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Abstract 

Thin walled members are one of the most widely used structural elements in modern 

structures. Beam-type finite elements, which are conventionally used to model these 

members, cannot capture cross-sectional deformation. On the other hand, the use of 

two-dimensional shell-type elements leads to computationally uneconomical models 

that cannot be adopted for common engineering practice. 

The aim of this study is to develop a numerical method to incorporate the effect of local 

deformation on the global response of a thin-walled beam. For this purpose, the Iterative 

Global-local Method is developed in which beam elements are used as the global model 

while two-dimensional shell elements are placed at critical regions to constitute the 

local model. The two models are synchronised within each computational iteration via a 

kinematically appropriate mathematical link.  

The Iterative Global-local Method is developed for elastic and elasto-plastic material 

response, for fibre-reinforced composite laminates, for pipes and curved thin-walled 

members. The accuracy and efficiency verification of the method is verified through 

comparisons with detailed finite element modelling and test data from the literature.  
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Chapter 1: Introduction and Summary 

1.1. Introduction 

Thin walled members are one of the most widely used structural elements in modern 

structures. Since these elements are commonly built in beam-type shapes (i.e. long span 

in comparison with cross-sectional dimensions), they are conventionally modelled by 

one-dimensional finite elements (i.e. beam-type elements) which are computationally 

economical and also accurate in most cases. The formulation of this class of elements is 

based on the assumption that the cross-section remains rigid after the deformation and 

consequently, the deformations of the cross-sectional (i.e. local deformations) cannot be 

captured by these elements. However, cross-sectional deformations such as local 

buckling of webs and flanges and distortional buckling can have detrimental effects on 

the global behaviour of the structure, which leads to the need for a more accurate 

technique. If one is interested in capturing the deformations more accurately, two-

dimensional shell-type elements are available that can be used to model each segment of 

the elements by a number of shell finite elements. However, the use of shell elements 

may lead to excessively large models for practical cases, which are computationally 

uneconomical and are mostly avoided by engineers.  
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In order to make use of the advantages of both approaches discussed above, the Iterative 

Global-local Method can be used. In this method, the structure is modelled by simple 

beam-type elements while allowing the introduction of shell-type elements at critical 

locations to capture the local deformation modes such as local buckling. The critical 

locations may be places where large local loads exist, the locations of cracks, defects or 

holes and generally wherever a closer view of the stress distribution or deformations is 

required. The primary benefit of this method is that it allows the identification of the 

effect of local deformations on the global response of the member without necessitating 

the use of two-dimensional shell-type elements throughout the domain of the member.  

1.2. Objectives 

The objective of the current thesis is to develop iterative global-local finite element 

methods to consider the effect of localised behaviour on the global response of various 

types of thin-walled members. Such effects can be defined as any changes in the global 

response of the member that is caused by forces, deformational modes or stresses that 

cannot be described in the formulation of the global model (e.g. local buckling in thin-

walled members).   

The finite element formulations can be divided into three main categories: the 

displacement-based formulations, the force-based formulations and the mixed (hybrid) 

formulations. In this study, the displacement-based formulation is adopted as the main 

framework, mainly due to the availability of displacement-based numerical models for 

thin-walled members in the literature. 

In order to develop the multi-scale technique, two levels of idealisation of the structural 

elements are required. In this study, a one-dimensional beam-type finite element model 
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is adopted as the global structural model while a two-dimensional shell-type finite 

element is used as the local structural model. The details of the adopted formulations are 

presented in the subsequent chapters.  

The developed formulations are implemented in FORTRAN programming language, 

and their accuracy, efficiency and applicability are assessed through several numerical 

examples. Result from literature and full shell-type models are used as benchmarks for 

comparison.  

1.3. Contents of the thesis 

Chapter 2 starts with a literature review of different methods used for the analysis of a 

thin-walled member, considering different modes of instabilities, followed by an 

introduction to the Iterative Global-local Method. Then, the suitability of the later for 

capturing the effect of local buckling in a thin-walled member is discussed. The beam 

and shell elements that are used for the global and local models are presented in details, 

and the overlapping domain decomposition operator – that works as a link between the 

two models – is introduced. Later, the required modifications are applied to the original 

formulation to make it applicable to beams under general loading conditions and finally, 

numerical examples are presented to demonstrate the accuracy of the proposed method.  

Chapter 3 includes the development of the Iterative Global-local Method for the 

analysis of thin-walled beams made of fibre-reinforced polymer composite laminates. 

For that purpose, proper modifications are applied to the global and local models to 

accommodate elements composed of several layers with various orientations of the 

fibres. Numerical examples are presented later in the chapter. 
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The development of the proposed method for closed thin-walled members with circular 

cross-section is presented in Chapter 4. The appropriate beam element based on the 

Euler-Bernoulli beam theory is employed for the global model while a curved shell is 

developed for the local model. Since pipes commonly exhibit elasto-plastic behaviour, 

the constitutive relations in the local model are modified in order to capture elastic 

perfectly-plastic response. The accuracy of the developed shell element is verified 

through comparisons with results from the literature, followed by verification of the 

iterative global-local procedure in capturing the ovalisation and local buckling effects in 

the pipes.  

Up to this stage, the beam is assumed to be straight. In order to generalise the method to 

include curved structural elements such as arches and in-plan curved beams, an exact 

thin-walled curved beam formulation is developed in Chapter 5. The main characteristic 

of the introduced element is its superiority in modelling beams with medium to high 

curvature values. This element is utilised in Chapter 6 as the global element for the 

Iterative Global-local Method for the analysis of curved thin-walled members. The local 

shell element is also modified to have the capability to form a curved beam element. 

Subsequently, the decomposition operator is changed to accommodate the curved beam. 

In chapter 7, the primary findings of the thesis are summarised and recommendations 

for further research in the field are made.  

 



 

 

 

 

 

Chapter 2: Preliminaries to the Iterative Global-local 

Method 

2.1. Introduction 

The Iterative Global-Local Method (IGLM) is introduced in this chapter as a powerful 

tool for capturing the effect of localised deformation on the global response of thin-

walled structural members. In order to demonstrate the need for a mathematically 

legitimate and computationally efficient method for the analysis of thin-walled 

members, a literature review is presented first that introduces the current methodologies 

for the analysis of thin-walled beams. Then, the main concept and the three components 

of the Iterative Global-Local Method are presented in detail, followed by the solution 

algorithm of the method. Later, the kinematic assumptions of the original IGLM are 

modified to make the method applicable for general loading conditions. Finally, 

Numerical examples are presented to demonstrate the efficiency and accuracy of the 

proposed method.  
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2.2. Literature review 

2.2.1. Vlasov Theory for thin-walled beams 

Vlasov (1961) proposed a theory for the analysis of thin-walled beams (TWB). The 

main assumptions of Vlasov theory are: 

 Distortions in the cross-section are assumed to be negligible during 

deformations (i.e. rigid cross-section assumption). However, warping due to the 

bending of flanges is allowed, 

 The shear strains at mid-surface of the section are considered to be negligible, 

 Normal stresses perpendicular to the centre line of the section are negligible 

compared to the stresses in the other two directions. 

In TWBs, Bernoulli’s assumption that plane sections prior to the application of the load 

remain plane is not applicable, which is due to the warping displacements common in 

thin-walled beams. Bimoment, which is the loading responsible for warping 

deformations, can be defined as a set of loadings resulting in two couples acting at two 

separate planes as shown in Figure 2.1. 

 

Figure 2.1: Load set resulting in a bimoment 
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According to the classical beam theory, the four loads in the figure cancel each other 

without any effect. Nevertheless, the aforementioned load system has a significant 

effect on the deformations of the TWB, neglecting which can result in a considerable 

error. Therefore, bimoments lead to the new stress resultant to be considered in the 

stress state of a member.  

According to the Vlasov’s first assumption, the displacements of the cross-section 

parallel to its plane are the same as in rigid body motion; therefore, the horizontal and 

the vertical components of displacement (s, )u z  and ( , )v s z  of an arbitrary point  on 

the mid-surface of the cross-section can be expressed in terms of the horizontal and 

vertical displacement components ( )u z  and ( )v z  of a pole ,x yA a a  and the angle of 

rotation ( )z  of the cross-section.  

 

Figure 2.2: Sectorial coordinate in Vlasov thin-walled theory 
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It should be noted that coordinate  is defined as a sectorial coordinate and is measured 

from a sectorial origin S0 located on the mid-surface of the cross-section (Figure 2.2). 

So that the arbitrary point  can be identified to have coordinates ( )x s  and y( )s  and 

we can write the definition of the displacement components as follows: 

( , z) (z) ( ) ( )yu s u y s a z  (2.1) 

( ,z) (z) ( ) ( )xv s v x s a z (2.2) 

The second of the aforementioned assumptions requires the shear strain at the mid-

surface to vanish 

0z
w
s z

 (2.3) 

where  is the component of displacement in the tangential direction of the mid-

surface. So we need an expression for  in terms of the horizontal and vertical 

displacement components, which can be easily found by projecting u and v on the 

tangential unit vector cos ( ),sin ( )t s s(t cos (( at point P. It should be noted that ( )s  is 

the angle between the tangent at point P and the x-axis (Figure 2.2). We have 

( , ) (s)cos (s) (s)sin (s)s z u v  (2.4) 

Substituting  Eqs. (2.1) and (2.2) into Eq. (2.3) 

( , z) ( ) ( ) ( ) cos (s) ( ) ( ) ( ) sin (s)y xw s u z y a z v z x a z ds  (2.5) 

Where  denotes the derivative with respect to z. By performing the required 

integration and defining the normal distance from the pole A to point P as 
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( ) ( )sin (s) ( )cos (s)x yh s x a y a , defining the sectorial coordinate ω such that 

( ) ( )d s h s ds , and considering that cos (s)dx ds  and sin (s)dy ds , Eq. (2.5)  

will change to 

( ,z) ( ) ( ) ( ) ( ) ( ) ( ) ( )w s w z x s u z y s v z s z  (2.6) 

The normal stress in the longitudinal direction can be found by differentiating Eq. (2.6) 

with respect to z to obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )zz w z x s u z y s v z s z  (2.7) 

Based on Vlasov (1961), the normal stress acting in the tangential direction ss  is 

neglected, which results in an approximate constitutive relation of zz
zz E . The normal 

stresses are assumed to be constant throughout the thickness while a linear gradient for 

shear stresses is considered in the theory. 

2.2.2. Instability of thin-walled members 

Buckling can be defined as the stage when an ideal structural member under 

compression reaches a stage of neutral equilibrium, which is if disturbed from the 

equilibrium position, it neither continues to displace more nor returns to the initial 

position. It is at this point that the structure is unstable, as is common in relatively 

slender structural members. Buckling can be classified as global, local and distortional, 

where global buckling is the instability of the whole member (i.e. a column), local 

buckling is the buckling of a sub-element (i.e. the buckling of a flange or web of a 

column cross section) over a limited domain, and distortional buckling. This review will 

start from instability of isolated plate elements; will discuss the instability of plate 
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assemblies, and the effect of local buckling on other modes of instability, while 

covering the main modes of global buckling in beams and common methodologies to 

assess the buckling loads in different cases. 

2.2.2.1. Instability of Plates 

Saint-Venant (1883) was the first one to obtain the general differential equation of the 

plate buckling problem for elastic plates loaded in-plane (Figure 2.3). 

 

Figure 2.3: St. Venant Plate buckling 

If a compressive stress  is applied in the longitudinal direction, the differential 

equation will be:  

4 4 4 2

4 2 2 4 22 0w w w t w
x x y y D x

 (2.8) 

where t is the plate thickness, w is the deflection of the plate and D is the flexural 

rigidity. Bryan (1891) solved the differential equations for simply supported edges, 

focusing on ship plates. The problem was solved for several other boundary conditions 

by Timoshenko (1910). von Kármán (1910) obtained nonlinear equations for post-

buckling behaviour of perfect plates and Marguerre (1939) generalized the theory to 

include initial imperfections in the calculations. Several researchers tried approximate 

solutions to Marguerre’s equations (e.g. Timoshenko & Gere (1961)). 
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However, in reality the problem is finding the buckling load of an assembly of plate 

elements rather than a solo plate. To tackle the problem, different methodologies have 

been proposed in the literature. One of the earliest techniques was proposed by 

Lundquist et al. (1943), who used the moment distribution method for assemblies 

subjected to uniform compressive stresses. A different method was utilized by Bleich 

(1952) and Bulson (1967). They solved the differential equation for each plate segment 

while satisfying static and kinematic continuity at plate junctions.  

One of the popular methods for prediction of the buckling load of structural members is 

the Finite Strip Method (FSM), which was developed as an alternative method to finite 

element for the stability analysis of thin-walled members. It was used by several 

researchers such as Przemieniecki (1973), Plank & Wittrick (1974) and Cheung (1976). 

