
UNIVERSITY OF TECHNOLOGY, SYDNEY

DOCTORAL THESIS

Bayesian Nonparametric Modeling and Its
Applications

By

Minqi LI

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

School of Computing and Communications

Faculty of Engineering and Information Technology

October 2016

http://www.uts.edu.au
http://www.uts.edu.au


Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it

been submitted as part of requirements for a degree except as fully acknowledged within the

text.

I also certify that the thesis has been written by me. Any help that I have received in my research

work and the preparation of the thesis itself has been acknowledged. In addition, I certify that

all information sources and literature used are indicated in the thesis.

Signed:

Date:

i



ii

Abstract

Bayesian nonparametric methods (or nonparametric Bayesian methods) take the benefit of un-

limited parameters and unbounded dimensions to reduce the constraints on the parameter as-

sumption and avoid over-fitting implicitly. They have proven to be extremely useful due to their

flexibility and applicability to a wide range of problems. In this thesis, we study the Baye-

sain nonparametric theory with Lévy process and completely random measures (CRM). Several

Bayesian nonparametric techniques are presented for computer vision and pattern recognition

problems. In particular, our research and contributions focus on the following problems.

Firstly, we propose a novel example-based face hallucination method, based on a nonparametric

Bayesian model with the assumption that all human faces have similar local pixel structures.

We use distance dependent Chinese restaurant process (ddCRP) to cluster the low-resolution

(LR) face image patches and give a matrix-normal prior for learning the mapping dictionaries

from LR to the corresponding high-resolution (HR) patches. The ddCRP is employed to assist in

learning the clusters and mapping dictionaries without setting the number of clusters in advance,

such that each dictionary can better reflect the details of the image patches. Experimental results

show that our method is efficient and can achieve competitive performance for face hallucination

problem.

Secondly, we address sparse nonnegative matrix factorization (NMF) problems by using a graph-

regularized Beta process (BP) model. BP is a nonparametric method which lets itself naturally

model sparse binary matrices with an infinite number of columns. In order to maintain the

positivity of the factorized matrices, an exponential prior is proposed. The graph in our model

regularizes the similar training samples having similar sparse coefficients. In this way, the struc-

ture of the data can be better represented. We demonstrate the effectiveness of our method on

different databases.

Thirdly, we consider face recognition problem by a nonparametric Bayesian model combined

with Sparse Coding Recognition (SCR) framework. In order to get an appropriate dictionary

with sparse coefficients, we use a graph regularized Beta process prior for the dictionary learn-

ing. The graph in our model regularizes training samples in a same class to have similar sparse

coefficients and share similar dictionary atoms. In this way, the proposed method is more robust

to noise and occlusion of the testing images.
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The models in this thesis can also find many other applications like super-resolution, image

recognition, text analysis, image compressive sensing and so on.
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Chapter 1

Introduction

1.1 Background

Bayesian modelling methods have been firmly established in machine learning and presented

state-of-the-art performance to many applications in computer vision, image processing, data

mining and other areas. Most machine learning models are concerned with two problems. One

is determining appropriate model classes referred to model selection or model adaptation, such

as selecting the number of clusters in a clustering problem, the number of hidden states in a

hidden Markov model, the number of latent variables in a latent variable model, or the complex-

ity of features used in nonlinear regression [1]. Another one is learning an appropriate set of

parameters within the Bayesian model class from the observed training data. Traditional para-

metric Bayesian models utilize a finite number of parameters to explain the observations. These

models suffer from either over-fitting or under-fitting when the number of parameters or model

complexity is not appropriately specified.

Bayesian nonparametric model (or nonparametric Bayesian model), using stochastic process-

es as prior distributions, is a recently rapidly growing research area in statistics and machine

learning. It provides an elegant framework that allows a model to grow with complexity cor-

responding to the data, with potential infinite parameters [2]. Bayesian nonparametric models

constitute an approach to model selection and adaptation, where the sizes of models are allowed

to grow with data size. This is opposed to parametric models which uses a fixed number of

parameters. More precisely, a nonparametric Bayesian model is a model that [1]:

1
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1. constitutes a Bayesian model on an infinite-dimensional parameter space, and

2. can be evaluated on a finite sample in a manner that uses only a finite subset of the avail-

able parameters to explain the sample.

A nonparametric Bayesian model can have infinite-dimensional parameter space. The parameter

space is typically chosen as the set of all possible solutions for a given learning problem. In this

way, nonparametric Bayesian method overcomes the rigid nature of parametric assumptions and

leads to highly flexible inference. On one hand, with the potentially massive parameters, the

support of Bayesian nonparametric models is wide enough to avoid under-fitting. On the other

hand, proper choice of priors controls the model complexity, hence mitigates over-fitting [3].

These robust properties benefit nonparametric Bayesian models to a wide range of applications

including regression, classification, clustering, latent variable modeling, sequential modeling,

image segmentation, source separation and so on [1–7].

1.2 Applications and Motivation

In this thesis, we mainly focus on the problems in computer vision and pattern recognition

areas by using Bayesian nonparametric models. Some literature reviews of classical Bayesian

nonparametric applications are presented as follows.

1.2.1 Image Segmentation

One popular example of Bayesian nonparametric models is Dirichlet process mixture model. It

is often applied for clustering, which adapts the number of clusters to the complexity of the da-

ta. Its natural extension in image processing and computer vision areas is image segmentation.

Typically, the Bayesian nonparametric models for histogram clustering can be used for auto-

matical determining the number of segments. Besides, some spacial constraints can be added

to improve the performance. For example, spacial smoothness constraints are considered on the

class assignments which are enforced by a Markov Random Field [8–10]. Another nonpara-

metric Bayesian model used for image segmentation is distance dependent Chinese restaurant

process (ddCRP). The ddCRP clusters data in a biased way: each data point is more likely to
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be clustered with other data that are near to it in an external sense. It is particularly well suited

for segmenting an image into a collection of contiguous parches [9, 11]. A further extended

application of clustering by nonparametric Bayesian models in computer vision is natural scene

segmentation. For instance, Pitman-Yor process and hierarchical Pitman-Yor process can be

used for natural scene segmentation [12, 13].

As we shown above, Bayesian nonparametric models have been successfully applied on image

segmentation problems.

1.2.2 Latent Factor Analysis

Another popular application of Bayesian nonparametric models is latent factor analysis. Beta

process factor analysis (BP-FA) model has been well developed for this application. BP-FA

allows a dataset to be decomposed into a linear combination of a sparse set of factors, providing

information on the underlying structure of the observations [14]. As an important aspect of

the BP-FA model is that it is able to enforce sparseness on some subset of the factors, the

BP-FA model can be easily extended to the sparse dictionary learning and related applications,

such as image interpolation, super-resolution, image denoising, image inpainting and so on

[2, 14–17]. For example, Paisley et al. presented a Bayesian nonparametric model for image

interpolation. The model used the Beta process for dictionary learning, the Dirichlet process for

flexibility in dictionary usage and spatial information for encouraging similar dictionary usage

within subregions of the image [5, 15].

A similar work presented by Zhou et al. considered a nonparametric Bayesian method for image

denoising and image interpolation [16]. A truncated Beta-Bernoulli process was employed to

infer an appropriate dictionary for the data under test, and also for image recovery. Spatial

inter-relationships within imagery were exploited through the use of the Dirichlet and probit

stick-breaking processes.

Polatkan et al. utilized a Beta-Bernoulli process to learn a set of recurring visual patterns,

called dictionary elements from the data for super-resolution problems. A sparse representation

of coupled low-resolution image and high-resolution was found by a nonparametric Bayesian

method. Then, the coefficients of this representation were used to generate a high-resolution



Chapter 1. Introduction 4

of the input testing image. The implementations were based on Gibbs sampling and online

variational inference [18]. A similar model is presented in [17] for iris image super-resolution.

Related models about latent factor analysis are also presented in other applications. For example,

Fox et al. used a Beta process prior for discovery sharing features among dynamical systems

[6, 19]. Bargi et al. proposed a nonparametric conditional factor regression model for domains

with multi-dimensional input and response based on Indian buffet process (IBP) enhancements

to the latent factors [20]. Knowles and Ghahramani presented an infinite sparse factor analysis

and infinite independent components analysis using a distribution over the infinite binary matrix

corresponding to the IBP [21].

1.2.3 Other Applications

Besides the above applications, the nonparametric Bayesian methods have also attracted atten-

tion to the following problems related to computer vision and pattern recognition.

Fox et al. researched Bayesian nonparametric learning of complex dynamical phenomena. A

generalization of HDP (hierarchical Dirichlet process)-HMM (hidden Markov model) model

was developed, which allowed robust learning of smoothly varying state dynamics through a

learned bias towards self-transitions [6]. Similar models are also used for segmentation and

classification of sequential data [20].

Sudderth employed nonparametric models for visual object recognition and tracking problems.

Dirichlet processes were applied to automatically learn the number of parts underlying each

object category, and objects composing each scene [22].

It is well known that matrix completion is closely related to image inpainting, image denois-

ing and recommendation algorithms, like Collaborative Filtering. Paisley et al. presented a

nonparametric Bayesian model for completing low-rank, positive semi-definite matrices. They

proposed a Bayesian hierarchical model to uncover the underlying rank from all positive semi-

definite matrices, and complete the matrix by approximating the missing values [23]. Zhou et al.

proposed to use Beta-Binomial processes for inferring missing values in matrices. The method

was based on the low-rank assumption, and the matrix columns were modeled as residing in a

non-linear subspace. They provided encouraging performance [24].
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The above well applied examples represent the power, flexibility and robustness of Bayesian

nonparametric modeling.

1.2.4 Motivations

Although nonparametric Bayesian approaches provide a powerful way of parameter tuning and

model selection, and have well developed in many problems as introduced above, there still are

some challenging topics in computer vision, image processing and other areas.

In this thesis, we study the foundation theory of Bayesian nonparametric models and extend

them to some computer vision and pattern recognition problems for better performance com-

pared with the existing methods. The following section will represent the main work in this

thesis.

1.3 Thesis Organization

This thesis presents our work in three areas. We begin by reviewing relevant background

and introducing the preliminaries of Bayesian nonparametric models and inference methods

in Chapter 2. In Chapter 3, we propose a Face Hallucination method Based on spatial-distance-

dependent nonparametric Bayesian learning. Chapter 4 discusses a graph-regularized nonpara-

metric Bayesian approach to sparse nonnegative matrix factorization. In Chapter 5, a graph-

regularized nonparametric Bayesian method is presented for face recognition. We summarize

our contributions and future work in Chapter 6.

• Preliminaries for nonparametric Bayesian models

Chapter 2 gives preliminary knowledge about Bayesian nonparametric models and relat-

ed inference methods. In this chapter, completely random measure and Lévy processes

are introduced. Some examples of Lévy processes are presented including the Gamma

process, Dirichlet process and Beta process which are related to our later chapters. We

introduce the Monte Carlo Markov Chain (MCMC) methods as the inference algorithm

of our nonparametric Bayesian methods. They mainly include the Metropolis-Hastings
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algorithm and Gibbs sampling algorithm. All these introductions serve the purpose of

forming a foundation in understanding the core contributions of this thesis.

• Nonparametric Bayesian model for face hallucination

In Chapter 3, we propose a novel example-based face hallucination method, based on

nonparametric Bayesian learning with the assumption that all human faces have similar

local pixel structures. In our method, the low-resolution (LR) face image patches are clus-

tered by using a nonparametric Bayesian method, namely the distance dependent Chinese

restaurant process (ddCRP), and the centers of the clusters are calculated. ddCRP does

not fix the number of clusters which is different from the traditional methods, but let the

image patches themselves to decide. Then, we learn the dictionaries for each cluster to

map the LR patches to the high-resolution (HR) patches. The HR patches of the input LR

face image can be efficiently generated by using the learned mapping dictionaries. The s-

patial distance constraint is employed to assist in learning the cluster centers and mapping

dictionaries, such that each dictionary can better reflect the detailed information about

image patches. Experimental results show that our method is efficient and can achieve

competitive performance for face hallucination.

• Nonparametric Bayesian model for sparse nonnegative matrix factorization

In Chapter 4, we propose a nonparametric Bayesian method for sparse nonnegative ma-

trix factorization (NMF). The traditional NMF algorithms which are mainly based on

non-convex optimization are suffering from a drawback that is difficult to maintain its

sparse representations. In this chapter, we address the NMF problem by using a graph-

regularized nonparametric Bayesian method with a Beta process (BP) prior. Beta process

is a nonparametric method which lends itself naturally to model sparse binary matrices

with an infinite number of columns. In order to maintain the positivity of the factorized

matrices, an element-wise independently and identically distributed exponential prior is

proposed. The graph in our model regularizes the similar training samples having sim-

ilar sparse coefficients and share similar dictionary atoms. In this way, the structure of

data can be better represented. An efficient Gibbs sampler is derived to approximate the

posterior density of the NMF factors. We demonstrate the effectiveness of our method on

different databases. The experimental results show that our proposed method improves

the quality of NMF compared with the existing algorithms.
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• Nonparametric Bayesian model for face recognition

In Chapter 5, we propose a graph-regularized nonparametric Bayesian method based on

sparse coding recognition (SCR) framework for face recognition (FR) problem. The appli-

cation of sparse representation for the problem of face recognition has received significant

attention. The traditional SCR needs using training samples as the dictionary. However,

these dictionaries are not able to accurately reconstruct the testing image by the sparse co-

efficients when the sparseness in the training data are lacked. In order to get an appropriate

dictionary with sparse coefficients for image recognition, we use a graph regularized BP

prior for the dictionary learning. The graph in our model regularizes training samples in a

same class to have similar sparse coefficients and share similar dictionary atoms, which is

beneficial to the reconstruction of the testing image. We demonstrate the effectiveness of

our method on different face databases. The experimental results show that our proposed

method gives competitive results, especially, on the occluded testing images.

• The final chapter concludes with providing a summary of the contributions in this thesis,

and recommendations for future works.



Chapter 2

Preliminaries

Bayesian nonparametric modeling and inference are based on using general stochastic processes

as prior distributions. The priors are usually obtained from a class of stochastic processes known

as Lévy processes and completely random measures (CRM). In this chapter, we introduce basic

notions on stochastic processes, CRM and Lévy processes, which are preliminaries of non-

parametric Bayesian methods. Two remarkable families of Lévy processes: Gamma process

and Beta process are studied. Lévy-Khintchine formula and Lévy-Itô decomposition of Lévy

process are introduced for giving simple representations of Lévy processes, as well as their re-

lationship with CRM. The last part of this chapter describes an advanced Bayesian inference

method, Markov chain Monte Carlo (MCMC), and related sampling algorithms.

2.1 Basic Concepts

Definition 2.1 (Measure space). Let X be a set, Σ be a σ-algebra 1 of its subsets, and µ : Σ→

[0,+∞) be a measure. A triple (X,Σ, µ) is called a measure space if (Σ, µ) is a measurable

space and µ is a measure on it.
1In mathematical analysis and in probability theory, a σ-algebra on a set X is a collection of subsets of X that

includes the empty subset, is closed under complement, and is closed under union or intersection of countably many
subsets.

8
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Thus, a measure space implies a measurable space and a measure. The notation (X,Σ, µ) is

often shortened to (X,µ) and µ is called a measure on X; sometimes the notation is shortened

to X .

Definition 2.2 (Probability space). A probability space is a measure space (Ω,F , P ) in which

P (Ω) = 1.

It consists of three parts:

1. A sample space, Ω, which is the set of all possible outcomes;

2. A set of events F , where each event is a set containing zero or more outcomes; and

3. The assignment of probabilities to the events, i.e., a function P :→ [0, 1] from events to

probabilities.

A probability space is a measure space such that the measure of the whole space is equal to one.

Definition 2.3 (Measure). A measure on a measurable space (Ω,F) is a function µ : F → R+

such that

1. µ(Ø) = 0;

2. If A1, A2, ... are disjoint elements of F , then, µ(
⋃∞
i=1(Ai)) =

∑∞
i=1 µ(Ai).

Remark. A probability measure P is a measure with P (Ω) = 1.

Definition 2.4 (Random measure). A random measure M on (S,A) over the probability space

(Ω,F , P ) is a map ξ : A× Ω→ R+, such that

1. For any A ∈ A, the map ω 7→M(A,ω) is a random variable; and

2. Almost surely, the map A 7→M(A,ω) is a (probability) measure on A.

Instinctively speaking, random measure are measures drawn from some distributions on mea-

sures. That is, random measure M is a measure on a measurable space. At the same time, the

random measure M is a random variable on a probability space [25–27]. The expectation of a

random measure is called the mean measure, which is denoted as ν(A) , E[M(A)] [28].
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A random measure maps from a probability space to a measurable space. It generally might be

decomposed as [29]:

µ = µd + µa = µd +

N∑
n=1

κnδXn (2.1)

Here, µd is a diffuse measure (non-atomic measure) without atoms, while µa is a purely atomic

measure 2.

Random Measure Construction

The following theorem presents an example of random measure construction.

Theorem 2.1.1. If π1, ..., πk are i.i.d Beta(α/k, 1) random variables, their order statistics

π(1) ≥ π(2) ≥ ... ≥ π(k) satisfy

πi =

i∏
j=1

βj , (2.2)

where β1, β2, ..., βk are independent and βi ∼ Beta(α(k− i+1)/k, 1) random variables. Then,

πi are random measures.

Stick-breaking is a popular method for constructing nonparametric models. As a Beta(α, 1)

fraction can be broken from a unit stick, from Theorem 2.1.1, a stick-breaking method for con-

structing random measure can be represented as:

βk ∼ Beta(1, α0), k = 1, 2, ...,

π1 = β1, π2 = β2, ..., πk = βk

k−1∏
l=1

(1− βl),

G =
∞∑
k=1

πkδφk ,

(2.3)

where φk are independently drawn from a base distribution G0 in some space. Then, G is a

random measure (actually a probability measure) as shown in Fig. 2.1.
2In mathematics, more precisely in measure theory, an atom is a measurable set which has positive measure and

contains no set of smaller but positive measure.
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FIGURE 2.1: Stick breaking for constructing a random measure

Example 2.1.2 (Random counting measure). A random measure of the form µ =
∑N

n=1 δXn ,

where N ∈ N, and δ is the Dirac measure 3, and Xn are random variables, is called a point

process or random counting measure.

This is a simple natural random measure. It describes the set of N particles, whose locations

are given by the random variables Xn. The diffuse component µd is null for a counting measure

[29]. In a formal notation of the above, a random counting measure is a map from a probability

space (Ω,F , P ) to the measurable space (S,A). Here, S is the set of locally finite counting

measures with finite integer-valued measures, and A is σ-algebra of its Borel sets [30].

Poisson Random Measure

Example 2.1.3 (Poisson random measure). Let (S,A) be a measurable space and let v be a

measure on it. A random measure M on (S,A) is said to be Poisson with mean v if

1. for every A in A, the random variable M(A) has the Poisson distribution with mean

v(A); and

2. whenever A1, ..., An are in S and disjoint, the random variables M(A1), ...,M(An) are

independent for every n ≥ 2.

