Zinc oxide nanophotonics - toward quantum photonic technologies

Sumin Choi

Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy

2016

School of Mathematical and Physical Sciences

University of Technology Sydney
Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student: 

Date: 13/10/2016
Abstract

Zinc oxide (ZnO) is a large bandgap (3.37 eV at room temperature) semiconductor and is a good candidate for short wavelength photonic devices such as laser diodes. A large exciton binding energy (60 meV) at room temperature in addition to the advantages of being able to grow various nanostructure forms have made ZnO suitable for a wide range of applications in optoelectronic devices.

Driven by the rapid advance of nanophotonics, it is necessary to develop single photon sources (SPSs) and optical resonators in new class of materials. In particular, SPSs are required for a wide range of applications in quantum information science, quantum cryptography, and quantum communications. ZnO has been investigated for classical light emitting applications such as energy efficient light emitting diodes (LEDs) and ultraviolet (UV) lasers. Significantly ZnO has recently been identified as a promising candidate for quantum photonic technologies. Thus in this thesis the optical properties of ZnO micro- and nano-structures were investigated for ZnO nanophotonic technologies, specifically their applications in single photon emission and optical resonators.

Firstly, the formation of radiative point defects in ZnO nanoparticles and their photophysical properties were investigated. In particular, using correlative photoluminescence (PL), cathodoluminescence (CL), electron paramagnetic resonance (EPR), and x-ray absorption near edge spectroscopy (XANES) it is shown that green luminescence (GL) at 2.48 eV and an EPR line at \( g = 2.00 \) belong to a surface oxygen vacancy (\( V_{O_s}^{\cdot} \)) center, while a second green emission at 2.28 eV is associated with zinc vacancy (\( V_{Zn}^{\cdot} \)) centers. It is established that these point defects exhibit nanosecond lifetimes when excited by above bandgap or sub-bandgap (405 nm and 532 nm excitation wavelength) excitation. These results demonstrate that point defects in ZnO nanostructures can be engineered for nanophotonic technologies.

ZnO nanoparticles were consequently studied for the investigation of room temperature single photon emission from defect centers in ZnO nanoparticles. Under
the optical excitation with 532 nm green laser, the emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm. The red fluorescence from SPSs in ZnO defect center is almost fully linearly polarized with high signal-to-noise ratio. The studied emitters showed continuous blinking; however, it was confirmed that bleaching can be suppressed using a polymethyl methacrylate (PMMA) coating. Furthermore, passivation by hydrogen treatment increase the density of single photon emitters by a factor of three.

ZnO/Si heterojunctions were fabricated and used to investigate electrically driven light emission from localized defects in ZnO nanostructures at room temperature. It is shown that excellent rectifying behaviors were observed with the threshold voltages at \( \sim 18 \) V and \( \sim 7 \) V for ZnO nanoparticles and thin film-based devices, respectively. Both devices exhibit electroluminescence (EL) in the red spectral region ranging from \( \sim 500 \) nm to 800 nm when 40 V and 15 V were applied to ZnO nanoparticles/Si and ZnO thin film/Si, respectively. The emission is bright and stable for more than 30 minutes, providing an important prerequisite for practical devices.

Finally, ZnO optical resonators were fabricated and investigated to enhance the visible light emission. Hexagonal ZnO microdisks with diameter ranging from 3 \( \mu \)m to 15 \( \mu \)m were grown by a carbothermal reduction method. Optical characterization of ZnO microdisks was performed using low temperature (80 K) CL imaging and spectroscopy. The green emission is found to be locally distributed near the hexagonal boundary of the ZnO microdisks. High resolution CL spectra of the ZnO microdisks reveal whispering gallery modes (WGMs) emission. Two different sizes (5 \( \mu \)m and 9 \( \mu \)m) of the ZnO microdisks were simulated to analyze the nature of light confinement in terms of geometrical optics. Respective analysis of the mode spacing and the mode resonances are used to show that the ZnO microdisks support the propagation of WGMs. The results show that the experimentally observed WGMs are in excellent agreement with the predicted theoretical positions calculated using a plane wave model. This work could provide the means for ZnO microdisk devices operating in the green spectral range.
Acknowledgements

First of all, I would like to acknowledge the Higher Degree Research at UTS, UTS International Research Scholarship for the travel funding and PhD program during my PhD candidature.

I would like to thank the technical support to all technical staff, Geoff McCredie, Katie McBean, Angus Gentle, Herbert Yuan, and Mark Berkahn for providing the important technical assistance with our experiments. Nothing would have worked well without you.

