Design of Environmental Performance Measurement Systems for Agriculture

Ha Thanh Pham

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

2016

Accounting Discipline Group
University of Technology Sydney
Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Ha Thanh Pham
Acknowledgements

This thesis would not have been possible without the contribution of a number of people. I would like to thank my supervisors, David Brown, Bruce Sutton and Paul Brown for your mentoring and insight throughout my PhD journey. I would like to thank David for his guidance and feedback, particularly regarding management accounting. I would like to thank Bruce for his support and insightful comments and suggestions regarding water and crop science. I would like to thank Paul for his enthusiasm for my study and his great support, particularly with economic modelling.

I would like to thank the Cotton project team – David Brown, Bruce Sutton, Paul Brown, Paul Thambar, Kai Jin, Nicole Sutton, Dianne Hiles, Anthony Krithinaki and Suzie Nguyen. I also acknowledge the help of Tommaso Armstrong for his assistance in simulation modelling and Ian Ly for his assistance in editing tables and figures of the thesis. I really appreciate the help of Shona Bates in editing the final version of this thesis.

I would like to acknowledge the comments and suggestions from the UTS visitors: Hugh Willmott, Gerhard Speckbacher, Martin Messner, Steven Sutton, Arnold Vicky, Angelo Ditillo, Lars Freemason, Dan Dhaliwal and Jere Francis.

I would like to thank the UTS Management Accounting Research Collaborative (MARC) group, particularly Prabhu Sivabalan and David Bedford, for their encouragement, comments and suggestions. I would like to acknowledge the support as well as comments and suggestions from the UTS Accounting Discipline Group, particularly Martin Bugeja, Steven Taylor, Zoltan Matolcsy, Jonathan Tyler, Bernhard Wieder, Roman Lanis, Robert Czernkowski, Brett Govendir, Anna Loyeung and Helen Spiropoulos.

I would like to acknowledge the institutional support I have received from the Accounting Discipline Group at UTS. I would like to thank Peter Wells for giving me the opportunity to start the PhD and particularly to Martin Bugeja, Jonathan Tyler and Anna Wright for their encouragement and for always ensuring I received adequate support. Special thanks go to the administrative staff, Judith Evans, Katt Robertson, Neil James and Ann-Marie Hopps, for helping me navigate the bureaucracy.
The support and friendship from a number of other people have also contributed to making the completion of this thesis both interesting and enjoyable; in particular, Anna Loyeung, Katt Robertson, Helen Spiropoulos, Amanda White, Rachael Lewis, Ann Usarat, Matthew Grosse, Nelson Ma, Samir Ghannam, James Wakefield, Kai Jin, Brett Govendir, Robert Czernkowski, Ross McClure, Thulaisi Sivapalan, Alexey Feigin, Steven Kean and Jin Sug Yang.

I give special thanks to my wonderful Mum, who has always supported and encouraged me to pursue my academic career. To my Dad and my sister, two incredible scientists who created and nurtured my interest in science and research, and inspired me to complete this work, I am sure that you would both be very proud of me if you knew my achievement.

Finally, and most importantly, I would like to thank my husband and my son, without whom this thesis would not have been completed, nor worth it. Your constant support, love and encouragement over the last 5 years, the sacrifices you made, and your continual understanding of the hard work involved have made this thesis possible. For this reason, this thesis is dedicated to the two of you.
Abstract

The research question addressed in this thesis is: how can Environmental Performance Measurement Systems (EPMS) be designed and used in an agricultural setting to support managers in water and economic sustainability-related decision making and control.

Sustainability and the increasing scarcity of natural resources such as freshwater are of growing social interest. Agriculture has a significant impact on the sustainability of freshwater at both global and local levels. As agriculture is economically and socially significant in meeting human needs for food and clothing, it is surprising that there has been very little management accounting research conducted within an agricultural setting and almost none on its role in environmental sustainability.