In particular, the Poisson random measure is a positive integer-valued random measure. It can

be constructed as the counting measure of randomly scattered points, as shown by the following

proposition [31, 32].
3Dirac measure:

Dirac : δx(A) =

{
1 x ∈ A
0 x /∈ A

i.e. a point measure (or delta measure) at point x.
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Proposition 2.1.4. Suppose that v is a measure on (E, ξ) such that v(E) < ∞. Then, there

exists a Poisson random measure with mean measure v.

The proof of the this proposition is referred to [32, 33]. Actually, Poisson random measure is

a foundation of other Lévy processes and nonparametric Bayesian models. It is often used for

describing jumps of stochastic processes, in particular in Lévy-Itô decomposition of the Lévy

processes which will be introduced in the later sections.

2.2 Completely Random Measure

Definition 2.5 (Completely random measure). Let H be a random measure on (Ω,F), we say

that H is completely random if for any set of disjoint measurable sets F1, ..., Fm of F , the

random variables H(F1), ...,H(Fm) are mutually independent.

Completely random measures (CRM) were introduced by Kingman in 1963 as a generalization

of a stochastic process with independent increments to arbitrary index sets. Kingman showed

that any completely random measure can be represented as the sum of three components based

on the nonhomogeneous Poisson process [27]:

1. A non-random measure (deterministic component);

2. An atomic measure with (at most countable) fixed atom locations and random atom mass-

es; and

3. An atomic measure with random atom locations and random atom masses (ordinary com-

ponent).

The ordinary component sometimes is described as a discrete measure
∑∞

k=1 πkδθk , where the

set of points (πk, θk)k≥1 is distributed as an inhomogeneous Poisson point process on R+ × Ω.

More formally, we have the following theorem.

Theorem 2.2.1 (CRM). A CRM µ can be decomposed into a sum of three independent compo-

nents:

µ = µ0 +
J∑
j=1

vjδxj +
K∑
k=1

πkδθk , (2.4)



Chapter 2. Preliminaries 13

where µ0 is a non-random measure, J is constant, {xj |j = 1, 2, ..., n} are fixed members of Ω,

vj |j = 1, 2, ..., n are mutually independent random variables on R+ and N =
∑K

k=1 πkδθk is a

Poisson process over R+ × Ω.

This construction has significant consequences for Bayesian modeling and computation. In

particular, it allows connections to be made to the exponential family and to conjugacy [34].

CRM has become a key concept in Bayesian nonparametric statistics. Many nonparametric

priors are random probability measures or random measures. Most of these random measures

are either completely random measures, or are obtained from a completely random measure by

normalization (e.g. Dirichlet process) [35].

2.3 Lévy Process

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a

stochastic process with independent, stationary increments. Before giving a formal definition of

Lévy process, we first introduce stochastic process with some structures.

Definition 2.6 (Stochastic process). Given a probability space (Ω,F , P ) and a measurable space

(S,S), any collection of random variables X = {Xt, t ∈ T} defined on (Ω,F , P ) is called a

stochastic process with index set T .

In order to make mathematical models less complicated, some simplifying assumptions or some

simplifying structures (restrictions) can be added. There are some popular dependence structures

put on stochastic processes which mathematicians have developed and used for years. Here, we

introduce the concept of filtration, a structure on a probability measure, of which concept is

often used in Lévy process [36].

Definition 2.7 (Filtration). Let (Ω,F , P ) be a probability space. A filtration on (σ,F , P ) is an

increasing family (F)t≥0 of sub-σ-algebras of F . In other words, for each t,Ft is a σ-algebra

included in Ft and if s ≤ t, Fs ⊂ Ft. A probability space (Ω,F , P ) endowed with filtration

(F)t≥0 is called a filtered probability space.

Intuitively speaking, a filtration is an increasing information flow about (Xt∈[0,T ]) as time pro-

gresses [37].
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Definition 2.8. [Lévy process] A Càdlàg 4, real valued stochastic process L = (Lt)0≤t≤T with

L0 = 0 a.s. is called a Lévy process if the following conditions are satisfied:

1. L has independent increments, i.e. Lt − Ls is independent of Fs for any 0 ≤ s < t ≤ T .

2. L has increments, i.e. for any 0 ≤ s, t,≤ T the distribution of Lt+s−Lt does not depend

on t.

3. L is stochastically continuous, i.e. for every 0 ≤ s, t,≤ T and ε > 0: lims→tP (|Lt −

Ls| > ε) = 0.

Note. From the definition of Lévy process, we can see that Lévy processes have Càdlàg property.

This property is important for constructions of Lévy processes which will be presented in the

later section of this chapter. The properties of stationary and independent increments implies

that a Lévy process is a Markov process [38, 39].

Lévy process represents the motion of a point whose successive displacements are random and

independent, and statistically identical over different time intervals of the same length. The

simplest Lévy process is the linear drift, a deterministic process. Brownian motion is the only

(non-deterministic) Lévy process with continuous sample paths. Some special cases of Lévy

processes in discrete time are random walks 5 [38].

2.3.1 Lévy Process and Infinite Divisible Distribution

From Definition 2.8, it is difficult to see how rich a class of Lévy processes can form. The fol-

lowing notion of an infinitely divisible distribution will show that they have a close relationship

with Lévy processes [36].

Definition 2.9 (Infinite divisible distribution). A real valued random variable X with the prob-

ability density function P (x) is said to be infinitely divisible if for ∀n ∈ N there exist i.i.d

random variables X1, X2, ..., Xn satisfying:

X = X1 +X2 + ...+Xn. (2.5)
4i.e. right continuous with left limits.
5 A discrete-time process (Xn)n=0,1,2,... with stationary and independent increments is a Random Walk:
Xn = X0 +

∑n
j=1 ηj with i.i.d. increments ηj = Xj −Xj−1.
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P (x) is said to be an infinitely divisible distribution.

Example 2.3.1 (Normal distribution). A random variable X ∼ N (µ, σ2) is infinitely divisible,

with the distributions

X(n) ∼ N (µ/n, σ2/n). (2.6)

Proof. As the characteristic function 6 of X with distribution N (µ/n, σ2/n) is

ψ(u) = E[eiuX ]

=

∫
R
eiux

1√
2πσ2

exp(−(x− µ)2

2σ2
)

= eiuµ−
u2σ2

2

∫
R
eiux

1√
2πσ2

exp(−(x− (µ+ iσ2u))2

2σ2
)

= eiuµ−
u2σ2

2 ,

(2.7)

it can be seen that, the characteristic function of X satisfying exp(iuµ−u2σ2) = exp(iuµ/n−

u2(σ/
√
n)2/2)n), which is a characteristic function of the summary of n i.i.d normal variables

with a mean of µ/n and standard deviation of σ/
√
n.

Example 2.3.2 (Poisson distribution). A Poisson random variable X with parameter λ is in-

finitely divisible.

Proof. As the characteristic function of a Poisson random variable X with parameter λ is of the

form

ψ(u) =

∞∑
k=0

e−λ(λeiu)k

k!
= eλ(eiu−1), (2.8)

it can be seen that eλ(eiu−1) = e(λ(eiu−1)/n)n .

The above two simple examples of infinitely divisible distributions are Normal and Poisson

distributions, which are often used for constructing Lévy processes.

Lemma 2.10. A Lévy Process Lt is infinitely divisible for each t ≥ 0.

6refer Definition 2.11
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Proof. Let Lt be a Lévy Process, then for each n ∈ N, Lt = Lt/n + (L 2t
n
−L t

n
) + ...+ (Lnt

n
−

L (n−1)t
n

).

As Lemma 2.10 represents, there is a deep connection between Lévy process and infinitely

divisible random variables. The following proposition will give a more strong conclusion.

Proposition 2.3.3. If Xt∈[0,∞) is a real valued Lévy process on a filtered probability space

(Ω,Ft∈[0,T ], P ), then Xt has a infinitely divisible distribution for ∀t ∈ [0, T ]. Inversely, for

every infinitely divisible distribution P on R, there exists a Lévy process (Xt∈[0,∞)) on R whose

distribution of increments Xt+h −Xt is governed by P .

This corresponds to Corollary 11.6 of [40]. This proposition presents that there is one-to-one

correspondence between an infinitely divisible and a Lévy process. We can get that every Lévy

process can be associated with the law of an infinitely divisible distribution. Inversely, given any

random variable X , whose law is infinitely divisible, we can construct a Lévy process. Table

3.2 represents the one-to-one correspondence between an infinitely divisible distribution and a

Lévy process [36].

Normal distribution Brownian motion (with drift)
Poisson distribution Poisson process
Compound Poisson distribution Compound Poisson process
Exponential distribution Gamma process
Cauchy distribution Cauchy process

TABLE 2.1: Relationship between Lévy process and infinitely divisible distribution.

2.3.2 Lévy-Khintchine Representation

In probability theory and statistics, the probability density function of any real-valued random

variable can be completely defined by the characteristic function, which is the inverse Fourier

transform of the probability density function. There are particularly simple results for the char-

acteristic functions of the probability distributions. Here, we discuss the characteristic exponents

of Lévy processes.

Definition 2.11 (Characteristic function). A characteristic function ψ of X is defined by

ψ(u) =

∫
R
eiuxP (X ∈ dx), (2.9)
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where the function log ψ is referred to the characteristic exponent of X .

A simple representation of a Lévy process is given by Lévy-Khintchine representation.

Theorem 2.3.4 (Lévy-Khintchine formula for Lévy processes). For every Lévy process L =

(Lt)0≤t≤T , we have that E[eiuLt ] = etΨ(u) = exp[t(ibu − u2c
2 +

∫
(eiux − 1 − iuxlD)v(dx))]

where Ψ(u) is the characteristic exponent of Lt, a random variable with an infinitely divisible

distribution.

Ψ(u) is called a characteristic exponent (or a log characteristic function) given by:

Ψ(u) = iub− u2c

2
+

∫
(eiux − 1− iuxlD)v(dx), (2.10)

where D = {x : |x| ≤ 1}, c is a unique nonnegative constant (i.e. c ∈ R+), b is a unique

constant on R, and v is a unique measure on R satisfying the following two conditions [36]:

1. v({0}) = 0; and

2.
∫ +∞
−∞ min{|x|2, 1}v(dx) <∞ (mathematicians write this as

∫ +∞
−∞ (1 ∧ |x|2)vd(x) <∞).

Here,
∫ +∞
−∞ (1 ∧ |x|2)vd(x) < ∞ means two things: v(|x| > ε) < ∞ for any ε > 0, and∫

(−1,1) x
2v(dx) <∞.

The proof of this theorem is complicated. Interested readers are referred to [40].

Note. These two conditions ensure that the integral in the Lévy-Khintchine representation con-

verges since the integrand is O(1) for |x| ≥ 1 and O(x2) for |x| < 1. When the jump size is

greater than 1 (i.e. |x| > 1), under the second condition, the jump size is considered to be a large

jump using the arbitrary truncation point of 1. Then, Condition 2 becomes
∫
|x|>1 v(dx) < ∞,

which means that the expected number of large jumps per unit of time is finite. When the jump

size is less than 1 (i.e. |x| < 1), the jump is considered to be a small jump. Then, Condition 2 be-

comes
∫
|x|<1 |x|

2v(dx) < ∞, which means that the measure must be square-integrable around

the origin [36]. Otherwise, the corresponding Lévy process should have infinite many jumps of

size greater than ε in finite time. However, this contradicts with the Càdlàg (right continuous

with left limits) property of the paths in definition 2.8. Therefore, the square integrability con-

dition controls the intensity of small jumps. It is crucial for the construction of a Lévy process

with jump intensity ν [41].
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This is the general Lévy-Khintchine representation of all Lévy processes. Sometimes, the Lévy

processes are restricted by additional condition to the measure v, which is
∫

(1∧|x|)νd(x) <∞

[39, 42].

2.3.3 Lévy-Itô Decomposition of Lévy processes

From Theorem 2.3.4, we can see that any Lévy process on Rd can be characterized by three

quantities: a non-negative definite symmetric matrix a, a vector b, and a σ-finite measure ν. The

Lévy-Itô decomposition gives an explicit representation of a Lévy process with characteristics

(a, b, ν). Firstly, we introduce Lévy triplet [36].

Definition 2.12 (Lévy triplet (generating triplet)). In the Lévy-Khintchine formula, a unique

nonnegative constant b is called a Gaussian variance and a unique real valued measure v sat-

isfying v({0}) = 0 and
∫
R(1 ∧ |x|2)vd(x) < ∞ is called a Lévy measure. A unique real

valued constant c does not have any intrinsic meaning since it depends on the behavior of a

Lévy measure v. It turns out that these triplets uniquely define a Lévy process as a result of

Lévy-Itô decomposition. This triplet is called a Lévy-Khintchine triplet and compactly written

as (b, c, v).

Theorem 2.3.5 (Lévy-Itô Decomposition [38]). Consider a triplet (b, c, v) where b ∈ R, c ∈

R≥0 and v is a measure satisfying v({0})=0 and
∫
R(1 ∧ |x|2)vd(x) < ∞. Then, there exists a

probability space (Ω,F , P ) on which four independent Lévy processes exist,L(1),L(2),L(3),L(4),

where L(1) is a constant drift, L(2) is a Brownian motion, L(3) is a compound Poisson process

and L(4) is a square integrable (pure jump) martingale 7 with an a.s. countable number of jumps

of magnitude less than 1 on each finite time interval. Taking L = L(1) + L(2) + L(3) + L(4),

we have that there exists a probability space on which a Lévy process L = (Lt)0≤t≤T with

characteristic exponent Ψ(u) = iub− 1
2u

2c+
∫ +∞
−∞ (eiux − 1− iuxI|x|<1)v(dx) for all u ∈ R,

is defined.
7Martingale: Consider a filtered probability space (Ω,F , P ). A Càdlàg stochastic process (Xt)t∈[0,T ] is said

to be a martingale with respect to filtration Ft and under the probability measure P if it satisfies the following
conditions [36]:

1. Xt is nonanticipating.

2. E[|Xt|] <∞ for ∀t ∈ [0, T ]. Finite mean condition.

3. E[Xu|Ft] = Xt for ∀u > t.
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The Lévy-Itô decomposition is a hard mathematical result to prove. Interested readers are re-

ferred to Chapter 4 in [40] or Chapter 2 in [38].

Lévy-Itô decomposition basically states that every sample path of a Lévy process can be repre-

sented as a sum of two independent processes: one is a continuous Lévy process and the other is

a compensated sum of independent jumps. Obviously, a continuous Lévy process is a Brownian

motion with drift (this is the only continuous Lévy process) [36].

By taking linear combinations of Lévy jump processes and Gaussain Lévy processes, we can

obtain all Lévy processes. This is the content of the Lévy-Itô decomposition theorem, which

can help us construct different Lévy processes.

2.3.4 Lévy Measure

The structure of jumps of a Lévy process can be determined by its Lévy measure. In this section,

we will represent some examples of Lévy processes and discuss their Lévy measures.

Definition 2.13 (Lévy measure of all Lévy processes). Let (Xt∈[0,∞)) be a real valued Lévy

process with Lévy triplet (b, c, v) defined on a filtered probability space (Ω,F , P ). The Lévy

measure v of a Lévy process (Xt∈[0,∞)) is defined as a unique positive measure on R which

measures (counts) the expected (average) number of jumps per unit of time:

v(Ω) = E[]{t ∈ [0, 1] : ∆Xt = Xt −Xt− 6= 0,∆Xt ∈ Ω}], (2.11)

where ∆Xt ∈ Ω indicates that the jump size belongs to a set Ω and Ω is a member of Borel set

8 [36].

In brief, the Lévy measure v is a measure on R that satisfies v({0}) = 0 and
∫

(−1,1) x
2v(dx) <

∞. Intuitively speaking, it describes the expected number of jumps of a certain height in a time

interval of length 1 [38].

From the definition, we can see that, the Lévy measure is more flexible than probability measure

who constrains the measure satisfying
∫
R vd(x) = 1. Therefore, if v is a finite measure, i.e.

λ := v(R) =
∫
R vd(x) <∞, we can normalize the the measure by F (dx) := vd(x)

λ , which is a

8Given a topological space, the Borel set an element of the σ-algebra generated by the open sets.
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probability measure. Here, λ is the expected number of jumps and F (dx) is the distribution of

the jump size. If v(R) =∞, then an infinite number of (small) jumps is expected [38].

2.3.5 Examples of Lévy Processes

To conclude our introduction of Lévy processes and infinite divisible distributions, the following

section will represent some concrete examples of Lévy processes.

Brownian Motion

Example 2.3.6 (Brownian motion). A standard Brownian motion Bt∈[0,∞) defined on a filtered

probability space (Ω,F , P ) is a Lévy process satisfying

1. its increments are independent and stationary;

2. for t ≥ 0, Bt are continuous functions of t;

3. the process starts from 0 almost surely, i.e. P (B0 = 0) = 1;

4. Bt ∼ N(0, t), its increments follow a Gaussian distribution with the mean 0 and the

variance t.

A Brownian motion with drift satisfies the conditions of the Lévy process. Actually, it is an only

Lévy process with continuous sample paths [36]. Fig. 2.2 shows a standard Brownian motion

with drift 0.

The simplest Lévy process is the linear drift, a deterministic process. Brownian motion is the

only (non-deterministic) Lévy process with continuous sample paths. A more general Brownian

motion with drift can be defined as

(Xt∈[0,∞)) ≡ (µt+ σBt∈[0,∞)), (2.12)

where Bt∈[0,∞) is a standard Brownian motion.
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FIGURE 2.2: An example of Lévy processes: standard Brownian motion

Lévy Measure of Brownian Motion

Proposition 2.3.7. Suppose (Xt∈[0,∞)) ≡ (µt + σBt∈[0,∞)) is a Brownian motion with drift,

where Bt∈[0,∞) is a standard Brownian motion, Xt ∼ N (µt, σ2t), then, the Lévy measure of

Xt∈[0,∞) is 0.

Proof. The characteristic function of Xt∈[0,∞) is

ψXt(u) =

∫ ∞
−∞

eiux
1√

(2πσ2t)
exp(−(x− ut)2

2σ2t
)dx

= exp(0 · t+ iµtu− σ2tu2

2
).

(2.13)

It can be seen that the Lévy triplet of Xt∈[0,∞) is (b = µ, c = σ2, v = 0), and the Lévy measure

is 0.

Poisson Process
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The most elementary example of a pure jump Lévy process in continuous time is the Poisson

process. It takes values in {0, 1, 2, ...} and jumps up one unit each time after an exponentially

distributed waiting time.

Definition 2.14 (Poisson process). Let λ > 0. The counting process N(t), {t ∈ [0,∞)}, is

called a Poisson process with rates (or intensity) λ, such that,

1. N(0) = 0;

2. N(t) has independent increments; and

3. the number of arrivals having any interval of length τ > 0 has Poisson(λτ ) distribution.

