stern layer behaviour without simulating it in the computational 

domain. 

Generally, electrochemical models have high accuracy but low calculation efficiency, 

since they are able to capture the real reaction process inside UCs at the expense of coupled 

partial differential equations (PDEs). This hinders their applications in embedded systems for 

real-time energy management and control. 

1.2.1.2 Equivalent circuit models 

Equivalent circuit models which employ the parameterized RC (resistor-capacitor) 

networks to mimic the electrical behavior of UCs have the properties of simplicity and ease 

of implementation. This is due to the use of ordinary differential equations (ODEs), which 
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have proved popular. The most used equivalent circuit models are shown in Fig. 1.6. The 

simplest equivalent circuit model is an equivalent resistor connected with a capacitor in series 

[32]. Spyker and Nelms [33] added another parallel resistor that accounts for the self-

discharge phenomenon to form the classical equivalent circuit model. But, this model can 

only adequately represent the UC dynamics over a time scope of several seconds, which 

significantly limits its practical applicability. Targeting power electronic applications, 

Zubieta et al. [34] developed a model that comprises three RC branches, i.e., immediate 

branch, delayed branch and long-term branch. Each branch captures UC characteristics on a 

distinct time-scale. The nonlinear capacitance was incorporated into the immediate branch as 

a voltage-dependent capacitor that is connected in parallel with a constant capacitor. The 

parameters of three branches were subsequently extracted through observation of the terminal 

voltage evolution during a high constant-current charging process. Analogous model 

representations were devised by other researchers but using different characterization 

methods [35][36][37][38]. In particular, Liu et al. [39], quantitatively investigated the 

temperature impact on the model parameters, and synthesized temperature-dependent three-

branch model. Zhang et al. [40] exploited a variable resistor to characterize the self-discharge 

process on the basis of three-branch model, which claimed to have higher model accuracy for 

the use of self-powered wireless sensors. Buller et al. [41] proposed a dynamic model using 

the electrochemical impedance spectroscopy (EIS) technique in the frequency domain. This 

model was composed of a series resistor, a bulk capacitor and two parallel RC networks. 

Musolino et al. [42] aimed to describe the full-frequency-range behavior of a UC. They used 

the dynamic model to replace the immediate branch of the three-branch model, and introduced 

a parallel leakage resistor to form the combined UC model. Gualous et al. [43] conducted an 



 

10 
 

experimental study of UC series resistance and capacitance variations with temperature, and 

synthesized an equivalent circuit model with temperature-dependent parameters. Rafika et al. 

[44] also presented an equivalent circuit model with 14 RCL elements whose values are 

functions of voltage and/or temperature and are estimated through the EIS methodology. In 

order to capture the distributed capacitance and electrolyte resistance determined by the 

porous electrodes, the transmission line model was introduced. This takes transient and long-

term behavior into consideration with variant model complexity, relying on the number of 

employed RC networks [45][46]. Each RC network is assigned to delineate capacitance and 

resistance of each pore distribution in electrodes. Generally, the model accuracy increases 

with more RC networks, but this is at the expense of computational efficiency. Rizoug et al. 

[47] employed a hybrid method composed of a frequency approach and a temporal approach 

to characterize the transmission line model. Dougal et al. [48] used a numerical method to 

realize automatic model order selection of the transmission model based on the simulation 

time step, which gives better modelling flexibility and computational efficiency. 

Equivalent circuit models are derived from empirical experience and experimental data 

under certain conditions. This renders it inadequate for represent the UC dynamics under 

wide-range conditions, thus giving rise to model mismatch issues. Also, their parameters and 

states lack physical representations so that no internal information is explicitly available. 

However, the structural simplicity and decent modelling accuracy make them well-accepted 

for real-time energy management synthesis.   
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Fig. 1.5 Gouy-Chapman-Stern model. 
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Fig. 1.6 Equivalent circuit models. 
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Fig. 1.7 Example neuron body with multiple inputs and single output. 
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Fig. 1.8 Example of ultracapacitor fractional-order model. 

1.2.1.3 Intelligent models 

Intelligent modelling techniques, such as artificial neural network (ANN) and fuzzy logic, 

have been successfully used to predict the performance of energy storage systems including 

batteries and UCs [49][50]. Fig. 1.7 illustrates an example neuron body which processes the 

input signals and returns the result. These intelligence-based methods have the capability of 

depicting the sophisticated nonlinear relationship between the performance and its 

influencing factors without a detailed understanding of involved mechanisms. A large 

quantity of rich and reliant training data is necessary for ensuring model accuracy and 

generality. These unique features have led to the widespread use of intelligent methods for 

both UC design and performance prediction. For example, Farsi et al. [51] proposed an ANN 

model to examine the impacts of several intrinsic characteristics on the UC performance in 
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terms of utilization, energy density and power density. The model inputs were crystal size, 

surface lattice length, exchange current density of the active material and cell current, which 

are critical parameters for UC prototype design. The findings can provide prudent insights for 

enhancing UC performance during laboratory design process. Wu et al. [52] presented a 

dynamic model for UC behavior simulation, in which the model parameters were predicted 

through an established ANN model. The inputs of the ANN model were terminal voltage and 

temperature while the outputs were the two influencing factors put into model parameter 

calculation. Eddahech et al. [53] used a one-layer feed-forward artificial neural network to 

represent the behavior of UCs as a complex function of current rate, temperature, chemistry 

and history. The model fidelity was validated through power-cycling with the resulting model 

further harnessed for voltage control purpose. Weigert et al. [54] established an SOC 

estimator using ANN for a battery-UC hybrid energy storage device. Marie-Francoise et al. 

[55] also used the ANN model to track the voltage with current, temperature and voltage 

variations. The ANN network was claimed to provide useful information on the transient 

behaviours of a UC taking thermal influences into consideration. 

1.2.1.4 Fractional-order models 

Recently, fractional-order models have gained interest in the area of energy storage 

devices, including both batteries and UCs [56][57]. Fig. 1.8 illustrates an example of a 

fractional-order model, which comprises of a series resistor, a parallel resistor, a constant-

phase-element (CPE) and a Warburg-like element. In most cases, fractional-order models 

exhibit a better capability of fitting experimental data with fewer model parameters, in 

contrast to their integral-order counterparts. For example, Riu et al. [58] introduced a half-

order model for UCs that dramatically reduced the model order while retaining certain 
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accuracy. However, the fixation of fractional differentiation order inevitably restricted the 

model accuracy. Martynyuk and Ortigueira [59] presented a fractional-order model of an 

electrochemical capacitor, in which the model parameters were estimated by least-squares 

fitting of the impedance data. In addition, Bertrand et al. [60] deduced a non-linear fractional-

order model from a set of linear equations as a result of frequency analysis of UCs, where the 

model parameters were also estimated in the frequency domain. In a similar fashion, Martín 

et al. [61] proposed a Havriliak-Negami function-based model that achieved excellent fitting 

for the whole frequency interval. These attempts invariably applied frequency-based 

impedance data to model identification. Such treatment has proved to be reliable in a 

specialized laboratory environment, since the impedance spectra of UCs can be steadily and 

precisely obtained over a range of frequencies via the EIS technique. A considerable model 

mismatch may occur when these laboratory-calibrated models are used under uncertain 

conditions. Alternatively, Dzieliński et al. [62] proposed a fractional-order model for UCs 

whose parameters were identified based on time-domain data collected through a constant-

current charging test. Freeborn et al. [63] estimated the impedance parameters of a fractional-

order UC model by voltage step response rather than direct impedance measurement. 

Nonetheless, the model precision may be severely compromised when the UC is exposed to 

varying loading conditions in real-time application conditions, since the model parameters 

are highly sensitive to variable conditions. Gabano et al. [64] introduced a fractional 

continuous LPV model, which was synthesized from a set of locally identified LTI fractional 

impedance models through a cubic spine interpolation technique. The operating-voltage-

dependent nonlinear behavior of UCs was considered, attaining higher modelling accuracy 
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and robustness. The four model categories for simulating the electric behavior of UCs are 

summarized and compared in Table 1.1 for reference. 

Table 1.1 Summary of model types for UC electrical behavior simulation. 

Category Subclass Upside Downside Examples 
Electrical 
behavior 

1). Electrochemical 
models 

Description of 
inside physical-
chemical 
reactions; High 
possible accuracy 
 

Heavy 
computation;  
Immeasurability 
of some 
parameters 

[21]-[31] 

2). Equivalent circuit 
models 

Moderate 
accuracy; 
relatively easy 
implementation 
and model 
identification 
 

Absence of 
physical 
meanings; 
susceptible to 
aging process 

[32]-[48] 

3). Intelligent models Good modelling 
capability; 
disclosure 
of the 
influencing 
factors to 
desirable model 
output 
 

Sensitive to 
training data 
quality and 
quantity; poor 
robustness 

[50]-[55] 

4). Fractional-order 
models 

Better capability 
to fit 
experimental 
data; few model 
parameters 

Heavy 
computation; 

[58]-[64] 

1.2.2 State-of-Charge estimation 
Accurate SOC estimation under the presence of model uncertainty and noise is critical 

for ensuring reliant, efficient and resilient operation of UC systems. A precise metering of the 

SOC can allow an energy management controller to make better use of the UC power potential 

without incurring detrimental overcharging, over-discharging or catastrophic failure [65].  
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The UC SOC is more directly related to its terminal voltage when compared to 

rechargeable batteries. This is the result of the unique electrostatic energy storage 

characteristic. However, the reading of terminal voltage for SOC indication may lead to a 

considerable error from the true SOC, due to the existence of self-discharge phenomenon 

(charge redistribution and leakage current) and side-effect reactions (pseucapacitance) inside 

the UC. Thus, there has been work exploring improved solutions, which mainly use intelligent 

models or model-based state observers. For example, Zhang et al. [66] established a neural 

network model for UC residual capacity estimation for EV applications. The current, voltage 

and temperature are considered as the influencing factors and formulated as the ANN inputs, 

and the residual capacity is directly indicated as the output. Rich and reliable data collected 

in dynamic tests were used to train and validate the proposed ANN model. Nadeau et al. [67] 

synthesized a Kalman filter for tracking the SOC based on the three-branch equivalent circuit 

model. The effectiveness of the proposed method was experimentally validated in a solar 

power application. Chiang et al. [68] applied the extended Kalman filter (EKF) to 

simultaneously obtain the SOC and temperature estimates using a combined formulation of a 

voltage-and-thermal-dependent equivalent circuit model and a thermal model. Yang and 

Zhang [69] tried to use a linear capacitance instead of the rated capacitance for estimating the 

UC energy, based on the UC’s physical characteristics. Dey et al. [70] proposed an online UC 

SOC estimation scheme using the sliding mode methodology for a hybrid energy storage 

system composed of batteries and UCs. The estimation scheme included two separate state 

observers for the batteries and UCs. The two types of UC SOC estimation methods are 

summarized in Table 1.2 for reference. 
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Table 1.2 Summary of all UC SOC estimation methods. 

Category Subclass Upside Downside Examples 
SOC estimation 1). Artificial neural 

networks 
Good 
nonlinear 
mapping; 
disclosure 
of the influences 
of related factors 
 

Sensitive to 
training data 
quality and 
quantity; poor 
robustness 

[66] 

2). Kalman filter-
based and observer-
based methods 

Online and 
closed-loop  

Relatively 
heavy 
computational 
burden; 
sensitive to 
precision and 
robustness of 
battery model 

[67][68][70] 

1.2.3 Motivation and research aims 
1. The knowledge of UC impedance can help develop accurate models and effectual 

energy management strategies. Nevertheless, it is variable, and strongly influenced by several 

factors such as thermal conditions and SOC. However, the quantitative investigation of these 

impacts on UC impedance is constantly absent. Therefore, one of primary purposes is to 

thoroughly revealing these effects, providing quantitative reference for energy management 

synthesis. 

2. Equivalent circuit models have simplicity and high accuracy relative to other 

modelling methodologies, and many model structures have been reported in the literature for 

different applications. However, there is lack of comparative study of these models for EV 

applications. This study aims to evaluate and compare the state-of-art equivalent circuit 

models in the contest of EV applications, and identify the optimal model structure, which lays 

the foundation for SOC estimation. 
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3. Equivalent circuit models are lumped models that are derived based on the 

experimental data. Along with aging, the model parameters endure lasting and slow variations, 

which necessitates periodical model parameter updates. Another research objective is to 

develop an enabling model parameter estimation scheme, which can be implemented in real 

time. 

4. SOC estimation is critical for maximizing the UC potential, but it faces formidable 

challenges including dramatic variation and varying working conditions. Traditional SOC 

estimation methods, typically KF-based methods, exhibit poor robustness towards model 

uncertainty as a result of aging and/or changing working conditions. Thus, it is meaningful to 

search for new SOC estimation scheme to accommodate this issue. 
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1.3 Contributions and Organization of the Thesis 

1.3.1 Intellectual contributions 
The main contributions of this research are summarized as follows: 

1. A special test rig for UC characteristic investigation was purposely established in the 

laboratory. A test procedure was put forward to collect test data. Numerous tests were 

conducted on this test rig, including capacity calibration, impedance investigation under 

different temperatures and SOCs, and dynamic cycling under standard driving environments 

and disparate temperatures, resulting in a wide-ranging UC database. 

2. The impedance characteristics of a commercial UC are analyzed under different 

temperatures and SOC values. In particular, the coupling effect between the temperature and 

SOC is illustrated, and the high-efficiency SOC window is highlighted. 

3. For UC modelling, three commonly used equivalent circuit models are systematically 

examined in terms of model accuracy, complexity and robustness in the context of EV 

applications. The GA is employed to extract the optimal model parameters based on the 

Hybrid Pulse Power Characterization (HPPC) test. The performance of these models is then 

evaluated and compared by measuring the model complexity, accuracy, and robustness 

against “unseen” data collected in the Dynamic Stress Test (DST) and a self-designed pulse 

(SDP) test. The validation results show that the dynamic model has the best overall 

performance for EV applications. 

4. Online parameter identification of UC models is researched. It is proposed that the 

extended KF can be used to recursively estimate the model parameters using the DST dataset, 
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in which the dynamic model is used to represent the UC dynamics. The effectiveness and 

robustness of the proposed method is validated using another driving cycle database. 

6. A novel robust H-infinity observer is presented in order to realize the SOC estimation 

of a UC in real time. In comparison to the state-of-the-art KF-based methods, the developed 

robust scheme can ensure high estimation accuracy even without prior knowledge of the 

process and measurement noise statistical properties. More significantly, the H-infinity 

observer proves to be more robust/tolerant to modelling uncertainties arising from the change 

of thermal conditions and/or cell health status. 