Extant EPMS research manifests two underlying theoretical problems, which are also reflected in broader performance measurement systems research. First, the research provides little insight into how to design valid environmental performance measures which could provide managers with precise information to enable decision making and control over environmental sustainability. I argue that there are two key reasons for this: that theories from natural science are yet to inform EPMS design; and that while environmental management typically occurs at an operational level, EPMS typically reside at the organisational level. The second theoretical problem is the lack of existing research that considers how environmental performance standards can be developed for use as targets to support managers in improving sustainability-related decision making and control.

I address these two problems with a new theoretical construction of a multi-level decomposition EPMS model - which I label, Water and Economic Sustainability Performance Measurement (WESM). The model integrates science into an accounting framework. This design overcomes the two key challenges with EPMS validity. I subsequently examine how the WESM model can be used to support managers in improving sustainability-related decision making and control using a two-phased crop production simulation modelling approach. The simulation results provide significant implications for the cotton industry (and agriculture more broadly) with the potential to save hundreds of gigalitres of water and increase profitability by tens of millions of dollars per crop season for cotton farming in Australia.
The research also makes a theoretical contribution to the accounting literature by developing and applying theory from science to overcome inherent validity and target setting problems in PMS design. In addition, I demonstrate the usefulness of simulation modelling as a research method, which has yet to have a great deal of application in accounting research designs beyond few costing studies.
Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP .. II

ACKNOWLEDGEMENTS .. III

ABSTRACT .. V

CONTENTS .. VII

LIST OF FIGURES .. XII

LIST OF TABLES ... XIV

CHAPTER 1. INTRODUCTION .. 1

1.1 RESEARCH OBJECTIVE .. 1

1.2 MOTIVATIONS FOR THE RESEARCH .. 1

1.2.1 Motivation 1 – Management accounting research ... 1

1.2.2 Motivation 2 – Agriculture research ... 11

1.3 RESEARCH QUESTION AND APPROACH ... 13

1.3.1 The first component of the research question and approach 14

1.3.2 The second component of the research question and approach 16

1.4 RESEARCH CONTRIBUTIONS .. 19

1.4.1 Contribution 1 ... 19

1.4.2 Contribution 2 ... 20

1.4.3 Contribution 3 ... 21

1.4.4 Contribution 4 ... 22

CHAPTER 2. THEORETICAL DISCUSSION OF WATER SUSTAINABILITY 24

2.1 INTRODUCTION .. 24

2.2 SUSTAINABILITY DEFINITION ... 24

2.2.1 The Brundtland Commission’s definition of sustainable development 24

2.2.2 The Brundtland definition in practice .. 26

2.3 WATER SUSTAINABILITY ... 27

2.3.1 Global natural water system ... 27

2.3.2 Local water systems .. 31

2.3.3 Water sustainability principles .. 36

2.4 CONCLUSION .. 38
CHAPTER 3. THEORY OF CROP WATER FLOWS ... 40

3.1 INTRODUCTION ... 40

3.2 CROP WATER PROCESS MODEL .. 41

3.2.1 Water balance for a root zone ... 42

3.2.2 Crop water process model ... 43

3.2.3 Water at the farm scale ... 54

3.3 THEORETICAL LINK BETWEEN CROP WATER SUPPLY COMPONENTS AND CROP PRODUCTION

COMPONENTS ... 59

3.3.1 Issues of inconsistent definitions and validity of crop water performance measures in the literature .. 60

3.3.2 Crop water use measurement .. 63

3.3.3 Crop water use index ... 69

3.4 THEORY OF CROP WATER FLOWS ... 72

3.5 CONCLUSION ... 75

CHAPTER 4. WATER AND ECONOMIC SUSTAINABILITY PERFORMANCE MEASUREMENT

(WESM) MODEL ... 77

4.1 INTRODUCTION .. 77

4.2 PROFIT TO WATER COST RATIO AS THE SUMMARY WATER AND ECONOMIC SUSTAINABILITY MEASURE 78

4.2.1 Measurement of water and economic sustainability performance for crop businesses ... 78

4.2.2 Profit to water cost ratio as a summary measure for crop water and economic sustainability .. 80

4.2.3 Limitations of profit to water cost ratio as a single measure for evaluating and managing crop water and economic sustainability ... 82