Here, counting process is a random process {N(t), t ∈ [0,∞)} if N(t) is the number of events

occurred from time 0 up to and including time t. For a counting process, we assume thatN(0) =

0, N(t) ∈ {0, 1, 2, ...}, for all t ∈ [0,∞). For 0 ≤ s ≤ t, N(t) − N(s) shows the number of

events that occur in the interval (s, t].

Note. A Poisson process, {Nt : n ≥ 0} with intensity λ, is a Lévy process with distribution at

time t > 0, which is Poisson distribution with parameter λt. An easy calculation reveals that

E(eiθNt) = e−λt(1−e
iθ), (2.14)

and hence, its characteristic exponent is given by ψ(θ) = λ(1− eiθ) for θ ∈ R.

Compound Poisson Process

A more general discontinuous Lévy process is the compound Poisson process.

Definition 2.15 (Compound poisson process). {Y (t), t ≥ 0} is a compound Poisson process

if Y (t) =
∑N(t)

i=1 Di where D1, D2, ... are independent and identically distributed random vari-

ables with distribution fD, and these random variables are also independent from {N(t), t ≥ 0},

a Poisson process.

Compound Poisson processes are pure jump Lévy processes, i.e., the paths are constant apart

from a finite number of jumps in finite time. The Poisson process is a special case of the

compound Poisson process where Di equals to 1.
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FIGURE 2.3: A sample of compound Poisson process.

Fig. 2.3 shows an example of compound Poisson process with λ = 1.

Lévy Measure of Compound Poisson Process

Lemma 2.3.8. Let N be a Poisson distributed random variable with parameter λ ≥ 0 and

J = (Jk)k≥1 be an i.i.d sequence of random variables with law (probability measure) f . Then,

the characteristic function of a compound Poisson distributed random variable is

E[eiu
∑
k=1NJk ] = exp(λ

∫
R

(eiux − 1)f(dx)). (2.15)

Proposition 2.3.9 (Lévy measure of a compound Poisson process). Suppose that N = {Nt :

t ≥ 0} is a Poisson process with intensity λ and consider a compound Poisson process {Xt :

t ≥ 0} defined by Xt =
∑Nt

i=1 ξi, t ≥ 0. Using the fact that N has stationary independent

increments together with the mutual independence of the random variables {ξi : i ≥ 1}, for

0 ≤ s < t <∞, by writing

Xt = Xs +

Nt∑
i=Ns+1

ξi
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based on Lemma 2.3.8, we have the Lévy-Khinchine formula for a compound Poisson process

taking the form

Ψ(u) = λ

∫
R

(1− eiux)f(dx). (2.16)

The Lévy triplet of Xt∈[0,∞) is (b = 0, c = 0, v = λf(x)). The Lévy measure is given by

v(x) = λf(x).

Note. The Lévy measure of a compound Poisson process is always finite with total mass equal

to the rate λ of the underlying process N [43].

Poisson process and compound Poisson process are basic processes of Lévy processes with

infinite jumps. The jump part of a Lévy process can be recovered from these counting measure

valued processes by integration, i.e. summation of the jump sizes. Many Lévy processes with

infinite jump intensity can be constructed by related Poisson processes.

A family of Lévy processes, the pure-jump nondecreasing Lévy processes fit into the category

of the completely random measure. The Beta process can be regarded as an example of such a

process. The Dirichlet process is a normalization of Gamma process who falls into this family as

well [36, 44]. In this thesis, we focus on some popular Lévy processes for machine learning and

computer vision applications, especially, the applications related to Gamma process, Dirichlet

process and Beta process.

Gamma Process

A Gamma process is a random process with independent Gamma distributed increments. It is a

pure-jump increasing Lévy process. An homogeneous Gamma process with shape parameter α

and scale parameter β is a stochastic process X(t), t ≥ 0 on R+ such that [45]:

1. X(0)=0,

2. X(t), t ≥ 0 is s stochastic process with independent increments, and

3. for 0 ≤ s < t, the distribution of the random variable X(t) − X(s) is the Gamma

distribution Γ(α(t− s), β).
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FIGURE 2.4: A sample of Gamma process with α = 4, β = 1.

Fig. 2.4 is a Gamma process with parameters α = 4 and β = 1.

The Gamma process is a pure-jump increasing Lévy process. The jumps size lying in the interval

[x, x+dx] occurs as a Poisson process with intensity ν(x)dx. The parameter β controls the rate

of jump arrivals and the scaling parameter α inversely controls the jump size [46].

The following definition describes Gamma process in a completely random measure view.

Definition 2.16 (Gamma process). G ∼ GaP(α,H) is a completely random measure defined

on the product space R+ × Ω, with concentration parameter α and a finite and continuous base

measure H over a complete separable metric space Ω. If G(Ai) ∼ Gamma(H(Ai), 1/α),

i ∈ N are independent Gamma random variables for disjoint partition {Ai} of Ω, then G(A) is

a Gamma process.

Lévy Measure of Gamma Process

To get the Lévy measure of a Gamma process, we introduce the following Lemmas [47].

Lemma 2.3.10 (Frullani’s Integral). if f ′(x) is continuous and the integral converges,

∫ ∞
0

f(ax)− f(bx)

x
dx = [f(0)− f(∞)]ln(

b

a
), (2.17)

where a, b > 0.
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Lemma 2.3.11. For all α, β > 0 and z ∈ C, we have

(1− iu

α
)−β = e−

∫∞
0 (1−eux)βx−1e−αxdx. (2.18)

Proof. Let f(x) = e−x, α = a > 0, and b = α− u. From Lemma 2.3.10, we have

(1− iu

α
)−β = e−

∫∞
0 (1−eux)βx−1e−αxdx.

Proposition 2.3.12 (Lévy measure of Gamma process). Let G ∼ GaP(α,G0) be a Gamma

process on the product space R+ × Ω, with scale parameter 1/α and base measure G0. The

Lévy measure of GaP(α,G0) is v(dxdω) = x−1e−αxdxG0(dω).

Proof. For α, β > 0, the probability density function of Gamma distribution is:

f(x, α, β) =
αβ

Γ(β)
xβ−1e−αx, x ∈ (0,+∞)

concentrated on (0,∞). The characteristic function of f(x, α, β) is

ψ(u) =

∫ +∞

0
eiuxf(x, α, β)dx =

∫ +∞

0

αβxβ−1

Γ(β)
e−x(α−iu)dx. (2.19)

Let y = x(α− iu), we have

ψ(u) =
αβ

Γ(β)(α− iu)β

∫ +∞

0
yβ−1e−ydy = (1− iu

α
)−β. (2.20)

From Formula 2.21 and Lemma 2.3.11, we can get that the Lévy-Khintchine expression of a

Gamma process has the characteristic exponent with

Ψ(u) = β

∫ ∞
0

(1− eiux)x−1e−αxdx. (2.21)

The Lévy measure of a Gamma process GaP(x, α,G0) defined on the product space R+ × Ω is

ν(dxdω) = x−1e−αxdxG0(dω).
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Gamma process is a fundamental process in Bayesian nonparametric methods. It has almost

surely a finite and positive measure, so it is possible to normalize the measure to obtain a

probability measure. This allows us to define a normalized completely random measure G̃ :=

G/G(Ω). Actually, the normalized Gamma process is a Dirichlet process (DP), which will be

presented next.

Dirichlet Process

The most popular nonparametric Bayesian method is Dirichlet process (DP). It is considered as

a distribution over distributions, i.e., each sample from Dirichlet process is a distribution, not

just a variable.

Definition 2.17 (Dirichlet process). LetH be a distribution over Θ and α be a positive real num-

ber. Then, for any finite measurable partitionA1, A2, ..., Ar of Θ, the vector (G(A1), ..., G(Ar))

is random. We say G is Dirichlet process distributed with base distribution H and concentration

parameter α, written G ∼ DP (α,H), if

(G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ...αH(Ar))

for every finite measurable partition A1, A2, ..., Ar of Θ.

The base distribution H is basically the mean of the DP. The concentration parameter can be

understood as an inverse variance [48].

Property 2.3.13. Let G ∼ DP (α,H), for any measurable set A, we have E[G(A)] = H(A),

Var[G(A)] = H(A)(1−H(A))/(α+ 1).

The proof of Property 2.3.13 can be referred to [49]. It means that the larger α is, the smaller

the variance is, and the DP will concentrate more of its mass around the mean. As α → ∞,

we will have G(A) → H(A) for any measurable A, that is G → H weakly or pointwise (it

is not equivalent to saying that G → H , as draws from a DP will be discrete distributions

with probability one, even if H is smooth) [48]. For a random distribution G to be distributed

according to a DP, its marginal distribution is Dirichlet distributed, similar to the definition of

Gaussian process [50].
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βk ∼ Beta(1, α) θ∗k ∼ H
π = βk

∏k−1
l=1 (1− βk) G =

∑∞
k=1 πkδθ∗k

TABLE 2.2: Stick-breaking construction of Dirichlet process.

FIGURE 2.5: A sample of Dirichlet process G ∼ DP (α,H) with base measure H is N (0, 1)
and α = 3.

DP can be constructed by different methods like Stick-breaking, Chinese restaurant process

(CRP) and Polya urn model. Table 2.2 presents a stick-breaking construction of the DP [48,

51]. The construction of π can be understood metaphorically as follows. Starting with a stick

of length 1, we break it at π1, assigning π1 to be the length of stick that we just broke off.

Now, recursively break the other portion to obtain π2, π3 and so forth shown in Table 2.2 as

π = βk
∏k−1
l=1 (1 − βk). Then, G ∼ Dir(α;H). Because of its simplicity, the stick-breaking

construction has led to a variety of extensions as well as novel inference techniques for the

Dirichlet process.

Fig. 2.5 shows a sample from DP by stick-breaking construction with base measureH isN (0, 1)

and α = 3. We have 25 breaking sticks in this example with the largest weight is 0.26.

Proposition 2.3.14 (Posterior distribution of DP). Let G ∼ DP (α,H), given observed values

of θ1, θ2, ..., θn, the posterior distribution of G is

(G(A1), ..., G(Ar))|θ1, ..., θn ∼ Dir(αH(A1) + n1, ..., αH(Ar) + nr). (2.22)
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Proof. From Bayesian formula, we have

p(G(A1), ..., G(Ar)|θ1, ..., θn) ∝ p(θ1, ..., θn|G(A1), ..., G(Ar))p(G(A1), ..., G(Ar)).

(2.23)

Let nk = ]{i : θi ∈ Ak} be the number of observed values in Ak, we have

p(θ1, ..., θn|G(A1), ..., G(Ar)) ∝ multinomial(n1, ..., nr). (2.24)

By the conjugacy between Dirichlet and multinomial distributions,

p(G(A1), ..., G(Ar)|θ1, ..., θn) ∝ multinomial(n1, ..., nr)p(G(A1), ..., G(Ar))

∝ Dir(αH(A1) + n1, ..., αH(Ar) + nr).

(2.25)

Since (G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ...αH(Ar)) is true for all finite measurable partition

A1, ..., Ar according to the definition of DP, we have the posterior over G

G|θ1, ..., θn ∼ DP(α+ n,
α

α+ n
H +

n

α+ n

∑n
i=1 δθi
n

) (2.26)

is also a DP.

Based on Eq. 2.26, it is not hard to compute the predictive distribution θn+1 after observing

θ1, ..., θn by marginalizing out G:

p(θn+1) =

∫
G
p(θn+1, G|θ1, ..., θn) = E[G(A)|θ1, ..., θn] =

αH(A) +
∑n

i=1 δθi(A)

α+ n
. (2.27)

Chinese Restaurant Process

We have shown the predictive distribution of DP in Eq. 2.27 by marginalizing out G. Actually,

DP can also be represented as Chinese restaurant process (CRP), who is the marginalized DP.

It is a distribution over infinite partitions of the integers. This name is derived from a metaphor

about a Chinese restaurant.

Let us consider a scenario in a restaurant with an infinite number of tables, and a sequence of

customers entering the restaurant and sitting down. The first customer enters and sits at the first
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FIGURE 2.6: Example of Chinese restaurant process.

table. The second customer enters and sits at the first table with probability 1
1+α , and the second

table with probability α
1+α , where α is a positive real number. When the nth customer enters

the restaurant, she sits at each of the occupied tables with proportional to α. At any point in this

process, the assignments of customers to tables define a random partition [52]. The scheme of

this process is shown as follows.

1. Consider a Chinese restaurant with an unbounded number of tables, θk, k = 1, ...,∞.

2. The first customer sits at table 1.

3. Suppose there are K tables occupied before the ith customer comes, she can sit at

table k ∝ nk
i+ α− 1

if so, setφi = θk,

where nk is the number of customers at table k;

a new tableK + 1 ∝ α

α+ i− 1
if so, increaseK toK + 1, and

draw a new sample θK+1 ∼ G0 and setφi = θK+1.

Then, the random variables φ1, φ2, ..., φi are distributed according to G ∼ DP(α,G0). As

shown in Fig. 2.6, customers 1 and 2 sit in the first table and customer 9 sits in the fifth table.

For a newly coming customer, she has a chance sitting in table 1, 2, ... or 5 proportional to the

number of customers sitting there and a chance α
α+i−1 to sit in a new table.

Remark. As, for i ≥ 1, the probability that the ith customer takes on a new table is α/(α+i+1),

the average number of tables m is:

E(m|n) =

n∑
k=1

α

α+ k − 1
∈ O(α log n). (2.28)

This shows that the number of clusters grows logarithmically with the number of observations.

Larger α implies a prior of a larger number of clusters.
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Distance Dependent Chinese Restaurant Process

Distance dependent Chinese restaurant process (ddCRP) is a generalization of the Chinese

restaurant process that allows for a non-exchangeable distribution on partitions. Rather than

representing a partition by customers assigned to tables, the ddCRP models customers linking

to other customers. It is based on a random seating assignments of the customers, according

to the distances between the data elements. It provides a new tool for flexibly clustering non-

exchangeable data [9].

ddCRP alters CRP by modeling customer links to other customers instead of tables. Given

a decay function f , sequential distance matrix D and a scaling parameter α, a link can be

independently drawn from customer assignments conditioned on distance measurements by the

distribution [11]:

p(ci = j) =


f(dij) if i 6= j,

α otherwise.
(2.29)

Here, ci denotes the table assignment of the ith customer, dij is a distance between data points i

and j, and f(d) is called the decay function. The decay function mediates how the distance be-

tween two data points affects their probability of connecting to each other, i.e., their probability

of belonging to the same cluster.

The difference between the ddCRP and the standard CRP is that in the ddCRP customers sit

down with other customers instead of directly at tables. Connected groups of customers sit

together at a table only implicitly. ddCRP generalises CRP by introducing a changeable weight

on customers x{i=1,2,...}, and the weight is decided by two things: a distance measure dxi,xj

between xi and xj ; and a decay function f(d) which satisfies f(∞) = 0. Moreover, instead of

assigning table k to xi directly, ddCRP assigns xj to xi. Such assignments create directed links

between customers. The customers that are reachable from each other are assigned to the same

table. This yields a non-exchangeable distribution over partitions, since table assignments may

change when a new customer assignment is observed. It can be seen that the traditional CRP is

an instance of a ddCRP [11].
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FIGURE 2.7: Example of distance dependent Chinese restaurant process.

Fig. 2.7 illustrates a ddCRP example. Customers sit behind other customers. The distances

between the customers determine the seatings, not the order. The circles linked by the customers

form tables. Each table means a cluster/group. Here, we can see that, the new customer 10 joins

in the second table according to the distance between other customers.

Beta Process

Dirichlet process mixture models are inefficient representations for data if we believe that objects

can belong to multiple classes simultaneously. The Beta process is a Bayesian nonparametric

prior for sparse collections of binary feature which can be applied for data belong to multiple

classes.

Definition 2.18 (Beta process). Let Ω be a measurable space and B be its σ-algebra. Let H0

be a continuous probability measure on the space (Ω,B) and α be a positive scalar. Then, for

all disjoint, infinitesimal partitions, {B1, B2, ..., BK}, of Ω, the Beta process is generated as

follows,

H(Bk) ∼ Beta(αH0(Bk), α(1−H0(Bk))), (2.30)

with K →∞ and H0(Bk)→ 0, for k = 1, ...,K. This process is denoted as H ∼ BP (αH0)

A construction description of the Beta process can be presented as follows [5, 14].
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Let H0 be a continuous measure on the space (Ω,B) and let α be a positive scalar. The process

H is defined as follows,

H =
K∑
k=1

πkδθk

πk ∼ Beta(
αγ

K
,α(1− γ

K
))

θk ∼
1

γ
H0.

(2.31)

Then as K →∞, H →∞, H is a Beta process.

Similar to the stick breaking construction for Dirichlet process, Beta process can be constructed

as follows.

1. Begin with a stick of unit length.

2. For k = 1, 2, ...

(a) sample a Beta(α, 1) random variable µk;

(b) break off a fraction µk of the stick, which is the kth atom size;

(c) throw away what is left of the stick; and

(d) recur on the part of the stick that was broken off.

Then, πk is given by πk =
∏k
j=1 µj .

Note. Here, πk does not sum to 1 unlike the stick breaking construction in Dirichlet process.

Another construction of Beta process H ∼ BP (αH0) by the underlying poisson process can be

presented as follows [53].

H =
∞∑
i=1

Ci∑
j=1

V
(i)
ij

i−1∏
l=1

(1− V (l)
ij )δθij (2.32)

Ci ∼ Poisson(γ) (2.33)

V
(l)
ij ∼ Beta(1, α) (2.34)

θij ∼
1

γ
H0, (2.35)

where, H0 is a continuous measure on the space (Ω,B), H0(Ω) = γ and α is a positive scalar.

Then, H ∼ BP(αH0).

More construction methods about Beta processes are referred to [44, 54–56].
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Lévy Measure of Beta Process

Follow the Lévy-Khintchine theorem where a Lévy process is characterized by its Lévy measure,

we can get the Lévy measure of the Beta process BP (cH0) is [57]:

ν(dw, dp) = cp−1(1− p)c−1dpH0(dw). (2.36)

Similar to the Dirichlet process, sample H directly from the infinite Beta process is difficult.

However, a marginalized approach can be derived in the same manner as the corresponding

Chinese restaurant process, used for sampling from the Dirichlet process. This approach is

called Indian buffet process (IBP). Before presenting IBP, we firstly introduce Bernoulli process.

Bernoulli Process

A Bernoulli process is a finite or infinite sequence of independent random variables X1, X2, ...,

such that [58]:

1. For each i, the value of Xi is either 0 or 1;

2. For all values of i, the probability that Xj = 1 is the same value p.

In other words, a Bernoulli process is a sequence of independent identically distributed Bernoul-

li trials. In probability and statistics, a Bernoulli process is a finite or infinite sequence of binary

random variables, so it is a discrete-time stochastic process that takes values 0 or 1. The com-

ponent Bernoulli variables Xi are identical and independent. Thibaux and Jordan described the

Bernoulli process in a completely random measure view as follows [57].

