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Abstract

While a large number of investigations in the control systems literature focus on
the analysis of continuous-time systems, more and more practising control engi-
neers implement the control laws using micro-processors. The controllers can either
be carried out from continuous-time representations using fast sampling ideas, or
the continuous-time controllers can be converted to their discrete-time representa-
tions. However, the choice of the high sampling rate, which nearly approximates
continuous-time, may not always be possible. Alternatively, discrete-time controllers
can be designed directly from a discrete-time representation of the plant. One thread
of the literature develops discrete-time controllers to stabilize discrete-time uncer-
tain linear systems with bounded uncertainties. A great deal of the work in this
field considered state-feedback control laws based on Lyapunov ideas. In this dis-
sertation, our main focus is on the design of a specific control strategy using the
digital computers. This control strategy referred to as Sliding Mode Control (SMC)
has its roots in (continuous-time) relay control. This dissertation aims to explain
our recent investigations’ output in the field of discrete-time sliding mode control
(DSMC). Firstly, this dissertation explains a new robust LMI-based (state-feedback
and observer-based output-feedback) DSMC. Furthermore, it is stated in the cur-
rent related literature that a fully decentralized control strategy may lead to un-
acceptable control performance, especially if the subsystems interact strongly, and
further, a centralized control strategy for large, networked systems is found to be
impractical and unrealistic by practitioners. In this dissertation, then, a new scheme
for sparsely distributed DSMC is presented. Moreover, this dissertation includes a
novel framework for the design of optimal #,-based structured distributed SMC,
and presents a procedure to sparsify the control network structure while taking into

account the available control actions to avoid high level of control efforts that each
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subsystem’s controller requires to apply, and ensuring the stability of the composite
reduced-order closed-loop dynamics. In addition, this dissertation will present our
work to apply DSMC to two-dimensional (2D) systems using 1D approaches. Ad-
ditionally, a specific chapter will also discuss the controllability of the 2D systems
through 1D approaches. This dissertation also presents a novel event-driven control
mechanism, called actuator-based event-driven scheme, using a synchronized-rate
biofeedback system for heart rate regulation during cycle-ergometer. Indeed, this
event-driven control mechanism has been designed by exploiting an adaptive inte-
gral SMC scheme along with several embedded practical technologies to construct an
automated exercise testing system for different applications such as sports training,

medical diagnosis, rehabilitation and analysis of cardiorespiratory kinetics.
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Chapter 1

Introduction

SMC commenced in the Soviet Union somewhere in the late 1950s, but this new
control technique was not published until the publications [55] and [99]. Then, the
sliding mode research community expanded quickly and the number of publications
on this control framework grew correspondingly. Due to this fact that SMC relies on
an infinite switching frequency of the input signal, it is inherently a continuous-time
control strategy. However, this matter can never be met in real applications, espe-
cially, for discrete-time controllers which the input signal can only be varied at the
sampling instances. Hence, this fact limits the switching frequency to the discrete-
time system’ s sampling frequency. However, in a large number of applications the
assumption of an infinite switching frequency can be justified, relatively. In the case
that the sampling rate is much faster than the dynamics of the system under control,
the influence of the bounded switching frequency will be confined. It is thus a usual
approach to design sliding mode controllers in the continuous-time domain, even if
the system is computer-aided-controlled [135], regarding as Continuous-Time Slid-
ing Mode Controller (CSMC), since it is designed according to a continuous-time
model of the system, regardless of the sampling issue. However, the effectiveness of
the obtained controller will, in addition to many other parameters, strongly depend
on the sampling frequency. It means that the faster the sampling is performed, the
smaller the influence of the sampling rate will be. More importantly, for a relatively
low sampling frequency, the limited switching frequency may result in undesirable
effects in the input signal or even instability of the closed-loop system.

Alternatively, the idea of discrete-time sliding mode control (DSMC) has been pro-
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CHAPTER 1. INTRODUCTION

posed in the literature; see [68] for more information, which is significantly different
from its continuous-time counterpart. The results presented in e.g. [68] demonstrate
that an appropriate choice of sliding surface, used with the equivalent control, can
ensure a bounded motion about the surface in the presence of bounded matched un-
certainty. Notice also that from this viewpoint, the DSMC problem can be seen as
a robust optimal control problem and is related to discrete-time Lyapunov min-max
problems [68]. The problem is to select, among all possible feedback controllers, the
feedback gain that minimizes the worst case effect of the uncertainty on the Lya-
punov difference function [68]. Moreover, the discrete-time equivalent control law
can be considered as a solution of discrete-time LQR problem under the assumption
of cheap control; that is, no penalty is assigned to the control effort in the cost
function.

Although the early works on the DSMC aimed at establishing a discrete-time
counterpart to the continuous-time reachability condition [36, 67, 103], it has been
shown that DSMC does not necessarily require the use of a variable structure dis-
continuous control strategy (VSDCS) [52, 113, 84]. References [52, 113] have shown
that the DSMC without VSDCS can ensure that the state trajectories stay within
a neighbourhood of the sliding surface in the presence of bounded matched uncer-
tainty. The obtained control law is called linear control law. Moreover, according
to the results presented in [52, 113], the use of a switching function in the control
law may not necessarily improve the performance.

In the following sections, we explain our recent investigations to improve DSMC and

adopting this control strategy to different fields.

1.1 Part I: LMI-Based Discrete-time Sliding Mode

Control

1.1.1 Chapter 2

In this chapter, two new forms of switching function are proposed which can be
more efficient in terms of reducing the ultimate bound on the system state and re-

ducing the chattering created by traditional switching functions. This new switching
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function, basically, uses a disturbance estimator which comes from the same idea
presented in [119]. The main idea is, with the assumption of continuity of the orig-
inal continuous-time disturbance signal, to use the previous value of the sampled
disturbance for estimating the current one in the control law. However, model un-
certainty is not considered in [119]. In this chapter, it is also discussed that using
the mentioned estimator directly in the controller will increase the order of the sys-
tem and, in addition, it results in a system involving time-delay. Stability analysis
and ultimate boundedness is then investigated for this kind of systems. This chapter
greatly reduces the conservatism of the current LMI-based methods presented in the
few existing works that consider the problem of applying DSMC to the systems in-
cluding unmatched uncertainties. Specifically, this chapter avoids using inequalities
to deal with the uncertain negative signum quadratic terms appeared in the derived
Riccati-like inequality, which is not easy to be directly arranged as an LMI problem.
Instead, a lossless technique is proposed to convert the mentioned inequality to a

form that can be easily written as an LMI.

1.1.2 Chapter 3

While Chapter 2 proposes a state-feedback DSMC for the uncertain discrete-time
systems, this chapter proposes an observer-based DSMC for discrete-time MIMO
systems. Further, the disturbance estimator in Chapter 2 has been designed for
the cases that the system states are entirely available. A framework by exploiting
output information only for discrete-time MIMO systems with unmatched distur-
bances and without uncertainties has been proposed in [17]. This chapter uses an
integral term of the estimation output error, in addition to the well-known Luen-
berger observer which observes the system state with a proportional loop, to make
more degrees of freedom. This matter is referred to as proportional integral observer
(PIO) in the literature [17]. Nevertheless, the underlying system in [17], unlike the
system considered in this chapter, does not involve unmatched uncertainties. The
proposed scheme here extends the problem of utilizing disturbance observer in the
Output-feedback DSMC (ODSMC) to the uncertain discrete-time systems using an

innovative LMI based framework.
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1.2 Part II: DSMC for networked control systems

(NCSs) involving packet losses

1.2.1 Chapter 4

The main goal of this chapter is to stabilize an NCS involving consecutive data
packet dropout with a sliding mode control strategy that can resolve the mentioned
drawbacks. In doing so, a novel sliding function is introduced by employing the
available communicated system states involving packet losses. This is significantly
different from the existing DSMC in the literature [87, 18], and it also provides the
possibility to directly build the switching component of the DSMC by exploiting

only the available system states.

1.2.2 Chapter 5

The DSMC, given for NCSs in Chapter 4, is derived based on two major assumptions:
1) the packet losses occur only in the channel from the sensor to the controller;

2) the system states are entirely available.

Sometimes, these are not very realistic assumptions for many of practical problems.
This chapter intends to design sliding mode controllers for NCSs involving both
measurement and actuation consecutive packet losses (or long-term random delays),
which exploit only output information. This ODSMC can distinguish itself from
the existing literature on the SMCs applied to the NCSs, in the sense that both
the measurement and actuation delays are viewed as the Bernoulli distributed white

sequernce.

1.3 Part III: Sparse Sliding Mode Control for Large
Scale NCSs

1.3.1 Chapter 6

An outstanding research implemented on sliding mode control (SMC) has been

decentralized SMC for the large-scale interconnected systems. Furthermore, in the
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literature the distributed SMC has received less attention and hence it requires
more investigations. This chapter firstly explores the problem of designing a sparse
DSMC network for a given plant network with arbitrary topology. To do so, this
chapter considers a priori control network topology which is a subset of underlying
dynamics network and provides a methodology to stabilize the underlying dynamics
utilizing a (sparse) distributed observer and controller network. We will show that
the proposed observer-based DSMC has this ability to cover all the cases such as
decentralized, distributed, and sparsely distributed topologies. In this chapter, as
the second step, we will search for a sparse control/observer network structure with
the least possible number of links that can satisfy the given stability condition. To
this end, a heuristic iterative algorithm will be proposed, distinguishing itself from

a trial-and-error process which requires to check all the possible structures.

1.3.2 Chapter 7

Although the SMC is now a well-known strategy, from the standpoint of constraining
the available control action, all the traditional methods considered in the literature
have shortcomings. This drawback basically comes from the nature of the SMC
design process which contains two separate stages. During the synthesizing the
sliding function, there is no sense of the control action level that is required to
induce and retain sliding. This issue is more crucial in this chapter when it comes
to sparsify the control network structure, as with no limits on the available control
actions, it may result in the high level of control efforts that each subsystem’s
controller requires to apply, which is not a practical case. This chapter develops
an approach by which we can deal with an #, based optimal structured SMC
problem. In this chapter in order to address the problem of designing a sparse SMC
controller, a specific form of fictitious system, whose matrices contain the control
network structure, is derived. This makes the well-developed weighted #; algorithm
infeasible to our problem. Alternatively, this chapter proposes a heuristic scheme to

obtain the sparse sliding mode controller.
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1.4 Part IV: DSMC for Two-Dimensional Systems

1.4.1 Chapter 8

According to the so-called 1D quasi-sliding mode, SMC design has been extended
for 2D systems in Roesser Model (RM). In addition, the conditions to ensure the
remaining horizontal and vertical states in RM on the switching surfaces and also
the reaching condition using a 2D Lyapunov function are investigated in [3].

Another strategy to work with 2D systems is to transfer them to a 1D form. Wave
advance model (WAM) is a 1D form of 2D systems established in [97]. From the
view point of WAM model, 2D systems are considered as advanced waves and conse-
quently the original stationary 2D system is converted to a time-varying 1D system.
Moreover, the system matrices are in rectangular form rather than square form. As
a result, the major drawback of this 1D form of 2D systems is the varying dimensions
of the defined state vectors. This means that the results developed using this frame-
work are most likely computationally unattractive in terms of possible applications.
Motivated by this issue and using stacking vectors, a new approach to converting 2D
systems to a 1D form is proposed in this chapter. Consequently, the states, inputs
and outputs of the obtained 1D system are in the vector form, and more importantly
their dimensions are invariant. This framework is basically useful for a class of 2D
linear systems in which information propagation in one of the two distinct directions
only occurs over a finite horizon. This can be the case of a repetitive process [35] or
any inherently 2D system, for instance, Darboux equation [58]. The suggested 1D
vectorial form in this chapter unlike Wave Advanced Model (WAM) form (proposed
by Porter and Aravena) has invariable dimension and consequently has the ability
of converting to reqular form in sliding mode control. In this chapter, first Fornasini
and Marchesini (FM) model of 2D systems which is a second order recursive form

is considered.

1.4.2 Chapter 9

In this chapter, firstly, the controllability analysis of WAM model of the first FM
model is studied, and a necessary condition for the controllability of this 1D model

is given. On the other hand, during the procedure of designing the sliding surface
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in Chapter 8, it is assumed that the obtained 1D system is controllable. But, the
controllability of the obtained 1D form and its relation to the original 2D system
is an unanswered problem in Chapter 8. Hence, motivated by these issues, in this
chapter, we focus on the controllability analysis of the proposed 1D form of the
underlying 2D systems. Based on the controllability analysis, a new notion, direc-
tional controllability, for the underlying 2D systems is introduced and studied. More
importantly, a necessary and sufficient condition for the directional controllability

of 2D systems is presented in this chapter.

1.5 Part V: Integral DSMC for Heart Rate Reg-

ulation

1.5.1 Chapter 10

This chapter is devoted to the problem of heart rate regulation using a model-
based control strategy and a real-time damped parameter estimation scheme. The
controller is a time-varying integral sliding mode controller. A recursive damped pa-
rameter estimation method is also developed, by incorporation of a weighting upon
the one-step parameter variation, which in contrast to the conventional parame-
ter estimation schemes (e.g. recursive least squares (RLS) method) can avoid the
occurrence of the so-called blowup phenomena. The calculated control signals are
transmitted to the subjects employing a synchronized biofeedback mechanism. In
other words, for the purposes of effectively communicating to the exercising subject
a change in the required exercise intensity, the timing of the feedback signal relative
to the position of the pedals becomes critical. A feedback signal delivered when the
pedals are not in a suitable position to efficiently exert force may be ineffective and
this may, in turn, lead to the cognitive disengagement of the user from the feed-
back controller. This chapter examines a novel form of control system which has
been expressly designed for this project. The system is called an “actuator-based
event-driven control system” The proposed control and estimation scheme were
experimentally verified using several healthy male subjects and the results demon-

strated that the designed scheme is able to regulate the HR of the exercising subjects
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to a predetermined HR profile preventing overshooting in the HR responses.
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Chapter 2

LMI-based state-feedback SMC for

uncertain discrete-time systems

2.1 Introduction

In the continuous-time sliding mode control, to achieve ideal sliding mode, in general
the control signal must switch at infinite frequency [68]. However, since in digital
control strategies, the control signal is held constant during the sampling period, it
is normally not possible to achieve ideal sliding. Hence, in uncertain discrete-time
systems it is not possible to ensure that the system state remains certainly on a sur-
face within the state space and consequently the DSMC problem is fundamentally
different to its continuous-time counterpart [68]. In terms of DSMC, state trajecto-
ries would move within a vicinity of the predetermined sliding surface referred to as
quasi-sliding mode band [36].

Although the early works on the DSMC aimed at establishing a discrete-time
counterpart to the continuous-time reachability condition [36, 67, 103], it has been
shown that DSMC does not necessarily require the use of a variable structure dis-
continuous control strategy (VSDCS) [52, 113, 84]. References [52, 113] have shown
that the DSMC without VSDCS can ensure that the state trajectories stay within
a neighbourhood of the sliding surface in the presence of bounded matched uncer-
tainty. The obtained control law is called linear control law. Moreover, according
to the results presented in [52, 113], the use of a switching function in the control

law may not necessarily improve the performance. Note that, obviously, the DSMC
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problem using only linear control law can be regarded as a robust optimal control
problem and it will be equivalent to discrete-time Lyapunov min-max problems [78]
or discrete-time Riccati min-max problems [23]. Nevertheless, some papers in the
literature have claimed a better performance thanks to the use of discontinuous
components [84]. Indeed, these papers assume that either the sampling rate of the
system is very high compared with the maximum frequency component of the ex-
ogenous disturbance or the exogenous disturbance is slow (smooth and bounded).
With either of these assumptions, the closed-loop system would behave more or
less as a continuous-time system [84] and hence, using a discontinuous component
in the controller may improve the performance. In this chapter, two new forms
of switching function are proposed which can be more efficient in terms of reduc-
ing the ultimate bound on the system state and reducing the chattering created
by traditional switching functions. These new switching functions, basically, use
a disturbance estimator which comes from the same idea presented in [119]. The
idea of using disturbance observer for the DSMC was firstly presented in [119] and
followed by e.g. [74, 82]. The main idea is, with the assumption of continuity of
the original continuous-time disturbance signal, to use the previous value of the
sampled disturbance for estimating the current one in the control law. However,
model uncertainty is not considered in [119]. In this chapter, it is also discussed
that using the mentioned estimator directly in the controller will increase the order
of the system and, in addition, it results in a system involving time-delay. Stability
analysis and ultimate boundedness is then investigated for this kind of systems.

It is worth mentioning that a novel implicit Euler numerical scheme has recently
been proposed in [2, 51] that can avoid numerical chattering, by using explicit (for-
ward) methods of discretization. However, chattering appears again in the presence
of disturbances. The basic idea is to implement the discontinuous input of the
DSMC in an implicit form, while keeping its causality (i.e. the controller is non-
anticipative). Then this input has to be computed at each sampling time as the
solution to a generalized, set-valued equation, which takes the form of a simple pro-
jection on an interval in the simplest cases. It should be also noted that implicit
methods require an extra computation, and they can be much harder to implement.

Also, note that the problem of designing the DSMC is mainly considered for the
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systems with matched uncertainty and/or external disturbance [68]. This chapter
greatly reduces the conservatism of the current LMI-based methods presented in
the few existing works that consider the problem of applying DSMC to the systems
including unmatched uncertainties. Specifically, this note avoids using inequalities
to deal with the uncertain negative signum quadratic terms appeared in the derived
Riccati-like inequality, which is not easy to be directly arranged as an LMI problem.
Instead, a lossless technique is proposed to convert the mentioned inequality to a
form that can be easily written as an LMI. This technique can extremely widen the
feasible region of the derived LMI condition obtained for the design of robust sliding
surface, and hence, the applicability region of our DSMC compared to the existing
literature for the DSMC, e.g. see [87, 57]. In brief, the proposed DSMC is a unified
framework for general discrete-time LTT systems. This is significantly different from
methods whose application is limited to the stable systems, c¢f. [87], and also the
methods which need to pre-stabilize the system, cf. [88].

The rest of this chapter is organized as follows: Section 2.2 describes the problem
formulation. In Section 2.3, the proposed method to design the sliding surface is
given. Section 2.4 explains a more practical DSMC for the systems including un-
certainty and disturbance. Different forms of DSMC are considered in Section 2.5.
Efficiency of the proposed DSMC is studied by numerical examples in Section 2.6.

Finally, Section 7 concludes this chapter.

2.2 Problem Formulation
Consider the following uncertain linear discrete-time system,
x(k+1)=[A+AA(k)]x(k)+ Blu(k)+ f(k)], (2.1)

where x(k) € R" and u(k) € R™. Without loss of generality, it is assumed that
B € R™" and m < n. Besides, rank(B) = m (matrix B has full column rank) and it
is assumed that the pair (A,B) is stabilizable. The uncertain matrix AA(k) has the

form of:

AA(k) = MR(K)N, (2.2)
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where matrices M and N are known and R(k) is an unknown matrix satisfy-
ing RT(k)R(k) < I,Yk >0; f(k) denotes external disturbance with known bound,
|f (| < f, where f > 0. In the following of this chapter, for simplicity, A4, and
AA;,_; will be used instead of AA(k) and AA(k — 1), respectively.

The following lemmas are useful in the sequel.

Lemma 2.1 ([95]) Let E, F(k) and G be real matrices of appropriate dimensions
with FT(k)F(k) < I,Vk > 0, then, for any scalar € >0, we have

EF(k)G+GTFT(kET <eEET +¢7'GTG.

Corollary 2.1 Let E = [E1 Ez], A (k)= [Fék) F(l?—l)] and H = [g;] be real matrices
of appropriate dimensions with F(k) €, Yk >0, where F={X : XT X <I}, then,

for any scalars €; >0, i =1,2, we have

el O e’'r 0
EA(OH+HTA(ET <E| ET+HT|"! H
0 el 0 6‘2_1[

This corollary is a generalization of Lemma 2.1 and can be proved straightforwardly.

Lemma 2.2 Let E and H be real matrices of appropriate dimensions, then, for any

matriz I1> 0, we have
ETH+ATE<E™ME+HA™II'H.

Proof: Note that I1= HIHIT > 0, where I1; is an invertible matrix. Then it can easily
be proved by
[ETT - AT YT E-11; 71> 0.

Lemma 2.3 Consider the following inequality:
n
DX}, X+, X,) = D FH(XDAT (X)F(X) <0, (2.3)
i=1

where X;, i =1,--+,n are the matriz variables, A;(X;) >0 and f;(X;) are functions of

X,, i=1,--,n. Then the inequality in (2.3) is feasible in X;, i =1,---,n if and only

i
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if the following inequality is feasible in X;, J;, i=1,-,n:
n
(X[, Xy, X,) + Z(J,.TA,.(X,.)J,. +JI R (XD +F (X)JT) <. (2.4)
i=1

Proof: It can be shown that the feasibility in X;, i =1,---,n of (2.3) is equivalent to
the feasibility in X;, J;, i=1,---,n of

F(Xl’Xz’ o ’Xn) - Z FT(XI)ATI(XI)FI(XI)

., i=1 (2.5)

+ D+ AT X)R DT A XD + AT (X)F(X)D <0,
i=1

where J;, i =1,---,n are introduced auxiliary variables [71]. Indeed, the inference
from (2.5) to (2.3) is obvious, and the inference from (2.3) to (2.5) follows by letting
J; = =NA"'(X)F(X;). Then, it is easy to show that (2.5) is equivalent to (2.4). This

completes the proof.

2.3 Design of the Discrete-time SMC

Consider the following linear discrete-time sliding function:
o, (k) = Sx(k), (2.6)

where S € R™" will be designed later such that S B is nonsingular. During the ideal

sliding motion the sliding function satisfies:
o (k+1)=0,(k)=0, Vk>k,, (2.7)

where k; > 0 denotes the time that sliding motion starts. Thus, one may obtain

from (2.1) and (2.6) that
o (k+1) = S(A+AA)XK) + S Blutk) + f(K)]. (2.8)

Here we will provide the mean value and boundary layer thickness vectors for the

exogenous disturbance according to the upper and lower bounds of f(k). In doing
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S0, assume

fI<fitky < Y i=1,0m, (2.9)

where f l.l and f;' denote the lower and upper bound of the i-th entry of f(k). Define

u / u_ gl
and
F* =C01(f1—|—a""fr-n'-)’ F- =C01(f1_""’fr;)’ (211>

where " and % are the mean value and boundary layer thickness vectors of f(k)

respectively. Now, the following control law is proposed:
u(k) = —(SB)~' S Ax(k) — 9(k), (2.12)

where 9(k) denotes the approximation of disturbance f(k) which may be used in the
controller to compensate the bad effect of disturbance on the ultimate bound on the
system state trajectories. 9(k) can also be regarded as the feedforward control, in
addition to the linear controller. It is assumed that the component d(k) is bounded,
satisfying

1f (k)= 90 < 7 15, (2.13)

where 7 is a predefined positive scalar depending on the choice of 9(k). More dis-

cussions about the component d(k) and 7 are presented later in this chapter.

Remark 2.1 In this note, the control law (2.12) uses only the upper and lower
bounds on the matched exogenous disturbance. However, it can be seen in the
literature ([87], [12], [12]) that the term SAAx(k) is assumed to be bounded. Broadly
speaking, it is not a realistic assumption that we should know a priori some sort
of information about the system state bounds. Instead, we eliminate any restrictive
bound on the system states and only deals with the system unmatched (mismatched)

uncertainties using the robust control strategies.
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Figure 2.1: Signal f;(k)

2.3.1 Variable structure discontinuous control considerations

As discussed in section 2, in the literature, it is argued that the discontinuous
part of the sliding control input can be detrimental to performance [68]. However,
this claim is only true for the balanced uncertainties and/or disturbances whose
maximum frequency component is close to the sampling rate of the discrete-time
system. Specifically, with the smoothness and boundedness conditions of the exter-
nal disturbance, a number of beneficial choices as discontinuous variable structure
components can be utilized in the DSMC in order to improve its performance. To
explain, assume that f;(k) (the ith element in f(k)) has the waveform as in Fig-
ure 2.1. Now, for instance, to estimate the instantaneous amplitude of disturbance
at point Py, five choices are accessible: 1) zero, 2) fl.+, 3) fl.++fi_7 4) fl.++ %, 5)
filkp —1). Similarly, for point P,, one may suggest to use 1) zero, 2) f,.+, 3) fi+ -f,
4) fF- %, 5) fitkp,—1). Here, [fi(kp —1) means the value of f; at the time instant
of k=k p— 1,j =1,2. Using the first choice (or indeed the lack of any discontinuous
component) in the controller leads to the well-known linear controller. Exploiting
the second choice, referred to as the mean value of the exogenous disturbance, in
the DSMC has been proposed in [52]. It is presented in [52] that the term f;" can
be used in the ith element of the control law to compensate the nonzero mean of
unbalanced disturbances. It can easily be realized that in the case of using fl.+ the
maximum estimation error is f;”. In the following of this subsection, according to the
third and fourth choices, we will discuss two different form of VSDC for DSMC. The
discussion about the last choice, which is referred to as disturbance observer, will
be the subject of the next section. In what follows, we assume that the exogenous

disturbance in system (2.1) is smooth and bounded.

A. Argha Page 17



CHAPTER 2. LMI-BASED STATE-FEEDBACK SMC FOR UNCERTAIN
DISCRETE-TIME SYSTEMS

Assumption 2.1 The exogenous disturbance f(k) in (2.1) satisfies the Lipschitz

continuity condition and we have,

lf(k)—f(k=DI < LT, (2.14)

where L, >0 denotes Lipschitz constant and Ty is the sampling time.

Here, it will be assumed that L, has a small value. To this end, the sampling rate
of the discrete signal processing system is assumed to be big enough compared to
the maximum component frequency of exogenous disturbance f(k). Further in what
follows, we assume the known sliding surface matrix .§ and its design will be derived

in Section 2.3.2.

Using upper and lower bounds of disturbance in the controller: &,

Note that
flk=1)=(SB) ' S[x(k)— Ax(k—1)— AA;_x(k— 1) — Bu(k—1)]. (2.15)
f(k—=1) may be estimated by:
fk) = (SB)~1S[x(k) — Ax(k — 1) = Bu(k — 1)], (2.16)
which is equivalent to
fk)y=(SB)"LSAA, | x(k—1)+ f(k—1).

For zero-centered uncertainty AA, it is obvious that the term (SB)™'S AA;_x(k—1)
is also zero-centered and has no influence on the mean values of the vector (k). Ad-
ditionally, in the case that system state is bounded, the vector (SB)_ISAAk_lx(k—
1) remains also bounded. With the proper choice of S and for small uncertainty AA,
it can be claimed that the magnitude of (SB)_ISAAk_Ix(k— 1) will be very small
compared to f(k—1). Traditionally, signum function can be used to determine the

position of the instantaneous disturbance relative to the line fl.+. Hence, one may
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propose to set 9(k) in (2.12) as:
9,(k) = FF + diag(F )sgn(f (k) — F1), (2.17)
where diag(#") := diag(f|, -, f,;)- Thus, the controller (2.12) can be defined as:

uy(k) = —(SB)"' S Ax(k) — F* — diag(F )sgn(f (k) — F). (2.18)

Remark 2.2 With a quick glimpse into the literature, it can be found that a fre-
quently used candidate for the component 9(k) has the general form of:

(k) = w + vsgn(o,(k)), (2.19)

where y and v are known parameters. For instance, in [S7], with ignoring the bounds
of SAA x(k) (see Remark 2.1), w and v are assumed to be some constants involving
the bounds of SBf(k), similar to F and F . Regardless of different approaches
used to design the parameters of this nonlinear function, it should be emphasized
that the term sgn(o(k)) is not an appropriate function to determine the position of
the disturbance relative to its mean value either in the physical meaning or in the
theoretical sense. Using the controller containing 9(k) as in (2.19) will lead state
trajectories to chatter around the switching surface with amplitude dependent on the
lower bound of the term (2.19) and with the frequency equal to the sampling rate;
see [52]. Using the controller (2.18), while the chattering still happens, in this case,
the state trajectories chatter with the frequency equal to the frequency of exogenous

disturbance.

Using [+ % €,

As a new alternative, f;" + % can be used as an estimate of P, or P, in Figure 2.1.

. . . . . 3 .
The estimation error, in the worst-case scenario, will be > fi . Hence, one may

propose to put the component 9(k) in (2.12) as:

9,(k) = F+ + %diag(g—)sgn( F)—FH. (2.20)
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Thus, the controller (2.12) is chosen as:
uy(k) = —(SB)~1 S Ax(k) - F+ — %diag(gz—)sgn( Fo -5, (2.21)

where f(k) is defined in (2.16).

2.3.2 Design of the robust sliding surface

The sequel of this section aims to consider the stability of the system (2.1) using the
controller (2.12). As a result of applying the controller (2.12) to the system (2.1),

it is seen that

x(k+1)=(A+AA, — A)x(k)+ Bfy(k), (2.22)

where fy(k) 2 f(k)—9(k) and A2 B(SB)"'SA. Furthermore, it can be found that
o (k+1)=SAA, x(k)+ SBfy(k). (2.23)
The following lemmas are given to characterize the boundedness of the system state

(2.22).

Lemma 2.4 ([62]) Let V(¢(k)) be a Lyapunov candidate function. In the case that

there exist real scalars v>0, a >0, f#>0 and 0< p <1 such that

allCON> SV h)) < BIERII,

and

V(E(k+1))=V(C(k)) <v—pV(C(k)),

then {(k) will satisfy
@I < Ele Iz a - pf+ L.
o ap

Lemma 2.5 For any symmetric matriz P >0 and any full column rank matriz B,

we have PB(BTPB)"'BTP < P.
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Proof: It can easily be proved by

[I-BB"PB)'B"PI"P[1-B(B"PB)'B"P]>0.

It should also be noted that with applying DSMC to discrete-time systems involv-
ing exogenous disturbances, the closed-loop system should be analyzed in terms of
boundedness. Also, the DSMC can only ensure that the state trajectories may be
driven into a boundary layer around the ideal sliding surface o(k) =0. This issue
is indeed regarded as the quasi sliding mode (QSM) in the literature. On the other
hand, due to the presence of mismatched uncertainty in the system dynamics, it is
difficult to analyze the reachability of the QSM by means of a separate sufficient
condition. Alternatively, the following theorem considers a method to analyze simul-
taneously the reachabiltiy of QSM and the stability of the system states by means

of a discrete-time Lyapunov stability method.

Theorem 2.1 In the absence of disturbance f(k), the linear part of the control law
(2.12) can drive the system state onto the ideal sliding surface (2.6), and the system
state is stabilized, if there exist a symmetric matriz P >0, matrices X and Y, and

scalars € >0 and ij > 0 satisfying the following LMI:

[ _p+YTBT +BY * * *x ok *
0 —P+2eMMT * * k%
AP+ BX V2eMMT  —P+eMMT x  x %
i <0, (2.24)
BY 0 0 P x %
P 0 0 0 -7l %
] NP 0 0 0 0 —el

where M and N are known matrices in (2.2). Here S = BT P71 and {x} denotes

the symmetric elements in a symmetric matriz.

Proof: Define
V(E(K)) = xT (k) Px(k)+ 0T (k)(SB) o k), (2.25)
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T
where {(k) = |xT (k) gf(k)] , P >0 is a symmetric matrix and .S = BT P. Thus,

we can write

AV (k) =V (£ (k+1) =V (E(k))
=xT(k+1)Px(k+ D+ol (k+1)(SB) o (k+1) (2.26)

—xT(k)Px(k) = 6L (k)(SB) o (k).

Now, it can be shown that

T
AV (k) = [ X ] [g;l 912" ) ] (2.27)
f&(k) 912 922 f&(k)

where

Q, =(A+AA)TP(A+AA,)—(A+AA,)"PB(BTPB)'BT P(A+ AA))
—P-PB(B"PB)"'B" P+2AA] PB(B"PB)"' B PAA,,

Q,=2AA] ST,

Qy, :=25B,

In the absence of the disturbance f(k), that is f(k) =0, thus 9(k) =0 leading to
f9(k) =0. Then the system is stabilized if

Q,, <—nl, (2.28)

where 7> 0 is a scalar variable. Now, we consider the feasibility of (2.28). To obtain

(2.28), by utilizing Lemma 2.5 and the Schur complement, it suffices to have

Q 2AAT
l 1 \/_ k]<0’

2.29
V2a4, -P 229

where P = P! and

Q. =(A+AA)T P(A+AA)—(A+AA)" PB(BTPB) ' BT P(A+AA))

—P—-PB(B"PB)'BTP+ylI.
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According to Lemma 2.3, the feasibility of the inequality in (2.29) is equivalent to
that of

(2.30)

G, V244l
<0,
V2a4,  -P

where

Q, =(A+AA,+BF) P(A+AA, + BF)— P+nl

+LT(B"PB)L+L"B"P+ PBL.

Here, F and L are two auxiliary variables [71]. Then, by left and right matrix
multiplication on both sides of the inequality in (2.30) with diag(P,I), we have

[ PO, P \/EPAA{]<O

i ] (2.31)
V2AA P -P

Using the Schur complement and Lemma 2.1, it can be demonstrated that the
inequality in (2.31) can be implied by the LMI in (2.24), where X = FP, Y = LP

and j=n"".

Remark 2.3 [t is worth mentioning that as { = [x 67T = [B%P] x and [B%P] s a
full rank matriz, £ =0 if and only if x =0. In addition, a key feature in our method
to prove the above theorem (and Theorem 2.3 in the following of the chapter), and
further design the sliding function matriz S, is to neglect the bounded inputs (e.g.,
the nonlinear control and exogenous disturbance), and directly prove the stability of
the unforced linear system. More precisely, from (2.27) (with fg(k)=0) and (2.28)

we may write

AV (&) = xT (k)Qy, x(k)

< —nxT (k)x(k)

_ n , I
= A (P+PB(BTPB)'BTP) (k){P+PB(B"'PB)"'B" P} x(k)

2 —pV (),

which ensures the asymptotic stability of the closed-loop system and thus { — 0,

c—0and x—0.
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Remark 2.4 The proof of this theorem provides a less conservative sufficient con-
dition for the design of a robust sliding matriz for the system in (2.1) involving
mismatched uncertainties. Further based on this proof, the second objective of this
chapter, when the disturbance estimator is utilized in the controller directly, will be

derived in the proof of Theorem 2.35.

2.3.3 Characterizing the system state boundedness

While Theorem 2.1 presents a method to design the DSMC in order to stabilize the
system in (2.1), it does not present a bound on the system states. The following
theorem characterizes the boundedness of the obtained closed-loop system state and

corresponding sliding function.

Theorem 2.2 [In the presence of disturbance f(k), if the LMI in (2.24) is feasible,
for the obtained P = P~' and n=7"", the controller (2.12) satisfying (2.13) will lead

to a bound on the augmented system state {(k) = [xT(k),G){(k)]T as follows:

V¢ >0, 3k* >0, s.t. Vk > k*,

A M (2.32)
I < max (M) o

A Amin(diag(P,(BT PB)~1))

where M = PB(BTPB)Y 'BT P+ P, and y =12 ||U+ZBTPB|| \F1I?; here the scalar

variable 1 > 0 and matriz variable O > 0 are obtained from solving the following LMI:

(i—mI+4éNTN * *
0 -0 * |<0, (2.33)
0 MTPB —&I

where M and N are known matrices in (2.2), and further, € >0 is a scalar variable.

Proof: According to Lemma 2.2 it can be written that
2xT (K)Q o fy(k) < xT()Q, 7' QT x(k) + £ (K)O fy(k), (2.34)
where U > 0. It follows from (2.27), (2.28) and (2.34) that

AV (k) <=5 (k) {nT —Q,07'Qf, } x(k)

+ 4 (O[O + Q] £y (k). (2.35)
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If we choose U > 0 such that
Al <nl —Q,07'Qf, (2.36)

where 0 < #j < 7, which is always possible if # > 0 exists, then it follows from (2.35)
that

AV (¢(k)) < —axT (k)x(k) + fo(k)T [0+ Q,y1 f5 (k). (2.37)
Note also that

V (k) =xT (k)[P+ PB(B" PB)~' BT P]x(k)

2xT (k)M x(k), (2.38)
hence,
Anin(M) IR S V(E(K)) £ Aae (M) [|R(K)]|?. (2.39)

Furthermore, it can be shown that

Amin(diag(P, (BT PB)™ ) IC()I* < V(& (k)

(2.40)
< Amax(diag(P. (BT PB)™)) LRI,
Therefore, from (2.37) and (2.39) one can derive that
i
AVEW) <~V EW) +r. (2.41)

where, due to the continuity assumption mentioned in (2.14), y = 72 ||U + 2BTPB|| ke
Note that from (2.27) it can simply be written that

xT ()@ x(k) = VEk+ )|, o=V ER) < =nxT ()x(k). (2.42)
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It is known that V({(k+ 1))|fg(k)=0 > 0, and thus, from (2.42) and (2.39), it can be

claimed that A,..(M) > n. Therefore

max

A

—1__<1.