I would also like to thank Mark Lockrey, Olivier Lee, and Liangchen Zhu for their help using the cathodoluminescence characterization. They helped me a lot with the data collection of publishable results and analysis with the cathodoluminescence system. I wish to acknowledge Trong Toan Tran and Amanuel Berhane for their help with photoluminescence measurements. Thank you for collecting important results in quantum emitters in nanomaterials.

I would like to extend my thanks to our invaluable collaborators particularly Sevak Khachadorian, Christian Nenstiel and Axel Hoffmann at Technology of University Berlin. I appreciate your kindness for providing enormous data in the zinc oxide nanophotonics in Berlin. I also acknowledge the Australian Synchrotron beam line scientists for measurements of zinc oxide nanostructure, assisted by Bruce Cowie, Anton Tadich and Lars Thomsen.

I wish to express my sincere gratitude to research students and colleagues in Microstructural Analysis Unit for their useful discussions and research ideas: particularly Chris Elbadawi, Russell Sandstorm, Suranan Anantachaisilp and David McPherson. You guys made my stay at UTS enjoyable.

In particular, I would like to thank my supervisors A/Prof. Cuong Ton-That, Prof. Matthew Phillips and A/Prof. Igor Aharonovich for the continuous help with finance and the paper work during my study. Thank you for your efforts and time during my PhD candidature and I would never have been able to start and finish my PhD without
you guys. I have gained an enormous amount of thorough understanding in theoretical and experimental quantum photonics. You are my best mentor and outstanding supervisor.

Finally, I wish to thank my family, particularly Michelle Sun Min Lee who always supported me throughout my PhD study. Nothing would have been possible without you. This thesis is dedicated to you.
# Contents

Declaration of Authorship .......................................................................................... i

Abstract ....................................................................................................................... ii

Acknowledgements .................................................................................................... iv

Contents ..................................................................................................................... vi

List of Figures ............................................................................................................ xi

List of Tables ........................................................................................................... xix

Abbreviations ........................................................................................................... xx

1 Introduction ............................................................................................................. 1

1.1 ZnO for quantum applications ........................................................................... 2

1.2 Aim of the research and thesis structure ............................................................ 3

2 Fundamentals of ZnO as a nanophotonic material .............................................. 6

2.1 ZnO .................................................................................................................... 6

2.1.1 Crystal structure of ZnO ............................................................................. 6

2.1.2 Band structure of ZnO ................................................................................. 7

2.1.3 Electronic properties of ZnO ....................................................................... 8

2.1.4 Defects in ZnO ............................................................................................ 9

2.1.5 Optical properties of ZnO ......................................................................... 11

2.1.5.1 Near-band edge (NBE) emission ....................................................... 12

2.1.5.2 Defect-related deep-level (DL) emissions in ZnO ............................. 13

2.2 Single photon emission from ZnO for quantum photonics ......................... 15
2.3 ZnO optical resonators ......................................................................................................................... 20
  2.3.1 Whispering gallery modes (WGMs) from ZnO nanostructures .................................................. 21
  2.3.2 Additional ZnO optical cavities ........................................................................................................... 27
2.4 Nanophotonic devices from ZnO .............................................................................................................. 32
  2.4.1 Lasing action in ZnO ......................................................................................................................... 32
  2.4.2 Hybrid / heterostructures .................................................................................................................. 40
3 Materials and experimental methods ........................................................................................................ 45
  3.1 ZnO samples ........................................................................................................................................... 45
    3.1.1 Carbothermal reduction of ZnO to fabricate ZnO microdisks ......................................................... 46
  3.2 Annealing process ................................................................................................................................. 46
  3.3 Hydrogen doping .................................................................................................................................. 47
  3.4 Characterization of ZnO ....................................................................................................................... 49
    3.4.1 Scanning electron microscopy (SEM) ............................................................................................. 49
    3.4.2 Cathodoluminescence (CL) spectroscopy ....................................................................................... 49
      3.4.2.1 Background ............................................................................................................................... 49
      3.4.2.2 CL measurement ....................................................................................................................... 50
    3.4.3 Electron paramagnetic resonance (EPR) spectroscopy ............................................................... 51
    3.4.4 X-ray diffractometry ....................................................................................................................... 53
    3.4.5 X-ray near absorption edge spectroscopy (XANES) .................................................................. 54
    3.4.6 Confocal microscopy ....................................................................................................................... 54
      3.4.6.1 Second order autocorrelation function \(g^2(\tau)\) ...................................................................... 55
      3.4.6.2 Hanbury Brown and Twiss (HBT) setup ................................................................................ 56
      3.4.6.3 Single photon source (SPSs) measurement ............................................................................. 58
    3.4.7 Raman spectroscopy ....................................................................................................................... 59
4 Photophysics of point defects in ZnO nanoparticles .................................................................................. 61
4.1 Introduction ...................................................................................................... 61
4.2 Generation of point defects in ZnO nanoparticles ........................................... 63
  4.2.1 Annealing process on ZnO nanoparticles ................................................. 63
  4.2.2 Hydrogen doping on annealed ZnO nanoparticles ................................. 64
4.3 Characterization of ZnO nanoparticles ............................................................ 65
  4.3.1 Structural characterization ........................................................................ 65
  4.3.2 Optical characterization ............................................................................ 65
4.4 Structural properties of ZnO nanoparticles ...................................................... 66
  4.3.1 Morphology of annealed ZnO nanoparticles ............................................ 66
  4.3.2 XRD analysis of ZnO nanoparticles ......................................................... 67
4.5 Electronic properties of ZnO nanoparticles ..................................................... 70
  4.5.1 EPR investigation ...................................................................................... 70
  4.5.2 XANES investigation ................................................................................ 72
4.6 Optical properties of ZnO nanoparticles .......................................................... 74
  4.6.1 Low temperature CL measurement ........................................................... 74
    4.6.1.1 Effect of hydrogen on different green emission ................................. 74
    4.6.1.2 Gaussian fitting of visible emission ................................................... 75
    4.6.1.3 Intensity variation of visible emission depending on annealing
    conditions ....................................................................................................... 77
    4.6.1.4 Power density measurement ............................................................... 78
  4.6.2 Sub-bandgap PL measurement at room temperature ................................ 81
4.7 Conclusions ...................................................................................................... 85

