

Advances in Discrete-Time Sliding Mode Control: Theory and Applications

Ahmadreza Argha

A Dissertation Submitted for the Degree of Doctor of Philosophy

at the

School of Electrical, Mechanical and Mechatronic Systems Faculty of Engineering and Information Technology University of Technology, Sydney

October 2016

To my wife ...

Abstract

While a large number of investigations in the control systems literature focus on the analysis of continuous-time systems, more and more practising control engineers implement the control laws using micro-processors. The controllers can either be carried out from continuous-time representations using fast sampling ideas, or the continuous-time controllers can be converted to their discrete-time representations. However, the choice of the high sampling rate, which nearly approximates continuous-time, may not always be possible. Alternatively, discrete-time controllers can be designed directly from a discrete-time representation of the plant. One thread of the literature develops discrete-time controllers to stabilize discrete-time uncertain linear systems with bounded uncertainties. A great deal of the work in this field considered state-feedback control laws based on Lyapunov ideas. In this dissertation, our main focus is on the design of a specific control strategy using the digital computers. This control strategy referred to as Sliding Mode Control (SMC) has its roots in (continuous-time) relay control. This dissertation aims to explain our recent investigations' output in the field of discrete-time sliding mode control (DSMC). Firstly, this dissertation explains a new robust LMI-based (state-feedback and observer-based output-feedback) DSMC. Furthermore, it is stated in the current related literature that a fully decentralized control strategy may lead to unacceptable control performance, especially if the subsystems interact strongly, and further, a centralized control strategy for large, networked systems is found to be impractical and unrealistic by practitioners. In this dissertation, then, a new scheme for sparsely distributed DSMC is presented. Moreover, this dissertation includes a novel framework for the design of optimal \mathcal{H}_2 -based structured distributed SMC, and presents a procedure to sparsify the control network structure while taking into account the available control actions to avoid high level of control efforts that each

subsystem's controller requires to apply, and ensuring the stability of the composite reduced-order closed-loop dynamics. In addition, this dissertation will present our work to apply DSMC to two-dimensional (2D) systems using 1D approaches. Additionally, a specific chapter will also discuss the controllability of the 2D systems through 1D approaches. This dissertation also presents a novel event-driven control mechanism, called actuator-based event-driven scheme, using a synchronized-rate biofeedback system for heart rate regulation during cycle-ergometer. Indeed, this event-driven control mechanism has been designed by exploiting an adaptive integral SMC scheme along with several embedded practical technologies to construct an automated exercise testing system for different applications such as sports training, medical diagnosis, rehabilitation and analysis of cardiorespiratory kinetics.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student: Ahmadreza Argha

Date:

... Oct. 2016

Acknowledgements

At the University of Technology, Sydney I have had the opportunity to meet some wonderful people. First of all, I would like to thank my principal supervisor Associate Professor Steven Su and my co-supervisor Dr. Li Li. I cannot put into words what I have learnt from them. Their attitude to research and intellect have been my source of inspiration. It was a great honor to work with them and learn from them.

I was also fortunate to have the chance to collaborate with an excellent Professor Hung Nguyen. I thank Professor Hung Nguyen for being incredibly supportive.

I am grateful to my external supervisor Professor Branko Celler for supporting me and helping me in the biomedical part of my research. Professor Branko Celler, thank you for being such a nice person.

I am thankful to the center for health technologies and school of Electrical, Mechanical and Mechatronic systems at UTS for contributing to such a pleasant atmosphere. The librarians at University of Technology Sydney deserve special thanks for their assistance in supplying the relevant literatures.

Finally, my deepest appreciation goes to my wife Naghmeh for her support, neverending patience, and inspiration who endured this long process with me, always offering support and love. I am so lucky to have you in my world, and I hope I can be as supportive when you need it. I also owe a lot to my sister-in-law Ghazal for her supports and helps. I have also to greatly thank my family and my wife's family for their unfailing love and encouragement.