(M)

lmax

Thus, from Lemma 2.4, (2.40) and (2.41), the bound in (2.32) can be obtained.

Now let us consider how to solve the inequality (2.36). By the aid of Lemma 2.1
and the Schur complement, it can be shown that for the given P> 0 and 5 > 0, this
inequality can be implied by the LMI in (2.33).

To be more specific, if one utilizes the controller in (2.18) (&), 7; =2 in (2.13) and
y1 =4||0+2SB]|| % |17 in (2.32). Note that this bound results from the worst case
scenario. However, if the signum function sgn(f(k) — %") can predict perfectly the
location of f(k), which is assumed to be the most cases for slow disturbances, this
bound can be reduced to Tik =1 and yf = |O+2SB| |F|I°.

On the other hand, utilizing the controller in (2.21)(%,), we have 7, = 1.5 and
7, =2.25||0+2SB|| IF |I>. It should be noted that this bound is also the worst
case scenario bound. Since it is assumed that disturbance in the system (2.1) is
slow, this bound, with perfect position estimation, can be reduced to T; =0.5 and

v} =025||0+2SB| |7 |I%.

2.4 Exploiting Disturbance Estimate in the Con-
trol Law: &;

According to the paper [119], for smooth disturbances, f(k—1) is a good approxi-
mation to f(k) so as to reduce the ultimate bound on the system state. But, unlike
[119] in which the system is not uncertain and just involves exogenous disturbance,
in this chapter we consider a discrete-time system involving uncertainty and exoge-
nous disturbance. Due to the presence of system uncertainty, as seen in (2.15), we
do not have direct access to f(k—1), thus f (k) in (2.16) is used here instead. Fur-

thermore, using the term f(k) in the controller directly, rather than using the ones
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proposed previously seems to have much better performance. Now, by substituting
95(k) = f (k) (2.43)

in (2.12), the following controller is achieved
uz(k) = —(SB)~1.S Ax(k) — f (k). (2.44)

Similar idea can also be found in e.g. [119]. Note that, referring to (2.16), 9(k) in

(2.43) includes system uncertainty, and thus the condition in (2.13) does not apply.

Therefore, the stability of the closed-loop system should be analyzed again. In the

following, we consider the stability of the system (2.1) using the controller (2.44).
By applying the controller (2.44) to the system (2.1), we have

x(k+1)=(A+AA, — A)x(k)— B(SB) " 'SAA,_x(k—1)+ Bf(k), (2.45)

where f,(k)£ f(k)— f(k—1) and A2 B(SB)'SA. As seen, the closed-loop system

(2.45) involves time-delay. Furthermore, it can be found that

o (k+1)= SAAx(k)— SAA,_x(k— 1)+ SBf,(k). (2.46)

Theorem 2.3 In the absence of disturbance f(k), the control law (2.44), (2.16) can
drive the system state onto the ideal sliding surface (2.6) and the system state is

stabilized, if there exist symmetric matrices P >0 and Q >0, matrices X and Y and
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also scalars €; >0, €, >0 and n; > 0 satisfying the following LMI:

[, * * x  x * x|
0 -0 * * * * *
0 0 M 5, * * % * %
AP+BX 0 \2e,MMT —P+e,MMT *  x  x % .
BY 0 0 0 -P % * * )
p 0 0 0 0 -7l * %
NP 0 0 0 0 0 —el *
| 0 NP 0 0 0 0 0 -—el
(2.47)

where My =—-P+Q+Y' BT + BY, My =—P+2(e; +e,)MM?. Here M and N

are known matrices in (2.2), and S = BT P71,

Proof: Define
V(¢(K) = xT (k) Px(k)+x" (k—1)0x(k— 1)+ 6L (k)(SB) ' 6,(k),

T
where ¢ (k) = [xT(k) xT(k=1) az(k) , P>0 and Q > 0 are symmetric matrices

and S = BT P. Thus, we can write

AV (E(k)) =V (E(k+1) =V (¢(k))
=xT(k+1)Px(k+ 1)+ xT (k)Ox(k) + oL (k+ 1)(SB) ‘o (k+1)

—xT(k)Px(k)— xT (k—1)0x(k—1)— 6L (k)(SB) !5, (k). (2.48)

Now, it can be shown that

T
x(k) Ty Zpp Zyg| x(k)
AVEUH) =|x(k-=D| |Z], Zp Zp|[xk=D| (2.49)

fa) | |Zh =5 Sas|| fuh)
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where

Y i=(A+AA)T P(A+AA)—(A+AA)T PB(BTPB)"'BTP(A+AA,)
—P+Q-PB(B"PB)"'B"P+2AA; PB(B" PB)"'B" PAA,,
Ty, i=—20ATST(SB) ' SAA,_y,

%, :=2AA]  PB(B"PB)"'B"PAA,_ -0,

and L3 =2AA; ST, )3 = -2AA] ST and £33 =2SB. In the absence of the
disturbance f(k), f;(k) =0. Then the system is stabilized if

>, =
Y::[“ 12]<—n11, (2.50)

T
X, X

where #; > 0 is a scalar variable. Following a similar approach given in the proof of
Theorem 2.1, and by using the Schur complement, Corollary 2.1, Lemma 2.3 and
Lemma 2.5, it can be demonstrated that the inequality in (2.50) can be implied by
the LMI in (2.47), where Q = PQP, X = FP, Y = LP (F and L are two auxiliary
variables), and 77, = 111_1.

It should be pointed out that the above theorem provides a method to design the
disturbance observer based DSMC in order to stabilize the system in (2.1). However,
it does not give a bound on the system states. The following theorem characterizes
the boundedness of the obtained closed-loop system state and associated sliding

function.

Theorem 2.4 [In the presence of disturbance f(k) satisfying (2.14), if the LMI
in (2.47) is feasible, for the obtained P = Pl 0=POP, n = ﬁl_l, the control law
(2.44), (2.16) will lead to a bound on the augmented system state ¢ (k) = [xT (k),xT (k—
1),6£(k)]T as follows:

Yo >0, Jk* > 0, s.t. Vk > k*,
Amax (diag(M, Q) (2.51)

A

2
10l =< ﬁMmin(diag(P,Q,(BTPB)‘l))y

v,

where M = PB(BTPB)"'BTP+ P, and $ = ||ZA5+2BTPB||LiTS2; here the scalar

variable f1; > 0 and matriz variable O > 0 are obtained from solving the following
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LMI:
[, —n)T+4¢,NTN * * * x ]
0 (i —n)I +46,NTN * * *
0 0 -6 * * |<0, (2.52)
0 0 MTPB -1 x
| 0 0 MTPB 0 41|

where M and N are known matrices in (2.2), €, >0 and é >0 are scalar variables.

Proof: The proof of this theorem is an application of the proof of Theorem 2.2 and

thus is omitted here for the brevity purposes.

Remark 2.5 As seen, applying the controller €5 to the system (2.1) results in
7= ||(A$+2BTPB|| LipTS2 in (2.51). Obviously, due to the much smaller L?TS2 in s,
which is of O(TSZ), the thickness of the boundary layer is reduced, compared to its
previous counterparts which are of O(Ty), for the smooth disturbance f(k) satisfying

(2.14).

2.5 Simulation Results

Consider the system (2.1) with the following parameters:

0.9 0.6 0.04 0.02 0.01
A=|-0.01 09 1.12|, B=]0.09 1.00
-0.16 -2.25 0.97 0.50 1.00

T
M=[02 04 —02| . N=|-04 02 03], RG)=03sin(k), T, =1 sec.

Note that the open-loop system is unstable. Suppose

] O]
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Solving the LMI (2.24) gives the following results:

[ 260.8061 —171.6752 24.5923

P=|_-171.6752 409.7250 —23.0689 |, 71 ="767.0761, e = 184.8089,
| 245923 —23.0689  353.4406

Sz_o.oooz 0.0004 0.0014
0.0020 0.0035 0.0029

Hence, using P = P~!, " = [0,4 0_4]T and F = [0_2 0_2]T, the control laws €,
and &, given in (2.18) and (2.21), respectively, are obtained. The results by applying
these controllers, in addition to the linear controller and the DSMC utilizing only
the mean value of the disturbance, to the system (2.1) are shown in Figs. 2.2-2.5.
Here, the initial state is assumed to be x(0) = [1 2 —2]T. It can be seen that the
system state is bounded and also during the sliding motion the state trajectories are
within a boundary layer around the sliding surface o,.(k) = 0.

As seen, for the slow disturbance f(k), in terms of ultimate bound on the system
state and also thickness of the boundary layer around the ideal sliding surface,
among these four controllers, the controller @, has the best performance.

As mentioned in Remark 2.2, in [87] the following control law is proposed:
u(k) = —(SB)'SAx(k) - F" - diag(F )sgn(o,(k)). (2.53)

Figure 2.6 shows the results by applying this controller to the system (2.1). Note
that as the LMI condition in [87] is not feasible, the controller (2.53) is constructed
by the choice of .S achieved through solving the LMI in (2.24). This indeed shows the
superiority of our approaches compared to the existing literature. As it is emphasized
in [52], using this controller leads state trajectories to chatter around the switching
surface with amplitude dependent on the lower bound of the component in (2.19) and
with the frequency equal to the sampling rate. As it was mentioned in Remark 2.2,
using the controllers € and €,, while the chattering still happens, in this case, the
state trajectories chatter with the frequency equal to the frequency of exogenous

disturbance.
Now, solving the LMI in (2.47), the following results are obtained:
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0.6417 —0.5355 0.1826 0.2859 —03611 0.1038
P=|-05355 13002 -0.1191], O=|-0.3611 09267 —0.0962|,
0.1826 —0.1191 1.0713 0.1038 —0.0962 1.0180

i, = 3.5509, €, =0.3208, ¢, = 0.4342,

—0.0172 0.1063 0.4815
07035 1.1451 0.9408]|

Figure 2.7 shows the results of applying the control law @ in (2.44) to the system
(2.1). As mentioned, this controller uses disturbance estimate. It is crystal clear
that this controller has the best performance compared to the previous controllers,
in terms of ultimate bound on system state, for the systems involving smooth dis-
turbances.

Notice that as the choices of sliding matrix in the last controller €5 is not the same
as the one used in the previous controllers, it is hard to compare the current re-
sults in terms of the bounds on the systems states and, in addition, the thickness
of the obtained boundary layer around the ideal sliding function. To have a fair
comparison, we need to use the same S in all the controllers. It is also not hard
to show that if the LMI in (2.47) is feasible then the LMI in (2.24) will necessarily
be feasible, and hence, we can use the the sliding matrix obtained from the LMI in
(2.47) to construct the aforementioned controllers. Table 2.1 illustrates the obtained

results. As seen in Table 2.1, €5, with the assumption of having a system involv-

Table 2.1: Comparison of the controllers

Controller xRNl [[o. )]

Linear controller 1.3746  1.6831

Controller with the mean value of disturbance 0.6850  0.8417
4 0.4552  0.5654

G, 0.5701  0.7015

Controller in (2.53) 0.4552  0.5613

6 0.0651  0.0800

ing slow disturbances, perfectly outperforms the other two controllers, however, as
it was mentioned earlier, at the expense of dealing with higher order systems and
implementing more intensive computations. Moreover, &, here, outperforms &,,

however, it can be seen from Figure 2.4 and 2.5 that €, has resulted in slightly
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smoother state trajectories. Finally, while the results of the controller €, and the
controller in (2.53) are very close, the rate of chattering occurred with (2.53) is much

higher.

2.6 Conclusions

In this chapter, a new LMI based robust DSMC for the systems involving un-
matched uncertainty and matched disturbance has been developed. The proposed
LMI method is applicable to general systems including unstable systems. Further-
more, some notes on the use of the discontinuous term in the discrete-time sliding
mode controller have been given and two new switching functions have been de-
veloped. Inspired by the idea of disturbance observer, a new controller for the
underlying uncertain systems has been proposed in this chapter. The controller
with disturbance estimator outperforms the other kind of DSMCs, including lin-
ear controller and DSMCs using discontinuous components, while the underlying
systems involves slow exogenous disturbances. Nevertheless, the downside is that,
since the order of the closed-loop system increases, the scheme using DSMC with

disturbance estimator is more computationally intensive.
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Chapter 3

LMI-based output feedback
DSMC

3.1 Introduction

Sliding mode control has been designed for the cases that all the system states are
available. This is not very realistic for most of practical problems [68]. Hence,
this fact has motivated the researchers to design controllers which exploit only the
available information. The literature which has explored output-feedback discrete-
time sliding mode control (ODSMC) includes both the dynamic and static output-
feedback controllers [68, 70, 120, 83, 42]. Reference [27] proposes an observer-based
sliding mode controller for continuous-time MIMO systems. Different frameworks
and discussions for the design of static output-feedback sliding mode controller are
given in [42, 28, 47]. Moreover, in order to design direct torsion control of flexible
shaft, [66] develops an observer-based discrete-time sliding mode control (DSMC)
scheme.

According to the results presented in [52, 113], the use of a switching component
in the control law may not necessarily improve the performance. Thanks to this fact
that the sliding function is not required to be exploited in the ODSMC, this chapter
considers a sliding surface in the state space rather than state estimate space or
state estimation error space [89] and [133]. This fact makes it possible to develop
a considerably less conservative LMI condition, which is prepared in this chapter

to select the switching function matrix. Hence, the feasibility region of the LMI
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condition obtained in the proposed scheme, or equivalently its applicability region,
is interestingly improved compared to that of presented in the literature; Cf. [89]
and [133].

Specifically, the proposed scheme, with the smoothness and boundedness condi-
tions of the external disturbance, exploits a disturbance estimator in the controller
rather than VSDC. Notice that disturbance observer-based control strategies have
been exploited in different fields in the literature and have been successfully im-
plemented for different aims; see e.g. [72]. This idea has been extended to the
DSMC in [119] in order to reduce the boundary layer thickness. However, the dis-
turbance estimator in Chapter 2 has been designed for the cases that the system
states are entirely available and the system does not involve unmatched uncertain-
ties. A framework by exploiting output information only for discrete-time MIMO
systems with unmatched disturbances and without uncertainties has been proposed
in [17]. Indeed, the idea is to use an integral term of the estimation output error,
in addition to the well-known Luenberger observer which observes the system state
with a proportional loop, to make more degrees of freedom. This matter is referred
to as proportional integral observer (PIO) in the literature [17]. Nevertheless, the
underlying system in [17], unlike the system considered in this chapter, does not in-
volve unmatched uncertainties. The proposed scheme here extends the problem of
utilizing disturbance observer in the ODSMC to the uncertain discrete-time systems
using an innovative LMI based framework.

The rest of this chapter is organized as follows: Section 3.2 describes the prob-
lem formulation. In Section 3.3, the proposed scheme to design an observer-based
ODSMC with disturbance estimator is given. Effectiveness of the proposed ODSMC
is shown by a numerical example in Section 3.4. Finally, Section 3.5 concludes this

chapter.

3.2 Problem Formulation

Consider the following uncertain linear discrete-time system,

x(k+1)=[A+AA(k)]x(k)+ Blu(k)+ f (k)]
(k) = Cx(k),

(3.1)
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where x(k) € R", u(k) € R™ and y(k) € R?. Without loss of generality, it is assumed
that m < p < n, rank(B) = m, rank(C) = p. Besides, it is assumed that (A,B) is
controllable and (A,C) is observable. The uncertain matrix AA(k) is of the structure
in (2.2).

In what follows, it is assumed that the exogenous disturbance in the system (3.1)

is smooth and bounded.

Assumption 3.1 The exogenous disturbance f(k) in (3.1) satisfies the Lipschitz
continuity condition,

|fa(O|| < LTy, VK >0, (3.2)

where fq(k)= f(k)— f(k—1), L; >0 denotes Lipschitz constant and T; is the sam-

pling time.

Here, it is supposed that L, has a small value. To this end, the sampling rate of
the discrete signal processing system is assumed to be large enough compared to
the maximum frequency component of the exogenous disturbance f(k). Also, the

following assumption is required to be considered in the sequel of this chapter.

Assumption 3.2 The matrices A, B and C in the system (3.1) satisfies

A-1I, B
rank =n+m.
C 0

Notice that the above assumption requires that m < p < n, which has already been
assumed in this chapter, and is equivalent to not having transmission zero at 1.

Consider the following system state and disturbance observer

X(k+1) = Ax(k)+ Bu(k)+ L{[y(k) — y(k)] + Bf(k)
flk+1)= fl)+ Ly[y(k) — $(k)] (3.3)
(k) = Cx(k),

where L; € R™ and L, € R™? are observer gains. The following lemma is useful

in the sequel.
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Lemma 3.1 ([49]) For a given B € R™™ with rank(B) =m, and

| 1
B=U| |V*, (3.4)
0
where U € R™" and V € R™™ are two orthogonal matrices and X := diag(cy, -+ ,6,,),
6;,(i=1,++,m) denote nonzero singular values of B, suppose that 0 < P € R™" is a

real symmetric matriz, then there exists a real matriz Z € R™™ such that
PB=BZ, (3.5)

if and only if P has the following structure

Py 0
p=ul" uT,

where 0 < Py € R™™ qnd 0 < Py, € RU=mX(n=m)

In the following of this chapter, for simplification, we use the brief AA instead of
AA(k).

3.3 Design of The Observer-Based Output-Feedback
Discrete-Time SMC

In this section, the objective is to design a linear sliding function in the state space,

such as

o (k) = Sx(k), (3.6)

where S = BT P, € R™" and P, > 0 is a symmetric matrix that will be designed
later. As seen, this structure of .S would result in the non-singularity of S B. During

the ideal sliding motion the sliding function satisfies
o(k)y=0, Vk>k,, (3.7)

where k> 0 denotes the time that sliding motion starts.
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Remark 3.1 In the case of CSMC, since the sliding function plays an important
role in the discontinuous component of the controller, the switching function should
be an entirely known one. Due to this fact, in the literature; e.g. [89], [153] and
[20], the sliding function (3.6) has been supposed to satisfy

BTP, =GC, (3.8)
in which G € R™?. Then, the sliding surface (3.6) can be rewritten as
o(k) = GCx(k) = Gy(k),

which is in the output space. However, since this switching function would not be used
in the discrete-time sliding mode controller, such an equality as (3.8) is unnecessary
here. In fact, for the output-feedback DSMC, the sliding surface is not required to be
a known one, so, it will only need to be proved that system state trajectories could be
steered into a boundary layer around the sliding surface and be kept there thereafter.

The same manner can be seen in [08] for the static ODSMC.
The controller is assumed to be of the following structure
u(k) = —(SB) N (SA-®S)%(k)— f(k), (3.9)

where ® € R™" is a stable matrix. The term (S B)~'®.S%(k) would govern the rate
of convergence onto the sliding manifold, in the absence of the external disturbance.
Note that, unlike CSMC in which the so-called equivalent controller —(SB)~'S A% (k)
alone cannot steer the closed-loop system state trajectories on the ideal sliding sur-
face, in the case of discrete-time systems the equivalent controller is able to drive
the state trajectories of the discrete-time system into a neighbourhood of the sliding
manifolds and keeps them there thereafter [52]. However, with @ =0 the control
input aims at steering the system state to the sliding surface in one time step. In the
case of a large initial distance from the sliding surface, this can lead to excessively
large control input referred to as high-gain controller. Here, similar to [25], it is
assumed that ® = AI,,, where 0 < 1 <1 is a given constant value which would not

belong to the spectrum of A. Due to the special form of @, it can commute with S
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and then the control law (3.9) could be written as
u(k) = —(SB)"' S A, (k)— f(k), (3.10)
where A; = A— Al,. Besides, we have
u (k) = —(SB)"LS A, (k). (3.11)

Defining the state estimation error e(k) = x(k)— X(k) and disturbance estimation
error e (k) = f(k)— f (k), the overall closed-loop system is obtained by applying the
controller in (3.10) to (3.1), which is

x(k+1)=[A+AA— Alx(k)+ B(SB)~'S[4, Ble, (k)
e (k+1) =[] x(k) + (A, — L,C, e, (k) + fy(k+ 1),

& k
where Fy(k+ 1) = [, et = [0 | 4a=[8 £ Lo=| 1] and ¢, =10,
Then from (3.6) and (3.12) it can be found

o(k+1)=Ac(k)+ SAAx(k)+ S[As Ble, (k). (3.13)

Lemma 3.2 ([17]) If the matriz pair (A, C) is observable and A, B and C satisfies

the rank condition in Assumption 3.2, then the matriz pair (A,, C,) is observable.

Remark 3.2 Note that exploiting the disturbance estimate in the ODSMC requires
that the exogenous disturbances do not vary too much in one time step. This cannot
only reduce the thickness of the boundary layer, but also relax the upper bound re-
striction on the exogenous disturbances, which can be seen in many references in the
literature. Alternatively, this restriction is now on the maximum frequency compo-
nent of the change of disturbance in terms of the sampling rate (see the continuity

assumption in (3.2)).

The sequel of this section aims to consider the boundedness of the system (3.1) using

the controller (3.10).

A. Argha Page 43



CHAPTER 3. LMI-BASED OUTPUT FEEDBACK DSMC

3.3.1 Stability analysis

Notice that in the case of applying DSMC to the system involving exogenous dis-
turbance, it can only ensure the state trajectories to be driven into a boundary
layer around the ideal sliding surface o(k) = 0. This issue is indeed regarded as
the quasi sliding mode (QSM) in the literature. The following theorem considers a
method to analyze simultaneously the reachabiltiy of QSM and the stability of the
system states utilizing a discrete-time Lyapunov stability method, in the absence
of exogenous disturbances. The characterization of the bounds on the closed-loop
system states and sliding function’s boundary layer are presented separately later
in Theorem 3.2. Furthermore, as Theorem 3.2 needs to derive the cross terms be-
tween the system state (sliding function) and the component f,(k+ 1), in order to
avoid unnecessary repetition of the technical manipulations, we will start the proof
of Theorem 3.1 more generally (with the external disturbance and the component
f4(k+1)) for the sake of Theorem 3.2. We then let f,(k) =0 and thus f,;(k+1)=0
to derive the LMI condition for the stability analysis, and control and observer

synthesis.

Theorem 3.1 In the absence of f(k), the control law (3.10) can drive the system
state onto the ideal sliding surface o(k) =0, where o(k) is defined in (3.6), and thus,
the system state is stabilized if there exist symmetric matrices Py :=U [P(;‘ ,22] ul>o,
Q, >0, real matrices X, X, and X5, and scalars € >0, o > 0 satisfying the following

LMI:

My, * * * * ok
0 -0, +o0l * * * * %
V24B"P, \/2B"P,[4,8] —-B"PB * x  x %

0 0,A,— X;5C, 0 -0, * * % [<O0,
P, A+ BX, 0 0 0 P, x %
BX, 0 0 0 0 -P *

0 0 V2MTPB [m70lQ, MTP, 0 —el|
(3.14)

where M and N are known matrices in (2.2), 0< P;; € R™™ 0 < Py, € R=mXn=m),

and U € R™" is defined in Lemma 2.5, M, = —P, +X§BT+BX2+QI+€NTN.
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Here S = BTPI and the observer gains are given by

)=

(3.15)

Proof: Define
V(w(k)) = xT (k)P;x(k)+ el (k)Q5e, (k) + o (k)(SB) o (k), (3.16)

T
where w(k) = [XT(k) eaT(k) GT(k)] , Py >0 and Q, > 0 are symmetric matrices

and S = B" P;. Hence, we have

AV(w (k) =V (w(k+1)) =V (w(k))
=xT(k+1)Px(k+ 1) +el (k+ 1)Q,e,(k+ 1)+ 6T (k+1)(SB) lo(k+1)

—xT(k)Pyx(k) — el (k)0,e (k) — 6T (k)(SB) ' 6(k). (3.17)
It can be followed then

xI(k+ D) Px(k+1)
=x"(k)I[A+AA—-B(SB)"'S(A+AA)+ B(SB)"'S(AL, + AA)]"
X P[[A+AA—B(SB)"'S(A+AA)+ B(SB)"'S(AI,+ AA)]x(k)
+2xT ()AL, + AA) ST(SB)'S [ A, B] e (k)
+®[a, B| 5B s[4, Bew
=xT(k)[A+ AA— B(SB)"'S(A+AA)|" P,[A+AA— B(SB)"'S(A+AA)x(k)
+xT ()AL, + AA)T ST(SB)'S(AL, + AA)x(k) +2xT (k)(AL, + AA)T ST

x(SB)_lS[Aﬂ B]ea(k)+eaT(k)[Aﬂ B]TST(SB)‘lS[AA B]ea(k). (3.18)
Also,
el (k+1)0ye (k+1) (3.19)

AA ! AA
=xT(k>[ ] Qz[ ]x(k) +el (k) (A, — L,C)" 0y(A,— L,Cpe,(k)
0 0
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_ aal
+ 1 (k+1)Q, fd(k+1)+2xT(k)[ ] Q,(A,— L,C,)e,(k)
0

T
. |aa i . B .
+2xT (k) . 0, f,(k+1)+2eT (k)(A,— L,C,) O, f,(k+1),

ol (k+1)(SB)'o(k+1)
=xT(k)(AL, + AA)T ST(SB)'S(AL,+ AA)x (k) +el (k) [ A, B] ! ST(sB)'s

x [ A, B] e (k) +2xT (K)(AL, + AA)T ST(SB)LS [ A, B] e (k). (3.20)

From (3.17)-(3.20), we have

T
x(k) X X2 X3 x(k)

AV(w(k)=| e, (k) X 1 || ek | (3:21)
fak+ 0| [aly 2 ass]lfatk+1D)

where

211 =(A+AATP(A+AA) - (A+AA)TST(SB)"'S(A+AA)

- ST(SB)'S— P +2(AL,+AA)T ST(SB)™'S(AL,+ AA)
T
AA AA
+ Q2 )
0 0

T
T oT -1 Ad
112 =2(A1,+AA)T ST(SB) S[A,1 B]+ 0s(A,— LCo),
0

T
AA

X13= 0,

0

T

1 =2 [ A, B] ST(SB)'s [ A, B] +(A,—L,C)"Ox(A,~L,C,)—0s,
X23 =(Aa - LaCa)TQZ’
X33 =05.

Now, in order to analyze the system stability let f(k+1)=0. Then the system is
stabilized if

XX
Y= [ lTl 12] <—ol, (3.22)
/}/12 X22
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where ¢ > 0 is a scalar variable. Now it remains to consider the feasibility of Y < —oI

in (3.22). With the aid of Schur complement, (3.22) is equivalent to

X
0

0, [4']

where

*

X2

QZ(Aa - Laca)

*

*

V2BTP,(AI,+AA) 2B"P,[4, 8] —B"PB

0

*

*

*

—0,

<0,

F11 =(A+ DA P(A+AA) - (A+AA) ST(SB)' S(A+A4A)

(3.23)

—ST(SB)"'S— P, +oI,
In==—0r+o0l.
Therefore, using Lemma 2.3 it can be shown that the feasibility of the inequality
in (3.23) is equivalent to that of

i * * *

0 Y * *
X2 <0, (3.24)

V2BTP(AI,+AA) 2B"P,[4,B] —-B"PB *

| O[] 0,(A,— L,C,) 0 —0,
with

711 =(A+AA+BF,))T P(A+AA+ BF;)— P,

+F] (B"P|B)F,+ F, B" P+ PBF, +ol, (3.25)

where F3 and F, are two auxiliary variables [71]. Hence, using Lemma 3.1, 7, in

(3.25) can be rearranged as

1 =[P (A+AA)+BZF;" PT'[P(A+AA)+ BZF;]- P,

+F Z"B"P['BZF,+ F] Z"B" + BZF,+ol, (3.26)
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where Z satisfies PyB = BZ. Using the Schur complement it can be shown that
(3.24) is equivalent to

My, x * * ok ok
0 I * S S
V2BTP,(AI,+AA) 2BTP[4,B] -B"PB x * % 0 (3.27)
0, 4] 0,A,— X5C, 0 -0, *x x| '
P(A+AA)+BX, 0 0 0 -P *
I BX, 0 0 0 0 -P]

where M, =—P+ X} B+ BX,+o0l, X, =ZF;, X, = ZF; and X3 =0,L,. With
the help of Lemma 2.1 and the Schur complement, (3.27) is sufficed by the LMI in
(3.14).

Remark 3.3 The proof of this theorem provides a less conservative sufficient con-
dition for the design of a robust sliding matriz for the system in (3.1) involving
mismatched uncertainties. Further based on this proof, the second objective of this
chapter, when the disturbance estimator is utilized in the controller directly, will be

derived in the proof of Theorem 3.2.

3.3.2 Characterizing the system state boundedness

Theorem 3.1 presents a framework to design the ODSMC in order to stabilize the
system in (3.1). However, in the presence of exogenous disturbances, the proposed
control law in (3.10) can only ensures the boundedness of the system state and sliding
function. The following theorem characterizes the boundedness of the obtained

closed-loop system state and corresponding sliding function.

Theorem 3.2 In the presence of disturbance f(k), if the LMI in (3.14) is feasible,
for the obtained Py, Q,, L, = Q51X3 and o, the controller (3.10) satisfying (3.2)
will lead to a bound on the augmented system state {(k) = [xT(k),ea(k),aT(k)]T as

follows:
Ve >0, 3k* >0, s.t. Vk > k*,
A (W (3.28)
() e U ——
Oﬂmin(dzag(PbQZ’(B PIB)_ ))
where W =[ "¢ |, with Mp, = PLB(BT PBY BT P+ Py, andy = |[1T+0, | L3T2;
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here the scalar variable ¢ > 0 and matriz variable I1 > 0 are obtained from solving

the following LMI:

((6—0) [ +ENTN * * *
0 6— o)1 * *
(0= <0, (3.29)
0 0,A,-X;C,  -II *
i 0 0 (M7 010, —é |

where € >0 is a scalar variable.

T
Proof: Defining x(k) = [xT(k) eaT(k)] and using Lemma 2.2 it can be shown that

T
257 (k) [){ 13] Fyk+1) <xT (k) [X 13]n-1 [” 13] 7(k)
X23 X23 X3

+ /] (k+ DIf(k+1), (3.30)

where IT> 0. It then follows from (3.21) and (3.30) that

T
AV (w(k)) <—xT (k) {ol _ [I 13]11—1 [X 13] }x(k)
X223 X23

+ [T (k+ DI+ 331 fy(k +1). (3.31)

Choosing IT> 0 subject to

T
oI < ol — [)“3]111 [)“3] : (3.32)

X23 X3

where 0 < ¢ < ¢, which is clearly always possible if # > 0 exists, it follows from (3.31)
that

AV (w(k)) <= 6xT (K)x(k)+ [ (k+ DI+ 331 fy(k +1). (3.33)
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On the other hand, it can be seen that

M 0
V (w(k)) =‘T(k>[ B ]x(k)
0,

0 (3.34)
25T (kyw x(k),
where Mp = P,B(B" P|B)"'B" P, + P,, then
Anin (W 1XGON1? S V(@ (K)) < Ao W) X2 (3.35)

Furthermore, it can be shown that

Amin(diag(Py, 0o, (BT P, B)" ") [|w(k)||* < V (w(k))

< Apax(diag(Py, 05, (BT Py B)™H) |w (k).

Hence, from (3.33) and (3.35), also the continuity assumption in (3.2), we have

A

AV (w (k) < - V(w(k)+r. (3.36)

0
/lmax(W)

where y = |1+ Q| L?,Tsz. Note that from (3.22) it is known that
2 Yx(k) =V (@k+ D)7 1y o=V (@K) < —ox" ()% (k). (3.37)

It is obvious that V(w(k+ 1))|fd(k+1)=0 > 0, and thus, from (3.37) and (3.35), we

have ¢ < Apax(W). Therefore, - O(W) < 1. Eventually, from Lemma 2.4 and (3.36),

the bound in (3.28) can be obtained.

Moreover, to find IT> 0 in (3.32), for given P, >0, Q, >0, L, and ¢ > 0, by
utilizing Lemma 2.1 and the Schur complement, (3.32) is sufficed by (3.29), in which

€ > 0 is a scalar variable.

3.3.3 Discussions

1) The solution of the LMI in (3.29) does not have direct influence on the con-
troller design and the actual ultimate bound on the system state and/or sliding
function, however, these parameters would lead us to determine a more accurate

bound. Therefore, to obtain the minimum value of the bound in (3.28) the LMIs in
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(3.14) and (3.29) could be solved subject to a specific criteria. This issue is beyond
the scope of this thesis and remains for the future works.

2) Due to the full column rank of B, the columns of matrices B and P, B are
linearly independent if P; > 0. Consequently, if (3.5) holds for P; >0 and Z, we

have
rank(Z) > rank(BZ) = rank(P, B) > rank(B) = m, (3.38)
which clearly denotes the non-singularity of Z. Also, it can easily be shown that
z'=vzpilzvT. (3.39)

3) Furthermore, unlike [87], [89] and [133] which use Lemma 2.2 to eliminate
the cross terms between the system state (state estimate), the estimation error and
even disturbance which obviously imposes some conservatism on the problem, here
instead, it has been shown that the mentioned cross terms would not influence
the feasibility region of the final LMI condition. Moreover, this chapter, unlike [87]
which uses Lemma 2.2 to deal with the negative terms in AV ({(k)) to make a convex
problem, exploits Lemma 2.3 which is clearly a lossless technique and imposes no
additional conservatism on the LMI condition.

4) Tt should be noticed that the parameter ® = AI, 0 < A < 1 plays a significant
role in the magnitude of the thickness of the boundary layer around the sliding
surface [52]. From (3.13) it can be shown that

k—1
o;(k) = 1*6,(0) + Z Ay, i=1,,m, (3.40)
Jj=0
where P(j) = SAAx(j)+SA e(j)+ SBe;(j). Supposing 9_1' = max(Z;(k)), it follows
then from (3.40),

Ve, >0, 3k’ >0, s.t. Vk> kT, o,(k) < ﬁ@] te,i=1,-,m. (3.41)
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Assuming y,; £ 11—/195,- +¢;, the boundary layer is

m
o= W (3.42)
i=1

As seen, the smallest boundary layer could be obtained by setting A4 to zero. In
that case, the discrete-time sliding mode controller steers the system state into the
quasi sliding mode band only in one time step. As mentioned, this would result in
a high-gain or excessively large control input which is not desirable for most of the
practical systems since it can saturate the actuators of the control system. Hence,
there is a tradeoff to be considered between the level of the control input and the
thickness of the boundary layer.

5) The sliding surface in this scheme is set to be in the state space, this matter is
significantly different from the sliding surface in [89] and [133] which is in the esti-
mation error space or the state estimate space. The Lyapunov functional candidate
also, in these references, contains the state estimate and the state estimation error.
Here, instead we have used the system state directly in addition to the state esti-
mation error and sliding function in the Lyapunov functional candidate. Roughly
speaking, the main drawback of the schemes, given in [89] and [133], comes from the
fact that in order to formulate an LMI problem, it is inevitable to use same positive
definite decision variable P for both quadratic terms xT(k)Px(k) and eT(k)Pe(k),
otherwise, a BMI problem can be arisen, which is not easy to handle. For example,
[20] utilizes two different positive definite decision variables in its Lyapunov-based
scheme for the design of a dynamic output-feedback CSMC (OCSMC), which nat-
urally leads to a BMI problem. Note that, as mentioned earlier, since a variable
structure discontinuous controller is not provided for the proposed ODSMC by the
means of the sliding function, the introduced sliding function here, can be defined
to be in the state space. Furthermore, in this case we do not need to struggle with

a BMI problem.
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3.4 Simulation Results

Consider the system (3.1) with the following parameters:

06 0 05 1 03
0 05 1
A=10 07 03|, B=[06 0| C= ,
01 0 2
0 0 15 0 1

T
M = [0.3 0.1 —0.1] , N= [—0.2 -0.2 0.3] ,

R(k) = 0.3sin(k).

Note that the open-loop system is unstable. Suppose f(k) = [8:(1)2] [2—sin(%)].
Solving the LMI (3.14), the following results are obtained:

0.83 —0.88 —0.27
032 0.02
P =[-088 22470 024 |, P, = , Py =272,
[—027 024 057

168 —171 013 —0.12 —0.61]
-1.71 699 040 -450 0.07
0,=|013 040 615 0.08 -423],
-0.12 —4.50 0.08 957 032
| —-0.61 0.07 -423 032 10.67 ]

230 -1.11
149 -0.74
Ly=|240 -1.05|, L= )
-0.02 0.32
-0.24  1.17

031 047 -0.13
S= , 0=0.08, e=2.52.
| —0.02 -0.03 043

Applying the controller in (5.4) with given P, above to the system, the results are
given in Figs. 3.1. Fig. 3.3 shows the performance of the disturbance estimator f(k)
in (5.1).