5 Single photon emission from ZnO nanoparticles ............................................. 86
  5.1 Introduction .................................................................................................. 86
  5.2 Observation and statistical analysis of SPSs from ZnO ................................. 87
5.2.1 Generation of SPSs ................................................................. 87
5.2.2 $g^2(\tau)$ analysis ................................................................. 88
5.2.3 Two-level system of $g^2(\tau)$ ............................................... 89
5.2.4 Three-level system of $g^2(\tau)$ .............................................. 91
5.2.5 Polarization behavior of SPSs in ZnO .................................... 92
5.3 Surface termination of single emitters on ZnO ......................... 93
5.3.1 Effect of PMMA coating on stability of SPSs in ZnO .......... 94
5.3.2 Effect of hydrogen on density of SPSs in ZnO ...................... 96
5.4 Conclusions .............................................................................. 97

6 Electroluminescence from localized defects in ZnO – toward electrically driven single photon sources at room temperature ................. 98
6.1 Introduction .............................................................................. 98
6.2 Device fabrication and electrical characteristics ....................... 99
6.3 Electroluminescence (EL) from the n-ZnO/p-Si heterostructures ..... 102
6.3.1 Confocal map of the devices ............................................. 103
6.3.2 EL and PL of the devices .................................................. 103
6.4 Brightness and stability of the devices .................................... 105
6.5 Conclusions ........................................................................... 108

7 Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy ................................. 110
7.1 Development of ZnO optical resonators for nanophotonics .......... 110
7.2 Growth of ZnO microdisks .................................................... 113
7.3 Characterization of ZnO microdisks ......................................... 114
7.4 Observation of WGMs from ZnO microdisks ......................... 115
7.4.1 Structural analysis ......................................................... 115
7.4.2 Optical properties of ZnO microdisks .......................................................... 117
7.4.3 Investigation of the light confinement in ZnO microdisks ....................... 119
7.5 Conclusions .................................................................................................... 126

8 Conclusions and outlook ..................................................................................... 128

Appendix A. CL system correction ...................................................................... 132
Appendix B. Normalization of the $g^2(\tau)$ ......................................................... 134
Appendix C. List of Publications .......................................................................... 135
Bibliography ........................................................................................................... 137
List of Figures

Figure 2.1. ZnO crystalline wurtzite structure. Directions of [0001], [1120], and [1010] and indicated. The lattice constants are $a = 3.25$ Å and $c = 5.20$ Å [10].

Figure 2.2. Thermodynamic transition levels for defects in ZnO. These values are corrected based on the LDA and LDA+U calculations [41].

Figure 2.3. Formation energies as a function of Fermi level position for native point defects in ZnO. The slope of the line represents the stable charge state of the defects [41].

Figure 2.4. Schematic band diagram of the DL emissions in ZnO based on the reported data [49].

Figure 2.5. (a) Schematic of a confocal microscope used to detect single emitters. Sub-bandgap green laser excites localized single emitters and the emitted light is detected by an APD or a spectrometer. A TCSPC module enables measurement of $g^2(\tau)$ for confirmation that a single emitter is being identified [12]. (b) Typical scanning confocal fluorescence map of ZnO illuminated with 532 nm continuous wave (CW) light. Locations marked ‘D1’ and ‘D2’ identify the SPSs [11].