In this method, the structural members such as  I-section columns are modelled by a 

series of connected narrow longitudinal elements (called strips) spanning over the entire 

length of the member, resulting in considerable reduction in computational cost 

compared to the finite elements method. Conventionally, polynomial displacement 

functions were used in the transverse direction and Fourier series displacement 

functions in the longitudinal direction. It was observed later by Mahendran & Murray 

(1986) that some problems arose in the presence of shear forces. In order to solve this 

problem, Fourier functions were replaced by B-spline displacement functions (Fan & 

Cheung 1983; Lau & Hancock 1986; Van Erp & Menken 1990). Although efficient in 

most practical cases, the finite strip method cannot be easily used to model cases with 

complex geometry or boundary conditions. In these cases, the finite element method, 

which is discussed in the following sections, can be used efficiently.  
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2.2.2.2. Instabilities of thin-walled members 

Lateral-torsional buckling is defined by the American Institute of Steel Construction 

(AISC) as a “buckling mode of the flexural member involving deflection out of the 

plane of bending occurring simultaneously with a twist about the shear centre of the 

cross-section”, which is commonly the determining buckling mode in laterally 

unsupported long beams. 

The closed form of the equation of lateral-torsional buckling of thin-walled members is 

available for limited loading (uniform bending) and boundary conditions, which is the 

result of the work of several researchers in 1960s, e.g. (Chajes & Winter 1965; 

Timoshenko & Gere 1961). These closed form formulations are based on the Vlasov 

thin-walled theory and consequently neglect the effect of web distortions on the lateral-

torsional resistance of the member, as one of the assumptions of Vlasov is that the 

cross-sections remain rigid during the deformations. Hancock et al. (1980) generalized 

the theory by including the effect of web distortions in the critical load. 

The effect of non-uniformity of internal moment on the lateral-torsional buckling load is 

normally determined through a correcting multiplier called moment gradient factor and 

is the result of studies by numerous researchers starting from the early work of 

Salvadori (1955), who offered moment gradient factor for linear bending moment 

gradient, to more comprehensive studies with the aid of finite element method (Grenier 

et al. 1999; Lim et al. 2003; Serna et al. 2006; Wong & Driver 2010). 

 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 13 
 

 

2.2.3. Buckling vs. post-buckling 

When the compressive load reaches its critical value, the structure will undergo a large 

sudden displacement. At the same time, the load may decrease, remain constant or 

increase. For the first two cases, the maximum load that the structure can carry is the 

critical (i.e. buckling) load. On the other hand, if there is an increase in the load beyond 

the buckling load, we say that the structure has a post-buckling strength. Post-buckling 

is mostly common in the buckling of plates, where the local buckling in a segment of a 

plate may not lead to failure, and it can withstand loads larger than its initial buckling 

load.  

Post-buckling is a highly nonlinear phenomenon. Firstly, the stress-strain curve may be 

nonlinear due to inelastic behaviour of the material. Secondly, geometric nonlinearity 

exists due to the large displacements undergone in the initial buckling and finally, 

boundary conditions may change due to a change in contact situation.   

2.2.3.1. The Effective width method 

von Karman et al. (1932) proposed the Effective width method, which is still the most 

commonly used method for design purposes. The method is based on the fact that the 

local buckling in plates occurs in regions away from the supports. As a result, it is 

assumed in the effective width method that a portion of the plate, located close to the 

supports, is carrying the total load with a uniform stress distribution, while the stresses 

in the buckled region are ignored.  

This method is currently used in most codes of practice as the primary method to deal 

with the local buckling of thin-walled steel sections. Although conceptually 

straightforward, the effective width method may be cumbersome to apply to members 
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with complex cross-sectional geometry because the effective width for each segment of 

the cross-section needs to be calculated separately and the results need to be used to find 

sectional and sectorial properties. Apart from that, the stress distribution used in the 

calculation of the effective width is the average of longitudinal membrane stress and the 

variation of stresses through the thickness and along the length of the plate is ignored. 

In other words, the real effective width is more complicated than that which is assumed 

(Schafer 2008). Lastly, the inter-element (e.g. between the flange and web) equilibrium 

and compatibility is ignored.  

2.2.3.2. Direct strength method 

Direct strength method (DSM) is a simple design approach, in which the strength of a 

member can be determined based on elastic instabilities of the section, namely local, 

distortional and global buckling, in combination with yield stress of the material. The 

buckling load according to each instability mode can be calculated by analytical or 

numerical (e.g. finite strip method) procedures. The main advantage of the DSM over 

the effective width method is simplicity (compared to the aforementioned difficulty in 

calculating effective width for sections comprising of several plate elements). Apart 

from that, unlike the effective width approach, compatibility and equilibrium are 

satisfied between segments of cross-section. The method has gained more popularity in 

recent years and has been accepted by several codes of practice as an acceptable 

alternative to the effective width method. 

The origin of the direct strength method for columns starts from works by Hancock and 

his colleagues on distortional buckling of channel sections (Kwon & Hancock 1991; 

Lau & Hancock 1987). Hancock et al. (1994) performed tests on thin-walled members 

and could correlate the distortional buckling strength with slenderness determined based 
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on distortional buckling stresses and proposed design curves accordingly. Schafer & 

Pekoz (1998) performed tests on a large variety of cold-formed sections and using the 

results, taking all buckling modes (local, distortional and global) into account.  

Rusch & Lindner (2001) performed experiments on cold-formed I-section to compare 

the direct strength method to the effective width method and concluded that the use of 

direct strength method may lead to overestimation of the buckling load. They stated that 

the shift in the neutral axis of the section due to the local buckling is ignored in the 

direct strength method. Therefore, the additional bending moment caused by the 

aforementioned shift is ignored, resulting in overestimation of the buckling load. 

Comparing test results with the results of the two methods, they concluded that the 

effective width approach is more accurate than the direct strength method. 

2.2.4. Distortional buckling 

Distortional buckling can be considered as a combination of two primary modes of 

instability of thin-walled steel members: the local and the lateral (or flexural-torsional 

buckling). In local buckling, an element of the cross-section (i.e. web or flange) buckles 

locally without any lateral displacement, spanning over a relatively short domain of the 

member. However, in the global buckling, the member buckles by the lateral 

deformation or/and the twist of the cross-section without any change in the cross-

sectional geometry. The former is common in short-length members and the latter in 

long ones, but in intermediate lengths, distortional buckling occurs, in which the lateral 

deformations and the distortion of the cross-section occur simultaneously. 

Closed form solutions for distortional buckling were derived by several researchers 

(Bradford 1994; Hancock et al. 1980). Jönsson (1999) proposed a distortional theory for 
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thin-walled beams by embedding distortional displacement mode into the kinematic 

assumptions of the classic Vlasov theory. The applicability of analytical models is 

limited to cases with simple geometry and boundary conditions. On the other hand, 

numerical methods have gained popularity in the last few decades. 

One of the first models was proposed by Bradford & Trahair (1981), who introduced a 

finite element with 12 degrees of freedom, in which the flanges were modelled by beam 

elements and the web as a plate that can distort in the plane of its cross-section.  

Roberts & Jhita (1983) used energy methods to analyse local, lateral and distortional 

buckling of I-section beams. It was observed that distortional buckling was critical in 

slender beams. 

Bradford (1994) observed that the distortional buckling of short beams with slender 

webs occur at significantly lower load compared to lateral buckling. It was also seen 

that, in a continuously restrained beam, the main buckling mode is distortional. 

Ma & Hughes (1996) developed an energy method that included the effect of web 

distortion on the lateral buckling of mono-symmetric beams and observed that the 

exclusion of web distortion (rigid-web assumption) overestimates the lateral-torsional 

buckling load.  

Petrolito (1995) and Eisenberger (2003) included higher order terms by assigning a 

cubic variation for the axial displacement over the cross-section while keeping the 

lateral displacement constant, and the significant effect of the higher order terms for 

short beams was confirmed. 
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Dekker & Kemp (1998) used an equivalent spring system in order to model the relative 

stiffness of the web and the flanges of doubly symmetric I-sections. The model 

correlated well with the results from Bradford & Trahair (1981) for elastic buckling. 

In order to increase the accuracy of the model by Bradford & Trahair (1981), Bradford 

& Ronagh (1997) increased the degrees of freedom to 16. Later on, Poon & Ronagh 

(2004) increased the accuracy of the model by proposing a 5th order polynomial for web 

displacements instead of the commonly used cubic polynomial. They also observed that 

the distortional buckling was more significant when the flanges are relatively large or 

the beam has a short length, which was the case where the difference between the 5th 

order and the cubic polynomial became more pronounced.  

2.2.5. Evaluating the effect of local buckling on the global behavior 

As a result of local buckling, the behaviour of the member may change significantly. 

van der Neut (1969) investigated the interaction of local and global buckling of an 

idealized column made of elastic material. It was observed that, for long columns, the 

failure was purely due to the overall (Euler) buckling of the column. On the other hand, 

for columns shorter than a specific length, local buckling occurs prior to the Euler 

buckling. For evaluating the post-buckling behaviour of the column, he reduced the 

bending stiffness by a reduction factor η, which was assumed to remain constant and 

was taken as 0.4083. 

A number of methodologies have been developed to assess the reduction in the stiffness 

of columns due to local buckling. For example, Bijlaard & Fisher (1953) used the split 

rigidities method, which is finding rigidities based on the deformations of the section in 

a mode which is the result of the additional local buckling deformation due to the 
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interaction of local and overall buckling modes. DeWolf et al. (1974) found the flexural 

rigidities by the use of the effective width concept while Hancock (1981) used the finite-

strip post buckling analysis to calculate rigidities of locally buckled I-sections. Wang et 

al. (1977) and Wang & Pao (1980) introduced a finite element which included the effect 

of local buckling on the overall buckling load by decreasing the stiffness of the section 

according to the effective width method. The problem is nonlinear due to the following 

reasons: 

 The stiffness of the column in the post-buckling range depends on the effective 

widths of the buckled plates, and 

 The applied load and the effective widths of the plates are interdependent. 

Therefore an iterative approach was adopted. However, even the iterative effective 

width method is approximate as it relies on semi-empirical formulas to determine the 

extent of the buckled plate regions and does not incorporate the actual stresses in the 

analysis.  

In beam-columns (or eccentrically loaded columns), the reduction in section stiffness 

due to the local buckling results in an increase in the lateral displacement of the 

member, which causes a further reduction in the load-carrying capacity of the member. 

Rhodes & Harvey (1971) studied the effect of local buckling on the behaviour of a 

beam-column with channel cross-section. To this end, they used differential equations 

of an eccentrically loaded pin-column. The use of the proposed method is limited 

because the flexural rigidity was assumed to be constant, and it was only applicable to 

pinned columns. To overcome these problems, Davids & Hancock (1987) developed a 

theory by combining the finite strip method of nonlinear elastic analysis of locally 

buckled thin-walled sections with the influence coefficient method of analysis of beam-
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columns. The advantage of the theory was that it allowed the inclusion of the effect of 

initial imperfections, general loading and boundary conditions and residual strains. 

Rasmussen (1997) used the variational principles to obtain the differential equations and 

the boundary conditions of the global buckling of locally buckled thin-walled members. 

The method was applicable to arbitrary cross-sections and boundary conditions, for the 

members in compression, bending and combined compression and bending. The method 

was applied to doubly-symmetric sections in compression and combined bending and 

compression. Later, Young & Rasmussen (1997) applied the method to singly-

symmetric sections in compression. 

2.2.6. Generalized beam theory 

Generalized beam theory (GBT), which was developed originally by Schardt (1989), is 

a method for buckling problems of thin-walled prismatic members. In this method, the 

mechanical behavior of the member is described by ordinary differential equations, 

where the displacement resultants are similar to individual buckling modes. In other 

words, the problem is solved in a modal basis, where the degrees of freedom are the 

predefined possible buckling modes of the member, instead of conventional nodal 

degrees of freedom. GBT was used to implement beam theories including in-plane 

deformations of the cross-section and good results were obtained by appropriate 

selection of shape-functions for the deformations of the cross-section.  

The theory proposed by Schardt (1989) was applicable to linear problems only. Schardt 

(1994) stated that second order effects can arise due to normal or shear stresses and 

developed 2nd order GBT, which focused on the effect of longitudinal stresses because 

they have the most important effect in practical problems. So far, the method was 
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applicable to elastic buckling analysis of thin-walled members with “unbranched” open 

cross-sections, but Silvestre & Camotim (2003) and Dinis et al. (2006) introduced 

formulations to include open branched and closed sections and Silvestre (2007) 

extended the theory to analyze the buckling of circular cylindrical cross-sections. 

Rendek & Baláž (2004) used GBT for the static analysis of thin-walled beams and 

provided a comparison with experimental results and Bebiano et al. (2007) made the 

GBT applicable to thin-walled members under non-uniform bending by including terms 

to account for longitudinal stress gradient and corresponding shear stresses.  