A comparison:

It can be seen in the literature that a frequently used alternative for the discontin-

uous component (say 9(k)) has the following general form:

9(k) = ¢ + vsgn(o(k)), (3.43)
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Figure 3.1: State and state estimate trajectories using the controller in (3.10)
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Figure 3.2: Trajectories of the sliding function using the controller in (3.10)
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Figure 3.3: Disturbance and disturbance estimator output

where ¢ and v are known parameters. For instance, in [87], with ignoring the bounds
of SAAx(k), ¢ and v are set to be some constants which include the bounds of
SBf(k), similar to " and % . Furthermore, due to the dependency of (k) in
(3.6) on the state x(k), o(k) can also be replaced by

(k) =Sx(k) = Sx(k)—Se(k),

and hence (2.19) is revised to

9(k) = ¢ + vsgn(6(k)). (3.44)

Note that an LMI condition can be derived, as the one presented in Theorem 3.3
hereafter, that ensures the boundedness of x(k) and e(k), and hence, 6(k) can be an
acceptable estimate of o(k). The controller containing (k) as in (3.44) may lead
state trajectories to chatter around the switching surface with amplitude dependent
on the lower bound on the term (3.44) and with the frequency equal to the sampling
rate; see [52].
Let

I(k) = F + pdiag(F )sgn(6(k)). (3.45)
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where @ > 0 is a designing parameter, #© and F  are defined in (2.11). Thus, the

controller can be defined as:
u(k) = —(SB)_lSA,pAc(k) —F - ediag(F )sgn(e(k)), (3.46)

Notice that the controller (3.46) satisfies all three reaching conditions given in [30].
Furthermore, in such a case, the observer in (3.3) can be replaced by a standard

state observer as:

{ %(k+1) = A%(k) + Bu(k)+ L[y(k) — $(k)] (3.47)

k) = Cx(k),

where L € R™? denotes the observer gain. The switching function matrix S and

observer gain L will be selected through the following theorem.

Theorem 3.3 The control law (3.46) can drive the system state into a boundary
layer around the ideal sliding surface (3.6) and, in addition, the system state is
ultimately bounded if there exist matrices Py = U[Pél P(;]UT >0, >0, X, X,

and X5, and scalars € >0, n > 0 satisfying the following LMI:

M * * * * * %
0 —P,+nl * * * * %
V2iBT"P, \2B"PA, -B'PB  « x  ox
0 PyA—X;C 0 P,  *  x % |<0 (348)
P A+ BX, 0 0 0 -P  x *
BX, 0 0 0 0 -P x
0 0 V2MTPB MTP, MTP 0 —el|

where M and N are known matrices in (2.2), 0 < P;; € R™™M 0 < Py, € RO=m*=m),
and U € R™" is defined in Lemma 5.1, N}, =—P, +X2TBT+BX2+11[+€NTN. Here
S = BTPI and the observer gain is given by

L=P]'X;. (3.49)
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Figure 3.4: Trajectories of the state and state estimate using the controller in (3.46)
with ¢ =1

Proof: The proof of this theorem is an application of the proof of Theorem 3.1 and
thus is omitted here for the brevity purposes.
Using the matrix S and the observer gain L obtained from solving the LMI condi-
tion (3.48), with ¢ =1 and diag(#~) = diag(0.06, 0.16), the results of applying the
controller/observer in (3.46) and (3.47) to the system are given in Figs. 3.4-3.5.

As seen, the controller in (3.46) leads the state trajectories to chatter around the
switching surface, whilst the controller (3.10) that exploits disturbance observer in

its control law does not result in such a large and undesired chattering effect.

3.5 Conclusions

In this note, with the assumption of dealing with slow exogenous disturbances, a
unified observer-based output-feedback DSMC scheme, for the systems involving
unmatched uncertainties and matched disturbances, has been developed, which in-
cludes an additional proportional integral estimator for estimating the disturbance.
The proposed scheme is applicable to general systems including unstable systems.
The boundedness of the obtained closed-loop system has been analyzed and a bound
has been derived for the closed-loop system state, estimation error and also sliding

function. The framework presented in this chapter is less conservative compared to
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the existing literature for the robust DSMC and also OCSMC.
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Chapter 4

DSMC for NCSs involving
consecutive measurement packet

losses

4.1 Introduction

Feedback control systems whose control loops involve real-time network are referred
to as Networked Control Systems (NCSs). The most significant advantages of NCSs,
compared to the conventional control systems, are smaller wiring system, lower
overall cost, high reliability, as well as simple installation and maintenance etc;
see [137]. However, using the communication network in the feedback control loop
makes the stability analysis and controller design more complex. This fact is due
to the possible delays and data packet dropouts which exist in the communication
network (arising from its limited bandwidth) [132]. Hence, the problem of control-
ling the networked systems involving random delays and/or data packet dropout
has been a subject of interest among researchers in the recent decades; e.g. see
[137, 132, 41, 76, 128, 140, 93, 34].

On the other hand, several probabilistic methods have been used to model the
packet dropout so far (see [65, 86, 114]). Due to the practicality and simplicity of
the binary random delay, this model has received more attention to model network
packet losses [127, 65, 86, 114, 123, 99].

A vast variety of the early discrete-time sliding mode control (DSMC) investiga-
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tions have aimed to make a discrete-time counterpart to the continuous-time reach-
ability condition [67, 103, 36]. Referring to the results presented in [52, 113, 84], the
use of a switching function in the control law may not necessarily improve the per-
formance. On the other hand, if the exogenous disturbance is bounded and smooth,
it has been shown that exploiting a disturbance observer in the DSMC is beneficial
in terms of reducing the thickness of the boundary layer around the sliding function
[119]. Here, inspired by the idea of disturbance estimation, a novel form of switching
function is proposed which can be more efficient in terms of reducing the ultimate
bound on the system state and also bounding the chattering created by conventional
switching functions.

Most of the work on SMC has been implemented for the systems in which sys-
tem signals are transmitted perfectly; see e.g. [139, 68, 25]. Recently, several papers
focused on the design of SMC for the systems involving time delays or packet losses.
For instance, [138] develops an integral SMC in continuous time for offshore steel
jacket platforms involving state time delays. Moreover, designing the DSMC subject
to packet losses is considered in [87, 18]. However, the DSMC given in the existing

literature suffers from the following major drawbacks:

o [t is assumed that the packet dropout may not occur consecutively, which is

obviously not a realistic assumption; cf. [37].

e The sliding function in the current literature is designed by means of the
system state which, due to the packet losses in the communication channel, is

not accessible; cf. [87, 18].

o The given methods utilize several inequalities, to provide an LMI condition for
analyzing the boundedness of the overall closed-loop system and to design the
sliding manifold. This imposes a heavy conservatism on the problem. Indeed,

it requires that the open-loop system in [87] be stable.

The main goal of this chapter is to stabilize an NCS involving consecutive data
packet dropout with a sliding mode control strategy. In doing so, a novel sliding
function is introduced by employing the available communicated system states in-
volving packet losses. This is significantly different from the existing DSMC in the
literature [87, 18], and it also provides the possibility to directly build the switching
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component of the DSMC by exploiting only the available system states. In addition
to this major progress, this chapter contains the following important innovations:

- The proposed DSMC can be applied to the unstable systems directly cf. [87].

- This chapter does not assume bounded system state in the first place to derive the con-
troller or analyze the boundedness of the underlying closed-loop system. Also, the system
uncertainty will be addressed using the robust control techniques; cf. [87, 12].

- A novel scheme is developed to reduce the conservatism which exists in the current liter-
ature that removes the cross term between state and disturbance to make a fully diagonal
problem.

- In this note, in order to solve a matrix inequality problem including an uncertain neg-
ative signum quadratic term, a lossless technique is utilized to convert it to a form that
can be easily written as an LMI. This technique can greatly widen the applicability region
of our DSMC compared to the existing literature for the DSMC, cf. [87].

- Considering smooth and bounded external disturbances, a novel stochastic disturbance
observer is developed. A more practical switching function is provided in the controller
using the proposed disturbance estimator with the aid of the signum function. The pro-
posed DSMC that uses this switching function has effectively better performance in terms
of reducing the thickness of the bound on the system state and sliding function in com-
parison to the linear controller.

- This note utilizes a stochastic measurement model which can explain the occurrence of
the long-term random delays and/or consecutive packet losses in the NCSs.

The rest of this chapter is organized as follows: Section 4.2 describes the problem
formulation. In Section 4.3, the proposed method to design the stochastic sliding
surface is given. Variable structure DSMC is discussed in Section 4.4. Efficiency
of the proposed DSMC is studied by numerical examples in Section 4.5. Finally,

Section 4.6 concludes this chapter.

4.2 Problem Formulation and Preliminaries

Consider the uncertain linear discrete-time system in (2.1). It is also assumed that
the measured outputs, which are equivalent to the system states, are sent to the

controller via a communication network. As a result, the measurements may involve
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the detrimental phenomena referred to as data packet dropout. In this note, we
use the following estimation scheme to provide the controller by the system state
information,

x.(k) =(1—=a(k))x(k)+ a(k)x.(k—1), (4.1)

where x.(k) € R" is the communicated output available to the controller and the

stochastic variable a(k) € R is Bernoulli distributed white sequence with

Prob{a(k) =1} =E{a(k)} =a (1.2)
Prob{a(k) =0} =1-E{a(k)} =1-a, |

where 0 < a < 1 implies the probability that a data packet may be lost or has delay.

Remark 4.1 The measurement model (4.1), proposed in [18], is essentially different
from the one which has frequently been used in [99, 127, 152, 70, 87] etc. The
estimator in (4.1) provides the controller with the previous existing system state
estimate (x,(k—1)) in the case of a packet dropout or delay. Note that in the
literature, rather than the measurement model (2.6), the following one is frequently
utilized,

x.(k) = (1 —a(k))x(k)+a(k)x(k—1). (4.3)

This model indeed would impose an assumption on the system networks that the
packet dropout may not occur successively. This is obviously not a realistic assump-
tion. Instead, the model (4.1) can cope with the long-term random delays and/or
frequent packet losses. Notice that the model (4.3) has been used to cope with both
time varying communication delay (e.g. see [152, 76, 127]) and data packet dropout
(e.qg. see [87]). Considering the model (2.6) instead of model (4.3), if a packet
loss occurs, the estimator (4.1) provides the controller by x.(k) = x.(k—1), else
the controller utilizes x.(k) = x(k) instead. Here, x.(k—1) denotes the last available
communicated data packet. This justification can also be used for the communication
random time-delay accordingly. It means that if the time-delay of the communica-
tion channel, which is assumed to be T4, is less than a sampling period (T ) of the
discrete-time control system, the delay has no influence on the system and we have

x.(k)=x(k). But, ift; > T, then x.(k) =x.(k—1). Note that, in the case of random
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delay occurrence, x.(k—1) can be regarded as x(k—1;).

In the following of this chapter, for simplification, we use the brief @ and AA instead
of a(k) and AA(k), respectively. We also recall the notion of exponential mean square

stability from [132] for the stochastic parameter systems as follows.

Definition 4.1 ([132]) Consider the following stochastic system,
E(k+1) = AE(k), (4.4)

where (k) € R" denotes the state vector and E(0) € R" is its initial condition. If

there exist constants y >0 and p € (0,1) such that
E{IERIPY <o ELIEOIN), V>0,

then the stochastic system in (4.4) is said to be exponentially mean square stable.

Lemma 4.1 ([132]) Assume V(E(k)) to be a Lyapunov function. If there exist real
scalars A>0, u>0, v>0 and O <y <1 such that

ullER)|I> <V (EK) < VIIEKR)?,

and

E{V (E(k+1)[E(K)} =V (£(k) SA—yV (£(K)), (4.5)

then the sequence E(k) satisfies
E(IEWR)I2) < LE{IEOI2 (1 —y)k + .
U Hy

Lemma 4.1 introduces a special boundedness definition for stochastic discrete-time
systems involving exogenous disturbance. In this chapter, a system state which
satisfies the condition presented in Lemma 2.4 is said to be exponentially mean

square bounded.
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4.3 Stochastic Sliding Mode Control

This chapter aims to design a stochastic sliding mode controller in order to stabilize
the stochastic system (2.1).

Consider the following stochastic discrete-time sliding function,
o.(k)=Sx.(k), (4.6)

where the matrix § € R™" will be designed later such that SB is nonsingular.
Notice that the sliding function used in this note is different from the one defined
in [87]. This reference proposes an integral-like sliding surface by means of the
system states x(k) and x(k—2). This sliding function could not be utilized directly
in the variable structure discontinuous control strategy, as x(k) and x(k —2) are not
available.

Notice that in the ideal sliding mode we have
o (k+1)=0,(k)=0, Vk>k,, (4.7)

where k; > 0 denotes the time when sliding motion starts. Now, the following control
law is proposed,

u(k) = —(SB)~' S Ax, (k) — 9(k), (4.8)

where @(k) denotes the nonlinear component which will be used in the controller
to compensate the bad effect of disturbance on the ultimate bound on the system
state trajectories. It is assumed that the disturbance estimation component 9(k)
is bounded, satisfying (2.13) (in the previous chapter). Some choices for 9(k) are

presented later in Section 4.4.

Remark 4.2 In this chapter, to construct the control law (4.8), it is only assumed
that the upper and lower bounds on the matched exogenous disturbance are known.
However, it can be seen in the literature ([87] and [12]) that the term SAAx(k)
is assumed to be bounded. As AA(k) is a time-varying uncertainty, in order to
find the bounds of SAAx(k), one requires to know the behavior of the closed-loop
system state in advance, and as a result, to know ||x(k)|| from the beginning and

before applying the controller to the system. Broadly speaking, it is not a realistic
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assumption that we can have the bounds on the system states. Instead, we neglect
using any bound on the system states and only deals with the system unmatched

(mismatched) uncertainties using the robust control strategies.

The following of this section aims to consider the stability of the stochastic system
(2.1) using the controller (4.8). As a result of applying the controller (4.8) to the
system (2.1), it is seen that

x(k+1)=[A+AA-(1—a)A] x(k)— aAx (k- 1)+ B fy(k), (4.9)
where A = B(SB)"!SA. Furthermore, it can be found that

o (k+1) =(1—a;, e, S(A+AA) + (1 — ) SAA]x(k)
—ay (1=, )SAx, (k= 1)+ (1 =, ) SBfy(k)

+ o (1 —a)Sx(k)+ a0, Sx . (k—1), (4.10)

where a;; and a; stand for a(k+1) and a(k) respectively. It should be noted that
with applying DSMC to discrete-time systems involving exogenous disturbances,
the closed-loop system should be analyzed in terms of boundedness. Besides, the
DSMC would only ensure that the state trajectories are driven into a boundary
layer around the ideal sliding surface o(k) = 0. This issue is indeed regarded as the
quasi sliding mode (QSM) in the literature. On the other hand, due to the presence
of mismatched uncertainty in the system dynamics, it is difficult to analyze the
reachability of the QSM by means of a separate sufficient condition. Alternatively,
the following theorem considers a method to analyze simultaneously the reachabiltiy
of QSM and the boundedness of the system states by means of a discrete-time

Lyapunov stability method.

Theorem 4.1 The control law (4.8) can steer the state of the stochastic system (2.1)

into a boundary layer around the ideal sliding surface (4.7) and, also the system state
s exponentially mean square bounded if there exist P .= U[J%1 PZZ]UT >0, 0>0,

X;, i=1,2,3, and scalars e > 0, n > 0 satisfying the following LMI,

i
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v

Y * * * * * * *
0 ¥, * * * * "
uBTPA -y B"PA —-B'PB * * ok * %
0 0 0 -B"PB % * * %
<0, (4.11)

BX, 0 0 0 -P % * X
PA+BX, 0 0 0 0 -P * *
0 BX, 0 0 0 0 -P x

0 0 yM"PB u,M™PB 0 M'P 0 —el |

where Li’ll =-P+0+(1 —&)(XzTBT+BX2)+nI+€NTN, ‘i'zz = —Q+5(X3TBT+
BXy)+nl, uy =+aQR-a), u, =y/(1-a)2—-a), s =+a(l-a) and Q =(1-a)Q.
Here U is defined in (3.4), S = BT P and {x} denotes the symmetric elements in a

symmetric matrix.

Proof: Define
V(£ (k) = xT (k) Px(k) + xT (k= DQOx (k— D)+ 6L (k)(SB) o, (K),

T
where {(k) = [xT(k) xZ(k— 1) gz(k)] , P >0 and Q > 0 are symmetric matrices

and .S = BT P. Thus, we can write

AV (k) 2 E{(V (E(k+1)|¢(k)} =V (£ (k)
=E{x" (k+ )Px(k+1)+x. (k)Ox (k) + oL (k+ 1)(SB) "o, (k+ D|¢(k)}

—xT (k) Px(k) = xF (k= 1)Ox (k= 1) =T (k)(SB)"'o (k). (4.12)
It can be shown then

E{x" (k+1)Px(k+1)|¢(k)} (4.13)
=E{x"(0[A+ A4 - A]"P[A+AA-(1 - 0)A]x(0

—2xT (k) [A+AA - (1 —a)A]" Padx.(k—1)

+a?xT(k—=1)ATST(SB)"'SAx (k—1)

+2xT (k) [A+AA— (1 - ) A]" ST fy(k)

= 2ax! (k= DATST fy()+ 1] KNS BY 30| £ |.
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Besides, note that E{a(1—a)} =0, E{a’} =a and E{(1—a)?*} =1 —a. Thus, it can
be demonstrated that

[E{xT(k)[A+AA— (1—@)Ay+(1—)AA]TP
x[A+84=(1-0Ay+(1 - )Aad]x(0|c0 |
=xT([(A+AATP(A+AA) —(1—a)A+AA)TST(SB)'S(A+AA) (4.14)

+(1—-a)AATST(SB) ' SAA]x(k),
where Ay = B(SB)"'S(A+AA), AA=B(SB)"'.SAA and

E{ =27 (0[A+ 84— (-] Padx (k- D|cwo) |

=—2ax’ (k)(A+AA)T ST(SB)'SAx (k—1), (4.15)

[E{azch(k —DATST(SB)~' S Ax, (k- 1)|C(k)}

=ax! (k—1)ATST(SB)"'SAx (k—1), (4.16)

{2 (0[A+84- (=) Ay + (- AA]ST fy00|¢00 |

=2xT (k) @A+ AA)T ST f4(k), (4.17)
[E{ “2axT (k= 1)AT ST f,g(k)|g“(k)}
=—2ax! (k—1)ATST fy(k). (4.18)
Also, it is easy to show that

E{x (00x.(0)c (k) }

=1 —a)x" (k)Ox(k) +ax! (k- 1)0x (k- 1), (4.19)
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E{oy (k+ 1)(SB) o (k+ D¢ (k)

=5>xT (k)(A+AA)T ST(SB)™'S(A+ AA)x(k)
+(1—a)’xT (k) AAT ST(SB) ' SAAx(k)
—262xT (k) (A+AA)T ST(SB) LS Ax (k- 1)+ 282 xT (k)(A+ AA)T ST fy(k)
+2(1—a)*xT () AAT ST fo(k)+8*xT (k— 1) AT ST(SB) 'S Ax (k- 1)
=26*xL (k= 1DATST fo(k)+(1 =) f (K)(SB)fy(k)+5°x" (k)ST (SB)™ Sx(k)

+a@’xI(k=1)ST(SB) 1Sx.(k—1), (4.20)

E{cl (k)(SB) o (k)| (k)}

=(1—a)xT (k)ST(SB)"'Sx(k)+axT (k—1)ST(SB)~1Sx, (k—-1), (4.21)

in which E{a;, e} = a2, E{(1 =y, e} = E{(1 —a)a,,} = a(l —a) £ 6% and

E{(1-a)(1—a;, )} =1 —a)* Using (4.13)-(4.21), it follows from (4.12) that

T

AVEK) =[x (k=1 | [¥], ¥ Pnl|[x.(k-D] (4.22)
fotey | (W15 ¥y sl fo®)

where

¥, =(A+ A P(A+AA) —(1-a)*(A+AA)TST(SB)IS(A+AA)
+(1-a)2-a)AATST(SB) 1SAA-P+(1-a)Q
—(1-a)’STsB)'s,

¥,=—aR-a)A+AA)TST(SB)154,

¥,, =a2—a)AT ST(SB)'sA-562ST(SB)"Ls-(1-a)0,

and Vi3 = 2-a)[@ad+AAT ST, ¥, = —a2-a)AT ST and W33 = (2—a)SB. Now,
to prove the system stability, let fg(k) =0. Then the system is stable if

v, W
Y:=[ : 12]<—;11, (4.23)

¥, ¥
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where 7> 0 is a scalar variable. With the choice of .§ = BT P and using Lemma 2.3,

it is known that the feasibility of (4.23) is equivalent to that of

[ ¥, * * x ]
0 y * *
2 <0, (4.24)
uBTP(A+AA) —u B"PA —B'PB *
1, BT PAA 0 0 -B"PB]

where y; = \aQR-a), u, =+v/(1-a)2—-a), 0 =(1-a)Q and

¥, =(A+AA+BF\)' P(A+ AA+ BF))+ F/(B" PB)F, +(1-a)F) B' P

+(1—a)PBF,-P+0Q+1l, (4.25)
W), =—O+nl+F!(B" PB)F;+8F! B P+6PBF;, (4.26)
in which F;,i=1,2,3, are introduced auxiliary variables as in Lemma 2.3. According

to Lemma 3.1 and letting P := U[lg‘ P(;]UT >0, where 0< Pj; e R™™ and 0< Py, €

R=mX(n=m) there exists Z € R™™ such that the equality in (3.5) holds. Then it
follows from (4.25) to have

¥, =[P(A+AA)+BZF,|"P"'[P(A+AA)+BZF,|+F/ Z" B"P~'BZF,
+(1-a)F/ Z"B"+(1-&)BZF,— P+ Q+nl. (4.27)

¥, =—Q+nl+F/Z"B"P'BZF;+5F] Z" B +§BZF;. (4.28)

Using the Schur complement and Lemma 2.1, with introducing ZF; = X;, i =1,2,3,
the inequality in (4.24) can be implied by the LMI (4.11).

While the above theorem presents a framework to design the DSMC in order to sta-
bilize the NCS in (2.1), it does not give a bound on the system states. The following
theorem will characterize the boundedness of the obtained stochastic closed-loop

system state and corresponding sliding function.

Theorem 4.2 [f the LMI in (4.11) is feasible then the bound on the augmented
system state (k) is, for given P> 0,0 >0 and n> 0, as follows

A (M
Vo> 0, 3k* >0, Vk > k*, s.t. E{ICK)} s%yw, (4.29)
naq
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where Ay = Ayip[diag(P,Q,(SB)™H], M= diag(M ,, Q) with Mp =P+ PB(B" PB)"'B" P,
and y =7* |1+ Q2 —a)SB|| ||F||?; here the scalar variable f > 0 and matriz variable

I1> 0 are obtained from solving the following LMI,

[(h—mI+eNTN * * *
0 n—mnl * *
@ =n) <0, (4.30)
w:B"PA  —utB"PA 11 *
] 0 0 Q2-a)M"PB —éI |

where € >0 s a scalar variable.

T
Proof: Defining x(k) = [xT(k) ch(k— 1)] and referring to Lemma 2.2 it can be

written that

T
p p p
13]129(10 sxT(k)[ 13]1‘1‘1[ 13] () + T UOTLf oK), (4.31)

2xT (k) [
lI123 \P23

23

where IT> 0 is a matrix of appropriate dimension. It follows from (4.22), (4.23) and

(4.31) that

T

Y Y

AV(:(k))s—scT(m{nI—[ 13]11-1[ 13] }fc(k)+f§ (O +¥331f5(k).  (4.32)
lP23 ‘PZS

If we choose IT > 0 such that
y y !
Al <yl —[ 13]111 [ 13] : (4.33)
W3 Y3

where 0 < 7 <7, which is always possible if # > 0 exists, then, it follows from (4.32)

that

AV (LK) <= axT (kK)x(k) + [ (K)[TT+W331f (k). (4.34)
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Besides, notice that

M 0
V(c<k>)=xT<k>[ P ]>'c(k)
0 0

2 3T (k)M z(k),

where Mp =P+ PB(BT PB)"'BT P, hence

Amin M RN LV (E(K)) < Ao (M) [|%(R) || (4.35)

Moreover, it is obvious that

MICHN? LV EK) £ LI, (4.36)

where A, = A, [diag(P,Q,(SB)™)] and 4, = A, [diag(P,Q,(SB)"")]. Therefore,
from (4.34) and (4.35), one can derive that

A

AV (E(k)) < ——1

—an’ Cen+r (4.37)
where
y =7+ -a)SB|l|F |, (4.38)
Note that from (4.23) it can simply be written that, Vx(k) # 0
E{V @+ D), o|ck) | =Vt = 5T Y00
< —nx" (k)x(k). (4.39)

It is also known that [E{V(C(k+ )| fg(k)zo‘g(k)} >0, and thus, from (4.39) and
(4.35), it can be claimed that A.,,,(M) > n. Therefore

A

U

—< 1L

’lmax(M)
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Eventually, from Lemma 4.1 and (4.37) one can reach the bound given in (4.29).
Now to find IT> 0 and # utilized in (4.29), we need to check the feasibility of (4.33).
We then use the Schur complement and Lemma 2.1, for given P >0, Q > 0 and
n >0, to show that the inequality in (4.33) is sufficed by the LMI in (4.30).

Remark 4.3 Due to the full column rank of B, the columns of B and PB are
linearly independent if P> 0. Consequently, if (3.5) holds for P >0 and Z, we have

rank(Z) > rank(BZ) = rank(P B) > rank(B) = m,
which clearly denotes the non-singularity of Z. Also, it can easily be shown that
z'=vz e syt

Remark 4.4 The scheme exploited in the proof of Theorem /.1 can reduce the
conservatism of the sufficient conditions which can be found in the existing literature
(cf. [87]). Indeed, unlike [S7] which uses Lemma 2.2 to deal with the negative terms
in AV ({(k)) to make a convex problem, we exploit Lemma 2.5 which is clearly a
lossless technique and imposes no additional conservatism on the LMI condition.
Also, in [87], the cross terms between the system state (x(k), x,(k—1)) and fg(k)
have increased the conservatism of the final obtained LMI condition. Here, it has
been shown that the mentioned cross terms would not influence the feasibility region
of the final LMI condition (4.11). Additionally, [87] removes the cross term between
x(k) and x,(k—1) (x(k—1) in [87]) through an inequality. This note avoids using

this inequality and lets the cross term to be in the original form.

The solution of the LMI in (4.30) or equivalently the values of the variables 7 and II
do not have direct influence on the controller design and the actual ultimate bound
on the system state and/or sliding function, however, these parameters would lead
us to determine a more accurate bound. Therefore, to obtain the minimum value
of the bound in (4.29) the LMIs in (4.11) and (4.30) could be solved subject to a
specific criteria. This issue is beyond the scope of this thesis and remains for the

future works.
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4.4 Variable Structure Controller Considerations

As mentioned in [119], f(k—1) is an acceptable estimate of f(k), while the exogenous
disturbance is smooth and bounded. Now let us assume that the system signals in

(2.1) are transmitted without any packet losses, we have
fk=1)=(SB)"LS[x(k) — Ax(k—1)— AA(k — 1)x(k — 1) — Bu(k — 1)].
Then, d(k—1) can be estimated by
f(k)=(SB)~1S[x(k)— Ax(k —1)— Bu(k — 1)]. (4.40)
The above equation can also be written as
fk)y=(SB) 'SAA(k— Dx(k—1)+d(k—1).

For the balanced uncertainty AA, it is known that (SB)"L.SAA(k — Dx(k—1) is
also balanced and would not change the mean values of the vector fc(k). Besides,
while the system state is bounded, the vector (SB)"'SAA(k — 1)x(k — 1) remains
also bounded. Hence, with the proper choice of S and for the small uncertainty AA,
it can be stated that the magnitude of (SB)"'SAA(k—1)x(k—1) would remain very
small compared with that of f(k—1). However, due to the packet dropout which
exists in the communication network, f(k) in (4.40) is not applicable. Hence, the

following stochastic disturbance estimator is proposed instead:
fe(k) =(SB)™' S[x,(k)— Ax,(k — 1) — Bu(k —1)]. (4.41)
Then, we put the component 9(k) in (4.8) as
Ik)=F" + %diag(gf“)sgn( f.lk)=F"), (4.42)
where diag(#~) =diag(f; -, f,,)- Inthiscase, 7=1.5in (2.13) and y = % I+ Q2—-a)SB||F |
in (4.29). Note that this bound denotes the worst case scenario bound and, as it is

supposed that disturbance in the system (2.1) is slow, this bound, with the perfect
position estimation, could be reduced to 7* =0.5 and y* = % T+ 2 -a)SBI |F |
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Thus, the controller (4.8) can be chosen as
u(k)=—(SB)™! SAx . (k)—F" - %diag(%)sgn(fc(k) -Fh), (4.43)

where f,(k) is defined in (4.41). Using the component as in (4.42) in the discrete-
time sliding mode controller would lead the state trajectories to chatter around the
sliding surfaces with frequency equal to the frequency of exogenous disturbance.
Also, as mentioned, for smooth and bounded exogenous disturbances, it could re-
duce the thickness of the ultimate bound on the state trajectories and boundary

layer around the sliding surface.

4.5 Simulation Results

In order to study the performance of the proposed control law, an un-interruptible
power system (UPS) is considered here [132]. The aim is to control the PWM
inverter in order to keep the output AC voltage at the desired setting robustly.
The UPS is a 1 KVA one. The discrete-time model is obtained with sampling time

0.01sec at the half-load operating point, which is as follows

0.9226 —-0.6330 O 1
A= 1.0 0 0, B=|0|-
0 1.0 0 0

We assume that all the system states are accessible. We also consider the following

uncertainty parameters and disturbance in the system

T
M = [().05 0.15 0.08] , N = [—0.05 0.06 0.10] )

R(k) = 0.5sin(k).

The probability of the packet loss is @ = 0.1. Note that the open-loop system is
unstable. Notice also that the given DSMC in [87] is not applicable to this system,

since the designing LMIs are not feasible. Suppose

fk)= O.lsin(g).
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Figure 4.2: Trajectories of the state using the controller (4.43)

Solving the LMI in (4.11) gives the following results:

34.32 0 15.34 =297 -0.10
3233 699, O=|-297 14.15 4.56
6.99 9.43 -0.10 456 6.30

S = 3432 0 0 n=0.08, e =33.49.

Hence, using P, " =0 and # = 0.1 the control law given in (4.43) is obtained.
Here, the initial state is assumed to be x(0) = [1 0 O]T. Bernoulli sequence a(k)
is depicted in Fig. 4.1.

We apply the controller in (4.43) to the system (2.1). The results are demon-
strated in Figs. 4.2-4.3.  Fig. 4.4 shows the performance of the disturbance estimator
(4.41).
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Figure 4.3: Evolution of the sliding function using the controller (4.43)
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Figure 4.4: a) Disturbance b) Disturbance estimator output
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Figure 4.5: Evolution of the sliding function using the controller (4.44)

4.5.1 Comparison 1

Let us consider the following controller:
u(k) = —(SB)' S Ax, (k) — F' — diag(F )sgn(o, (k)), (4.44)

which uses a similar switching component as in [87]. Fig. 4.5 demonstrates the evolu-
tion of the sliding function using the controller (4.44). As seen, the proposed DSMC
in (4.43) that uses the practical switching function (4.42), by employing the proposed
disturbance estimator (4.41), has effectively better performance in terms of reducing
the thickness of the bound on the system state and sliding function in comparison
to the one in (4.44). Notice that if we do not have any knowledge of the exoge-
nous disturbance in the system, providing the discrete-time sliding mode controller
with a switching component cannot necessarily improve the control performance and
even can be detrimental to the control performance [52, 113, 84]. However, as seen
here, a better performance can be achieved through switching components, when
either the sampling rate of the system is very high compared with the maximum
frequency component of the exogenous disturbance or the exogenous disturbance
is slow (smooth and bounded). With either of these assumptions, the closed-loop
system behaves to some extent as a continuous-time system [84] and hence, using
a discontinuous component in the controller may improve the performance. Nev-
ertheless, broadly speaking, the large switching gains in the DSMC may result in
excessive actions in the control system actuators, hence, it is worth mentioning that

the switching gain should be chosen small.
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4.5.2 Comparison 2

Now, consider the LMI conditions given in [87] (Section II, Eq. (9)) for a networked
system involving packet losses using an equivalent controller. By letting # =0.1 and

thus ¢ = %, this LMI conditions are as follows:

[_P+0O+eNTN % * *
\V3PA -P * *
<0,
V3BT PA 0 -B"PB «
4.45
I 0 MTP \3MTPB —eI| (1.45)
_Q * i
<0.
V3pBTPA —BTPB

The above LMI conditions are not feasible for the numerical example of this chapter.
This justifies our claim that the feasibility region of the LMI conditions derived in
this chapter is considerably wider compared to the existing literature for the DSMC.

4.6 Conclusions

In this chapter, a stochastic discrete-time sliding mode control has been developed
for networked systems involving consecutive measuring data packet losses. Fur-
thermore, using a unified framework, an LMI scheme is developed for the design
of a robust sliding surface and controller for the uncertain discrete-time networked
systems involving packet dropout. The proposed robust DSMC is applicable to
unstable systems, and also there is no need to stabilize the underlying system in
advance. Additionally, it could reduce the conservatism of the existing methods in
the literature. Using the notion of exponentially mean square stability, the stability

and ultimate boundedness of the derived closed-loop system have been analyzed.
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Chapter 5

DSMC for NCSs involving
actuation and measurement

consecutive packet losses

5.1 Introduction

The DSMC given in the previous chapter is derived based on two assumptions:

1) the packet losses occur only in the channel from the sensor to the controller;

2) the system states are entirely available.

Sometimes, these are not clearly very realistic assumptions for many of practical

problems. This chapter intends to design sliding mode controllers for the NCSs

involving both measurement and actuation consecutive packet losses (or long-term

random delays), which exploit only output information. This ODSMC can distin-

guish itself from the existing literature on the SMCs applied to the NCSs, in the

sense that both the measurement and actuation delays are viewed as the Bernoulli

distributed white sequence. This matter has been considered for the design of other

control strategies such as observer-based H, and state-feedback controllers [132, 76].
In brief, the main goal of this chapter is to stabilize a NCS involving measure-

ment and actuation packet dropouts with an observer-based ODSMC. The main

contribution of this chapter includes the following major innovations.

e This chapter revises the observer utilized in [132, 76] to a more practical al-

ternative. Indeed, [132, 76] assume that the state observer and controller are
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not located in the same place, or equivalently, the control signals used in the
state observer involve the random time-delays that exist in the channel from
the system controller to the actuators. This could not be a real assumption in

most of the NCSs.

e The proposed ODSMC can be applied to the NCSs involving both the mea-

suring and actuating consecutive packet losses.

e The proposed robust ODSMC scheme provides an integrated framework for
general systems. This is certainly different from the DSMC introduced in [87]
which can only be applied to the stable systems, and [88] which stabilizes the

underlying system first and then designs the sliding mode controller separately.

e A novel method is developed to reduce the conservatism which exists in the
current literature that removes the cross term between the system state and

disturbance to make a fully diagonal problem.

The rest of this chapter is organized as follows: Section 5.2 describes the prob-
lem formulation. Section 5.3 presents the proposed method to design the sliding
surface and ODSMC. Effectiveness of the proposed ODSMC is studied by numerical

examples in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 Problem Formulation and Preliminaries

5.2.1 Problem statement

Consider the NCS with (consecutive) random packet losses shown in Fig. 5.1. As
seen the NCS here involves both measurement and actuation packet dropout. In
other words, the system does not have access to the control input u(k), generated by
the controller, and instead it would be utilized with the communicated control input
u.(k). On the other hand, due to the packet losses exist in the channel from the
sensors to the controller, the observer which is at the same location of the controller
also does not receive the actual values of the system output y(k), but y.(k). The

observer will provide the state estimate X(k) for the controller using the signal &,(k),
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Figure 5.1: NCS structure

which will be defined later in this chapter, rather than u(k) (cf. [132, 70]).
Now, consider the following uncertain linear discrete-time system which explains

the dynamics in Fig. 5.1,

(5.1)

x(k+1)=[A+AA(k)]x(k)+ Blu (k) + f (k)]
System :
y(k) = Cx(k),

where x(k) € R", u,(k) € R™ and y(k) € R? are system state, communicated control
input (see Fig. 5.1) and system output respectively. Without loss of generality, it is
assumed that m < n, rank(B) = m and rank(C) = p. Besides, it is assumed that (A,
B) is controllable and (A, C) is observable. The uncertain matrix AA(k) has the
form of (2.2).