Ahmadreza Argha University of Technology, Sydney October 2016

Contents

1	Intr	roduction	1
	1.1	Part I: LMI-Based Discrete-time Sliding Mode Control	2
		1.1.1 Chapter 2	2
		1.1.2 Chapter 3	3
	1.2	Part II: DSMC for networked control systems (NCSs) involving packet	
		losses	4
		1.2.1 Chapter 4	4
		1.2.2 Chapter 5	4
	1.3	Part III: Sparse Sliding Mode Control for Large Scale NCSs $\ . \ . \ .$	4
		1.3.1 Chapter 6	4
		1.3.2 Chapter 7	5
	1.4	Part IV: DSMC for Two-Dimensional Systems	6
		1.4.1 Chapter 8	6
		1.4.2 Chapter 9	6
	1.5	Part V: Integral DSMC for Heart Rate Regulation	7
		1.5.1 Chapter 10	7
Ι	LN	II-Based Discrete-time Sliding Mode Control	9
2	LM	I-based state-feedback SMC for uncertain discrete-time systems 1	$\lfloor 1$
	2.1	Introduction	11
	2.2	Problem Formulation	13
	2.3	Design of the Discrete-time SMC	15
		2.3.1 Variable structure discontinuous control considerations	17
		2.3.2 Design of the robust sliding surface	20

CONTENTS

		2.3.3 Characterizing the system state boundedness	24
	2.4	Exploiting Disturbance Estimate in the Control Law: \mathscr{C}_3	26
	2.5	Simulation Results	30
	2.6	Conclusions	36
3	LM	I-based output feedback DSMC	38
	3.1	Introduction	38
	3.2	Problem Formulation	39
	3.3	Design of The Observer-Based Output-Feedback Discrete-Time SMC	41
		3.3.1 Stability analysis	44
		3.3.2 Characterizing the system state boundedness	48
		3.3.3 Discussions	50
	3.4	Simulation Results	53
	3.5	Conclusions	57
	D		00
Π	D	SMC for NCSs involving packet losses	60
II 4		SMC for NCSs involving packet losses MC for NCSs involving consecutive measurement packet losses	
	DSI	MC for NCSs involving consecutive measurement packet losses	62 62
	DSN 4.1	MC for NCSs involving consecutive measurement packet losses Introduction	62 62
	DSN 4.1 4.2	MC for NCSs involving consecutive measurement packet losses Introduction	62 62 64
	DSN 4.1 4.2 4.3	MC for NCSs involving consecutive measurement packet losses Introduction	 62 62 64 67
	DSN 4.1 4.2 4.3 4.4	MC for NCSs involving consecutive measurement packet losses Introduction	 62 62 64 67 76
	DSN 4.1 4.2 4.3 4.4	MC for NCSs involving consecutive measurement packet losses Introduction Problem Formulation and Preliminaries Stochastic Sliding Mode Control Variable Structure Controller Considerations Simulation Results	 62 62 64 67 76 77
	DSN 4.1 4.2 4.3 4.4	MC for NCSs involving consecutive measurement packet losses Introduction Problem Formulation and Preliminaries Stochastic Sliding Mode Control Variable Structure Controller Considerations Simulation Results 4.5.1	 62 62 64 67 76 77 80
	DSN 4.1 4.2 4.3 4.4 4.5 4.6	MC for NCSs involving consecutive measurement packet losses Introduction	 62 62 64 67 76 77 80 81
4	 DSN 4.1 4.2 4.3 4.4 4.5 4.6 DSN 	MC for NCSs involving consecutive measurement packet losses Introduction	 62 62 64 67 76 77 80 81
4	 DSN 4.1 4.2 4.3 4.4 4.5 4.6 DSN 	WC for NCSs involving consecutive measurement packet losses Introduction Problem Formulation and Preliminaries Stochastic Sliding Mode Control Variable Structure Controller Considerations Variable Structure Controller Considerations Simulation Results 4.5.1 Comparison 1 4.5.2 Comparison 2 Conclusions MC for NCSs involving actuation and measurement consecutive	 62 62 64 67 76 77 80 81 81
4	 DSN 4.1 4.2 4.3 4.4 4.5 4.6 DSN pacl 	MC for NCSs involving consecutive measurement packet losses Introduction Problem Formulation and Preliminaries Stochastic Sliding Mode Control Variable Structure Controller Considerations Variable Structure Controller Considerations Simulation Results 4.5.1 Comparison 1 4.5.2 Comparison 2 Conclusions MC for NCSs involving actuation and measurement consecutive ket losses	 62 62 64 67 76 77 80 81 81 82
4	 DSN 4.1 4.2 4.3 4.4 4.5 4.6 DSN pacl 5.1 	MC for NCSs involving consecutive measurement packet losses Introduction	 62 62 64 67 76 77 80 81 81 82 82