7. A novel fractional-order model is proposed in order to emulate the UC dynamics. 

Relative to integer-order models, the fractional-order model has the merits of better model 

accuracy and fewer parameters. The novel fractional-order model consists of a series resistor, 

a CPE, and a Warburg-like element. The model parameters are optimally extracted using the 

genetic algorithm (GA), based on the time-domain data acquired through the Federal Urban 

Driving Schedule (FUDS) test. By means of this fractional-order model, a fractional KF is 

synthesized to recursively estimate the UC SOC. Validation results show that the proposed 

fractional-order modelling and state estimation scheme is accurate and outperforms the 

current practice based on integral-order techniques. 

8. An optimal HESS sizing method using a multi-objective optimization algorithm is 

presented, with the overarching goal of reducing the ESS cost and weight while prolonging 

battery life. To this end, a battery state-of-health (SOH) model is incorporated to 

quantitatively investigate the impact of component sizing on battery life. The wavelet-

transform-based power management algorithm is adopted to realize the power coordination 

between the batteries and UCs. The results provide prudent insights into HESS sizing with 
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different emphases. Finally, Chapter 8 captures the overall thesis conclusions, and presents 

suggestions for future research as a sequence of this thesis study. 

1.3.2 Document organization 
The remainder of this dissertation is organized as follows. Chapter 2 introduces the UC 

test rig and test implementation for UC data acquisition. A UC impedance characteristic 

investigation is carried out to investigate the influence of temperature and SOC. Chapter 3 

systematically compares the state-of-art equivalent circuit models for UCs in terms of model 

accuracy, model complexity and robustness, to unseen loading conditions in the context of 

EV applications, resulting in the best model structure. Chapter 4 proposes an online model 

parameter identification method based on the previous obtained model structure. Chapter 5 

uses the H-infinity observer to estimate UC SOC. This method is proved to be robust to the 

model uncertainty arising from aging or varying operating conditions. Chapter 6 proposes a 

novel fractional-order model for representing UC dynamics, and developed a fractional-order 

Kalman filter for SOC estimation. Chapter 7 utilizes the NSGA-2 method to realize the 

optimal design of an HESS, and presents a wavelet-transform based energy management 

scheme for power coordination. 
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2 Ultracapacitor Test and Its Impedance 
Characteristic Investigation 

Unlike conventional capacitors, UCs have the advantages of high power density [71], 

low internal resistance [72], wide temperature window, typically -45~60°C [73], excellent 

recyclability [74], and fast charge/discharge capability [75]. To investigate these features, it 

is necessary to develop a systematic and comprehensive test plan and collect test data in order 

to systematically investigate its characteristics. 

2.1 Test Rig 
In order to perform tests and establish a comprehensive database, a test rig was set up by 

the author as shown in Fig. 2.1. The test rig consists of a battery test system (BTS), a thermal 

chamber, an electrochemical workstation, a host computer, and a test UC. The main 

constituent facilities had been in existence in the laboratory, but arranged in an organized 

manner for the special experimentation purpose of this thesis study. This test rig has the ability 

of execute the time-domain cycling tests and the frequency-domain impedance measurement 

for model characterization and results verification. The BTS is used to load the UC in 

accordance with pre-defined loading profiles. The maximum working voltage and current are 

600 V and ±300 A, respectively. The current resolution is high, typically ±20mA, which 

guarantees the reliability of the measured current. The main equipment specification is listed 

in Table 2.1. The system has the capability of recording various quantities, such as 

accumulated capacity, power, current and terminal voltage with a maximum sampling 

frequency of 100 Hz, which is sufficiently high. The recorded data can be relayed to the host 
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computer through a CAN network which serves as a reliable and fast-response 

communication between the host computer and the cycler. 

 

Fig. 2.1 Configuration of the test rig. 

Table 2.1 Digatron BTS-600 main specification. 

 Charging/discharging current: -300A ~ +300A 

 Charging/discharging voltage: 0V ~ 600V 

 Continuous power: 80kW; Peak power: 120kW 

 Current and voltage accuracy ±0.1% of the scale range; Current 

resolution: ±10mA 

 Charge/discharge switch time: <20ms (+10% ~ +90% current scale) 

 Current rising/falling time: <10ms (+10% ~ +90% current scale) 
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The thermal chamber accommodates the UC and provides the thermostatic ambience for 

all the tests. The temperature can be set at any point between -60  and 150  with the 

fluctuation and deviation bounded by ±0.3  and ±2 , respectively. The electrochemical 

workstation is able to measure the UC impedance over a given frequency range with high 

precision under different temperatures and SOCs. The test frequency can range from 10 μHz 

to 4 MHz with the frequency resolution of 0.0025 %. The main specification is listed in Table 

2.2. The host computer is used to develop the loading profiles, and store the test data fetched 

from the BTS and the electrochemical workstation.  

The EIS technique is a well-established approach for investigating energy storage devices 

such as batteries and UCs [76] [77]. It provides a deep insight into the internal processes of 

the system by exploring the impedance characteristics under a wide range of frequencies [79]. 

It is implemented by injecting a small known sinusoidal current signal into the device and 

measuring the response voltage, or vice versa (galvanostatic or potentiostatic approach). The 

complex impedance can be calculated as the quotient of the detected voltage and the injected 

current at each sampled frequency. A Nyquist diagram is often plotted to depict the evolution 

of the real and imaginary parts of the impedance under the sampled frequencies. Equivalent 

circuit models can be further extracted by analyzing and interpreting the impedance spectra 

via basic circuit elements. It can be noted that the impedance changes throughout the service 

life of the device, where the impedance basically increases with aging [80]. One definition of 

the End-of-Life (EoL) of a UC is a pre-defined impedance increase with respect to its nominal 

start-of-life impedance. However, compared to the impedance variation caused by the 

temperature and SOC, the impedance varies much more slowly with aging. Therefore, it is 
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reasonable to first neglect the impact of aging on the UC impedance in a relatively long time 

scale. The aging issue needs further work, which is beyond the scope of this thesis. Generally, 

the electrode adhesion on the collectors recedes with time, and the availability of the ions in 

the electrolyte diminishes due to the electrochemical cycling, both resulting in the aging of 

the UC. More information is given in [81]. 

Table 2.2 ZENNIUM electrochemical workstation main specification [82]. 

 Frequency range 10 μHz~4 MHz Frequency resolution: 0.0025% 

 Potentiostatic impedance measurement accuracy: 

1 mΩ ~ 1 GΩ/±2% 100 mΩ ~ 100 GΩ/±2% 

 Galvanostatic impedance measurement accuracy: 30 μΩ ~ 1 GΩ/±2% 

 Potentiostatic scanning voltage range: ±10 V 

 Current range 1 nA ~ 2.5 A 
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2.2 Test Procedure 
There is a wide range of UCs with different specifications available in the market. For 

electric vehicle applications, high-capacitance units are preferred with the purpose of 

increasing the energy density of the overall system. The Maxwell K2 series is selected for 

tests with a detailed specification listed in Table 2.3. In order to obtain the characteristics of 

UCs, an elaborate and implementable test schedule was developed to fully excite the test UC, 

as illustrated in Fig. 2.2. It comprises of a static capacity test, EIS tests, pulse tests and driving-

cycle-based tests. The static capacity test serves to calibrate the capacitance of the test UC 

with the average value of 3 repeated tests, which is later used as the true capacitance. The EIS 

tests are used to acquire the UC impedance spectra under different temperature and SOC 

values, which helps to identify the high-efficiency SOC window. The data can also be 

employed to extract model parameters as the training data or to verify model accuracy as the 

validation data. The tests done are listed in Table 2.4. The pulse tests are the HPPC (Hybrid 

Pulse Power Characterization) and SDP Self-designed Pulse tests. The HPPC is in 

accordance with the FreedomCar Ultracapacitor Test Manual [83], and can excite the tested 

UC from its rated voltage to the exhausted state with highly dynamic pulses as shown in Fig 

2.3. The profile can effectively reflect the typical loading conditions of on-board UCs in 

acceleration and deceleration scenarios of EVs. As shown in Fig. 2.4, the SDP profile is 

composed of random charging or discharging pulses, which represents the unpredictability of 

practical driving conditions in EVs. The driving-cycle-based tests, including DST (Dynamic 

Stress Test) and Federal Urban Driving Schedule (FUDS) tests, simulate the typical loading 

conditions of UCs during real-world driving. These tests can effectively excite the UCs and 
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also drive the SOC value to vary over a wide range, thus generating substantial and interesting 

test data. The detailed schedule is given in Table 2.5. 

Table 2.3 Maxwell K2 UC specification. 

Nominal capacity 
(F) 

Rated voltage 
(V) 

ESRDC 
(mΩ) 

Leakage current 
(mA) 

Operating Temperature 
( ) 

3000 2.7 0.29 5.2 -40 ~ +65 

Table 2.4 The performed test. The green shading in the intersection cell indicates that the EIS test was 

performed at the given combination of temperature and SOC. 

T( ) SOC 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

-40           
-20           
0           
20           
40           

Static Capacity Test

10% SOC Increment

EIS Test

Rest for half an hour

Repeat 3 times

Until 100% SOC

Temperate 
Chronorization

End

Pulse tests

Temperature 
resetting

-40

FUDS Test

Data Logging

Start

-20

-0

20

40

DST Test
Driving-cycle-based 

Tests

SDP Test

HPPC Test

 

Fig. 2.2 Schematic of test schedule. 
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Fig. 2.3 Pulse profile of the HPPC test. 

 

Fig. 2.4 Current profile of SDP test. 
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UC in line with the Freedom Car Test Manual. The capacity was measured and recorded during the 

discharging of UC with a 1 C current from the rated voltage till exhausted. The average capacity of 

the three capacity tests was calculated and used as the real capacity in the subsequent sections. The 

evolution of the UC voltage during static capacity test at 20°C is shown in Fig. 2.5 for demonstration. 

Step 4: The tested UC was charged with a 1 C current until the SOC value increased by 10%. The UC 

was then left to rest for half an hour to stabilize its terminal voltage and redistribute the charge within 

its internal structure. 

Step 5: The EIS test was carefully imposed on the stabilized UC, where the sampled impedance spectra 

ranged from 10 mHz to 100 Hz with a bias voltage set at 5 mV. It is reasonable to believe that the 

selected frequency range covers the majority of the operating points of a UC in practical EV 

applications. 

Step 6: The above two steps were repeated until 100% SOC was reached. 

Step 7: The dynamic tests, including DST and FUDS, were performed to investigate the characteristic 

of the tested UC under dynamic loading profiles. These served to represent the actual loading 

conditions of a UC in practical EV applications. 

Step 8: The above sequences were repeated for all circumstances shown in Table 2.4. 

 

Fig. 2.5 Static capacity test at 20°C.  
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2.3 Investigation of UC Impedance Characteristics 
The power sourcing/delivery capability of a UC is highly dependent on its impedance, to 

which the charge/discharge energy loss is directly proportional. As a result, a systematic 

examination of such impedance behaviour is critical to the development of 

control/management systems for ensuring a safe, reliable, and durable operation of UCs. The 

associated challenge is, however, serious, because the UC impedance may vary significantly 

with respect to dynamic operating conditions. All the existing studies merely take the open-

circuit voltage variation of UCs into account, without explicitly assessing the SOC effect on 

impedance characteristics. In contrast to the open-circuit voltage, SOC is clearly more 

indicative of available energy inside UCs. Unlike conventional capacitors, the UC SOC is 

mostly a nonlinear function of open-circuit voltage, which often cannot be easily evaluated 

due to its variability with operating circumstances [40]. Hence, a direct inclusion of SOC as 

an influencing factor for impedance analysis and modelling could lead to a more aggressive 

yet effectual control scheme sufficiently leveraging the potential of a UC pack. In addition, 

limited levels of influencing factors were considered, incurring the absence of a precise 

impedance dependency upon operating conditions. The coupling impact of the temperature 

and SOC on the UC impedance has been constantly overlooked in previous work.  

2.3.1 Temperature dependency of impedance 
Using the results from the EIS tests, the dependency of the UC impedance on the 

temperature was studied in detail. Five temperature points were selected, covering the typical 

thermal operating conditions from extremely low to high temperatures. Fig. 2.6 illustrates the 

average impedance magnitude over all sampled frequencies under different conditions. It is 
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evident that the temperature significantly affects the impedance magnitude for all SOC values, 

especially at temperatures below 0°C. It is obvious that the impedance magnitude increases, 

as the temperature reduces. An exponential relationship between the impedance magnitude 

and the ambient temperature can be further observed. That is, the temperature dependency of 

the UC impedance is even greater at temperatures below 0°C. This may be attributed to the 

reduced solubility of the conducting salt and the increased viscosity of the electrolyte for 

temperatures below the freezing point. Both of these effects result in dramatically reduced 

electrolyte conductivity and increased impedance [81]. 

Fig. 2.7 shows the influence of temperature in more detail using Nyquist plots. Generally, 

the evolution of impedance with frequency can be divided into three distinct phases, i.e., ‘90°’ 

zone, ‘45°’ zone, and ‘L’ zone. The ‘90°’ zone at lower frequencies may result from the 

surface roughness and nonuniformity of the double-layer thickness [84]. The ‘45°’ zone is 

believed to involve the electrolyte resistance. Semicircles can be found in all the plots at low 

temperatures, one of which is marked as the ‘L’ zone in Subplot Fig. 2.7(b) for illustration. 

This phenomenon is due to the slower reaction rate at low temperatures, which induces a 

lower frequency threshold to exhibit inductive behaviour that mainly arises from the stray 

inductance of the current collectors and terminals, and the porous geometry of the electrodes 

[85]. It is apparent that the diameter of the semicircle increases with the decreasing 

temperature, because the lower temperatures intensify the stray inductance of the current 

collectors and terminals. Furthermore, the intersection of the ‘L’ zone on the real axle is 

always interpreted as the series resistance in equivalent circuit models [44]. The real part of 

the impedance principally accounts for the internal resistance of contactors and the bulk 

electrolyte. It drops with increasing frequency since high frequency renders a deep internal 
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surface in the porous electrodes inaccessible to ions, consequently reducing their 

contributions to the Ohmic losses. It can be further deduced that the impedance increase with 

the decreasing temperature becomes more pronounced at relatively low temperatures. The 

real part of the impedance significantly increases at -40°C, compared to the case of +40°C, 

throughout the SOC range considered. As a consequence, the power capability of the UC 

would be severely compromised at low operating temperatures. Additionally, the impedance 

of electrochemical energy storage is always expected to have an Arrhenius dependence on its 

temperature [86]. Fig. 2.8 shows such Arrhenius fitting at 60% SOC and 10 Hz to 

quantitatively portray the temperature influence. The temperature of 0°C is noticed to be a 

critical point where the Arrhenius fitting coefficients alter considerably. 