Definition 2.19 (Bernoulli process). Let B be a measure on Ω. We define a Bernoulli process

with measure B, written X ∼ BeP(B), as the Lévy process with Lévy measure

µ(dp, dω) = δ1(dp)B(dω). (2.37)

If B is continuous, X is simply a Poisson process with intensity B := X
∑N

i=1 δωi where N ∼

Poisson(B(Ω)) and ωi are independently drawn from the distribution B/B(Ω). If B is discrete
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with the form B =
∑

i piδωi , then X =
∑

i biδωi , where the bi are independent Bernoulli

variables with the probability that bi = 1 equals to pi. If B is mixed discrete-continuous, X is

the sum of the two independent contributions.

In summary, a Bernoulli process is similar to a Poisson process, except that it can give weight at

most 1 to singletons, even if the base measure B is discontinuous, for instance, B itself is drawn

from a Beta process.

An important property between Bernoulli process and Beta process is the conjugacy between

them.

Let B ∼ BP (c,B0), and let Xi|B ∼ BeP(B) for i = 1, 2, ..., n be n independent draws from

B. Let X1,2,...,n denote the set of observations {X1, X2, ..., Xn}. The posterior distribution of

B after observing {X1, X2, ..., Xn} is still a Beta process with modified parameters:

B|X1,...,n ∼ BP(c+ n,
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi). (2.38)

Therefore, the Beta process is conjugate to the Bernoulli process [57].

From Eq.2.31, we can see that Beta process has infinite dimensions as K → ∞. A finite

approximation to the Beta process H can be made by simply setting K to a large, but finite

number. This derives a Beta-Bernoulli approximation for the Beta process as [5]:

zik ∼ Bernoulli(πk)

πk ∼ Beta(α/K, β(K − 1)/K)

(2.39)

here, matrix Z is drawn from a Bernoulli process parameterized by a Beta process.

Indian Buffet Process

Like the Chinese restaurant process corresponding to Dirichlet process, IBP can be seen as a

marginalized Beta process. Firstly, we extend the Beta process defined in Eq. 2.31 to take

two scalar parameters, α, β and partition the space Ω into K regions of equal measure, that is
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H(Bk) = 1/K for k = 1, 2, ...,K. We can get

H(B) =

K∑
k=1

πkδBk(B)

πk ∼ Beta(α/K, β(K − 1)/K),

(2.40)

whereB ∈ {B1, B2, ..., Bk}. Marginalizing the vector π (by the Beta-Bernoulli process approx-

imation and the conjugacy between Beta and Bernoulli process), letting K →∞ and β = 1, we

can get the Indian buffet process described as follows.

Let there be N customers and infinitely number of different dishes.

1. The first customer chooses K(1) different dishes, where K(1) is distributed according to a

Poisson distribution with parameter α.

2. The second customer arrives and chooses to enjoy each of dishes already chosen for the

table with probability 1/2. In addition, the second customer chooseK(2) ∼ Poisson(α/2)

new dishes.

3. The ith customer arrives and chooses to enjoy each of the dishes already chosen for the

table with probability mki/i, where mki is the number of customers who have chosen

the kth dish before the ith customer. In addition, the ith customer chooses K(i) ∼

Poisson(α/i) new dishes.

After the N steps, one has a N × K binary matrix Z with an IBP prior that describes the

customers choices. This Z is a sample from an Indian buffet process [5, 59].

Fig. 2.8 shows an example of IBP. We can see that the IBP is a nonparametric Bayesian prior

over distributed partitions (binary matrix) which assumes that objects belong to a small number

of latent classes and the expected number of classes grows with the amount of data. Originally,

it defines a prior over binary matrices with an infinite number of columns.

The connection between the IBP and the BP can also be studied through their Lévy measures.

The IBP with the prior πi ∼ Beta(c γN , c) can be regarded as a Lévy process with the Lévy

measure given as,

νIBP =
N

γ
Beta(c

γ

N
, c)dπµ(dω). (2.41)
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FIGURE 2.8: Example of Indian buffet process [59, 60].

Lévy process Gaussian
variance

Lévy measure drift variation sample path

Brownian motion
with drift

b = σ2 ν 6= 0 c = µ infinite continuous

Compound Pois-
son process

b = 0 ν = λf(x) c = 0 finite rcll step func-
tions

Poisson process b = 0 ν = λδ(x− 1) c = 0 finite rcll step func-
tions of step
size 1

Gamma process b = 0 ν = βx−1e−αx c = 0 finite rcll
Beta process b = 0 ν = cp−1(1− p)c−1 c = 0 finite rcll

TABLE 2.3: Conclusion of different Lévy processes.

It can be proved that

νIBP
N→∞

= ν, (2.42)

where ν is the Lévy measure of the Beta process, which indicates that the Beta process is the

limit of the IBP with N →∞. The detailed proof of this conclusion is presented in the supple-

mentary material of [61].

The inference of Beta process will be presented in the later applications. Here, we summarize

the different Lévy processes in Table 2.3 9.
9Here, rcll means right continuous with left limits.
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2.4 Markov Chain Monte Carlo (MCMC) methods

Applying probabilistic models to data usually involves integrating a complex, multi-dimensional

probability distribution, such as calculating the expectation of a model distribution. Many times,

these integrals are not calculable due to no closed-form expression for the integral available us-

ing calculus or the high dimensionality of the distribution. Markov Chain Monte Carlo (MCMC)

is a method using stochastic sampling routines to approximate complex integrals. This method

is composed of two components, the Markov chain and Monte Carlo integration as MCMC’s

name indicated.

Monte Carlo integration is a powerful technique that exploits stochastic sampling of the distri-

bution in question, in order to approximate the difficult integration. Monte Carlo integration

involves formulating the desired integral as an expectation under the distribution π

Eπ[f(x)] =

∫
X
f(x)π(x)dx ≈ 1

n

n∑
1

f(xi). (2.43)

Thus, we can consider an approximation of the integration in Eq. 2.43, because this approxima-

tion has an arbitrary precision for n sufficiently large.

The average of the samples according to the set of independent samples xi ∼ π, i = 1, 2, ..., n,

converges almost surely to the true expectation under distribution π.

Using Monte Carlo method for the integration, it is necessary to have i.i.d samples from the

target probability distribution, which may be difficult to access directly. This will resort to the

second component of MCMC, the Markov chain.

A Markov chain is a random process that transits from one state to another on a state space,

where the next state that the chain takes is conditioned on the previous state. It possesses the

following three elements [62]:

1. a state space x, which is a set of values that the chain is allowed to take,

2. a transition operator p(x(t+1)|x(t)) that defines the probability of moving from state x(t)

to x(t+1), and
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3. an initial condition distribution π(0) which defines the probability of being in any one of

the possible states at the initial iteration t = 0.

A Markov chain starts at some initial state, which is sampled from π(0), then transits from one

state to another according to the transition operator p(x(t+1)|x(t)). It must possess a property

that is usually characterized as memorylessness: the probability distribution of the next state

depends only on the current state and not on the sequence of events that preceded it. This

specific kind of property is called the Markov property [63]. Markov chains will take samples

from a target probability distribution if they are constructed properly and run for a long time.

Therefore, we can apply Monte Carlo integration to perform the approximation of the target

distribution by the obtained samples.

MCMC designs a Markov Chain to make it stably converge to the target probability distribution.

In order to converge to the target probability distribution, the Markov chain should satisfy some

properties.

Detailed Balance

If the transition operator for a Markov chain does not change across transitions, the Markov

chain is called time homogenous. A nice property of time homogenous Markov chains is that as

the chain runs for a long time and t→∞, the chain will reach an equilibrium that is called the

chain’s stationary distribution:

p(x(t+1)|x(t)) = p(x(t)|x(t−1)). (2.44)

The stationary distribution of a Markov chain is important for sampling from probability distri-

butions, a technique that is at the heart of Markov Chain Monte Carlo methods. A necessary

condition for drawing from a Markov chain’s stationary distribution is the condition known as

reversibility or detailed balance.

In probability theory, a Markov process is said to show detailed balance if the transition rates

between each pair of states x and y in the state space obey

π(x)P (x, y) = π(y)P (y, x), (2.45)
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where P (x, y) is the transition matrix and π(x) and π(y) are the equilibrium probabilities of

being in states x and y, respectively.

Proposition 2.4.1. Let K(y|x) = p(xn+1 = y|xn = x) be the transition distribution or transi-

tion kernel for a given Markov chain. If K(y|x) satisfies detailed balance

π(x)P (x, y) = π(y)P (y, x). (2.46)

Then, the chain defined by this transition kernel has stationary distribution π. A Markov chain

satisfying detailed balance is said to be reversible with respect to π.

The proof of this proposition is referred to [6]. From Proposition 2.4.1, we can see that, in

order to use Markov chains to sample from a specific target distribution, we have to design the

transition operator such that the resulting chain reaches a stationary distribution that matches the

target distribution. This is where MCMC methods like the Metropolis sampler, the Metropolis-

Hastings sampler, and the Gibbs sampler come to rescue.

2.4.1 MH Sampler

We can use Markov chain to sample from the target probability distribution p(x) from which

drawing samples directly is challenging. To do so, as mentioned before, it is necessary to design

a transition operator for the Markov chain which makes the chain’s stationary distribution con-

verge to the target distribution. The Metropolis-Hastings uses simple heuristics to implement

such a transition operator.

The Metropolis-Hastings algorithm provides a generic method for construction an ergodic Markov

chain, relying only on a valid proposal distribution q(·) and evaluation of the target distribution

π(·) up to a normalization constant [6, 7].

Specifically, to draw M samples using the Metropolis-Hasting sampler can be outlined as [64]:

1. initialize t=0;

2. generate an initial state x(0) ∼ π(0);
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3. repeat until t = M

a) set t = t+ 1;

b) generate a proposal state x∗ from q(x|x(t−1));

c) calculate the proposal correction factor c = q(x(t−1)|x∗)
q(x∗|x(t−1))

;

d) calculate the acceptance probability α = min(1, p(x∗)
p(x(t−1))×c);

e) draw a random number u from Unif(0,1); and

f) if u ≤ α accept the proposal state x∗ and set x(t) = x∗,

else set x(t) = x(t−1).

Specially, when the proposal distribution is symmetric, the correction factor is equal to one. This

gives a special sampler of Metropolis-Hastings algorithm: Metropolis sampler. In order to be

able to use an asymmetric proposal distributions, the Metropolis-Hastings algorithm implements

an additional correction factor α, defined from the proposal distribution as c = q(x(t−1)|x∗)
q(x∗|x(t−1))

. The

correction factor adjusts the transition operator to ensure that the probability of moving from

x(t−1) → x(t) is equal to the probability of moving from x(t−1) → x(t), discarding the proposal

distribution.

Proposition 2.4.2 (Detailed balance of Metropolis-Hastings sampler). The Metropolis-Hastings

sampler satisfies the detailed balance equation.

Proof. Let π(·) be the target distribution, q(·) be the proposed distribution, and P (x, y) be the

transition matrix. We have

π(x)P (x, y) = π(x)q(y|x)α(x, y)

= π(x)q(y|x)min[1,
q(x|y)

q(y|x)

π(y)

π(x)
]

= min(π(x)q(y|x), π(y)q(x|y))

= π(y)P (y, x).

(2.47)

As α is not always equal to 1, MH samples may be rejected, which will lead to excess com-

putation that is never used. In next section, we will introduce a more efficient algorithm Gibbs

sampler.
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2.4.2 Gibbs Sampler

The Gibbs sampler, another popular MCMC sampling technique provides a more efficien-

t method by making the rejection rate be zero. Similar to the MH algorithm, the Gibbs sampler

also uses component-wise updates. Different from the MH sampler, Gibbs sampler draws from

a proposal distribution for each dimension. It simply draws a value for that dimension accord-

ing to the variable’s corresponding conditional distribution. Then, all the values drawn can be

accepted.

Given a target distribution p(x), where x = (x1, x2, ..., xD), the Gibbs sampler is applicable for

certain classes of problems, based on two main criteria [65]:

1. be able to get the analytic expression for the conditional distribution of each variable in

the joint distribution given all other variables in the joint;

2. be able to sample from each conditional distribution.

For the first criterion, if the target distribution p(x) isD-dimensional, we must haveD individual

expressions for p(xi|x1, x2, ..., xi−1, ..., xi+1, ..., xD). Having the conditional distribution for

each variable means that we do not need a proposal distribution like the MH sampler. Therefore,

we can simply sample values from each conditional distribution while keeping all other variables

fixed. Different from the MH sampler, we will accept all values that are sampled.

The Gibbs sampling procedure is outlined as follows.

1. initialize t = 0;

2. generate an initial state x(0) = [x
(0)
1 , x

(0)
2 , ..., x

(0)
d ];

3. repeat until t=M

a) set t = t+ 1;

b) for each dimension i = 1, 2, ..., D,

draw xi from p(xi|x1, x2, ..., xi−1, ..., xi+1, ..., xD).

This Markov chain will converge to the target probability distribution π(x1, ...xd).
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Proposition 2.4.3. The acceptance ratio of a Gibbs sampler is 1.

Proof. Let π(·) be the target distribution, q(·) be the proposed distribution which is equal to the

corresponding conditional distribution. Then, the accept ratio satisfies

α =
π(x′)

π(x)

q(x|x′)
q(x′|x)

=
π(x′)π(xi|x′−i)
π(x)π(x′i|x−i)

=
π(x′)π(xi, x

′
−i)π(x−i)

π(x)π(x′i, x−i)π(x′−i)

= 1.

(2.48)

where, x−i means (x1, x2, ..., xi−1, ..., xi+1, ..., xD).

The Gibbs sampler is a popular MCMC method for sampling from complex, multivariate prob-

ability distributions. However, It cannot be used for general sampling problems as the first

criterion presented before. For many target distributions, it may difficult or impossible to satis-

fy the first criterion that need closed-form expression for all conditional distributions. In other

scenarios, analytic expressions may exist for all conditionals but it may be difficult to sample

from any or all of the conditional distributions. Therefore, Gibbs samplers are only suitable for

Bayesian methods where models are devised in such a way that conditional expressions for all

model variables are easily obtained. Another issue about Gibbs sampling, like many MCMC

techniques, suffers from “slow mixing”.

More advanced techniques about MCMC are referred to [66–68].



Chapter 3

Face Hallucination Based on

Spatial-Distance-Dependent

Nonparametric Bayesian Learning

3.1 Introduction

Face image-based techniques have been well developed and investigated in recent years. These

techniques have been widely used in many applications such as face recognition, video surveil-

lance, facial expression recognition, image enhancement, image compression, and so on. How-

ever, due to the limitations of capturing systems and the changes of environment, human face

images captured are very often of low resolution. The poor quality of face images has adverse

effect on the performance of computer vision and pattern recognition applications. To solve the

problem, it is necessary to render a high-resolution (HR) face image from the corresponding

low-resolution (LR) one. This technique is named face hallucination or face super-resolution

(SR) [69, 70].

The major difference between face hallucination and the general super-resolution problem is

that the face images have regular structures and textures. Compared with the general super-

resolution problem, face hallucination is challenging because people are sensitive to the changes

in appearances and the quality of human face images. Small deviations might significantly affect

44
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human perception, whereas for super-resolution of generic images, such as buildings, plants,

etc., the errors can be more tolerant [71]. Another challenge of hallucinating face images is

that faces may be in complex conditions, such as under variations of illumination, pose, and

expression. Furthermore, it is difficult to align faces in LR images [69, 71].

Different methods have been researched for face hallucination. One simple way is through the

use of interpolation with a base function or through interpolating a kernel function to produce a

higher density of pixels in a processed image [72]. Because of the simplicity of interpolation,

it is applied in those applications with low requirements. However, this parametric method is

often unable to interpolate details well, such as texture and corner-like local regions [71, 73].

Compared with the interpolation methods, using edge-statistical information can well recon-

struct edge and corner areas. Fattal and Raanan [74] imposed edge statistics for image up-

sampling. Sun et al. [75] proposed an image hallucination method by using edge and primal

sketch priors. Gradient profile prior was used to enhance the quality of the hallucinated HR im-

age [76, 77]. The major drawback of the learning approaches using edge priors is that they focus

on preserving edges so the performance in relatively smooth regions is mediocre as discussed in

[2,17].

Example-based super-resolution schemes have proven to be able to reconstruct significantly

finer details from a LR image compared with the interpolation-based schemes [73]. The general

idea of example-based approaches is to learn the statistical correlation between pairs of LR and

HR images from a face dataset. The learned correlation is then applied to an input LR image to

reconstruct the corresponding HR image [71]. Different methods have been studied to learn the

mapping relationship between LR and HR images [69, 78], such as

1. Sparse representation-based approaches [79, 80];

2. Subspace learning approaches, including locally linear embedding and linear subspace

learning-based approaches [72]; and

3. Bayesian inference method: learning priors from numerous feature vectors to generate a

function, mapping features from LR images to HR images [73, 81].

Usually, example-based methods require computationally expensive processes in extracting com-

plex features or searching exemplars [69]. In [82], a divide-and-conquer algorithm was proposed
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by using k-means to learn K clusters. Each cluster can be viewed as a set of anchor points to

represent the feature space of natural image patches for super resolution. For different data sets

or applications, K should be set adaptively. The training can be done off-line, and the recon-

struction is performed by the efficient linear regression method.

Performance of learning-based SR methods heavily depends on the similarity between the train-

ing and the testing images to query input LR face images. The quality of the edges in a recon-

structed HR image can be significantly degraded when the edges in training images cannot be

matched or aligned well with the corresponding input image. Recent research has presented that

the structural constraint can be applied to improve the results of face hallucination. For exam-

ple, Markov random fields can be used to reduce the ambiguity between LR and HR images by

learning the statistical relationship between a global face image and its local features [71]. The

structure or position information about face images can be used to improve the face hallucina-

tion performance. Yang et al. [83] used a landmark localization method to estimate and align

facial features for hallucination. Jung et al. [84] proposed a position-patch-based face hallucina-

tion method using convex optimization. However, Yang’s method is strongly dependent on the

results of landmark localization, while Jung’s method requires the faces to be aligned accurately.

Inspired by [82] and recent development of nonparametric Bayesian methods, we propose a

novel framework in this chapter. A nonparametric Bayesian method, namely distance dependent

Chinese restaurant process (ddCRP), is employed to model the spatial dependencies between

the patches in LR and HR face images and to learn the corresponding mapping matrices for the

patches. Without requesting an accurate alignment, the spatial constraint provided by ddCRP

can produce more details in the final reconstructed HR image as face images are characterized

by similar spatial structures.