4.3 DESIGN OF WATER AND ECONOMIC SUSTAINABILITY MEASUREMENT MODEL - A DECOMPOSITION

RATIO ANALYSIS APPROACH .. 83

4.3.1 Overview of the decomposition ratio analysis approach ... 83

4.3.2 Applying the decomposition analysis approach to EPMS design .. 84

4.4 THE ANALYSIS OF CROP WATER AND ECONOMIC SUSTAINABILITY ... 85

4.4.1 Analysis of the profit to water cost ratio .. 85

4.4.2 First-level analysis: Decomposition of profit to water cost ratio ... 92

4.4.3 Second-level analysis: Decomposition of return on water, water use leverage and weighted average irrigation cost .. 101
CHAPTER 5. RESEARCH METHOD – CROP PRODUCTION SIMULATION MODELLING 131

5.1 INTRODUCTION .. 131
5.2 METHOD CHOICE .. 131
 5.2.1 The nature of the phenomenon being studied ... 131
 5.2.2 Research method alternatives ... 133
5.3 SELECTION OF COTTON PRODUCTION SIMULATION MODEL ... 139
 5.3.1 Overview of cotton production simulation models ... 139
 5.3.2 Comparison and evaluation of APSIM-OZCOT model and CROPGRO-Cotton-DSSAT model 140
5.4 THE LINKS BETWEEN DSSAT, THE CROP WATER PROCESS MODEL AND WESM 142
5.5 CONCLUSION ... 147

CHAPTER 6. EXPERIMENTAL DESIGN FOR FURROW IRRIGATION SIMULATION 148

6.1 INTRODUCTION .. 148
6.2 FURROW IRRIGATION SYSTEMS: RESEARCH AND PRACTICE .. 149
 6.2.1 Overview of furrow irrigation systems .. 149
 6.2.2 The effect of furrow irrigation practices ... 151
6.3 WATER AND CROP PRODUCTION SIMULATION MODELLING DESIGN: TWO-PHASED CROP SIMULATION MODELLING .. 151
 6.3.1 Limitations of DSSAT model in simulating furrow irrigated crop production 151
 6.3.2 Simulating a furrow irrigation event ... 153
 6.3.3 Simulating crop response to furrow irrigation .. 156
 6.3.4 Data aggregation .. 160
 6.3.5 Water balance of a cropping system ... 162
6.4 CURRENT IRRIGATION PRACTICE ... 166
CHAPTER 7. THE ANALYSIS OF WATER AND ECONOMIC SUSTAINABILITY – AN EMPIRICAL EXAMPLE OF WESM ANALYSIS

7.1 INTRODUCTION .. 175
7.2 SELECTION OF THE EMPIRICAL EXAMPLE .. 176
7.3 ANALYSIS OF WATER AND ECONOMIC SUSTAINABILITY ... 193
 7.3.1 First-level of analysis ... 197
 7.3.2 Second-level of analysis ... 199
 7.3.3 Third-level of analysis .. 203
 7.3.4 Fourth-level of analysis ... 207
 7.3.5 Fifth-level of analysis ... 212
 7.3.6 Summary of WESM analysis .. 217
7.4 CONCLUSION ... 217

CHAPTER 8. A STEP TOWARDS SUSTAINABILITY OF CROP BUSINESSES - IMPROVING FURROW IRRIGATION MANAGEMENT PRACTICES

8.1 INTRODUCTION .. 219
8.2 COMPARISONS OF FURROW IRRIGATION MANAGEMENT PRACTICE AND FURROW IRRIGATION PERFORMANCE BETWEEN SCENARIO 1 AND SCENARIO 2 .. 220
8.3 STATISTICAL TEST BETWEEN SCENARIO 1 AND SCENARIO 2 ... 225
 8.3.1 Description of the WESM input variables .. 225
 8.3.2 Statistical test – Level 6 and Level 7 – Low-level environmental variables 230
 8.3.3 Statistical test – Level 6 and Level 7 – Low-level economic variables 239
 8.3.4 Statistical test – Level 5 of WESM ... 246
 8.3.5 Statistical test – Level 3 and Level 4 of WESM .. 251
 8.3.6 Statistical test – Level 1 and Level 2 of WESM .. 258
8.4 ENVIRONMENTAL AND ECONOMIC IMPLICATIONS OF MOVING FROM SCENARIO 1 TO SCENARIO 2 .. 263
 8.4.1 Difference in environmental resource use and environmental sustainability performance between Scenario 1 and Scenario 2 .. 269
 8.4.2 Difference in water cost and economic sustainability performance between Scenario 1 and Scenario 2 samples .. 276
 8.4.3 Economic and environmental sustainability performance .. 278
8.5 REFINING SIMULATION EXPERIMENTAL DESIGN .. 280
CHAPTER 9. CONCLUSIONS AND IMPLICATIONS ... 284