		5.3.1	Designing the sliding function subject to consecutive packet
			losses
		5.3.2	Stability analysis
	5.4	Numer	ical examples $\ldots \ldots 100$
		5.4.1	Example 1
		5.4.2	Example 2
	5.5	Conclu	sions
Π	IS	sparse	Sliding Mode Control for Large Scale NCSs 107
6	Spa	rse Ob	server-based DSMC for NCSs 109
	6.1	Introdu	action
	6.2	Proble	m Formulation and Preliminaries
		6.2.1	Preliminaries
		6.2.2	State and disturbance observer
	6.3	Spatial	lly Decentralized Sliding Mode Control
	6.4	Stabili	ty Analysis $\ldots \ldots 120$
	6.5	Sparsif	ying the Control Network Structure
	6.6	Numer	ical examples $\ldots \ldots 129$
	6.7	Conclu	sions
7	H2-1	Based	Optimal Sparse Sliding Mode Control for Networked
	Con	ntrol Sy	vstems 131
	7.1	Introdu	action
	7.2	Proble	m Formulation and Preliminaries
	7.3	Optima	al Structured SMC Design Problem
		7.3.1	\mathcal{H}_2 based optimal structured static output feedback 138
		7.3.2	Stability analysis of sliding mode dynamics $\hdots \hdots \hdot$
	7.4	Sparsif	ication of Control Network
	7.5	Numer	ical Examples
		7.5.1	Example 1
		7.5.2	Example 2
	7.6	Conclu	sions

IV	Γ	OSMC for Two-Dimensional Systems	151
8	DSN	MC for 2D systems	153
	8.1	Introduction	. 153
	8.2	Problem Formulation	. 155
		8.2.1 New 1D form of 2D first FM model	. 155
	8.3	DSMC for 1D Discrete Vector Form	. 158
		8.3.1 Direct method to find control law	. 161
	8.4	Simulation Results	. 162
	8.5	Conclusions	. 162
9	Con	trollability Analysis of 2D systems	165
	9.1	Introduction	. 165
	9.2	WAM model of First FM Model	. 166
		9.2.1 Controllability analysis of WAM model	. 169
	9.3	Controllability analysis of the New Model in 8.2.1	. 174
		9.3.1 Notion of local controllability for 2D systems	. 174
		9.3.2 Directional controllability with respect to $\{j\}$ -direction	. 175
		9.3.3 Directional controllability with respect to $\{i\}$ -direction	. 178
		9.3.4 Directional minimum energy control input	. 179
	9.4	Numerical Example	. 179
	9.5	Conclusions	. 180
V	In	tegral DSMC for Heart Rate Regulation	181
10	Hea	art Rate Regulation During Cycle-Ergometer Exercise via Even	nt-
	Driv	ven Biofeedback	183
	10.1	Introduction	. 183
	10.2	Methods	. 187
		10.2.1 Subjects	. 187
		10.2.2 Equipment and data acquisition system	. 187
		10.2.3 HR profile	. 188
		10.2.4 Control System	. 189

		10.2.5	Tuning the PID controller gains			198
	10.3	Results	S			199
	10.4	Discus	sion			202
		10.4.1	Necessity of the project			202
		10.4.2	Discussion on the control system $\ldots \ldots \ldots$			204
		10.4.3	Discussion on the results			209
	10.5	Conclu	isions			211
A	Algo	\mathbf{prithm}	for solving the LQ static output feedback pr	oble	m	215
В	Rew	veighte	d $\mathcal{\ell}_1$ minimization method			219