The remainder of this chapter is organized as follows. Section 2 reviews the Bayesian image

super-resolution model and the background of ddCRP. In Section 3, we present the details of our

proposed model and the inference process. In Section 4, implementation details are described,

and experimental results are presented to show the performance of our method. Finally, in

Section 5, we draw a conclusion and discuss the relationship between the constraint of distance

dependence in ddCRP and MRF.
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3.2 Bayesian Image Super-resolution Model

A common image degradation model can be presented in a Bayesian super-resolution framework

[81, 85, 86]. According to this Bayesian model, an LR image is assumed to be generated from

its HR counterpart through blurring, sub-sampling and including additive noise, independently

to others. Example-based methods usually use image patches for super resolution. For an LR

image X divided into N patches, the kth patch Xk is assumed to be generated from the HR

image patch Yk as follows.

Xk = WkYk + εk, k = 1, 2, ..., N, (3.1)

where εk is a matrix of i.i.d Gaussian noise and Wk is a degradation matrix related to down-

sampling and blurring in a Gaussian form.

According to this model, the reconstruction process is

Yk = AkXk + Ek, k = 1, 2, ..., N, (3.2)

where Ek is the reconstruction error with a residual noise covariance matrix Σk, and Ak is the

reconstruction mapping matrix.

The optimal HR image is reconstructed by maximizing p(Yk|Xk), i.e,

YkMAP
= argmax

Yk

(p(Yk|Xk, Ak,Σk)). (3.3)

In this work, we place a conjugate matrix normal-inverse-Wishart prior on the parametersAk,Σk.

Σk ∼ IW(n0, S0)

Ak|Σk ∼MN (M,Σk, I).

(3.4)

where I is an identity matrix.

A matrix A ∈ Rm×n has a matrix-normal distributionMN (A;M,V,U) if

p(A) =
|U |

d
2

|2πV |
m
2

e−
1
2
tr((A−M)TV −1(A−M)U), (3.5)
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where M is the mean matrix, and V and U−1 are the covariance matrices along the rows and

columns, respectively.

The reconstruction matrix Ak and covariance Σk are unknown, which can be learned by using

the Bayesian model. We learn Ak and covariance Σk from a cluster of patches similar to Xk

and Yk.

In the testing stage, when Ak and Σk are estimated, given the LR image patch Xk, the corre-

sponding HR image patch Yk can be easily reconstructed as follows:

Ŷk = AkXk. (3.6)

3.3 Proposed method

Dirichlet process (DP), as a nonparametric Bayesian method, provides a valuable suite of flex-

ible clustering algorithms for high-dimensional data analysis. It has been extensively used in

computer vision and pattern recognition areas such as image segmentation, text modelling, com-

putational biology, and so on [9–11, 87]. DP can be described via the Chinese restaurant process

(CRP). The probability of a customer sitting at a table is computed from the number of other

customers already sitting at that table. Despite the success of the traditional CRP, it ignores the

spatial distance between data elements. Distance dependent Chinese restaurant process, which

is based on the random seating assignment of the customers, considers the distances between

the data elements. It provides a new tool for flexibly clustering non-exchangeable data.

ddCRP alters CRP by modeling customer links to other customers instead of tables. Given

a decay function f , sequential distance matrix D and a scaling parameter α, a link can be

independently drawn from customer assignments conditioned on distance measurements by the

distribution [11]

p(ci = j) =


f(dij) if i 6= j,

α otherwise.
(3.7)
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In our application, dij is an externally specified distance between image patches i and j. α

determines the probability that a patch links to itself rather than to another patch. The decay

function f decides how the distance between two patches affects their probability of connecting

to each other.

More details of ddCRP are referred to [11].

FIGURE 3.1: The framework of our proposed method.

Figure 3.1 shows the framework of the proposed face hallucination method. Firstly, we collect

a large set of LR and HR paired patches from a training set of human face images. The intensity

values of a set of LR patches are subtracted, by their respective means, to form the feature

vectors. We learn the cluster centers of the feature vectors using ddCRP, and the functions

mapping the LR patches to the corresponding HR patches in each cluster. After the coefficients

of mapping functions on each cluster are learned, in the test stage the HR patches of an input LR

face image can be simply generated by using Eq. 3.6. Finally, the HR face image is reconstructed

from the HR patches, and the zooming LR mean is added.

3.3.1 Training Stage

At the training stage, given a set of HR face images, the corresponding LR images are generated

by using a Gaussian kernel followed by down-sampling [82, 88]. We randomly extract a large

set of HR and LR patches from the HR and LR image pairs to form a training set.

We expect that the patches in the same cluster have similar distribution and are constrained by

their positions in the face images. This does not require the face images to be strictly aligned.
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In ddCRP, two customers (or patches in face hallucination) are placed in the same table (or

cluster) if one can reach the other by traversing the customer (or patch) assignments. Let us

consider a collection of N LR and HR image patch pairs in the training dataset, denoted as

X = [X1, ..., XN ] and Y = [Y1, ..., YN ], respectively. The full generative process for the

observed patches X1:N is described as follows.

1. For customer/patch i, i ∈ {1, ..., N}, sample the assignment ci ∼ ddCRP . This deter-

mines the table/cluster assignment z.

2. For table/cluster k, k ∈ {1, ...}, sample parameter φ ∼ G0.

3. Given φ and the assignment ci, independently sample the patches.

We place a conjugate normal-inverse-Wishart prior on the parameters A, and Σ of the patch

distribution G0. Assuming that the assignment of patch i is z(ci) = k, given Ak and Σk, Yi can

be sampled from Yi ∼MN (AkXi,Σk, I). The full model of the observed patches is:

p(Y, c, A,Σ|X,D,α, f) = p(c|D, f, α, η)

N∏
i=1

N (Yi|Xi, Az(ci),Σz(ci))[

z(ci)∏
k=1

p(Ak,Σk, η)],

(3.8)

where η represents a hyperparameter. This model also determines the number of clusters for the

training dataset.

Posterior inference is the central computational focus for analyzing the data X and Y and for

learning the parameters in our nonparametric Bayesian face hallucination model. Here, we use

Gibbs sampler to infer the proposed model.

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of

samples which are approximated from the target probability distribution when direct sampling is

difficult. A sequence of samples is drawn from the conditional posterior densities of the model

parameters, and it will converge to a sample from the joint posterior.
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Precisely, the assignment of each patch can be described as follows.

p(ci|c−i , X, Y,A,D, f, α, η) ∝
p(ci|X,Y,A,D, f, α)∆(X,Y,A, z(c), η)

if ci links k1 and k2

p(ci|D, f, α) otherwise.

(3.9)

In Eq. 3.9, c−i is the assignment set excluding ci (remove the patch link ci from the current

configuration);

∆(X,Y,A, z, φ) =
P1

P2P3
,

P1 = p(Yz(c1:N )=k|Xz(c1:N )=k, Ak, η),

P2 = p(Yz(c1:N )=k1 |Xz(c1:N )=k1 , Ak1, η),

P3 = p(Yz(c1:N )=k2 |Xz(c1:N )=k2 , Ak2, η).

where k is a cluster index, and k1 and k2 are the indices of the clusters that together form the

cluster with index k, when ci makes the clusters corresponding k1 and k2 join together.

To compute p(Y |X,A, η), firstly, based on the conjugate prior of A and Σ, we have [87, 89]

p(Y |X,Σ) =

∫
p(Y,A|X,Σ)dA

=
|U |d/2

|2πΣ|N/2|Sxx|d/2
exp(−1

2
tr(Σ−1Sy|x))

Sxx = XXT + U

Syx = Y XT +MU

Sy|x = Y Y T +MUMT − Syx(Sxx)−1STyx.

(3.10)

Then, the part likelihood is:

p(Y |X) =

∫
p(Y |X,Σ)p(Σ|n0, S0)dΣ

=
|K|

3
2 |S0|

n0
2 Γ3(N+n0

2 )

π
3N
2 |Sxx|

3
2 |S0 + Sy|x|

N+n0
2 Γ3(n0

2 )
.

(3.11)
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Eq. 3.9 guarantees that patches with similar texture, constrained by their positions, are assigned

to the same cluster.

Sample A:

Given the observed data Xk and Yk, the posterior of the reconstruction matrix Ak and the noise

covariance Σk is given as follows.

p(Ak,Σk|Xk, Yk) =

p(Ak|Xk, Yk,Σk)IW(Σk|Nk + n0, Sy|x + S0),

(3.12)

where Nk is the number of patches in cluster k.

The prior of the noise covariance is conjugate to Matrix normal distribution, so we can integrate

out Σk [87]:

p(Ak|Xk, Yk, η) =∫
p(Ak|Xk, Yk,Σk)IW(Σk|Nk + n0, Sy|x + S0)dΣk

=MT (Ak|Nk + n0, SyxS
−1
xx , Sxx, Sy|x + S0),

(3.13)

whereMT (·) is a matrix-t distribution.

Sample Σ:

By Eq. 3.13, it is easy to see that the posterior distribution of Σk is an inverse-Wishart marginal

posterior distribution [89], as follows.

p(Σk|Yk, Xk) ∝p(Yk, Xk|Σk|)p(Σk)

∝IW (Nk + n0, S
k
y|x+S0

).

(3.14)

Based on the above analysis, we can approximate the posterior using a Gibbs sampler, which

iteratively draws the parameters from the conditional distribution. Then, the proposed model

can be sampled by Algorithm 1, as shown in the following.
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Algorithm 1 Gibbs sampler of the proposed method
Input:

• Y1, ..., Yn, X1, ..., Xn,

• Position matrix D.

Initialize:
Generate α, s0, n0 and θ ∼ G0(θ) and set θi = θ for i = 1, 2, ..., n.

Repeat: In each sample iteration

1. For patch i = 1, 2, ..., N :

(a) Compute the assignment of each patch by Eq. 3.9;

(b) Remove the empty clusters;

(c) Sample A by Eq. 3.13;

(d) Sample Σ by Eq. 3.14;

2. For each cluster k = 1, ..., Nc:
Update the cluster center.

Output:

• Reconstruct Matrices A,Σ and cluster centers.

3.3.2 Testing Stage

At the testing stage, the input LR image is divided into patches. The features of each LR patch

are computed, and the corresponding closest cluster center and the dictionary A are identified.

The predicted HR patch is then reconstructed through linear regression based on the learned

mapping coefficients obtained by using Eq. 3.4 , and then the LR patch mean is added to the HR

features, as follows.

Yk = Ak · f(Xk) + mean(Xk), (3.15)

where f(·) is a gradient feature extraction function of the input LR image. Finally, the HR face

image is reconstructed by averaging the overlapped areas of the HR patches.

3.4 Experiments

To illustrate the performance of the proposed method, we evaluate our algorithm on ORL face

database [90] and Yale face database [91] with different zooming factors.
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Images Bicubic Chang’s
method

Jian’s
method

Yang’s
method

proposed
method

1 27.6764 27.1460 27.7070 27.8224 28.1955
2 27.1475 27.4362 27.1869 27.9673 27.8206
3 27.3182 28.1702 27.3340 27.9821 27.9968
4 28.7479 29.9317 28.7732 29.3229 29.5897
5 28.5319 28.5361 28.5627 29.0574 29.1382

TABLE 3.1: PSNR performance of different algorithms on ORL database.

3.4.1 Face Hallucination on ORL Database

The ORL face database is composed of 400 images of 40 persons. Each person has ten different

images taken at different times, lighting conditions, facial expressions and facial details. The

size of each image is 92× 112 pixels, with 256 gray levels per pixel.

In our experiments, the training set contains 200 face images, which are randomly selected from

the ORL database. The remaining images are used for testing. Without loss of generality, we

magnify the input face image with a factor of 3. In other words, the original images form the

HR image dataset, which are down-sampled with a factor of 3 to form the LR image dataset.

10,000 patches are generated from the LR and HR training sets. As suggested by [82], the LR

patch size is 7× 7 pixels while the size of each HR patch is 11× 11 pixels.

The hyperparameters that regularize the ddCRP prior can be specified based on the properties

of the face image patches and the training set. We use the Euclidean distance for the matrix D

shown in Eq. 3.4. The decay function f is set to 1 when the distance is larger than 2 pixels, with

the self-connection parameter α = 10−6, which is set by experiences. For the hyperparameter of

the matrix-normal-inverse-Wishart prior, we set the degree of freedom n0 = 50, a value which

makes the prior variance nearly as large as possible while ensuring that the mean remains finite.

The samplers present rapid mixing and often stabilize within 20 iterations. The similar rapid

mixing has been observed in other ddCRP applications [9, 11]. Here, we run the sampler for

100 times and obtain 16 clusters with more than 150 patches. The converging time depends on

the distance defined previously and the size of the training set.
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Images Bicubic Chang’s
method

Jian’s
method

Yang’s
method

proposed
method

1 0.8721 0.8625 0.8727 0.8834 0.8877
2 0.8190 0.8303 0.8203 0.8435 0.8430
3 0.7847 0.8118 0.7857 0.8167 0.8239
4 0.8407 0.8624 0.8411 0.8566 0.8673
5 0.8667 0.8703 0.8677 0.8854 0.8893

TABLE 3.2: SSIM performance of different algorithms on ORL database.

FIGURE 3.2: Patches learned in an example cluster.

FIGURE 3.3: Patches positions constrained in the example cluster.



Chapter 3. Face Hallucination Based on Spatial-Distance-Dependent Nonparametric Bayesian
Learning 56

FIGURE 3.4: Face hallucination results on the ORL database with different methods: (a) the
input LR faces, (b) Bicubic interpolation, (c) Chang’s method, (d) Sun’s method, (e) Yang’s

method, (f) our proposed method, and (g) the original HR faces.

Figure 3.2 presents the LR patches in one cluster learned from the training dataset. It can be seen

that they have similar textures. Figure 3.3 presents the corresponding spatial center positions of

the patches shown in Figure 3.2.

We also compare our method with some typical face hallucination methods. PSNR and SSIM

are used as the objective measurements of image quality. The results based on different methods

are shown in Tables 3.1 and 3.2.

Figure 3.4 presents the visual results of 4 face images based on the different methods. Column

(a) shows the original LR face images. The second column (b) presents the results based on
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Images Bicubic Chang’s
method

Jian’s
method

Yang’s
method

proposed
method

1 27.0842 28.0617 27.2738 28.2065 28.0767
2 26.2234 26.2402 26.2820 26.5094 26.5945
3 26.2025 27.0032 26.4725 27.3066 27.4979
4 27.0842 28.0617 27.2738 27.8767 28.1320

TABLE 3.3: PSNR performance of different algorithms on Yale database.

Images Bicubic Chang’s
method

Jian’s
method

Yang’s
method

proposed
method

1 0.8584 0.8405 0.8596 0.8894 0.8827
2 0.8248 0.8232 0.8269 0.8352 0.8452
3 0.8097 0.7857 0.8105 0.8335 0.8343
4 0.8584 0.8405 0.8595 0.8554 0.8652

TABLE 3.4: SSIM performance of different algorithms on Yale database.

Bicubic interpolation. The results of Chang’s method based on locally linear embedding (LLE)

[78], Sun’s method using the edge statistic information Gradient Profile Prior [75], and Yang’s

method [79] by sparse representation are shown in columns (c), (d), and (e), respectively.

3.4.2 Face Hallucination on Yale Database

The Yale Face Database contains 165 grayscale images in GIF format of 15 individuals. There

are 11 images per subject, one per different facial expression or configuration: center-light,

with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised, and

wink. In our experiments, the training set contains 100 face images which are randomly selected

from the database. The remaining images are used for testing. We crop the images into size of

240 × 204 pixels, with some background included. Similar to the experiments on the ORL

database, 10,000 patches pairs are generated in the LR and HR training set. The size of the face

images in the Yale database is larger than those in the ORL database. With this database, the

input LR face images are magnified with a zooming factor of 4. The LR patch size is 7 × 7

pixels and the HR patch is set to 12 × 12 pixels. The other hyperparameters used are the same

as those used in the ORL experiments.

Figure 3.5 presents the visual results with 4 face images based on the different methods. Tables

3.3 and 3.4 show the PSNR results and SSIM of the results for the different methods.
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FIGURE 3.5: Face hallucination results on the Yale database with different methods: (a) the
input LR faces, (b)Bicubic interpolation, (c) Chang’s method, (d) Sun’s method, (e) Yang’s

method, (f) our proposed method, and (g) the original HR faces.

3.4.3 Performance Analysis

The results from the Bicubic method are the smoothest. As with other interpolation methods,

it struggles to reconstruct high-frequency details of the HR images like edges and corners. The

neighbor embedding method assumes that the local geometry of LR image patches is similar to

that of the HR counterparts. Their performance suffers from inappropriate choices of features,

neighborhood sizes and training patches. The reconstruction of high-frequency areas is also

mediocre in our experiments. Jian’s method using gradient profile prior gives plausible perfor-

mance in the edge and corner areas when zooming factor is not large (less than 4). It can be

seen that Yang’s method can provide plausible HR facial images with sharp edges and corner-

s. However, some of the patches may be badly matched or conflict with adjacent ones. These
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errors are typical drawbacks with most patch-based SR methods. Furthermore, patch-based SR

usually requires a large number of image-patch pairs for learning. When the training dataset

size is limited, those drawbacks are more obvious.

Compared with other parch-based learning methods, our proposed method keeps better continu-

ities with adjacent ones without loss of the reconstruction performance of the edge and corner

areas. The spatial constraint in our method prevents producing artifacts and discontinuities in the

reconstruction results, especially when the train dataset size is not large as in our experiments

using only 10,000 patches.

3.5 Conclusion

In this chapter, we have presented a novel example-based face hallucination method based on a

nonparametric Bayesian model. According to the assumption that all face images have similar

local pixel structures, we have clustered the LR face patches using ddCRP, and learned the

mapping coefficients for each cluster. We have used the LR input face to search a database to

find sample face patches that best match the input face. The HR image has been reconstructed

from a linear regression by the learned mapping matrix. Experimental results have shown that

the proposed method performs well in terms of both reconstruction error and visual quality.

In our algorithm, the spatial distance constraint is employed to aid the learning of cluster center-

s. The patches learned in a cluster are not only similar in texture, but also adjacent in locations.

This constraint between the patches can be considered as an extension of the constraint in the

Markov Random Fields (MRF). It is able to keep better continuities in the face hallucination re-

sult. The PSNR and SSIM results of the experiments show that our method can achieve compet-

itive performance for face hallucination. Moreover, MRF is usually applied to the neighborhood

of the patches in the same image. The spatial distance constraint can be applied to the patches

from different images. Therefore, this is a more flexible constraint to describe the neighborhood

of face image pixels.