Figure 2.6. Characterization of single photon emitters in ZnO. (a, b) Representative $g^2(\tau)$ curves from 2 different defects obtained from different laser powers. In each curve, the antibunching dip at $(g^2(0) < 0.5)$ is observed, verifying that single defects are being studied. Note in (b) that as laser power increases the antibunching dip sharpens and bunching behavior $(g^2(\tau) > 1)$ is evident, indicating three-level system exist [12]. (c, d) Background subtracted single defect fluorescence showing two broad emission lines. The dash lines are fit by Gaussian function to each emission line, while the thick black line is the sum of the two Gaussian peaks [11].

Figure 2.7. (a) PL spectrum that emits SPSs from the optical ZPL transition at 5 K. (b-d) Power dependent spectral jumps of the ZPL of three different ZnO defect centers at excitation intensities [62].

Figure 2.8. (a) SEM image of an array of ZnO nanoneedles containing the reported one marked by a black rectangle. The scale bar has a length of 10 μm (b) Magnified SEM image of the investigated nanoneedle. The needle’s diameter is continuously tapered approaching zero at the top. (c) High resolution SEM image indicating the hexagonal cross section of the needle. The scale bar has a length of 300 nm [76]. (d, e) SEM image of ZnO microdisks [80]. (f) Polarization-resolved μ-PL spectra of an individual ZnO microwire. The topmost green curve is the unpolarized PL spectrum. The spectra detected for TM and TE polarizations are shown in the lower two curves [85].

Figure 2.9. (a) CL spectrum from an individual ZnO nanonail with a series of peaks corresponding to dielectric-cavity resonance modes convoluted. The integers are the
mode numbers for respective resonant mode peaks. The inset is a top-view SEM image of a ZnO nanonail with a side length of 794 nm, and the electron beam position is marked with a cross. (b) The series of solid and dash lines are the inverse functions of TM-WGMs and TE-WGMs equations with the corresponding mode numbers in (a), respectively. (c) The dispersion curves for TE \( n_0 \) and TM \( n_e \) were derived by fitting the peak position and refractive indices to Sellmeier’s equations. The inset shows the inversion point of bulk crystals [83]. (d) The dependences of the resonant wavelength of TM polarization on the interference order \( N \) for different wire diameters [86].

Figure 2.10. PL images of a ZnO microdisk (a) at room temperature and (b) at 10 K. The images are constructed from intensities at 383.6 nm and 370.1 nm, respectively [88]. (c) Monochromatic CL image of a ZnO nanodisk at 378 nm. The side length of the ZnO hexagonal nanodisk is approximately 1.5 \( \mu \)m. (d) Intensity profile across the nanodisk. The darkened area indicates the luminescence contribution from the WGMs emission [90]. (e) PL spectrum of a ZnO microdisk. (f) Inverse functions of WGMs with the corresponding mode numbers given in (e). The wavelengths are determined by the intersection points with the Sellmeier’s first order dispersion function [73].

Figure 2.11. (a) PL spectrum from the individual ZnO microrod. Insets show the diagrams of the 4 light paths. (b-d) PL spectra collected at the center of the top facet of 3 ZnO microrods with different heights [96]. (e) Analysis of the emission spectrum from a ZnO single nanowire at the bottom end as a sum of Fabry-Pérot peaks each with a Lorentzian line shape. (f, g) Map of the emission intensity along the nanowire at two different photon energies [97].

Figure 2.12. (a) Magnified SEM image of a ZnO tetrapod. (b) Spatially-resolved PL mapping along the tapered arm with the excitation laser polarization \( E \parallel c \)-axis and detection unpolarized [105]. (c) Exciton-polaritons dispersion curve from a ZnO microrod. The blue dashed line is for the pure cavity mode dispersion. The horizontal dashed lines denote the exciton A, B, and C. (d) TE polarized \( \mu \)-PL spectrum from the microrod [107].

Figure 2.13. (a) Schematic plot of ZnO membrane microcavity and the configuration of optical measurement. (b) SEM image of suspended ZnO membrane with false color for clarity. Inset shows the optical microscope image of ZnO membrane on the silicon dioxide (SiO\(_2\)) substrate. The scale bar in both the main figure and the inset figure is 10 \( \mu \)m. (c) Refractive index and optical field distribution along the vertical direction of ZnO microcavity. (d) Schematic plot of 4 pumping schemes and the optical paths for WGMs. (e-h) Measured spectra and peak intensity and linewidth versus pumping intensity at regime III and IV pumping condition. Insets in (e) and (f) display the optical microscope images of pumping spot on ZnO microcavity of regime III and regime IV, respectively [119].