List of Figures

2.1	Signal $f_i(k)$	17
2.2	Evolution of the system state and sliding function using linear controller	32
2.3	Evolution of the system state and sliding function using mean value	
	of disturbance in DSMC	32
2.4	Evolution of the system state and sliding function using \mathscr{C}_1	33
2.5	Evolution of the system state and sliding function using \mathscr{C}_2	33
2.6	Evolution of the system state and sliding function using the controller	
	in [87]	34
2.7	Evolution of the system state and sliding function using \mathscr{C}_3	34
3.1	State and state estimate trajectories using the controller in (3.10)	54
3.2	Trajectories of the sliding function using the controller in (3.10)	54
3.3	Disturbance and disturbance estimator output	55
3.4	Trajectories of the state and state estimate using the controller in	
	(3.46) with $\varphi = 1$	57
3.5	Trajectories of the sliding function using the controller in (3.46) with	
	$\varphi = 1$	58
4.1	Bernoulli sequence $\alpha(k)$	78
4.2	Trajectories of the state using the controller (4.43)	78
4.3	Evolution of the sliding function using the controller (4.43)	79
4.4	a) Disturbance b) Disturbance estimator output	79
4.5	Evolution of the sliding function using the controller (4.44)	80
5.1	NCS structure	84
5.2	Control effort for Example 1	102

LIST OF FIGURES

5.3	Trajectories of the system state and state estimate for Example 1 $$ 102 $$
5.4	Trajectories of the system output for Example 1
5.5	Bernoulli sequences a) $\alpha(k)$, b) $\beta(k)$ for Example 1
5.6	Trajectories of the system state for Example 2
5.7	Bernoulli sequences a) $\alpha(k)$, b) $\beta(k)$ for Example 2
8.1	The system state x_1
8.2	The system state x_2
8.3	The control law u
9.1	2D system state
10.1	Block diagram for the HR regulation system during cycling exercise
	using non-model-based control schemes
10.2	Block diagram for the HR regulation system during cycling exercise
	using model-based control schemes
10.3	Nonin 4100 Pulse Oximeter
10.4	Reed switch and adjustable time delay parameter
10.5	The control system block diagram
10.6	Dynamic profile mechanism used as anti-windup
10.7	Input-output test data
10.8	HR profile tracking during cycling using event-driven PID controller. 200
10.9	HR profile tracking during cycling using conventional PID controller
	and fixed-rate biofeedback \ldots
10.10) HR profile tracking during cycling using the relay controller $\ .\ .\ .\ .\ 201$
10.11	HR profile tracking during cycling using event-driven ISMC and damped
	RLS
10.12	2Cycle-ergometer exercising system
10.13	3 Mechanism of a sensor-based event driven control system using state
	observer. T_{s_i} is the varying output sampling rate and T_{sys} is the
	sampling rate of the system
10.14	4 Mechanism of a sensor-based event driven control system using spa-
	tial domain instead of time domain. T_{s_i} is the varying output sam-
	pling rate and control signal update rate

	T_s	0.15 Mechanism of an actuator-based event driven control system.
	vent	is the constant output sampling rate and T_{c_i} is the varying ex-
. 206		occurrence rate (pedaling rate)
. 209		0.16 Mechanism of the proposed control system

List of Tables

2.1	Comparison of the controllers \ldots .		•	•	•		•	•		•		35
7.1	Results of Example 1				•							145
7.2	Results of Example 2				•							146
10.1	Physical characteristics of participants											212
10.2	Quantitative comparison of controllers											212

Glossary

A^T	Transpose of the matrix A ,
I_m	Identity matrix of size $m \times m$,
$\dot{x}(t)$	Time derivative of the vector $x(t)$, i.e. $\dot{x}(t) = \frac{dx(t)}{dt}$,
$\lambda(A)$	Eigenvalues of the matrix A ,
$\lambda_{\max}(A)$	Maximum eigenvalue of the matrix A ,
$\lambda_{\min}(A)$	Minimum eigenvalue of the matrix A ,
$\left[\Sigma_{ij}\right]_{r\times r}$	is a block matrix with block entries Σ_{ij} , $i =$
	$1, \cdots, r, \ j = 1, \cdots, r,$
$\ A\ $	2-Norm of the matrix A defined as $\max \frac{\ Ax\ ^2}{\ x\ ^2}$,
$\ x(t)\ $	2-norm of the vector x at time t ,
$\ x\ $	2-Norm of the vector x defined as $\sqrt{x^T x}$,
\mathbb{R}	Collection of real numbers,
\otimes	Kronecker product,
$\operatorname{col}(v_i(k))_{i=1}^r$	denotes a block-vector with block entries $v_i(k),\;i=$
	$1, \cdots, r,$
$\operatorname{diag}\left[\Sigma_{ii}\right]_{i=1}^r$	is a block-diagonal matrix with block entries
	$\Sigma_{ii}, i=1,\cdots,r,$
{ o }	denotes an operator for $\Xi = [\xi_{ij}]_{h \times h}$ in which $\xi_{ij} \in$
	$\mathbb R$ and $W = [W_{ij}]_{h \times h}$ in which $W_{ij} \in \mathbb R^{r_i \times s_j}$ such
	that $\Xi \circ W = [\xi_{ij} W_{ij}]_{h \times h}$,
1D	One-Dimensional,
2D	Two-Dimensional,