 

Fig. 2.6 The average impedance magnitude of all sampled frequencies under different temperatures and 

SOCs. 
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Fig. 2.7 Schematic impedance spectra in Nyquist plots under different temperatures at (a) 10%SOC; (b) 

50%SOC; (c) 90% SOC. 
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Fig. 2.8 Arrhenius fit to the measured impedance (at 10Hz and 60% SOC). 
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of the average impedance magnitude with the SOC is indicated in Fig. 2.10. It can be seen 
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Nonetheless, in the case of -20°C, there is a monotonically decreasing impedance trajectory 
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opposite trend to that at 40°C. These observations in turn underline the coupling effect of the 
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efficiency SOC window. While the impedance magnitude variation is less than 0.1 mΩ, the 

percentage change is as high as 20% over the SOC range, which is actually substantial (as the 

UC impedance itself is very small, it is more judicious to consider the relative change). Owing 

to typical high-power applications of UCs, the 20% impedance rise probably leads to 

markedly increased power loss and heat generation, which ultimately requires costlier 

circuitry and thermal management systems, in addition to the excessive energy. Taking a 200 

A charge or discharge for the UC as a rough example, it is found that operation in the low-

efficiency area could increase the power loss by more than 1.5% at each time instance. This 

means there is a preference for the use of the high-efficiency SOC window in real applications, 

particularly for UC-only powered energy systems. Another supporting example is in the 

energy management and regenerative braking control of hybrid electric vehicles with UC 

energy storage [86]. 
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Fig. 2.9 Schematic impedance spectra in Nyquist plots with different SOC values at (a) -40°C; (b) -20°C; 

(c)0°C; (d)20°C; (e) 40°C. 

 

Fig. 2.10 Evolution of average impedance magnitude with SOC under different temperatures. 
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2.4 Dynamic Model of the Ultracapacitor 
It has been well recognized that a good UC model plays an important role in energy 

management of advanced systems powered by UCs. To capture the UC dynamics precisely, 

many models have been proposed, each with its advantages and disadvantages. The EIS 

method has been widely used for characterization of such models. Impedance-based model 

parameterization enables an investigation of how UC parameters vary with dynamic operating 

conditions. Here, the so-called dynamic model is considered because of its high accuracy, 

modest complexity and inherent robustness. As shown in Fig. 2.11, the model topology 

consists of a series resistance, a bulk capacitor, and two resistor-capacitor (RC) networks. The 

series resistor represents the contact resistance between the electrodes and their metallic 

current collectors, and the ionic resistance in the electrolyte. The bulk capacitor accounts for 

the capacitance phenomenon of the tested UC. The two RC networks with different time 

constants aim to capture the dynamic transients arising from the charge redistribution due to 

the porous structure of the electrodes. According to basic circuit analysis, the impedance 

model can be expressed as 

1 2

1 1 2 2

1( )
1 1s

R RZ j R
j C R j C R j C

 (2.1) 

where  denotes the sampled angular frequency in the EIS tests. 

The model parameters, Rs, C, R1, R2, C1, and C2 are identified using the nonlinear least-squares 

algorithm, based on the collected EIS test data. The objective function of the algorithm is 

described by 

1 2 1 2 0

2 2

,m , ,m ,
, , , , ,

1 Re Re Im Immin 2

n

i i i i
s i

e e
R C R R C C
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where ,mRe
i

 and ,mIm
i

 are the real and imaginary parts of the sampled impedance of the 

dynamic model at angular frequency i , ,Re
i e  and ,Im

i e  are measured values.  

As shown in Fig. 2.9, the impedance becomes inductive (positive imaginary part) at relatively 

high frequencies, especially at temperatures below 0°C. However, UCs usually operate at 

fairly moderate frequencies in practice so that it is reasonable to neglect inductive effects 

during modelling. Therefore, the inductive parts of the EIS impedance spectra are discarded. 

Fig. 2.12 shows the sampled frequencies where the measured impedance spectra are for model 

identification. After executing the nonlinear least-squares algorithm, the model parameters at 

all circumstances (wide ranges of temperature and SOC) are derived and shown in Fig. 2.13. 

The comparisons of the measured and model-estimated impedance spectra at each 

temperature are shown in Fig. 2.14. It can be seen that the identified model can very accurately 

emulate the UC impedance behaviour in a major portion of frequencies. At very low 

frequencies, the deviation is relatively large due to the limited low-frequency characterization 

of the model topology. The associated improvements will be used in future work; e.g., using 

more advanced fraction-order modelling techniques. The model accuracies are further 

compared in the two dynamic driving-cycle tests; i.e., the DST and FUDS tests. The root-

mean-squared (RMS) deviation from the experimentally recorded voltage is adopted as the 

metric of model fidelity. The RMS errors at different operating conditions are given in Fig. 

2.15. It is abundantly clear that the model accuracy is, overall, high and increases with the 

SOC at each temperature. Furthermore, the error distribution in both tests at each temperature 

is shown in Fig. 2.16 where the model parameters in Fig. 2.13 were used. The outcome 

indicates a general error bound of 0.08 V for both tests at each temperature, thereby achieving 
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satisfactory model accuracy. The effects of temperature and SOC on the UC parameters (i.e., 

resistance and capacitance elements) are, in turn, reasonably well quantified, which is 

conducive to synthesizing robust UC controllers in changing operating conditions. 

C
R1

C1

R2

C2

Rs

 

Fig. 2.11 Dynamic model structure for UCs. 
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Fig. 2.12 Frequency ranges used for model identification. 
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Fig. 2.13 Model parameters at different temperatures. 
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Fig. 2.14 Measured impedance spectra and model-predicted impedance at (a) -40°C; (b) -20°C; (c) 0°C; 

(d) 20°C and (e) 40°C. 
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Fig. 2.15 RMS error in DST and FUDS tests with different operating conditions. 
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Fig. 2.16 Error distribution under dynamic driving-cycle tests at all temperatures. 
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2.5 Summary 
The establishment of a wide-ranging, accurate and reliable database is critical for the 

modelling and state estimation of a UC system. This chapter briefly introduced a test rig and 

its specification which is able to acquire UC test data. A variety of tests were conducted on 

the test rig including the static capacity test, EIS tests under different temperatures and SOCs, 

and dynamic tests. A specific test procedure was designed for test implementation, and a UC 

database was built based on the obtained data, which lays the foundations for the study of the 

modelling and state estimation described in later chapters. Based on the EIS test data, the UC 

impedance characteristics at different operating conditions (wide range of temperatures and 

SOC values) was systematically studied. The experimental results indicate that the impedance 

magnitude exhibits an exponential increase as the temperature decreases, while the impedance 

phase at relatively low or high frequencies is sensitive to the temperature variation. These 

impedance alterations will inevitably compromise the UC system efficiency and power 

capability in low temperature environments, which needs a careful consideration in system 

integration and control. The analysis of the SOC dependency of the impedance highlights the 

high-efficiency SOC window of the tested UC. Such a window varies with temperature, which 

reflects the interactive effect of the temperature and SOC on the UC impedance. It is valuable 

to take this into consideration when optimizing the UC system performance. To verify the 

effectiveness of the EIS-based investigation, the dynamic model was calibrated in order to 

predict the UC dynamics, whose high accuracy has been substantiated in the DST and FUDS 

tests. The model parameters have been optimized by executing the nonlinear least-squares 

algorithm, given large amounts of EIS test data. These high-fidelity parameters enable a 
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quantitative analysis of how the UC parameters are affected by the temperature and SOC 

changes. 
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3 A Comparative Study of Equivalent 
Circuit Models of Ultracapacitors for 
Electric Vehicles 

3.1 Motivation 
A model that can emulate the dynamics of a UC with high precision and good robustness 

is of utmost importance for energy management design in EVs equipped with UCs or HESSs 

[53]. The model should also avoid excessive complexity so that it can be easily incorporated 

into real-time controllers. Therefore, it is vital to strike a balance between model accuracy 

and robustness, and model complexity. There are many ultracapacitor models existing in the 

literature [87]. They can be generally categorized into three groups: electrochemical models, 

ANN-based models and equivalent circuit models. Electrochemical models are derived 

from first principles, and can achieve very high accuracy once their parameters are precisely 

identified. They depict the real physical-chemical reactions inside the UC from an elemental 

view, which makes them suitable for understanding and optimizing UC design. However, the 

modelling uses sets of partial differential equations that have a large number of unknown 

parameters, some of which are particularly difficult to be calibrated. The extreme complexity 

of these differential equations leads to unacceptable computation loading and large memory 

requirement. Hence, PDE-based electrochemical models are not desirable for real-time 

energy management and power control in electric vehicles.  

ANN-based models can accurately capture the dynamics of a UC given an appropriate 

training data set, due to their powerful capability for approximating any nonlinear function 
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between the inputs and outputs [88]. The performance and accuracy of these models, 

nevertheless, relies heavily on the amount and quality of the training data. As a consequence, 

their robustness may not be great under varying loading conditions. 

Equivalent circuit models have been well developed for on-board energy management 

in EVs and extensively reported in the literature [89][90]. They are lumped-parameter models 

with relatively simple structures, while maintaining a reasonable precision in terms of the 

delineation of the dynamic behaviour of a UC. Unfortunately, there are few studies comparing 

these models in a comprehensive and systematic fashion. In [91], the authors reviewed and 

compared a variety of equivalent circuit models. Model characterization was performed 

through constant-current and constant-power tests, and the EIS technique. However, such 

tests significantly differ from the real loading conditions of a UC pack in an EV application, 

and are also highly sensitive to measurement noise. Consequently, the robustness and 

accuracy of the models cannot be sufficiently verified in highly dynamic loading regimes 

(characteristic to EV applications).  

The overarching goal of this chapter is therefore to systematically compare the 

applicability of different models (i.e., a comprehensive measure of model complexity, 

accuracy, and robustness) in the context of driving-cycle-based loading conditions. 

Particularly, robustness means modelling accuracy retention capability when the model is 

exposed to random loading conditions. This is critical since the model is always 

parameterized under a certain scenario, and then used in unpredictable and varying conditions. 

To that end, the state-of-the-art lumped equivalent circuit models are examined; i.e., the 

classic equivalent circuit model, the multi-stage ladder model, and the dynamic model. The 

genetic algorithm (GA) is used to identify the optimal parameters of these models using the 
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experimental data specially collected in the HPPC test. The GA method is capable of 

extracting the optimal model parameters by searching the whole possible parameter sphere as 

well as avoiding the local traps, thus effectively offsetting the impacts brought by 

measurement noises. Finally, the robustness of these models is evaluated and contrasted using 

the validation data acquired in the DST and an SDP test. The DST and SDP tests serve as 

representatives of driving-cycle-based loading profiles. The comparison outcomes provide 

useful insights into model selection, parameterization, and simulation of UCs for the 

development of EV energy management strategies. 
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3.2 Model Description 
Equivalent circuit models are lumped models that describe the voltage response using a 

basic electrical circuit composed of common electrical components. They exhibit both 

moderate accuracy and complexity in comparison with sophisticated electrochemical models 

and intelligence-based models. Several different equivalent circuit models have been reported 

in the literature. For a UC, these models can be grouped into three types: the classic model, 

the multi-stage ladder model, and the dynamic model, with their model structures and state-

space representations shown in Fig. 3.1 and Table 3.1, respectively. Note that all the above 

formulated continuous state-space equations were transformed into their corresponding 

discrete forms for predicting the voltage evolution using the measured input samples. The 

model parameters that need to be identified are summarized in Table 3.2. 

The ladder model is based on the porous structure of a UC, and can dynamically mimic 

the distributed nature of the UC. Note that this type of model is flexible in terms of the number 

of stages. Generally, more stages lead to higher model accuracy at the cost of computational 

efficiency. For EV applications, it is reasonable to adopt the three-stage ladder model to 

achieve a trade-off between model accuracy and complexity for the real-time energy 

management. The dynamic model consists of a bulk capacitance, a series resistance, and two 

RC networks. The RC networks aim to represent capacitance and charge distributions across 

the interface of double layers. The number of RC networks is flexible as well. Here, a dynamic 

model with two RC networks is adopted for fair comparison to the three-stage ladder model, 

as well as for its ample accuracy in representing the UC dynamics in real applications. The 
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dynamic model is capable of capturing the transient behaviour of a UC over a wide range of 

frequencies. 

 

(a) Classic model 

 

(b) Ladder model 

 

(c) Dynamic model 

Fig. 3.1 Model structure. 

Table 3.1 State-space representations. 

Model type State-space representation 

Classic model 

1 1c
c

p

c c s

du
u i

dt CR C

V u iR  

Rp

C

Rs

R2

C1

R1

C2

C3

R3

C
R1

C1

R2

C2

Rs

where Vc denotes the output voltage of the model, Rs 
is the internal resistance which includes the 
electrolyte resistance and contact resistance, Rp is 
used to simulate the self-discharge phenomenon, uc 
denotes the voltage across the capacitor and i is the 
charging current. 
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Ladder model 

 
 

Dynamic model 

 
 

Table 3.2 Model parameters for identification. 

Model type Model parameters 
Classic model C, Rs, Rp 
Ladder model C1, C2, C3, R1, R2, R3 
Dynamic model C, Rs, C1, C2, R1, R2 

  

1

2 1 2 1
1 1

2 32
2

2 2 3 2 2 3 2
3

3

3 3 3 3

1 1 0 1

1 1 0
0

1 10

du
R C R Cdt u C

R Rdu u i
dt R C R R C R C

udu
dt R C R C

1 1V u R i

1

1
2

2
1 1 1

3
3

2 2 2

1
0 0 0

1 10 0

1 10 0

du
dt Cu
du u i
dt R C C

udu
dt R C C

0 1 2 SV u u u R i

where u1, u2 and u3 
denote the voltages 
across the capacitors 
C1, C2 and C3, and V is 
the output voltage. 

where u0 represents the bulk 
capacitance, u1 and u2 denote 
the voltages of the two RC 
networks, V is the output 
voltage, and Rs represents the 
series resistance. 
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3.3 Model Characterization 
The parameters of these models are identified by means of the HPPC test dataset. In order 

to avoid getting locked in local optima, the GA was adopted to search for the optimal solution. 

This is one approach to global optimization. Compared with traditional optimization methods, 

the GA proves to be robust in solving the non-gradient and global optimization problems, 

which is well-suited for the random searching of optimal model parameters. There are only a 

few parameters to assign for the GA, as listed in Table 3.3. 