9.1 RESEARCH SUMMARY ... 284
 9.1.1 Validity issue of EPMS (contribution 1) ... 285
 9.1.2 Target setting issue of EPMS (contribution 2) .. 287
 9.1.3 Agriculture-related management accounting research (contribution 3) 290
 9.1.4 Novel EPMS model for agriculture (contribution 4) ... 290

9.2 IMPLICATIONS OF THE RESEARCH ... 292
 9.2.1 Use of new tool .. 293
 9.2.2 Economic and environmental significance ... 294

9.3 LIMITATIONS, DELINEATIONS AND FUTURE RESEARCH 296
 9.3.1 Limitations and future research .. 296
 9.3.2 Delineations and future research ... 298

9.4 CONCLUSION .. 300

REFERENCES .. 303

APPENDICES ... 316

APPENDIX A: SUPPLEMENTARY INFORMATION FOR CHAPTER 4 316
APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 5 341
APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER 6 351
APPENDIX D: SUPPLEMENTARY INFORMATION FOR CHAPTER 7 357
APPENDIX E: SUPPLEMENTARY INFORMATION FOR CHAPTER 9 360
List of Figures

FIGURE 2.1 THE HYDROLOGICAL CYCLE SOURCE: ZHANG, WALKER & DAWES 2002 28
FIGURE 2.2 ANNUAL GLOBAL FLUX WATER CYCLE ... 29
FIGURE 2.3 GLOBAL WATER DISTRIBUTION IN THE HYDROLOGICAL CYCLE 30
FIGURE 2.4 WATER BALANCE AT A WATERSHED (A NATURAL SYSTEM) .. 32
FIGURE 2.5 WATER BALANCE AT A WATERSHED (WITH HUMAN INTERVENTION) 33
FIGURE 3.1 SCHEMATIC DIAGRAM OF THE WATER BALANCE FOR A ROOT ZONE 42
FIGURE 3.2 CROP WATER PROCESS MODEL .. 45
FIGURE 3.3 SOIL WATER DIAGRAM ... 51
FIGURE 3.4 RELATION BETWEEN CROP ECONOMIC YIELD AND WATER SOURCE 62
FIGURE 3.5 THEORETICAL RELATION BETWEEN TRANSPERSION AND BIOMASS 65
FIGURE 3.6 OPERATIONAL DECISION TREE ... 71
FIGURE 4.1 LEVELS 1 TO 3 OF THE WESM MODEL ... 87
FIGURE 4.1 LEVELS 3 TO 5 OF THE WESM MODEL ... 88
FIGURE 4.1 LEVELS 5 TO 6 OF THE WESM MODEL ... 89
FIGURE 4.1 LEVELS 6 TO 7 OF THE WESM MODEL (ECONOMIC LOW-LEVEL MEASURES) 90
FIGURE 4.1 LEVELS 6 TO 7 OF THE WESM MODEL (ENVIRONMENTAL LOW-LEVEL MEASURES) 91
FIGURE 5.1 EXAMPLE OF SIX TYPICAL COTTON PRODUCTION OPERATIONS IN AN AUSTRALIAN COTTON FARMING SYSTEM ... 132
FIGURE 5.2 THE LINKS BETWEEN DSSAT, THE CROP WATER PROCESS MODEL AND WESM 143
FIGURE 5.3 DETAILED LINKS BETWEEN DSSAT, THE CROP WATER PROCESS MODEL AND WESM 144
FIGURE 5.4 DESCRIPTION OF INPUT AND OUTPUT DATA OF DSSAT MODEL 146
FIGURE 6.1 AN EXAMPLE OF FURROW IRRIGATION SYSTEMS IN A COTTON FARM 149
FIGURE 6.2 INFILTRATED DEPTH PROFILE UNDER FURROW IRRIGATION 154
FIGURE 6.3 THE LINK BETWEEN KEY WATER AND CROP PARAMETERS BETWEEN THE TWO PHASED-CROP SIMULATION PROCESS AND WESM ... 161
List of Tables