CSMC Continuous-Time Sliding Mode Control,

DSMC	Discrete-Time Sliding Mode Control,
\mathbf{FM}	Fornasini and Marchesini,
HR	Heart Rate,
ISMC	Integral Sliding Mode Control,
KVA	Kilo-Volt-Ampere,
LMI	Linear Matrix Inequality,
MIMO	Multiple Input, Multiple Output,
NCS	Networked Control System,
OCSMC	Output Based Continuous-Time Sliding Mode
OCSMC ODSMC	Control, Output Based Discrete-Time Sliding Mode Con-
	Control,
ODSMC	Control, Output Based Discrete-Time Sliding Mode Con- trol,
ODSMC OSMC	Control, Output Based Discrete-Time Sliding Mode Con- trol, Output Based Sliding Mode Control,
ODSMC OSMC PID	Control, Output Based Discrete-Time Sliding Mode Con- trol, Output Based Sliding Mode Control, Proportional, Integral and Derivative,
ODSMC OSMC PID PIO	Control, Output Based Discrete-Time Sliding Mode Con- trol, Output Based Sliding Mode Control, Proportional, Integral and Derivative, Proportional Integral Observer,
ODSMC OSMC PID PIO PWM	Control, Output Based Discrete-Time Sliding Mode Con- trol, Output Based Sliding Mode Control, Proportional, Integral and Derivative, Proportional Integral Observer, Pulse Width Modulation,
ODSMC OSMC PID PIO PWM QSM	Control, Output Based Discrete-Time Sliding Mode Con- trol, Output Based Sliding Mode Control, Proportional, Integral and Derivative, Proportional Integral Observer, Pulse Width Modulation, Quasi Sliding Mode,

SISO	Single Input, Single Output,
SMC	Sliding Mode Control,
UPS	Un-interruptible Power System,
VSDCS	Variable Structure Discontinuous Control Strat-
	egy,
WAM	Wave Advanced Model,

Publications

Full Length Refereed Conference Papers (published in full in proceedings):

- A. Argha, L. Ye, S. W. Su, H. Nguyen, B. G. Celler, "Real-time Modelling of Heart Rate Response During Exercise Using A Novel Constrained Parameter Estimation Method", in Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'16), Aug. 17-20, 2016, Orlando, America.
- A. Argha, L. Ye, S. W. Su, H. Nguyen, B. G. Celler, "Heart Rate Regulation During Cycle-Ergometer Exercise Using Damped Parameter Estimation Method", in Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'16), Aug. 17-20, 2016, Orlando, America.
- A. Argha, S. W. Su, A. Savkin, and B. G. Celler, "H₂/H_{infty} Based Sliding Mode Control: A Partial Eigenstructure Assignment Method", (Accepted) To be appeared in Proc. the 55th Conference on Decision and Control (CDC), Dec. 12-14, 2016, Las Vegas, USA.
- A. Argha, S. W. Su, A. Savkin, "Optimal Actuator/Sensor Selection Through Dynamic Output Feedback", (Accepted) To be appeared in Proc. the 55th Conference on Decision and Control (CDC), Dec. 12-14, 2016, Las Vegas, USA.