The optimization objective is to minimize the RMS error between the experimentally 

recorded voltage and the simulated output of the optimized models. The RMS error is a good 

indicator of the model accuracy and robustness. The optimization process starts with a random 

population initialization, where the model parameters are coded by a sequence of binary 

numbers in each population member. The RMS error is then used as the fitness function to 

evaluate each population member. A roulette game is applied to update the population 

members in a sense that the fittest population member is conserved for further operations in 

the game. Parents are then picked at random from the population to generate a new population 

through crossover and mutation operators. Usually, mutations occur randomly along the long 

strings of genes at fairly low odds. The RMS error is once again employed to evaluate the 

fitness of the new population members. This process is iteratively implemented until the 

termination criteria are fulfilled. The pseudo code of the implemented GA for UC 

characterization is shown in Table 3.4. Further details of the GA are in [92]. The derived 

parameters are given in Table 3.5. 
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Table 3.3 The key parameters of the genetic algorithm. 

Parameter (Abbreviation) Value 
Population Size (N) 30 
Number of Generation (iGen) 100 
Tournament Selection (ps) 0.75 
Crossover Probability (pc) 0.8 
Mutation Probability (pm) 0.025 

 

Table 3.4 The pseudo code of GA for UC model characterization. 

Step 1: The bounds of the model parameters, L and U  , are assigned. 

Step 2: Randomly generate the initial population P0 which comprises N members, i.e., 1
jm ,..., j

Nm ,within 

the parameter bounds. Each member represents a possible solution of the model parameters. Herein, the 

uppercase j is the generation index. 

Step 3: Evaluate the function f(P0), and register the population member with the best performance as 

bestInd with its function value Find. The Find is also assigned to the bestGlobal, which retains the 

function value of the fittest member so far. The function f(.) is the cost function that gauges the root-

squared-error between the simulated voltage and the measured voltage based on the input model 

parameters. 

Step 4: If j is less than the iGen, the following steps are repeated: 

(1) The roulette game is used to rearrange the population with the sense that the members with better 

performance have bigger chance to survive for further operation. 

(2) The parents are selected randomly to manoeuvre the crossover and mutation with the possibilities of 

pc and pm, respectively. As a result, a renewed population Pj is obtained for further fitness evaluation. 

(3) Calculate the function f(Pj) for the updated population, and recode the best performer bestInd. 

(4) Compare the function value of bestInd with the preceding bestGlobal, and assign the new Find to 

the bestGlobal if it is smaller. j=j+1. 
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Step 5: If j=iGen, terminate the algorithm. Recall the member with the best performance index 

bestGlobal.  

 

Table 3.5 The derived optimal model parameters. 

Ultracapacitor models Parameter (Unit) Value 
 C (F) 2708 
Classic model Rp  4366 
 Rs  9.854×10-4 

Multi-stage ladder model 

C1 (F) 1680 
C2 (F) 749 
C3 (F) 193 
R1  4.5×10-4 

R2  5.0×10-5 

R3  4.0×10-5 

Dynamic model 

C (F) 2712 
Rs  8.216×10-4 

C1 (F) 627 
C2 (F) 1843 
R1  3.146×10-4 

R2  3.883×10-4 

  



 

58 
 

3.4. Comparison Result and Discussion 

3.4.1 Model accuracy and robustness 
To evaluate and compare the precision of the three models in the HPPC, DST and SDP 

tests, several statistical metrics, i.e., maximum error and mean error, and RMS error, are taken 

into account. Comparative results of these models in the HPPC test are given in Fig. 3.2. It 

can be seen that the classic model exhibits slightly better accuracy than the dynamic model, 

while the ladder model is worst. 

For EV applications, model robustness under transient and varying conditions is very 

important. Here, the datasets in the DST and SDP tests are used to examine the robustness of 

these models. The results of the DST test are shown in Fig. 3.3. It shows the accuracy of the 

ladder model in the DST test is even lower than that in the HPPC test. Its robustness may be 

a challenging issue for realistic EV control system design. However, the precision of the 

classic model and the dynamic model are similar to those in the HPPC test. Furthermore, it is 

discernible that the dynamic model is more precise than the classic model in the DST test, 

despite a slightly poorer performance in the HPPC test. This in turn demonstrates that the 

dynamic model is more robust.  

To further verify robustness of these models under varying loading profiles, the data 

recorded in the SDP test are also considered. The SDP profile serves to emulate the highly 

unpredictable loading scenarios of EV UCs. The evaluation results in the SDP test are given 

in Fig. 3.4. They also illustrate that the dynamic model has the best overall performance. 

In summary, the dynamic and classic models can better capture the dynamics of the tested 

UC in all the tests in comparison to the ladder model. Even though the classic model has a 
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simpler structure and slightly better accuracy in the HPPC test, the dynamic model exhibits 

better robustness against variant loading conditions. 
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Fig. 3.2 Comparison outcomes in the HPPC test: (a) Simulated and measured voltages; (b) Maximum and 

mean absolute errors; (c) RMS error.  
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Fig. 3.3 Comparison outcomes in the DST test: (a) Simulated and measured voltages; 

(b) Maximum and mean absolute errors; (c) RMS error. 
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Fig. 3.4 Comparison outcomes in the SDP test: (a) Simulated and measured voltages; (b) Maximum and 

mean absolute errors; (c) RMS error. 
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3.4.2 Model complexity 
In terms of model complexity, the classic model has the simplest structure. Only one 

ODE is sufficient to describe the state evolution during operation of the tested UC. However, 

it often fails to capture the highly dynamic voltage response of the tested UC. Meanwhile, the 

ladder model and the dynamic model appear to have similar complexity, and the same order 

of ODEs, in order to represent the dynamics of the tested UC. The derivation of the discrete 

system matrix for the ladder model proves to be extremely complex and time-consuming. In 

contrast, the dynamic model has a system matrix in the diagonal form so that the discretization 

process is fairly straightforward in accordance with the basic control theory, while it has the 

capability of capturing the dynamics using its inherent RC networks. Therefore, it is obvious 

that the dynamic model is preferred to the other models even when taking the model 

complexity into account. 
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3.5. Summary 
A comparative study of the equivalent circuit models of UCs has been conducted in the 

context of EV applications. These models are selected from the state-of-the-art lumped 

equivalent circuit models reported in the literature; i.e., the classic model, the multi-stage 

ladder model, and the dynamic model. The GA is used to identify the optimal model 

parameters. The model accuracy, complexity, and robustness are then evaluated and 

compared by means of different datasets. Assessment results illustrate that the most 

complicated ladder model has the lowest accuracy and robustness; the classic model has the 

second best overall performance; and the dynamic model is the best compromise between 

model precision/robustness and complexity. It is reasonable to conclude that the dynamic 

model of a UC is the preferable option for EV energy management design. 
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4 An Online Parameter Identification of 
Ultracapacitor Models Using the Extended 
Kalman Filter 

4.1 Motivation 
Equivalent circuit models have been carefully developed, especially for the energy 

management design and power control. The key advantage of these equivalent models lies in 

their relatively small number of parameters. The accuracy of the parameterization is 

significant in terms of the electric vehicle context. A large body of literature exists pertaining 

to parameter extraction methods. For example, Spyker and Nelms [33] presented a classical 

equivalent circuit that comprises an equivalent series resistance, an equivalent parallel 

resistance, and a main capacitor. The model parameters were derived by measuring the 

voltage responses during charge and rest. However, the accuracy of this method is highly 

dependent on the measurement precision so it is sensitive to measurement noises. Gualous et 

al. [43] used the EIS method to characterize a second-order equivalent circuit model for UCs. 

EIS is a commonly used approach for the measurement of the complex impedance of energy 

storage devices such as batteries and UCs. This is done for a wide range of frequencies by 

imposing a known bias voltage upon the terminals of the tested storage device and detecting 

the corresponding excitation current [93]. The obtained frequency spectra can be modelled 

with interleaved RC circuits by analyzing the frequency dependency of the real and imaginary 

parts of impedance, thus resulting in an equivalent circuit model [94]. However, the precision 

of an identified model when obtained using the EIS method may be compromised under the 
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varying loading conditions due to offline implementation. This can be attributed to the fact 

that the lumped equivalent circuit model parameters are largely dependent on the loading 

conditions, which makes the offline EIS-obtained model incapable of representing the 

dynamics of batteries or UCs accurately in the real implementation. The majority of the 

methods presented in the literature are subject to the similar drawbacks; i.e., susceptibility to 

measurement precision and noise and offline implementation. In order to tackle these 

problems, this work employs the EKF to recursively estimate the model parameters. The EKF 

has the advantages of being closed-loop, online, and the availability of error bounds. Hence 

it has been widely used to perform the model calibration for batteries in real time. However, 

there is a lack of literature reporting the application of the EKF technique to identify online 

UC model parameters. 
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4.2 Modelling and Parameter Estimation for UCs 

4.2.1 UC model structure 
There are a variety of equivalent circuit model structures for UCs. Here, the dynamic 

model is selected since its superiority has been confirmed in Chapter 3. The detailed structure 

is shown in Fig. 4.1, where u0 denotes the voltage across the bulk capacitor C, u1 and u2 denote 

the voltages of the two RC circuits, respectively, u denotes the output voltage, and Rs denotes 

the series resistance. 

According to basic electrical circuit principles, the continuous state equation can be 

derived as: 

       
  

(4.1) 

  

Based on the Euler method, the state equation can be further transformed into the discrete-

time state equation so that: 

 

(4.2)  

where: 
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2 2
2

T
R Ca e                                                                                    (4.4) 

1 1
1 1 1

T
R Cb R R e                                                                           (4.5) 

2 2
2 2 2

T
R Cb R R e                                                                           (4.6) 

with the sampling time T . The output equation can be derived: 

0, 1, 2,k k k k k su u u u i R                                                            (4.7) 

where k denotes the time interval index. 

 

Fig. 4.1 The UC model structure. 

4.2.2 Parameter estimation using the extended Kalman filter 
Recently, the Kalman filter has gained more popularity in the field of state estimation, 

parameter estimation and dual estimation due to its inherent merits [95]. That is, it can be 

implemented online and automatically provides the estimation error bound. In order to 

implement an extended Kalman filter to recursively estimate the parameters, the process of 

parameter evolution can be formulated into a state equation so that: 

1k k kθ θ ω                                                                               (4.8) 

( , , )k k k k ku g x i θ υ
                                                                  (4.9) 

kx
 is the state vector, and: 
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0, 1, 2,[ , , ]T
k k k ku u ux                                                                    (4.10) 

0, 1, 2,( , , )k k k k k k k sg u u u i Rx i θ                                          (4.11) 

1 1 2 2[ , , , , , ]T
recip sa b a b C Rθ                                                        (4.12) 

where  denotes the parameter vector, Crecip denotes the reciprocal of C,  is the output 

voltage at time interval k, ik is the charging current (a negative value denotes discharging),  

represents the process noise, which is assumed to be Gaussian white noise with zero mean 

and covariance of Q, and kυ represents the measured noise which is also assumed to be 

Gaussian white noise with zero mean and a covariance of W. Based on process and output 

equations described above, the EKF equations can be derived in the state-equation form. At 

each time interval, the time update and measurement update are consecutively performed. In 

this work, two constant values are assigned to process and measurement noise covariances: 

1. Time update: 

| 1 1
ˆ ˆ

k k kθ θ                                                                                (4.13) 

| 1 1k k kP P Q                                                                         (4.14) 

where | 1
ˆ

k kθ is the priori estimate of the parameter vector θ at time interval k before the 

measurement uk is taken into consideration, 1
ˆ

kθ  is the a posteriori estimate of the parameter 

vector at time interval k-1, | 1k kP  represents the a priori estimation error covariance of 

parameter vector θ at time interval k, and 1kP  represents the a posteriori estimation error 

covariance of parameter vector θ at time interval k-1. 

θ ku

kω
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2. Measurement update: 

1
| 1 | 1( )T T

k k k k k k k kL P C C P C W                                                (4.15) 

| 1 | 1
ˆ ˆ ˆˆ( ( , , ))k k k k k k k k ku gθ θ + L x i θ                                          (4.16) 

| 1( )k k k k kP I L C P                                                                 (4.17) 

| 1

| 1

ˆ

ˆˆ( , , )

k k

k k k k
k

dg
d

θ θ

x i θ
C

θ                                                        (4.18) 

where I denotes the identity matrix with proper dimension, W represents the covariance of 

the measurement noise υ  and Lk is the Kalman gain at time interval k. ˆ kx  can be computed 

given 1ˆ kx  and 1
ˆ

kθ according to (4.2). Updates in the time and measurement equations at 

each time interval means that the parameter vector ˆ kx  can be recursively estimated. Since ˆ kx  

acts as a function of the parameter vector ˆ
kθ , kC  can be computed by performing recurrent 

differentiations, which are: 

          
(4.19)  

      
(4.20)  

where: 

                             
(4.21)  
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(4.22)  

                   

(4.23)  

                             

(4.24)  

f represents the system function given in (4.2). 

It is obvious that the derivative calculation is recursive, and can be initiated by: 

                                          
(4.25)  
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4.3 Results and Discussion 

4.3.1 Parameter estimation in the DST test 
In order to validate the proposed estimation algorithm, a transient power test based on 

the standard DST was conducted on the established test rig. The DST-based test can represent 

the dynamic load conditions of a UC during daily driving of an electric vehicle with UCs as 

the single or complementary energy storage. The voltage and current of the UC in the DST 

test are shown in the Fig. 4.2.  

Kalman filters require a priori knowledge about process and measurement noise statistics. 

When it comes to the algorithm, the process and measurement noise covariance, namely Q 

and W, should be carefully selected. Based on the knowledge of the tested UC, the parameters 

for the EKF algorithm are specified through trial-and-error method: 

 (4.26)  

 
(4.27)  

 (4.28)  

 (4.29)  

 (4.30)  

where diag {[...]} denotes a diagonal matrix with [...] on its main diagonal. 

Given the specified parameters, the proposed EKF was implemented in order to online 

estimate the model parameters of the UC. The evolution of the estimated model parameters 

is shown in Fig. 4.3. It shows all the estimated parameters tend to converge at the end of the 

test. It can be seen that the value of R1 is bigger than that of R2 while C1 is just slightly smaller 

than C2. It means that the first RC circuit has a larger time constant than the second RC 

T
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network in the selected model. It can be observed that the value C of the main capacitor 

exhibits a gentle decline, which indicates the capacitance varies with the terminal voltage. It 

can also be seen that the estimated resistance Rs increases along with the decline of the voltage 

in the test. The variations of C and Rs reveal that the internal characteristics are also dependent 

on the external loading conditions [52]. 

The evolution of the measured and estimated voltages is shown in Fig. 4.4. It can be seen 

that the estimated voltage shows good agreement with the measured voltage in the DST test. 