Figure 2.14. (a-c) SEM and TEM images of ZnO nanoribbons. (d) PL far-field image of a ZnO nanoribbon. (e) Integrated emission intensity against excitation power of the corresponding nanoribbon. (f) Emission spectra from the nanoribbon at different excitation powers above lasing threshold [120]. (g) Dark-field optical image of a ZnO
nanowire laser. (h-k) Panchromatic PL images of the nanowire with increasing excitation intensity. (l-o) PL spectra taken at the excitation intensities corresponding to images (h-k) [121].

Figure 2.15. (a) Crystallographic representation of ZnO nanocolumns. (b) PL spectrum for the nanocolumns for a pumping intensity of A: below threshold, B: 5.5× above threshold, and C: 11× above threshold. Inset shows expanded view of spectrum C showing a mode spacing of 10 nm [126].

Figure 2.16. (a-c) Spectra of emission from ZnO powder when the excitation intensity is (from bottom to top) increased. Inset in (b) is a schematic diagram indicating the formation of a closed loop path for light through recurrent scattering in the powder. (d, e) Emission spectra of laser emission into two directions: (d) 60° from the sample surface, (e) 15° from the sample surface [116]. (f) SEM image of a second ZnO cluster. (g) Spectrum of emission from this cluster above the lasing threshold. The incident pump pulse energy is 0.27 nJ. (h, i) Spatial distribution of emission intensity in the cluster at the same pumping power [132].

Figure 2.17. (a, b) SEM image and schematic diagram of Mg-doped GaN film/ZnO nanowire array/Al-doped ZnO film structures for nanometer-sized ZnO/GaN heterojunction applications. Inset of (a) is a photograph of blue-light emission from the heterojunction diodes observed through a microscope at the forward current [135]. (c) Optical image of ZnO nanorod arrays imprinted on GaN. (d) Top view micrograph image of the ZnO nanorod arrays, along with their enlarged (e) top view and (f) tilt view SEM images [137]. (g-i) Schematic description, SEM and optical images of a single ZnO nanowire/Si heterostructure [139].

Figure 2.18. (a) Room temperature EL spectra of an indium tin oxide (ITO)/ZnO-nanowires/p-GaN/In-Ga heterojunction under different forward bias voltages. Inset (top right) shows the comparison of EL spectra from the heterojunction structure and an ITO/GaN/In-Ga structure. Inset (bottom right) is an image of the light emission spot under a DC bias of 6 V at room temperature [140]. (b) EL spectra of a n-ZnO nanorods/p-GaN device with a reverse bias voltage. Inset is a photograph of light emission from the EL device at a bias voltage of 5 V. (c-f) The fabrication process of a ZnO microrod/GaN heterojunction [143]. (g, h) SEM image of the ZnO microrods covered by a polymethyl methacrylate (PMMA) thin film and microrod after reactive ion etching. (i) I-V curve for the ZnO microrod/GaN heterojunction; the inset shows a schematic of the band diagram. (j) EL spectra from the ZnO microrod/GaN heterojunction under different applied current. The left inset shows a photograph of the EL emission from the sample and the right inset shows the relationship between the EL intensity with the applied current. (k) Gaussian fit of the EL spectrum under the applied current of 10 mA. (l) The enlarged spectra from 360 nm to 420 nm under current equal to 12 mA and 15 mA [147].

Figure 3.1. Photograph of the annealing tube furnace.

Figure 3.2. Schematic diagram of the plasma deposition chamber.
Figure 3.3. Diagram of SEM-based CL system. ........................................................ 51

Figure 3.4. (a) Minimum and maximum energy orientations of magnetic moment $\mu$ with respect to the magnetic field $B_0$. (b) EPR absorption spectrum. The middle spectrum is the absorption spectrum in a varying magnetic field and the bottom spectrum is the first derivative of its absorption spectrum [153]. ................................................. 53

Figure 3.5. Schematic diagram of x-ray diffractometer. ........................................... 54

Figure 3.6. Schematic illustration of a HBT experiment with a photon stream incident on the beam splitter. (a) The beam splitter directs the incoming photons to two APDs. The APDs are connected to a correlator card, which records the time elapses between the start and the stop pulses. (b) A histogram of an experiment from a true single photon emitter, showing the number of events recorded within a particular time interval. ...................................................................................................................... 58

Figure 3.7. Experimental setup of measurements of SPSs using a customized confocal microscope with HBT interferometer operating at room temperature. A CW laser at 532 nm is used and a variable neutral density filter was used to change the excitation power. The fluorescence emission was collected with a microscope objective lens. The emitted light passes through a dichroic mirror, band-pass filter, and is focused onto a pinhole. The laser polarization was varied by a half wave ($\lambda = \frac{1}{2}$) plate. The light was coupled into a multi-mode fiber and sent to two APDs and a PL spectrometer. ....... 59