As the measured outputs are sent to the controller via a communication network,
the measurements may involve randomly varying communication delays and/or the
detrimental phenomena referred to as data packet dropout. The communicated out-

put y.(k) and communicated input u.(k) are assumed to be as

=(1- ~1
Communicated output : Xe(oy = —atkx(o+athx k=1 (5.2)
Ve(k) = Cx (k),
Communicated input : u, (k) = (1 - p(k))u(k), (5.3)
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where x.(k) denotes communicated system state which are not available and the

stochastic variables a(k) € R and f(k) € R are Bernoulli distributed white sequences

with
{ Prob{a(k) =1} =E{a(k)} =a (5.4)
Prob{a(k)=0} = 1 —E{a(k)} = | —a&,
Prob{g(k) =1} =E{p(k)} =f (5.5)
Prob{f(k)=0} =1-E{f(k)} =1-5,

in which 0 <& < 1, 0 < f < 1 imply the probability that a data packet may be lost or
have delay. The stochastic variable f(k) is mutually independent of the stochastic
variable a(k). Notice that u.(k) involves a random communication delay similar to
that in the measurement communication, however, with a different switching proba-
bility. It can be frequently seen in the literature to use a similar Bernoulli distributed
white sequence model but with different switching probability for the random de-
lays in the signals from the sensors to the controller and also in the signals from
the controller to the actuators; see e.g. [132, 76]. Besides, two different schemes for
the systems involving packet loss have been considered, i.e., the hold-input method
(which is used here in the communicated output y,.(k) in (5.2)) and the zero-input
method (which is used here in the communicated input u,(k) in (5.3)) [L05, 112, 104].
The hold-input method seems to have better performance than the zero-input one.
However, according to the existing literature (e.g. see [105, 104]), either of them
cannot outperform the other, even in simple scalar systems [104]. Therefore, here,
for simplification purpose, the zero-input method would be utilized to deal with the
packet dropouts in the channel from the controller to the actuators.
In this note, we use the following estimation scheme to provide the controller
with the system state information,
R(k+1) = A%(k)+ Bi, (k) + ﬁL[yc(k) = .(k)]
Observer : { (k) = (1 - fu, (k) (5.6)
V.(k)=(1—-a)Cx(k)+aCx(k—1),

where %(k) € R" is the state estimate of the system in (5.1), §.(k) € R? is the

observer output, L € R™?” is the observer gain and u;(k) € R™ denotes the linear
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part of the system controller u(k) proposed in the following of this chapter.

Remark 5.1 The measurement model (5.2) is fundamentally different from the one
that has been used in [99, 127, 152, 70] etc. Note that in the literature, rather than

the measurement model (5.2), the following one is frequently utilized,

ye(k) = (1= a(k)y(k) + a(k)y(k —1). (5.7)

This model indeed would impose an assumption on the system networks that the
packet dropout may not occur successively. This is obviously not a realistic as-
sumption. Instead, the model (5.2) can cope with the longer random delays and/or
frequent packet losses. Notice that the model (5.7) has been used to cope with both
time varying communication delay (e.g. see [132, 76]) and data packet dropout (e.q.
see [87]). Considering the model (5.2) instead of model (5.7), if a packet loss occurs,
the controller is provided with y,(k) =y, (k—1), else the controller utilizes y.(k) = y(k)
instead. Here, y,(k—1) denotes the last available communicated data packet. This
justification can also be used for the communication random time-delay accordingly.
It means that if the time-delay of the communication channel, which is assumed to
be 7,4, is less than a sampling period (T ) of the discrete-time control system, the
delay has no influence on the system and we have y (k)= y(k). But, if t; > T, then
y.(k) =y, (k—1). Note that, in the case of random delay occurrence, y.(k—1) can
be regarded as y(k—1,).

Notice also that we do not bound the number of possible consecutive packet losses (or
equivalently the random time-delays cf. [70]). Indeed, there is an implicit stochastic
constraint indicated by the Bernoulli variable a(k) as Prob{a(k) =1} =E{a(k)} =a.
In simpler terms, if @ is a large value, the number of possible consecutive packet

losses increases and vice versa.
Remark 5.2 Notice that in [132, 70], the observer in (5.6) is assumed to be as
X(k+1) = Ax(k) + Bu; (k) + L[y (k) = y.(k)],

where up, denotes the linear part of u.(k). In other words, the control input utilized in

the observer is the (linear part of the) communicated control input to the system which
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involves random communication delay. This itself means that either the observer
and controller are not located in the same place together, or the observer has access
tou,(k); see the dashed line in Fig 5.1. This structure does not seem to be a practical
case in most of the NCSs. Therefore, to address this problem, in this chapter, the
control input i,(k) is exploited in the observer (see (5.6)), which is more applicable

for practical NCSs.

This chapter will consider the problem of designing a robust observer-based DSMC
for the NCS in (5.1)-(5.3). In the sequel of this chapter, for simplification, the brief
a and AA are used instead of a(k) and AA(k), respectively.

5.3 Stochastic sliding mode control

This section aims to design a robust observer-based ODSMC in order to stabilize

the NCS in (5.1).

5.3.1 Designing the sliding function subject to consecutive

packet losses

Consider the following discrete-time linear sliding function,
o(k) = Sx(k), (5.8)

where the matrix § € R™" will be designed later such that S B is nonsingular. Note

that in the ideal sliding mode we have
o(k)=0, Vk>k,, (5.9)

where k; > 0 denotes the time when sliding motion starts. The controller is assumed

to be of the following structure,
u(k) = —%ﬁ[(SB)_l(SA —®DS)x(k)+I9(k)], (5.10)
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where ® € R™"™ is a known stable matrix and 9(k) denotes the approximation of
the disturbance f(k) used in the controller to compensate the harmful effect of
disturbance on the ultimate bound on the system state trajectories. In addition to

the assumption in (2.13), we also assume

1901 < « || 7

: (5.11)

where k> 0 is a scalar. The term (SB)~'®S%(k), in u(k) (see (5.10)), is used to
govern the rate of convergence to the sliding manifold. Here, similar to [25], it is

assumed that ® = Al

ms Where 0 < A <1 is a given constant value. Thanks to the

special form of @ which can commute with .S, the control law u(k) in (5.10) could

be written as

Controller : u(k) = —%[(SB)_1 SA;x(k)+3(k)]

2 1, (k) +u, (k) (5.12)

where A; = A—Al, and u;(k) is the linear part of u(k) which was used in the observer

design (5.6). Define the estimation errors as

e(k) :=x(k)—x(k)
Estimation error : { (5.13)
e, (k) 1= x,(k) — %(k).

Then, by applying the controller (5.12) to (5.1) and also using (5.13), (5.2) and

(5.6), the closed-loop system is obtained as

Closed-loop system :

-

|‘%

X(k+1) = [A+AA—A/1+’};’§AA] x(k)+ [1— =

-5
+B [d,g(k) + ’f%g&(k)]

] Ae(k)

=

] et )= [AA+ BLA,+ gw] x(k)+ [A—Lc— f%g,cii] eth)
~08 Cx (k= 1)~ 7 LCe,(k— 1)+ B [dg(k) + f%g&(k)]
x.(k)y=(1—-a)x(k)+ax.(k—1)
| ec(k) = —ax(k)+ax (k—1)+e(k)
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where A/l = B(SB)_ISA/I and 7 = % Also, it can simply be found that

1-a

o(k+1)=S <M— “_?‘Lc)x(k)—S(,u—LC)e(k)
) 1—-a
+22291Cx,(k— 1)+ nSLCe, (k—1). (5.14)

5.3.2 Stability analysis

Notice that in the case of applying DSMC to discrete-time systems involving exoge-
nous disturbances, the closed-loop system should be analyzed in terms of bounded-
ness. Also, the proposed DSMC could only ensure the state trajectories to be driven
into a boundary layer around the ideal sliding surface o(k) =0. This issue is indeed
regarded as the quasi sliding mode (QSM) in the literature. The following theo-
rem considers a method to analyze simultaneously the reachabiltiy of QSM and the
stability of the system states utilizing a discrete-time Lyapunov stability method,
in the absence of exogenous disturbances. The characterization of the bounds on
the closed-loop system states and sliding function’s boundary layer are presented
separately later in Theorem 5.2. Further, as Theorem 5.2 needs to derive the cross
terms between the system state (sliding function) and the components fg(k) and
9(k), in order to avoid unnecessary repetition of the technical manipulations, we
will start the proof of Theorem 5.1 more generally (with the external disturbance
and the discontinuous component 9(k)) for the sake of Theorem 5.2. We then let

{9'9((:)) ] =0 to derive the LMI condition for the stability analysis and control and

observer synthesis.

Theorem 5.1 In the absence of the exogenous disturbance f(k), the control law
(5.10) can steer the state of the stochastic system (5.1) onto the ideal sliding surface
(5.9) and, also the system state is exponentially mean square stable if there exist

matrices 0 < P :=UT [%‘ 122] U, 0,>0,0,>0, X, X5, X5 and X,, and scalars
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€ >0 and o > 0 satisfying the following LMI:

b * * * * * * * * * * * *
b £y * * * * * * * * * * *
BX, BXj5 -P * * * * * * * * * *
—a0; @0, 0 33 * * * * * * * * *
0 0 0 0 —-0r+ol * * * * * * * *
ABTP BTPa, 0 0 0 -B"PB * * * * * * *
-iBTP BTGP-Xx,0) 0 0 —zBT x,C 0 -B"PB * * * * * * |<0
—2¢BTPA, 2¢BT P4, 0 0 0 0 0 -2¢BT PB * * * * *
0 PA-X,C 0 0 —nX,C 0 0 0 -P * * * *
£X,C 0 0 —xX,C 0 0 0 0 0 —zP x * *
=BT X,C 0 0 -zB"Xx,C 0 0 0 0 0 0 —zBTPB * *
PA+BX, 0 0 0 0 0 0 0 0 0 0 -p *
0 0 0 0 0 MTPB 0 0 mTp 0 0 MTP el |

(5.15)

where M and N are known matrices of the uncertainty in (2.2), 0 < Py, € R=m*(n=m)
and U € R™" s defined in Lemma 3.1, ¥, = =P+ (1 —a@)Q, + aQ, +X2TBT -
BX,+ol+eN'N, S, =-X]B"+BX;-a0,, £,,=-X] BT - BX;-P+Q,+o0l,
Th=—(1-®)0,+aQ,+ol, r= %, ¢ = %__ and {*} denotes the symmetric ele-

ments in a symmetric matriz. Here S = BT P and the observer gain is

L=P'x,. (5.16)

Proof: Define

V(¢ (k) =xT (k)Px(k)+ e (k)Pe(k)+x! (k—1)Qx.(k—1)

+el (k—=1)Qse (k—1)+0T (k)(SB) (k) (5.17)

where (k) = [xTk) " k) xTk=1) T k-1) 6Tk ]T, P> 0, Q> 0and Q, > 0 are symmetric

matrices and S = BT P. Thus, it can be written

AV (E(k) 2 E{V Gk +1)[¢ (k)Y =V (& (K))
=E{x" (k+ 1)Px(k+1)+e" (k+ 1)Pe(k+1)+x. (k)Qx (k) + el (k)O,e (k)
+oT (k+ 1)(SB) 'o(k+1)|¢(k)} —x" (k)Px(k) — e (k)Pe(k) (5.18)

—xI (k=10 x.(k=1)—el (k—1)Qye.(k—1) =6 (k)(SB) o (k).

It is then followed by

T
A

=
=

1-—

E{x"(k+ D)Px(k+D)|¢(k)} = [E{xT(k) lA+AA—AA +AA, +

=
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X P A+AA—AA+AAA+f_ﬁ_)A,Il x(k)|<_‘,’(k)}

+2xT()[(AL,+AA) ST(SB) ' SA, —pATST(SB) 'S A, le(k)

+2xT (k) (AA+ AL)T ST fy(k)

+2pxT (k) ATST9(k) +2e" (k)AL ST fo(k) —2¢pe” (k)AL ST 9(k)

+(1+@)e" (A} ST(SB)'SAe(k) + f3(k)T (SB) fy(k) + 9" (k)(S B)I(k)
=xT()[(A+AA)T P(A+AA) - (A+AATST(SB)™'S(A+A4)

+(AL,+AA)TST(SBY ' S(AL,+ AA+ pAL ST(SB)' SA,Ix(k))

+2xT ([(AL,+AA) ST(SB) ' SA,; —pATST(SB) 'S A, le(k)

+2xT (K)(AA+ AL ST fo(k)+2pxT (k)AL ST (k) +2e" (k)AL ST fy(k)

—2¢pe” (K)ATSTI(Kk) + (1 + )’ (k) AT ST(SB) 'S A e(k)+ f5(k)T (SB) fy(k)

+ 97 (k)(SB)I(k) (5.19)

where A, = B(SB)"'S(A+AA), AA, = B(SB)"'S(AI, +AA) and ¢ = % Besides,

note that E{(f—f)} =0 and E{(8—f)*} = f(1— ) £ §%. Thus, it can be demonstrated
that

E{e’ (k+1)Pe(k+1)|¢(k)}
=x" (k)[AA" PAA+ Al PB(B" PB)"' BT PA, + n(LC)" PLC]x(k)

+e' (K[(A-LC)"P(A—LC)+¢pAT PB(B" PB)"' BT PA,Je(k)

+ax! (k= 1)(LC) PLCx (k—1)+z%el (k- 1)(LC)T PLCe,(k—1)

+ f4 (k)BT PB fy(k)+$39" (k)BT PBI(k)

+2xT (K[AATP(A— LC)— ¢ AL PB(B" PB)™' BT PAle(k)

—2axT (k)(LC)T PLCx (k—1)=27zxT (k)AAT PLCe,(k — 1)+ 2xT (k)AAT PB f,(k)

+2¢xT (k)AT PBI(k) —2ze” (k)(A— LC)" PLCe,(k — 1)

+2e" (k)(A— LC)" PBfy(k)—2¢pe” (k) AT PBI(k) —2me] (k—1)CT LT PB fy(k),
(5.20)
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in which again E{(a—&)} =0 and E{(a —a)*} = a(l —a@) 2 y*. Also

{0 bfch }

=(1-a)x" (k)0 x(k)+axI (k—1)0x.(k—1), (5.21)
and

E{el (k)Qze (k)¢ ()}
=E{[—ax(k)+ ax.(k—1)+e(k)]" Qy[—ax(k) +ax, (k—1)+e(k)]|¢(k)}
=ax! (k)Q,x(k) —2axT (k)Q,x.(k — 1) —2ax" (k)Q,e(k)+ax! (k—1)Q,x . (k—1)

+2ax! (k—1)Q,e(k) + e (k)Q,e(k), (5.22)
in which E{a’} = @. Besides, we have

E{c” (k+1)(SB)'o(k+ D|¢(k)} (5.23)
=xT(k)[zCT LT ST(SB)"'SLC + A2ST(SB)~' S1x(k)

+el (k) (AT = LC)T ST(SB)™1S (Al — LC)e(k)

+axl(k—1)CTLTST(SB)™'SLCx, (k—1)

+72el (k—1)CTLTST(SB)"'SLCe, (k—1)

—2xT(k)AST(SB) 1S (AT — LC)e(k) = 2zxT (k)CT LT ST(SB) ' SLCx (k1)

+22AxT (k)ST(SB)"'SLCe,(k—1)

—2zel (k) (Al = LC)T ST(SB)™'SLCe (k- 1).
It is also easy to show that
" (k)(SB)~a(k) = [x(k) = e(k)]" ST (S B)~"S[x(k) - e(k)]
=xT(k)ST(SB)'Sx(k) = 2xT (k)ST(SB) ' Se(k) + ! (k)ST(SB)™' Se(k). (5.24)
Using (5.19)-(5.24) and defining w(k) = [xT(k) e'(k) xI(k=1) el(k—1) fg (k) 8T(k)]T,

(5.18) can be rearranged as

AV k) =o' (k) ;] @k), (5.25)

6X6
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where

T =(A+AAT P(A+AA) - (A+AA)TST(SB)IS(A+AA)
+ (AL +AATST(SB)"LS(AL + AA)
+AATPAA+2¢AT PB(B"PB)'B"PA, - (1-)ST(SB)"' S+
7(LOTPLC+zCTLTST(SB)'SLC-P+(1-a)Q, +aQ,,
T, =(AL,+AATST(SB)'SA, + AAT P(A- LC)+ ST(SB)"LS
—2¢AT PB(B"PB)"'B"PA, - 20, - AST(SB)"'S(AI - LC),
3 =—a(LC) PLC—zCTLTST(SB)"'SLC -a0Q,,
Y,=—aAATPLC+7AST(SB)'SLC,
s =(AA+AL)T ST + AATPB,
S16 =2¢A7 PB,
Sy =(1+2) AT ST(SB)'SA,+ (AT - LC)" ST(SB)™'S (A1 — LC)
+(A-LCO)TPA-LC)-ST(SB)'S-P+0,,
2y3 =aQ,,
Y, =—m(A-=LC)TPLC —n(AI - LC)T ST(SB)~'SLC,
5,5 =Ar ST +(A-LC)" PB,
Ty =—2¢AT PB,
Y43 =2(LC) PLC+2CT LT ST(SB)"'SLC+aQ, - (1-a)Q,,
234 =0,
235 =0,
Z36 =0,

Yy = (LC)T PLC+2>CT LT ST(SB)"'SLC - Q,,

and X5 = —7CTLTPB, 2,6 =0, Z55 =2SB, Z5c =0, Z¢g = 265 B. Now, to prove
the system stability, let [{9‘9(%)] = (0. Then the system is stable if

B = (2], <ol (5.26)

A. Argha Page 93



CHAPTER 5. DSMC FOR NCSS INVOLVING ACTUATION AND
MEASUREMENT CONSECUTIVE PACKET LOSSES

where ¢ > 0 is a scalar variable. With the choice of § = BT P and utilizing the Schur
complement, it can be shown that the feasibility of (5.26) is equivalent to that of

h * * * * * * * * *

£, )W * * * * * * * *

—aQ, a0, PN * * * * * * *

0 0 0 —-0,+0l * * * * * *

BTP(AL,+AA) BTPA, 0 0 -B"PB * * * * *

—ABTP BTP(AI - LC) 0 -zBTPLC 0 -B"PB * * * *

—2¢BTPA, 2¢BTPA, 0 0 0 0 —2¢B"PB  x * *

PAA P(A-LC) 0 -zPLC 0 0 0 P * *

zPLC 0 -zPLC 0 0 0 0 0 —zP *
zBTPLC 0 -zBTPLC 0 0 0 0 0 0 -zB"PB

(5.27)

- & =B
where 7 = —, ¢d= 5 and

S =(A+ AT P(A+AA) —(A+AA)TST(SB)'S(A+AA) - ST(SB)Is—P
+a0,+(1—a)0, +ol,

3, =ST(sB)~'s-a0,

S, =-ST(SB)'S—P+0,+o0l,

233 :—(1—a)Q1+&Q2+01

Hence, using Lemma 2.3 it can be shown that the feasibility of the inequality in

(5.27) is equivalent to that of

$, - |<0, (5.28)

with

21 =(A+AA+BF)"P(A+AA+BF)-P+(1-a&)Q, +F) (B PB)F,
+F B"P+PBF,+aQ,+ol,
3, =F] B"PBF;— F] B" P+ PBF;- 20,

$,, =FI(B" PB)F,~ FI B"P— PBF;— P+ 0, +ol, (5.29)
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where F;, F, and F; are auxiliary variables [71] and note that except £,;, £, and

3, other entries of (5.28) are the same as their counterparts in (5.27). Thus, using

Lemma 3.1, (5.29) can be rearranged as

2, =[P(A+AA)+ BZF) P ' [P(A+ AA)+ BZF,]- P+ (1 -a)Q,

+F) Z"'B"P'BZF,+ F] Z" B" + BZF, +aQ, +ol,

2,=F Z"B"P7'BZF,—F] Z'B" + BZF;-20,,

%, =F Z"B"P'BZF;—-F] Z"B" ~BZF;-P+Q,+o0l,

(5.30)

where Z satisfies PB = BZ. Using the Schur complement it can be seen that (5.28)

is implied by the following inequality,

S * * *

i 2, * *

BX, BX, -P *

-a0, a0, 0 25

0 0 0 0

BTP(AL,+AA) BTPA, 0 0

-iBTP BT(AP-X,C) 0 0

-2¢BTPA, 2¢BTPA, 0 0

PAA PA-X,C 0 0
zX,C 0 0 -7X,C

BT Xx,C 0 0 -zBTXx,C
| P(A+AA)+BX, 0 0 0

(5.31)

-B

L S S T . S S S

L D D N T SR S S o

where £;) =—P+(1-2)Q,+aQ,+ X1 B" + BX,+0l, £, =—X] B" + BX; - a0Q,,
Sy ==X B"—=BX;-P+Q,+0l, X, =ZF,, X, =ZF,, X3=ZF; and X, = PL.

With the help of Lemma 2.1 and assuming AA, satisfies the condition in (2.2),
(5.31) is also sufficed by the LMI in (5.15).

Remark 5.3 Note that the inequality in (5.27), which contains the negative quadratic

signum. terms, cannot easily be converted to an LMI. Let us explain the technique

that we utilized in the proof of Theorem 5.1 to deal with one of the negative terms.

Obuviously, —GT(k)(SB)_la(k) in AV (E(k)) can be rewritten as

— o (k)(SB) 'a(k)

=—[x"w w1 ] STSB) S [ L] [

A. Argha
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Hence, according to Lemma 2.3, the feasibility of

I I T
|- -1
Y| O [sTsB) s O | <o,
0 0
where
I I T
B -1 -1
P=y+| O [sTsB)s| |,
0 0

in which ¥ is the inequality in (5.27), is equivalent to that of

T T 4T T T T
3 I I 3 B A B A I
F. F. F. - - F.
~ 3 3 3 3
Pl ol ol +]o|s| ] +]°[sT| o] <o,
0 0

where F, and F; are auxiliary matriz variables introduced in the proof of The-
orem 5.1. As seen this method avoids to impose any conservatism to the prob-
lem. However, in order to deal with this problem, [87] uses the trivial inequality
—O'T(k)(SB)_IG(k) < 0 and replaces this term with zero. Indeed, this would intro-

duce a significant conservatism to the sliding function design problem.

The above theorem presents a framework for the design of an ODSMC in order to
stabilize the NCS in (5.1). However, it does not present a bound on the system
states. The following theorem aims to provide a bound for the obtained stochastic

closed-loop system state and the corresponding sliding function.

Theorem 5.2 In the presence of the exogenous disturbance d(k), if the LMI in
(5.15) is feasible, the bound on the augmented system state {(k) is, for the given
solution P>0,0,>0, 0, >0, L=P~'X, and 0> 0 of (5.15), as follows
Amax(M
Vo> 0, 3k* >0, Vk > k*, s.t. E{IICK)*} < %y+v, (5.32)
o4y
where Ay = Ayin[diag(P, P,Q1,0,,(SB)™)], M= diag(M,,,Q,,Q,) with Mp = [P§R Ry

and R= PB(B" PBY' BT P, and y = (> + k) [T+ 2 |[| 2 here 5= [ 57]
Iy

1, My,

and the scalar variable 0 >0 and matriz variable I1 = [ ] > 0 are obtained from
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solving the following LMI:

Q * * * * * *
0 (-0l * * * *
0 0 (0—0)1 * * * *
0 0 0 b—01 * * * |<0, (5.33)
DI YN 0 b LT
= = 0 0 -ml, -M,, =*
| 0 0 0 0 Q 0 &l

where £,5=APB, Q= (0—0)I+ENTN, Q,=2MTPB, é> 0 is a scalar variable,

and M and N are known matrices in (2.2).

S
Proof: Defining v(k) = [x"(k) ¢" (k) xTk-1) e (k-1)]T and T, = llej 2%5 2%5 Z‘}Sl , accord-
16 726 736 46

ing to Lemma 2.2, we have

k - o]’ k
20z, |4 | <V oz n s lvio+ | 4] | 4] (5.34)

where IT> 0 with appropriate dimension. It follows from (5.25), (5.26) and (5.34)
that

AVEW) <=V Wlol -2 sl + [40] morm 48| o, (5.39)

in which X, = [sts EZZ] If we choose IT > 0 such that
56
oI <ol =X, 1727 (5.36)

where ¢ > ¢ > 0, which is always possible if ¢ > 0 exists, then, it follows from (5.35)
that

T
AV @) <= v+ | G | =+ | 4] (5.37)
Moreover, note that as o(k) = S(x(k)—e(k)) we can derive

V(¢ (k) =vT (k)M v(k), (5.38)
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where M = diag(M,,Q,,Q,) with Mp = [P§R ,R:] and R = PB(B"PB)"'B" P,
hence,

Amin(M) VAR <V (LK) < Ao (M) [[V(K)||> (5.39)

Additionally, it is known that

MICHN? S VEK) < A NICH)?. (5.40)

where 4, = A, (diag(P, P,Q,,0,,(SB)™ ") and 4, = A, (diag(P, P,Q,,0,,(SB)™)).

Hence, from (5.37) and (5.39) one can derive that

A

0
AV (E(k)) < _WV@U‘))-{_% (5.41)

where y = (72 +k?) [T+ 2| ||9b||2 Note that from (5.26) it can simply be written
that V v(k) #0

v (= (k) =E { V(EGk+D) [f,g(k)]=0|‘:(k)} ~V(EWk)

(k)
<—ov! (k)v(k). (5.42)

It is known that E{V ({(k+1))| fg(k)] 0|§(k)} >0, and thus, from (5.42) and (5.39),
(k)

it can be claimed that o < A,..(M). Hence,

max

A

—__<1

Amax(M)

Finally, from Lemma 2.4 and (5.41), we can find the bound given in (5.32).
Furthermore, to find IT> 0 in (5.36), defining IT = [EITI EZ], we can rewrite this
12

inequality, for given P >0, Q; >0, O, >0, L and 9> 0, as

(6-0)]  *

* *
0 (6—0)1 * * *
0 0 6—0)1 * * *
(0=0) <0. (5.43)
0 0 0 -0l ~* *
T T T
Zis 25 0 Xy ~np
T T T
|z 26 0 0 —j, —Ily |
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Using Lemma 2.1, (5.43) can be sufficed by the LMI (5.33).

Remark 5.4 Notice that, in the framework in [87], the cross terms between the
system states and the exogenous disturbance have increased the conservatism of the
final obtained LMI condition. It has been shown here that the mentioned cross terms
should not influence the feasibility region of the final LMI condition (5.15). Besides,
instead of removing the cross terms between x(k), e(k), x.(k—1) and e.(k—1) through
several inequalities which was implemented in [87] for x(k) and x(k—1), we let the
cross terms to be in the original form. This would also widen the feasible region of

the LMI condition presented in this work.

The solution of the LMI in (5.33) do not have direct influence on the controller
design and the actual bound on the system state and/or sliding function, however,
these parameters would lead us to determine a more accurate bound. Therefore,
to obtain the minimum value of the bound in (5.32), the LMIs in (5.15) and (5.33)
could be solved subject to a specific criteria. This issue is beyond the scope of this

thesis and remains for the future work.

Remark 5.5 The main idea in the proof of Theorems 5.1, 5.2 can be summarized

as follows. Firstly, we tried to find

AV (k) 2 E{V (E(k+ 1)|E ()} =V (£ (k)

=w! (k) [Z;] . @k)

ij ] 66

where {(k), w(k) and Z.., i,j =1,---,6 are defined in the proof of Theorem 5.1.

ij°

Then, we let
| Bl Ze
[ZU]6><6 - T ’
ZU ZC
Tss Zsg S
— — 15 725 735 745 . ; ; Y
where X, = [ZSTé 266] and X, = STyl st st | Now, the switching function matrix

S = BT P, and the observer gain L can be obtained through solving the LMI condition
(5.15), which is derived by analyzing the feasibility of the following inequality:

[Zij]4><4 <-ol,
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where ¢ > 0 is a scalar variable, with the aid of several convexification techniques.
The obtained observer-based linear control law in (5.12) ensures the mean square
stability of the augmented closed-loop system (in the absence of the exogenous dis-
turbances). Theorem 5.2, then, characterizes the boundedness of the augmented
closed-loop system when the exogenous disturbances are present, using an innovative
scheme. Please also notice that the basic idea of the proof of this theorem comes

from Lemma 2.4.

5.4 Numerical examples
Two numerical examples are presented here in order to evaluate the effectiveness of

the proposed ODSMC. All the LMI optimization problems are solved by YALMIP
[75] as the interface and SDPT3 [122] as the solver.

5.4.1 Example 1

Consider the system (5.1) with the following parameters:

025 0 0.28 1 02 0 1
1
A=| 0 100 -020f, B=|05 0| C= )
05 1 03
050 0 040 0 1
0 01 -0.1 0 0.15 0.01
M=[0 005 0.02]|, N=[0.01 -002 O |,
0 0 =01 0.01 0 0.1

R(k) = diag(0.9sin(k),0.6sin(k),0.3cos(k)), @ =0.15, f=0.2.

Note that the open-loop system is unstable. Suppose

0 0.01| . ( k )
= S1n(—).
0.04 10

A. Argha Page 100



CHAPTER 5. DSMC FOR NCSS INVOLVING ACTUATION AND
MEASUREMENT CONSECUTIVE PACKET LOSSES

Solving the LMI in (5.15) gives the following results:

(3208 0.10 —1.18 17.82 3.05 -2.79
P=]0.10 3222 -0.52(, O;=(3.0498 3.30 1.98 [, (5.44)
[ —1.18 —-0.52 3148 =279 198 17.70

[10.64 3.05 —1.00
0,=|3.05 235 1.07 ,S=[
|—1.00 1.07 13.16

32.13 1621 —1.44
523 —050 3124

0.15 -0.00
L=]-0.13 027 |, 0=0.16, € =23.60.

| 018 0.05

The component 9(k) in (5.10) is assumed to be as
I(k) = F + ndiag(F)sgn(Si(k)), (5.45)

where diag(gb) = diag(db, ,d,l;) and 7 > 0 is a scalar. Hence, using P, #* =[0 O]T,
F* =001004]7, A=03 and 5 = 0.1 the control law given in (5.10) and (5.45) is
obtained. The results of applying this controller to the system (5.1) are shown in
Figs. 5.2-5.4. Here, the initial state is assumed to be x(0) =[10 0]". Bernoulli
sequences a(k) and f(k) are depicted in Fig. 2.6. It can be seen that the proposed
ODSMC law successfully drives the state trajectories toward the ideal sliding surface

and keeps them in a boundary layer around the sliding surface thereafter.

5.4.2 Example 2

We consider the control problem of uninterruptible power system (UPS) in [132].
The objective is to govern the pulse width-modulated inverter, so that the output
ac voltage of UPS remains constant at a desired set-point with minimum distortion.

The considered UPS has the capacity of 1 kVA. The discrete-time model is obtained
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Control efforts

Figure 5.3:
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Figure 5.2: Control effort for Example 1
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Trajectories of the system state and state estimate for Example 1
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System output

Samples

System output
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Figure 5.4: Trajectories of the system output for Example 1
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Figure 5.5: Bernoulli sequences a) a(k), b) f(k) for Example 1
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Figure 5.6: Trajectories of the system state for Example 2

by using the sampling time 10 ms at half-load operating point as:

0.9226 —-0.6330 O 1
A=]| 1.0 0 o, B=|0f, C= [23.738 20.287 0]-
0 1.0 0 0

As in this chapter the exogenous disturbance is assumed to be the matched one,
we set B=B; = B, =[100]". Notice also that as the system in [132] does not
include unmatched uncertainty we also set AA =0 in this example. In addition, we
temporarily assume that the state observer and the controller are not located in the
same place; see Remark 5.2. Besides, in order for a fair comparison with the control
scheme in [132], which is applicable to small random delays, both the occurrence
probabilities of the random measurement packet losses and the actuation packet
losses are assumed as @ =0.1, f=0.1. The initial conditions are x(0)=[100]" and
£00)=[000]". In our method we set A=0.3 and 9(k) =0. The simulation results of
the state responses are given in Fig. 5.6 and the Bernoulli sequences a(k) and p(k)
are shown in Fig. 5.7. As seen in Fig. 5.6, the ODSMC developed in this chapter
leads to a better closed-loop transient response compared to the #_, state feedback
proposed in [132]. Notice also that, since =0 and k =0 in (5.11) and (2.13), the
bound in (5.32) will be zero here.
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Figure 5.7: Bernoulli sequences a) a(k), b) (k) for Example 2

5.5 Conclusions

This chapter proposes a robust observer-based discrete-time sliding mode control by
utilizing only output signals for the networked systems involving random measuring
and actuating consecutive packet losses. We have exploited Bernoulli random binary
distribution to model the consecutive data packet dropouts. Besides, the proposed
method, achieved with the aid of an LMI scheme, forms a unified framework for
the robust ODSMC design. Furthermore, it has reduced the conservatism of the
existing methods in the literature. For analyzing the ultimate boundedness of the
derived closed-loop system, the notion of exponentially mean square stability has
been utilized. Numerical examples have been presented to show the effectiveness of

the proposed scheme.
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Chapter 6

Sparse Observer-based DSMC for
NCSs

6.1 Introduction

Spatially distributed control systems which exploit communication networks in their
loop have been also regarded as networked control systems (NCS). Utilizing a cen-
tralized control scheme in NCSs which requires the central controller to have ac-
cess to the states of all subsystems’ plants is not practical as it needs a larger
and more costly control network. On the other hand, alternatively, decentralized
or distributed control architectures have been proposed and used in the literature
[141, 125, 11, 48]. The general idea behind the decentralized control scheme is to use
only the local state information in order to control the subsystems and thus there is
no control network. This can be effective only when the interconnections between
the subsystems are not strong [136, 111]. When the interconnections are strong,
utilizing the distributed control frameworks has been considered to ensure stability
of the overall system [100]. In this strategy, each subsystem can exploit local state
as well as the state of some other subsystems. Hence, compared to the decentralized
control scheme, the distributed control scheme can ensure stability of the overall
system in the presence of stronger subsystem interconnections [126]. Meantime,
it also has lower complexity and improved computational aspects compared to the
centralized control scheme.

While a large number of investigations in the control systems literature focus on
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the analysis of continuous-time systems, more and more practising control engineers
implement the control laws using micro-processors [26]. The controllers can either
be carried out from continuous-time representations using fast sampling ideas, or the
continuous-time controllers can be converted to their discrete-time representations.
However, the choice of high sampling rate, which nearly approximates continuous-
time, may not always be possible [68]. Alternatively, discrete-time controllers can
be designed directly from a discrete-time representation of the plant. One thread of
the literature develops discrete-time controllers to stabilize discrete-time uncertain
linear systems with bounded uncertainties. A great deal of the work in this field
considered state-feedback control laws based on Lyapunov ideas [26]. Alternatively,
the idea of discrete-time sliding mode control (DSMC) has been proposed in the
literature; see [68] for more information, which is significantly different from its
continuous-time counterpart. The results presented in e.g. [68] demonstrate that an
appropriate choice of sliding surface, used with the equivalent control, can ensure
a bounded motion about the surface in the presence of bounded matched uncer-
tainty. Notice also that from this viewpoint, the DSMC problem can be seen as a
robust optimal control problem and is related to discrete-time Lyapunov min-max
problems [68]. The problem is to select, among all possible feedback controllers,
the feedback gain that minimizes the worst case effect of the uncertainty on the
Lyapunov difference function [68]. Moreover, the discrete-time equivalent control
law can be considered as a solution of discrete-time LQR problem under the as-
sumption of cheap control; that is, no penalty is assigned to the control effort in
the cost function. On the other hand, much of the work performed on the design
of sparsely distributed controller/observer considered static-output feedback control
laws. Alternatively, the objective of this chapter is to extend this idea to the field
of DSMC problems.

An outstanding research implemented on the sliding mode control (SMC) has
been decentralized SMC for the large-scale interconnected systems; see [130, 131, 98,
77] and the references therein. Furthermore, in the literature the distributed SMC
has received less attention and hence it requires more investigations. This chapter
firstly explores the problem of designing a sparse DSMC network for a given plant

network with arbitrary topology. To do so, this note considers a priori control net-
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work topology which is a subset of underlying dynamics network and provides a
methodology to stabilize the underlying dynamics utilizing a (sparse) distributed
observer and controller network. It is also assumed that communication networks
do not have any data packet loss, bandwidth limitation, or network delays. We will
show that the proposed observer-based DSMC has this ability to cover all the cases
such as fully decentralized, fully distributed, and sparsely distributed topologies.
Exploiting a sparse structure for the control network which is a subset of dynamics
structure is crucial in the control system for (very) large scale systems, for instance,
the smart grids [4].