Chapter 4

A Graph-regularized Nonparametric

Bayesian Approach to Sparse

Nonnegative Matrix Factorization

4.1 Introduction

Nonnegative Matrix Factorization (NMF) is a dimension reduction method for factorizing a ma-

trix as a product of two matrices, in which all elements are nonnegative. It has been widely used

in various areas including clustering, data mining, machine learning, pattern recognition, com-

puter vision and so forth. Compared with other unsupervised learning algorithms such as prin-

cipal components analysis (PCA), independent component analysis (ICA), vector quantization

(VQ), etc., the factors of NMF give a better natural interpretation as the nonnegative constraints

[92–95]. For example, the parts contained in the objects can be learned from the factors of lower

rank approximation by using NMF. Each object is explained by an additive linear combination

of intrinsic ‘parts’ [93, 96]. Many physical signals, such as image intensities, amplitude spectral

and text documents, are naturally represented by nonnegative values [97]. Therefore, NMF is a

powerful method for analyzing such data. An NMF problem can be formulated as follows [98]:

NMF Problem. Given a nonnegative matrix X ∈ Rm×n and a positive integer k < min(m,n),

find nonnegative matrices A ∈ Rm×k and B ∈ Rk×n to minimize the functional

60
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f(A,B) =
1

2
‖ X−AB ‖2F , (4.1)

where ‖ · ‖F is assumed to be a matrix norm .

Usually, the columns of A gain the interpretation of basis vectors, while B is called a coefficient

matrix. The product AB is called a nonnegative matrix factorization of X [99]. When the inner

dimension of the product is less than the rank of X, then the product is only an approximation

of X. Therefore, the factorization is sometimes referred to as the Approximative Non-Negative

Matrix Factorization.

Different efforts have been made to solve Equation 4.1. The minimization problem of Equation

4.1 is convex in A and B separately. However, it is not convex in both simultaneously. One

of the most popular approaches to solve it is the multiplicative update by a gradient decent

algorithm, proposed by Lee and Seung [93]. It is simple to implement and often yields good

results. In each iteration of this method, the elements of A and B are multiplied by certain

factors. As the zero elements are not updated, all components of A and B are strictly positive

for all iterations. Some other methods such as conjugate gradient have been developed later

for faster convergence [100]. One typical method is the projected gradient optimization method

proposed by Lin and Chih-Jen [100] which is computationally competitive and appears to have

better convergence properties than the standard (multiplicative update rule) approach.

These gradient-based algorithms focus on speeding up the convergence. Several authors have

noted the shortcomings of the classical NMF that does not always give good results for presen-

tation parts features [99]. Some efforts have been made to enhance the quality of the NMF by

adding further constraints on the factors, such as smoothness, sparsity and spatial localization

[95, 97]. Piper and Pauce [101] employed regularization on the decomposition. Chen and Ci-

chocki [102] and Bertin et al. [103] used smoothness constraints to improve the analysis of the

data for particular applications. Hoyer [95] employed sparsity constraints on either factor W

or H to improve the local rather than the global representation of data. The extended NMF by

sparseness control allows us to discover better parts-based representations of the data than basic

NMF. However, it is difficult to control the sparse degree for a good representation.
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Most of the above mentioned research on NMF use numerical algorithms for learning the opti-

mal nonnegative factors from data. The problem of NMF can also be interpreted in a Bayesian

framework based on the distribution of the matrix X. These methods have the advantages that

the underlying assumptions in the model are made explicit and some good properties are pre-

sented in the factors. Schmidt and Winther [104] built a Bayesian frame work for NMF by using

exponential priors on the factors. Moussaoui et al. [105] used Gamma densities as factors priors.

Both of them developed a Gibbs sampler to infer the parameters. Schmidt and Laurberg [97]

employed a Gaussian process for the prior of the factors which agreed with the prior knowledge

of the factors’ distribution, such as sparseness, smoothness and symmetries. However, these

Bayesian methods do not have the sparse feature.

In this chapter, we discuss NMF in a graph-regularized nonparametric Bayesian framework.

We assume that good basic vectors learned from the training data by the NMF methods should

respect the structure of the dataset. A natural idea is that if two data xi and xj are close to each

other in the Euclidean space, they should have similar representation coefficients zi and zj based

on the learned non-negative basic vectors. This idea can be seen as a local invariance constraint

which plays an essential role in various kinds of algorithms including semi-supervised learning,

matrix completion and dimensionality reduction algorithms [106]. Experimental results present

that the proposed method is able to give a good sparse NMF and better reflect the structure of

the data.

The rest of this chapter is organized as follows. In Section 2, the classical graph construction

methods and nonparametric Bayesian model for NMF are introduced. Section 3 presents the

proposed approach for sparse NMF. In Section 4, a Gibbs sampler is designed to build a Markov

chain for sampling the joint posterior density of our model. Section 5 presents some factorization

results on different data sets. Finally, Section 6 gives the discussion and conclusion.

4.2 Bayesian Modeling

The problem of NMF can be interpreted in a Bayesian framework. The matrix X is assumed to

be generated by the following model:

X = AB + e, (4.2)
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where X ∈ RM×N , A ∈ RM×k, B ∈ Rk×N , and e is i.i.d white Gaussian noise. All elements

in A and B are either positive or zero. The Gaussian likelihood for NMF is given by:

p(X = AB) =
M∏
i=1

N∏
j=1

N (Xi,j |Ai:B:j , σ
2), (4.3)

where N (x|µ, σ2) is Gaussian distribution, and µ is the mean and σ2 is the noise variance.

We can introduce nonnegative priors such as exponential priors for A and B as shown in

[104, 105]. However, these methods do not consider the sparse constraints for learning parts

in data X. In the following sections, we will introduce a Bayesian nonparametric prior for the

sparse NMF problem.

4.2.1 Background of Graph Construction

Graph-based algorithms have been well applied in image analysis and machine learning areas,

such as data clustering, subspace learning, semi-supervised learning and so on. A good graph is

able to reveal the true intrinsic complexity or dimensionality of the data points, and also capture

certain global structures of the data as a whole (i.e. multiple clusters, subspaces, or manifolds)

[107, 108].

Usually, graph construction consists two steps: adjacent construction and weight calculation.

For the graph construction, there are two popular ways. One is the K-nearest-neighbor (Knn)

method, and the other one is the ε-ball based method [108]. We select the Knn method in

our experiment as it is easier to control the number of neighbors and the graph constructed is

symmetric.

For graph weight calculation, there exist several frequently used approaches: Heat Kernel, In-

verse Euclidean Distance, Local Linear Reconstruction and so on. These approaches compute

the weights for the constructed neighbors by measuring the similarity distance between the ad-

jacent data. The different similarity measures are suitable for different situations. While for

image data, the heat kernel presented below is a popular choice [106].
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Wij =


e−
‖xi−xj‖

2

σ if xi and xj are neighbors,

0 otherwise,
(4.4)

where σ is the heat kernel parameter.

Since the weights in our model are only for measuring the closeness, we do not treat the different

weighting schemes separately. After the above two steps, we can get a symmetric graph G.

4.2.2 NMF with Beta-Bernoulli Process Prior

Beta process is a nonparametric Bayesian distribution that defines a prior over binary matrices

with an infinite number of columns. The two-parameter BP developed in [14] is presented as

BP (a0, b0, H) with parameter a0 > 0 and b0 > 0, and base measure H0. A draw H ∼

BP (a0, b0, H0) can be presented as

H(B) =
K∑
k=1

πkδBk(B)

πk ∼Beta(a0/K, b0(K − 1)/K)

Bk ∼H0

(4.5)

with a valid measure as K → ∞. The expression δBk(B) equals one if B = Bk. Therefore,

H(B) represents a vector of K probabilities, with each associated with a respective atom Bk.

In the limit K → ∞, H(B) corresponds to an infinite-dimensional vector of probabilities, and

each probability has an associated atomBk drawn i.i.d. fromH0. The choice of a0 and b0 is able

to impose sparse constrain to matrix B. In the case where b0 = 1, the marginalized beta process

is equivalent to the Indian buffet process [57]. Usually, directly sampling H from the infinite

beta process is difficult, but a marginalized approach IBP is often used for sampling from Beta

process [14].
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Originally, Beta process is defined as a prior over binary matrices with an infinite number of

columns. Assuming the infinite number of columns of BP is K, K → ∞. A finite approxima-

tion to the Beta process H can be made by simply setting K to a large, but finite number. This

derives a Beta-Bernoulli process (BeP) approximation for the Beta process as [5, 109]:

zi ∼
K∏
k=1

Bernoulli(πk)

πk ∼Beta(a0/K, b0(K − 1)/K),

(4.6)

where πk is the kth component of π, and a0 and b0 are model parameters.

In our NMF model, through the choice of a0 and b0 we can impose our prior belief about the

sparseness of the NMF factors. Specifically, by marginalizing out the vector π1, ..., πK , it can be

shown that the value of {zk}k=1,K equal to one is distributed as Binomial(K, a0/(a0 + b0(K −

1))), and the expected number of ones is a0K/[a0 + b0(K − 1)] [24].

4.3 Hierarchical Model

Depending on the nonnegative property of BeP and exponential distribution, we can derive a

simple nonparametric Bayesian NMF model for X = AB + e by giving an exponential prior

to matrix A and BeP prior to B or conversely, due to the symmetry of matrix A and B. Here,

X ∈ RM×N , A ∈ RM×k and B ∈ Rk×N . When applying the BeP prior to B, B will be a

binary matrix. However, this is highly restricted for the factors of the NMF problem. To address

this, we draw weights from another exponential distribution w ∼
∏
k,j ε(wk,j ;β0), where β0 is

a hyperparameter of the exponential distribution. The coefficient vectors are now bi = zi �wi,

and xi = Abi+ei, where� represents Hadamard (elements-wise) multiplication of two vectors.

The hierarchical form of the model can be expressed as follows:
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xi =Abi + ei

bi =zi �wi

zi ∼
K∏
k=1

Bernoulli(πk)

πk ∼Beta(a0/K, b0(K − 1)/K)

A ∼
∏
i,k

ε(Ai,k;α0)

wi ∼
∏
k

ε(wi,k;β0)

ei ∼N (0, σ2)

σ2 ∼G−1(κ, θ),

(4.7)

where ε(x;λ) = λexp(−λx)u(x) is the exponential density, and G−1 is a non-informative

inverse gamma prior for the noise variance.

The joint distribution of the model can be expressed as

p(X,A,w,Z, π, σ2) =
∏
i,j

N (Xi,j ; (A(Z�W))i,j , σ
2)

∏
i,j

ε(Ai,j ;α0)
∏
i,j

ε(wi,j ;β0)

∏
j

Beta(πj; a0, b0)

N∏
i=1

K∏
k=1

Bernoulli(zik;πk)

G−1(σ2; k, θ)

(4.8)

In this chapter, we assume the sparse representation satisfies a local constraint by a graph.

Specifically, when inferring the sparse coefficient of the kth sample Zk, we refer the coeffi-

cients of the neighborhood samples on the graph. It is very likely that the kth sample will have

the similar coefficient with the coefficients of the graph neighbors.

Let the nth binary sparse coefficient of the sample xi be Zn, which is a K dimensional vector.

K is the rank of the dictionary. We introduce a graph to define the neighbor of Zn. The neighbor
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of Zn is defined as:

N[Zn] = {Z{i} : Gi,n > 0, }, (4.9)

where Gi,n is the graph weight between data xi and xn. Then, the model for zi and πk regular-

ized by the graph is then modified as

zi ∼
K∏
i=1

Bernouli(πi, n), i = 1, ...,K

πkn ∼


Beta(αH , βH), if mean(N[Zn]) ≥ ε)

Beta(αL, βL), if mean(N[Zn]) < ε),

(4.10)

where ε is a small positive real number.

The constraint in Eq.4.10 means that the sample xn will have a high probability of non-zero

coefficients if its neighbor’s coefficients are non-zeros as we expected. Inversely, it will have a

high probability of zero coefficients. Here, we let αL/(αL+βL) ≈ 0, and αH/(αH +βH) ≈ 1.

In the next section, we will proceed for the posterior by deriving a Markov chain Monte Carlo

(MCMC) sampling method.

4.4 Gibbs Sampling Inference

Posterior inference is the central computational focus for analyzing data X in our nonparametric

Bayesian NMF model. In this section, we will use Gibbs sampling to compute the posterior

distributions.

The whole inference process is summarized in Algorithm 2.

For the model with a graph constraint, the sampling of Zmn and πmn for m = 1, ...,M, n =

1, ..., N can be modified as

πmn ∼


Beta(αH + Zmn, βH + 1− Zmn), if mean(N[zn]) ≥ ε),

Beta(αL + Zmn, βL + 1− Zmn), if mean(N[zn]) < ε).

(4.16)
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Algorithm 2 Proposed Nonparametric Bayesian non-negative matrix factorization Inference.

Input:

• Input: Matrix X.

Graph construction: G.

Initialize: Matrices and parameters: A, Z, W, K, σ2, a0, b0, α0, β0, κ, θ .

for MCMC iteration times do

Sample A:

p(Aik|−) ∝ N (x;µAik
, σA2

ik
)ε(x;λ), (4.11)

where, µAik
=

∑
j(xij−

∑
k′ 6=k Aik′Bk′j)Bkj∑

j B
2
kj

, and σ2
Aik

= σ2∑
j B

2
kj

.
Sample Z:

Zik ∼ Bernoulli(
p1

p0 + p1
), (4.12)

where p1 = πkexp(− 1
2ν(W 2

ika
T
k ak − 2Wika

T
k )x̃i

−k), x̃i
−k = yi − A(zi �wi) + ak(Zik �Wik) and

p0 = 1− πk.
Sample π:

πk ∼ Beta(
a0
K

+
N∑
i=1

Zik,
b0(K − 1)

K
+N −

N∑
i=1

(Zik)). (4.13)

Sample W :

p(Wkj |−) ∝ N (x;µBkj
, σB2

kj
)ε(x;β0), (4.14)

where
µBkj

=
∑

i(Xij−
∑

k′ 6=k Aik′Bk′j)Aik∑
i A

2
ik

, and σ2
Bkj

= σ2∑
i B

2
kj

.

Sample σ2:

p(σ2|X,A,B) ∝ G−1(σ2;κσ2 , θσ2), (4.15)

where κσ2 = i×j
2 + k, θσ2 = 1

2

∑
i,j(X−AB)2i,j + θ.

end

Output:

• Nonnegative factors A,B, where Bi = zi �wi.
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To reduce the model complexity and increase robustness, in our experiments, the priors for A

and B are chosen to be α0 = 10−6 and β0 = 10−6 to match the amplitude of the data.

More details of the inference are attached in the Appendix B.

4.5 Experimental Results

To illustrate the performance of the proposed method, we presents some experimental factoriza-

tion results on two data sets suggested in [96, 110]: ORL face image database [90] and Digit

image database MNIST. We compute the residuals and sparseness measures of different meth-

ods.

The residual is computed as [96]:

‖X−AB‖F /‖X‖F . (4.17)

The sparseness is computed by [95]

sparseness(x) =

√
k − (‖x‖1)/‖x‖2√

k − 1
, (4.18)

where k is the dimensionality of x.

4.5.1 A Simple Image Example

Figure 4.1 illustrates the generated Markov chain of the proposed NMF method for a face image

factorization from the ORL dataset. Figure 4.2 shows the original image and the reconstructed

image. The hyper-parameters a0, b0, α0 and β0 are typically set to be 10−6. We initialize

K = 25 and run 200 iterations of the MCMC. The chain starts to settle after about 20 iterations.

From Fig. 1, we can see that the average sparseness of the vectors in the factor matrix B is

Sparseness =0.4490. The residual of the reconstruction image is Residual =0.0460.
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FIGURE 4.1: Generated Markov chains from Algorithm 2. Top: log posterior probability of
X; Middle: the residual computed by Equation 4.17; Bottom: average sparseness of factor B.

(a) (b)

FIGURE 4.2: A facial image NMF by Algorithm 2. (a) original image, and (b) reconstructed
image by the NMF factors from the proposed method.
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.3: NMF on the ORL face image dataset. (a) ORL face image dataset; Factors
computed by (b) Lee’s method, (c) Lin’s method, (d) Schmidt’s method, (e) Hoyer’s method,

and (f) proposed method.

Method Lee’s Lin’s Schmidt’s Hoyer’s Ours
Sparseness 0.264 0.339 0.338 0.342 0.430
Residual 0.183 0.160 0.165 0.160 0.100

TABLE 4.1: Results based on the ORL face database.

4.5.2 Face Dataset Example

Figure 4.3 presents the factors computed on facial ORL dataset. The images collected from

ORL dataset are human faces of 40 people with different poses. Each image is represented as

a vector of pixel gray values. Without loss of generality, the rank of the factors is set to be

K = 16. We compare the results with those based on Lee’s (multiplicative update) method

[111], Lin’s (projected gradient) method [100], Schmidt’s (Bayesian) method [104] and Hoyer’s

(sparse constrained) method [95]. We plot the factor vectors in the form of gray-scale image

with the same size of the input images in Figure 4.3. The sparseness and residual results are

presented in Table 4.1. Our method achieves higher sparseness with lower residual on the dataset

compared with the other methods.
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(a) (b) (c)

(d) (e)

FIGURE 4.4: NMF on MNIST image dataset. (a) MNIST image dataset; Factors computed by
(b) Lin’s method, (c) Schmidt’s method (d), Hoyer’s method, and (e) proposed method.

Method Lin’s Schmidt’s Hoyer’s Ours
Sparseness 0.727 0.726 0.753 0.765
Residual 0.430 0.464 0.428 0.430

TABLE 4.2: Results based on the MNIST digit image database.

4.5.3 Digit Dataset Example

The MNIST dataset is a dataset of handwritten digits, comprising 60 000 training examples and

10 000 test examples, which is available at http://yann.lecun.com/exdb/mnist/

index.html.

We randomly select 400 images in our experiment. Without loss of generality, the rank of the

factors is set to beK = 16. The digit images in the MNIST dataset are sparse themselves. Lee’s

(multiplicative update) method can hardly give proper representations of the factors. Figure

4.4 shows the factors computed by the other methods. Table 4.2 presents the sparseness and

residual results. From Figure 4.4, we can see that, the Bayesian nonparametric prior sparse

constrain gives competitive parts presentation.

http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html


Chapter 5. A Graph-regularized Nonparametric Bayesian Approach to Sparse Nonnegative
Matrix Factorization 73

4.5.4 Performance Analysis

Compared with other NMF algorithms, the proposed method can give a good sparse NMF for

the given data due to the following reasons. Firstly, BeP as an implementation of Beta process

is a flexible nonparametric prior with a sparse property. As we can see, the factor Z is a binary

matrix. As the expectation π ∼ β(α0, β0) is E[πk] = α0/(α0 + β0), we can easily impose the

sparseness constraint on Z by let α0/(α0 + β0) ≈ 0, as it is probable that π is close to zero.

Secondly, the graph regularization give us a local constraint that similar data should have similar

sparse coefficients. This constraint is natural for most image databases. In this way, it is able to

better reflect the data structures as being presented in the experimental results as lower residuals

on the same matrix factors rank.

4.6 Discussion and Conclusion

In this chapter, a Bayesian nonparametric framework for NMF problem has been proposed.