- A. Argha, L. Li, S. W. Su, H, Nguyen, "H₂-Based Optimal Sparse Sliding Mode Control for Networked Control Systems", (Accepted) To be appeared in Proc. the 55th Conference on Decision and Control (CDC), Dec. 12-14, 2016, Las Vegas, USA.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "Robust Output-feedback Discrete-Time Sliding Mode Control Utilizing Disturbance Observer", in Proc. the 54th Conference on Decision and Control (CDC), Dec. 15-18, 2015, pp. 5671-5676, Osaka, Japan.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "Discrete-time sliding mode control for networked systems with random communication delays", in Proc. the 2015 American Control Conference, July 2015, pp. 6016-6021, Chicago, America.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "Controllability analysis of the first FM model of 2D systems: A row (column) process", in Proc. the 53th Conference on Decision and Control (CDC), Dec. 2014, pp. 2414-2419, LA, America.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "A new LMI-based robust Sliding Mode Control for the uncertain discrete-time systems", in Proc. the 53th Conference on Decision and Control (CDC), Dec. 2014, pp. 4747-4752, LA, America.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "Decentralized Sliding Mode Control for Uncertain Discrete-Time Large-Scale Systems: An LMI Approach", in Proc. 2013 Australian Control Conference (AUCC), pp. 251-256, Nov. 2014, Canberra, Australia.
- A. Argha, L. Li, S. W. Su, "A New Approach to Apply Discrete Sliding Mode Control to 2D Systems", in Proc. the 52th Conference on Decision and Control (CDC), Dec. 2013, Italy.
- A. Argha, L. Li, S. W. Su, H, Nguyen, "The Application of Discrete Sliding Mode Control in Parabolic PDE Dynamics," in Proc. 2013 Australian Control Conference (AUCC), Nov. 2013, Perth, Australia.

- A. Argha, S. W. Su, H. Nguyen, B. G. Celler, "Designing Adaptive Integral Sliding Mode Control for Heart Rate Regulation During Cycle-Ergometer Exercise Using Biofeedback", in Proc. the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'15), Aug. 25-29, 2015.
- A. Argha, S. W. Su, H. Nguyen, B. G. Celler, "Heart Rate Regulation During Cycle-Ergometer Exercise via Biofeedback", in Proc. the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'15), Aug. 25-29, 2015.
- A. Argha, S. W. Su, S. Lee, H. Nguyen, B. G. Celler, "On Heart Rate Regulation in Cycle-Ergometer Exercise", in Proc. the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'14), Aug. 26-30, 2014.
- J. Zhang, D.G. Dorrell, L. Li, A. Argha, "A novel sliding mode controller for DC-DC boost converters under input/load variations", in Proc. Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE (pp. 001698-001703), Nov. 2015.

Refereed Journal Articles:

- A. Argha, L. Li, S. W. Su, H. Nguyen, "Controllability Analysis of Twodimensional Systems Using 1D Approaches", IEEE Transactions on Automatic Control, 60(11): 2977-2282, Nov. 2015.
- A. Argha, L. Li, S. W. Su, H. Nguyen, "Stabilising the networked control systems involving actuation and measurement consecutive packet losses", IET Control Theory & Applications, 10(11):1269-1280, July 2016.
- A. Argha, S. W. Su, B. Celler, "Heart Rate Regulation During Cycle-Ergometer Exercise via Event-Driven Biofeedback", Medical & Biological Engineering & Computing, Accepted on 18/05/2016, DOI 10.1007/s11517-016-1530-9.
- A. Argha, L. Li, S. W. Su, H. Nguyen, "On LMI-based sliding mode control for the uncertain discrete-time systems", Journal of the Franklin Institute, 353(15): 3857-3875, Oct. 2016.
- A. Argha, S. W. Su, B. Celler, "Real-Time Identification of Heart Rate Response Dynamics During Treadmill Exercise", Medical & Biological Engineering & Computing, Submitted, under review.
- A. Argha, S. W. Su, A. Savkin, B. G. Celler, "Mixed H_2/H_{∞} -based actuator selection for uncertain Polytopic systems with regional pole placement", International Journal of Control, Submitted, under review.
- A. Argha, L. Li, S. W. Su, H. Nguyen, "Sparse Observer-based Sliding Mode Control for Networked Control Systems", Automatica, Submitted, Under review, Revision 2.
- A. Argha, L. Li, S. W. Su, "Design of H_2 (H_{∞}) -based optimal structured and sparse static output feedback gains", Journal of the Franklin Institute, Submitted, under review.
- A. Argha, L. Li, S. W. Su, "H₂-based optimal sparse sliding mode control for networked control systems", International Journal of Robust and Nonlinear Control, Submitted, under review.