Carrera & Petrolo (2012) used Lagrange polynomials to define the displacement field 

above the cross-section of the beam for the so-called Lagrange points on the cross-

section. The formulation used displacement degrees of freedom, and showed good 

results when compared to solid finite elements for several examples. 

2.2.7. Iterative Global-local Method 

Accurate modelling of regions with steep stress gradient without overcomplicating the 

finite element model has been a challenge in the finite element procedure for several 

decades, especially in the aircraft industry. A popular example in the literature concerns 

modelling of a stiffened panel with circular central cut-out (Figure 2.4). The problem 

with this example is that the high stress-concentration around the hole requires a 

detailed analysis while a simple model can be reasonably considered adequate for the 

rest of the structure. Consequently, performing a highly-detailed analysis of the whole 

structure would be computationally inefficient while a coarse model is not sufficient for 

accurate modelling of the critical regions around the cut-out. The family of global-local 

procedures attempt to address this issue by proposing alternative analysis procedures 

(Noor 1986).  
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Figure 2.4: Stiffened panel with circular hole, after Knight Jr et al. (1991) 

“Hybrid Method” is a type of global-local method in which a classical variational 

procedure (e.g. conventional Ritz Method) is used for the global analysis of the 

structure while a discretised solution method such as the finite element form of the Ritz 

method is adopted for the local regions, e.g. (Mote 1971; Noor & Peters 1983). 

“Zooming Method” is the second type of global-local method discussed here. It is based 

on adopting a coarse mesh for the whole structure and a refined mesh for the area of 

expected high stress-gradient (Hirai et al. 1985; Sun & Mao 1988). In this method, the 

global model is initially solved, and the resulting displacements are used as boundary 

conditions for the local/refined model. This method requires careful treatment of the 

interface between the local and global models to minimise the error on the boundaries. 

Another attempt has been modelling the critical local region with different mathematical 

models and hence, creating a hierarchy of the mathematical models (Noor 1986). An 

example of such procedure is shown in Figure 2.5 for the analysis of a stiffened panel 

with cut-out. The body of the panel far from the cut-out is modelled by shell elements 

based on classical shell theory while the area adjacent to the cut-out is formulated by 
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boundary layer theory, and the intermediate area between the two is modelled according 

to the shear deformation theory. Similarly, the mathematical models for analysing the 

stiffening plates are different according to the position of the plate with respect to the 

cut-out: the stiffeners close to the cut-out are modelled by plate theory while the model 

is changed to thin-walled and classical Euler-Bernoulli beam theories when farther from 

the location with high stress concentration.  

 

Figure 2.5: Hierarchy of mathematical model for the stiffened panel, after (Noor 1986) 

Whitcomb (1991) introduced the iterative global/local method to consider the effect of 

stress concentration in a locally refined area on the global model. For that purpose, a 

coarse mesh was used in the global model with a dense mesh around a cut-out. The 

effect of the presence of the cut-out on the global model was considered by ensuring 

that the stresses on the boundaries of the two models are balanced. For that purpose, a 

modified Newton-Raphson iterative procedure was used to ensure that the unbalanced 

forces between the local and the global model vanish. The application of the model was 

later generalised for defects in bonded joints and geometric nonlinearities in subsequent 

studies (Whitcomb & Woo 1993a, 1993b). 
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Gendre et al. (2009) developed a non-intrusive iterative global-local computational 

method to solve the problem where nonlinearity is limited in a small subdomain of the 

structure. “Non-intrusive” means that it does not introduce any additional error based on 

the approximate assumptions of the boundaries and can be entirely addressed based on 

the standard finite element formulations. Therefore, it can be easily implemented in the 

commercial finite element codes. They used linear finite element models (shell and 

solid elements) for the total domain while a nonlinear local model was employed in the 

area of nonlinearity. The primary source of nonlinearity in this study was inelastic 

behaviour, so they used different constitutive relations for the local region than the 

simple linear-elastic behaviour of the global structure. The limitation of this procedure 

was that the boundaries of the global and local models are assumed to be matching. Liu 

et al. (2014) introduced a non-intrusive Iterative Global-local Method for non-matching 

interface between the local and global model (Figure 2.6) 

          

(a) Matching interface (Gendre et al. 2009)  (b) Non-Matching interface (Liu et al. 2014) 

Figure 2.6: Matching and non-matching interface between the global and local regions 

It should be noted that in all of the studies mentioned here, the type of the element is 

assumed to be the same for the global and local regions (e.g. shell elements). However, 

it will be shown in the following sections that the method developed in the current study 

is based on adopting different finite elements for the global and local models.  
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2.3 Motivation for the Iterative Global-local Method 

2.3.1. Introduction 

As discussed in the previous sections, different methodologies have been proposed for 

the analysis of thin-walled beams. Especially, when local buckling of section elements 

(such as web and flanges) occurs, even the numerical methods discussed so far depend 

on empirical/semi-empirical methods like the effective width method. In other words, if 

one is to capture the local buckling of a thin-walled beam rigorously, one has to model 

the whole domain of the beam by detailed finite elements such as shell elements. The 

latter method results in overly huge-sized computational models that are not applicable 

in everyday analysis and design of thin-walled beams.  

 “Sub-structuring” technique is a method that has been tried to overcome such 

difficulty, e.g. (Yamao & Sakimoto 1986). In this method, elements with two degrees of 

accuracy are used. Less detailed elements (i.e. beam element) are used in regions that 

are not likely to undergo local buckling behaviour while more accurate elements (i.e. 

shell elements) are used in places susceptible to local buckling or other cross-sectional 

related deformations. In order to connect the shell elements to the beam elements, the 

nodes of the shell elements at the place of the intersection are tied together by means of 

a constraint. This method allows the incorporation of cross-sectional related 

deformations without necessitating large computational models; however, applying 

changes to the critical region (i.e. the region which is modelled by the more-detailed 

shell-elements) requires a complete change in the model. In other words, in the case in 

which the predefined susceptible region is found to be insufficient in capturing the 
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deformations of the beam, it needs to be extended to a larger domain, which means 

changing the numerical model.  

Alternatively, the Iterative Global-Local Method (IGLM) can be used, which allows the 

application of more detailed finite elements (e.g. shell-type elements) in critical regions 

on top of an existing less detailed element (e.g. beam-type elements), a practice that 

allows the rigorous finite element modelling of local buckling while keeping the model 

computationally economical. Unlike the sub-structuring technique, applying changes to 

the critical regions in the Iterative Global-local Method is quite simple because the local 

model does not interrupt the global model; therefore, a change in the critical region does 

not change the global model of the structure.  

2.3.2. Background 

New challenges in computational mechanics such as large deformations in 

manufacturing processes and crack propagations has made the conventional numerical 

techniques unsuitable and is some cases useless. To overcome this difficulty, current 

research focus in computational mechanics has been placed on adaptive numerical 

techniques,  

The iterative global-local (or multi-scale) method, which is the focus of this thesis, is 

based on the hierarchy at the level of solution (Feyel 2003; Fish et al. 1994; Geers et al. 

2010; Hughes & Sangalli 2007; Liu et al. 2000). To be more precise, the Iterative 

Global-local Method allows the application of more detailed and more precise elements 

at the critical places only without necessitating any change in the neighbouring regions. 

The interaction of local buckling of a thin-walled member and the global modes is a 

problem with deformation fields of different scales. In order to incorporate the effect of 
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local buckling on the global behaviour of a thin-walled beam, Erkmen (2013) developed 

a numerical method which can be considered as an Iterative Global-local Method. In 

this method, the local and global aspects of the thin-walled beam are modelled by using 

two different kinematical assumptions. That is, simple beam-type finite elements were 

used for the global response of the structure while more sophisticated and more detailed 

shell-type finite elements were utilized to demonstrate the local behaviour of the thin-

walled member. In other words, the beam-type elements were used to cover the total 

domain of the problem while the shell elements were placed in a subset of the whole 

domain where it was thought to be critical (i.e. where large local loading exists or where 

the beam was thought to be susceptible to local buckling or large local deformations). A 

layout of the model showing the decomposition of the domain is shown in Figure 2.7. 

 

Figure 2.7: Domain decomposition of the thin-walled member using the Iterative 

Global-local Method (After Erkmen 2013) 

In order to synchronize the two models, a specific operator was developed that projected 

the displacement field of the shell elements on the corresponding degrees of freedom of 

the coarse-scale model (the beam element). Due to the specific kinematic assumptions 

in the development of the aforementioned operator, the method was applicable to cases 

with uniform bending moment conditions only. 
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2.4. The beam element 

The beam element used as the global/coarse-scale model of the Iterative Global-local 

Method is developed based on the classical thin-walled beam theory (discussed in 

Section 2.2.1). The strain vector of such element can be written in terms of the 

displacements parallel to x , y  and z  directions, i.e. ( )u z , ( )v z  and ( )w z , 

respectively, the angle of twist of the cross-section , and their derivatives (Figure 2.8). 

 

Figure 2.8: Directions of the beam element 

The strain vector can be decomposed into linear and nonlinear components, i.e. 

L Nε = ε + ε . Each part can be obtained by multiplying the matrix of cross-sectional 

coordinates S by linear and nonlinear vectors including displacement components. 

0 0 T
L L L Lε Sχ  (2.9) 

0 0 T
N N N Nε Sχ  (2.10) 

where  
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2 21 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0

x y x y

r
S  (2.11) 

The vector of linear derivatives of the displacement is 

0
TT

L w u vχ  (2.12) 

while the nonlinear displacement vector can be considered as follows based on Trahair 

(1993) 

T 2 2 2 2 2 2 2 21 1 1' ' ' ' ' ' ' ' ' 0 ' 0
2 2 2N x y x y x yu v a v a u a a v a u aχ

(2.13) 

In Eq. (2.11), x  and y  denote the coordinates of a point on the cross-section, r  is the 

normal distance from the mid-surface, xa  and ya  refer to the coordinates of the pole, 

and  is the sectorial coordinate according to Vlasov thin-walled theory. 

The beam finite element is formulated by assuming a linear interpolation for w  and 

cubic interpolations for u , v and . As a result, the interpolation matrix aX  can be 

formed to relate the displacement vector at an arbitrary point inside the element ( au ) to 

the nodal displacement vector d  by the following equation: 

a au X d  (2.14) 

where  
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T

a w u vu  (2.15) 

T

T

T

T

a

L 0 0 0
0 H 0 0

X
0 0 H 0
0 0 0 H  

(2.16) 

in which 

T

1 z z
L L

L  (2.17) 

and  

T2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 21 z z z z z z z zz
L L L L L L L L

H  (2.18) 

The nodal displacement vector d  is shown in Eq. (2.19) 

T

1 2 1 1 2 2 1 1 2 2 1 1 2 2x x y yw w u u v vd (2.19) 

in which subscripts 1 and 2 refer to the starting and the ending nodes of the beam 

element respectively, x  and y  are the rotations in z x and z y  planes respectively, 

and  is associated with the warping deformations of the cross-section. 

The displacement of a point on the cross-section u can be expressed in terms of the 

vector of nodal displacements d by using the decomposition matrix N  (Trahair 1993). 

The decomposition matrix N  can be written as the product of the multiplication of an 

interpolation matrix Z  and a second matrix Y (i.e. N YZ ). The first matrix Z  

contains the interpolation functions that are used to calculate the displacements of any 
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point on the axis of the beam from the nodal displacements while the second matrix Y 

determines the displacements of any point of the cross-section from the displacement of 

the axis according to the kinematic assumptions of the classical thin-walled beam theory 

Vlasov (1961). These matrices are shown explicitly in Eqs. (2.20), (2.21) and (2.22). 

T
w u u v vu  (2.20) 

T

T

T

T

T

T

T

d
d

d
d

d
d

z

z

z

L 0 0 0
0 H 0 0
0 0 H 0
0 0 0 H

HZ 0 0 0

H0 0 0

H0 0 0

 (2.21) 

1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0 0

y

y

x

x

x y

y a

y a

x a
x a

Y  (2.22) 

Assuming elastic material behaviour, we can write the stress vector as 

T0 0σ  (2.23) 

And the material properties matrix would be 
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0 0 0
0 0 0 0

0 0 0
2 1

0 0 0 0

E

EE  (2.24) 

We should note that the constitutive matrix E  used here is different from the one used 

for the shell element is Section 2.5, in order to satisfy the second and third postulate of 

the beam theory. Because of the rigid cross-sectional assumption of the thin-walled 

beam theory, Poisson ratio effects would cause the element to behave overly stiff. By 

adopting the constitutive matrix of Eq. (2.24), additional strain would be produced 

within the cross-sectional plane of the beam, which eliminates the stresses in the cross-

sectional plane. Consequently, the third postulate of the beam theory – that is, normal 

stresses within the cross-sectional plane are zero – would be satisfied.   