While addressing the problem of designing a sparsely distributed observer-based
DSMC strategy with assuming a priori topology for the control network is impor-
tant, another arising problem will be providing a method to find a sparse control
network structure. Taking a broad look at the issue, one may resort to find the
sparsest control/observer structure, which is necessarily a subset of dynamics net-
work, but still can ensure the stability of the interconnected system. This issue
has been investigated in e.g. [73] in order to find the suboptimal controllers that
minimize a special objective function considering the sparsity of the feedback gain.
However, this may result in a non-convex condition. Furthermore, [100] considers
the problem of finding the sparsest control/observer network that satisfies a set of
stability conditions, obtained through a Lyapunov direct scheme. In this chapter, as
the second step, we will search for a sparse control/observer network structure with
the least possible number of links that can satisfy the given stability condition. To
this end, a heuristic iterative algorithm will be proposed, distinguishing itself from
a trial-and-error process which requires to check all the possible structures.

Disturbance observer-based control strategies have been exploited in different
fields in the literature and have been successfully implemented for different aims;
see e.g. [72]. The idea of using disturbance estimator in the DSMC has been devel-
oped in [119] in order to reduce the ultimate bound on the discrete-time system state.
However, the disturbance estimator in [119] has been designed for the cases that the
system states are fully available and the system does not involve unmatched uncer-
tainties. A framework by exploiting output information only for discrete-time MIMO

systems involving unmatched exogenous disturbances and without unmatched un-
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certainties has been proposed in [17]. Indeed, the idea is to use an integral term
of the estimation output error, in addition to the well-known Luenberger observer
which observes the system state with a proportional loop, to make more degrees of
freedom. This matter is referred to as proportional integral observer (PI1O) in the
literature [17]. The distributed output feedback DSMC (ODSMC), presented in this
chapter, utilizes a disturbance observer in order to deal with the influences of the
exogenous disturbances on the boundary layer thickness. This sparsely distributed
ODSMC is designed by means of an LMI scheme.

The rest of this chapter is as follows. Section 6.2 describes the problem formu-
lation and preliminaries. Section 6.3 presents the sparse distributed sliding mode
control and the sparse full-order observer. Section 6.4 shows the LMI-based Lya-
punov stability scheme utilized for the design of robust sliding surface, state and
disturbance observer gains concurrently. Section 6.5 explores a control network
structure with the minimum number of links that satisfy the LMI stability condi-
tion derived in Section 6.4. Effectiveness of the proposed sparse distributed ODSMC
is studied by numerical examples in Section 6.6. Finally, Section 6.7 concludes this

chapter.

6.2 Problem Formulation and Preliminaries
Consider a large scale networked system consisting of A sub-systems:

( x;(k+1)=[A;;+AA;(k)]x;(k)+ B;[u;(k)+ fi(k)]
h
1 + Z [Aij +AAij(k)]xj(k)’ (6.1)
J=1 j#i
| vi(k)=C;x;(k), i=1,-,h,

where x; € R", y, € RPi and u; € R™ are the state vector, output vector and control
input vector of the i-th sub-system, respectively. The matrices in (2.1) are constant
and of appropriate dimensions. Without loss of generality, it is assumed that m; <

p; < n;, rank(B;) = m;, rank(C;) = p;. The term AA;;(k) denotes the uncertainty

of i-th sub-system and Z;l:l A;jx;(k), j’ | AA;;(k)x; (k) are, respectively, a known
J#i J#i
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interconnection and an uncertain interconnection of the i-th sub-system. We also
assume

where M;; and N;; are known matrices and R;;(k) is an unknown time varying ma-
trix satisfying R?;.(k)R,- k)< 1. fi(k)is the matched external disturbances of the
i-th sub-system with known bound.

Notice that unlike the most of the literature of SMC that considers the systems
involving perturbations satisfying matching condition. In order to make the prob-
lem closer to practical cases and improve the generality of the controller synthesis
problem, in this chapter, we study the systems involving mismatched uncertainties.
Indeed, the switching surface design problem, and further, the problem of synthesiz-
ing the linear part of the SMC can be solved via LMI methods such that the obtained
linear controller, in the absence of non-vanishing matched exogenous disturbances,
can quadratically stabilize the system for all admissible mismatched norm-bounded

time-varying uncertainties.

Define
x(k) = col(x; (k)P u(k) = colu; (k)" 63
(k) == col(y ()|, f (k) = col(f; (k)
and
B = diag[B;]" |, C:=diag[C,]",.
Besides, the uncertainty matrix for overall system can be rearranged as:
h
AA(K) = Y M;R(k)N,, (6.5)
i=1
in which
; ; M;; if r=1,
M; =[Mrj]h><h’ Mrj =
0 otherwise,

R;(k) =diag(R;;(k), -+, R;p(k)),

N.

1

:diag(Nll, e ’Nlh)'
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Using (6.1), (6.3) and (6.4), the system in (6.1) at a network level can be written

x(tk+1)=[A+ AA(k)]x(k)+ Blu(k)+ f (k)]
y(k) = Cx(k).

(6.6)

Note that the proposed method is not restrictive to this ideal system, but can be
readily extended to e.g. the system with time-delay and package losses; see [6] for

our relevant work in the same DSMC framework.

6.2.1 Preliminaries

Definition 6.1 A matriz is said to be structure matriz if its elements are either
0 or 1. The structure matriz of a block matriz Y = [Y;;1px, with Y;; € R s
S(Y) £ [5;;1pxpn with

1 otherwise.

Notice that the structure matrix defined above is somewhat similar to the well-known
adjacency matrix in graph theory; see [40]. However, unlike the adjacency matrix,

the diagonal entries in the structure matrix will be assumed to be 1.

Definition 6.2 Two matrices Y| and Y, are said to have the same structure if

S(Y)) =S(Ys).

Definition 6.3 The matriz Y| with S(Y;) = [Silj]hxh is said to be structurally subset

of Y, with S(Y,) = [sl.zj]hxh while sl.zj —sl.lj > 0. We denote this as S(Y;) C S(Y3).

diaglWill_, diaglWi]L,

Lemma 6.1 ConsiderO<W = T o
diaglWIl", diaglW, 1!,

= R(m+n)><(m+n)7 with VT/, = R"ixni, Vi/, =

R™Mi>m; Wl e R" ™ We have
SWw)y=swh.
Proof: Since W = [82% gj] > 0, it is known that W~! > 0. Suppose
wl= [él (:)2].
or o,
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It is then easy to show that [94]

0, =(0,-6,0;'0])™,
0;=(0;-010;'0,)7",

0,=-0;'0,0;-0]0;'0,,

are block-diagonal matrices and thus S(W') = S(W_l). Notice that according to the

Schur complement ©; — 0,07 1®2T and O3 — ®§®1_1®2 are invertible.

Lemma 6.2 Consider the matriz 0 < W € RMWXm+n) given in Lemma 6.1, for
any Y = [2], where Y; € R™P and Y, € R™ while [2] =Wy and S(Y;) CT,
S(Y,) CT" we have

S(UpET,

S(Jy) CT.

Proof: Due to the simplicity, we omit the proof here.

Definition 6.4 The overall system (6.6) is said to be structurally controllable with
respect to the structure matriz U= [y;;1pxp if there exists K =[K;;lpxp with S(K) CT
such that the modes of A— BK are arbitrarily assignable.

Definition 6.5 The overall system (6.6) is said to be structurally observable with
respect to the structure matriz I' = [y;;1pxp if there exists L =[L;;1py, with S(L) CT
such that I'e A= LC is Hurwitz, where I'e A =[y;; A;;1pxn-

Assumption 6.1 The matriz triple (A, B, C) in (6.6) is structurally controllable

and observable with respect to the given structure matriz I' = [y;;1pxp-

The following assumption and lemmas are required in the sequel of this chapter.

Assumption 6.2 ([17]) The matrices A, B and C in the system (6.6) and the

structure matriz T satisfy

r-A-1I1, B
rank =n+m.
C 0
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Notice that the above assumption is equivalent to not having transmission zero at

1.

Assumption 6.3 The exogenous disturbance f;(k) in (6.1) satisfies the Lipschitz
continuity condition:

|fito|| < LT, Vk>0, (6.7)

where f,-(k) = fi(k)— fi(k—=1), I:,- > 0 denotes the Lipschitz constant and T is the

sampling time.

Here, it is supposed that L; is small. To this end, the sampling rate of the discrete
signal processing system is assumed to be large enough compared to the maximum

frequency component of the exogenous disturbance f;(k).

6.2.2 State and disturbance observer

It is assumed in this note that some additional state estimates from other subsystems
are utilized to improve the performance of the control loop. This idea is different
from the purely decentralized controller and will lead to a partially decentralized or
distributed control structure. In this note, we use the following estimation scheme

to provide the i-th local controller by the system state information and disturbance

estimate,
- j=h
Ri(k+1)=A;%;(k)+ Bu,(k)+ Y YijAiX (k)
j=1, j#i
Jj=h .
+ X VijLij[yJ'(k) _)A’j(k)] + B, fi(k)
¢ j=l1 —h (68)
A A ]=
filk+1) = fi(k)+ 'Zl YijDijly;(k) =3 (k)]
j:
L Jilk) = Ci%;(k),

where %;(k) € R" is the state estimate of the i-th sub-system in (2.1), y;(k) € R is
the observer output, L;; € R"*? and D;; € R™*?i are the local observer gains for
the state and disturbance respectively. Here y;; denotes the availability of communi-
cation links among subsystems in the controller and observer design, that is, y;; =1

if ij-th link exists in the control/observer network and y;; = 0 otherwise. Then the
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overall estimator is

X(k+1)=T0AX(k)+ Bu(k)+ L [y(k)— (k)] + Bf(k)
flk+1)= f(k)+ D,[y(k) - §(k)] (6.9)
(k) = Cx(k),

where Ly :=De L with L =[L;;1pxp, Dy :=1eD with D =[D;;]px, and I' = [;;15x-

6.3 Spatially Decentralized Sliding Mode Control

Consider the following linear sliding function
o(k) = Sx(k), (6.10)

where o(k) := (:ol(al-(k))f’=1 and the block diagonal matrix § := diaug[Si]fl=1 will be
designed later such that S B is nonsingular.

During the ideal sliding motion the sliding function satisfies:
o(k)y=0, Vk>k,, (6.11)

where k> 0 denotes the time that sliding motion starts. One may obtain from (6.6)

and (6.10) that

o(k+1)=S[A+AA]x(k)+ S Blu(k)+ f(k)]. (6.12)

Remark 6.1 A question which would be arisen here is that why the sliding function
(6.10) is assumed to be in the state space rather than state estimate space or esti-
mation error space, while the overall system output y(k) is only available. In fact,
since this sliding function would not be used in the variable structure discontinuous
component of the ODSMC, the sliding surface is not required to be designed by uti-
lizing known information of the system. Instead, it is only required to be ensured
that the system state trajectories could be steered into a boundary layer around the

sliding surface and be kept there thereafter. This can basically be regarded as the

A. Argha Page 117



CHAPTER 6. SPARSE OBSERVER-BASED DSMC FOR NCSS

key feature of the ODSMC presented in this note for NCSs. This can also lead to a
considerable extension to the applicable region of the framework given in this chapter
compared to the existing literature for the continuous-time counterpart. The same

manner can be seen in [68] for the static ODSMC.

The controller is assumed to have the following structure:

j=h
+S; Z yiinj)ch(k)] — fi(k),
j=1, j#i
where ®; € R™*"i is a stable matrix and aims to govern the convergence rate of the
state driven into a boundary layer around the ideal sliding surface. Here, similar to
[25], it is assumed that @; = 4;1,, , where 0 < 4; <1 is a given constant value. Owing

to the special form of ®;, it can commute with S; and then the control law u;(k) in

(6.13) can be written as

Jj=h
ui(k) = —(S;B) STAIR 0+ Y v A% (01— Fi(k), (6.14)
j=1, j#i

where A?I." = Aj;— A1, . Then the compact control law is
u(k) = —(SB)LS(Te A )x(k)— f(k), (6.15)

where A = A—diag[/lilni]f’zl. It is worth mentioning that, referring to e.g. [68, 119,
17], the DSMC does not necessarily require switching component and the linear part
in (6.15) leads to a boundary layer with thickness O(T). By proper consideration
of the sampling phenomenon in the discrete-time sliding mode control design, the
boundary layer thickness can be reduced to O(Tsz) [17]. Moreover, the controller in
(6.15) is indeed based on the equivalent control, by removing unknown uncertainty
terms and taking into account the structure constraint. The removed terms can be

taken care of by robust control techniques.

Remark 6.2 With different structure matriz T', the above controller and the ob-

server in (6.9) can explain various topologies. The decentralized control strategy
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1 if i=j
can be obtained by y;; = / / which means that the local controllers use
0 otherwise

only local state information to control the given subsystem. In this case, there is
no control network in the system. When I' = S(A), which means that we may have
a fully distributed control system, where each subsystem uses its own state as well
as the states of all other physically coupled subsystems. In other words, the control
network is structurally same as the plant network. As the third alternative, the
structure matriz T' can generate a middle-of-the-road solution, between fully dis-
tributed control approaches and decentralized ones, regarded as sparsely distributed
control systems. This could be beneficial when some constraints on communication
requirements between local controllers exist and hence the control network could not

have the same structure as the plant network.

Remark 6.3 The control network structure will always be a subset of the plant
network structure. In other words, if A;; =0 (sub-system j does not influence i-th

sub-system), then y;; = 0.
Define the overall state estimation error as

e(k) 1= x(k)— x(k), (6.16)
and disturbance estimation error as

e (k) 1= f(k)— f(k). (6.17)

The overall closed-loop system is obtained by applying the controller (6.15) to (6.6)
and using (6.16), (6.17) and (6.9), as

x(k+1)=(A+AA - Ap )x(k)+ B(SB)~'S[r-4, B]e,(k)

i (6.18)
e (k+1) = [A24TA] x(k) + (A, — L,C)e, (k) + f(k + 1),

where Ap, = B(SB)'S(TeA,), f(k+1)= [ f(,?H)] with £(k) = col(F.(k))_,, e,(k) =
[;’;{‘,3)], A= B] with m= 3" m,, L, = [LDZ] and C, = [c o].
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Lemma 6.3 ([17]) If the matriz pair (T A, C) is observable and T+ A, B C)
satisfies the rank condition in Assumption 6.2, then the matriz pair (A,, C,) is

observable.

Also, it can simply be found that

o(k+1)=S(AA+A—-T°A,)x(k)+ S[IA, B]e, (k). (6.19)

6.4 Stability Analysis

In the case of applying DSMC to the system involving exogenous disturbances, it
can only ensure the state trajectories to be driven into a boundary layer around
the ideal sliding surface o(k) = 0. This issue is indeed regarded as the quasi sliding
mode (QSM) in the literature. The following theorem considers a method to ana-
lyze simultaneously the reachabiltiy of QSM and the stability of the system states
utilizing a discrete-time Lyapunov stability method, in the absence of exogenous
disturbances. The characterization of the bounds on the closed-loop system states
and sliding function’s boundary layer are presented separately later in Theorem 6.2.
Furthermore, as Theorem 6.2 needs to derive the cross terms between the system
state (sliding function) and the components f(k+ 1), in order to avoid unnecessary
repetition of the technical manipulations, we will start the proof of Theorem 6.1 more
generally (with the external disturbance and the component f(k) in the controller)
for the sake of Theorem 6.2. We then let f(k)=0, f(k)=0, and thus, f(k+1)=0 to

derive the LMI condition for the stability analysis, and control/observer synthesis.

Theorem 6.1 In the absence of disturbance f(k), the linear part of the control
law (6.15) can drive the system state onto the ideal sliding surface (6.10), and the
system state is stabilized, if there exist matrices P = diag[P,-]?’:l, with 0 < P, 1=
diaglQ11, diaglO,1" |

diaglQ,1" diaglO,1",

R™XM O € R X X, and X; = [Ej))ﬁg], with X; € R™P, X, € R™P, and

P; 0 _ ~
UiT[ 0 P,.D]Uw P, eR"M, Q= l >0, with Q;, € R"*"  Q, €

A. Argha Page 120



CHAPTER 6. SPARSE OBSERVER-BASED DSMC FOR NCSS

scalars €;; >0, i=1,--,h, j=1,-+,h, and 0> 0 satisfying the following LMI,

7 * * * * * % *
0 In * * * * ok *
V2BTP(A-T-A,) V2BTP[ra,B] -B'PB * x % % *
Q[A_EDA] QA - X5C 0 -0 * * * *
PA+BX, 0 0 0 -P * * *
BX, 0 0 0 0 -P x *
0 0 VamTpPB [mMfolo MTP 0 -Y *

0 0 Va2MTPB [MIo]Q MIP 0O 0 - -Y, |

(6.20)

where 0 < P, € R™ ™ 0< P € ROi=mXm=m) qnd U, € R"*" s defined in
Lemma 3.1, 711 = —P+X2TBT +BX2+QI+Z?=1 Yl-Nl.TN,-, with Y; = dz’ag[eijlnj];lzl,
X =—0+0l, U'=1[y;lpxp is a given structure matriz and {*} denotes the symmetric

elements in a symmetric matriz. Here S = BT P and the observer gain is

L,=0'x,. (6.21)

Proof: Define

V(£ (k) =xT (k) Px(k)+e! (k)Qe,(k)+c" (k)(SB) ' o(k), (6.22)

where {(k) = [xT(k) el (k) aT(k)]T, P >0 and Q > 0 are symmetric matrices and

S = BTP. Note that the inclusion of both state x(k) and sliding function (k)
in the Lyapunov candidate function makes it possible to analyze simultaneously the
reachabiltiy of QSM as well as the boundedness of the system state and sliding

function, as will be seen later in the proof of Theorem 6.2. Thus, it can be written

AV (E(R) £V (E(k+1) = V(¢ (k) (6.23)
=x"(k+1)Px(k+1)+e! (k+1)Qe,(k+1)
+ol (k+1)(SB) 'o(k+ 1) —x" (k)Px(k) —e! (k)Qe, (k)

— ol (k)(SB) 's(k).
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Defining w = [xT(k) el (k) f(k+1)]T, (6.23) can be rearranged as:

AV E(k) =@ (k) [11)] 3, @K, (6.24)

where

211 =(A+AATP(A+AA)—(A+AA)T PB(BT PB)"'BT P(A+AA)— PB(BTPB)'BT P
—P+2AA+A-TA) PB(BTPB) 'BTP(AA+A-T-A))
T
AA+A-T-A, AA+A-ToA,
+ 0 ,
0 0
212 =2(AA+A—TeA,) PB(BT PB)"'BT P [ro A, B]

AA+A-ToA,
+

T
] Q(At - LICI),
0

T
AA+A-ToA,
X3 = 0 0,

T
im=2|rea, B| STSBS|rea, B|+4,-LC) 04, -L,C)-0.
X3 =(A,—L,C)"0Q,
X133 =0.

Now, in order to analyze the system stability let f(k+1)=0. The system will be
stable if

—_

E:= 1], <ol (6.25)

where ¢ > 0 is a scalar variable. To consider the feasibility of (6.25), by the Schur

complement, (6.25) is equivalent to

0 % * *

. e T <0, (6.26)
V2BTP(A+AA-TA) \2BTP[r-a,B] —BTPB *
Q [A+24-TwA] 04, L,C) 0 -0
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where
11 =(A+AAT P(A+AA)—(A+AA)TST(SB)'S(A+AA)

—-ST(SB'S=P+ol,
}?22 =—Q+OI

Consequently, Lemma 2.3 can be used to show that the feasibility of (6.26) is equiv-
alent to that of

F“ ] <0, (6.27)

with

711 =(A+AA+BF)" P(A+ AA+ BF))—- P

+F,) (B"PB)F,+ F] B" P+ PBF,+ol, (6.28)

where F| and F, are auxiliary variables [71] and note that except 7, other elements
of (6.27) are the same as those in (6.26). Therefore, using Lemma 3.1, 7;; in (6.28)

can be rearranged as

711 =[P(A+AA)+BZF)"P~'[P(A+ AA)+ BZF,]- P

+F Z"B"P'BZF,+ F] Z"B" + BZF, +ol, (6.29)

where Z satisfies PB= BZ. Defining X|; = ZF,, X, = ZF, and X5 =QL,, with the
help of the Schur complement and Lemma 2.1, it can be seen that (6.27) is sufficed
by the LMI in (6.20).

While the above theorem gives a method to design the structural ODSMC in order
to stabilize the overall system in (6.6), it does not present a bound on the system
states. The following theorem aims to characterize the boundedness of the obtained
overall closed-loop system state and corresponding sliding function in the presence

of disturbance f(k).

Theorem 6.2 In the presence of disturbance f(k), if the LMI in (6.20) is feasible,
for the obtained P, Q, L, = Q™' X5 and o, the controller (6.15) satisfying (6.7) will
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lead to a bound on the augmented system state {(k)= [xT (k), e,(k),aT(k)]T as follows:

Aoy (M
Ve >0, 3k* >0, s.t. V> k*, ||C(k)])? < %5+g, (6.30)
oA
where A = Ay (diag(P,Q,(BT PB)™)), M = diag(M p,0Q), Mp=PB(B" PB)"'BT P+
P, and 6 = ||I1+ Q|| 2,}-;1 il.szz; here the scalar variable ¢ > 0 and matriz variable

I1> 0 are obtained from solving the following LMI:

[ o, * * * * |
0 -0l * * *
=T T
I * *
SERE } <0, (6.31)
0 0 [MTo]O -, *
| 0 0 [Mfo]O 0 - =Y, ]

_ —To T A v
where f13 = ["T0M]T 0, oy = (A4, - LC)'Q, @ =(@-0I+ X N/ N; and

Yi = diagl€;; 1 ,-];lzl in which €;j > 0,i=1,---,h, j=1,---,h are scalar variables.

ij'n

Proof: Defining v(k) = [xT(k) e,T(k)]T and y, = [;(IT3 x2T3]T and according to Lemma 4

in [89] it can be written that
W)y, fle+1) <V (), Iy Tvik) + F1(k+ DITF (k+ 1), (6.32)

where IT> 0 is of appropriate dimension matrix. It follows from (6.24), (6.25) and

(6.32) that

AV (k) < =vI ()Tl — x, Ty v(k)

+ T+ D gz + 1 f(k+1). (6.33)
If we choose IT > 0 such that

oI <ol — y,TI7' 4T, (6.34)
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where ¢ > ¢ > 0, which is always possible if ¢ > 0 exists, then, it follows from (6.33)
that

AV (¢(k)) <= ovT (k)vik) + fT(k+ D) y33 + T f(k+1). (6.35)
Moreover, note that

V(¢ (k) =vT (k)M v(k), (6.36)

where M = diag(Mp,Q), and Mp = PB(BTPB)_IBTP+ P, hence,

Amin(MD [VAOII? SV (E(K)) < Ao (M) IVR)||12. (6.37)

Additionally, it is known that

SN SV EK) < A IICHN?. (6.38)

where 4, = A;. (diag(P,Q,(BT PB)™!)) and 4, = A, (diag (P, Q,(BT PB)™")). Hence,
from (6.35) and (6.37) one can derive that

A

0
AV (E(k)) < —WV(C(/O) +6, (6.39)

where 6 = |[II+ Q|| Zlh:l ]:l.szz. Moreover, from (6.25) it can simply be written that
YV v(k)#0

VI(O)Zv(k) =V (¢ (k+ 1) Fokr1y=0 ~ Y (€(K)

<—ovI (k)v(k). (6.40)

It is known that V' ({(k+ 1))|f'(k+1)=o > 0, and thus, from (6.40) and (6.37), it can be

claimed that ¢ < 4,,,(M). Therefore, 7 0( 7S < 1. Finally, from [62, Theorem 5.1,

Corollaries 5.1, 5.2] and (6.39), one can find the bound given in (6.30). Moreover,

to find I1> 0 in (6.34), for given P >0, @ >0, L, = Q"' X; and ¢ > 0, by using
Lemma 2.1, we can show that (6.34) is sufficed by the LMI in (6.31).

As seen in the proposed sparsely distributed ODSMC, local controllers/observers are

able to utilize some interconnections in the nominal A matrix, and the remaining
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interconnections in A matrix together with AA are considered as the uncertainties
of the overall system. As an illustration, when I' = S(A) the uncertain term A+AA—
I'eA,; is AA+ Al,, and for the decentralized control network i.e. I'=1,, we have
A+AA-ToA; =AA+Al,+A,ss, where A,;y =A—Ap, with Ap = diag[Ai,-]f;l;
here A, includes all the existing interconnections among the subsystems. The
second step of this chapter will consider the issue of minimizing the costs of a
control/observer network utilized for the stabilizing distributed ODSMC that can
stabilize the underlying large scale system. This will be the subject of the next

section.

Remark 6.4 [t is easy to realize from Lemma 6.1 and 6.2 that s hH= S(Q), and
thus S(Ly) CTI', S(Dg) CT.

The solution of the LMI in (6.31) does not have direct influence on the controller
design and the actual bound on the system state and/or sliding function, however,
these parameters may lead us to determine a more accurate bound. Therefore, to
obtain the minimum value of the bound in (6.30), the LMIs in (6.20) and (6.31) can
be solved subject to a specific criteria. This issue is beyond the scope of this chapter

and remains for the future work.

6.5 Sparsifying the Control Network Structure

Previous sections have studied the problem of designing ODSMC for NCSs with
imposing a priori constraints on communication requirements between sub-systems.
In other words, the structure matrix I' in (6.20) was assumed to be a known one
and hence the derived stability condition was an LMI. This section aims to design a
control network with a minimum number of links that satisfies the stability condition
(6.20). Indeed, the main objective is the minimization of the cost of the control
network utilized to stabilize the system. Here, as we will assume that the general
cost, including the construction and data transferring costs etc, are identical for all
the links, minimizing the costs of a control network can intuitively be considered
as minimizing the number of links in the control network structure or equivalently

finding the sparsest control network structure that can stabilize the system. We
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formulate this problem as

min card(') (6.41)
P.0.X.X5,X3,0Y1,. Y

subject to (6.20) and " C S(A),

where I' = [y;;]px, and card(:) denotes the cardinality function (the number of
nonzero elements of a matrix). The above optimization problem is a convex mixed-
binary problem which is broadly speaking NP-hard. A number of exact schemes
for addressing the convex mixed-binary programs are considered [43]. However, ex-
ploiting these schemes are computationally expensive for large networks and in the
worst case it may require solving 2N convex problem in order to find the sparsest
structure, where N denotes the number of physical interconnections in the plant
network. Instead, in this note, we will consider a heuristic sub-optimal scheme to
deal with this problem.

Notice that the cardinality function, in optimization problems such as (6.41),
is usually approximated by the #; norm of the optimization variable [15] or the
so-called weighted #; norm [16]. Since the weighted #; norm is not implementable
(the required weights should be calculated based on the unknown feedback gain), a
reweighted algorithm has recently been proposed in [16], and further used by [73] to
design sparse feedback gains. This algorithm solves weighted optimization problems
iteratively in which the weights are updated inversely proportional to the strength
of individual (block) entries of feedback gain in the previous iteration. Two main
reasons restrict the application of the reweighted algorithm to our problem. Firstly,
since I', in (6.41), is a binary matrix variable, the existing reweighted algorithms
are not applicable to this problem. Next, one may also suggest to deal with this
problem by defining K = —(SB)~1.S(T- A ,) and employing the reweighted algorithm
to identify sparse patterns for K. However, this also suffers from the drawback
that every obtained solution may not be a feasible solution to the sliding mode
controller. This is because since the set of the closed-loop poles may include purely
complex conjugate pairs, it cannot be split between the null-space (sliding mode)
and range-space dynamics [25]. Moreover, as the problem in this chapter is to spar-

sify the controller/observer network, updating the weights only according to the
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off-diagonal block entries of K (or observer gains L or D) may not result in an
adequate solution.

Alternatively, a systematic way of removing the links can be considered by re-
laxing the constraint on y;;,i # j from binary variables to the constraint 0 <y;; <1.

We can address the minimization problem (6.41) with the following algorithm:

Algorithm 6.1

1) Set '=1. If the LMI (6.20) is feasible, {yi’;} < {ri;}, no control network is
required and the sparsest structure is the decentralized structure. Terminate

the search and go to Step 6.
2) Initialize I' =S(A) and | =1, in which | denotes the iteration number.

3) Solve the LMI (6.20). If it is feasible, {yi’;} < {r;}. Otherwise, if I =1

terminate the search and the problem has no solution, or else go to Step 6.

4) With known P,Q, X, X5, X3,0,Y;, -, Y}, and replacing those entries y;; =1, i #
J with the relazed constraint 0 <y;; <1, minimize Z?j:l i Vij subject to the

LMI (6.20) and 0 <y;; <1 to find ylrj Sort the set {yl.rj} in ascending order.

5) Set y;; corresponding to the I-th entry of {yl.rj} to zero and I =1+1. Ifl<
Card(S(A)) —n return to Step 3, otherwise go to Step 6.

6) Return yl.’;..

In the above algorithm, Step 4 characterizes the contribution of each link in the
stability of the overall system. Moreover, as seen, the algorithm searches for the
sparsest structure using the sorted set {yl.rj}. In the worst case, in order to find the
solution, 2(Card(S(A)) —n) convex problems may be addressed. Finally, it should
be stressed that this alternate scheme is only a sub-optimal method to deal with
the sparsification problem considered in this section. Broadly speaking, to obtain
the optimal solution, one should solve the original mixed-binary convex problem in

(6.41), which is NP-hard.
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6.6 Numerical examples

Consider an interconnected system consisting of three inverted pendulums that are

mounted on coupled carts [100, 90]. The linearized equations of motions are also

given in [100]. Define x; = [x; 1,X; 2, X; 3.X; 41" =[6;,0;,%:, %17,
0 1 0 0 | (00 0 0]
M+m k; c;j+b; —k[j —bl-j
a|me® Ve e |, |00 Wl we
l o 0 0 1 oo o o
—m —ki  —¢i=b; kij by
| w8 0w 00 5
B [0 - 0 1]T C 1 0 0O
l R
for (i,j) € {(1,2),(2,1),(2,3),(3,2)}, in which k; = ZjeJi k;; and b; = ZJEJ[ b;;, where

Ji=1{j | (i,j) €S(A)}. Besides, ¢;, b;; =bj;, k;; = k;; and £ are the friction, damper,

Ji
spring coefficients and pendulum length respectively. It is also assumed that the
moment of inertia of the pendulums are zero. The numerical system parameters are
assumed as M| =2, M, =1, M3=3, m=0.5, g=10, £=0.5, kjp=ky; =3, kyz =
kyy =15, by =by; =1, bys=b3 =5, ¢c; =4, ¢ =2 and c3 =1. A discretized rep-
resentation based on a sample interval of 0.005 s is obtained. We set 4, =0.7. In
order to check the robustness properties of the controller, the following uncertainty
parameters are considered: M;; = 0.01 x 14x1, N;; = —-0.01x 11X4, i,j=1,2,3. Al-
gorithm 6.1 is solved and then it is found that the most sparse structure that can
satisfy the rank condition in Assumption 6.2 and, more importantly, the stability
condition in the LMI (6.20) is the decentralized structure. For comparison, we then
exploit an exhaustive search on the binary variables, followed by convex optimiza-
tion of other variables, and the obtained structure is the decentralized one. We can

see that the proposed sub-optimal algorithm leads to the same result as the optimal

solution.
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6.7 Conclusions

This chapter firstly, with assuming a priori known structure for the control/observer
network, proposes a sparse DSMC by utilizing only control system sensors’ signals
for the networked systems. A unified framework is derived for the observer-based
controller design, with the aid of an LMI scheme. Furthermore, our sparse ODSMC
reduces the conservatism of the existing methods in the literature for the LMI based
DSMC. Then, this chapter explores the solution to the problem of finding the spars-
est control/observer network structure that satisfies the LMI stability condition
obtained in the first part. A numerical example has been presented to show the

effectiveness of the proposed scheme.
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Chapter 7

#,-Based Optimal Sparse Sliding
Mode Control for Networked

Control Systems

7.1 Introduction

Although the SMC is now a well-known strategy, from the standpoint of constraining
the available control action, all the traditional methods considered in the literature
have shortcomings [25]. This drawback basically comes from the nature of the SMC
design process which contains two separate stages. During the synthesizing the slid-
ing function, there is no sense of the control action level that is required to induce
and retain sliding. This issue is more crucial in this chapter when it comes to spar-
sify the control network structure, as with no limits on the available control actions,
it may result in the high level of control efforts that each subsystem’s controller
requires to apply, which is not a practical case. To deal with this problem, [91]
proposes a scheme to design a sliding surface which minimizes a cost functional of
the system state and control input. However, the method given in [91] has several
limitations. As the method in [91] needs to ensure that at least one eigenvalue of
the closed-loop system (for single input systems) is a real value, not necessarily any
arbitrary weighting matrices in the objective function can result in a sliding mode
control. Hence, this reference either reselects the weighting matrices or approxi-

mates the closed-loop system eigenvalues so that a set of eigenvalues are generated
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which can be split between the range-space and null-space dynamics. However, no
precise scheme is given on how to reselect the weighting matrices. Further, the ap-
proximation of eigenvalues may lead to a loss in optimality and possibly robustness.
In order to resolve the limitations of [91], [121] proposes a framework in which a
weighting matrix is computed that is tried to be the closest to the desired one and
also results in the desired eigenvalues. The SMC then can be designed according to
the obtained eigenvalues and weighting matrix. However, both methods in [91, 121]
are only applicable to single input systems. Alternatively, [25] considers this prob-
lem and proposes two new frameworks. However, the proposed methods in [25] rely
on a special system coordinate transformation which bounds the possible adoption
of these methods to our control structure sparsification problem. This chapter al-
ternatively develops a different approach by which we can deal with an 7, based
optimal structured SMC problem.

Recently, the issue of designing a control network with minimum communication
links has been studied in the literature [107, 108, 106, 73, 100]. As an illustration,
[73] proposes a non-convex condition which is solved numerically by exploiting a con-
vex reweighted £, norm approximation. Furthermore, [100] considers the problem
of finding the sparsest control/observer network that satisfies the obtained stability
condition. Roughly speaking, the sparsity is formulated in terms of cardinality (£,
quasi-norm) of the feedback gain in these references, which is then relaxed by the
(weighted) £;-norm (see [16]). In this chapter in order to address the problem of de-
signing a sparse SMC controller, a specific form of fictitious system, whose matrices
contain the control network structure, is derived. This makes the well-developed
weighted £, algorithm infeasible to our problem. Alternatively, this chapter pro-
poses a heuristic scheme to obtain the sparse sliding mode controller.

The rest of this chapter is as follows. Section 7.2 describes the problem for-
mulation and preliminaries. Section 7.3 presents the structured #, based sliding
mode control. Section 7.4 demonstrates our heuristic method to solve the problem
of finding a favourable sparse structure for the control network. Effectiveness of the
proposed sparse distributed SMC is studied by numerical examples in Section 7.5.

Finally, Section 7.6 concludes this chapter.
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7.2 Problem Formulation and Preliminaries

Consider a large scale networked system consisting of A subsystems,

h
50 =Ax O+ Y. Ayx;0)+ Blun)+ fi(x)], (7.1)
Jj=1, j#i

where x; € R", u; € R™ and z;(f) € R% are the state vector, control input vector
and performance output vector of the i-th subsystem, respectively. The matrices in
(7.1) are constant and of appropriate dimensions. Besides, A, ; # 0if the sub-system
Jj influences directly the sub-system i. Without loss of generality, it is also assumed

that rank(B;) =m;. f;(x;) € R™ is the matched uncertainty.
To design the sliding surface in this chapter it is assumed that the system in
(2.1) is in a special coordinate (see e.g. [25]) which is more stringent than what is
considered in the well-known regular form coordinate. Thus, it is assumed that the

input distribution matrix in (2.1) has the following form

"
B=| | (7.2)
I,

Define
x(1) = col(x; (), u(t) = col(u; ()L,
= = (7.3)
f(x) = col(f(x ).
and
A= diag[A,]" | + [Ai j] _ B=diaglBIL,, (7.4)

in which A;; =0. Using (7.1), (7.3) and (7.4), the overall system can be written as

x(1) = Ax(t) + Blu(®) + f(x)]. (7.5)

It is assumed in this note that some additional states from other subsystems are
utilized to improve the performance of the control loop. This idea is different from
the decentralized controller and will lead to a distributed control structure. Note

that the control network may differ from the system network. Our objective here is
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to design an #,-based optimal distributed SMC, exploiting feedback from (some of)
other subsystems, to stabilize the overall system in (7.5) through a sparse control

network. Now, consider the following linear sliding function
o(t) = Sx(1), (7.6)

where o(t) = col(oy(t))f‘=1 and the block diagonal matrix § := diag[Si]f‘=1 will be
designed later such that S B is nonsingular.