This proves that the recursively identified model can capture the voltage response after 

compensating for the initial model error. The relative voltage error is illustrated in Fig. 4.5 

which further demonstrates the model performance. The converged estimation result is shown 

in Table 4.1. According to (4.3) to (4.6), the model parameters can be computed and these are 

shown in Table 4.2. 

 

Fig. 4.2 The measured voltage (a) and current (b) profiles in the DST test. 
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Fig. 4.3 The evolution of the estimated model parameters in the DST test: (a) R1; (b) C1; (c) R2; (d) C2; 

(e) C; (f) Rs. 
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Fig. 4.4 The measured and estimated voltages in the DST test. 

 

Fig. 4.5 The relative voltage error in the DST test. 

 

Table 4.1 The estimation results of the EKF. 
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4.3.2 Model validation in the HPPC test 
In order to validate the derived model, the HPPC data was used. The voltage and current 

profiles in the HPPC test are shown in Fig. 4.6. The simulated and measured voltages are 

illustrated in Fig. 4.7. It can be seen that the model with the previously estimated parameters 

can represent well the voltage behaviour under the HPPC test. The error, instead of the relative 

error between the simulated and measured voltages, is used to indicate the accuracy of the 

identified model because the voltage of the UC generally decreases to 0 V at the end of the 

test. The error curve is shown in Fig. 4.8. The mean error is 0.058 V, indicating an average 

error of 2.2% relative to the rated voltage of the test UC. This accuracy is comparable to that 

of most advanced models reported in the literature [41]. It verifies that proposed estimation 

algorithm can achieve robust parameter estimation and be used to derive a model that can 

predict the dynamics of a UC under different load profiles. Owing to the fact that the DST 

and HPPC loading profiles are highly dynamic and thus representative of the real driving 

conditions of vehicles, it is reasonable to conclude that the derived model is applicable to the 

real driving scenarios with sufficient accuracy. The proposed method can identify the model 

with precision and robustness. 

 

Fig. 4.6 The measured voltage (a) and current (b) profiles in the HPPC test. 
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Fig. 4.7 The simulated and measured voltages in the HPPC test. 

 

Fig. 4.8 The error between the simulated and measured voltages in the HPPC test. 
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4.4 Summary 
This chapter presents an online model identification method for a UC model based on the 

well-known Kalman filter. The dynamic model was used to represent the dynamics of a UC. 

It was composed of a bulk capacitor, a series internal resistance and a second-order RC 

network. The rationale for the use of this model is that it can sufficiently capture the transient 

voltage response without introducing heavy computation burden. The evolution of the model 

dynamics was depicted by a set of discrete state equations according to electrical principles. 

The equation parameters were extracted and used as the targets for the proposed estimation 

method. The EKF was formulated and applied to recursively identify the parameters based on 

the DST test data. The results show that the recursively calibrated model can well represent 

the transient voltage behaviour under the dynamic operating conditions. In order to further 

validate the accuracy of the model, the HPPC test data was used. The result shows that the 

model can also depict the voltage behaviour under the HPPC operating scenarios with high 

fidelity. This verifies that the proposed method can identify a model in a robust manner 

against different load profiles. 
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5 Robust State-of-Charge Estimation of 
Ultracapacitors for Electric Vehicles 

5.1 Motivation 
In order to ensure safe and efficient operation of UCs in volatile and demanding 

conditions, an accurate SOC estimation is important. For example, energy management 

controllers in advanced energy systems base their control actions on precise SOC estimates, 

which turns out to make better use of the power potential of UCs without incurring detrimental 

over-charge/over-discharge.  

This chapter presents a robust H-infinity observer for estimating the SOC of a UC. Its 

primary objective is to guarantee that the H-infinity norm of the estimation error over process 

and measurement noises is bounded by a given attenuation level in the worst case. In 

comparison with the state-of-the-art Kalman filter-based (KF-based) approach, there is no 

requirement for repeatedly adjusting statistical properties of process and measurement noises. 

Furthermore, the presented observer has the advantage of being robust to modelling 

uncertainty, thus enabling the feasibility of all-through-life operation against likely aging 

implications. Also, it is worth mentioning that the H-infinity observer gain can be derived 

offline, and then used as a fixed multiplier in the real-time estimation, which significantly 

reduces the computational intensity of real-time implementation. This is in contrast to the 

continuous and complicated matrix operations of Kalman filters. The Linear Matrix 

Inequality (LMI) approach is utilized to solve the H-infinity estimation problem, considering 

its computation efficiency and flexibility. By exploring the solution feasibility of the 

formulated LMI problem at a given attenuation level, the gain matrix of the H-infinity 
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observer can be derived. A large amount of experimental data is used to validate the robust 

estimation scheme, together with a comparison with KF-based methods. 

  



 

81 
 

5.2 UC Modelling and Characterization 

5.2.1 Model validation in the HPPC test 
The dynamic model has been demonstrated to be preferable in terms of model complexity, 

accuracy, and robustness in the prior work in Chapter 3, and is thus considered in this chapter. 

As shown in Fig. 5.1, the dynamic model is composed of a series resistance, a bulk 

capacitance, and two resistance-capacitance (RC) networks capturing the dynamic transients 

of UCs. In the model, u0 denotes the voltage across the bulk capacitor C, u1 and u2 denote the 

voltages of the two RC circuits, respectively, V denotes the UC output voltage, Rs denotes the 

series resistance, and i represents the manipulated current. 

According to the basic electrical circuit laws, the continuous state-space equation is: 

( ) ( ) ( )t t tx Ax Bu( ) (( ) (x( ) () ((                                                                   (5.1) 

( ) ( ) ( )t t ty Cx Du                                                                   (5.2) 

where T
0 1 2[ , , ](t)= u u ux , ( ) ( )t i tu , ( )t Vy , 

1 1

2 2

0 0 0
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1 1 1C                          sRD  

Incorporating the impact of process and measurement noises, the state-space equation 

can be further formulated in a stochastic form: 

( ) ( ) ( ) ( )t t t tx Ax Bu w( ) (( ) (x( ) () ((                                                          (5.3) 

( ) ( ) ( ) ( )t t t ty Cx Du v                                                            (5.4) 
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where ( )tw  and ( )tv  represent the process noise and the measurement noise, respectively. 

C R1

C1

R2

C2

Rsi

V

+ -u1

+ -
+ + --

u2

u0

 

Fig. 5.1 UC model structure. 

5.2.2 Model characterization 
The EIS test data collected through experimentation shown in Chapter 2 was employed 

to characterize the dynamic model. The nonlinear least-squares algorithm was used to extract 

the optimal model parameters on the basis of the impedance spectrum obtained under a 

temperature of 20°C and a frequency range from 10 mHz to 100 Hz at 100% SOC. The 

derived model based on 100% SOC data has been demonstrated to have the highest accuracy 

in Chapter 2. Fig. 5.2 shows that the calibrated model is capable of simulating the UC 

impedance at the selected frequency range (especially at relative high frequencies commonly 

encountered in electric vehicle applications). The optimized model parameters are listed in 

Table 5.1. 
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Fig. 5.2 Measured and predicted impedance spectra under 20°C at 100% SOC. 

Table 5.1 The derived model parameters under 20°C at 100% SOC. 

Model parameters (Unit)  
C (F) Rs (Ω) R1 (Ω) R2 (Ω) C1 (F) C2 (F) 
2959 2.68×10-4 8.69×10-5 3.70×10-5 1095 60.7 
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5.3 H-infinity Observer for UC SOC Estimation 
The H-infinity filter has been increasingly used to address state estimation problems with 

great success. The underlying beneficial properties give excellent tolerance against the 

unknown process and measurement noise, and intrinsic robustness against modelling 

uncertainty. These are desirable merits for UC SOC estimation, because the UC model 

parameters are highly susceptible to its operating conditions and health levels. 

For ease of matrix manipulation, (5.3) and (5.4) can be rearranged to 

( ) ( ) ( ) ( )t t t tx Ax Bu E( ) (( ) (x( ) () ((                                                       (5.5) 

( ) ( ) ( ) ( )t t t ty Cx Du Fω                                                          (5.6) 

where ω(t)=[w, v]T, E=[I0, 0], F=[0, I1], with I0 and I1 being the identity matrix  and 0 being 

the zero matrix with proper dimensions, respectively. 

The observability of the UC model can be examined by checking the rank of the extended 

observatory matrix: 

1 1 2 2

2 2 2 2
1 1 2 2

1 1 1
1 10

1 10

R C R C

R C R C

0
2

C
M CA

CA

                                          

(5.7) 

The observatory matrix is of full rank if 

1 1 2 2R C R C                                                                                 (5.8) 

Given the parameters in Table 5.1, it is evident that the UC model is observable. Then, 

an H-infinity observer can be expressed as follows: 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))t t t t tˆ ˆ( ) (ˆ) ((x Ax Bu L y y                                           (5.9) 
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ˆ ˆ( ) ( ) ( )t t ty Cx Du                                                                    (5.10) 

where ˆ ( )tx  and ˆ( )ty  are estimates of ( )tx  and ( )ty , respectively, and L is the observer gain. 

Thus, the error dynamics can be obtained: 

( ) ( ) ( ) ( ) ( )t t te A LC e E LF ω( ) (( ) (e( ) () ((                                           (5.11) 

( ) ( )y t te Ce                                                                                (5.12) 

where 

ˆ( ) ( ) ( )t t te x x                                                                         (5.13) 

ˆ( ) ( ) ( )y t t te y y                                                                        (5.14) 

The main task of the H-infinity observer design is to find the filter (5.9) and (5.10) such 

that the error dynamics (5.11) and (5.12) are asymptotically stable at a specified attenuation 

level 0 , that is, satisfying the following inequality: 

2

2

supe
ω

e
T

ω
, (0)e 0                                                    (5.15) 

Many approaches have been put forward to solve the above mentioned H-infinity 

problem; e.g., the algebraic Ricaati equation (ARE) approach, the polynomial equation 

approach, and the LMI based approach. The LMI method is adopted here for its computation 

efficiency and flexibility. 

Based on Bounded Real Lemma from [96], the H-infinity problem (5.15) can be 

converted to finding an appropriate symmetric positive matrix P and the filter gain L such 

that the following inequality is satisfied: 

2

( ) ( ) ( )
0

( )

T

T

A LC P P A LC I P E LF
E LF P I                      

(5.16) 

In order to transform (5.15) to an LMI, a new variable N PL  (i.e., 1L P N ) is 

defined, resulting in 
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2
0

( )

T T T

T

A P PA C N NC I PE NF
PE NF I                         

(5.17) 

By setting 1.2 , the matrices P and N can be derived by means of the Matlab-based 

toolbox YALMIP [97]. As state in its official website, YALMIP is a modelling language for 

advanced modelling and solution of convex and nonconvex optimization problems. It 

implements a large amount of tricks, allowing the user to concentrate on the high-level model, 

while YALMIP takes care of the low-level problems. After implementation, the derived P 

and N are 

0.2587 0.0122 0.0003
0.0122 0.6666 0.0048
0.0003 0.0048 0.0112

P                                          (5.18) 

1.1556 0.7069 0.2524 TN                                           (5.19) 

The observer gain is 

4.4145 0.8200 22.1240 TL                                        (5.20) 

For a comparative study, the state-of-the-art Kalman filter is also employed to estimate 

the UC SOC. The state-space equations (5.1) and (5.2) are discretized to 

1k k k kx Gx Hu w                                                                 (5.21) 

1k k k ky Cx Du v                                                                 (5.22) 

where k denotes the time interval index, ( )tw  and ( )tv  represent the process and measurement 

noise, both of which are assumed to be Gaussian white noise with zero mean and covariance 

matrices of Qw and Rv. The continuous H-infinity observer ((5.9) and (5.10)) can also be 

discretised similarly. The system matrix and the control matrix become: 
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1 1

2 2

1 0 0

0 0

0 0

T
R C

T
R C

e

e

G

                                                               

(5.23) 

1 1

2 2

T

1
T

2

(1 )

(1 )

R C

R C

T
C

R e

R e

H

                                                                    

(5.24)

 

where T is the sampling time. The detailed Kalman filter for the UC SOC estimation is 

illustrated in Fig. 5.3. 

 

Fig. 5.3 Schematic of the Kalman filter for UC SOC estimation. ( | 1ˆ k kx  and |ˆk kx  are the prior and posterior 

estimate of state vector at time interval k; | 1k kP  and |k kP  are the error covariance of | 1ˆ k kx  and |ˆk kx  ; Kk 

represents the Kalman gain.) 
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5.4 Experimental Validation and Discussion 
The test data collected through EIS tests are utilized to identify the model parameters. 

The accuracy and robustness against modelling uncertainty of the proposed observer is 

examined through the Federal Urban Driving Schedule (FUDS), a representative loading 

profile for UCs in electric vehicle applications. The FUDS test serves to present the typical 

loading conditions, but far from the wholly representative of vehicle operation. Here, the UC 

voltage is permitted to approach zero in order to execute the complete FUDS test. While, in 

real EV applications, the UC system cannot operate in such low voltage range due to the 

voltage limit for motor drive. It is noted that both the voltage and current were closely 

monitored during tests, thereby avoiding over-discharge risk. 

5.4.1 Validity of the proposed H-infinity observer 
The performance of the H-infinity observer is highly dependent on the attenuation level, 

since it is a direct indictor of the noise-to-estimate impact. However, a stringent attenuation 

level would cause divergence problem, resulting in the observer malfunction. Thus, taking 

the convergence issue into consideration, the attenuation level for the proposed H-infinity 

observer is given by: 

1.2                                                                                        (5.25) 

The covariance matrices Qw and Rv for the Kalman filter were obtained via the trial-and-

error method: 

( 5.0 6 1.0 6 1.0 7 )w e e eQ diag , 0.09vR                 (5.26) 

Evolutions of the SOC estimates for both methods are shown in Fig. 5.4. The well-

controlled coulomb counting was used to procure the reference (true) SOC based on the 
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integral calculation of the measured current and time. The high-accuracy current 

measurement capability of the test rig can ensure the validity of the reference SOC. It can be 

seen that the H-infinity observer predicts well the SOC of the tested UC. Its estimation 

accuracy is comparable to the Kalman filter. This fact highlights that the H-infinity observer 

is able to efficiently track the UC SOC without cumbersome and time-consuming tuning of 

process and measurement noise covariance. 

 

Fig. 5.4 Comparison of the H-infinity obersver and the Kalman filter for the UC SOC estimation in the 

FUDS test at 20°C. 