Figure 4.1. Temperature inside the furnace depending on the annealing temperature. A red horizontal line is the melting point of Zn which is 419.6 °C. ......................... 64

Figure 4.2. SEM images of the ZnO nanoparticles annealed at (a) 700 °C in Zn vapor (b) 900 °C in Zn vapor, and (c) 900 °C in Ar. The annealed nanoparticles exhibit highly faceted morphologies and enlargement from the 20 nm as-received size. ................ 67

Figure 4.3. XRD patterns of (a) as-received and (b) Zn-annealed ZnO nanoparticles in a range of annealing temperature between 400 °C and 900 °C. The diffraction peaks increase in intensity and become sharper with increasing annealing temperature. 67

Figure 4.4. The W-H analysis of (a) as-received ZnO nanoparticles and (b) Zn vapor annealed ZnO nanoparticles at 900 °C. The W-H plot is used for the determination of particle crystalline size. Variations of nanoparticle size with annealing temperature in (c) Zn vapor and (d) Ar gas as determined by the W-H method and SEM image analysis. ............................................................................................................................................ 69

Figure 4.5. (a) EPR spectra of as-received, O$_2$ annealed, Zn vapor annealed ZnO nanoparticles and a bare Si(100) substrate for comparison. Two main types of paramagnetic signals at $g = 2.00$ and $g = 1.96$ are observed, corresponding to $V_{O_2}$ defects and localized donors, respectively. (b) Magnified EPR spectra of the $g = 1.96$ line for the as-received and annealed ZnO nanoparticles, showing a decrease in the EPR linewidth after annealing. ................................................................. 71
Figure 4.6. Normalized (a) Zn $L_3$-edge and (b) O $K$-edge XANES spectra of ZnO nanoparticles annealed at 900 °C under O$_2$ and Zn vapor. The spectra were collected in surface sensitive TEY mode (probing depth is ~ 5 nm). No additional Zn-related defects were produced during annealing, however, $V_O$ is formed in Zn vapor anneal.

Figure 4.7. Normalized (a) Zn $L_3$-edge and (b) O $K$-edge XANES spectra of ZnO nanoparticles annealed at 900 °C under O$_2$ and Zn vapor. The spectra were collected in surface sensitive TEY mode.

Figure 4.8. CL spectra of O$_2$ and Zn annealed nanoparticles, recorded at 80 K. The O annealed GL1 at 2.28 eV is quenched by hydrogen plasma treatment, whereas the Zn vapor annealed GL2 at 2.48 eV is increased after the same treatment.

Figure 4.9. CL spectra of the ZnO nanoparticles acquired at 80 K ($E_B = 15$ keV, $I_B = 0.25$ nA) with its fitted components. Typical fit of the defect-related band for the nanoparticles annealed at 800 °C in (a) O$_2$ and (b) Zn vapor atmosphere.

Figure 4.10. Thermal evolution of RL, YT, GL1 and GL2 emissions as a function of annealing temperature in (b) O$_2$ and (c) Zn vapor atmosphere. GL1 and GL2 arises from thermally generated $V_{Zn}$ and $V_O$ related centers, respectively. (c, d) Normalized CL spectra of the ZnO nanoparticles after a two-stage annealing process in two different environments (O$_2$ and Zn vapor) at 900 °C, which can be compared with the CL spectra from one-stage annealing. The spectral shift indicates an interchange between GL1 and GL2 after the second annealing stage and that $V_O$ and $V_{Zn}$ defects can be annihilated by oxidative and reductive annealing, respectively.

Figure 4.11. Power density CL measurements of the as-received and annealed ZnO nanoparticles at 80 K with various beam currents at an accelerating voltage of 15 kV. The data points show power-law exponent fit.

Figure 4.12. Comparison of steady-state 532 nm and 405 nm laser excitation PL and CL spectra at 300 K for (a) as-received as well as (b) and (c) for ZnO nanoparticles annealed at 900 °C in O$_2$ and Zn vapor, respectively. The sharp feature is due to the presence of an edge filter.

Figure 4.13. PL decay curves at 300 K acquired with (a) 405 nm and (b) 514 laser pulse for corresponding nanoparticles shown in Figure 4.12.

