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Abstract

While a large number of investigations in the control systems literature focus on
the analysis of continuous-time systems, more and more practising control engi-
neers implement the control laws using micro-processors. The controllers can either
be carried out from continuous-time representations using fast sampling ideas, or
the continuous-time controllers can be converted to their discrete-time representa-
tions. However, the choice of the high sampling rate, which nearly approximates
continuous-time, may not always be possible. Alternatively, discrete-time controllers
can be designed directly from a discrete-time representation of the plant. One thread
of the literature develops discrete-time controllers to stabilize discrete-time uncer-
tain linear systems with bounded uncertainties. A great deal of the work in this
field considered state-feedback control laws based on Lyapunov ideas. In this dis-
sertation, our main focus is on the design of a specific control strategy using the
digital computers. This control strategy referred to as Sliding Mode Control (SMC)
has its roots in (continuous-time) relay control. This dissertation aims to explain
our recent investigations’ output in the field of discrete-time sliding mode control
(DSMC). Firstly, this dissertation explains a new robust LMI-based (state-feedback
and observer-based output-feedback) DSMC. Furthermore, it is stated in the cur-
rent related literature that a fully decentralized control strategy may lead to un-
acceptable control performance, especially if the subsystems interact strongly, and
further, a centralized control strategy for large, networked systems is found to be
impractical and unrealistic by practitioners. In this dissertation, then, a new scheme
for sparsely distributed DSMC is presented. Moreover, this dissertation includes a
novel framework for the design of optimal #,-based structured distributed SMC,
and presents a procedure to sparsify the control network structure while taking into

account the available control actions to avoid high level of control efforts that each
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subsystem’s controller requires to apply, and ensuring the stability of the composite
reduced-order closed-loop dynamics. In addition, this dissertation will present our
work to apply DSMC to two-dimensional (2D) systems using 1D approaches. Ad-
ditionally, a specific chapter will also discuss the controllability of the 2D systems
through 1D approaches. This dissertation also presents a novel event-driven control
mechanism, called actuator-based event-driven scheme, using a synchronized-rate
biofeedback system for heart rate regulation during cycle-ergometer. Indeed, this
event-driven control mechanism has been designed by exploiting an adaptive inte-
gral SMC scheme along with several embedded practical technologies to construct an
automated exercise testing system for different applications such as sports training,

medical diagnosis, rehabilitation and analysis of cardiorespiratory kinetics.
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