5.4.2 Robustness against modelling uncertainty 
The UC model parameters are highly sensitive to operating conditions (e.g. temperature 

and SOC). Thus, the model uncertainty may make the KF-based method diverge, even though 

it is well-tuned in advance. Instead, the formulation of the H-infinity observer is inherently 

endurable to possible model variations. This property is highly appreciated since UCs always 

work in varying conditions, giving rise to parameter variation problems. As shown in Table 

5.2, the model parameters (acquired through EIS tests) noticeably alter under different 
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temperatures. Figs. 5.5 to 5.7 show that the H-infinity observer, based on the model at 20°C, 

can still perform well under the other three temperatures and achieve SOC estimation with 

high accuracy. The true SOC value was calculated using the Coulomb counting method, 

thanks to the high precision measurement of charging/discharging current, thus guaranteeing 

the reference (true) SOC accuracy. Upon a further observation of these figures, it is prominent 

that the H-infinity observer converges much faster to the true SOC than the Kalman filter at 

all the temperature circumstances. It is notable that identical initial estimates were given for 

a fair comparison. Fig. 5.8 and Fig. 5.9 show mean absolute errors and RMS errors of the 

Kalman filter and H-infinity observer, respectively. It is clear that the H-infinity observer 

outperforms the Kalman filter under all temperatures. In particular, the performance of the H-

infinity observer is most obvious at -40°C, as there exists the largest parameter change. This 

verifies the robustness of the proposed H-infinity observer against the modelling uncertainty, 

hence justifying its superiority to the state-of-the-art Kalman filter for UC SOC estimation. 

Table 5.2 Model parameters under different temperatures. 

 Model parameters (Unit)  

T (°C) C (F) Rs (Ω) R1 (Ω) R2 (Ω) C1 (F) C2 (F) 

-40 2835 4.05×10-4 1.70×10-4 1.07×10-4 2601 736.2 

0 2976 2.64×10-4 1.13×10-4 4.44×10-5 976.6 40.3 

40 3031 3.07×10-4 4.19×10-5 4.50×10-5 5294 987.6 
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Fig. 5.5 UC SOC estimation result in the FUDS test at -40°C. 

 

Fig. 5.6 UC SOC estimation result in the FUDS test at 0°C. 
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Fig. 5.7 UC SOC estimation result in the FUDS test at 40°C. 

 

Fig. 5.8 Mean absolute errors of UC SOC estimation. 
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Fig. 5.9 Root-mean-square errors of UC SOC estimation. 
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5.5 Summary 
This chapter presents a robust H-infinity observer for the estimation of the UC SOC. 

Compared to the state-of-the-art KF-based estimation methods, the proposed approach does 

not need any statistical information about process and measurement noises during operations, 

which eliminates the heuristic, error-prone, troublesome, and time-consuming tuning process. 

Its estimation accuracy can be ensured by minimizing the attenuation level. Moreover, it is 

less computationally intensive because the observer gain is synthesized offline rather than 

recursive gain calculation in the KF-based algorithms. The validation outcome substantiates 

that the H-infinity observer can estimate the UC SOC with comparable accuracy to the 

Kalman filter, given an exact model. Its robustness against modelling uncertainty is proven 

by taking varying temperatures into account, therefore justifying an enhanced 

extrapolation/generalization capability. 
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6 Fractional-order Modelling and SOC 
Estimation for Ultracapacitors 

6.1 Motivation 
Fractional-order models have attracted increasing interest in the area of energy storage 

devices, including both batteries and UCs [56][57][62]. They exhibit a better capability for 

the fitting of experimental data with fewer model parameters, this is in contrast to their 

integer-order counterparts. For example, Riu et al. [58] introduced a half-order model for UCs 

that dramatically reduced the model order while retaining certain accuracy. However, the 

fixation of the fractional differentiation order significantly restricted the model accuracy. 

Martynyuk et al. [59] presented a fractional-order model of an electrochemical capacitor, in 

which the model parameters were estimated by the least-squares fitting of impedance data. 

Bertrand et al. [60] deduced a non-linear fractional-order model from a set of linear equations 

resulting from the frequency analysis of UCs, where the model parameters were also 

estimated in the frequency domain. Such a treatment proved to be reliable in a specialized 

laboratory environment, since the UC impedance spectra can be steadily and precisely 

obtained over a range of frequencies via the EIS technique. Nonetheless, the model precision 

may be severely compromised when exposed to varying loading conditions in real-world 

operations because the model parameters can be highly sensitive to such conditions. 

In order to overcome these issues, this chapter proposes a novel fractional-order model 

that comprises a series resistor, a CPE, and a Warburg-like element, with the primary goal to 

accurately emulating the UC behaviour. The Grünald-Letnikov derivative (GLD) is then used 

to perform the model discretization in a straightforward manner. The model parameters, 
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including the order coefficients, are calibrated using time-domain experimental data collected 

through the FUDS test. Based on the fractional-order model, a fractional Kalman filter is 

further developed to track the UC SOC in real time. Extensive experimental data are applied 

to demonstrate the effectiveness of the developed model and estimation scheme. To the best 

of the author’s knowledge, this scheme is the first known application of fractional-order 

calculus to both modelling and SOC estimation in UCs. 
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6.2 Background and Fundamentals of Fractional-Order 
Calculus 

Fractional-order calculus (FOC) is a natural generalization of integral-order and 

differential calculus, which was firstly mentioned by Leibnitz and L’Hospital in their 

correspondence letter in 1697. By permitting integral-differential calculus operations with 

arbitrary or even complex order coefficients, it significantly improves the modelling ability 

and applicability. With the continuous advance in calculation methods for fractional-order 

differential equations, fractional-order modelling is a rapidly growing area of research. 

Meanwhile, studies have shown that some physical systems can be better characterized by 

fractional-order models; e.g., permanent magnet synchronous motors, flexible robots with 

viscoelastic materials, and physical systems with mass transfer and diffusion phenomena 

[98][99]. Three main definitions of FOC have emerged, namely, the Grünald-Letnikov (GL) 

definition, the Riemann-Liouville (RL) definition, and the Caputo definition [100]. The 

Grünald-Letnikov fractional-order derivative has been chosen for implementation in this 

work because it can discretise the continuous fractional-order model in a concise and 

straightforward fashion. 

The detailed Grünald-Letnikov derivative formulation is 

0

[ / ]

0

1( ) ( 1) ( )t hG j
t j

D x t x t jh
jh

                                        (6.1) 

where 
0

G
t D  represents the integral-differential operator with respect to the variable t, and γ is 

the integral-differential order ( R , when 0 , 
0

G
t D  means fractional derivative; when 

0 , 
0

G
t D  stands for fractional integral; when 0 , 

0
1G

t D ). The initial time t0=0 is 
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always omitted in the expression when it starts with 0, h denotes the sampling time interval, 

[t/h] represents the memory length, and 
j

 stands for Newton binomial coefficient derived 

from 

! ( 1)
!( )! ( 1) ( 1)j j j j j

                                       (6.2) 

with Γ(∙)  being the Gamma function defined by 

1

0
( ) tt e dt                                                                         (6.3) 
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6.3 Fractional-Order Modelling and Characterization of 
UCs 

The dynamic model of a UC consists of an Ohmic resistor to represent the conduction 

resistance of carrier charges through electrolyte and metallic conductors, a bulk capacitor to 

account for the main capacitance, and RC (resistor-capacitor) networks to capture the charge 

distribution and diffusion. These idealized components are, however, insufficient to represent 

the entire diffusion dynamics inside a UC. As a result, in order to increase the modelling 

fidelity, a fractional-order model topology can be used where a CPE and a Warburg-like 

element substitute for the bulk capacitor and the RC networks (see Fig. 6.1). Note that the 

single model input is the charging/discharging current I, while the measured voltage is the 

UC model output V. 

The impedance of the CPE, ZCPE, can be expressed as 

1
CPEZ

Cs
                                                                                  (6.4) 

where C is a constant which accounts for the main capacitance effect of the CPE, s is a 

complex variable, and ( ,0 1)R  is the fractional-order coefficient. Equation (6.4) 

represents an ideal capacitor when 1 . The parallel combination with a charge-transfer 

resistor serves to capture the diffusion and charge distribution dynamics inside the UC. The 

flexibility of the varying fractional-order coefficient is expected to produce a better modelling 

capability [101]. The Warburg-like element is used to describe the main capacitance, whose 

impedance can be represented by 
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1
WZ

Ws
                                                                                    (6.5) 

where W represents the capacitance coefficient, and ( ,0 1)R  denotes the 

capacitance dispersion. It can be noted that the Warburg-like element becomes a resistor when 

β = 0, and a capacitor when β = 1. The impedance of the fractional-order model can be 

deduced from 

1
1

C
f s

C

RZ R
CR s Ws

                                                        (6.6) 

where Rs is the series resistance, and Rc is the charge transfer resistance in parallel with the 

CPE. The transfer function of the fractional-order model is thereby presented by: 

(
)

1)
1(

c
s

c

RR
CR sI s

V
s W
s

                                                     (6.7) 

where V(s) denotes the measured output voltage of the tested UC, and I(s) denotes the working 

current with a positive value representing the charging current. Equation (6.7) can be further 

reformulated as a fractional-order differential equation where 

cW D CR W D V t  

1c c s s cR W D CR D R W D R CR W D I t
   

(6.8) 

Numerical methods are necessary for solving of general fraction-order differential 

equations (such as (6.8)) since analytic solutions are only available in special cases. The main 

idea behind numerical methods lies in approximating fractional-order derivatives using 

integral-order derivatives, based on an appropriate approach, such as polynomial interpolation, 

Gauss interpolation, and fractional linear multistep methods [102]. In this Chapter, the GLD 

method is used to approximate the continuous fractional-order model because it is 

straightforward and readily implementable.  
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A closer observation of (6.8) indicates that there are six independent parameters to be 

estimated, which can be represented as 

s[ ]T
CR R C W                                                     (6.9) 

Equation (6.8) can be approximated by high-order difference equations, based on the 

short memory principle proposed by Podlubny [103]. Only recent past points are involved in 

such an approximation, which effectively mitigates the computational intensity. Accordingly, 

the fractional-order model is approximated by 

0

0

: 1 ( )

: ( 1) [ ( ) ] ( )

N
j c

j

N
j c s c

s c
j

CR WWLL y t j T
j jT T

CR R CR WWRR R R u t j T
j j jT T T

                 (6.10) 

where LL and RR mean the left side and right side of the equation, N is the number of involved 

points (N = 3 in this work), ΔT is the sampling time, and y(t) and u(t) are the output voltage 

V and the input current I, respectively. 

Based on the FUDS test data, the GA was used to search for the optimal model parameters. 

The derived optimal model parameters are summarized in Table 6.1. The comparison of the 

measured voltage and model output at 20°C is illustrated in Fig. 6.2. It is apparent that the 

identified model can well predict the voltage evolution in the FUDS test. Similar results can 

be observed at other temperatures. The current and SOC in the FUDS are shown in Fig. 6.3. 

In order to further verify the fractional-order modelling ability, the model performance is 

compared with the dynamic model in the frequency domain under different temperatures at 

100% SOC. The experimental data was collected by the EIS method using the test rig. A 

comparison of the results is given in Fig. 6.4. It can be seen that both the fractional-order 
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model and dynamic model can emulate the impedance with high accuracy over temperatures 

from -40°C to -20°C. However, in contrast, the fractional-order model can better capture the 

UC impedance characteristics at the temperatures of 0°C, 20°C, and 40°C, especially over the 

low-frequency band. This highlights the usefulness of the fractional-order UC modelling. 

Rc

W
Rs

CPE
Walburg-like

element

I

V  

Fig. 6.1 Fractional-order model structure. 

Table 6.1 The derived model parameters. 

Parameter α β Rs (Ohm) Rc (Ohm) C W 

-40°C 0.929 0.953 4.1×10-4 2.2×10-4 993 2764 

-20°C 0.984 0.978 3.4×10-4 1.5×10-4 1038 2848 

0°C 0.948 0.954 2.8×10-4 1.0×10-4 916 2933 

20°C 0.971 0.975 3.0×10-4 8.6×10-5 854 2880 

40°C 0.972 0.973 3.1×10-4 7.3×10-5 1210 3012 

 

Fig. 6.2 Comparison of measured voltage, fractional-order model, and dynamic model in FUDS test at 

20°C. 
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Fig. 6.3 The evolution of current and SOC in FUDS test at 20°C. 
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Fig. 6.4 Impedance spectra comparison at 100% SOC at the temperatures of (a) -40 °C; (b) -20 °C; (c) 

0°C; (d)20°C; (e) 40 °C. 
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6.4 Fractional Kalman Filter for UC SOC Estimation 
Accurate SOC estimation is highly desirable for optimal energy management and power 

control of UC systems, since it facilitates taking advantage of the UC power potential without 

incurring unfavourable over-charge/over-discharge. The Kalman filter methods have been 

widely and successfully deployed for SOC estimation of batteries and UCs. Based on the 

fractional-order model; here, a fractional Kalman filter is synthesized as the UC SOC gauge. 

The continuous state-space equation of the fractional model can be expressed as 

1 1

2

3600

c

n

d V V I
dt CR C

d V I
dt W

dz I
dt C

                                                                    (6.11) 

where V1 and V2 denote the voltages across the CPE and the Warburg-like element, 

respectively, z represents the SOC, and Cn denotes the nominal capacity of the tested UC. The 

output voltage is thus governed by 

1 2 sV V V R I                                                                      (6.12) 

Accordingly, the discrete fractional state-space model can be developed: 

1

1 1
2

1 Θ
k

j
k k k k j k j

j

k k k k

x A x B u x

y Cx Du
                              (6.13) 

where  A h A I  is the system matrix, B h B  is the control matrix, 

1

21 1 0 s k

V
C D R x V

z
 is the state vector at time k, γ

1
 is the derivative 
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order, and 1
 Θ j diag

j j j
. Here, h denotes the sample time, k  and k  

represent the process noise and the measurement noise, both of which are assumed to be 

Gaussian white noise with zero mean and the covariance of Q and R, respectively. 

At each time step, the following time update and measurement update are sequentially 

performed to realize the online UC SOC tracking. 

Time update: 

| 1 1 1
2

| 1 1 1
1

ˆ ˆ ˆ1
k

j
k k k k j k j

j

k
T T

k k k k j k j j
j

x A x B u x

P A P A Q P
                                (6.14) 

where | 1ˆk kx  and | 1k kP  are the a priori state estimation and error covariance at time k, 

respectively; ˆk jx  and k jP  are a posteriori state estimation and error covariance at time k-j, 

respectively. 