During the ideal sliding motion the sliding function satisfies:
c(t)=0, Vi>t,, (7.7)

where 7, > 0 denotes the time that sliding motion starts. Due to the special sys-
tem coordinate explained before, the overall switching function S matrix may be

parameterized as

h

S = diaglS 1, -diag ||, 1,]| - (7.8)

where M; € R™*"=™) and §; are nonsingular matrices having no influence on the
overall reduced-order sliding motion. Now, the controller is assumed to be of the

following structure:

h
u;(t) = _(SiBi)_l { (S;A; —®,.S)x;(1)+ S; Z 7iinjxj(t) } +39;(0), (7‘9>

j=1
where ®; € R™*™i is a stable matrix, y, ; denotes the ij-th element of the structure
matrix I" of the control network, that is, y;; =1 if i = j, or the ij-th link exists in the
control network and y;; =0 otherwise, and 9,(r) € R™ denotes the nonlinear part of

the controller.

Assumption 7.1 There exist known continuous functions ¢;(-) and u;(-) such that

fori=1,-- h:

1) ”f,(x,)” < 0;(xy),

h
J=Lj#i

2)

S )ul(J_/lT ° X),
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where y; implies the i-th row of (L, —1).

Then the nonlinear part of the controller has the following form

8,() = —(S;B) " {||S:Bi]| 0:(x) + ;(x)) } if 6,(t) # 0, (7.10)

lo:
in which x;(x;) is a gain to be designed later in this section.
Besides, we need to design the sliding function matrix so that the resulting re-
duced (n; —m;) order sliding mode dynamics are stable. Thus, our next problem is
to design sliding matrices .S; ensuring overall stability and an additional #, per-
formance specification. Notice that the role of the term (S;B;)~'®,S;x;(k) in the
controller (7.9) is to govern the convergence rate to the sliding manifold in associa-
tion with the nonlinear part 9;(). Here, similar to [25], it is assumed that ®; = 4;1,, ,
where 4; <0 is a given constant value. Note that unlike in [25], 4; can also belong

to the spectrum of A;. Owing to the special form of ®;, it can commute with .S; and

then the control law u;(k) in (7.9) can be written as

h
u,(t) = (S;B)7LS; {A,Uxi(k) - y,.jAl.jxj(t)} +9,(0), (7.11)

Jj=1

where A, ; = A;— A;1, . Then the compact control law is
u(t) = —(SB)'S(Te A,)x(t) + (), (7.12)

where A, = A—diag[4,1, 11|, T = [7;;]pxn and 8(1) = col(@,())L .

We now aim to show that the controller (7.11), (7.10) drives the system state to
the composite sliding surface (7.6). Further in what follows, we assume the known
sliding surface matrix S := diag[Sl-]f’=l and its design will be derived in the next

section.

Theorem 7.1 Consider the NCSs in (2.1). Under Assumption 7.1, the sparse
controller (7.11), (7.10) drives the state of the system (7.1) to the composite sliding

surface (7.6) and maintains a sliding motion if k;(x;) satisfies

h h
D ki) > DS e ) (7.13)
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where S; are given sliding function matrices and p;(-) are determined by Assump-

tion 7.1.

Proof: The dynamics of o; of subsystem i can be derived by taking the time derivative
of (7.6), substituting in the state equation (7.1), and using the controller (7.11),
(7.10), i.e

h

(7
ool

+8,B, f(x,). (7.14)

Now we will prove that the following composite reachability condition is satisfied
[50]:
h T.

% <0, (7.15)

o
i=1 ”6 ||
It follows from (7.14) and Assumption 7.1 that

O'T

<||Sill i o) — K (xp). (7.16)

2 A [l + 1Sl o) = i+ || B £iGeo | = |15y | @4 o)

Finally, if x;(x;) satisfies (7.13), the composite reachability condition (7.15) holds.

h
Remark 7.1 An obvious choice for ,u,-()‘/l.Tox) is Y ||(1—7/l-j)A,-j|| ||xj||, and as
J=Lj#i
h
a consequence, k;j(x;)= D, ||SJ|| ||(1 _in)Aji” ||xl|| +€;, with ;>0 a small given

J=Lj#i
scalar, satisfies the condition (7.13).

Note that thanks to the special structure of S and B, the controller can be written

as

h
u(t)=—diag[[Ml. Im,-”~ (e Ax(0)+8(0), (7.17)

1=
With different structure matrix I, the above controller can explain various
topologies. The decentralized control strategy can be obtained by I' = I,, which

means that the local controllers use only local state information to control the given

A. Argha Page 136



CHAPTER 7. #,-BASED OPTIMAL SPARSE SLIDING MODE CONTROL
FOR NETWORKED CONTROL SYSTEMS

subsystem. When I' = S(A) we may have a distributed control system, where each
subsystem uses its own state as well as the states of all other physically coupled
subsystems. In other words, the control network is structurally same as the plant
network. As the third alternative, the structure matrix I" can generate a middle-of-
the-road solution, between distributed control approaches and decentralized ones,
I' C S(A), regarded as sparsely distributed control systems. This can be beneficial
when some constraints on communication requirements between local controllers
exist and hence the control network cannot have the same structure as the plant
network. Besides, one may resort to optimize the structure of the control network.
As an illustration, a number of works in the literature focus on finding the sparsest
control network that satisfies a global control objective; see e.g. [73]. This issue will

be subject of the next section.

Remark 7.2 The control network should always be a subset of the dynamics net-
work, that is, I' C© S(A). In other words, if A;;=0 (subsystem j does not influence
i-th subsystem), then y;; = 0.

7.3 Optimal Structured SMC Design Problem

This section aims to design sliding matrices .S; while ensuring overall stability and
penalizing the level of required control effort to maintain sliding as well as the sta-
bility of the reduced order interconnected systems. In order to cope with the above
problem we may resort to select the switching function matrices .S;, with given 4;,
while ensuring overall stability and the stability of the reduced order interconnected

systems, so that the linear control part of (7.17) minimizes the cost functional
J = / {x"(©)0x(r)+u" (r)Ru(r)} dr, (7.18)
0

where Q € R™", with n = Z?zln,-, is a given positive semi-definite matrix, and

R:= diaug[R,-]fl=1 € R™" with m = Zf’zl m
(0 < R; € R™>™i),

i, is a given block diagonal s.p.d matrix
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7.3.1 #, based optimal structured static output feedback

Consider the controller in (7.17) contains only the linear part, hence
x(t) =Ax()+ w(t) + Bu(t) (7.19)

z(t) =C,x(t) + D,u(?)

uty=diag[[m, 1,,]|"

1

_ (CoA)x()

h
i=1’

1
- N 0
C,:= [Q ], D, :=[ 1]. (7.20)
0 R>

In order to cope with the optimal SMC problem explained previously, this chap-

where w(t) := col(l,ul-(t))l.h=1 is a fictitious exogenous disturbance, z(t) := col(z;(t))

and

ter then will endeavour to choose block diagonal matrix S so that the obtained

closed-loop system by applying the linear control law in (7.19) minimizes

J = || T3, (7.21)

where ||Twz|| , denotes the #Z,-norm of the closed loop transfer function from w(r)

to z(7).

Remark 7.3 It should be noted that designing the sliding surface with only the
linear part of the controller is a standard scheme in the existing literature of SMC;

see e.g. [102].

The linear controller in (7.19) can be rewritten as u(t) = Fx(t) in which

F =—diag HMi Imi”;(roAp (7.22)

: oo h . h
=— <d1ag [Mi]l.=1 diag [[Ini—mi O(ni_mi)xmi]] | —diag [[0 Im"”izl >(FoA/1).

i=

As seen M; are the design freedoms in this new framework. Let us obtain the
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closed-loop system as

h
0 0
A+ BF =A—diag oA,
0 1,]]_

i=

h
_ (Te4)

i

- Bdiag [M’] :l=1 diag [[Ini—mi 0(n,~—m,»)><m,]]

£A.+BMC, (7.23)

c

where M = diag [M,-]flzl and

o ol
A, = A—diag" " CoA)), (7.24)
0 1,|]

i=1
h
C = —diag [[Ini_mi O(ni_mi)xm[] ] i=1 (e A2

Now consider the fictitious system

(1) = Ax(t) + w(?) + Bii(t)

z(t) = C,x(t) + D, u(r)

y(1) = Cx(1), (7.25)
where u(t) = M y(t) and
0 0
Cz - 1 h , 1)Z = 1] (726)
_Ridiag[[o Im,»”,-_l(“Aﬂ)] [RE]

From this new viewpoint, the problem of designing %, state feedback SMC (7.19)-(7.21)
can be regarded as a static output feedback L) problem for the fictitious system
(A., B,C), given in (7.25). Specifically, minimizing the #,-norm of the T, (see
(7.21)) subject to (7.19) is equivalent to minimizing the %-norm of (7.25) with
respect to the static output feedback gain M.

Different methods have been proposed in the literature to deal with the static out-
put feedback LQ problem in (7.25), e.g. the iterative LMI method proposed in [50]
referred to as the scaled min-max algorithm. We adopt the method in [56] (see

Algorithm A.1 in Appendix) to find M and thus S.
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Remark 7.4 Notice that the value of the #, cost obtained from Algorithm A.1 is
not the true one, due to the conservatism introduced by assuming the block-diagonal
structure for M. Nevertheless, the true value can be computed by solving the following

Lyapunov equation

P (A+BF)+(A+BF) P, ,,+0+F' RF =0. (7.27)

rue

Then one can find the #5 cost as v/trace(P,,.,,)-

7.3.2 Stability analysis of sliding mode dynamics

It should be noted that the #, based method presented in the previous subsection
may not necessarily stabilize the sliding mode dynamics. This subsection aims to
impose an additional reduced order stability constraint on the previously proposed

optimization problem. Let us rewrite the system in (7.1) as

[xu(t)}:[f%u AilZ][xil(t)]+ Zh: |:Aij11 Aij]z][le(t)]+B,-[u,-(t)+f,-(x,-)].
oM A1 Am|[x0®] =175 Ay Az | X®
(7.28)

Now by applying the equivalent control:

h
ueq’i = - I:Ml Iml:| {A/lel(k)-i_ZAl]x](t)} _fi(x[)a (729)

j=1
and using the nonsingular coordinate transformations T = diag[Ti]?=1 with T; =

[1& (1)], in the new coordinates, i.e. X =Tx, we can write
1

xil(t) _ Ail] Ai12 xil(t) + i Aijll Aij12 le(t) ’ (730>
6,;(1) 0 A, f[o:® | j=1, %[ O 0 o;(1)

where A;1; = A;jy — A;pM; and A1 = A;; — A;j1;M;. Obviously, (7.30) includes
a reduced order interconnected system composed of A subsystems with dimension
n; —m;. Note that this reduced order system is same as the reduced-order system

resulted by the SMC (7.17) as they both have the same sliding surface. Therefore
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the stability of the system (7.30) will infer the stabilty of the reduced order system in
Section 2, thus guaranteeing the stabilizing of the proposed SMC. Now, a stability
analysis is considered for the system (7.30). Let the overall closed-loop system,

obtained by the overall equivalent control, be
x(1) = AL x(1). (7.31)

It can readily be shown that the stability of AZ ; 1s equivalent to the stability of
Al = A+ BMC", where Ay and C" are obtained from (7.24) by letting I' = 1,
that is no structure imposed. Now in order to ensure the stability of the sliding mode
dynamics, we augment the %, problem in (A.1) (see Appendix A) by including (A.2)
with an s.p.d decision variable P > 0. It is not hard to show that the obtained M =

diag[ M, ,-]f’zl ensures the stability of the following composite reduced order dynamics:

Alll Alhll
xO= : -~ i |x0 (7.32)
Ahlll /Ihll

where x, = col(xil)flzl. Note that the obtained switching function matrices S; are

completely determined by choice of M;.

We finally summarize the proposed structured #, based SMC in the following

theorem.

Theorem 7.2 Assume that Algorithm A.1, with a given structure matriz T, has
a solution M = dz’ag[Mi]l]?:1 for some 6 > 0. Then the #, performance constraint
||Twz||§ < 6 on the system (7.19) is ensured. After the reaching time tg, the resulting
reduced n; —m; (i=1,--,h) order sliding mode dynamics, obtained by applying the
control law in (7.11) and (7.10) to the system (7.1), is asymptotically stable.

Proof: The proof is trivial from the previously given method to select the sliding

function matrix.
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7.4 Sparsification of Control Network

Previous sections have studied the problem of designing #5-based SMC for NCSs
with imposing a priori constraints on communication requirements among subsys-
tems. In other words, the structure matrix I in (7.17) is assumed to be known a
priori. The objective in this section is to establish an optimization framework which
indeed aims to obtain a trade-off between the #, performance and the sparsity of
the control network structure. Indeed, one can say that the main objective here is to
minimize the cost of the control network utilized to control (stabilize) the system.
Here, we assume that the general costs, including the construction and data transfer-
ring costs etc, are identical for all the links. Hence, the minimization of the control
network costs can intuitively be considered as the minimization of the number of
links in the control network structure or equivalently finding the sparsest control
network structure that can satisfy a global control objective. On the other hand,
minimizing the control network structure for the SMC without taking into account
the control costs, may not result in applicable results. Here we propose a way to
minimize the control performance and the communication costs simultaneously. We

formulate this problem as

min  J(I', M)+ ncard(l’) (7.33)

subject to ' C S(A), S(M) =1, and (7.25),

where J is the square of the #, norm of the closed-loop transfer function from w(z) to
z(t) in (7.25), T'=[y; ilnxn and card(-) denotes the cardinality function (the number
of nonzero elements of a matrix). Besides, n >0 is a given constant which captures
a trade-off between the #, performance and the sparsity of the controller structure.
For example a larger n will lead to a sparser I' and # =0, which means I' = S(A),
converts the problem to a distributed SMC with the objective function (7.21). The
optimization problem in (7.33) is a mixed-binary problem which, broadly speaking,
requires an intractable combinatorial search to achieve the solution.

Notice that the cardinality function, in optimization problems such as (7.33),
is usually approximated by the #; norm of the optimization variable [15] or the

so-called weighted #; norm [16]. Since the weighted #; norm is not implementable
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(the required weights should be calculated based on the unknown feedback gain), a
reweighted algorithm is proposed in [16], and further used by [73] to design sparse
feedback gains. This algorithm solves weighted optimization problems iteratively in
which the weights are updated inversely proportional to the strength of individual
(block) entries of feedback gain in the previous iteration. However, the existing
reweighted algorithms are not applicable to the optimization problem in (7.33), as
the system matrices A, and C in the fictitious system (7.25), involve the structure
matrix I'. Instead, in this note, we will consider a heuristic scheme by relaxing
the constraint on the variables y;;, i # j from the binary variables, 0 or I, to the

constraint of 0 < )/l.rj <1, i #j, where

vy, = % i#J, (7.34)
vt llE
in which F;; denotes the ij-th entry of the control feedback gain F in (7.22) and
|I-|l  is the Frobenius norm. Indeed yl.’j can be considered as the normalized strength
of the coupling feedback gain F;;. This scheme works by first finding the normalized
strengths of all the coupling feedbacks and then removing the links corresponding
to the weaker feedback gains one-by-one until the stability of the overall closed-loop
system is violated. Indeed, by assigning a normalized weight to each link according
to the contribution of its corresponding feedback gain in the control objective, this
process will reduce the probability of loosing the stability by removing a link. This

also can lead to a more computationally efficient method compared to an exhaustive

search without taking into account the strength of the coupled feedback gains.

Procedure 7.1 1) Initialize I'=S(A) and [ =1, in which | denotes the iteration

number.

2) Solve Algorithm A.1 (refer to Appendix) to find P and M. If the LMIs in
(A1) and (A.2) are feasible, T «T and J(I)= J(T")+nCard(T’), otherwise

terminate the search and the problem has no solution.
3) Find yl.rj as in (7.34) for ally;; =1, i #j. Sort the set {yirj} in ascending order.

4) Set y;; corresponding to the I-th entry of {yl.rj} to zero and I =1+1.
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5) Solve Algorithm A.1. If the LMIs in (A.1) and (A.2) are feasible, T'! < T, then
compute the objective function in (7.33) to find J,(I) = J(T') +nCard(), if
| < Card(S(A)), return to Step 4, otherwise go to Step 6.

6) Find I* = arg mlin J(I) and return its corresponding .

Remark 7.5 [t should be noted that random truncation of the distributed controller
(T'=S(A)) may lead to a feedback that cannot stabilize the overall system. In contrast,
the proposed method here is a systematic way to reduce the number of links in the
control network structure while preserving the stability of the overall closed-loop

system.

Notice that in order to obtain the result from the above procedure, at most Z‘fil &,
convex problems need to be solved, where & = Card(S(A)) and &, denotes the
number of iterations that is required for Algorithm A.1 at the /-th iteration of Pro-
cedure 7.1. This is in contrast to 2;251 &, in the case of carrying an exhaustive search
on the binary variables. Besides, roughly speaking, all the methods in the literature
to solve an #, static output feedback problem utilize iterative processes, and their
solutions and more importantly their convergence depend quite significantly on the
initial conditions. It is difficult to ensure Procedure 7.1 to achieve the global mini-
mum or even a local one. However, our extensive computational experiments show
that this algorithm can provide an effective means to achieve an acceptable trade-off
between the control performance and the sparsity of the control network structure.
Compared to the exhaustive search, Procedure 7.1 proposes a simple suboptimal

relaxation scheme, which is much more computationally attractive.

7.5 Numerical Examples

7.5.1 Example 1

Consider an interconnected system which includes three inverted pendulums mounted

on coupled carts [100, 90]. The linearized system equations are also given in [100].
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Table 7.1: Results of Example 1

* * * * * *
n X, Az Ay Gy A3y A3

0.001 1 0 1 0 0 0

0.002 1 0 1 0 0 0
001 0 0 0 0 0 0

Deﬁne xl = [.xi’l,xiyz,xi’3,xi’4]T = [Ql,el,Xl,Xl]T,
0 1 0 0 | 00 0 0]
M;+m k; c;j+b; —ki; by
a|me® Ve e |, |00 Wl we
’ o 0 0 1 “"1oo 0o o
—m —ki  —¢i=b; kij by
v vl vyl 00 2 %
T
_ -1 1
B,=0 w7 0 ﬁ,] :
for (i,/) € ((1,2),(2,1).(2,3),(3,2)}, in which k; = X, k;j and b; = ¥, b;;, where

Ji=1{J | [S(A));; =1,j #i}. Besides, ¢;, b;;=bj;,

ki;=k;; and £ are friction, damper,
spring coefficients and pendulum length respectively. It is also assumed that the
moment of inertia of each pendulum is zero. Besides, the system parameters are
assumed as M| =4, M, =3, My;=5, m=02, g=10, =4, ki, =ky =1, ks =
ky, =1, bjy=by =1, by3=03,=0.2, c; =04, ¢, =0.2 and ¢3 =0.1. Notice that here
it is assumed that entire system states are available. Transformation matrices T; are
utilized to transform the subsystems to the form given in (7.2). The performance
weights are set as Q =1, and R=0.11,,. We have also chosen A =—1. Procedure 7.1,
with three different parameters # = 0.01, 7 =0.05 and 5 = 0.1, is solved and the
corresponding results are given in Table 7.1. Furthermore, the initial conditions
for Algorithm A.1, which is required to be solved for addressing the suboptimal
LQ static output feedback problem in Section 7.3, are set to u,, =1, Y,,; = I, and
Y,

ot = 1, and the parameter 6 = 180. As seen, the larger parameter 5 results in a

more sparse control network.
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Table 7.2: Results of Example 2

* * * * * *
h Xy Q3 Ay &yz A3y Ay

0.001 1 1 1 1 1 1

0.01 1 0 0 0 0 0
0.1 0 0 0 0 0 0

7.5.2 Example 2

Consider the system (7.1) with the following parameters:

[ 0 0 36/ 0 o]0 0 ]
~02 72 -04|-01 0|03 0
03 0 0 |30 02/0 0
A= 0 03 0 | 0 10/0 o0 [
0O 0 0] 0 0]o0 -02
O 0 0] 0 0]0 10
| 0 03 0 |-0501/0 0 |
[0 0]0]0 |
1 0lo]o
0 1/0/0
B=[0 0|00
00/1/0
0000
0 0/0]1 |

Note that all three open-loop local subsystems are unstable. The performance
weights O and R are set to identity matrices and we choose 4 = —4. We firstly
use Procedure 7.1 with three different parameters # = 0.001, # =0.01 and # =0.1.
The corresponding results are given in Table 7.2. The initial conditions for Algo-
rithm A.1, which solves the suboptimal LQ static output feedback problem, are
Usoy =0.1, Y, =1, and Y,,; = I, and the parameter § = 190. One can see that as

the regularization parameter 5 increases, the control network becomes more sparse.
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Comparison 1

For comparison let us consider a standard sparse state-feedback LQR controller with
the given choices of Q and R. In doing so, assume that there exists a stabilizing

Lo Fp,, with T'=[y;;1px, and F,, € R™" minimizing the following cost functional,
J = trace(X,,,), (7.35)
where X Igr = diag[ X ,-]flzl > 0 is obtained from solving the Lyapunov inequality,

[A+ BT F,)" X,,+X,,[A+ BT F,)]

+0+IeF,) RITF,)<O0. (7.36)

The above inequality is not convex with respect to X 1gr and ['e Fy . However, it
can be convexified through variable changing. Letting X, = X l_qi and pre and post

multiplying X,,, to (7.36), we have

X1 [A+ BT e F )" +[A+ BT F, 01X, + X,,,0X,,,

+X,,(Ce F )" R Fu ) X, <O0. (7.37)

Having the convex constraint in (7.37), the minimization problem explained in

(7.35) can be cast as an optimization problem utilizing LMI approach,

minimize trace (Z,) subject to

| AX,+ X, AT+ BY,, +YT BT % x
1
02X, -1 *x |<0, (7.38)
1
] R2Y,, 0 -I
_Z,  x
<0, (7.39)
| T Xy

where Y, = (Ce Fj,,) X, = To (Fp, Xp,,) =T Y, with ¥, € R™" and Z_ is a slack

variable. Thus, the structural state-feedback can be obtained as I'e Fj,, =Y, X 1:11
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Remark 7.6 [t is easy to realize that

S(X 1) =S(Xpg) =1,

and since S(Y;,,.) CT', thus

S(Y,q,X;ql) cr.

This means that the structural state feedback gain I'e Fy,,. obtained from Y,qul_ql has

the desired structure I'.

Solving the minimization problem in (7.38) and (7.39) gives a bound of 6.3837 on
the 7, cost for decentralized structure. However, again it should be noted that due
to the conservatism introduced by enforcing a block-diagonal structure on X, this
is not the true value of #, cost and it can be obtained as 5.8276 from solving the
Lyapunov equation in (7.27) with the resulting Fj . Notice also that the true value
of #, cost achieved from Algorithm A.1 for decentralized structure is 6.3080.

Comparison 2

We now consider a reweighted ¢, algorithm for finding an optimal sparse state

feedback gains; e.g. see [73]. This problem can be cast as

Minimize trace(Z,)+7[|W oV, (7.40)
subject to
[ AX)+ X,y AT+ BV, + VI BT % x
1
02X, -1 % |<0,
1
i RZV,, 0 —I
A
<0,
1 -X,

where 0 < X, € R™", ¥V}, € R™", Z_ is aslack variable and W is a given weighting
matrix with the same dimension of S(Fy,). We then exploit Algorithm B.1 with
7 =0.01 to find the sparse state feedback matrix. This algorithm suggests the

decentralized structure for the control network with a true value #; cost of 5.8276.
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Also, notice that the existing reweighted #; algorithm, for minimizing the network
structure, is not applicable to our problem which was indeed the design of a sparse

distributed #5-based SMC and rearranged as an LQ static output feedback problem.

7.6 Conclusions

This chapter has developed a distributed sliding mode control framework by us-
ing (some of) other subsystems’ states. Indeed this issue has been considered to
widen the applicability region of the decentralized SMC in which each subsystem’s
controller uses only local information. Furthermore, an approach is proposed for
the sliding surface design in which the level of required control effort is taken into
account. Then this novel scheme has been utilized to present a heuristic algorithm
that provides an effective means of selecting an overall sliding manifold through a
trade-off between the performance and the sparsity of the controller. Indeed, the
novel scheme proposed here to design the sliding surface helps avoid excessively large
control effort. Illustrative examples have been used to demonstrate the effectiveness

of the proposed approach.
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Chapter 8

DSMC for 2D systems

8.1 Introduction

Multidimensional linear systems and in particular 2D systems have attracted much
attention since 1970s; see [39, 38, 32, 31] for two-dimensional linear models. In
1972, Givone and Roesser, for the first time, introduced a state-space model for a
linear iterative circuit which is studied as a spatial system rather than a temporal
system [39], [38]. This state-space model is then referred to as GR model. Fornasini
and Marchesini proposed a different state-space realization for the 2D digital filters
[32], known as the first FM model. Later in [31], they proposed a new state-space
form which is the first-order difference equation and sometimes is called second FM
model. Since then, multidimensional systems, especially 2D systems, have been
studied in many aspects and in many applications.

In [129], according to the so-called 1D quasi-sliding mode ([53]), SMC design has
been extended for 2D systems in Roesser Model (RM). In addition, the conditions to
ensure the remaining horizontal and vertical states in RM on the switching surfaces
and also the reaching condition for designing the control law using a 2D Lyapunov
function are investigated in [3].

Another strategy to work with 2D systems is to transfer them to a 1D form.
Wave advance model (WAM) is a 1D form of 2D systems established in [97]. From
the view point of WAM model, 2D systems are considered as advanced waves and
consequently the original stationary 2D system is converted to a time-varying 1D

system. Moreover, the system matrices are in rectangular form rather than square
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form. As a result, the major drawback of this 1D form of 2D systems is the varying
dimensions of the defined state vectors. This means that the results developed using
this framework are most likely computationally unattractive in terms of possible
applications. Motivated by this issue and using stacking vectors, a new approach
to converting 2D systems to a 1D form is proposed in in this chapter. Specifically,
here, rather than using WAM model, a row (column) processing method is used.
Row (column) processing means that the 2D variables which are in the same rows
(columns) are used to form 1D stacking vectors. Consequently, the states, inputs
and outputs of the obtained 1D system are in the vector form, and more importantly
their dimensions are invariant. This framework is basically useful for a class of 2D
linear systems in which information propagation in one of the two distinct directions
only occurs over a finite horizon. This can be the case of a repetitive process [35] or

any inherently 2D system, for instance, Darboux equation [58]:

0s(x,1) ds(x,1) ds(x,1)
=a + ay
0xot ot ox

+ags(x, 1)+ bu(t, x),

where initial and boundary conditions are known and constant. Here, s(x,7) is an
unknown function at space (x € [0,x*]) and t € Z", and all the coefficients are real

scalars. u(x,t) is the input signal. Defining s(iAx, jAt) := s(i,j), and

aS(X,t) ~ S(l+ 17.])_S(l’.]) aS(x,t) ~ S(l’]+ 1)_5(13.])
ox Ax oot At ’

the discrete form of Darboux equation can be written as

si+1,j+1)=(aA)s(i+1,j)+(a,Ax)s(i,j+1)
+(agAxAt —a At —ay,Ax +1)s(i, j)

+(bAXADu(, ),

where At and Ax denote the time step size and the spatial mesh size, respectively.
As seen, discrete form of Darboux equation is a first FM model which has a finite

propagation over the space direction.
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8.2 Problem Formulation

To illustrate how 2D systems can be converted to 1D form, we consider the first

FM model with the following formulation

x(i+1,j+1)=A;x(@+1,j)+ Ayx(i,j+ 1)+ Ayx(i, j) + Bu(i, j) (8.1)

where x € R" and u € R™ are respectively local state and control input. In addition,
the matrices in this equation are A; € R™" A, € R™" A, €R™" and BeR™". Tt

can be seen that this relation is a second order recursive equation.

8.2.1 New 1D form of 2D first FM model
The FM model (8.1) can be represented in the following form
x(i+1,j+1)—Ax(i+1,j) = Ayx(i,j+ 1)+ Agx(i, j) + Bu(i, j). (8.2)

Now, we define the following stacking vectors

[ A x(i+1,0)+ Agx(i,0) |
0

V(i) = | ,

- O -
[ x(i, 1) [ u(i,0) |

%) i1
X (i) = x(l" N = u(l. .l (8.3)

| x(i,0) | | u(i,v—1)]

where v is the dimension of distinct variable j, X (i) € R"", V(i) € R"" and U(i) €

R”™. As a result, the 2D equation (8.2) can be presented as

JX(@i+1)=KX(@)+ LUG)+V (), (8.4)
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where ~ .
1 0 0 0 0
A, I 0 0 0
0 —A, I 0 0
J =
0 0 0 1 0
0 0 0 .. -4 1]
O1x-1)
:IU®II’!+ ®(_A1)’
Iy Op—iyxa
(A4, 0 0 .. 0 0]
Ay A, O .. 0 0
0 4, A, ... O 0
K- o A
0 0 0 A, 0
0 0 0 Ay Ayl
0451 0
=I,@Ay+| 7V ]@AO. (8.5)
I, Oup_nx
Besides,
B 0 0
0O B ... O
L= =1,®B.
0 0 B

Here, x(i+1,0) and x(i,0) are state boundary conditions on boundary (j =0). More-
over, as it is seen with the vectorial definition (8.3), the variable j is hidden in the

new defined 1D form. Model (8.4) is also known as descriptor model.

Remark 8.1 In general, the dimension of 2D systems can be infinite. However,
as it was mentioned before, in this chapter, it is assumed that one of the distinct
variable of 2D system is finite. Moreover, the computing limitations have made it
inevitable to assume finite dimensions for both separate directions of 2D systems.
In this report, the dimension of considered 2D system is assumed to be uXv and, as

a result, the size of 1D state vector X (i) and control input vector U(i) in (8.4) are
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v.n and v.m, respectively. Besides, there are two set of boundary conditions (i =0

and j=0).
{ a(i) = x(i,0) over j =0, (56)
pU) = x(0,)) over i =0. '

Remark 8.2 Likewise, note that matrices J and K are bi-diagonal (in general
block) Toeplitz matrices and the sizes of these matrices depend on the dimension of

state vector X (i). The dimensions of the matrices defined in (8.4) are

J [v.n]X[v.n], K : [v.n]X][v.n],
(8.7)

L : [v.n]X[v.m].

To apply discrete sliding mode control to the system (8.4), this equation should be
left multiplied by J~! (obviously, matrix J is of full rank). In the case that the
elements of matrix J are varying, in every step the inverse of this matrix should
be computed. A very heavy computational load could result, especially for 2D
grids with large dimensions. However, in our case, the matrix J is time invariant
and consequently in the proposed DSMC of this chapter, the matrix J~! can be

computed only once.

Remark 8.3 In [18], a simple formula for the inverse of a block matriz with non-
zero blocks in the principal diagonal and the first sub-diagonal only is proved. Adapt-

ing this formula to our case results in the following form for J=' = [71),(1]’

0, if p<gq,
Ypg=13 Iy if p=gq, (8.8)
(=P (=A™ if p>q.

Then, by left multiplying (8.4) by J~!, the following standard 1D state space form
can be obtained,

X(@+1)=KX@)+LU®G)+ RV (i), (8.9)

where

A

K=J'K, L=J"'L, and R=J".
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Note that a numerical algorithm is given in [5] to compute J ~1 explicitly. It can be

found that K and L are block lower triangular matrices as

A, 0 0 0

N A A+ A A 0 0

K= 1412 0 2 ’
| AVTTA +AVTTA AVTPAHAVTAY e AjA Ay A
[ B 0 « 0 0]

. A,B B 0 0

i= (8.10)
|A”'B AY?B - AB B

In this new 1D form, the dimension of state vectors is constant and consequently
finding its regular form is possible. This sets the stage for designing specific 1D
DSMC for the obtained 1D state space model (8.9), which is the subject of next

section.

8.3 DSMC for 1D Discrete Vector Form

Assume that rank(L) = v.m (matrix L is of full column rank), and the pair (K,L) is
2].

controllable [12], [5:

Remark 8.4 Since J is invertible, it is clear that the control matriz L in (8.9) is of

full column rank if and only if the control matriz B in (8.1) is of full column rank.

Since rank(L) = v.m, there exists an orthogonal matrix 7, € RIvAX0nT gyeh that

~ | O
TrL _ [v.n—v.m]x[v.m] ’ (8.11)
L,

where the matrix L, € R*™Xm and is nonsingular [84]. (Note that the orthogonal
matrix T, can be computed using QR decomposition [84]). After the coordinate

transformation, we have

Zyi+1)]| | Ky Kyl Z20) L,
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where

[Z‘ (i)] =T,X(0),
Z,(i)

Z,(i) e Rm=0ml gnd 7,(i) € RV

K” = R[v.n—v.m]x[v.n—v.m]

KIZ = R[U.n—v.m]x[v.m] (813)
EZI = R[v.m]x[u.n—v.m]

KZZ = R[v.m]x[u.m].

This representation is referred to as ‘regular form’ [84]. Further, to design the
sliding surface we ignore the term arising from the boundary conditions as it does

not influence the stability. In these new coordinates the switching function becomes

where S| € RlomXlen=vml onq §, e RlemXloml gatisfying § =[S, S,] = ST, The
design parameters S;,.S, determine the sliding surface and should be chosen such
that, in the case that oy (i) =0, all remaining dynamics are stable. During ideal
sliding on the surface, oy (i) =0 for all k > k,, where k, is the time when sliding

starts, consequently

Zy(i)=-8;"'8,Z,). (8.15)

Defining Q = 5’2_15’1 and substituting the equation (8.15) into the equation (8.12)
leads to:

Zy(i+1) = (Ky; = K Q) Z, (). (8.16)

As a result, stability in the sliding mode is satisfied when all eigenvalues of the matrix
(K, — K;,Q) are located inside the unit circle. Indeed, the problem of finding the
matrix Q is a classical state feedback problem. In [52], it is presented that if the
pair (K, L) is controllable, the pair (K;;,K;,) is controllable as well. Therefore, any
classical state feedback method can be used to compute Q. Regarding the equation

(8.15), the matrix S, plays the role of a scaling parameter which can be selected
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arbitrarily but invertible. For simplicity it is chosen as the following
S, =L;". (8.17)

With the choice (8.17), the matrix © and consequently S, can be found by pole
placement, LQR-design or LMI methods. In this chapter the LQR-design method is
used to find the matrix §; by solving a certain discrete Riccati equation with proper
choices of weighting matrices. In this case, the switching function can be obtained
in original coordinate as

S=85[Q 1I,,IT,. (8.18)

Now, to design a controller which guarantees the sliding mode of system the trans-

formation matrix T, € R s introduced as

TS _ [IU.n_—U.m O[U.n—v._m]X[U-m]] ) (8 19)
Sl S2

This transformation matrix converts the system (8.12) to the following form:

Z(i+1 K, Kyl Z,G Ot n—omixlom Vi
1+ 1) _ ~11 ~12 1) | em—vmixtom |y ~1 , (8.20)
ox(+D| | Ky Kyp]lox() Lym V2
where [I71T 172T]T =T, T,RV (i) and V; € Rlv"vm 7 e R¥™  In order to design

a controller which forces the closed-loop system into the sliding mode we use the

following linear reaching law presented in [81] and [124],
oy (i+1) = Doy (i), (8.21)

where the design parameter ® € R0 ig chosen to be a diagonal matrix with

all its diagonal elements ¢, k=1,...,v.m, satisfying 0 < ¢, < 1.
Theorem 8.1 Assuming the control input U as:

the system (8.20) is stabilized.
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Proof: Applying the above control law to the system (8.20) leads to the following

[Zl(i+1)}:[1611 Ku][zl(i)]_i_[vl]. (8.23)
ox(i+1) 0 @ Jlox®] [0

The poles of the closed-loop system are given by

closed-loop system:

M) = MK ) U A®D). (8.24)

Obviously, the eigenvalues of @ are assumed to be stable (by design choice). In
addition, it can be easily proved that K,; = K;; — K;,Q which is designed to be a
stable matrix by (8.16). Consequently, the system (8.20) is stabilized with control
law (8.22).