Based on the above derivations, the variational formulation can be written down to 

obtain the equilibrium equation: 

Tδ δ d d δ 0
L A

A z Tε σ d f  (2.25) 

where A is the cross-sectional area, L is the length of the element and f  is the external 

load vector. The variation of the strain vector δε  of the beam element can be written as  

δ δε SB d  (2.26) 

where S  is given in Eq. (2.11) and B  is found according to  
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2 21 0 0 0 0

0 0 1 0 2 0
0 0 0 1 2 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

y x y x x y

x

y
a

u a v a a u a v a a

v a
u aB X  (2.27) 

aX  in Eq. (2.27) is specified in Eq. (2.16), and  is a differential operator as in Eq. 

(2.28) 

T

2

2

2

2

2

2

d 0 0 0 0 0 0 0
d

d d0 0 0 0 0 0
d d

d d0 0 0 0 0 0
d d

d d0 0 0 0 0 1
d d

z

z z

z z

z z

 (2.28) 

The incremental equilibrium equation can be obtained by subtracting the equilibrium 

equations of two neighbouring equilibrium positions. The result is then linearized by 

ignoring second- and higher-order terms. It should be noted that Eq. (2.26) is substituted 

in the variational equation (Eq. (2.25)) to obtain the result. We have 

δ δ δ δ δ δ 0T Td K d d f  (2.29) 

where K  is the stiffness matrix, and can be found from the following equations 

T T d d d
L A L

A z zK B S ESB M  (2.30) 

in which T Tδ δ d
A

AM d B S σ . 
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2.5. The shell element 

2.5.1. Introduction 

As discussed in Section 2.3, a more detailed structural element is required to serve as 

the local model in the Iterative Global-local Method. For a thin-walled member, a shell-

type finite element is the most suitable to capture the localized behaviour such as local 

buckling of web and flanges. The shell element used in this study is a 4-node element 

with 6 degrees of freedom per node. The plate bending component of the element is 

formulated based on Discrete Kirchhoff Quadrilateral (DKQ) according to Batoz & 

Tahar (1982). In this technique, the element is produced based on Kirchhoff’s classical 

theory for thin plates, which assumes negligible shear deformation effects across the 

thickness of the plate element. The degrees of freedom associated to DKQ are the 

vertical displacement (w) of the nodes plus two bending rotations ( x̂ ) and ( ˆ
y ), as 

shown in Figure 2.9. 

 

Figure 2.9: Shell element degrees of freedom 
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The membrane component of the element is obtained according to the model proposed 

by Ibrahimbegovic et al. (1990), which employs the drilling degree of freedom (i.e. 

rotation around the out-of-plane axis). Consequently, the degrees of freedom from the 

membrane component consist of two displacements in the direction of x and y axes 

(along the plate) and the drilling rotation ẑ , which constitutes 6 degrees of freedom in 

total. Details of the membrane and bending components of the shell element are 

discussed in the following sections.  

2.5.2. The membrane component of the shell element 

The in-plane (membrane) behaviour of shell elements is classically modelled by 

elements with in-plane translational degrees of freedom only, i.e. u and v in Figure 2.9 

without considering the rotational degree of freedom θz, referred to as the drilling 

degree of freedom (Zienkiewicz 1977). By considering the bending behaviour of the 

shell element with 3 out-of-plane displacement components (w, θx and θy in Figure 2.9), 

the element would have 5 degrees of freedom per node. Although such an element is 

theoretically sound, some modelling and numerical problems may arise due to the lack 

of the drilling degree of freedom (Frey 1989); namely, 

 If the shell element is connected to an out-of-plane beam-type element (e.g. 

modelling floor slabs connected to columns), the torsional degree of freedom of 

the column does not have any counterpart in the shell element and hence they 

cannot be connected. 

 If the shell elements that are connected to each other are non-coplanar (i.e. the 

local and global coordinate directions are different), the transformation would 

lead to singularity in the global stiffness matrix. For example, considering the 
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two elements shown in Figure 2.10, the bending rotation of element 1 at edge 

AB is equivalent to the drilling d.o.f. of element 2, and vice versa. Therefore 

existence of such d.o.f is essential in the assemblage of these elements.   

  

Figure 2.10: Assemblage of non-coplanar shell elements 

Allman (1984) introduced “vertex rotations” ω which were defined based on the 

transverse displacement of the middle of the element side (un12 in Figure 2.11).  

 

Figure 2.11: Vertex rotations in a triangular membrane element, after Cook (1986) 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 36 
 

 

He assumed that the normal and tangential components of displacement (i.e. nu
 
and tu ) 

along a side of the element can be interpolated with cubic and linear interpolations, 

respectively from the nodal values, i.e., 

2
1 2 3nu a a s a s  (2.31) 

4 5tu a a s
 

(2.32) 

where the coordinate s is measured from one end of the side to the other, and the 

constants 1a  to 5a  are found based on the nodal  values of the normal and tangential 

displacement components 1nu , 2nu , 1nv  and 2nv , which are in turn calculated from the 

nodal values of u and v.  

1 1 3 1 3cos sinnu u v  (2.33) 

1 1 3 1 3sin costu u v
 

(2.34) 

where 3  is the angle between the element side in consideration and the x axis. So far 4 

equations are presented for the 5 unknowns. The 5th boundary condition is found based 

on the difference of the vertex rotations as 

2 1
2 1

n nu u
s s

 (2.35) 

Consequently, Eqs. (2.31) and (2.32) can be written as (Cook 1986) 

1 2 12
3 3 3 3

41 1n n n n
s s s su u u u
L L L L

 (2.36) 
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1 2
3 3

1t t t
s su u u
L L  

(2.37) 

12nu  in Eq. (2.36) is the transverse displacement of the mid-side (Figure 2.11), and can 

be written in terms of the vertex displacements as 

3
12 2 18n

Lu  (2.38) 

which can be replaced in Eq. (2.36) to obtain (Jin 1994) 

1 2 1 2
3 3 3

1 1
2n n n

s s s su u u
L L L

 (2.39) 

The above equations can be used to obtain the interpolation functions within the 

triangular element. Similar equations can be derived for quadrilateral elements to obtain 

the displacement field u and v as 

8

1
,i i

i
u N u  (2.40) 

8

1
,i i

i
v N v

 
(2.41) 

where  and  are natural coordinates and iN  are the shape functions (Zienkiewicz & 

Taylor 2005) 

21
2 1 1 5,7i iN i  (2.42) 

21
2 1 1 6,8i iN i

 
(2.43) 
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1 1 1
4 2 21 1 6,8

1,2,3,4 , 8,5;5,6;6,7;7,8.
i i i m nN N N i

i m n  
(2.44) 

in which 1,2,3,4i  refers to the nodal values while 5,6,7,8i  represent the 

displacement values at the middle of the element sides as in Figure 2.12.  

 

Figure 2.12: Nodes of a membrane element 

It should be noted that the vertex rotations i  are not the true rotations of the nodes. The 

true rotation (i.e. the drilling rotations) can be written in terms of the in-plane 

translations as 

1
2

v u
x y

 (2.45) 

Hughes & Brezzi (1989) described the boundary value problem as 

div σ + f = 0 (2.46) 

skew σ = 0
 

(2.47) 

Ω = skew (  u) (2.48) 
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symm σ = C symm (  u) 
 

(2.49) 

where Eqs. (2.46) to (2.49) define the equilibrium equation, the symmetry of the stress 

tensor, the drilling rotation and the constitutive equation, respectively. It should be 

noted that skew in the above refers to the skew-symmetric part of the corresponding 

tensor while symm denotes the symmetric part, i.e. 

skew σ = 1
2

T  (2.50) 

symm σ = 1
2

T

 
(2.51) 

Hughes & Brezzi (1989) developed the variational formulation as 

. . . 0
T

symm u C symm u dV skew u skew u dV u fdV

(2.52) 

where  is a penalty term. The second term in Eq. (2.52) denotes that the skew 

symmetric part of the displacement gradient is enforced as a Lagrange multiplier to 

ensure that the drilling rotation is compatible with the skew part of the displacement 

gradient. Ibrahimbegovic et al. (1990) combined the Allman’s interpolations with the 

independent treatment of the drilling degree of freedom. For that purpose, the drilling 

rotation is interpolated using the standard bilinear shape functions, i.e.  

4

1
,i i

i
N  (2.53) 

where 1
4 1 1 1,2,3,4i i iN i . The in-plane translation components u and 

v are interpolated using the Allman-type interpolations. 
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2.5.3. The bending component of the shell element 

The local coordinate system of the flat shell element is normally chosen according to 

Figure 2.13, i.e. the shell is placed in the x-y plane, and the origin is placed at the mid-

plane (Cook et al. 2002; Timoshenko & Woinowsky-Krieger 1959). 

 

Figure 2.13: Plate bending degrees of freedom 

It is assumed that if the element is subjected to bending action only (i.e. in-plane 

loading is not present), the mid-plane would be stress free and act as the neutral surface; 

that is, 0xx xy xy at 0z . Furthermore, a straight line perpendicular to the mid-

plane is assumed to remain straight after the deformation. The in-plane displacement 

fields u and v can be written as 

xu z  (2.54) 

yv z
 

(2.55) 

where z is the distance from the mid-plane, and x  and y  are the rotation components 

of a straight line normal to the mid-plane (Figure 2.13).  Accordingly, the strain 

components can be calculated as 
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x
xx z

x
 (2.56) 

y
yy z

y  
(2.57) 

yx
xy z

y x  
(2.58) 

yz y
w
y  

(2.59) 

xz x
w
x  

(2.60) 

The following stress resultants can be defined. 

2

2

t

t
x xxM zdz  (2.61) 

2

2

t

t
y yyM zdz

 
(2.62) 

2

2

t

t
xy xyM zdz

 
(2.63) 

2

2

t

t
x xzQ dz

 
(2.64) 

2

2

t

t
y yzQ dz

 
(2.65) 

Depending on the orientation of the normal to the mid-plane in the deformed 

configuration, two theories can be developed; namely the Kirchhoff Plate Theory and 

the Mindlin-Reissner Plate theory. 
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2.5.3.1. Kirchhoff Plate Theory 

In Kirchhoff Plate Theory it is assumed that a straight line perpendicular to the mid-

plane in the undeformed shape remains straight and perpendicular to the mid-plane after 

the deformation. In other words, the rotation of the perpendicular line to the mid-plane 

would be equal to the slope of the deformed plate, i.e. y
w
y

  and x
w
x

. 

Consequently, the out-of-plane shear strain components yz  and xz  would be equal to 

zero (Eqs. (2.59), (2.60)). The shear deformations are therefore neglected in the 

kinematics of the Kirchhoff theory, which makes it analogous to the Euler-Bernoulli 

theory for beams. The remaining strain terms can be written as 

2

2xx
wz

x
 (2.66) 

2

2yy
wz

y  
(2.67) 

2

2xy
wz

x y  
(2.68) 

Considering that the normal strain along the z direction is negligible, the moment-

curvature relation can be written as 

M = - D χ
 

(2.69) 

2

2

3 2

22

2

1 0
1 0

12 1 10 0
2

x

y

xy

w
xM

Eh wM
y

M
w

x y  
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Plate elements based on Kirchhoff Theory were initially developed by adopting 

different interpolation functions for the out-of-plane displacement w throughout the 

element (Cook et al. 2002; MacNeal 1994). These elements can be called “strict 

Kirchhoff” elements since the transverse shear strain is zero throughout the element, as 

opposed to “Kirchhoff elements” in which the vanishing of the transverse shear strain is 

imposed as a constraint at certain locations of the element only. The most widely used 

discrete Kirchhoff elements are the “Discrete Kirchhoff Triangle DKT” (Batoz et al. 

1980) and the “Discrete Kirchhoff Quadrilateral DKQ” (Batoz & Tahar 1982). The 

Discrete Kirchhoff Quadrilateral, which is used as the bending part of the shell element 

in this chapter, is discussed in more detail.  

The strain energy of the Kirchhoff element can be written as 

1
2U dV dAT Tε E ε χ D χ  (2.70) 

where χ  and D  are defined in Eq. (2.69). In the development of the DKQ, initially the 

rotation of the normal to the undeformed mid-plane ( x  and y ) and the slope of the 

deformed shell ( w
x

 and w
y

 ) are treated as different parameters (Batoz & Tahar 1982). 

For that purpose, 4 nodes in the centre of the sides of the element are added to the 

vertex node to form an 8-node element (Figure 2.14), which is later going to be reduced 

to a 4-node quadrilateral.  
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Figure 2.14: Discrete Kirchhoff Quadrilateral  

The rotation components are interpolated using all the nodes as 

8

1
x i xi

i
N  (2.71) 

8

1
y i yi

i
N

 
(2.72) 

The lateral deflection w is defined only at the boundaries of the element based on the 

nodal values at the vertex of the element, i.e. nodes 1 to 4 in Figure 2.14. The derivative 

of w with respect to s at the mid-side node , 5sw  can be interpolated from the vertex 

nodal displacement. For example, for node 5 we have 

, 5 2 3 , 2 , 3
23

3 1
2 4s s sw w w w w

L
 (2.73) 

where ,sw  can be calculated in terms of ,xw  and , yw  as 

, , ,sin coss x yw w w  (2.74) 

It should be noted that 28 degrees of freedom are introduced, which are the rotation 

components for 8 nodes (16 DOFs) and the lateral displacement w and slopes ,xw  and 
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, yw  at 4 nodes (12 DOFs). These degrees of freedom are reduced to the anticipated 12 

degrees of freedom by applying 14 constraints as the following: 

 The out-of-plane shear strain values should be zero according to the Kirchhoff 

Plate Theory (i.e. 
 