Sparseness study is an important topic for NMF. We have utilised the BeP property, in such a

way to learn the factorized matrix, as well as giving the matrix a sparseness treatment. In order

to maintain their positivity, exponential distribution was chosen in this work, primarily due

to its exclusive support in the positive domain, as well as its conjugacy property with Gaussian

likelihood. We have given a graph regularization in our model that constrains the similar training

samples having similar sparse coefficients and share similar dictionary atoms. In this way, the

structure of data can be better represented.

An efficient Gibbs sampler has been developed to infer all the parameters (and latent variables)

of the NMF factors. Our work has achieved its superiority which has been demonstrated in

the experimental results. In our future work, we will experiment other positive-defined and

conjugate prior, when non-Gaussian likelihood is present in an application, for example, the

Inverse-Gamma-Weibull pair.

Like any nonparametric Bayesian method, their limitations are often associated with the speed

of inference through the use of Gibbs sampling. Our future work is to focus on developing a

parallel sampling strategy by introducing auxiliary variables.



Chapter 5

A Graph-regularized Nonparametric

Bayesian method for Face Recognition

5.1 Introduction

Face recognition (FR) is one of the most important and challenging research topics in com-

puter vision, machine learning and biometrics. One popular method for this problem is sparse

representation-based classification (SRC) or sparse coding recognition (SCR).

Sparse representation methods have been well applied in computer vision and machine learning

areas, such as feature representation and selection, dictionary learning, data clustering, semi-

supervised learning, subspace learning and so on. Specially, it is well applied in the problem

of face recognition [112–115]. It can be seen as a further generalization of nearest neighbor

(NN) or nearest subspace (NS) methods which are based on the best representation of the test

image by the training samples [116–118]. The problem solved by the sparse representation is to

search for the most compact representation of a signal in terms of linear combination of atoms

in an overcomplete dictionary [119]. Let A be a matrix of training sample vectors, y is a testing

sample vector. The basic idea of SR based classification can be described as [115]:

1. Normalize the columns of A to have unit l2-norm;
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2. Solve the l1-minimization problem

α̂1 = arg min
α

‖α‖1 s.t.‖Aα− y‖2 ≤ ε; (5.1)

3. Compute the residuals;

4. Classification by finding the minimum of residuals.

The sparse representation based classification method can somewhat overcome the challenging

issues from illumination changes, random pixel corruption, large block occlusion or disguise,

and so on [120]. More and more researchers have been applying the sparse representation theory

to the fields of computer vision and pattern recognition, especially in image classification.

Wright et al. proposed the classical method for employing sparse representation to perform

robust face recognition [115]. In their work, the training face images were used as a dictionary

of representative samples, and an input testing image was coded as a sparse linear combination of

these sample images via l1-norm minimization. Many revised SRC methods have been proposed

to improve the performance.

For the FR problem, usually, it is necessary to reduce the face image dimension for improving

robustness. Different methods like PCA, Randomfaces, Fisherfaces are employed in SRC based

FR for this purpose [116, 121]. Zhang et al. proposed a dimensionality reduction of images

under the framework of SRC [116]. A well trained discriminative projection matrix was learned

to reduce the dimension of original images. It got better performance on some databases than

the original SRC. Similar work proposed in [122] employed a random matrix to exploit the

presumed sparsity in the FR problem. Specifically, generated a random matrix Φ ∈ Rd×m

where d� m and identified the vector α which minimises the following l1 problem:

α̂1 = arg min
α∈Rn

‖α‖1 s.t.‖Φx−ΦAα‖2 ≤ ε. (5.2)

Ma et al. proposed a discriminative low-rank dictionary learning algorithm for sparse represen-

tation [123]. They assumed the data from the same pattern were linearly correlated, and the dic-

tionary should be approximately low-rank. An objective function with sparse coefficients, class
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discrimination and rank minimization was proposed and optimized during dictionary learning.

Shortcomings

In the SRC based image classification work, it is widely believed that the sparsity constraint

on coding coefficients plays a key role in its success. However, the sparsity assumption which

underpins much of this work is not always supported by the training data [124, 125]. The lack

of sparsity in the data means that compressive sensing approach cannot be guaranteed to recover

the exact signal, and therefore that sparse approximations may not deliver the robustness or

performance desired.

An important fact in FR is that all the face images are somewhat similar, while some subjects

may have very similar face images. However, most present SCR based FR methods find the

sparsest representation of each sample individually, lacking global or local constraints. For

example, if we directly use training data, Xi, to present the testing sample y, the representation

error can be big, even when y is from class i. This drawback can greatly reduce the performance

when the data is grossly corrupted. Consequently, the classification will be unstable if the error

ei or the sparsity ‖αi‖p is used, or both of them are used for experiments.

To solve this problem, some researchers consider other constraints to exploit the presumed spar-

sity of the FR problem. Authors in [124–126] relaxed the l1 minimization by l2 which collabo-

ratively represented the query sample to improve the performance [124]. Wang et al. proposed

a manifold regularized local sparse representation model for FR problem [127]. The key idea

behind this method is that all coding vectors in sparse representation should be group sparse,

which means holding the two properties of both individual sparsity and local similarity. As a

consequence, the face recognition rate can be considerably improved.

5.2 Proposed Method

Motivated by the progress of Bayesian nonparametric model and graph using in computer vision

and machine learning applications [106–108, 128], in this chapter, we propose a novel algorithm,

called graph-regularized nonparametric Bayesian method for FR. We assume that the similar
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training samples in the graph should have similar sparse coefficients and they share the similar

dictionary atoms. In this way, our method minimizes the reconstructed error and improves

the discriminative ability of the training samples for the sparse representation. It brings more

accurate representations of the test samples, especially, corrupted samples like occlusion or

disguise. The experimental results on several benchmark face image databases manifest the

effectiveness and robustness of our proposed method.

5.2.1 Graph Construction

We assume that the sparse representation of the training data satisfies a local constraint by a

graph. Specifically, when inferring the sparse coefficient of the kth sample xk, we refer to the

coefficients of the neighborhood samples on the graph. It is very likely that the kth sample will

have the similar coefficient to the coefficients of the graph neighbors.

The edge between xi and xj is decided by the K-nearest-neighbor (Knn) method. The similar-

ity between two data can be decided by different measures. The different similarity measures

are suitable for different situations. While for image data, the heat kernel is a popular choice

[106]. Since Wij in our model is only for measuring the closeness, we do not treat the different

weighting schemes separately. The graph weight between xi and xj is then computed by heat

kernel shown in Eq. 4.4.

We use the Euclidean distance to estimate the dissimilarity distance between the data vectors.

For example, the distance between data xi and xj is defined as: dij = ‖xi − xj‖2. Then, we get

a symmetric graph G(V,E). In order to improve the robustness for noise, we use PCA features

when measuring the dissimilarity.

5.2.2 Bayesian Nonparametric Model

Given observed training data set X = [x1, ...,xN ] ∈ RM×N , in the training stage, our objective

is to learn the sparse representation by a dictionary and the corresponding sparse coefficients.

The Bayesian nonparametric model is

X = D(Z�W) + e. (5.3)
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In Eq. 5.3, e is a noise term drawn independently and identically from a Gaussian distribution,�

denotes the Hadamard product, each column xi in X is a vector expanded by a training image,

D ∈ RM×K is the dictionary, Z ∈ RK×N is sparse coefficients and W ∈ RK×N is weight

matrix, where the integer K defines the rank of the dictionary and the sparse coefficient matrix.

This model has been well used in image completion and image denoising [14, 16]. It suggests

that each column of X can be viewed as a weighted sum of the dictionary elements (columns)

in D, and the K can be seen as the size of the dictionary. The weights globally determine all the

dictionary elements that are active to the training data, and also determine the importance of the

selected dictionary elements for representation of column of X. Below, we explain the model in

detail.

The columns of basic vectors dk, k = 1, ...,K are assumed to be drawn from a normal distribu-

tion:

dk ∼ N(0,
1

M
IM ), k = 1, 2, ...,K, (5.4)

where, IM denotes an M ×M identity matrix. To reduce the model complexity and increase

robustness, we let all the data in D share the same precision parameter.

Matrix Z is a binary matrix given by a Beta-bernoulli process prior, which is modeled as:

zi ∼
K∏
k=1

Bernoulli(πk), (5.5)

where πk is the kth component of π. Given parameters π = {πn}n=1,2,...,N , the entries in the

binary matrix Z are assumed to be drawn independently. πk is given a Beta distribution prior as,

πk ∼ Beta(a0/K, b0(K − 1)/K), (5.6)

where hyperparameters α0 > 0 and β0 > 0. The sparseness of matrix Z can be controlled by

α0 and β0. As the expectation π is E[πk] = α0/(α0 + β0(K − 1)), to impose the sparseness on

Z, we may let α0/(α0 + β0(K − 1)) ≈ 0. Therefore, it is probable that π is close to zero.

Here, we assume that the sparse representation satisfies a local constraint by a graph. Specifical-

ly, when inferring the sparse coefficient of the kth sample zk, we refer to the coefficients of the
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neighborhood samples on the graph. It is very likely that the kth sample will have the similar

coefficient to the coefficients of the graph neighbors.

We introduce the graph to define the neighbor of Zn. The neighbor of Zn is defined as N[Zn] =

{Z{i} : Gi,n > 0}, which is similar to the previous chapter. Here, Gi,n is the graph weight

between data xi and xn. Then, the model of zi and πk regularized by the graph is then modified:

zi ∼
K∏
k=1

Bernouli(πin), k = 1, ...,K

πkn ∼


Beta(αH , βH), if Zk ≥ ε

Beta(αL, βL), if Zk < ε,

(5.7)

where, Zk = mean(N[Zk]), and ε is a small positive real number. We let αL/(αL + βL) ≈ 0,

and αH/(αH + βH) ≈ 1,

The graph constrains that the sample image xn will have a high probability of non-zero coef-

ficients if its neighbor image sample coefficients are non-zeros. Inversely, it will have a high

probability of zero sparse coefficients. This constraint means that similar face images share

atoms in the dictionary by similar coefficients. And different face images own different atoms

which will be beneficial to the classification of testing samples.

The columns of coefficients wm,m = 1, ...,M are assumed to be drawn from a normal-gamma

distribution.

wn ∼ N(0,
1

ν
IK), n = 1, ..., N (5.8)

ν ∼ Gamma(c0, d0), (5.9)

where, IM denotes an M ×M identity matrix. We let all the data in X share the same precision

parameter ν, to reduce model complexity and increase robustness. Typically, we set c0 = d0 =

10−6.

Finally, for the noise item, we assume the measurement i.i.d noise is drawn from a Gaussian

distribution with variance hyperparameter γ from a Gamma distribution. The noise variance or

precision is assumed unknown, and is learned within the model inference.
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In our applications, each column of X corresponds to an image, and each image may have its

own noise level. Mathematically, the noise is modeled as

emn
i.i.d∼ N (0, γ), m = 1, 2, ...,M, n = 1, 2, ..., N,

γ ∼ Gamma(e0, f0),

(5.10)

where, enm denotes the entry at row n and column m of e, e0 and f0 are hyper-parameters.

Typically, we set hyperparameters e0 = f0 = 10−6.

In the next section, we will proceed for the posterior by deriving a Markov chain Monte Carlo

(MCMC) sampling method.

5.2.3 Gibbs Sampling Inference

In this section, we will use Gibbs sampling to compute the posterior distribution of different

parameters.

Sample dk:

The columns of D = [d1,d2, ...,dM ] are assumed drawn from a Gaussian distribution. Ac-

cording to the Bayesian formula, the posterior of dk can be expressed as [109]:

p(dk|−) ∝
N∏
i=1

N (yi; D(wi � zi), ν
−1I)N (dk; 0, P−1IP ). (5.11)

As the conjugation of Gaussian distributions, it can be shown that dk is drawn from

p(dk|−) ∼ N (µdk
,Σdk

) (5.12)

with the covariance Σdk
= (P I+ν

∑N
i=1 z

2
ikw

2
ik)
−1 and the mean µdk

= νΣdk

∑N
i=1 zikwikx̃i

−k,

where x̃i
−k = yi −D(zi �wi) + dk(zik � wik).

Sample zk:
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Let zk: = [z1k, z2k, ..., zNk], the posterior of zk:

p(zik|−) ∝ N (yi;D(wi � zi), ν
−1I)Bernoulli(zik;πk). (5.13)

The posterior probability that zik = 1 is proportional to

p1 = πkexp(−1

2
ν(w2

ikd
T
k dk − 2wikd

T
k )x̃i

−k) (5.14)

and the posterior probability that zik = 0 is proportional to

p0 = 1− πk. (5.15)

Therefore, zik can be drawn from a bernoulli distribution as

zik ∼ Bernoulli(
p1

p0 + p1
). (5.16)

Sample π:

πk|− ∝ Beta(πk; a0, b0)
N∏
i=1

Bernoulli(zki;πk). (5.17)

It can be shown that πk can be drawn from a Beta distribution as

πk ∼ Beta(
a0

K
+

N∑
i=1

zki,
b0(K − 1)

K
+N −

N∑
i=1

(zki)). (5.18)

For the model with a graph constraint, the sampling of Zmn and πmn for m = 1, ...,M, n =

1, ..., N can be modified as follows:

πik ∼


Beta(αH + zik, βH + 1− zik), if Zk ≥ ε

Beta(αL + zik, βL + 1− zik), if Zk < ε.

(5.19)

Here, we let αL/(αL + βL) ≈ 0, αH/(αH + βH) ≈ 1, and Zk and ε are defined as Eq. 5.7.
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The Eq. 5.19 constrains the sample k has high probability of non-zero coefficients, if its neigh-

bors coefficients are non-zeros. Inversely, it will have low probability of non-zero coefficients.

In this way, the samples in the same training class will contain similar sparse coefficients which

is we expected.

Sample wk:

wk ∼ N (0, ν−1IN)

p(wik|−) ∼ N (µwik ,Σwik),

(5.20)

where Σwik = (ν + γz2
ikd

T
k dk)

−1 and µwik = γzikdkx̃i
−k.

Sample ν:

p(ν|−) ∝ Gamma(ν; c0, d0)

N∏
i=1

N (wi; 0, ν−1IK) (5.21)

It can be shown that ν can be drawn from a Gamma distribution as

p(ν|−) ∼ Gamma(c0 +
1

2
KN, d0 +

1

2

N∑
i=1

wT
i wi). (5.22)

Sample γ:

p(γ|−) ∼ Gamma(γ; e0, f0)

N∏
i=1

N (xi;D(zi �wi), γ
−1IP ). (5.23)

It can be shown that γ can be drawn from a Gamma distribution as:

p(γ|−) ∼ Gamma(e0 +
1

2
NK, f0 +

1

2

N∑
i=1

‖X̃−ki ‖
2
F ), (5.24)

where x̃i
−k = yi −D(zi �wi) + dk(zik)� wik.

The whole inference process is summarized in Algorithm 3.
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Algorithm 3 Inference of the proposed method
Input:

• Training dataset X1, ..., XN .

Constructing graph: G(V,E) by Knn and Eq. 4.4.
Initialize Hyperparameters: a0, b0, c0, d0, e0, f0.
Repeat: In each sample iteration,

1. Sample D by Eq. 5.12;

2. Sample Z by Eq. 5.16;

3. Sample π by Eq. 5.19;

4. Sample W by Eq. 5.20;

5. Sample ν by Eq. 5.22;

6. Sample γ by Eq. 5.24.

Output:

• Matrices D,B, where Di = zi �wi.

The testing stage is summarized in Algorithm 4.

Algorithm 4 Testing stage of the proposed method
Input: Testing images y = {y1,y2, ...}
Process:

• Compute the projection matrix by Eq. 5.25.

Repeat: for each testing image sample yi

• Solve the l1-minimization problem of Eq. 5.26;

• Compute the residuals by Eq. 5.27;

• Find the recognition label by the minimum of residuals.

Output:

• Recognition error.

So far, we have learned the dictionary D and sparse coefficients B = Z �W from the training

samples by the graph-regularized nonparametric Bayesian method. In the testing stage, firstly,

we calculate the projection matrix P by

P = (DTD + λID)DT (5.25)
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where λ is a fixed regular parameter, and ID is a unit matrix. Typically, we set λ = 0.001

in our experiments. For each testing sample yi, we solve the l1-minimization problem as the

traditional SCR algorithm by:

α̂ = arg min
α

‖α‖1 s.t. ‖PAα− yi‖2 ≤ ε. (5.26)

The minimum residual error label can be found by

arg min
j
‖yi − (PA)jα̂‖2. (5.27)

Finally, the label j is the recognized label.

5.3 Experimental Results

To illustrate the performance of the proposed method, we evaluate our algorithm on different

popular databases including ORL face database [90] and AR face database [129].

We compare the proposed method with its competing methods, including a simple and fast

representation-based face recognition (SFR) (which has better performance than nearest neigh-

bor (NN) method)[128], sparse representation coding (SRC) [115], collaborative representation

based classification (CRC) and robust collaborative representation based classification (RCRC)

[124, 126].

5.3.1 ORL Face Database

The images collected from ORL database are human faces of 40 people with different poses.

Each image is resized to 86× 84 and represented as a vector of pixel gray values. We randomly

select n(n = 1, 2, ..., 6) images in each class for training. The rest images are used for testing.

For fair comparison, we compute the average classification error rate for every method.

Fig. 5.1 shows an example of the constructed graph in our method. It can be seen that the heat

kernel graph construction can well reflect the local relationship between the training samples.
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(a) (b)

FIGURE 5.1: Graph constructed by the training samples. (a) The true graph constructed by the
training labels, and (b) the graph constructed by the heat kernel. Five samples in each class are

used here for graph construction in this example.

Specifically, the samples with the same label are more likely to own nonzero graph weights for

the links between each other.

Fig. 5.2 shows the results of different methods with different training samples in each class

from 1 to 6. We can see that the method CRC and our proposed method give better results when

the training sample number is small in each class. However, when the training sample number

increases, the performance of CRC is not as good as the proposed method. This is because that

the graph-regularized method can obtain more similar sparse coefficients and share more the

similar dictionary atoms when the training samples are increasing, which is beneficial to the

recognition results.

From the experiments, we can also see that more training samples in each class usually result in

lower error classification rates.

5.3.2 ORL Face Database with Occlusion

One important advantage of sparse representation (or coding) based FR methods is their ability

to deal with occlusion. In this experiment, we simulate various levels of contiguous occlusion

from 5% to 30%, by replacing a random located square block of each test image with an unrelat-

ed image as shown in Fig. 5.3. The location of occlusion is randomly chosen from each image.

The block occlusion of a certain size is located on the random position which is unknown to the

FR algorithm. This makes the methods that select fixed facial features or blocks of the image
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FIGURE 5.2: Recognition results on ORL database.

are less likely to succeed due to the unpredictable location of the occlusion [115]. One example

of testing samples with block occlusion is shown in Fig. 5.3. The occlusions presented here

have 20% blocks in size.