Measurement update: 

| 1 | 1

| 1

( ˆ )ˆ ˆk k k k k k k k

k k k k

x x K y Cx Du
P I K C P

                                          (6.15) 

where Kk is the Kalman gain given by 

1
| 1 | 1( )T T

k k k k k kK P C CP C R                                                  (6.16) 
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6.5 Experimental Validation 
Two driving-cycle tests, i.e. the DST and FUDS, are considered for validating the SOC 

estimator. Their current profiles are shown in Fig. 6.5. The well-controlled Coulomb counting 

method was used to calculate the reference SOC for benchmarking purposes. The current 

measurement error reaches as low as 1 mA so that the fidelity of reference SOC can be 

justified. For the fractional filter implementation, the process and measurement covariance, 

namely Q and R, were consciously chosen by trial-and-error to ensure algorithm convergence. 

The initial estimate 0x̂ , initial error covariance 0 P , process noise covariance Q, and 

measurement noise covariance R are assigned as follows. A deviant initial estimate was 

deliberately designated as 0.8 (the true SOC value is 0.97). 

0 [0.02 2.0ˆ 0.8]Tx  

0

0.001 0 0
0 0.0002 0
0 0 0.005

P  

0.0001 0 0
0 0.0005 0
0 0 0.002

Q  

0.00005R  

The evolutions of the estimated SOC and true SOC in both tests at 20°C are showcased 

in Fig. 6.6. It is apparent that the estimated SOC can quickly offset the initial error and closely 

track the true SOC in both dynamic tests. As verified in Fig. 6.7, the estimation errors are 

bounded within 1% and 2% in DST and FUDS tests, respectively. The results at other 

temperatures are analogous, further proving the applicability of the proposed method. 
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Fig. 6.5 The DST and FUDS current profiles. 

 

Fig. 6.6 SOC estimates at 20°C. 

 

Fig. 6.7 Estimation errors at 20°C.  
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6.6 Summary 
In this chapter, a fractional-order ultracapacitor (UC) model comprising a series resistor, 

a CPE, and a Warburg-like element has been proposed to capture the UC dynamics. The 

Grünald-Letnikov fractional-order derivative has been used to discretise the fractional-order 

model. The model parameters including the order coefficients are identified through the GA, 

based on the time-domain FUDS test data. The impedance spectrum investigation under 

different temperatures further confirms a higher precision of the fractional-order model than 

the integral-order dynamic model. A fractional Kalman filter, moreover, has been devised to 

estimate the UC SOC. The validation results corroborate that the SOC estimator can well 

track the true SOC, and the associated errors are less than around 2% in dynamic driving-

cycl-based tests. 
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7 Multi-Objective Optimal Sizing of 
Hybrid Energy Storage System for Electric 
Vehicles 

7.1 Motivation 
The ESS is a key ingredient of an EV and significantly affects its driving performance 

and cost effectiveness. The exploration of an eligible vehicular ESS poses a challenge, 

because of high power/energy demand and unpredictable driving environments in EVs. Many 

potential ESSs have been reported and analysed in the literature, among which lithium-ion 

batteries represent one main choices, due to their high mass and volume energy densities 

[104][105]. However, the drawbacks of relatively low power density and susceptibility to 

high-rate power cycling always leads to battery oversizing in order to meet high power 

transients under realistic driving conditions, thereby inevitably incurring excess expense. 

Frequent charging and discharging operations of batteries tend to have adverse effects on 

battery durability [106]. The advantages of UCs have already been discussed and they make 

a good addition to high-energy ESSs in conjunction with lithium-ion batteries to form a hybrid 

energy storage system - HESS. This can fully leverage the synergistic benefits of both devices 

[107]. In such an ESS, batteries are often used to fulfil the average power demand, whereas 

UCs are mainly responsible for offering transient high-power delivery. This can help alleviate 

stresses on the batteries during hard accelerations and regenerative braking in aggressive 

decelerations. 
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HESS sizing is critical to the drivability and cost of an EV. Some preliminary insights 

into optimal HESS sizing have been given in the literature [108][109][110]. Generally, the 

transient power requirements are usually formulated as optimization constraints, while 

manufacturing cost, system efficiency, or fuel economy are often selected as optimization 

objectives [111]. 

The energy management of an HESS is important for improving operational performance 

and enhancing system efficiency. There are a number of approaches that have been proposed 

and analysed in the literature for implementing power split within a HESS [112][113]. For 

instance, an intuitive power control scheme of an HESS for an electric vehicle was analysed 

for the Urban Dynamometer Driving Schedule (UDDS) through the simulation in 

Matlab/Simulink environment [114]. A rule-based energy management strategy was also 

proposed and evaluated under several different driving cycles in simulation [115]. These 

methodologies have advantages of intuitiveness and ease of implementation, but cannot 

realize the optimal power allocation, with respect to some criteria, such as electricity 

consumption minimization. They may not sufficiently harness the HESS potential, or even 

induce malfunctions, such as over-charging/over-discharging and thermal runway, bringing 

about system deterioration.  

In order to realize the optimal power management of an HESS, optimization-based 

methods have been applied; there are associated issues such as algorithm complexity and 

driving cycle dependency. For example, Dynamic Programming (DP) and Model Predictive 

Control (MPC) have been both used to allocate power demand between battery and UC packs, 

with the aim of subduing battery current variations and improving system efficiency with an 
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appropriate UC control [116]. Likewise, power coordination of HESSs was cast as a convex 

optimization problem, and then solved by general solvers in polynomial time [117].  

Furthermore, energy management strategies are closely coupled with powertrain 

component sizing, as presented in hybrid vehicle studies [118]. An integrated optimization 

approach was also proposed to simultaneously achieve the optimal sizing and energy 

management synthesis of HESSs, where a bi-loop optimization structure was employed [119]. 

Nevertheless, the search for optimal sizing parameters in the outer loop and the rule-based 

control strategy refinement in the inner loop proved to be computationally expensive, 

hindering its practicality. It is also still possible for the solution to be trapped at local minima. 

Previous studies failed to simultaneously take the ESS weight, cost and battery health 

into account, with their coupling effects on ESS sizing insufficiently studied. Also, a 

computationally efficient power split strategy is absent in the existing literature when 

considering an optimally sized HESS. To bridge these issues, this chapter presents an 

integrated framework of the optimal sizing and energy management of an HESS for an 

example electric vehicle. The primary purpose is to search for the optimal HESS size through 

a multi-objective optimization algorithm considering the battery health status, HESS weight 

and manufacturing cost. To this end, a battery state-of-health (SOH) model is incorporated to 

quantitatively investigate the impact of component sizing on the battery lifetime under the 

constraints of driving performance requirements. It is well known that battery aging is 

influenced by on-board energy management strategies [120]. A wavelet-transform technique 

is adopted here to perform the real-time power allocation, with the drive to assign high-

frequency components of load profile to the UC bank, and the rest to the battery pack. The 

UDDS is used to simulate the load profile during practical EV operation, which serves as the 
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example target of wavelet-transform. The interactions between the HESS weight, cost and 

battery health are thoroughly investigated and fully illustrated. The findings provide a good 

insight into realistic HESS sizing that emphasizes different optimization objectives.  
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7.2 Battery SOH Model 
The accepted advantage of an HESS is to keep the batteries away from frequent charging 

and discharging and peak power operation. This is believed to benefit battery life preservation, 

which remains one of the consistent technical challenges hindering market penetration and 

mass-adoption of EVs. An accurate battery SOH model is needed since it closely maps the 

battery health state. Its influencing factors are the basis for health-conscious energy 

management system development. Numerous efforts have been directed towards exploring 

battery aging mechanisms and developing reliable battery SOH models [121][122][123]. 

Accordingly, different models were established from perspectives of parasitic side reactions 

[121], solid-electrolyte interface formation [122], and resistance increase [123]. However, the 

high computation requirement and burdensome calibration process made these models 

unfeasible for practical use. Alternatively, temperature, discharge-rate and depth-of-discharge 

(DOD) have been identified as the main causes to battery aging, and thus used to build a semi-

empirical model [124]. Furthermore, it was pointed out that temperature and current rate play 

more significant roles in capacity fade of the tested batteries while the impact of DOD is 

negligible. The semi-empirical model developed in [124] is adopted here to quantitatively 

account for the correlation between the battery capacity fade and the discharged ampere-hour 

throughput, which is expressed as: 

( ) exp Za
loss

EQ B c H
RT                                                         

(7.1) 

where Qloss is the percentage of capacity loss, c is the discharge-rate, B(c) is the pre-

exponential factor depending on the discharge-rate c as shown in Table 7.1 (the real-time 

value can be obtained through cubic interpolation), Ea is the activation energy in J/mol, R is 
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the gas constant (8.1 J/mol•K), T is the absolute temperature of the battery (it is assumed to 

be constant at 298.15K during operations through an efficient thermal management), H is the 

discharged Ah throughput, and z is the power law factor. The activation energy Ea and the 

power law factor z are extracted using the test data as 

31700 370.3
0.55

aE c
z                                                                  

(7.2) 

A capacity fade of 20% nominal capacity is usually taken as the end-of-life (EOL) point 

of EV batteries, therefore the total Ah can be deduced as 

1

20
( )( ) exp

z

a

H
E cB c
RT                                                         

(7.3) 

Assuming a symmetric capacity during charge and discharge processes, the charge cycles 

up to the battery EOL can be further derived: 

_

3600

B cell

HN
Q                                                                                 

(7.4) 

where QB_cell denotes the nominal battery capacity in As. The energy throughout the battery 

SOH lifetime is 

_0
_ _

1SOH( ) 1 ( )
2

t

b B cell
B cell B cell

t I V d
N Q V                       

(7.5) 

where VB_cell is the nominal voltage of battery in V, Ib is the battery load current in A. Then, 

the SOH change rate can be derived as 

_

( )SOH( )
2 ( ) B cell

I td t
dt N I t Q                                                    

(7.6) 
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The relationship between the number of cycles and the SOH change rate with regards to 

the discharging rate are shown in detail in Fig. 7.1. The SOH change rate indicates the battery 

degradation rate. It is evident that the number of cycles peaks at 4 C-rate while the SOH 

deteriorates more significantly with increasing C-rate. 

 

 

 

Fig. 7.1 (a) number of cycles until EOL; (b) SOH change rate.  
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Table 7.1 Pre-exponential factor as a function of C-rate. 

C-ratea 0.5C 2C 6C 10C 

B values 31630 21681 12934 15512 

a1 C-rate corresponds to 2A. 
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7.3 Powertrain Modelling 

7.3.1 Powertrain configuration 
There are three main HESS configurations in relation to the number of DC-DC converters 

and system deployment patterns [125]. They are passive, semi-active and fully-active HESS; 

each with strengths and limits. Generally, the passive HESS connects the battery and UC 

packs in parallel, and directly couples to the load without any power electronic converter. The 

voltage of the UC pack is thus bound to battery voltage, which usually exhibits low change 

during operation. This means that the power potential of the UCs may not be well utilized 

because of the inherent relationship between the voltage and its delivered energy [104]. The 

fully active HESS gives the best performance by employing two DC-DC converters. It has 

increased complexity and manufacturing cost. The semi-active HESS seems to be a good 

trade-off between performance and circuit complexity by introducing only one additional DC-

DC converter and the relatively simple control circuitry. A UC series configuration in a semi-

active hybrid is chosen in this chapter because it permits the voltage of the UC pack to vary 

over a wide range, which contributes to a better use of the stored energy and power. An 

example electric vehicle is chosen in this study with its powertrain illustrated in Fig. 7.2. The 

basic vehicle parameters are listed in Table 7.2. A DC-DC converter is placed between the 

UC pack and DC bus to regulate the UC current flow from/to the DC bus. This is controlled 

by the control unit. The gap between the power demand from the electric motor (EM) inverter 

and the UC pack output is offset by the battery pack. The electric motor not only works to 

provide the driving torque in propulsion mode, but also functions as a generator to charge the 

UC pack by regenerative braking in deceleration mode. The EM efficiency and torque limits 
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are illustrated in Fig. 7.3. It is worth mentioning that the stored energy in the UC pack can be 

harnessed in future accelerations or hill-climbing conditions to fulfil the peak power demands. 

This is a typical torque/speed curve for a hybrid or electric vehicle and it exhibits the 

characteristic narrow constant torque region before entering into an extended constant power 

(or field weakening) region [126]. The transmission reduces the speed with a fixed gear ratio 

while maintaining good efficiency under different working conditions. 

 

Fig. 7.2 The powertrain illustration of the example electric vehicle with HESS. 
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Fig. 7.3 EM efficiency and torque bounds. 

7.3.2 Battery modelling 
The Rint model, as shown in Fig. 7.4(a), is used here to represent the battery dynamics. 

It has simplicity and accuracy. In order to reach the required voltage level for the motor drive, 

and minimal capacity for ensuring a certain driving range, a battery pack composed of nbp 

parallel strings with each containing nbs series connected cells is deployed in the example 
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Table 7.2 Basic vehicle parameters. 

Parameters (unit) Value 

m0, curb mass without HESS (kg) 1480 
g, gravity acceleration (m2/s) 9.81 
f, rolling resistance coefficient 0.09 
CD, air drag coefficient 0.335 
A, front area (m2) 2.0 

, air density (kg/m3) 1.2 
T,  transmission efficiency 0.96 
, correction coefficient of rotating mass 1.11 

k, gear ratio 6.65 
Rtire, rolling radium of tire 0.3107 
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electric vehicle. It is worth noting that the parallel connections of cell strings also facilitate 

the enhancement of the power delivery capability of the battery pack. The main specification 

of the battery cell is shown in Table 7.3, while the main parameters of the battery pack are 

derived from 

_

_

_

BATT bs bp B cell

bs B cell
BATT

bp

BATT bs B cell

Q n n Q
n R

R
n

V n V                                                                    

(7.7) 

where QBATT and VBATT denote the capacity and the terminal voltage of the battery pack, nbs 

denotes the number of series connected battery cells, nbp denotes the number of parallel 

connected battery cell stings, RB_cell is the battery cell resistance, QB_cell is the nominal cell 

capacity, and VB_cell is the battery cell nominal voltage.  

VB_cell

RB_cell

IBA TT

RU_cell

IUC

VU_cell

(a) (b)

 

Fig. 7.4 (a) Battery; (b) UC model. 

Table 7.3 Main specifications of battery. 

Parameter (unit) Value 

Nominal cell voltage VB_cell (V) 3.3 

Cell Capacity QB_cell (As) 8280 

Cell resistance RB_cell (Ohm) 0.01 

Cell unit cost cb (USD) 6.5 

Cell mass mb (kg) 0.07 
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7.3.3 UC modelling 
In contrast to the high energy density of batteries, UCs have high power density, low 

internal resistance, wide temperature window and excellent recyclability. It is reasonable to 

ignore the UC degradation in this study since the cycle-life of  UCs can be millions before 

noticeable performance deterioration. 