,x xw  and , y yw ). This condition is imposed on the 

vertex nodes, which introduces 8 constraints. Additionally, the transverse shear 

strain at the mid-side nodes sz  is set to zero, which adds 4 constraints. 

 The normal slopes are assumed to vary linearly along the element sides. For 

example for node 5 we can write 

5 , 2 , 3
1 ,
2n n nw w  (2.75) 

which adds 4 remaining constraints.  

Consequently, the rotational degrees of freedom in Eqs. (2.70) and (2.71) can be written 

in terms of the vertex lateral displacements and slopes. The interpolation functions 

obtained from this procedure are presented explicitly in Appendix 2.A. 

2.5.3.2. Mindlin-Reissner Plate Theory 

In Mindlin-Reissner Theory, the straight lines perpendicular to the mid-plane before the 

deformation are assumed to remain straight, but not necessarily normal to the mid-plane 

during deformation. Consequently, apart from the lateral displacement w, two extra 

displacement fields; namely the components of rotation of the normal to the plane x  

and y , are required to determine the deformation of a Mindlin-Reissner plate. Since 

this theory takes the shear deformation effect into account, it is suitable for relatively 

thick plates or plates made of material with low shear modulus. The Mindlin-Reissner 
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theory is analogous to the Timoshenko theory for beams. For an isotropic, linearly 

elastic material, the displacement-stress resultant relationship can be written as 

MM = - D χ
 

(2.76) 
,

,

, ,

,

,

0 0 0
0 0 0

10 0 0 0
2

0 0 0 0
0 0 0 0

x x x

y y y

xy x y x y

x x x

y y y

D DM
D DM

M D
Q wkGt
Q wkGt

 

where 
3

212 1
EhD , in which h is the thickness of the plate. k is used to account for 

parabolic variation of transverse shear stress, and kt is the effective thickness for shear 

deformation. For homogenous plates, k is taken as 5
6k .  

2.5.4. Formulation of the shell element used in the Iterative Global-

local Method 

As discussed in Section 2.5.1, the shell element is composed of a membrane element 

with drilling degree of freedom for the in-plane behaviour and a Discrete Kirchhoff 

Quadrilateral for the plate bending deformations. Accordingly, the nodal displacements 

are collected as 

T

1 1 1 1 1 1 2 4 4 4 4 4 4
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ...z x y z x yu v w u u v wd  (2.77) 

where subscripts 1 to 4 refer to the four nodes of the quadrilateral element. The 

interpolation matrix X̂  can be used to obtain the displacement vector û  of any point of 

the shell as 
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ˆ ˆû Xd  (2.78) 

where  

T

0 0 0
ˆ ˆ ˆˆ ˆ ˆ ˆz x yu v wu  (2.79) 

The out of plane deflection ŵ  is interpolated linearly, while the standard bilinear 

interpolation is used for the independent drilling rotation ẑ , and the Allman-type 

interpolation functions are used for the in-plane displacements 0û  and 0v̂ according to 

Ibrahimbegovic et al. (1990). The components of interpolation matrix X̂  are given 

explicitly in Appendix 2.A. 

 The equilibrium equations of the shell model are obtained in the variational form as 

T T ˆˆˆ ˆ ˆδ δ d d δ 0
L A

A zε σ d f  (2.80) 

where ε̂
 
represents the strain vector of the shell element, which can be composed of 

strains due to plate bending ˆbε , membrane action ˆmmε , and strains due to second order 

membrane and plate bending action ˆ Nε , i.e. 

ˆ ˆ ˆ ˆb mm Nε ε ε ε  (2.81) 

The plate bending portion of the strain can be written as 
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ˆ

ˆ
ˆ

ˆ
0ˆˆ

0

x

y

b

yx

x

yz z

y x

χ
ε  (2.82) 

in which χ̂  is the curvature vector. The second term in Eq. (2.81) can be written as 

0

0

0 0
0 0

0 0

ˆ

ˆ
ˆ

ˆ ˆˆ 1 ˆˆ ˆ
2

ˆ ˆ1 ˆ
2

m

mm
z

z

u
x
v
y

v uz u v
x yy x

v u
x y

ε

ε  (2.83) 

in which ˆmε  is the vector of membrane strains and the last row in Eq. (2.83) contains 

the skew symmetric part of the membrane strains introduced to avoid numerical 

stability issues when drilling rotations ẑ  are used with Allman-type interpolations. The 

non-linear strain component can be written as 

2 2
0 0

2

0

ˆ ˆ1 1
2 2

ˆ1ˆ
2

0
0

N

w v
x x

w
y

ε  (2.84) 

The stress vector σ̂  can be obtained from the strain field by assuming a linear elastic 

behaviour, i.e. ˆˆ ˆσ Eε . The constitutive matrix Ê  can be written as 
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2

1 0 0
1 0 0

1ˆ 0 0 0
1 2

10 0 0
2

EE  (2.85) 

Similar to the beam element, the variation of the strain vector for the shell element can 

be expressed as 

ˆ ˆ ˆˆδ δε SB d  (2.86) 

The incremental equilibrium equation can be obtained in a similar way to the beam 

element formulation resulting in the following equilibrium equation 

ˆˆ ˆ ˆ ˆˆδ δ δ δ δ δ 0T Td K d d f  (2.87) 

where K̂  is the stiffness matrix of the shell element, and can be found from the 

following equations 

T Tˆ ˆˆ ˆ ˆ ˆ ˆd d d
L A L

A z zK B S ESB M  (2.88) 

in which T Tˆˆ ˆ ˆ ˆδ δ d
A

AM d B S σ . 

2.6. The Iterative Global-local Method 

As discussed in the previous sections, in the Iterative Global-local Method, the total 

domain of the structure is primarily modelled by a less-detailed structural idealization 

(i.e. the coarse-scale model, which is the beam model discussed in section 2.4). The 
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fine-scale model (i.e. the shell element discussed in section 2.5) is placed in the critical 

regions, which are a subset of the total domain. The critical regions can be defined as 

places where large local deformation are anticipated, places where local defect exist, 

regions that seem to be susceptible to local buckling and where large concentrated 

loading exists. In other words, since the beam element used in the coarse-scale model is 

not capable of capturing deformations at the cross-sectional level due to the rigid-cross 

section assumption, the coarse-scale model needs to be placed anywhere that such 

assumption may be violated. 

A schematic of the global-local analysis can be seen in Figure 2.15, where the total 

domain is shown by c  and the critical part is depicted by m . The boundary between 

the two is S , or the points i and j. It should be noted that the two aforementioned 

models have an overlap throughout m , which is why the method is sometimes referred 

to as overlapping decomposition technique. 

 

Figure 2.15: Decomposition of the analysis domain 

Based on the Bridging multiscale approach proposed by Liu et al. (1997), the shell 

nodal displacement vector is decomposed into a global/coarse-scale component and a 

difference term. To this end, a decomposition matrix N  is used, which projects the 

beam results onto the nodal points of the shell model, i.e. d̂ Nd d . In other words, 
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the total displacement of a shell node is additively decomposed into the displacement 

analogous to the beam element displacements Nd  and a difference term d . The 

decomposition matrix N  is obtained by multiplying Y  and Z  matrices in Eqs. (2.21) 

and (2.22) and is given in Eq. (2.89) 

T T T
T

T T

T T

T T

T T

T

d d d
d d d

d d
d d

d d
d d

y

y

x

x

x y
z z z

y a

y a
z z

x a

x a
z z

H H HL

0 H 0 H

H H0 0N
0 0 H H

H H0 0

0 0 0 H

 (2.89) 

It should be noted that N is a linear operator and therefore, the variation of N is equal to 

zero. By this it is meant that there are no displacement terms present in N  (i.e. this 

matrix can be constructed before the start of the analysis and need not be changed 

throughout the analysis procedure). Consequently, the variation of the displacement 

field, which is required for the equilibrium equation, can be written as: 

d̂ N d d  (2.90) 

As a result, the strain vector of the shell model can be decomposed into two parts: 

ε̂ ε ε , in which the term ε  refers to the strain due to the beam formulation and ε  is 

the difference between the results of the shell and beam element formulations. Using 

Eq. (2.90), the variation of the strain vector can be decomposed as 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆε̂ SB d SB N d d SBN d SB d ε ε  (2.91) 
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So that  

ˆ ˆε SBN d  (2.92) 

ˆ ˆε SB d  (2.93) 

The decomposition matrix N is constructed based on the kinematic assumptions of the 

thin-walled beam of Vlasov (1961). Thus, the use of N is equivalent to constraining the 

degrees of freedom of the shell element to obey the kinematics of the beam element at 

the boundaries (i.e. Vlasov kinematics). As a result, the first term in Eq. (2.91) (i.e. ε ) 

is actually the variation of the strain vector of the beam formulation, and the second 

term (i.e. ε ) is the difference between the two models.  

Using the decomposition in the strain vector, the stress vector can also be decomposed 

as σ̂ σ σ . By introducing these values into the variational form of the shell element 

i.e. Eq. (2.25), the equilibrium condition requires the simultaneous satisfaction of the 

two equations as 

T T T T T T T
1

ˆ ˆˆδ δ d d δ δ 0
L A

A zd N B S σ d N f d F  (2.94) 

T T T T
2

ˆˆ ˆδ δ d d δ 0
L A

A zd B S σ d f  (2.95) 

where F  is the complementary load vector due to the difference between beam and 

shell elements and can be expressed explicitly as 

T T T T Tˆˆ ˆ d d d d
L A L A

A z A zF N B S σ σ B S σ  (2.96) 
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2.6.1. Linearization of the equilibrium equations 

 The two equilibrium equations of the overlapping region have to be linearized, which 

can be done by taking the variation of each of the equations. The linearization of Eq. 

(2.94) results in 

T T T T T T T
1

ˆ ˆˆδ δ δ δ d d δ δ 0
L A

A zd N B S σ d N f d F  (2.97) 

In the first term on the right hand side of Eq. (2.97), only the terms B̂  and σ  have non-

zero variations. It should be noted that the variation of the decomposition matrix N  

vanishes since it does not contain any displacement terms at its current form, i.e. Eq. 

(2.89), although it will be shown in Chapter 4 that for more general loading conditions, 

displacement terms enter the decomposition matrix and its variation would not vanish.   

T T T T T T T T T Tˆ ˆ ˆˆ ˆ ˆδ δ d d δ δ d d δ d d
L A L A L A

A z A z A zd N B S σ d N B S σ B S σ (2.98) 

From Eq. (2.92) δσ  can be written as  

ˆ ˆδ δ δ ,E Eσ ε SBN d  (2.99) 

and by defining MM  such that T Tˆˆ ˆδ δ d
A

AM d B S σˆ ˆδ δM d Bδ δδ , Eq. (2.98) can be written as 

T T T T Tˆˆδ δ d d δ δ
L A

A zd N B S σ d K d  (2.100) 
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where T T Tˆ ˆˆ ˆ d d d
L A L

E A z zK N B S SB M Nd Ndzdddd  and can be replaced by the beam 

stiffness matrix in Eq. (2.30). Consequently, the linearized form of the first equilibrium 

equation can be written as 

T T
1δ δ δ δ δ δd K d d f  (2.101) 

Similarly, from the linearization of Eq. (2.95) we have 

T T
2

ˆˆ ˆδ δ δ δ δ δ 0d K d d f  (2.102) 

in which K̂  is the stiffness matrix of the shell element, and was defined in Eq. (2.88). 

Since the variation of the difference displacement term δd  is arbitrary, Eqs. (2.87) and 

(2.102) admit the same displacement solutions, which is the solution of the shell model. 

The main point of the Iterative Global-local Method is that this shell solution is sought 

after at critical regions only (i.e. the overlapping region) and avoided at other locations 

for the economy of the model.  