For the experiment with random occlusion, we analyze the relationship between the occlusion

ration and the performance of different methods. We use the same experiment setting as de-

scribed in the first experiment. The number of training samples in each class is fixed to 5. The

results of different methods for the ORL database with random occlusions are represented in

Fig. 5.4. As sparse representation methods have the property to deal with the occlusions, it is

not hard to understand that SRC method, CRC method, RCRC method and the proposed method

have better results than SFR method. The graph regularized nonparametric Bayesian model im-

proves the robustness of SRC to the noise, therefore, the proposed method again outperforms

the other methods.

5.3.3 AR Face Database

Original AR face database contains over 4,000 color images corresponding to 126 people’s faces

(70 men and 56 women). Images feature frontal view faces with different facial expressions,

illumination conditions, and occlusions.
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FIGURE 5.3: ORL face images with random occlusions.

FIGURE 5.4: Recognition results on ORL database with occlusion.

As suggested in [126], we use a subset (with only illumination and expression changes) that

contains 50 male subjects and 50 female subjects chosen from the AR dataset in our experiments

for training. The images are cropped to 60 × 43. The other subset is for testing. We also vary

the number of training samples of each class from 2 to 6 to study the performance of different

methods with different number of training samples in every class. We estimate the recognition

errors by different methods, including SFR, SRC, CRC, and RCRC. As shown in Fig. 5.5,

generally speaking, the proposed method and CRC method achieve similar results which are

better than others.
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FIGURE 5.5: Recognition results on AR database.

FIGURE 5.6: Example images in AR database.

5.3.4 AR Face Database with Real Disguise

To have a more comprehensive observation of these methods robustness to disguise, we experi-

ment on real disguise images. Fig. 5.6 presents some samples from AR database.

We use a disguise subset from the AR database for testing. The training set is same as the above

experiment. As shown in Fig. 5.7, the performance of our approach can be improved more

rapidly than other methods with the increasing number of training samples per individual. That

is because our method can capture similar sparse coefficients and share the similar dictionary
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FIGURE 5.7: Recognition results on AR database with real disguise.

atoms. When each individual contains more images, the recognition error will be lower. Real

disguise recognition is a very challenging topic for FR problem. This can be reflected from the

performance in the experiment. Although the proposed method present better performance than

others, there still are some improvements for the future work.

5.4 Conclusion

Sparse representation-based classification (SRC) has caught attention of many researchers as

one of the most popular face recognition techniques. In this chapter, we presented a graph-

regularized Bayesian nonparametric method based SRC for face recognition problem. We have

utilised a nearest neighbor graph and Beta-Bernoulli process to get an appropriate dictionary

with sparse coefficients for image recognition. The dictionary regularized by a graph has the

property that the similar training samples have similar sparse coefficients and similar dictionary

atoms. In this way, the testing samples are able to get more accurate representations from

the training dictionary and better performance for FR, especially, when the testing samples are

occluded or disguised.

We have applied the algorithm to different face image databases to demonstrate the effectiveness

of our method. The experimental results have confirmed that our proposed method is robust and
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effective. It has achieved a promising face recognition performance compared with the existing

SCR based algorithms.



Chapter 6

Conclusions and Future work

6.1 Conclusions

In this thesis, we have presented our research work on Bayesian nonparametric models and re-

lated applications. Specifically, after an introduction of Bayesian nonparametric methods and

some well developed applications in Chapter 1, preliminaries of Bayesian nonparametric statis-

tics and advanced inference methods have been described in Chapter 2. In Chapter 3, 4 and

5, different Bayesian nonparametric models have been applied to three computer vision and

machine learning problems: Face Hallucination, Sparse Nonnegative Matrix Factorization and

Face Recognition.

In Chapter 2, basic notions on completely random measures and Lévy processes have been

represented, which are preliminaries of Bayesian nonparametric methods. Also, two remarkable

families of Lévy processes: Gamma process and Beta process have been introduced. We have

discussed Lévy -Khintchine formula and Lévy-Itô decomposition of Lévy processes, as well as

their relationship with completely random measures. The last part of this chapter presented an

advanced Bayesian inference method Markov chain Monte Carlo (MCMC) and related sampling

algorithms.

In Chapter 3, a novel example-based face hallucination method based on nonparametric Bayesian

learning has been proposed. With the assumption that all human faces have similar local pixel

structures, in the proposed method, the low-resolution (LR) face image patches are clustered by

91
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using a nonparametric method, namely the distance dependent Chinese restaurant process (dd-

CRP). Then, the centers of the clusters can be calculated. The dictionaries are learned for each

subspace to map the LR patches to the HR patches. Therefore, the HR patches of the input LR

face image can be efficiently generated by using the learned mapping dictionaries. The ddCRP

gives a robust implementation of learning the clusters without setting the number of clusters in

advance. The spatial distance constraint is employed to assist in learning the cluster centers and

mapping dictionaries, such that each dictionary can better reflect the detailed information about

image patches. Experimental results have shown that our method is efficient and can achieve

competitive performance for face hallucination compared with the state-of-the-art methods.

In Chapter 4, a Bayesian nonparametric method for sparse nonnegative matrix factorization

(NMF) problem has been proposed. Sparseness study is an important topic for NMF. We have

utilised the Beta process property to learn the factorized matrices, as well as giving the matrices

a sparseness treatment. In order to maintain their positivity, exponential distributions are chosen

in this work, primarily due to their exclusive support in the positive domain and conjugacy

property with Gaussian likelihood. The graph in our model regularizes the similar training

samples to have similar sparse coefficients and share similar dictionary atoms, which will give

a better representation of the training data. An efficient Gibbs sampler has been developed to

infer all the parameters (and latent variables) of the NMF factors. Our work has achieved its

superiority which has been demonstrated in the experimental results.

In Chapter 5, a novel graph-regularized Nonparametric Bayesian method for sparse coding

recognition problem has been proposed. In order to get an appropriate dictionary with sparse

coefficients for image recognition, we used a graph regularized Beta process (BP) prior and

Gaussian distribution prior for the dictionary learning. BP is a nonparametric method which

lends itself naturally to model sparse binary matrices with an infinite number of columns. The

graph in our model regularizes training samples in a same class to have similar sparse coeffi-

cients and share similar dictionary atoms, which is beneficial to the reconstruction of the testing

image. An efficient Gibbs sampler has been derived to approximate the posterior density of the

proposed model. We demonstrated the effectiveness of our method on different image databases.

The experimental results show that our proposed method gives competitive results.
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6.2 Future Work

My long-term research goal is to develop novel statistical models and efficient computational

tools for solving machine learning and computer vision problems. My short-term objectives are

to advance the research in large-scale/high-dimensional problems by using Bayesian nonpara-

metric models, the applications on recently developed graph construction by random measures,

and hierarchical factor analysis for deep learning.

6.2.1 Advanced Inference on Large-Scale Data

The major problems for many MCMC algorithms are slow convergence and poor mixing 1. For

example, the Gibbs sampler converges slowly for the sparse dictionary learning as discussed in

Chapter 3 and 4. The Gibbs sampler is a special case of the Metropolis-Hastings algorithm, has

become one of the most popular inference methods due to its intuitive explanation and simple

implementation. However, it is not necessarily the best choice in the general case, as discussed

in Chapter 2, there are a few conditions that must be fulfilled for the Gibbs sampler to work.

Firstly, it requires that the Markov chain induced by the sampler must be irreducible. If this does

not hold, the sample space contains non-communicating sets that the Gibbs sampler is unable to

reach, thus it will never be able to correctly estimate the required distribution. Secondly, even

if the chain is irreducible, the chain may be near-reducible and mixing so slowly that it requires

astronomical sample sizes to move around the sample space [130].

A promising approach to solve this problem is parallel MCMC, which firstly partitions the data

into multiple subsets and runs independent sampling algorithms on each subset. The subset

posterior draws are then aggregated via some combining rules to obtain the final approximation.

For example, Chang and Fisher proposed a parallel sampling of DP mixture models using sub-

cluster splits [131]; Wang et al. proposed an embarrassingly parallel MCMC algorithm which

applied random partition trees to combine the subset posterior draws [132].

Another popular strategy for improving the statistical efficiency of Gibbs sampling is Blocking.

Unlike Gibbs sampling which samples each variable individually given others, blocked Gibbs

sampling partitions the variables into disjoint groups or blocks and then jointly samples all
1Mixing means the stationary distribution reached from an arbitrary position.
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variables in each block given an assignment to all other variables not in the block [133]. Usually,

blocking sampling algorithm combines a particular clustering method, such as using the junction

tree propagation. This makes it possible to implement the general Gibbs sampler where the

components consist of many variables instead of a single one. Thus, many variables are updated

jointly, often resolving problems of reducibility and slow mixing [130].

Our development of Bayesian nonparametric models have been successfully applied in some

applications. However, it is still necessary to apply advance inference methods for the future

research, especially, on large scale data.

6.2.2 Graph on Random Measures

In this thesis, we have applied graph-regularization for sparse nonnegative matrix factorization

and sparse coding recognition problems. Recently, the graph have been represented as an ex-

changeable discrete structure and considered as a measure on R+.

For example, Lloyd et al. considered nonparametric models for graphs and arrays. The ran-

dom arrays that satisfying an exchangeability property can be represented in terms of a random

function according to the Kallenberg representation theorem [134]. They obtained a flexible

yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter

function and demonstrated applications of the model to network data [135]. The related work

presented by Cai et al. defined priors on exchangeable directed graphs, they demonstrated theirs

models on synthetic data [136].

Caron and Fox considered representing the graph as a measure on R+. They defined the ex-

changeability in a continuous space based on the Kallenberg representation theorem and showed

that for certain choices of such exchangeable random measures underlying the graph construc-

tion their network process is sparse with power-law degree distribution. In particular, they built

on the framework of completely random measures and used the theory associated with such pro-

cesses to derive important network properties. Their method was able to recover graphs ranging

from dense to sparse and well applied in a range of real data sets, including Facebook social

circles, citation networks, world wide web networks and so on [137].
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As introduced above, the recent research of graph construction based on nonparametric Bayesian

statistics has been well applied for inferring the relationship models, such as the applications

on social circles, web network and so on. It is considered a powerful and flexible modeling

approach as providing a number of possible priors on random functions. As the graph-based

methods have been extensively used in computer vision and machine learning problems like data

clustering, subspace learning, semi-supervised learning and so on, we believe the research of

random graph construction will provide more state-of-the-art performances for other computer

vision and machine learning problems.

6.2.3 Hierarchical Factor Analysis for Deep Learning

In recent years, deep learning or multilayered models for representation of general data has

received significant attention. Methods that have been considered include convolutional Restrict

Boltzmann Machines (RBMs), deconvolutional networks, convolutional networks, deep belief

networks (DBNs), hierarchies of sparse autoencoders, and so on. Deeper architectures have

been shown to achieve state-of-the-art results on many applications [138–140].

However, most of existing multi-layered models for sparse dictionary learning of training data

require one to specify a prior of the number of dictionary elements employed within each layer.

In many applications, the prior of the number of the dictionary elements is difficult to select,

or it is more desirable to infer the number of dictionary elements based on the data itself [140,

141]. The idea of learning an appropriate number and composition of features has motivated the

Bayesian nonparametric models, such as Indian buffet process (IBP), as well as Beta-Bernoulli

process. Adams et al. introduced a cascading Indian buffet process (CIBP), which provided a

nonparametric prior on the structure of a layered, directed belief network that was unbounded

in both depth and width [141]. However, the problem considered in [141] did not consider

multi-layer feature learning [140].

Mittelman el at. developed an extension for the restricted Boltzmann machine (RBM) by incor-

porating a Beta-Bernoulli process factor potential for hidden units. Unlike the standard RBM,

this model used the class labels to promote category-dependent sharing of learned features,

which tended to improve the generalization performance [142].
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Chen et al. demonstrated an idea of building an unsupervised deep model that may be cast in

terms of a hierarchy of factor-analysis models. The number of canonical dictionary elements or

factor loadings at each layer was inferred from the data by an IBP/Beta-Bernoulli construction

[140];

As presented above, more flexible and powerful deep multi-layered models combined with non-

parametric Bayesian models for deep learning have received attention. We name it Random

Deep Learning or Random Multi-layered Models. As a great success of deep learning has been

shown in computer vision, machine learning, artificial intelligence and other areas, we believe

random deep learning will present a further progress in this field.



Appendix A

Several Distributions Used in the

Thesis

A.1 Gamma Distribution

The Gamma distribution Γ(α, β) has the probability density function:

f(x;α, β) =
αβ

Γ(β)
xβ−1e−αx, x ∈ (0,+∞), (A.1)

where α, β > 0, and Γ(·) is the Gamma function.

A.2 Dirichlet Distribution

The Dirichlet distribution Dir(x1, x2, ..., xK ;α1, α2, ..., αK) has the probability density func-

tion:

f(x1, x2, ..., xK ;α1, α2, ..., αK) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

xαk−1
k , (A.2)

where α1, α2, ..., αK > 0, x1, x2, ..., xK > 0 lies in a K-dimensional simplex, and
∑K

k=1 xk =

1.
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A.3 Beta Distribution

The Beta distribution Beta(α, β) has the probability density function:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (A.3)

where α, β > 0, and x > 0.

A.4 Bernoulli Distribution

The Bernoulli distribution for a random variable X has the probability density function:

f(x) =


p if x = 1

1− p if x = 0

0 if x /∈ {0, 1},

(A.4)

where p ∈ (0, 1), and x ∈ {0, 1}.

A.5 Poisson Distribution

The Poisson distribution for a random variable X has the probability density function:

f(X,λ) =
λke−λ

k!
, (A.5)

where X = 0, 1, 2, ..., e is Euler’s number, and k! is the factorial of k.

A.6 Normal-inverse-Wishart Distribution

The Normal-inverse-Wishart distribution NIW(µ,Σ; ν0, λ,Ψ, ν) has the probability density

function:

f(µ,Σ|ν0, λ,Ψ, ν) = N (µ|µ0,
1

λ
Σ)W−1(Σ|Ψ, ν), (A.6)
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where µ0 ∈ RD, λ > 0, Ψ ∈ RD×D is a covariance matrix, and ν > D − 1.

A.7 Matrix Normal Distribution

The Matrix normal distribution for a random matrix X(n× p) has the probability density func-

tion:

f(X|M,U,V) =
exp(−1

2 tr[V
−1(X−M)TU−1(X−M)])

(2π)np/2|V|n/2|U|p/2
, (A.7)

where tr denotes trace, M is n× p, U is n× n and V is p× p.



Appendix B

Bayesian Nonparametric Non-negative

Matrix Factorization Model and

Inference

B.1 Hierarchical Model

The hierarchical form of the model can be expressed as follows:

xi =Abi + ei

bi =zi �wi

zi ∼
K∏
k=1

Bernoulli(πk)

πk ∼Beta(a0/K, b0(K − 1)/K)

A ∼
∏
i,k

ε(Ai,k;α0)

wi ∼
∏
k

ε(wi,k;β0)

ei ∼N (0, σ2)

σ2 ∼G−1(κ, θ),

(B.1)
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where ε(x;λ) = λexp(−λx)u(x) is the exponential density, and G−1 is non-informative inverse

gamma prior for the noise variance.

The joint distribution of the model can be expressed as:

p(X,A,w,Z, π, σ2) =
∏
i,j

N (Xi,j ; (A(Z�W))i,j , σ
2)

∏
i,j

ε(Ai,j ;α0)
∏
i,j

ε(wi,j ;β0)

∏
j

Beta(πj; a0, b0)

N∏
i=1

K∏
k=1

Bernoulli(zik;πk)

G−1(σ2; k, θ)

(B.2)

B.2 Gibbs Sampling Inference

To sample p(A,W,Z, π, σ2|X), in each iteration of the MCMC, the main steps are shown as

follows.

A. Sample Aik:

p(Aik|X,A\(i,k),B, σ
2) ∝ p(X|A,B, σ2)p(Aik)

∝
∏
i,j

N (Xij ; (AB)ij , σ
2))

ε(Aik;α0)

∝N (x;µAik , σA2
ik

)ε(x;α0).

(B.3)

Based on the conjugation between Gaussian distributions, it is easy to get

µAik =

∑
j(xij −

∑
k′ 6=k Aik′Bk′j)Bkj∑
j B

2
kj

, (B.4)
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σ2
Aik

=
σ2∑
j B

2
kj

. (B.5)

B. Sample zk: = [Z1k, Z2k, ..., ZNk] :

p(Zik|−) ∝ N (yi; A(wi � zi), ν
−1I)Bernoulli(Zik;πk). (B.6)

Zik is equal to either 1 or 0. When Zik = 1, the posterior probability is proportional to

p1 = πkexp(−1

2
ν(W 2

ika
T
k ak − 2Wika

T
k )x̃i

−k), (B.7)

where x̃i
−k = yi −A(zi �wi) + ak(Zik �Wik).

The posterior probability that Zik = 0 is proportional to

p0 = 1− πk. (B.8)

So Zik can be drawn from a bernoulli distribution as

Zik ∼ Bernoulli(
p1

p0 + p1
). (B.9)

C. Sample πk:

πk|− ∝ Beta(πk; a0, b0)
N∏
i=1

Bernoulli(Zik;πk). (B.10)

Because of the conjugate between Beta and Bernoulli distributions, it can be shown that πk can

be drawn from a Beta distribution as

πk ∼ Beta(
a0

K
+

N∑
i=1

Zik,
b0(K − 1)

K
+N −

N∑
i=1

(Zik)). (B.11)

D. Sample Wkj :
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Due to symmetry and a similar exponential distribution giving to W as A, when B = Z�W,

we have

p(Bkj |X,A,Z,W\(k,j), σ
2) ∝ N (x;µBkj , σB2

kj
)ε(x;β0). (B.12)

Notice Zkj is equal to either 1 or 0, therefore, when Zkj = 0,

p(Wkj |X,A,B\(k,j), σ2) ∝ ε(Bkj ;β0). (B.13)

And when Zkj = 1,

p(Wkj)|X,A,B\(k,j), σ2) ∝ N (x;µBkj , σB2
kj

)ε(x;β0). (B.14)

Finding the elements related to Bkj , we have,

µBkj =

∑
i(Xij −

∑
k′ 6=k Aik′Bk′j)Aik∑
iA

2
ik

, (B.15)

σ2
Bkj

=
σ2∑
iB

2
kj

. (B.16)

E. Sample σ2:

The conditional density of σ2 is

p(σ2|X,A,B) ∝
∏
i,j

N (Xij ; (AB)ij , σ
2)G−1(σ2;κ, θ)

=
θk

Γ(k)
(2π)−i×j/2(σ2)

−i×j
2
−k−1

exp(−
1/2

∑
i,j(Xij − (AB)ij)

2 + θ

σ2
)

∝G−1(σ2;κσ2 , θσ2),

(B.17)

where κσ2 = i×j
2 + k, and θσ2 = 1

2

∑
i,j(X −AB)2

i,j + θ.
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