8.3.1 Direct method to find control law

It should be mentioned that instead of control law (8.22), another direct method is
also possible to obtain the sliding control law [84]. Assuming that matrices S, and
S, have been designed (by for instance LQR design) such that the reduced order

dynamics (8.16) is stable. Now, by using linear reaching law (8.21) we have
Doy ()=SX(i+1). (8.25)
Inserting equation (8.9) in (8.25) leads to
®o (i) = SIKX () + LU @) + RV (i)]. (8.26)
Therefore, the control law can be defined to be
U(i)=(SL) ' [®SX(i)— SKX(i)— SRV (i)]. (8.27)

This control law is called direct control law which can be obtained directly after

computing the sliding matrix .
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8.4 Simulation Results

Consider the following 2D first FM model
-0.56 -0.33 0.33 -0.54
A = Ay = ,
-0.10 045 1.26 -0.41

-0.51 -0.09 0
Ay = ,B=| |. (8.28)
0.00 0.04 2
Here x € R? and u € R . Note that, this 2D system with U = 0 is unstable. We

assume this 2D system over the rectangle yxv (u =60 and v =39). Furthermore,

it is supposed that

1

x(0,/) =[ ] 0<j<39,
1

(8.29)

0.2
x(i,0) = , 0<i<60.
0.2

To compute the orthogonal matrix 7,, Matlab QR command is used. According
to (8.17), the matrix S, € R** is chosen as L;' (However, it is not necessary
and can be chosen arbitrarily but invertible) and in addition matrix S, € R¥*%
is determined by LQR design with state weighting of Iz9 and control weighting
of 100759. Eventually, matrix § is obtained from equation (8.18). ® =0.5I3 is
used in control law (8.27) and the results of applying DSMC are given in Figures
8.1-8.3. These figures show the trajectory of 2D states (x;,x,) and 2D control law,

respectively.

8.5 Conclusions

In this chapter we have developed a new method to apply the DSMC to the 2D
first FM model using 1D vectorial form of 2D systems. Although the focus of this
chapter has been on the first FM model, the derived results are more general and
can be easily extended to other 2D models. In the proposed 1D vectorial form of this
chapter, one of the 2D variables (i or j) is stacked and consequently the original 2D

process is replaced by a 1D virtual process which can be controlled easily. Dealing
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Control effort

i axis

Figure 8.3: The control law u

with this new 1D form, the designing procedure of DSMC is more straightforward
compared to 2D system. Also, analysing the controllability of system is much easier
in this form (which will be considered in the next chapter). Moreover, the proposed

method of this chapter can be extended to the tracking problem in 2D systems.
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Chapter 9

Controllability Analysis of 2D

systems

9.1 Introduction

Broadly speaking, the time domain analysis, such as controllability, reachability
and observability of 2D systems, has been done by various researchers, resulting in
a number of new notions such as local, global and causal controllability (reacha-
bility) [39, 38, 32, 31, 109, 33, 14, 13]. Necessary and sufficient conditions for the
exact reconstructibility of the state of the second FM model have been presented in
[13]. Other necessary and sufficient conditions with respect to 2D matrix polyno-
mial equations for the local controllability and the causal reconstructibility of 2D
linear systems are proposed in [109]. Reference [59] extends notions of the local
controllability, reachability, and reconstructibility for the general singular model of
2D linear systems.

In this chapter, firstly, the controllability analysis of WAM model of the first FM
model is studied, and a necessary condition for the controllability of this 1D model
is given. It should be noted that finding the sufficient condition for the controlla-
bility of the WAM model is hard. This fact in addition to the time-varying form of
WAM model limits the applicability of WAM model of 2D systems. This prompts
us to exploit the row (column) process for converting 2D systems to their 1D models
instead. On the other hand, during the procedure of designing the sliding surface

in the previous chapter, it is assumed that the obtained 1D system is controllable;
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see e.g. [110] for the similar treatment. But, the controllability of the obtained 1D
form and its relation to the original 2D system is an unanswered problem in Chapter
8. Hence, motivated by these issues, in this chapter, we focus on the controllabil-
ity analysis of the proposed 1D form of the underlying 2D systems. Based on the
controllability analysis, a new notion, directional controllability, for the underlying
2D systems is introduced and studied. More importantly, a necessary and sufficient
condition for the directional controllability of 2D systems is presented in this chap-
ter.

Also, there is a strong connection between controllability and the theory of min-
imal realization of linear time-invariant (LTI) control systems. Hence, the control-
lability result of this chapter would also provide useful insight into the observabil-
ity and realization analysis of the underlying 2D systems using the developed 1D
framework. Furthermore, note that the so-called minimum energy control problem
is explicitly connected with controllability analysis [63]. Therefore, one application
of the presented controllability analysis is the design of a specific 1D minimum en-
ergy control input for 2D systems called directional minimum energy control input.
It should be noted that the results of this chapter are particularly useful for those
who want to control the 2D systems via the proposed 1D framework.

The rest of this chapter is as follows. In the next section, the 1D WAM model of
first FM systems and its controllability analysis are presented. Section 9.3 presents
the controllability analysis of the 1D model presented in Chapter 8. Besides, a nu-

merical example is given in Section 9.5. Finally, Section 9.6 concludes this chapter.

9.2 WAM model of First FM Model

Consider the first FM model in (8.1). In this section, a brief review on the WAM
model [97] of the first FM model (8.1) is given. Then, the drawbacks of this method
are explained, which motivate us to investigate an alternative 1D form for the 2D

systems in the previous chapter which is more effective.
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Define the state vectors ¢p(k) and v(k) as

qb(k):[xT(k,O) xTk=1,1) - xT(O,k)]T,

T
v(k) = [uT(k,O) ul (k—1,1) - uT(O,k)] : (9.1)
The resulting WAM form of the first FM model (8.1) is as

pk+1)=Mk)Pp(k)+ N(k—1)p(k—1)+ E(k—1)v(k—1). (9.2)

Here, M (k), N(k—1) and E(k—1) are determined by

1 0
M(k)=[ k+1 ]®A2+[ 1X(k+1):|®A1,

Oy rr1) Ty (9.3)
Nk-1)=T(k)®A,, E(k—1)=T(k)® B,
where
T
T (k) = [OlTxk I, olTxk] , (94)
and I is the identity matrix of order k. Defining
r(k)=N(k—-1¢pk—1)+ E(k—1)v(k—1), (9.5)
a 1D state space model is obtained as
k+1 M) 1 k 0
d(k+1) _ (k) (k) N o(h). (9.6)
rtk+1) N(k) O] r(k) E(k)

Remark 9.1 The state vector in (9.6) is a linear combination of the local states
and inputs. However, in some applications, having state space equations with direct

access to the local states is required. In this case, by introducing a new state vector,

d(k) =[xT (k,0), xT (k, D), xT (k=1,1),xT (k—1,2), 0.7
v xT (1L k= 1), xT(1,k), xT(0,k)]7, |

a 1D state space equation with direct access to the state vectors ¢p(k) and ¢p(k+1) is
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acquired.

Remark 9.2 [n the definition of state vectors (9.7), instead of using the local states
just on the line i+ j=k+1, the local states located on the line i+ j =k are also used
to form state vectors. Generally, for WAM description of 2D systems which are
of at least second order, using the state vector (9.7) is useful. However, obtaining
WAM method for second order 2D systems (for instance FM model) and especially
for large scale 2D systems is complicated and, more importantly, the dimension of

the state vector (9.7) is varying.

Remark 9.3 In the case that the boundary conditions are assumed to be constant,
the state vector (9.7) should get rid of the boundary condition terms x(k,0) and

x(0,k) as
o) =[xT(k, ), xT(k=1,1),xT(k—1,2),

(9.8)
eoxT(1Lk=1),xT(1,k))T e RICHDM Ty >,
Hence, the 1D model is as follows
Pk+1)= M(k)p(k)+ E(k)v(k)+V (k), (9.9)
where ) i
A, 0 0 0 0 0
I 0 O 0 O 0
A, Ay A, O 0 0
_ o o0 I 0 0 0
M (k)= , (9.10)
0 0 A A4, A 0
o 0 o0 0 0 I
(0 0 0 0 0 A
(B 0 0 0] i ]
A x(k+1,0)+ Agx(k,0)
0 0 O 0
0
_ 0 B O 0] _
E(k) = Vk) = ., Vk>1,
0 0 O 0
0
Ayx(0,k + 1)+ Agx(0, k)
0 0 0 - B - -

and, M(k) = R[(2k+1)~n]x[(2k—1)-n], E(k) = |]%[(2k+l)-l’l])([(k-}-l)~rrl]7 V(k) = R(2k+l)-n’ for all
k> 1. Note that, here, M(0) = Ay, E(0)= B, V(0) = A;x(1,0)+ Ayx(0,0) and $(0) =
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x(0,1).

9.2.1 Controllability analysis of WAM model

This subsection aims to analyze the controllability of the 1D WAM model presented

in (9.9). To this end, define the so-called state transition matrix A™ as

AN = AgATH T A AT 4 A, AT

o 3 - (9.11)
= ATV A+ AT A + AT A, VL >0
Furthermore, it is assumed that
A =1 AT = AV = AT =0, Vi, j>0. (9.12)
Now, from (9.9) and with some recursive manipulations, we have
k
Pk +1) =B, ()7,,(k) - [ | M 1)p(0) = C,, ()%, (k). (9.13)
i=0
where
k k
Gt =MV E©O) [ {[][MGIEQ) | - | MGKEGK=1) | EK),
It{:l . i=2
Gl =1[]m0) | T[M@ | 1 M) | Lipsrym):
i=1 i=2
U (k) =[07©0) | (1) | - | 0T (k=1) | 0" (K],
V0=V O) [ V) | - | VTh=1) | V(0] (9.14)

As 7,,(k) is determined by boundary conditions only (not a function of control), we

neglect the second item of the equation (9.13) during the controllability analysis.

Theorem 9.1 The 1D WAM model (9.9) is not controllable unless B is of full row

rank.
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Proof: Matrix %,,(k) in (9.14) can be found to be as (9.15).

[ AkOB | Ak-10pB 0 AYB 0 0
AK10B | pk=20p 0 B 0 0
Ak—l,lB Ak—Z,IB Ak—l,OB AO,IB 0 0
Bo(k) = : : : : : :
Al,k—lB AO,k—lB Al,k—ZB 0 AO,IB Al,OB B
A%k-1p 0 A%—2p 0 0 B 0
| A%B 0 A%-1B 0 0 A*B 0
(9.15)
Left multiplying this matrix by
I, —-A, 0O 0
o 1, 0 - O
(k) = , (9.16)
[0 0 0 I,
where (k) € RICkHHDIXICk+D] 44 ig ohtained that
[ 0 we. 0B O - Ol
A0 A=20p . 0 0 0 - 0
k)G, (k) = * * cee sk sk e k| (9.17)
| k sk sk sk sk *_

where {*} means irrelevant entries. Note that since (k) is invertible, it does not

change the row rank of the obtained matrix 2(k)®,,(k) compared to 6,,(k). Clearly,
if B is not of full row rank, then, (k)% (k), and consequently, €, (k) is not of full
row rank. Thus, the WAM model (9.9) is not controllable.

From Theorem 9.1, it can be seen that the necessary condition for the controllability
of WAM model (9.9) is that B has full row rank. However, this condition is very
restrictive. As mentioned in Remark 9.2, in order to construct the state vector ¢(k),
the local states on the line i+j =k+1, and i+ j = k are both used. In other words,
the even elements of the state vector ¢(-) are carried elements from the previous
step and only local states on the line i+ j = k+ 1 have new information. Besides,
the local states on the line i+ j = k+ 1 will cover the whole space when k increases.

As a result of this fact, the even block rows of the matrix €,,(k) are removed and
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the remaining matrix can be written as ?w(k) as

[ AkO0p | 4k-10p 0 AlL0B ... 0 0 B 0 - 0
AK-L1g | gk-21p 4k-10p A%l ... 0 0 0O B - 0
C,(k) = : : : : : :
Alk=1g | A0k-1p glk-2p 0 o AYB AYBlO 0 - B
| A%p 0 A0k-1p 0O - 0 ABl0O 0 - 0
(9.18)

which will be used to determine WAM-controllability defined below. This is equiv-
alent to the output controllability with the following WAM output matrix for the
system (9.9),

(1, 0 0 - O]

|00 L0

o= | (9.19)
0 0 0 - 1T,

where C, (k) € RUenXICk=D-n1 - hig equivalence to the special output controllability
is in particular useful to the control/tracking problems for the 1D WAM model of
the form (9.9), however it is beyond the scope of this chapter.

Definition 9.1 The 2D system in (2.1) is said to be WAM-controllable if there exists
ak>kt= [%"—2] 2 min{keN | k> %”—2} such that rank(%,,(k)- €L (k)) = (k+1)-n.

1 2
[t )2(k+ )]

Remark 9.4 It can be seen that ‘(?w(k) € RIKk+D-nIx . Besides, in the above
definition, the condition k > in—" —2 is arising from the fact that the number of columns

of matriz B,,(k) is greater than or equal to the number of its rows if k > 2;" -2.

As €,,(k) and its dimension are time-varying, one may ask about the future step’s
WAM-controllability even if the system (8.1) is WAM-controllable at the step k.
Proposition 9.1, in the following, confirms the WAM-controllability for all the fu-
ture steps, thus, validating the definition of WAM-controllability in Definition 9.1.
Before it, consider the following lemma which provides a necessary condition for the

WAM-controllability.

Lemma 9.1 If the system (8.1) is WAM-controllable, then the pairs (A;, B) and
(A,, B) are both controllable.
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Proof: It is obvious that the nonzero blocks of the first and the last block rows of
the matrix ‘gw(k) are equivalent to the (k+1)-th step controllability matrices of (A,,
B) and (A,, B), respectively. If either one is not controllable €,,(k) is not of full

row rank. Hence, system (8.1) is not WAM-controllable.

Proposition 9.1 If €,,(k) is of full row rank for any k > k* = [%" —2], B,,(ky) is
of full row rank for any ki > k.

Proof: The matrix €,,(k+ 1) can be rearranged by some column permutation oper-

ations (without changing the row rank) as

[ Ak+l,OB Ak,OB Al,OB B 0 ]
Ak,lB Ak—l,lB AO,IB 0
: : Guk) |- (9.20)
A%*B  A%B .. 0 0
| A%%+1p 0 w0 0 |

From (9.20), it can be seen that if €,(k) has full row rank, necessarily, the
controllability matrix of the pair (A,, B) is of full row rank in (k+ 1)-th step from
Lemma 9.1. Therefore, this pair is controllable in (k +2)-th step as well. Since the
non-zero elements of the first block row of (9.20) contains the controllability matrix
of the pair (A,, B) in (k+2)-th step, €,(k+1) is of full row rank. This can be
simply extended to the general case of €, (k+7r), r> 1.

The next result characterizes the WAM-controllability condition in terms of the
original system matrices; if in particular n =2, m =1 and thus €,(2) € RS, we

would conclude the necessary and sufficient condition on the full rank of S?w(Z).

Theorem 9.2 If n=2, m=1, the matriz E,,(2) is of full row rank if and only if
the three pairs (A;, B), (A,, B) and (A,, B) are controllable.

A3B AB 0 |B 0 0
€2 =| (AjAy+AyA,+A)B | A\B AB|0 B 0 | (9.21)
A*B 0O AB|O 0 B

Proof: Let A3 = A+ A, and «a;, f; be the scalar coefficients of the characteristic

polynomial of A;, satisfying Al.2 +a;A;+p,1 =0, for i =1,2,3. By noting trace(A;) =
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—a;, it follows a3 = a; +a, for n=2. Then

A Ay + Ay A =(A| + Ay)? — AT — A2
:—(13(14] +A2)—ﬁ3l+a1A1 +ﬂ11+a2A2+ﬁ2]

=—m A —o Ay + (1 + P — P3)I.

As a result, the matrix in (9.21) can be rewritten as

—(a2A2 + ﬂzI)B AzB 0 B 0 0
G,,(2) = {(—ayA; —ajAy+(By+ P —P3) [ +Ag}B | A\B A,B|0 B 0
—(a,A + B, 1)B 0 AB|O O B

With some elementary column operations on €,,(2), col; +a,col, +a;coly + f,col, +
picolg + (B + P, — B3)cols, (col; is the i-th block column of the matrix in (2.49)), one
can change %_W(Z) to

0 [A,B 0 |B 0 0
AB|AB AB|O0 B 0 | (9.22)
0| 0 AB|O 0 B

With some row and column permutations (9.22) is converted to

AoB B|AB 0| A,B 0
0 0|AB B| 0 0 [ (9.23)
0 0| 0 O0|AB B

It can be realized that all the rows of the above matrix are linearly independent if
and only if the pairs (A}, B), (A,, B) and (A, B) are controllable. Note that, here,
we use the fact that €,,(2) is a square matrix and the row rank is equivalent to the

column rank.

Theorem 9.2 provides a necessary and sufficient condition for the WAM-controllability
of the special case n =2, m=1. As for the general case, while Lemma 9.1 presents
the necessary condition for the controllability of the WAM model, finding its suffi-
cient condition is hard and this can be the subject of future works. It will be shown,
in Section 9.3, that the necessary and sufficient condition for the controllability of
this 1D model, referred to as directional controllability, is only the controllability of
one of the two pairs (A;, B) and (A,, B). The pair (A,, B) would have no influence

on the directional controllability.
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9.3 Controllability analysis of the New Model in
8.2.1

In this section, different controllability notions of the 2D system (8.1) are consid-
ered, namely, local controllability and directional controllability. This is achieved by
studying the relation between the controllability of the obtained 1D system (8.4)
and that of the 2D system (8.1).

9.3.1 Notion of local controllability for 2D systems

Different definitions of controllability according to different types of dynamical sys-
tems can be found in the literature. Broadly speaking, considering the controllability
of 2D systems is relatively more complex compared to 1D systems. Instead of notion
of controllability introduced for 1D discrete-time systems, notion of local control-
lability (reachability) is developed for 2D systems [64]. Here, the controllability of
the first FM model (8.1) is studied referring to [32] and [64].

With the boundary conditions (8.6) and the given admissible controls sequence,

it can be shown
x(i,j) =AT171 49x(0,0)

i
+ D (ATPITIA 4 AP 40)x(p,0)

p=1
i o (9.24)
+ D (AT A, + AT 40)x(0, 9)
q=1
i—1j—1
+ ), ) AT Bu(p,g),
p=04¢=0

where the state transition matrix A’ is as in (9.11) and (9.12). From (9.24), we
have
M i, j) &x(i.j) = A7 Apx(0,0)

Lo o (9.25)
= DUATPITIA + AN A X(p,0)
p=1
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J
= AT A, + AT A0)x(0, )

q=1
i-1j—1
i—p—1,j—q—1
=2 2 AT Bu(p.g)
p=04=0
=Cjuij
where
G, =[A""Y1B AR, .. ATWB, ... A%"IB A%?B, ... B], (9.26)
and

u; = [u"(0,0),u”(0,1), - ,u’ (0,j—1),,

(9.27)
ul i—1,0),u’ (i =1,1), -, ul i—=1,j - D],

Definition 9.2 Consider the system (8.1) with the boundary conditions (8.6). This
system is locally controllable in a given rectangle [(0,0),(u,v)] if for every boundary
conditions (8.6) and for every vector x, € R", there exists a sequence of controls u,,,

as in (9.27) such that x(u,v) = x,.
The matrix €;; in (9.26) is known as local controllability matrix.

Lemma 9.2 ([64]) The system (2.1) is locally controllable in a given rectangle

[(0,0), (u,v)] with unconstrained control inputs u if and only if rank((glw . GZU) =n.

Furthermore, it is shown in [32] that Lemma 9.2 can be confined to the following

lemma.

Lemma 9.3 The system (2.1) is locally controllable in a given rectangle [(0,0), (u,v)]
with unconstrained control inputs u if and only if rank(C,, -CT y=n where u>n and

v>n.

It should be mentioned that this lemma is proven in [32] for reachability case.
Indeed, a method similar to proving Cayley-Hamilton theorem for 1D systems can

be developed for the 2D case.

9.3.2 Directional controllability with respect to {j}-direction

In this subsection, the controllability of the 1D system in (2.9) is considered. More-

over, a new notion of controllability for this special form of the 2D system in (8.1)
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is defined.
Now, define
)1r.

MG =M, 1) M0 = [(Cquy)T (G,

iviv

Since u;y, ..., U1y are included in u;,, (9.28) can be rewritten as

M (D) = Gty
where € is
Y 0 0 0 B 0
AN 40 0 0 A™'B B
Ai—l,U—zB Ai—l,v—3B Ai—l,OB 0 AO,U—ZB AO,U—3B
Ai—l,U—lB A[—I,U—ZB Ai—l,lB Ai—l,OB AO,U—IB AO,U—ZB
(9.30)

Lemma 9.4 The matriz G, in (9.30) satisfies
@, = [zei-li | | RE| L]

where K and L have the form in (8.10).

Proof: From (8.9) it can be demonstrated that
X (i) - K'X(0)-6,7 (i) =6, %),
where

7 i) =T VT i-DI", %0 =[UT©0)--UT (- DI,

G, =KL | RL) L], = [R'R) | KRR,

and U(-),V(:) are defined in (8.3). Noting that % (i) = u;, and comparing
with (9.29), we can conclude (9.31) as 6; =6, .

(9.28)

(9.29)

(9.31)

(9.32)

(9.33)

(9.32)

As X(0) and 7°(i) are determined by the boundary and initial conditions, we only

need to check 6, to analyze the controllability of system (9.32). As seen, the matrix
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%, has the form of the controllability matrix of the 1D system (8.9), hence, the
controllability of the 1D system (8.9) can be analyzed by checking the rank of this
matrix. Furthermore, in the sequel it is shown that the matrix &; in (9.30) has
more to do with the local controllability of the 2D system in (8.1). Note that, in the

sequel of this chapter, it is assumed that g > n and v > n, without loss of generality.

Lemma 9.5 The system (8.9) is controllable at the k-th (k=1,---,u) step with

unconstrained control inputs U, if and only if rank(6) - %kT) =v-n.

Proof: From Lemma 9.4, the k-th step controllability matrix of (8.9) is equivalent

to 6. Hence, this system is controllable if and only if € has full row rank.

Moreover, in the following theorem it will be shown that when p>n, v>n and €,

and hence, €, will be of

is of full row rank, the local controllability matrix € v

nn’

full row rank. However, the converse of this issue is not always true.

Theorem 9.3 The local controllability matriz €, has full row rank if the matriz

€, has full row rank where p>n and v > n.

Proof: €, has v block rows with each block having the dimension {nX(u-v-m)}. It
is not hard to show that the nonzero blocks of the n-th block row of &), is equivalent
to the controllability matrix €,,. Hence, if €, has full row rank, €, and thus €,
has full row rank. From Lemma 9.2, the 2D system (8.1) is locally controllable in
a given rectangle [(0,0),(u,v)]. According to Lemma 9.3, it can be concluded that

€, is of full row rank.

In other words, whenever the matrix €, has full row rank the 1D form system (8.9)
is controllable and the 2D system (8.1) is locally controllable in a given rectangle
[(0,0),(u,v)] with unconstrained control inputs.

Now comes the main result of this section.

Theorem 9.4 The 1D form (8.9) of the 2D system (8.1) is controllable if and only
if the matriz pair (A5, B) is controllable.
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Proof: By some column permutations (without changing the row rank) the matrix

6, is rearranged to

i B 0 0 0 0 ]
Alp A*B | A19B B 0 0
: : : : : s (9-34)
An—l,l}—2B AO,U—ZB An—l,v—3B AO,U—3B 0 0
| An—l,U—lB AO,U—IB An—l,U—ZB AO,U—ZB An—l,OB B ]

Obviously, the matrix in (9.34) is a lower-triangular block matrix and its diagonal
blocks are the controllability matrix of the pair (A,, B). Therefore, the controlla-
bility of (A,, B) is equivalent to the controllability of (K, L).

Here, according to Theorem 9.4, a new notion of controllability for 2D systems is

defined.

Definition 9.3 The 2D system in (8.1) is said to be directionally controllable with

respect to the direction {j}, if its 1D form X, in (8.9) is controllable.

Proposition 9.2 The 2D system in (8.1) is directionally controllable with respect
to the direction {j}, if and only if the matrixz pair (A5, B) is controllable.

Remark 9.5 Basically, the notion of local controllability of 2D systems uses the
Kalman-controllability notion and extends it to a more general form for 2D systems.
Meantime, the notions of WAM controllability and/or directional controllability de-
fined specifically for the 1D form of the 2D system (8.1) also exploits the standard
Kalman-controllability notion. Note that Theorem 9./ provides a sufficient and
necessary condition for the controllability of the obtained 1D system (8.9) which is
exactly equivalent to the Kalman-controllability of the matriz pair (A,, B).

9.3.3 Directional controllability with respect to {i}-direction

In the procedure of [5] and this chapter, it is assumed that the {;j}-direction is finite,
and hence, the local states located in the same {j}-direction form the 1D stacking
vectors. In the case that the {i}-direction is of finite dimension, the local states
located in the same {i}-direction can be stacked to form the 1D stacking vectors.
Similarly, a sufficient and necessary condition of the directional controllability with

respect to {i}-direction can be obtained as follows.
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Proposition 9.3 The 2D system in (2.1) is directionally controllable with respect
to the direction {i}, if and only if the matriz pair (A;, B) is controllable.

9.3.4 Directional minimum energy control input

For 1D LTT systems the controllability analysis is strongly related to the so-called
minimum energy control problem [63]. In this subsection, a specific minimum energy
control input is proposed for 2D systems according to the directional controllability
notion given in the previous subsections. This control input will be denoted in this
note as the directional minimum energy control input.

Suppose that (A,, B) is controllable. From Theorem 9.4 we have the matrix pair
(K, L) of the system in (8.9) is controllable with ©,,, the controllability matrix,

where ip>n. Let
Uip) =~ (€, G X))~ KIXO0)~C, 7 (i), (9.35)

(GZZI-f is asin (9.33)), then % (i ;) has the minimum energy [|%(i ,)||* among all possible
control input sequences which can steer the system state from X(0) to X (i) [44].
The control input sequence given in (9.35) is said to have the directional minimum

energy with respect to {j}-direction.

9.4 Numerical Example
Consider the following 2D first FM model

(056 0 —033 —0.54
Al = s A2 = )
0 0 026 —041

(051 —0.09 0
Ay = B=| | (9.36)
000 0.04 2

Here, x € R? and u € R. We assume this 2D system over the rectangle uxv (=20
and v=75). It is supposed that x(0,j) = [8], 0<j<5, x(i,0)= [8], 0<i<?20.
It can be seen that despite the uncontrollability of the pair (A;, B), and, since the
pair (4,, B) is controllable, the pair (K, L) is controllable. Also, €, and €,, have
full row rank (rank(%,) =6 and rank(€,,) =2). As a result, this 2D system can be
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———— g
———— </ ~
—_—— 7 =2 [

2D state X1

20

2D state X2

Figure 9.1: 2D system state

said to be directionally controllable with respect to the {j}-direction. Note that since
rank(%”_w(Z)) =5 < 6 this system is not WAM controllable in 3rd step. Also, since
(A, B) is not controllable, from Lemma 9.1, this system is not WAM controllable
in general.

Now, the results of applying the open-loop minimum energy control input se-
quences in (9.35), with i, = u =20, X(0) = 0,0s; and X(20) = 10x 1,4, to the
system (8.9) are shown in Fig. 9.1.

9.5 Conclusions

In this chapter, a new WAM-controllability notion has been defined for 2D systems
and a necessary condition is given accordingly. Then, a necessary and sufficient
condition has been derived for the controllability of the newly proposed 1D model
in Chapter 8. Accordingly a new notion, directional controllability, has been defined
for the underlying 2D systems. The directional controllability analysis presented in
this work is beneficial in terms of designing the so-called minimum energy control

input.
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Chapter 10

Heart Rate Regulation During
Cycle-Ergometer Exercise via

Event-Driven Biofeedback

10.1 Introduction

It is generally accepted that regular aerobic exercise has a positive effect on reduc-
ing the risk of heart disease, rehabilitation post infarct and for reversing the health
effects of diabetes or overweight [21, 134, 7, 80].

HR can be used as an index to monitor the exercise intensity [92]. This fact
makes it simpler to develop a control system to steer the human HR to a prede-
termined and individual exercise prescription, represented as a target HR profile,
instead of directly employing the exercise intensity in kJoules or Watts and exercise
rate (ER) as control parameters.

A number of strategies have explored real-time control of HR during treadmill
exercises such as, e.g. classical proportional, integral and derivative (PID) control
[61], Hy, control [19, 116] and model predictive control [118, 115]. However, to date,
this issue has not received very much attention, for cycle-ergometer exercises. In
the case of a treadmill, the controller directly controls the treadmill speed and/or
treadmill gradient, and as a result, the human does not play the role of actuator in
the control-loop. Further, they only have to passively respond to the variation of the

controlled parameters (speed and/or elevation) of treadmill. This also happens for
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the controllable automatic braking cycle-ergometers, in which the controller controls
the load on the cycling system by changing the resistance of the brake device [60)].
The problem of HR regulation during cycle-ergometer exercises can be considered
in an entirely different framework. In other words, the controller commands can be
transmitted directly to the exercising subjects and, then the human operator acts in
the role of the actuator of the control system. This is commonly referred to biofeed-
back with the operator in the feedback loop [37]. This novel framework obviates the
need for controllable automatic brake equipment in the cycle-ergometers. In [10], a
periodic auditory tone is used to inform the subject of how hard they must work. In
other words, a translating function, according to the level of the controller signal,
simply changes the auditory rate and frequency to show whether more or less effort is
required. However, the control system in [10] generates and transmits biofeedback
without considering the position of the exercising subjects’ feet. This makes the
control system a simple time-driven one, routine in the control engineering, which
implements the control calculations at a fixed rate. However, this may lead to a
cognitive disengagement of the subject from the feedback controller. One possible
alteration to this audio output method might be adjusting the time duration and
the frequency of the auditory stimulus, while synchronising the rate of transmitting
the auditory stimulus to the user with the position of the exercise bike pedals to
optimize effective application of force. Implementing this idea, however, requires
a new control system strategy (see Fig. 10.1), regarded here as an actuator-based
event-driven control system, which is different to the existing sensor-based event-
driven control system in the literature [16].

Owing to the simplicity of the PID control structure, it represents a simple
and powerful control strategy which can be used for various industrial and practical
applications. It is well known that the HR response to dynamic exercise is nonlinear
and it may be different for each exercising subject, in different physical situations
[10]. Hence, an adaptive and model-based control method is usually designed to ad-
dress the problem of HR control. When using PID control, the controller parameters
for each subject should be determined continuously using a subject specific model.
Alternatively, one can design a robust PID controller which is able to compensate

for the inter-individual differences in the dynamic HR response to the work rate [60].
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Wireless HR
Sensor

Computerized
Control Unit

Auditory
Converter

Figure 10.1: Block diagram for the HR regulation system during cycling exercise
using non-model-based control schemes

Wireless HR
Sensor

Adaptive ISM

/ Identification

—_—

Auditory
Converter

Figure 10.2: Block diagram for the HR regulation system during cycling exercise
using model-based control schemes
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Additionally, in this work, we developed an adaptive integral sliding mode con-
trol strategy, along with a damped online parameter estimation scheme. Traditional
SMC approaches may lead to a deadbeat control which is undesirable in practical
applications because of the possible required large control efforts. The integral slid-
ing mode control (ISMC) design resolves this issue by removing the poles at zero
[1]. On the other hand, the traditional parameter estimation schemes (e.g. recur-
sive least squares (RLS) method) provide no useful parameter estimates while the
excitation signal is small or zero. This issue is referred to as blowup phenomena in
the literature. Furthermore, if for a long period no excitation happens, large fluc-
tuations may happen in the estimated parameters. The reference [69] modifies the
conventional RLS method to bound the amount of parameter variations. Inspired
by [69], this work developed a damped RLS scheme using a regularization approach
that is specifically useful for HR response dynamics identification; see Fig. 10.2.

In this chapter, an event-driven control system is proposed, in which two anti-
windup [9] mechanisms are designed to protect the user against possible large HR
fluctuations owing to inaccurate controller parameters and/or individual HR re-
sponses. This event-driven control system consists of a PID or an adaptive ISMC
controller whose output signal is translated to a set of auditory stimulus transmit-
ted to the exercising subject at a time-varying rate synchronized with the subject’s
pedaling rate and position of the pedals.

For comparison, we also used a simple switching (relay) controller to generate
visual phrases which can be read by the exerciser, as well as a conventional PID
controller whose output signal is transmitted as biofeedback (auditory signal), how-
ever, with a fixed transmission rate or equivalently without considering the position
of the exercising subjects’ feet.

The novel control system was experimentally verified employing twelve exercising
subjects. In doing so, firstly, we tuned the PID parameters using a specific exercise
session and with the aid of eight different exercising subjects. Moreover, quantita-
tive comparison of the obtained average tracking error signals illustrated that the
proposed actuator-based event-driven PID controller has better performance com-
pared to a conventional PID controller with a fixed-rate biofeedback mechanism or

a relay controller using synchronized visual biofeedback.
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Figure 10.3: Nonin 4100 Pulse Oximeter

10.2 Methods

10.2.1 Subjects

Twenty healthy male subjects (free from any known metabolic or cardiac disorders,
hypertension, and not under any medication) participated in this project to exercise
on the cycle-ergometer. Written informed consents were obtained from all partici-
pants, and the study was approved by the UTS Human Research Ethics Committee
(UTS HREC 2009000227). Since several parameters, such as the time of the day,
emotional state, temperature, humidity, previous activity, food and caffeine intake,
fatigue, altitude and dehydration, can influence HR [79], the subjects were asked
to have a light meal two hours before the experiment and not to get involved in
intense exercise for 24 hours before the experiment. Environmental conditions were
maintained constant for all subjects. The physical characteristics of the subjects
are presented in Table 10.1 (SD denotes the standard deviation). Eight of the par-
ticipants, named Group 1, were requested to complete a specific exercise session
designed for the tune of the PID controller parameters. Further, to validate the
proposed control system, twelve subjects who were not involved in the controller

tuning (Group 2), were asked to exercise on the cycle-ergometer; see Section 10.3.

10.2.2 Equipment and data acquisition system

In this project, we utilized a Nonin 4100 Pulse Oximeter to collect the HR data
during exercise; see Fig. 10.3. Various data formats can be extracted from the
Nonin 4100 wireless sensor such as SpO,, HR, Plethysmographic pulse data etc.

Although this sensor outputs different data, which makes it an adequate choice
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for clinical applications, it may sometimes show some abnormalities in the data.
This is because the Nonin 4100 pulse oximeter relies on comparing two different
light waves and an algorithm to calculate the heart rate and oxygen saturation
levels. If the sensor slips on the finger, it is unable to pick up a clean feed of data
and therefore errors in the data are generated. Further, if a subject clamp their
fingers around an object while on the bike, blood may be constrained or cut off
from the finger, resulting in a lack of data or incorrect data being collected. To
resolve this we need to ensure that on the cycle-ergometer the subject’s arms rest
on the supporting structure while the fingers remained comfortably stretched out
to ensure an adequate flow of blood. Moreover, the cycle-ergometer that we used
in this project is an air vane exercise bike, which is well suited for safe exercise
by the frail and/or elderly. Since it has a big supporting structure, which can be
used by the exercising patient to stabilize themselves during exercising, the finger
pulse oximeter is almost completely stable during exercise and it generates minimal
artefact. We have developed a data acquisition system using National Instrument
LabVIEW which provides easy synchronization and a graphical user interface. The
LabVIEW collected HR signal from the Nonin 4100 pulse oximeter every 1 sec. In
addition, to prepare a reliable real-time HR signal for the computer controller, an
exponentially weighed moving average filter (see [24]), with filter coefficient a = 0.75,
is implemented.

Two reed switches and magnets have been attached to the crank shaft of the
pedals of the exercise bike, in order to provide a pulse whenever a full revolution
has been completed; see Fig. 10.4. In the Labview program, a time-delay parameter
may be set to help the user to adjust the time-delay between the position of the
pedal sensed by the sensor and the time when the command is sent. This parameter
is useful since we can adjust the point where the user can most effectively apply

force to the pedals; see Fig. 10.4.