2.6.2. Interface boundary conditions  

Since the overlapping shell may lie at any location along the beam, its boundary 

conditions need to be clearly defined. For that purpose, the displacement of the global 

beam model at the boundaries of the fine-scale model is used as an interface boundary 

condition for the local shell model. To impose the displacement boundary conditions, 

we divide the displacement vector of the shell model into boundary and internal 

displacement vectors, which results in the partitioning of the stiffness matrix of the shell 

element as 
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(2.103) 

where &
ˆ

i jd  and ˆδ INd  are the displacement values at the boundary of the shell and 

internal degrees of freedom, respectively, ˆ
sf   is the vector of specified external loads 

that fall into the overlapping analysis domain, and &î jf  is the vector of tractions at the 

boundaries of the local shell model. The local shell stiffness matrix K̂  is partitioned 

according to the decomposition of the shell nodal displacements into boundary and 

internal. The specified displacement and loads in Eq. (2.103) are placed in the box 

symbol ( ). The displacement field &
ˆ

i jd  is calculated from the beam displacement 

fields at the boundaries of the local shell as 

& & &
ˆ

i j i j i jd Nd d &i j&d  (2.104) 

where N  is the decomposition matrix and &i jd  is the beam displacement vector at the 

ends i and j  of the local shell model. The additional displacement term &i jd &i j&d  in Eq. 

(2.104) is the displacement field in the fine-scale model due to the Poisson ratio effects, 

which is discussed in the following paragraph in more detail. 

Even in the absence of local buckling, the Poisson ratio effect causes changes in the 

cross-sectional dimensions of a thin-walled beam. However, the rigid cross-sectional 

assumption of the beam theories does not allow this effect to be captured since it does 

not account for displacements in the cross-sectional plane. This issue was considered in 

the derivations of the beam element in Section 2.4 by using the constitutive equation 

modified according to Poisson ratio effects, i.e. Eq. (2.24). It would be equivalent to 
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considering an extra strain component, i.e. T0 0 0ε , in the coarse-

scale/global analysis domain, which is required to be considered at the interface of the 

global-local model ( s  in Figure 2.7). It should be noted that considering the Poisson 

ratio effect in the interface is necessary because the decomposition matrix N  is 

developed based on the kinematics of the thin-walled beam theory, which is based on 

the rigid cross-sectional assumption. For that purpose, firstly the aforementioned strain 

component ( ) is numerically integrated over the cross-sectional contour at each end 

of the overlapping region. Then the rigid body motion is removed by imposing the 

condition that the summation of these displacements should be zero across the cross-

section to obtain the desired displacement vector &i jd &i j&d  to be used in Eq. (2.104).  

2.6.3. Algorithm for the solution procedure 

The algorithm of the solution procedure of the Iterative Global-local Method is 

discussed herein. Firstly, the coarse-scale (i.e. the beam) model is solved while keeping 

the fine-scale (i.e. the shell) model fixed to obtain the global displacement field d . 

Then the results of the beam model at the boundaries of the local shell are imposed on 

the fine-scale model as the interface boundary conditions (Section 2.6.2), and along 

with the additional external loads at the overlapping region, the fine-scale model is 

solved to obtain the shell displacement values d̂ . It should be noted that at this stage, 

the coarse-scale displacement values are kept unchanged and unaffected by the fine-

scale results. In order to verify that the two models are synchronised, the stress vectors 

of the fine- and coarse-scale models are compared and any unbalanced stress values are 

again applied to the coarse-scale model. Based on the above description, two criteria 
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have to be met in order to terminate the iterations of each step and achieve convergence 

(Qian et al. 2004); namely, 

 The equilibrium of the coarse-scale/beam model and the fine-scale/shell model 

has to be achieved, 

 The difference in the stress vectors of the global and local models should be 

smaller than a tolerance, which is achieved through the complementary force 

introduced in Eq. (2.96). 

A flowchart of the procedure is shown in Figure 2.16. 

 

Figure 2.16: Flowchart of the iterative global-local algorithm 

The global model is solved using a Newton-Raphson incremental-iterative approach 

with a step-by-step load control procedure, i.e. 
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n n
k k k kK d f R  (2.105) 

where kK  is the tangent stiffness matrix of the coarse-scale/beam model at the 

beginning of each incremental step, kf  is the external load increment, and n
kR  is the 

unbalanced force at the nth iteration of the kth step, which can be obtained from Eq. 

(2.94) as 

T T d dn n n n
k k k k k

L A

A zR B S σ F f  (2.106) 

We can solve Eq. (2.105) to get the incremental displacement values of the coarse-scale 

model, which can be used to find the total displacement values at the end of the nth 

iteration, i.e. 1+n n n
k k kd d d . The calculated displacement vector is then used to update 

the strain vector n
kε  and the stress vector n

kσ  of the global model.  

Within each load step k of the coarse-scale model, the fine-scale model is solved by 

adopting an incremental-iterative step-by-step technique. The displacement boundary 

conditions (from the coarse-scale model) and the external loads in the overlapping 

region are imposed on the shell model in s steps, and the internal displacement values of 

the shell model (i.e. ˆ l
IN sd ) are obtained in l iterations. The second line of Eq. (2.103) 

can be used for that purpose as 

1 T
&

ˆˆ ˆ ˆ ˆˆl l
IN s c s IN s b s i jd K f r K d  (2.107) 

where &
ˆ

s i jd  is the specified interface displacement at the boundaries of the local shell 

model, and ˆ l
IN sr  is the unbalanced force vector that accounts for the geometric 

nonlinearities within the local shell model, which can be written as 
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T Tˆ ˆˆˆ ˆ d dl l l
s s s s

L A

A zr B S σ f  (2.108) 

The local incremental displacement values obtained from Eq. (2.107) are used to 

determine the displacement configuration of the fine-scale model at the current stage, 

i.e. 1ˆ ˆ ˆ+l l l
s s sd d d , which is used to update the internal strain field ˆ l

sε  and the stress field 

ˆ l
sσ  of the shell model. If the local convergence criterion is satisfied, i.e. ˆ l

s tolr  then 

ˆ ˆn l
k sσ σ  is used for the complementary force calculations within the kth step in nth 

iteration, i.e. T T T T Tˆˆ ˆ d d d dn n n n n
k k k k k

L A L A

A z A zF N B S σ B S σ .  

It should be noted that although the equilibrium equation is satisfied at this stage, i.e. 

n
k tolR , the results are not accepted unless the complementary force vector is 

smaller than a predefined tolerance, i.e. n
k tolF , which is the aforementioned 

second criterion of  convergence.  

2.7. The Iterative Global-local Method for non-uniform bending 

conditions 

2.7.1. Introduction 

The Iterative Global-local Method in its original formulation (Erkmen 2013) is 

applicable to elements under loading conditions that result in a uniform internal bending 

action only. In order to overcome this restriction and make the method applicable for 

general loading conditions, the kinematical assumptions of the problem are revisited in 

this section and required modifications are made by including higher order displacement 
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terms. Numerical examples are then presented in order to demonstrate the accuracy of 

the proposed formulation (Erkmen & Afnani 2014). 

2.7.2. Formulation 

In order to overcome the deficiency of the Iterative Global-local Method in dealing with 

cases with non-uniform internal bending conditions, the kinematic assumptions of the 

adopted thin-walled theory is modified to include second-order displacement terms 

according to Trahair (1993). The normal strain in an arbitrary point on the cross section 

can be obtained as 

0.5p p p pw u v  (2.109) 

where pu , pv  and pw  are displacements of the point with respect to x, y and z axes, 

respectively, (Figure 2.8), and  denotes the derivative with respect to the axis of the 

beam (i.e. z axis) . The displacement along the z axis was considered by Erkmen (2013) 

as 

pw w xu yv  (2.110) 

which included the first order terms only. The second-order terms can be added to 

obtain (Trahair 1993)  

pw w xu yv xv yu  (2.111) 

The new identity for pw  is now replaced in Eq. (2.109) to obtain the normal strain. 

While the linear part of the strain vector (i.e. Lχ , Eq. (2.12)) remains unchanged, two 
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elements in the nonlinear strain vector are affected by this modification, which change 

the Nχ  vector to  

T 2 2 2 2 2 2 2 21 1 1' ' ' ' ' ' ' ' ' 0 ' 0
2 2 2N x y x y x yu v a v a u a a v a u aχ  

(2.112) 

The difference between Eqs. (2.112) and (2.13) is in the 2nd and 3rd elements, where 

v
 
and u  are replaced by v  and u , respectively (placed in the box symbol 

). As a result, the formulation of the beam element, and consequently, the iterative 

global-local formulation are affected.  

This change in the kinematic assumption results in a modification of the constraint 

applied to the local shell element nodal displacements of the global-local model through 

the decomposition matrix N . Previously, the matrix N  did not contain displacement 

terms and was solely obtained from cross-sectional properties and interpolation 

functions. However, inclusion of the second-order displacement terms changes the 

decomposition matrix to 

T T T
T T

T T

T T

T T

T T

T

d d d
d d d

d d
d d

d d
d d

y

y

x

x

x y xv yu
z z z

y a

y a
z z

x a

x a
z z

H H HL H

0 H 0 H

H H0 0N
0 0 H H

H H0 0

0 0 0 H

 (2.113) 
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where the newly added term is placed in a box ( ). It should be noted that the new 

decomposition matrix includes displacement terms u  and v , and therefore, the 

variation of the decomposition matrix N  would no longer vanish.  Consequently, the 

variation of the displacement vector of the local shell model d̂  would change to 

d̂ N d d d N  (2.114) 

We define a matrix A  such that A d N d d N , the derivation of which is shown 

explicitly in Appendix 2.B. 

2.7.3. Applications 

In order to ensure the accuracy of the proposed formulation for the analysis of a thin-

walled beam undergoing non-uniform bending conditions, three numerical examples are 

prepared in this section. In all the cases, the results from the iterative global-local 

procedure are compared with those of the full shell-type model for verification 

purposes. The full shell-type model is prepared by modelling the whole domain of the 

structure by the shell elements discussed in Chapter 3. The finite element mesh is taken 

to be similar in size to the mesh used for the local shell region in the iterative global-

local model.  

 In order to ensure that the beam-type analysis is kinematically equivalent to the shell 

model, the comparison with the constraint shell solution is also presented. The 

constraint shell model is obtained by applying multiple-point constraints on the nodal 

displacement of the shell model based on the decomposition matrix N , which is 

developed based on the kinematics of the thin-walled beam theory. Comparing the 

results of the constraint shell model and the beam model we can verify that the 
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modelling of the structure is equivalent for the two (in terms of, for example loading 

and boundary conditions). 

2.7.3.1. Lateral buckling analysis of a simply-supported I-beam under linear 

moment gradient 

The lateral-torsional buckling of a simply-supported doubly-symmetric I-beam is 

analysed in this section. The geometry, loading and boundary conditions of the beam 

are shown in Figure 2.17.  

 

 

(a) Cross-section  (b) Loading and boundary conditions 

Figure 2.17: Layout of the simply-supported beam under moment gradient 

The cross-sectional dimensions of the beam can be seen in Figure 2.17 (a). The beam 

has a span of 6000L mm , and the material is structural steel  200E GPa  and 

70G GPa .  

The beam is analysed using the beam element, the shell element, the constraint shell 

model and the global-local model. The beam model is constructed by using elements 

with one meter length. The shell model is obtained by using two shell elements for the 

web and one element for each half flange, and dividing the axis of the beam into 30 

2 

1 
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pieces (Figure 2.18), which results in shell elements of 200 200mm mm  and 

100 200mm mm  along the web and flanges, respectively.  

 

Figure 2.18: Finite element mesh of the shell model 

In order to simulate the boundary conditions of Figure 2.17 in the beam model, the left-

hand side end of the member (i.e. point 1) is restrained for translations along x, y and z 

directions and rotation around z-axis (twist), and the other end (i.e. point 2) is supported 

in x and y directions and twist rotation (i.e. 1 1 1 1 2 2 2 0u v w u v ).  

Equivalent boundary conditions are imposed on the shell model. In end 1, node A is 

fixed in the axial direction, nodes A, B and C are fixed in the lateral (x direction) and 

nodes A, D, E, F and G are fixed in the vertical direction, which is equivalent to 

1, 0Aw , 1, 1, 1, 0A B Cu u u  and 1, 1, 1, 1, 1, 0A D E F Gv v v v v  (Figure 2.18). The 

fixities are the same at end 2 except for the axial direction where no node is fixed

2, 2, 2,( 0A B Cu u u , 2, 2, 2, 2, 2, 0)A D E F Gv v v v v . 

The simply-supported beam is subjected to a concentrated bending moment at one end, 

resulting in a linear bending moment gradient. Since imperfections are not introduced to 

G C F 

E B D 

A 
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the finite element model, the buckling can never occur under the applied bending 

moment only. In other word, the beam may pass the bifurcation point and follow the 

unstable equilibrium path because the geometry, loading and boundary conditions are 

ideal and exact. In order to overcome this problem, a buckling eigenvalue analysis is 

performed prior to the nonlinear analysis in order to obtain the critical buckling mode. 

The first mode, which is of lateral-torsional buckling type, is shown in Figure 2.19. 

 

Figure 2.19: 1st buckling mode of the simply-supported thin-walled beam 

In order to activate this buckling mode in the nonlinear analysis, a small horizontal load 

0.01BP kN  (Figure 2.17) is applied at the mid-span of the beam. It should be noted 

that applying small loads for activation of buckling mode is commonplace in the 

literature (e.g. (Pi et al. 2007)).  