Figure 4.14. Band diagram showing the possible excitation and emission pathways from the discussed defect states. Dashed lines indicate radiative pathways while solid red lines indicate excitation. (a) GL2 emission at 2.48 eV produced with above (CL) and 2.33 eV emission generated with sub-bandgap 405 nm excitation laser, where VB electrons are promoted to the CB and shallow donor states respectively. (b) Promotion of electrons from ionized $\text{Li}^{2+}_{Zn}$ and $V_{Zn}^2$ acceptors to the CB (photo-ionization) using sub-bandgap 405 nm light forming $\text{Li}^{0}_{Zn}$ and $V_{Zn}$ and a CB electron (e$_{CB}$) and the ensuing radiative recombination reinstating the $\text{Li}^{2+}_{Zn}$ and $V_{Zn}^2$ with PL at 2.23 eV and 1.75 eV, respectively. The later has a large Stokes shift due to a Jahn-Teller (JT)
distortion and (c) photo-ionization and radiative relaxation of ionized \( O_1 \) \((O_1^{2-})\) using sub-bandgap 532 nm light to produce PL at 1.94 eV.

Figure 5.1. (a) SEM image of a dense film of ZnO nanoparticles annealed at 500 °C in air. (b) An 80 \( \times \) 80 \( \mu \)m\(^2\) scanning confocal image of ZnO nanoparticles excited with a 532 nm laser. Bright isolated emitters are indicated with the circles.

Figure 5.2. Comparison of the photon streams for antibunched light, coherent light, and bunched light. For the case of coherent light, the Poissonian photon statistics correspond to random time intervals between the photons. \( g^2(\tau) \) for chaotic, perfectly coherent light, and SPSs plotted on the same time scale.

Figure 5.3. (a) PL spectrum recorded from a bright defect within the ZnO nanoparticles (black curve). The red curve represents the background emission. (b) The presence of a single quantum emitter in the ZnO nanoparticles is revealed by the second order autocorrelation function, \( g^2(\tau) \), corresponding to the PL spectrum in Figure 5.3(a). The dip at zero delay time indicates that it is a single emitter. The solid line is a fit using a two-level mode. (c) Single photon emission count rate versus excitation power. The red circles are the raw data and the solid line is the fit using Eq. 5.1. The saturation count rate for this emitter is \( 1.84 \times 10^5 \) counts/s.

Figure 5.4. (a) Single photon emitter from ZnO that exhibits a narrow PL signal and (b) a strong bunching behavior.

Figure 5.5. Polarization measurement of a ZnO single emitter for both polarized excitation (red curve) and emission (blue curve) as a function of the polarizer angle. The circles are the raw data and the solid line is a fit following Malus’ law.

Figure 5.6. CL spectra of ZnO nanoparticles before and after hydrogen plasma treatment. Reduction of RL is observed after the exposure to hydrogen plasma.

Figure 5.7. \( g^2(\tau) \) recorded from single defects within ZnO after (a) coating with PMMA and (b) exposure to hydrogen plasma. (c) Intensity trace recorded from a single emitter within an untreated ZnO nanoparticle showing permanent bleaching after 3 minutes. (d) Intensity trace of a single emitter of a ZnO nanoparticle coated with PMMA exhibits blinking but no bleaching. The red curve in (c, d) is the background fluorescence.

Figure 5.8. The “on” and “off” times of a single ZnO emitter.

Figure 6.1. (a) Schematic diagram of the n-ZnO/p-Si heterojunction. Electrically driven light emission is generated at the edge of the circle, and then collected through a microscope objective and directed into APDs or a spectrometer. (b) The energy band diagram of the n-ZnO/p-Si heterojunction under zero voltage bias. Defect-related radiative recombination occurs in the devices. The electrons in the CB of ZnO will drop down into the defect-related energy level of ZnO to recombine with the holes therein, giving rise to the visible emission. (c, d) I-V characteristic of the n-ZnO/p-Si heterostructure devices; (c) ZnO nanoparticles/Si configuration with a threshold
Figure 6.2. EL and PL results of defects in ZnO/Si devices recorded at room temperature. (a) EL confocal maps recorded from the ZnO nanoparticles/Si and (b) ZnO thin film devices, respectively. The bright spots correspond to defect-related color centers in ZnO. (c, d) EL and PL spectra of the devices recorded at room temperature; (c) ZnO nanoparticles/Si, and (d) ZnO thin film/Si devices. Both devices exhibit orange-red emission ranging from ~ 500 nm to 800 nm when 40 V and 15 V were applied to ZnO nanoparticles/Si and ZnO thin film/Si, respectively. While PL spectra show no difference from both samples, positions of peak wavelength of EL are slightly different, possibly resulting from different defect centers in ZnO. Inset of (d) is the $g^2(\tau)$ of ZnO thin film excited by PL, indicating the presence of a single quantum emitter in the ZnO thin film. The bunching ($g^2(\tau) > 1$) indicates the presence of a metastable state.