10.2.3 HR profile

The HR profile in this work is selected in three stages. In the first stage, called the
warm up period, we aim to gradually increase the user HR from their normal HR

(HR,) to the exercise HR (H R,) which then remains constant for a while (7},). The
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Adjustable time delay

Reed switch

Figure 10.4: Reed switch and adjustable time delay parameter

warm up slope is

(10.1)

in which 6,, represents the warm up slope and T}, shows the warm up time duration.
The warm up time duration T,, is used to avoid an excessively rapid increase in the
HR. The second aerobic training stage is denoted by T,, which may be computed
according to the maximum HR. For obtaining the ideal target aerobic training HR,

various formulas have been proposed. The mazimum HR (HR is commonly

max)

characterized by the well-known Haskell and Fox formula [101] as:

HR,, . =220-Age. (10.2)

We then set the exercising HR, as 0.65 ~0.85 of HR depending on the sub-

max»

ject’s level of fitness and/or risk profile. The application of the third cooling down

or recovery stage (T,) is basically to prevent possible venous pooling and reduced

c

venous return to the heart from an excessively abrupt termination of the exercise.

Remark 10.1 In this project, the HR profile is dynamic. In other words, the HR
profile always starts from the subject’s current resting HR and increases to a value

which is calculated based on the age of the subject (aerobic training ideal HR).

10.2.4 Control System
Actuator-based event-driven PID controller

Since this project does not use an additional automatic braking system on the cycle-

ergometer, the use of biofeedback is necessary to control the exercise intensity. This
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means that the controller commands are sent directly to the exerciser and they
must be interpreted and implemented by the exerciser as a part of the control loop.
We use the information from two sensors installed on the pedaling system to trig-
ger the the biofeedback with a suitable delay to optimize the ability of the user
to both interpret the command and to assert the appropriate amount of force on
the pedals at the correct time. However, as the rate of output (HR) sampling is
not synchronous with the rate of transmitting the controller commands (auditory
signals) to the user, through the new proposed biofeedback mechanism, we needed
to develop a novel control system which is different from the conventional control
systems, in which the sampling rate of the system outputs is assumed to be the
same as the rate of control signal transmission to the system actuators. This section
briefly explains the novel control system designed for this project. A discussion on
the control system will be given later in this chapter.

Consider a time-driven PID controller in the velocity form such as

u(k) =u(k—1)+ Au(k), (10.3)
where
Au(k) =K [e(k) —e(k — )]+ K;Te(k)
K, (10.4)
+ ?[e(k) —2e(k—1)+e(k—2)],
in which
e(t) =r(t) — y(1), (10.5)

where u(7), r(t), y(t), K,, K; and K, are control effort, reference, actual output,
proportional gain, integral gain and derivative gain, respectively, and T is a fixed
sampling rate and is equivalent to the sampling period of the HR sensor. Then,
whenever an event occurs (the left or right pedal passes the reed sensor), the last
prepared update of the control signal will be transmitted as a biofeedback signal. As
seen, the sampling rate of the HR transmitted to the program by the HR transducer,
and thus, the updating rate of the control signal in (10.3), are typically constant (1
sample per second). However, the rate of biofeedback transmission to the exercising
subject varies based on the pedaling rate. This specific form of control system,

called here the actuator-based event-driven control system, will be discussed later in
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Section 10.4.2.

Actuator-based event-driven Adaptive ISMC

Model identification: Damped least squares (LS) method Since the HR
response to dynamic exercise is time-varying, a stationary control scheme may not
provide adequate performance. Therefore here an adaptive control scheme is uti-
lized to deal with the time-varying dynamics.

The conventional least squares method obtains the parameter estimate minimiz-

ing the following quadratic cost function:

k
Jo@ =Y By -¢-1T0P, (10.6)
t=k—N

where y(k) is the process output, @ is the parameter estimate, ¢(k) is the regressor
vector, N is the sample number, and f is the exponential forgetting factor. Now,
the goal is to find model parameter estimates (6) that minimize the least squares
of the differences between the actual system outputs and the predicted values for
the system outputs. The vector ¢p(k) consists of the past input and output values.
Further, 0 < g <1, referred to as the forgetting factor, is a scalar that provides us
with a flexibility to weight the influence of the past information on the estimation;
see [8]. However, the traditional RLS method suffers from a drawback. For instance,
if the excitation signal is small and all elements of ¢(k) are zero, no useful parameter
estimates can be achieved. This issue is called blowup in the literature. In simpler
terms, using a constant forgetting factor, if for a long period no excitation happens,
the estimator will loose the proper values of the parameters, and the regressor vector
will be dominated by noise. In such a case, large fluctuations may happen in the
estimated parameters. The reference [69] modifies the conventional RLS method
to bound the amount of parameter variation relative to previous-time parameter

vector. This can be formulated as:

k
JO)= Y Fyo-¢a—1ToP (10.7)

t=k—N
+24(k) || 0Ck) — bk — 1)

9
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where A;(k) is a time-varying regularization parameter that implies the emphasis
on bounding the parameter increments; i.e. A,;(k) = 1,(k—1) =0 converts the above
objective function exactly to the standard recursive least squares with exponential
forgetting, or if A;(k) = 00 (A,4(k) is set to a very large value) then the estimated
parameters are immediately frozen to their current values.

Minimization of the above objective function results in the recursive equations as:

e(k) =y(k) — p(k— )T 0(k 1), (10.8)
O(k) =0(k — 1)+ P(k— 1)¢(k — 1)e(k) (10.9)
+ P(k— 1A, (k= D[O(k —1)—O(k —2)],
Plk— D' =pPk=2)"" + pk — Dp(k — DT (10.10)

+[44(k) = pA (k= DI,

where 0(0) = 0y (6, is a nominal parameter vector) and P(0) = Ad(O)_II )

Now, we aim to model the human HR response to the control inputs. The model
input here is the control commands that the controller generates. The relationship
between the input and output, by assuming a first order dynamics for the HR

response, is represented as:
y(k+1)=a(k)y(k)+b(k)u(k)+d(k), (10.11)

where y(k) € R, u(k) € R and d(k) € R denote the HR, the control input, and the
disturbance (which is assumed to be smooth and bounded), respectively. Further,

a(k) and b(k) are the time-varying system parameters which are scalars.

Discrete-time Integral Sliding Mode Control Consider the first order system

in (10.11). Now the integral sliding surface is proposed as

o(k) =e(k)—e(0)+e(k)

(k) = e(k— 1) + pe(k — 1), (10.12)

where e(k) = r(k) — y(k) denotes the tracking error (r(k) is the reference trajectory),

o(k), e(k) are the sliding function and integral variable and u is the design parameter.
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Now letting o(k+1) =0 (which is a routine in sliding mode control) leads to:

olk+1)=e(k+1)+e(k+1)—e(0)
=elk+1)—(1—pe(k)+e(k)+e(k)—e(0)

=elk+1)—(1—-ple(k)+o(k)=0.
Hence utilizing (10.11), one may show that the so-called equivalent controller is
(k) = b(k) ™' [r(k+ 1) — pe(k) — a(k)y(k) — d (k) + o (k)]

where p =1—u. However, it is not possible to implement the above controller as
d(k) is unknown. As this work uses a moving average filter for smoothing the HR
signal, and further, the updating rate of the system model is very slower than the

sampling rate, the disturbance estimate can be employed in the controller as
u(k) = b(k) "' [r(k + 1) — pe(k) — a(k)y(k) — d (k) + o (k)], (10.13)

where d(k) is the disturbance estimate which can be achieved by the following equa-

tion:

d(k) =d(k—1) = y(k) —a(k — D)y(k = 1) — b(k — Du(k — 1). (10.14)

Stability analysis By applying the controller in (10.13) to the system (10.11),

we obtain
y(k+1) = r(k+ 1) = pe(k) + d (k) — d(k) + o (k).
Since o(k) = d(k—1)—d(k —1), then
e(k+1) = pe(k) + x(k), (10.15)

in which x(k) = d(k)—2d(k—1)+d(k —2) = O(T?) (see [1]). As p=1—pu, one may
choose p such that p < 1. This suffices that the tracking error dynamics remains

bounded as «(k) is bounded as well.
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Auditory convertor

In order to instruct the user to apply more or less effort at the right time, a combi-
nation of varying both the time duration and the frequency of auditory stimulus was
used in this project. In this method a shorter time duration and lower frequency
is used to motivate the subject to reduce the application of force to the pedals and
conversely to increase the applied force if the time duration and frequency increases.
However, the time intervals and frequency range which can be used are limited. We
know that the time durations of more than a specific value result in the so-called
aliasing phenomena. Additionally, time durations which are less than a specific value
may not be heard by the subjects. This issue also holds for the frequency of the
auditory signal. Accordingly, we selected the following range of time duration and
frequency for the auditory stimulus: 60 ~ 500 ms and 400 ~ 2000 H z, respectively.

The auditory converter thereby contains two saturation functions,

A gu(k)) < 44
tg=sat{gw(k)} = guk)) A; <gluk))< i, (10.16)
Ay g(u(k)) = 4,,

where 7, is the time duration of the auditory signals and g(u(k)) is a scaling function
which converts the range of u(k) to the range of the time duration, 4, = 60 ms,

A, =500 ms, and

" h(u(k)) <7,
fy=sat{h(k)} =49 hwk) 7y, <hk)) <7y, (10.17)
V5 h(u(k)) > v,,

where f is the frequency of the auditory signals and h(u(k)) is a scaling function
which converts the range of u(k) to the range of appropriate frequencies of the

auditory signal, y; =400 Hz and y, =2000 Hz.

Remark 10.2 [t should be noted that the above system includes two distinct control
loops. In simple terms, the control system is a MISO (2110) in which the PID

controller of both control loops have the same parameters; see Fig. 10.5.
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Figure 10.5: The control system block diagram.

The proposed control mechanism in summary

The structure of the designed control system can be briefly expressed as follows:

1-

Two

The control signals are updated synchronously with the HR measurements at

a constant rate.

An auditory signal (biofeedback) is generated according to the level of the

control signal and transmitted whenever the first event occurs.

This auditory signal motivates the exercising subject to increase or decrease

their pedaling rate and the level of force applied.

As a result of varying the pedaling rate during some sampling periods, more
than one event can occur. For these events, the same auditory signal as the
one transmitted at the first event is sent to the subject. These additional

auditory commands help the subject to continue tracking the desired profile.

novel anti-windup mechanisms

In the case of utilising an integrator in the controller, if the actuators perform at

their

limits independently of the system outputs measured, the error will be inte-

grated continuously for a long period before conditions return to normal. Hence, the

control effort may increase to a very large value. Thus the PID or ISMC controller

may cause large transients while the system actuator saturates. This is referred to

as windup phenomena [9]. In this work, as the exercising subject plays the role of

system actuator and has exercise limitations, windup can similarly occur.
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If the exercising subject inadvertently or deliberately chooses not to follow the
controller commands, a large tracking error will be generated, and the controller
will require a huge effort to compensate for the absent effort. This may result in a
large fluctuation in the HR of the subjects if the exercising subject responds to the
biofeedback signal. If the HR profile (such as warm up slope 6, in (10.1) and target
HR (HR,)) is not determined accurately for each subject, considering the maxi-
mum work-rate that the subject can do whilst pedaling continuously, a collapse in
the closed-loop mechanism can occur. Even if the target HR and warm up slope are
set appropriately according to each subject’s condition, the subject may deliberately
choose to stop the exercise for a short period.

In conventional control theory, to deal with this problem, a number of anti-
windup schemes have been developed, which need to know and use the actuator
limitations. Here, however, the subjects’ exercise limitations are not easily obtained.
Furthermore, it is not always possible to determine that the subject’s unresponsive-
ness is inadvertent or deliberate. In order to address the problem, the HR profile
needs to be more dynamic. In other words, where large tracking errors are noted
(larger than a specific threshold), the HR profile can be temporarily held constant
to prevent large efforts being required of the subjects. We thus revise the HR profile

as follows:

HR,—HR .
—e if e(k) <4,

0, = Tw (10.18)
0 if e(k) > 8,

where 6 > 0 denotes a certain threshold. Notice that the warm up duration will
then increase to T,, =T,,+T, in which T, is the summation of all time periods that
e(t) > 6 and 0, =0. This can avoid any large fluctuation in the HR of the subject.
Fig. 10.6 manifests the concept of a dynamic profile during a trial exercise. Here
the tracking error threshold is assumed to be 6 = 10.

On the other hand, since the designed control system contains an auditory
converter (biofeedback generator) it is also possible that both converters (audio
frequency and time duration) may reach their limitations, even with the accurate
definition of the translating functions ¢, and f, in (10.16) and (10.17), respectively.
This can also result in windup phenomena. Note that the velocity form PID control

strategy first computes Au(k), see (10.3), which is then integrated via an integrator.
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Figure 10.6: Dynamic profile mechanism used as anti-windup

This possible windup problem can readily be addressed by assuming Au(k) =0 during

the saturation. Thus, we define

/11 < gu(k)) < 12 &
11 < hu(k)) <7y, (10.19)
u(k) = u(k—1), otherwise.

u(k) =u(k—1)+ Au(k), if {

Furthermore, we address the possible windup by switching off the discrete-time
integrator in the designed ISMC, while the converters perform at their limits inde-

pendently of the control signals calculated. This can be shown as:

u, (k)=u_ (k—1), if converters perform at their limits
aw(k) = g (k= 1) P (10.20)

u,,, (k) =u(k), otherwise,

where u,,, denotes the control signal which is given to the auditory converter part.

Relay controller strategy

Now we explain the details of implementation of the relay controller designed for
tracking the HR profile during cycling. This controller generates a sequence of
commands by showing a number of phrases on the computer station. Every phrase
suggests the desired action required by the subject to achieve the desired HR. The

commands are determined based on the error defined in (10.5). The switching of
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the commands are as follows:

utk+1) =
( Apply high intensity effort e(k)> ¢,
Apply modest intensity effort g <e(k)<Leg,
1 Maintain current level of effort —¢; <e(k) <g (10.21)
Reduce intensity of effort —g,<e(k) < —¢g
| Minimize intensity of effort e(k) < —¢,

where g, > 0 and €, > 0 are the given values. Similar to the PID control part, again,
the relay controller commands are synchronized to the position of the pedals which
are sensed via the reed sensors. In other words, the designed relay controller is also

actuator-based event-driven.

10.2.5 Tuning the PID controller gains

This subsection describes the system identification method that we used to make
a model describing a system from the measured input-output test data. Eight
participants in Group 1 (see Table 10.1) were requested to complete two exercise
sessions in separate occasions. In each session, the subject was requested to complete
an exercise on the cycle-ergometer with the following setup. In order to excite the
system dynamics, we sent a minimum possible biofeedback for 10 seconds (-1 in
Fig. 10.7 which is equivalent to auditory commands with 7; = 500 ms and f;, =
400 H z) to the subjects. During this period the subjects needed to exercise with the
minimum possible rate. Then we changed the auditory commands to the maximum
case (+1 in Fig. 10.7 which is equivalent to auditory commands with 7; =60 ms and
f»=2000 Hz). The recorded outputs can be seen in Fig. 10.7 for the eight subjects.
Using the Matlab identification toolbox, the so-called average transfer function could
be obtained. Based on the achieved average transfer function, we optimized PID
gains to have a concurrent fast and stable response using the Matlab PID tuner
toolbox. This scheme improved the robustness of the PID controller against the
inter-individual differences of the HR dynamics. Notice that traditionally PID gains

can be tuned using the well-known Zigler-Nichols scheme. However, this tuning
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Figure 10.7: Input-output test data

method gives different values for different subjects.

10.3 Results

In order to validate the proposed control system, twelve healthy male subjects
(Group 2 in Table 10.1) were asked to exercise on the cycle-ergometer. The PID
controller parameters were tuned to K, =2.45, K; =0.02 and K; =0.06, which were
obtained through the average transfer function of the HR response (see Subsec-
tion 10.2.5) and are relatively robust against the inter-individual differences in the
dynamic HR response to work rate. A wide range of experiments were carried out on
the twelve subjects during the cycling exercise to validate the control system. Note
that while laboratory conditions were maintained constant for all participants, some
uncontrollable factors, such as heat loss, dehydration and humidity, could still influ-
ence the results. Hence, the proposed exercise method was repeated twice for each
subject. The HR profile was defined in 3 stages; warm up, aerobic training and cool
down, where the aerobic training stage lasted 5, 5 and 7 minutes for each subject
respectively. Moreover, the reference value of 125 bpm was our desired aerobic train-
ing HR for all subjects during the exercise stage. The tracking performance of this
controller for two subjects is demonstrated in Figs. 10.8. It can be concluded from
these results that the designed PID controller can efficiently and robustly drive the
subject to track the desired HR profile. For comparison, twelve healthy participants

were asked to exercise again, using a conventional PID controller with the same
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Figure 10.8: HR profile tracking during cycling using event-driven PID controller.
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Figure 10.9: HR profile tracking during cycling using conventional PID controller
and fixed-rate biofeedback

gains given above, and further, using a fixed-rate biofeedback mechanism (subjects
were provided with an auditory stimulus every 1 s using the last updated control
signal; see [10]). Except the controller and bio-feedback rate, the experiments were
implemented with the same setup of the previous experiments. The performance of
the controller for a subject can be seen in Figs. 10.9. In addition, as another simple
control strategy, we have used the relay controller as explained in Section 7.2, with

the following tuned parameters:

g =3, ¢,=10.
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Figure 10.10: HR profile tracking during cycling using the relay controller
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Figure 10.11: HR profile tracking during cycling using event-driven ISMC and
damped RLS

Again, twelve subjects, who were involved in the PID control validation, were re-
quested to perform the cycling exercise using the developed relay controller. This
controller generates a sequence of visual commands (phrases on the computer sta-
tion). The visual commands suggest the desired action required by the subject to
achieve the desired HR. The performance of this control strategy for one subject
is shown in Fig. 10.10. The performance of the ISMC for a subject can be seen
in Figs. 10.11. The results illustrate that the novel actuator-based event driven
ISMC, designed specifically for cycle ergometer exercises, improves tracking perfor-
mance and reduces the possibility of the subject’s cognitive disengagement from the

feedback controller.
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10.4 Discussion

10.4.1 Necessity of the project

Automated exercise testing systems have become more and more important in sev-
eral areas such as sport training, medical diagnosis, rehabilitation and analysis of
cardiorespiratory kinetics [22, 117]. Moreover, controlling the HR during exercise is
of great importance in exercise protocols designed for patients with cardiovascular
diseases and those recovering from an infarct or cardiac surgery [19, 54].
Cycle-ergometers are often considered preferable to treadmills, in terms of cost,
floor space occupied, level of noise pollution and the risk of falling or injury. More-
over, the upper body motion is usually reduced during cycle-ergometer exercises,
compared to the treadmill exercises, and hence, measuring the heart rate (HR)
is easier and more reliable [30]. Cycle-ergometers with an externally controllable
automatic braking system has been utilized in the literature as an automated exer-
cise system whose mechanism works based on adjusting the resistance of the brake
rather than the pedaling rate to change the exercise level [60]. However, the cycle-
ergometer with built-in braking system is often expensive and may not be suitable
for use at home as a rehabilitation device. Furthermore, our experience is that pa-
tients find increasing the workload by increasing the pedaling rate more acceptable
than increasing the workload at a constant pedaling rate by increasing the braking
effect. In this project, we have alternatively selected a vane bike that is low cost,
and very sturdy. The design is also particularly safe and suitable for use by frail
elderly patients. Moreover, the cooling effect of the air vane bike can be regarded
as a distinct advantage, see Fig. 10.12. On the other hand, in such a case, the
controller signal must be transmitted directly to the subject through some sort of
biofeedback. Biofeedback has been used in rehabilitation [37] for more than fifty
years. In general, it serves to provide biological information for patients in real-time
and to motivate them to implement desired tasks [37]. Biofeedback usually requires
the measurement of a subject’s biomedical variables and transference to the subject
through either direct feedback according to the measured variables, i.e. displaying
a numerical value on a wearable device (e.g. watch), or converted feedback, i.e. a

mechanism designed to generate an auditory signal, visual display or tactile feed-
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Figure 10.12: Cycle-ergometer exercising system
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back based on the subject’s measured biomedical variables [37, 96, 85].

Existing auditory (or visual) biofeedback mechanisms, e.g. in [10], are not appro-
priate for this project, as they may lead to a cognitive disengagement of the subject
from the feedback controller and possible abrupt changes in the subject’s HR ref-
erence. We have developed a different mechanism for generating and transmitting
biofeedback that needs a novel control system strategy, which can smooth out the
abrupt changes in the control signals preventing overshooting in the HR responses,
and allowing HR to vary in a more gradual and smoother manner. This smooth
variation of HR response is a very important parameter in the automated exercise
testing systems developed for the cardiac rehabilitation programs. The proposed

control system is discussed in the following subsection.

10.4.2 Discussion on the control system

Most commonly, control theory and engineering consider control systems to be time-
driven where continuous-time signals are expressed by their sampled values at a fixed
sample frequency. This means that the sampling intervals are assumed to be fixed,
hence, the analysis problems can be implemented by utilising the existing literature
on the sampled data systems. The control actions are also assumed to be generated
at a frequency equal to the sampling frequency, which is referred to as synchronous
in time, or time-driven control.

However, some applications need event-driven controllers [46]. In other words, the
controller actions are not synchronous with the discrete-time system sampling fre-
quency [46]. For event-driven controllers; the occurrence of a certain event triggers
the controllers actions. As an illustration, consider a motion control system includ-
ing a motor and an encoder. The encoder pulses happen at regular angular position
periods [46]. Upon increasing the speed of the motor, the controller receives pulses
from the encoder at a higher rate, which in turn, leads to a higher controller run rate.
However, for low velocities, the quantization errors cannot be ignored. One possible
method to solve this kind of problem is to use a high-resolution sensor (encoder)
which increases the overall system cost. The other alternative method, considered
in the literature, is to implement a revision to conventional control algorithms in

order to still employ the low-resolution sensors. Two different methods have been

A. Argha Page 204



CHAPTER 10. HEART RATE REGULATION DURING
CYCLE-ERGOMETER EXERCISE VIA EVENT-DRIVEN BIOFEEDBACK

Ty

e T Controller signals

‘ ® .00 I Output signals

Figure 10.13: Mechanism of a sensor-based event driven control system using state
observer. Ty, is the varying output sampling rate and T, is the sampling rate of

the system.
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Figure 10.14: Mechanism of a sensor-based event driven control system using spatial
domain instead of time domain. T, is the varying output sampling rate and control
signal update rate.

suggested in terms of using low-resolution sensor data [46].

1) Utilising an observer-based framework to estimate the data at synchronous
controller sample instants, using asynchronous measurement instants. Al-
though these observer-based methods represent better performance compared
to conventional control schemes, they have a major drawback, which is the
intensive computational burden on the processor, as they need to deal with a

time-varying observer-based control system [46], see Fig. 10.13.

2) Defining the models of the plant and the controller in the spatial domain
instead of the time domain. Then the controller design can be performed

using conventional control theory, see Fig. 10.14.
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Figure 10.15: Mechanism of an actuator-based event driven control system. T is the
constant output sampling rate and T, is the varying event occurrence rate (pedaling
rate).

The sampling rate of the HR transmitted to the program by an ECG or pulse
oximeter transducer is typically constant (1 sample per second), however, the rate
of sending the commands to the exercising subject varies according to the pedaling
rate, see Fig. 10.15. This form of control system, called here an actuator-based event-
driven control system, is obviously different from the two existing control systems
in [46]. Possibly, it can be considered to some degree as a multi-rate system, as the
rates of output sampling and control input updating are different, however, since
the updating rate of the control input varies according to the pedaling rate of the
exerciser, it can also be assumed to be an event-based control system. Nevertheless,
our proposed system is not sensor-based event-driven. This is because the aim of
this control system is to control the exercise rate through the heart rate and not
to control the velocity or the position of a rotary system (DC motor in the afore-
mentioned control systems and the pedaling system here) and the HR sensor signal,
sampled with a constant rate independent from the pedaling rate, will not trigger
the control actions. Fig. 10.16 gives a general view of the asynchronous signals in
the designed control system.

The second method explained above for the sensor-based event-driven control
systems, which uses the spatial domain of the system model, cannot be adapted
to our work. This is because this scheme requires the control signals and sensor
(encoder) signals to be synchronous. Furthermore, both methods need the accurate

model of the system. Since this work is aimed at developing a non-model-based PID
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controller, an accurate model of the system is not available.

It should be noted that another kind of event-triggering mechanism with the
purpose of reducing the resource utilization of its implementation has been consid-
ered [46]. This mechanism updates the control effort only when the error is larger
than a specific threshold and holds the control effort while the error is small. To

illustrate this, let us consider the following PID controller:
t
u(t) = K,e(t)+ K; / e(t)dt + K é(1). (10.22)
0

Using the backward differentiation method we have,

u(tk)—u(k—1) _K e(k)—e(k—1)

T, N Ke(k)
e(k)—e(k=1)  e(k—1)—e(k—2)
Tsk Tsk—l
+K, - : (10.23)
Sk

where T, denotes the varying sample time. Then it follows,

u(k) =u(k — 1)+ K [e(k) — e(k — )] + K,T, e(k) (10.24)

(e(k) —e(k—1))=T; (e(k = 1) —e(k —2))].

Sk—1

Ky
+ T, [T
k k-1
The controller in (10.24) is suitable as a velocity form event-driven PID controller.
Note that we ignore the use of a low-pass filter to deal with the high frequency
measurement noise here. The event-triggering mechanism then applies based on the

tracking error as
Ty =Inf{1 2T +7, if [e(®)] 27}, (10.25)

where 7, is the time instant that the k-th controller update is generated. Also,
I, > 0 and y > 0 denote the minimum sampling time of the system and the thresh-
old value, respectively. While e(f) < y the control effort is held constant and the
sample time T;, varies. Again, note that this non-uniform updating mechanism
requires that no limitation is imposed on the time instant that the control efforts
apply. However, in our case, the event triggering mechanism only varies the biofeed-

back time instants. One alternative is to neglect the triggering criteria in (10.25)
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and to use the controller in (10.24), which also imposes additional online calcula-
tions on the processor. However, it is clear that due to the fixed sampling rate of
the HR sensor, in cases where more than one update is required during each sample
period, no new HR value, and hence, tracking error is available for the second and
later updates. Now three possible methods can be considered, which are as follows:
1) Updating the control signal for each event using the latest available information.
However, owing to the existence of the integral action in the control law, this con-
trol strategy may be more likely to suffer from windup phenomena in the system
performance.

2) Designing a control system which utilizes an observer-based framework to esti-
mate firstly the next actuator event instant (the instant that the left or right pedal
passes the reed sensor) and, secondly, the HR value at asynchronous controller
event instants, using synchronous measurement instants. Although this observer-
based method may have a better performance compared to the conventional control
schemes, it has a major drawback, which is the intensive computational burden on
the processor, as it needs to deal with a time-varying observer-based control system.
3) Utilising a time-driven PID controller in the velocity form such as the one ex-
plained in Section 10.2.4.

An immediate advantage of the last method is that it can assist in preventing the
converted control commands (auditory stimulus) from reaching their limitations (see
Subsections 10.2.4 and 10.2.4) and the system working under a saturation situation.
It is also well known that the heart rate response to exercise can be approximated
as a first order system, where the time constant is relatively slow [45]. Thus, the
variation of the human HR is usually limited in a sampling period (say 1 second).
So, even if the controller uses the latest available sensor’s information, rather than
the actual one, the obtained control signal will be close to the desired one. More-
over, the number of additional events in the sampling period of the HR sensor is
not big. With this specific bicycle, we found that the pedaling rate varies in the
range 20 ~ 120 rpm, which means that at most, 2 or 3 events may occur in the
fixed sampling period. Basically, the additional auditory signals are used here to in-
struct the subject to retain the proper exercise rate. Although the proposed control

scheme here is very simple, our experimental studies (given in this chapter) prove
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its effectiveness. As opposed to this, the lack of auditory commands for additional
events occurring during the HR sampling time, make for an uncomfortable exercis-
ing experience for the subject. Fig. 10.16 describes schematically the control system

designed for the task.
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Figure 10.16: Mechanism of the proposed control system.

10.4.3 Discussion on the results

In order to compare the performance of different controllers quantitatively, we use

the discrete-time cumulative root mean square (RMS) value of the tracking error,

N
‘ 1 .
€rms £ F Z |e(l)|2’
i=1

where N denotes the number of samples. Indeed, the RMS value gives a measure of

as

the average energy in the error signal. The average quantitative results for differ-
ent controllers, exploited in this project, can be seen in Table 10.2. The results
in Table 10.2, and further, Fig 10.8-10.10 illustrate that although the relay control
method can help the user to track the desired HR profile, the performance of the

ISMC/PID control and the auditory converter is superior compared to the relay
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controller. Indeed, compared to the relay controller, the proposed actuator-based
event-driven PID controller prevents major overshooting in the HR responses. This
may be important, i.e. in cardiac rehabilitation.

Notice that the relay controller is a discontinuous controller which works based
on switching functions. Also, the parameters €; and ¢, in (10.21) play an impor-
tant role in the performance of this controller. Smaller values of these parameters
may lead to better performance. At the same time, it can also lead to more visual
commands (phrases on the computer station) which need to be read and interpreted
continuously by the subject. For some subjects, this may contribute to cognitive
overload and disengagement.

Set against this, the novel actuator-based event driven control system, designed
specifically for cycle ergometer exercises, improves tracking performance and reduces
the possibility of the subject’s cognitive disengagement from the feedback controller.
Furthermore, as can be seen in Fig. 10.8, this control mechanism smoothes out the
abrupt variations in the HR profile preventing overshooting in the HR responses,
and allows the HR to change in a more gradual manner.

Furthermore, it is found that the fixed-rate biofeedback mechanism (e.g. in [10])
is not a very successful one to instruct the subjects to change their exercise rate
according to the controller signal, as the rate of biofeedback is not synchronous with
the rate of exercise rate (pedaling rate in this case). Referring to the experiences
reported by the exercise participants, this method may also lead to cognitive dis-
engagement of the exercising subject from the controller signals and, consequently,
larger overshooting in the HR responses. This can be a major drawback of the con-
trol system, especially in cardiac rehabilitation programs. Specifically, during the
warm up and cooling down periods (the first and third stages of the HR profile), as
the pedaling rate varies repeatedly, it is hard for the exerciser to follow the fixed-rate
biofeedback signal and a confusion may occur.

We conclude that the event-driven controller presented in this chapter makes it
possible to precisely regulate HR to a predetermined HR profile.

It should also be pointed out that the subjects’ HR did not completely follow the
HR profile during the cooling down period. This is because the recovery HR of the
subjects could not be further reduced since the subjects had already stopped their
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exercise. In other words, if a subject has a high resting HR which is higher than
the reference HR, nothing could be done by the control system to reduce the sub-
ject’s resting HR. However, in such a case, the cooling down period aims to prevent
possible venous pooling and reduced venous return to the heart from an excessively

abrupt termination to the exercise.

10.5 Conclusions

In this study, an automated system has been designed to help exercising subjects
to track a predetermined HR profile. Three kind of control methods (ISMC, PID
and relay controller), which are simple to design and implement, were deployed and
tested in this project. The significance of this study, compared to other published
data, is the fact that the biofeedback signals are synchronized with respect to the
positions of the pedals. To this end, in the case of the PID or ISMC controller, by
adjusting the time duration and the frequency of the auditory signals, the HR of the
subjects is forced to track the profile. To implement this idea, a new control system
strategy has been designed, termed an actuator-based event-driven control system. In
addition, for comparison, a simple relay controller and a conventional PID controller
using a fixed-rate biofeedback mechanism have been used with their performances
compared to the actuator-based event-driven PID control. Experimental results
which were carried out on twelve healthy male subjects, validate the effectiveness of

the system.
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Table 10.1: Physical characteristics of participants

Subject Age (year) Height (cm) Weight (Kg) BMI (%)

Group 1
1 35 184 95 28
2 23 180 72 22
3 25 173 58 19
4 22 175 56 18
5 28 169 55 19
6 24 177 64 20
7 32 178 85 27
8 36 182 89 27
Mean 28.12 177.25 71.75 22.5
SD 5.54 4.89 16.00 4.17
Group 2
9 31 172 78 26
10 21 179 61 19
11 23 172 63 21
12 27 176 80 25
13 26 173 74 25
14 24 172 68 23
15 25 163 59 22
16 34 173 67 22
17 47 179 84 26
18 28 186 82 24
19 32 177 84 27
20 36 175 7 25
Mean 29.50 174.75 73.08 23.75
SD 7.15 5.53 9.12 2.38
Total
Mean 28.95 175.75 72.55 23.25
Total
SD 6.44 5.30 11.95 3.18

Table 10.2: Quantitative comparison of controllers

Controller Average e,
ISMC controller with our proposed biofeedback mechanism 3.9024
PID controller with our proposed biofeedback mechanism 4.2663
Relay controller with visual biofeedback 6.8909
PID controller with the fixed-rate biofeedback mechanism 5.7895
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Appendix A

Algorithm for solving the LQO

static output feedback problem

Consider the system in (7.25). As mentioned the objective is to design M = diag [M,] ?:l

so that the #, norm from w(t) to z(¢) is less than a given constant é while the sta-

bility of the composite sliding mode dynamics is ensured. According to e.g. [50],

this problem can be cast as finding two symmetric P >0 and P such that
PA,+ALP+ClC, <0

: (A.1)

trace(P) < o,

PA”, + (A7) P <O, (A.2)

in which A,;=A.+BMC, A}, = A+ BMC" and C,;=C,+D,MC, and A and C"
are defined in Section 7.3.2. To deal with this problem, [56] proposes the so-called
iterative scaled min-max method. To explain this method, we need to introduce
four scalar variables v, f,y,w and four symmetric matrices 0 < X € R™", 0<Y €
R™" 0< X € R™ and 0 <Y € R™". Now the scaled min-max algorithm can be

summarized as follows.

Algorithm A.1 1) Initialize Y,,;, Y,,;, By > 0 and set € >0 (termination scalar),

I =1 (iteration number).

2) Solve
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APPENDIX A. ALGORITHM FOR SOLVING THE LQ STATIC OUTPUT

FEEDBACK PROBLEM

min v,
X, X, w
1 1
2 2
1SYRXYE <yl
1 1
o2 Vvv2
I< YsolXYsol < WII
1< wﬁsol Sy

L 1T
[ACX+XACT XCZT" B }
<-I

C. X —wl || D

| —
O w
|

V4 V4

B (AL + X (a0)") BHT < -1,

to find Xy, X, and @y,

sol

3) With given X, X, and @, solve

max v,
Y. Y.p
1 1
2 2
VII < XsolYXsol <I
1 1
vyI<X2VX: <I

sol —

Vi < wsolﬂ <1
[cTL (v A, + ATY +pcT )T g1 -0
BI 1|

trace(Y)—of P <0
Ji] -1

CT(V Az +(4r)" 7)™ <o,

to find Y, and Py, .

) If Apin(Yyo) < € 01 Apin(Yso) < € o1 By, < € then stop, the algorithm does not

converge.

5) If y;—v; <€, go to Step 6, otherwise | =1+ 1 and return to Step 2.

6) Return P=p"'Y and P=p"'Y.
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APPENDIX A. ALGORITHM FOR SOLVING THE LQ STATIC OUTPUT
FEEDBACK PROBLEM

If the algorithm converges to the solution, then y; - 1, v, - 1, X — Yy L, X->v7!
and f — w~!. The required M then can be obtained by solving (A.1) and (A.2)

with given P and P.
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Appendix B

Reweighted ¢, minimization

method

Using the reweighted | norm for promoting sparsity has been considered in e.g.
[29, 15]. Define the matrix N =1,,,. It can be shown that (e.g. see [29, 15]) the

optimization problem in (7.40) is equivalent to

Minimize trace(Z,)+ fitrace(NT G) (B.1)
subject to
AX g+ X AT+ BV, + VI BT % %
1
02X, -1 % |<0,
1
] R3V,, 0 -1
_Z,
<0,
| I Xy

~G<WeV, <G,

where 0 < X, € R™", V€ R™", Z is a slack variable, W denotes the weighting
matrix and the last inequality is element-wise with G € R™" whose entries are
nonnegative. Then the algorithm to solve the above optimization problem is as the

following,

Algorithm B.1 1) With given € >0, a >0 and i > 0, initialize W =1, [ =1
and VI =0.
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2) Solve the minimization problem (B.1) to obtain F); =V Xl*_l.
gr — lgrigr

3) Update W;; = and form W =[W;;1pxp-

+e
F

(i)
Iqr ij

5) If HV,;— Vl” <a go to Step 6, else V' = Vl;r, [ =1+1 and return to Step 2.

6) Return F) .
qr
Solving Algorithm B.1 gives the most effective sparse structure of Fy . Then, by
ignoring the unnecessary entries in Fy,, we find the structure matrix I'. Eventually,

the optimal structured feedback matrix is obtained by solving the problem in (7.38)
and (7.39). This procedure is considered in e.g. [29].
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