At this stage, the load couple SP  in Figure 2.17 is not applied. The load-displacement 

curves are plotted in Figure 2.20 for lateral displacements at the bottom web-flange 

intersection at mid-span in the absence of a local deformation (i.e. 875AM kNm , 
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0.01BP kN  and 0SP ). It can be seen that there is an acceptable agreement between 

the different models at this stage. 

 

Figure 2.20: Load-deflection relations based on different modelling types 

In the second stage, in order to illustrate the efficiency of the iterative global-local 

approach, local deformations are applied through a force couple at the tip of flanges at 

the mid-span in addition to the previous loadings (i.e. 875AM kNm , 0.01BP kN  and 

30SP kN ). This load couple has no resultant at the cross-sectional level and therefore, 

its effect cannot be captured by the beam element, which is formulated according to the 

rigid cross-sectional assumption. Consequently, the results of the beam and the 

constraint shell are not altered after the application of the load couple (Figure 2.20). 

However, the load couple has a significant effect on the result of the shell model. It 

causes a softening in the load-displacement curve and decreases the overall lateral 

torsional buckling load of the member. 
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The problem is also modelled by using the Iterative Global-local Method, in which the 

local shell is placed in the vicinity of the localized behaviour (from 1400z mm   to 

4600z mm ) as can be seen in Figure 2.21.  

 

Figure 2.21: Schematic of the global-local model 

It can be confirmed from Figure 2.20 that the proposed iterative global-local technique 

has been able to accurately capture the softening effect of the localized behaviour on the 

global response of the beam. It should be noted that the shell elements within the 

overlapping region include approximately half the shell elements used in the full-shell 

model, indicating the efficiency and the accuracy of the proposed method. It can also be 

seen that solution in Erkmen (2013) cannot accurately capture cases with moment 

gradient and thus, current modifications are required. 

2.7.3.2. Lateral buckling analysis of a simply-supported I-beam under mid-

span load 

The same geometry, boundary conditions and material properties as the previous 

example are used in this model, only the concentrated moment is replaced by a 

concentrated vertical load at the mid-span. The finite elements used are also identical to 

the previous case. 
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(a) Cross-section  (b) Loading and boundary conditions 

Figure 2.22: Layout of the simply-supported beam under mid-span point load 

As in the previous example, the analyses are performed in two stages. Firstly, the 

vertical point load is applied with a small horizontal load to create a small imperfection, 

(i.e., and ). Similar to the previous example, an 

eigenvalue analysis is performed in order to determine the critical buckling mode of the 

beam and the imperfections are then introduced in line with that mode. Secondly, local 

deformations are introduced in terms of a load couple of  with opposite 

direction at the tip of the flanges at mid-span. As illustrated in Figure 2.23, there is a 

significant softening effect, captured by the shell model while the beam and the 

constraint shell remain unchanged. 
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Figure 2.23: Load-deflection curves based on different modelling types 

Again it can be observed that by approximately half the shell elements used in the shell 

model, the iterative global-local technique is capable of capturing the behaviour 

accurately. It should be noted that the overlapping region is from to 

. The answer obtained based on Erkmen (2013) is significantly different 

since the moment gradient effects were not included. 
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2.7.3.3. Lateral buckling analysis of a continuous beam 

In this example a continuous beam with two spans is analysed, the spans, geometrical 

and boundary conditions of which are shown in Figure 2.24. 

 

(a) Cross-section    (b) Loading and boundary conditions 
 

Figure 2.24: Layout of the continuous beam 

The material and cross-sectional properties and the finite elements sizes are the same as 

the previous examples. Two vertical loads are applied at the middle of each of the spans 

along with two small horizontal loads that act as small imperfections in order to activate 

the lateral buckling behaviour. It can be observed from Figure 2.24 that this load couple 

are applied in opposite directions, which is based on the eigenvalue analysis that is 

performed prior to the nonlinear analysis. It was observed that the 1st buckling mode of 

the beam included lateral-torsional deflections of the two spans in opposite directions, 

and the buckling activator load couple are applied accordingly.  

 Similar to the previous examples, the analyses are performed in two stages: Firstly, the 

results are found according to the aforementioned loading (

and ). It can be observed from load-deformations curves (Figure 2.25) that 

there is a complete agreement between the beam, shell and constraint shell model at this 

stage. Secondly, local deformations are introduced in terms of a load couple applied at 

the tip of the flanges at the middle of one of the spans with a magnitude of . 
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Since the load couple has no projection at the cross-sectional level, the results of the 

beam and constraint shell model are not affected by them. On the other hand, the 

behaviour of the beam changes significantly in the shell solution, which is captured by 

the global-local model accurately according to the load-deformation curves for the first 

and second span. It should be noted that even though the overlapping region is from 

to  (i.e. at the vicinity of the local deformations only), the 

behaviour is captured accurately at the opposite span (i.e. ) as well. 
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(a) Displacements at Z = 3000mm (the place of local deformations) 

 

 

(b) Displacements at Z = 9000mm 

Figure 2.25: Load-deflection curves based on different modelling types 
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In comparison to the previous examples, the current example clearly demonstrates the 

efficiency of the proposed Iterative Global-local Method when a localized behaviour is 

expected in a relatively large structure. In the present example, the effect of local 

deformation on the global response is captured accurately by placing approximately a 

quarter of the shell elements compared with the full-shell model. It can be argued that 

the efficiency of the proposed Iterative Global-local Method increases with the increase 

in the size of the structure. For instance, should a localized behaviour be expected in a 

particular element of a structural system with numerous members, the use of this 

method obviates the necessity of detailed modelling of the whole large structure and 

focuses solely on the critical regions.  

Figure 2.25 (b) shows the load-displacement curves at , which is the span 

opposite the location of the local deformation. It can be observed that although the 

overlapping shell elements were placed where the localized behaviour existed (i.e. the 

1st span), the effect of the local deformations is well captured in the 2nd span as well. It 

confirms that if a sufficiently large overlapping region in utilized, the effect on the other 

structural elements can be captured equally well.  

2.8. Conclusions  

In this chapter, the Iterative Global-local Method was introduced as a powerful tool in 

the analysis of thin-walled members. It is discussed that the method allows the 

consideration of the effect of localised behaviour on the global response of a thin-walled 

structural system without necessitating the use of computationally expensive finite 

elements throughout the structural domain. It is argued that the procedure is most 

advantageous when abrupt local/cross-sectional deformation exist in a relatively short 
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span of the element. The preliminaries of the method are discussed in detail and the 

solution algorithm is presented. It is then demonstrated that the original formulation of 

the Iterative Global-local Method was applicable for members under uniform internal 

moment actions, a limitation which is overcome herein by modifying the kinematical 

assumption of the adopted overlapping decomposition operator. Corresponding 

numerical examples are then presented in order to illustrate the accuracy of the modified 

formulation in the analysis of members under general loading conditions.  

In the coming chapters, further modifications to the method will be suggested in order to 

make the Iterative Global-local Method applicable to a larger range of structural 

geometry and material behaviour. 

 

 

 

 

 

 

 

 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 75 
 

 

2.9. References 

Akhtar, M.N. 1987, 'Element stiffness of circular member', Journal of structural 
engineering New York, N.Y., vol. 113, no. 4, pp. 867-72. 

Allman, D.J. 1984, 'A compatible triangular element including vertex rotations for plane 
elasticity analysis', Computers and Structures, vol. 19, no. 1-2, pp. 1-8. 

Argyris, J.H., Papadrakakis, M. & Karapitta, L. 2002, 'Elasto-plastic analysis of shells 
with the triangular element TRIC', Computer Methods in Applied Mechanics and 
Engineering, vol. 191, no. 33, pp. 3613-36. 

Back, S.Y. & Will, K.M. 2008, 'Shear-flexible thin-walled element for composite I-
beams', Engineering Structures, vol. 30, no. 5, pp. 1447-58. 

Barbero, E.J. & Raftoyiannis, I.G. 1993, 'Local buckling of FRP beams and columns', 
Journal of Materials in Civil Engineering, vol. 5, no. 3, pp. 339-55. 

Basler, K. & Kollbrunner, C.F. 1969, Torsion in structures- An engineering approach, 
Springer-Verlag, New York. 

Bathe, K.J. & Almeida, C.A. 1980, 'Simple and effective pipe elbow element - linear 
analysis', Journal of Applied Mechanics, Transactions ASME, vol. 47, no. 1, pp. 
93-100. 

Bathe, K.J. & Almeida, C.A. 1982, 'Simple and effective pipe elbow element - 
interaction effects', Journal of Applied Mechanics, Transactions ASME, vol. 49, 
no. 1, pp. 165-71. 

Batoz, J.L., Bathe, K.J. & Ho, L.W. 1980, 'Study of Three-node Triangular Plate 
Bending Elements', International Journal for Numerical Methods in 
Engineering, vol. 15, no. 12, pp. 1771-812. 

Batoz, J.L. & Tahar, M.B. 1982, 'Evaluation of a new quadrilateral thin plate bending 
element', INT J NUMER METHODS ENG, vol. V 18, no. N 11, pp. 1655-77. 

Bauld, N.R. & Tzeng, L.S. 1984, 'A Vlasov theory for fiber-reinforced beams with thin-
walled open cross sections', International Journal of Solids and Structures, vol. 
20, no. 3, pp. 277-97. 

Bebiano, R., Silvestre, N. & Camotim, D. 2007, 'GBT formulation to analyze the 
buckling behavior of thin-walled members subjected to non-uniform bending', 
International Journal of Structural Stability and Dynamics, vol. 7, no. 1, pp. 23-
54. 

Bijlaard, P.P. & Fisher, G.P. 1953, Column Strength of H-Sections and Square Tubes in 
Post-Buckling Range of Component Plates, NACA, Washington, D.C, TN 2994. 

Bleich, F. 1952, Buckling Strength of Metal Structures, McGraw-Hill, New York. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 76 
 

 

Boresi, A.P. & Sidebottom, O.M. 1985, Advanced Mechanics of Materials, Fourth edn, 
John Wiley & Sons, New York, USA. 

Bradford, M.A. 1994, 'Buckling of post-tensioned composite beams', Structural 
Engineering and Mechanics, vol. 2, no. 1, pp. 113-23. 

Bradford, M.A. & Ronagh, H.R. 1997, 'Generalized elastic buckling of restrained I-
beams by FEM', Journal of Structural Engineering, vol. 123, no. 12, pp. 1631-7. 

Bradford, M.A. & Trahair, N.S. 1981, 'Distortional buckling of I-beams', ASCE J Struct 
Div, vol. 107, no. 2, pp. 355-70. 

Brookhart, G.C. 1967, 'Circular-arc I-type girders', American Socienty for Civil 
Engineers, vol. 93. 

Bryan, G.H. 1891, 'On the Stability of Plane Plate under Thrust in its Own Plane with 
Applications on the Buckling of the Sides of a Ship', London Mathematical 
Society, vol. 22, p. 54. 

Bulson, P.S. 1967, 'Local Stability and Strength of Structural Sections', Thin-walled 
Structures, pp. 153-207. 

Cardoso, J.E.B., Benedito, N.M.B. & Valido, A.J.J. 2009, 'Finite element analysis of 
thin-walled composite laminated beams with geometrically nonlinear behavior 
including warping deformation', Thin-Walled Structures, vol. 47, no. 11, pp. 
1363-72. 

Carrera, E. & Petrolo, M. 2012, 'Refined beam elements with only displacement 
variables and plate/shell capabilities', Meccanica, vol. 47, no. 3, pp. 537-56. 

Chajes, A. & Winter, G. 1965, 'Torsional Buckling of Thin-Walled Members', Journal 
of Structural Division, ASCE, vol. 91, no. ST4, pp. 103-25. 

Cheung, Y.K. 1976, Finite Strip Method in Structural Analysis, Pregamon Press, New 
York. 

Cook, R.D. 1986, 'On the allman triangle and a related quadrilateral element', 
Computers and Structures, vol. 22, no. 6, pp. 1065-7. 

Cook, R.D. 1990, 'Simulating curved elements by offsets. Rationale and application to 
shells of revolution', Engineering computations, vol. 7, no. 1, pp. 79-80. 

Cook, R.D., Malkus, D.S. & Plesha, M.E. 1989, Concepts and applications of finite 
element analysis, Wiley, New York. 

Cook, R.D., Malkus, D.S., Plesha, M.E. & Witt, R.J. 2002, Concepts and applications 
of finite element analysis, fourth edn, John Wiley & Sons. 

Crisfield, M.A. 1990, 'A consistent co-rotational formulation for non-linear, three-
dimensional, beam-elements', Computer Methods in Applied Mechanics and 
Engineering, vol. 81, no. 2, pp. 131-50. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 77 
 

 

Crisfield, M.A. 1991, Non-linear finite element analysis of solids and structures, vol. 1, 
Wiley, New York. 