The low energy density characteristic of UCs means they need to be threaded to form a 

UC pack with the purpose of storing more energy and increasing terminal voltage. The UC 

specification used in the study are listed in Table 7.4, while the main parameters of the UC 

pack are deduced from 

_

_

_

up U cell
UC

us

us U cell
UC

up

UC us U cell

n C
C

n
n R

R
n

V n V
                                                                         

(7.8) 

where CUC and VUC denote the capacitance and the terminal voltage of the UC pack, nus 

denotes the number of series connected UC cells, nup denotes the number of parallel connected 

UC cell stings, RU_cell is the UC cell resistance, CU_cell is the UC cell capacitance and VU_cell is 

the UC cell voltage. 

The terminal power of UC pack is calculated using 

2
_ _( ) ( ) ( )UC up us U cell UC U cell UCP n n V t I t R I t                                 (7.9) 

where IUC is the cell current. 

The linear relationship between the terminal voltage and the SOC of the UC means that 

the UC pack energy EUC can be derived from 
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_
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U cell
U

U n

UC up us U cell U n U

V
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V

E n n C V SOC                                             

(7.10) 

where VU_n means the UC nominal voltage. 

The working UC SOC window is from 20% to 90% in order to fully capitalize on the 

stored energy while avoiding detrimental effects of over-charging/discharging. 

Table 7.4 Main specifications of UC. 

Parameter (unit) Value 

UC nominal capacitance CB_cell (F) 3000 
Cell nominal voltage VU_n (V) 2.7 
Cell resistance RU_cell (Ohm) 0.00029 
Cell unit cost cb (USD) 32.5 
Cell mass mu (kg) 0.51 
Maximum UC SOC socmax (%) 90 
Minimum UC SOC socmin (%) 20 
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7.4 Wave-transform-based Power Split Strategy 
A capable and efficient power split strategy is crucial for fully utilizing the HESS 

potential and has been the subject of several studies. It is responsible for appropriately 

distributing the load to the two energy sources with either heuristic rules or optimization-

based control algorithms. The wavelet-transform (WT) technique provides a promising 

solution to this problem. The WT is able to analyse and decompose an original signal into 

different localized contributions, each of which represents a portion of the signal with a 

different frequency [127]. The power demand profile of an EV can be viewed as a series of 

signals, and the reference power signals for the battery and UC packs can be acquired by using 

the WT as a load sharing algorithm [128]. The high frequency and low frequency components 

of the load profile can be effectively separated with the high-frequency components 

designated to the UC pack and the remaining components designated to the battery pack. This 

approach helps to protect the battery pack from frequent charging/discharging transients, with 

the advantages of online and easy implementation. 

The continuous wavelet transform (CWT) is defined as 

1( , ) ( ) tW s x t dt
ss                                               

(7.11) 

where W(τ, s) is the coefficients, x(t) is the original signal, Ψ is the mother function, τ (τ R, 

τ > 0) is the position parameter that controls the time window size, s is the scale parameter 

that determines the frequency band width. 

The mother wavelet function plays a vital role in decomposing and localizing the target 

transients. The Harr wavelet has been used with much success because of its short filter length 
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relative to other wavelets, and is used in this study [129]. It is defined by 

1, [0,0.5)
( ) 1, [0.5,1)

0,  otherwise

t
t t

                                                               

(7.12) 

A discrete waveform transform (DWT) is used to decompose the discretised signal into 

different resolutions based on the scale factor. The DWT and its inverse are given by  

2

1( , ) ( ) ,

2 , 2 ,j j

tW s x t dt
ss

s k k Z                                             

(7.13) 

,( ) ( , ) ( )j k
j Z k Z

x t W j k t                                                         (7.14) 

where Z denotes the set of all positive integers. 

In this study, the UDDS driving cycle is used to represent the power demand of the EV 

as shown in Fig. 7.5. The power demands are decomposed into high-frequency and low-

frequency components by the Harr WT including three-level decomposition and 

reconstruction process as shown in Fig. 7.6. The high-pass analysis filter and the low-pass 

analysis filter are H(z) and L(z) in the decomposition process, respectively, while they are 

represented by h(z) and l(z) in the reconstruction process. After the processing, the power 

demands assigned to the battery pack and UC pack are derived as shown in Fig. 7.7. It is 

apparent that the battery pack produces a smooth power delivery along with a reduced 

maximum power level while the UC pack serves to meet the dynamic power transients. The 

WT based power split strategy is implementable for online HESS power coordination by 

incorporating a power demand prediction algorithm. 
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Fig. 7.5 UDDS driving cycle power demand. 
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Fig. 7.6 Harr wavelet decomposition and reconstruction. 

 
 
 
 
 
 
 
 
 

0 200 400 600 800 1000 1200 1400
-40

-20

0

20

40

Time (s)

Po
w

er
 (k

W
)



 

126 
 

 

 

Fig. 7.7 Power demand for (a) battery pack; (b) UC pack. 
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7.5 Multi-objective Optimal Sizing of HESS 
The primary goal of this study is to investigate the optimal sizing of an HESS by taking 

into account configuration, weight, manufacturing cost and battery degradation. Generally 

speaking, more UC usage in a system would help reduce battery stress during hard 

accelerations and recuperate more braking energy, which is conducive to prolonging battery 

life. Fig. 7.8 shows the evolution of cell discharging C-rate and SOH with respect to the 

deployed battery number. It is apparent that increased battery number reduces the overall 

discharging stress (i.e. C-rate) of each cell. But this benefit comes along with increasing cost. 

In addition, UCs have much smaller specific energy and energy density relative to batteries, 

so that the mounting weight issue is also a big concern. Thus, it is necessary to strike a trade-

off between these conflicting objectives; i.e. prolonging battery life and diminishing the 

system weight and manufacture cost. This can be set as an optimization problem. The 

optimization variables are nup, nus, nbp, nbs. The driving performance requirements listed in 

Table 7.5 are formulated as the optimization constraints, which are detailed in the following 

Sections. 

 Number of batteries

C
-ra

te

(a)
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Fig. 7.8 The evolution of (a) discharging C-rate; (b) battery SOH after 100 repeated UDDS cycles; with 

regard to the battery number. 

7.5.1 Maximum speed 
According to the vehicle dynamic equation on flat ground, the relationship between the 

maximum speed and the HESS power demand can be obtained from 

3
max max0.5 D HESS m Tmgfu C A u P                                           (7.15) 

Number of batteries

SO
H

(b)
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where m is the vehicle mass including the HESS, g is gravity, f is the rolling resistance 

coefficient, umax is the maximum speed, CD is the air drag coefficient, A is the front area of 

the vehicle, ρ is the air density, PHESS is the HESS output power, ηm is the efficiency of the 

electric motor, and ηT is the transmission efficiency. 

7.5.2 Driving mileage 
It is well known that the driving range of an EV depends the driving style, road conditions 

and power control strategy. For fair comparison, the value is always calculated under the 

assumption of constant speed u0 (60 km/h) and a flat road. Under such circumstances, only 

the battery pack runs as the sole power source since the power demand is quite stable. The 

driving range can be derived as 

2
00.5

BATT m T
R

D

EM
mgf C A u                                                              

(7.16) 

where EBATT is the nominal energy of battery pack. 

7.5.3 Acceleration time 
The acceleration time is usually used to represent the acceleration capability of the 

vehicle, which is calculated by accelerating the vehicle from stationary to a certain speed u1 

(u1 = 100 km/h) on a flat road. The acceleration time tacc is  

Table 7.5 Driving performance requirements. 

Indicator Requirements 

Acceleration Time Tacc <14.8 s 

Mileage (@60Km/h) MR 150 km 

Maximum speed umax 140 km/h 
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                               (7.17) 

where Facc is the acceleration force, k is the gear ratio of the final drive, Tm_max is the maximum 

output torque of the electric motor determined by the external characteristic curve of the 

electric motor and power handling capability of the HESS, Tm_allowed is the maximum output 

torque of the electric motor depending on the electric motor external characteristic curve, Δt 

is the sample time, Rtire is the rolling radius of the tire, PHESS_acc is the HESS power demand, 

ω is the rotational speed of the electric motor, tacc is the acceleration time, and N is the index 

of the discrete time instant when the target velocity u1 (100 km/h) is reached. 

In order to accommodate the handling ability of DC-DC converter, the allowed battery 

pack and the UC pack voltages are 

                                                                    

(7.18) 

The NSGA-II algorithm is employed to solve the optimization problem. It has the ability 

to find multiple Pareto-optimal solutions in one single simulation run [130]. It addresses the 

main issues of the seminal NSAG algorithm. These relate to the high computational 

complexity, lack of elitism and need for tuning the sharing parameter. The optimal sizing of 

an HESS can be mathematically expressed as 
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min , ,

, , , , ,

and Eqns. (7.15), (7.16), (7.17) and (7.18)

b bs bp u us up b bs bp u us up loss

bs bp us up

c n n c n n m n n m n n Q

s t n n n n N                                   (7.19) 

where cb and cu are the unit costs of the batteries and UCs; and mb and mu are the unit masses 

of the batteries and UCs. 

After implementation of the optimization algorithm, a feasible solution region is obtained 

and shown in Fig. 7.9. The UC SOC evolution with nus = 60 and nup = 1 is illustrated in Fig. 

7.10. The UC SOC is effectively constrained between the lower and upper operating limits 

while working to meet the peak transients. Fig. 7.11 illustrates the battery degradation with 

HESS and battery-only ESS during the UDDS driving cycle. It can be seen that the HESS can 

effectively reduce the battery degradation compared with the battery-only ESS, thereby 

prolonging the battery life. Since there is no dominant solution in the multi-objective 

optimization problem, the battery wear and HESS weight with respect to the manufacture cost 

in the feasible domain are shown in Fig. 7.12. It is obvious that the increasing cost can 

effectively extend battery life but inevitably produces additional weight. With different design 

emphases (i.e., cost, weight and/or battery degradation), a set of distinct coefficients can be 

assigned to the optimization objectives, in which a unique solution may be attainable while 

satisfying all the specifications formulated as constraints. 

Since the cost-effectiveness is more sensitive in comparison to the weight and battery 

degradation when synthesizing HESS design in practice, an optimal sizing is derived by 

further formulating the weight and battery degradation as constraints. The unique optimal 

solution regarding to cost is the minimum value on the x-axle that locates between the weigh 

and battery degradation projection points on the x-axle as shown in Fig. 7.12. 
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Fig. 7.9 The optimization result for a UDDS driving cycle. 

 

Fig. 7.10 UC SOC evolution during the UDDS driving cycle. 

 

Fig. 7.11 Battery degradation with HESS and battery-only ESS during the UDDS driving cycle. 
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Fig. 7.12 The evolution of battery wear and HESS weight with regard to cost. 
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7.6 Summary 
In this chapter, the optimal sizing of an HESS composed of batteries and UCs, for an 

example electric vehicle, has been studied and formulated as a multi-objective problem. The 

battery SOH, HESS weight and cost are selected as the optimization objectives. In particular, 

a battery SOH model was incorporated in order to investigate the impact of component sizing 

on the battery life in a quantitative fashion. The driving performance requirements and the 

operational boundaries for both the batteries and UCs were used as the optimization 

constraints. The wavelet-transform-based power management algorithm was adopted to 

realize the power split between the batteries and UCs. The NSGA-II algorithm was then 

utilized in order to search for the feasible solution domain that satisfies the optimization 

constraints. The results provide prudent insights into HESS sizing with different emphases. 
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8 Conclusions and Future Work 

8.1 Conclusions 
In this thesis, UC modelling and SOC estimation for in EV applications have been studied. 

Firstly, a special test rig for UC characteristic investigation was designed and developed. 

A series of UC tests were conducted using this rig in accordance to a specifically composed 

test procedure, resulting in a wide-ranging UC database. This database is the foundation for 

later modelling and SOC estimation studies. Based on the EIS test data, the UC impedance 

characteristic dependency on temperature and SOC was investigated. In particular, their 

coupling effect was illustrated, and the high-efficiency SOC window was highlighted. 

Secondly, a systematic examination of three commonly used equivalent circuit models 

for UCs was conducted. This addressed model accuracy, complexity and robustness in the 

context of EV applications. The results showed that the dynamic model has the best overall 

performance. In order to realize online model characterization, an EKF scheme was proposed 

to recursively estimate the model parameters. The effectiveness and robustness of the 

proposed method was validated using driving-cycle-based datasets. 

Thirdly, a robust H-infinity observer was presented to realize the real-time SOC 

estimation. In comparison to the state-of-the-art Kalman filter-based methods (KF), the 

developed robust scheme can ensure high estimation accuracy even without prior knowledge 

of the process and measurement noise statistical properties. Moreover, it exhibits more 

robustness to modelling uncertainties. 

For further improving modelling accuracy, a new fractional-order model was proposed 

to emulate the UC dynamics. The novel fractional-order model consists of a series resistor, a 
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CPE, and a Warburg-like element. By means of this fractional-order model, a fractional KF 

was formulated to estimate the UC SOC. Validation results show that the proposed fractional-

order modelling and state estimation scheme are accurate, and outperform their integer 

counterparts. 

Finally, an optimal HESS sizing method is put forward. This uses a multi-objective 

optimization algorithm, with the overarching goal of reducing ESS cost and weight while 

prolonging battery life. To this end, a battery state-of-health (SOH) model was incorporated 

to quantitatively investigate the impact of component sizing on battery life. The wavelet-

transform-based power management algorithm was adopted in order to realize the power 

coordination between the batteries and UCs. The results provide prudent insights into HESS 

sizing with different emphases. 

8.2 Future Work 
This thesis is dedicated to addressing the modelling and SOC estimation for UCs in the 

context of EV applications. The optimal model structure has been identified through a 

systematically comparative study of the existing equivalent circuit models. However, these 

models invariably neglect the impact of temperature on the model parameters, and fail to 

explicitly account for the coupling effect of thermal and electrical behaviour, which may 

compromise the modelling validity when the systems are exposed to wild thermal variations. 

In order to further improve the modelling accuracy under varying thermal conditions, it is 

meaningful to develop an enabling but efficient thermo-electrical model for UCs to 

simultaneously predict the electrical and thermal behaviour of a cell under driving-cycle-

based operating conditions. The coupling of electrical and thermal models allows for tuning 
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of temperature-dependent parameters to better account for the thermal impacts on the 

electrical behaviour. 

With regards to HESS, this study mainly focuses the optimal sizing problem while the 

energy management strategy formulation is reasonably simplified with the purpose of 

improving the computational efficiency of the optimization algorithm. In order to fully realize 

the potential of HESSs, the energy management strategy plays essential roles, and its 

development deserve more efforts from detailed system modelling to advanced control 

synthesis, etc. This will be the focus of my future work. 
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