Figure 6.3. (a) Count rate of the EL generated emission as a function of the device current for the ZnO nanoparticles/Si and (b) ZnO thin film/Si devices. The black dots are raw data and red curves are the fitting curve showing saturation behaviors according to the Eq. 6.1 with $C_{Sat} = 7.23 \times 10^3$ counts/s and $I_{Sat} = 32.4 \, \mu A$ for ZnO nanoparticles/Si and $C_{Sat} = 2.07 \times 10^4$ counts/s and $I_{Sat} = 6.4 \, \mu A$ for ZnO thin film/Si, respectively. (c) and (d) are the intensity traces recorded from one of the bright spots in the confocal map from the ZnO nanoparticles/Si and the ZnO thin film/Si devices, respectively. Both devices exhibited excellent photostability for more than 30 minutes.

Figure 6.4. (a) SEM image of the sputtered ZnO thin film and (b) ZnO nanoparticles.

Figure 7.1. ZnO microdisk growth setup in the tube furnace.

Figure 7.2. (a) Top and (b) side-view SEM secondary electron images of ZnO microdisk at an operating voltage of 20 kV. A well-defined hexagonal shape is clearly visible.

Figure 7.3. Raman spectrum of the ZnO microdisk confirming a high quality wurtzite structure. The Raman peak at 437 cm$^{-1}$ is associated with the hexagonal wurtzite ZnO optical photon $E_{2,\text{high}}$ mode. The strong peak at 520 cm$^{-1}$ is associated with the Si substrate.

Figure 7.4. (a) Monochromatic CL image of the ZnO microdisk at 530 nm at 15 kV. Inset is 500 nm lateral spread of the interaction volume of the electron beam at 15 kV. (b) Representative CL spectra recorded from the side regions of the microdisk, and the center regions of the ZnO microdisk, respectively. The local excitation spots are indicated by red and blue circles in (a). There is a significant difference of green emission between the side and the center region.
Figure 7.5. (a, b) High resolution CL spectra from the peripheral area of the ZnO microdisks shows a series of peaks corresponding to WGMs with a green emission band using Lorentzian deconvolution method. The integers are the mode numbers for respective resonant mode peaks; (a) 5 μm and (b) 9 μm of the microdisks............ 119

Figure 7.6. Different types of resonance mode in the hexagonal shape of an optical resonator. (a) a FPM, (b) a quasi-WGM, and (c) a WGM................................................................. 120

Figure 7.7. Wavelength-dependent refractive indices of a ZnO microdisk were deduced using Sellmeier’s dispersion functions. ................................................................. 123

Figure 7.8. CL spectrum of 9 m ZnO microdisk showing the peak wavelength and its FWHM for calculation of the $Q$ factor................................................................. 125

Figure A.1. (a) CL spectra of the tungsten halogen lamp (red curve) and the standard irradiance using the OceanOptics detector (blue curve). (b) System optics response curve calculated from Eq. A.1.................................................................................. 132

Figure A.2. Wavelength calibration for the Hamamatsu CCD with the center wavelength of 530 nm. (a) CL spectrum of the mercury lamp. (b) A linear wavelength calibration curve to convert the unit from pixel to wavelength........................................ 133
List of Tables

Table 2.1. Radiative recombination channels by excitation of electron-hole pair..... 12
Table 4.1. Annealing conditions in this experiment. ................................................. 64
Table 4.2. Particle sizes depending on the annealing temperature. ......................... 70
Table 4.3. Summary of luminescent point defects in ZnO nanoparticles and their photophysical properties. ................................................................. 84
Abbreviations

APD – avalanche photo diode
ASE – amplified spontaneous emission
CB – conduction band
CCD – charge coupled device
CL – cathodoluminescence
CW – continuous wavelength
DAP – donor-acceptor pair
DFT – density functional theory
DL – deep-level
EL – electroluminescence
EPR – electron paramagnetic resonance
ESR – electron spin resonance
FPMs – Fabry-Pérot modes
FWHM – full width at half maximum
GL – green luminescence
HBT – Hanbury Brown and Twiss
LDA – local density approximation
LED – light emitting diode
LPB – lower polariton branch
NBE – near-band edge
PL – photoluminescence
PMMA – polymethyl methacrylate
RL – red luminescence
SEM – scanning electron microscope
SPSs – single photon sources
sccm – standard cubic centimeters per minute
TEM – transmission electron microscopy
TCSPC – time correlated single photon counting
UPB – upper polariton branch
UV – ultraviolet
VB – valence band
W-H – Williamson-Hall
WGMs – whispering gallery modes
XANES – x-ray absorption near edge spectroscopy
XRD – x-ray diffraction
YL – yellow luminescence
ZPL – zero phonon line