Table 4.1 WESM analysis: The first-level analysis ... 94
Table 4.2 WESM analysis: The second-level analysis ... 102
Table 4.3 WESM analysis: The third-level analysis ... 112
Table 6.1 SIRMOD Input: Field and infiltration characteristics .. 156
Table 6.2 DSSAT set up .. 158
Table 6.4 WESM Input Variables – Scenario 1 (Simulated Data) .. 168
Table 6.6 WESM Input Variables – Scenario 2 (Simulated Data) ... 172
Table 7.1 WESM Input Variables – year 2012 (Simulated Data) ... 177
Table 7.2 WESM Input Variables (Non-Simulated Data) .. 178
Table 7.3 WESM Analysis (year 2012) – Panel G (Level 6 and Level 7: Low-Level Environmental Measures) ... 180
Table 7.3 WESM Analysis (year 2012) – Panel F (Level 6 and Level 7: Low-Level Economic Measures) ... 187
Table 7.3 WESM Analysis (year 2012) – Panel A (Level 1 of WESM) 198
Table 7.3 WESM Analysis (year 2012) – Panel B (Level 2 of WESM) 201
Table 7.3 WESM Analysis (year 2012) – Panel C (Level 3 of WESM) 205
Table 7.3 WESM Analysis (year 2012) – Panel D (Level 4 of WESM) 210
Table 7.3 WESM Analysis (year 2012) – Panel E (Level 5 of WESM) 214
Table 8.1 Furrow irrigation data: Scenario 1 versus Scenario 2 .. 223
Table 8.2 Statistical Test: Univariate Mean Differences in WESM Simulated Input Data between Scenario 1 and Scenario 2 ... 228
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel G (Level 6 and Level 7: Low-Level Environmental Measures) .. 233
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel F (Level 6 and Level 7: Low-Level Economic Measures) ... 241
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel E (Level 5 of WESM) .. 248
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel D (Level 4 of WESM) .. 252
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel C (Level 3 of WESM) .. 256
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel B (Level 2 of WESM) .. 259
Table 8.3 Statistical Test: Univariate Mean Differences between Scenario 1 and Scenario 2 – Panel A (Level 1 of WESM).. 262
Table 8.4 Economic and environmental differences between Scenario 1 and Scenario 2 – Panel A (Difference in environmental resource use).. 273
Table 8.4 Economic and environmental differences between Scenario 1 and Scenario 2 – Panel B (Difference in economic performance).. 277
Table 8.4 Economic and environmental differences between Scenario 1 and Scenario 2 – Panel C (higher level measures).. 279
Table A1 WESM model - Panel D (Level 4 of WESM).. 319
Table A1 WESM model - Panel E (Level 5 of WESM).. 321
Table A1 WESM model - Panel G - Level 6.. 324
Table A1 WESM model - Panel G - Level 7.. 328
Table A2 WESM Input Variables (DSSAT output parameters).. 333
Table A3 WESM Input Variables (Non-DSSAT output parameters).. 334
Table A4 Summary of High-Level WESM measures.. 335
Table A5 Summary of Low-Level WESM measures.. 338
Table C1 Soil properties of the Myall Valve soil (clay vertosol).. 354
Table C2 Simulated infiltration – Scenario 1 versus Scenario 2.. 355
Table D1 The effect of lint yield on gross margin ... 358
Table E1 Cotton irrigated area.. 360
Table E2 Environmental and economic gain by moving from Scenario 1 to Scenario 2 361