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Abstract 

Zinc oxide (ZnO) is a large bandgap (3.37 eV at room temperature) semiconductor and 

is a good candidate for short wavelength photonic devices such as laser diodes. A large 

exciton binding energy (60 meV) at room temperature in addition to the advantages of 

being able to grow various nanostructure forms have made ZnO suitable for a wide 

range of applications in optoelectronic devices. 

Driven by the rapid advance of nanophotonics, it is necessary to develop single photon 

sources (SPSs) and optical resonators in new class of materials. In particular, SPSs are 

required for a wide range of applications in quantum information science, quantum 

cryptography, and quantum communications. ZnO has been investigated for classical 

light emitting applications such as energy efficient light emitting diodes (LEDs) and 

ultraviolet (UV) lasers. Significantly ZnO has recently been identified as a promising 

candidate for quantum photonic technologies. Thus in this thesis the optical properties 

of ZnO micro- and nano-structures were investigated for ZnO nanophotonic 

technologies, specifically their applications in single photon emission and optical 

resonators. 

Firstly, the formation of radiative point defects in ZnO nanoparticles and their 

photophysical properties were investigated. In particular, using correlative 

photoluminescence (PL), cathodoluminescence (CL), electron paramagnetic 

resonance (EPR), and x-ray absorption near edge spectroscopy (XANES) it is shown 

that green luminescence (GL) at 2.48 eV and an EPR line at g = 2.00 belong to a 

surface oxygen vacancy (VO,s
+ ) center, while a second green emission at 2.28 eV is 

associated with zinc vacancy (VZn) centers. It is established that these point defects 

exhibit nanosecond lifetimes when excited by above bandgap or sub-bandgap (405 nm 

and 532 nm excitation wavelength) excitation. These results demonstrate that point 

defects in ZnO nanostructures can be engineered for nanophotonic technologies. 

ZnO nanoparticles were consequently studied for the investigation of room 

temperature single photon emission from defect centers in ZnO nanoparticles. Under 
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the optical excitation with 532 nm green laser, the emitters exhibit bright broadband 

fluorescence in the red spectral range centered at 640 nm. The red fluorescence from 

SPSs in ZnO defect center is almost fully linearly polarized with high signal-to-noise 

ratio. The studied emitters showed continuous blinking; however, it was confirmed 

that bleaching can be suppressed using a polymethyl methacrylate (PMMA) coating. 

Furthermore, passivation by hydrogen treatment increase the density of single photon 

emitters by a factor of three. 

ZnO/Si heterojunctions were fabricated and used to investigate electrically driven light 

emission from localized defects in ZnO nanostructures at room temperature. It is 

shown that excellent rectifying behaviors were observed with the threshold voltages at 

~ 18 V and ~ 7 V for ZnO nanoparticles and thin film-based devices, respectively. 

Both devices exhibit electroluminescence (EL) in the red spectral region ranging from 

~ 500 nm to 800 nm when 40 V and 15 V were applied to ZnO nanoparticles/Si and 

ZnO thin film/Si, respectively. The emission is bright and stable for more than 30 

minutes, providing an important prerequisite for practical devices.  

Finally, ZnO optical resonators were fabricated and investigated to enhance the visible 

light emission. Hexagonal ZnO microdisks with diameter ranging from 3 μm to 15 μm 

were grown by a carbothermal reduction method. Optical characterization of ZnO 

microdisks was performed using low temperature (80 K) CL imaging and spectroscopy. 

The green emission is found to be locally distributed near the hexagonal boundary of 

the ZnO microdisks. High resolution CL spectra of the ZnO microdisks reveal 

whispering gallery modes (WGMs) emission. Two different sizes (5 μm and 9 μm) of 

the ZnO microdisks were simulated to analyze the nature of light confinement in terms 

of geometrical optics. Respective analysis of the mode spacing and the mode 

resonances are used to show that the ZnO microdisks support the propagation of 

WGMs. The results show that the experimentally observed WGMs are in excellent 

agreement with the predicted theoretical positions calculated using a plane wave model. 

This work could provide the means for ZnO microdisk devices operating in the green 

spectral range. 
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