Davids, A.J. & Hancock, G.J. 1987, 'Nonlinear elastic response of locally buckled thin-
walled beam-columns', Thin-Walled Structures, vol. 5, no. 3, pp. 211-26. 

Dekker, N.W. & Kemp, A.R. 1998, 'A simplified distortional buckling model for doubly 
symmetrical l-sections', Canadian Journal of Civil Engineering, vol. 25, no. 4, 
pp. 718-27. 

DeWolf, J.T., Pekoz, T. & Winter, T. 1974, 'Local and overall buckling of cold-formed 
members', ASCE J Struct Div, vol. 100, no. 10, pp. 2017-36. 

Dinis, P.B., Camotim, D. & Silvestre, N. 2006, 'GBT formulation to analyse the 
buckling behaviour of thin-walled members with arbitrarily 'branched' open 
cross-sections', Thin-Walled Structures, vol. 44, no. 1, pp. 20-38. 

Eisenberger, M. 2003, 'An exact high order beam element', Computers and Structures, 
vol. 81, no. 3, pp. 147-52. 

El-Amin, F.M. & Brotton, D.M. 1976, 'Horizontally curved beam finite element 
including warping', International Journal for Numerical Methods in 
Engineering, vol. 10, no. 6, pp. 1397-406. 

El-Amin, F.M. & Kasem, M.A. 1978, 'Higher-order horizontally-curved beam finite 
element including warping for steel bridges', International Journal for 
Numerical Methods in Engineering, vol. 12, no. 1, pp. 159-67. 

Erkmen, R.E. 2013, 'Bridging multi-scale approach to consider the effects of local 
deformations in the analysis of thin-walled members', Computational 
Mechanics, vol. 52, no. 1, pp. 65-79. 

Erkmen, R.E. & Afnani, A. 2014, 'Bridging multi-scale method to consider the effects 
of local deformations in the analysis of composite thin-walled members', 11th 
World Congress on Computational Mechanics, WCCM 2014, 5th European 
Conference on Computational Mechanics, ECCM 2014 and 6th European 
Conference on Computational Fluid Dynamics, ECFD 2014, pp. 3450-61. 

Erkmen, R.E. & Bradford, M.A. 2009, 'Nonlinear elasto-dynamic analysis of I-beams 
curved in-plan', International Journal of Structural Stability and Dynamics, vol. 
9, no. 2, pp. 213-41. 

Fan, S.C. & Cheung, Y.K. 1983, 'Analysis of shallow shells by spline finite strip 
method', Engineering Structures, vol. 5, no. 4, pp. 255-63. 

Feyel, F. 2003, 'A multilevel finite element method (FE2) to describe the response of 
highly non-linear structures using generalized continua', Computer Methods in 
Applied Mechanics and Engineering, vol. 192, no. 28–30, pp. 3233-44. 

Fish, J., Markolefas, S., Guttal, R. & Nayak, P. 1994, 'On adaptive multilevel 
superposition of finite element meshes for linear elastostatics', Applied 
Numerical Mathematics, vol. 14, no. 1-3, pp. 135-64. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 78 
 

 

Fraternali, F. & Feo, L. 2000, 'On a moderate rotation theory of thin-walled composite 
beams', Composites Part B: Engineering, vol. 31, no. 2, pp. 141-58. 

Frey, F. 1989, 'Shell finite elements with six degrees of freedom per node', Presented at 
the Winter Annual Meeting of the ASME, San Francisco, CA, USA, pp. 291-316. 

Fukumoto, Y. & Nishida, S. 1981, 'Ultimate load behavior of curved I-beams', ASCE J 
Eng Mech Div, vol. 107, no. 2, pp. 367-85. 

Geers, M.G.D., Kouznetsova, V.G. & Brekelmans, W.A.M. 2010, 'Multi-scale 
computational homogenization: Trends and challenges', Journal of 
Computational and Applied Mathematics, vol. 234, no. 7, pp. 2175-82. 

Gendre, L., Allix, O., Gosselet, P. & Comte, F. 2009, 'Non-intrusive and exact 
global/local techniques for structural problems with local plasticity', 
Computational Mechanics, vol. 44, no. 2, pp. 233-45. 

Grenier, R., Ofner, R. & Salzberger, G. 1999, 'Lateral torsional buckling of beam 
columns: Theoretical Background', ECCS-Validation group,, vol. report 5. 

Hancock, G.J. 1981, 'Non-Linear Analysis of Thin Sections in Compression', Journal of 
the Structural Division: Proceedings of the ASCE, vol. 107, no. ST3, pp. 455-71. 

Hancock, G.J., Bradford, M.A. & Trahair, N.S. 1980, 'Web distortion and flexural-
torsional buckling', ASCE J Struct Div, vol. 106, no. 7, pp. 1557-71. 

Hancock, G.J., Kwon, Y.B. & Stefan Bernard, E. 1994, 'Strength design curves for thin-
walled sections undergoing distortional buckling', Journal of Constructional 
Steel Research, vol. 31, no. 2-3, pp. 169-86. 

Hirai, I., Uchiyama, Y., Mizuta, Y. & Pilkey, W.D. 1985, 'An exact zooming method', 
Finite Elements in Analysis and Design, vol. 1, no. 1, pp. 61-9. 

Hobbs, R.E. 1981, 'Pipeline buckling caused by axial loads', Journal of Constructional 
Steel Research, vol. 1, no. 2, pp. 2-10. 

Houliara, S. & Karamanos, S.A. 2006, 'Buckling and post-buckling of long pressurized 
elastic thin-walled tubes under in-plane bending', International Journal of Non-
Linear Mechanics, vol. 41, no. 4, pp. 491-511. 

Houliara, S. & Karamanos, S.A. 2010, 'Stability of long transversely-isotropic elastic 
cylindrical shells under bending', International Journal of Solids and Structures, 
vol. 47, no. 1, pp. 10-24. 

Hughes, T.J.R. & Brezzi, F. 1989, 'On drilling degrees of freedom', Computer Methods 
in Applied Mechanics and Engineering, vol. 72, no. 1, pp. 105-21. 

Hughes, T.J.R. & Sangalli, G. 2007, 'Variational multiscale analysis: The fine-scale 
green's function, projection, optimization, localization, and stabilized methods', 
SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp. 539-57. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 79 
 

 

Ibrahimbegovic, A., Taylor, R.L. & Wilson, E.L. 1990, 'Robust quadrilateral membrane 
finite element with drilling degrees of freedom', International Journal for 
Numerical Methods in Engineering, vol. 30, no. 3, pp. 445-57. 

Iura, M. & Atluri, S.N. 1988, 'On a consistent theory, and variational formulation of 
finitely stretched and rotated 3-D space-curved beams', Computational 
Mechanics, vol. 4, no. 2, pp. 73-88. 

Jin, L. 1994, 'Analysis and Evaluation of a Shell Finite Element with Drilling Degree of 
Freedom', Master thesis, University of Maryland at College Park. 

Jones, R.M. 1975, Mechanics of composite materials, McGraw-Hill, New York. 

Jönsson, J. 1999, 'Distortional theory of thin-walled beams', Thin-Walled Structures, 
vol. 33, no. 4, pp. 269-303. 

Ju, G.T. & Kyriakides, S. 1992, 'Bifurcation and localization instabilities in cylindrical 
shells under bending-II. Predictions', International Journal of Solids and 
Structures, vol. 29, no. 9, pp. 1143-71. 

Karamanos, S.A. 2002, 'Bending instabilities of elastic tubes', International Journal of 
Solids and Structures, vol. 39, no. 8, pp. 2059-85. 

Karamanos, S.A. & Tassoulas, J.L. 1996, 'Tubular members. I: Stability analysis and 
preliminary results', Journal of Engineering Mechanics, vol. 122, no. 1, pp. 64-
71. 

Kim, N.I., Shin, D.K. & Kim, M.Y. 2007, 'Exact lateral buckling analysis for thin-
walled composite beam under end moment', Engineering Structures, vol. 29, no. 
8, pp. 1739-51. 

Knight Jr, N.F., Ransom, J.B., Griffin Jr, O.H. & Thompson, D.M. 1991, 'Global/local 
methods research using a common structural analysis framework', Finite 
Elements in Analysis and Design, vol. 9, no. 2, pp. 91-112. 

Koiter, W.T. 1984, 'Complementary energy, neutral equilibrium and buckling', 
Meccanica, vol. 19, no. 1 Supplement, pp. 52-6. 

Krenk, S. 1994, 'A general format for curved and non-homogeneous beam elements', 
Computers and Structures, vol. 50, no. 4, pp. 449-54. 

Kwon, Y.B. & Hancock, G.J. 1991, Strength tests of cold-formed channel sections 
undergoing local and distortional buckling. 

Lau, S.C.W. & Hancock, G.J. 1986, 'Buckling of thin flat-walled structures by a spline 
finite strip method', Thin-Walled Structures, vol. 4, no. 4, pp. 269-94. 

Lau, S.C.W. & Hancock, G.J. 1987, 'Distortional buckling formulas for channel 
columns', Journal of structural engineering New York, N.Y., vol. 113, no. 5, pp. 
1063-78. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 80 
 

 

Lee, D.J. 1978, 'Local buckling coefficient for orthotropic structural sections', 
Aeronautical Journal, vol. 82, no. 811, pp. 313-20. 

Lee, J. 2006, 'Lateral buckling analysis of thin-walled laminated composite beams with 
monosymmetric sections', Engineering Structures, vol. 28, no. 14, pp. 1997-
2009. 

Lee, J., Kim, S.E. & Hong, K. 2002, 'Lateral buckling of I-section composite beams', 
Engineering Structures, vol. 24, no. 7, pp. 955-64. 

Liew, R.J.Y., Thevendran, V., Shanmugam, N.E. & Tan, L.O. 1995, 'Behaviour and 
design of horizontally curved steel beams', Journal of Constructional Steel 
Research, vol. 32, no. 1, pp. 37-67. 

Lim, N.H., Park, N.H., Kang, Y.J. & Sung, I.H. 2003, 'Elastic buckling of I-beams 
under linear moment gradient', International Journal of Solids and Structures, 
vol. 40, no. 21, pp. 5635-47. 

Liu, W.K., Hao, S., Belytschko, T., Li, S. & Chang, C.T. 2000, 'Multi-scale methods', 
International Journal for Numerical Methods in Engineering, vol. 47, no. 7, pp. 
1343-61. 

Liu, W.K., Uras, R.A. & Chen, Y. 1997, 'Enrichment of the finite element method with 
the reproducing kernel particle method', Journal of Applied Mechanics, 
Transactions ASME, vol. 64, no. 4, pp. 861-70. 

Liu, Y.J., Sun, Q. & Fan, X.L. 2014, 'A non-intrusive global/local algorithm with non-
matching interface: Derivation and numerical validation', Computer Methods in 
Applied Mechanics and Engineering, vol. 277, pp. 81-103. 

Love, A.E.H. 1944, A Treatise on the Mathematical Theory of Elasticity, 4th edn, Dover 
Publications Inc., New York. 

Lundquist, E.E., Stowell, E.Z. & Schutte, E.H. 1943, Principles of Moment Distribution 
Applied to Stability of Structures Composed of Bars or Plates, 809, NACA. 

Ma, M. & Hughes, O. 1996, 'Lateral distortional buckling of monosymmetric I-beams 
under distributed vertical load', Thin-Walled Structures, vol. 26, no. 2, pp. 123-
43. 

Machado, S.P. 2010, 'Interaction of combined loads on the lateral stability of thin-
walled composite beams', Engineering Structures, vol. 32, no. 11, pp. 3516-27. 

MacNeal, R.H. 1994, Finite elements: Their Design and Performance, Marcel Dekker, 
New York. 

Mahendran, M. & Murray, N.W. 1986, 'Elastic buckling analysis of ideal thin-walled 
structures under combined loading using a finite strip method', Thin-Walled 
Structures, vol. 4, no. 5, pp. 329-62. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 81 
 

 

Marguerre, K. 1939, 'Zur Theorie der Gekrümmten Platte Grosser Formänderung', Fifth 
International Congress on Applied Mechanics, J. Wiley and sons, Cambridge, 
Massachusetts, pp. 93-101. 

Marques, J.M.M.C. 1984, 'Stress computation in elastoplasticity', Engineering 
Computations (Swansea, Wales), vol. 1, pp. 42-51. 

Militello, C. & Huespe, A.E. 1988, 'A displacement-based pipe elbow element', 
Computers and Structures, vol. 29, no. 2, pp. 339-43. 

Mittelstedt, C. 2007, 'Local buckling of wide-flange thin-walled anisotropic composite 
beams', Archive of Applied Mechanics, vol. 77, no. 7, pp. 439-52. 

Mote, C. 1971, 'Global local finite element', International Journal for Numerical 
Methods in Engineering, vol. 3, no. 4, pp. 565-74. 

Mottram, J.T. 1992, 'Lateral-torsional buckling of thin-walled composite I-beams by the 
finite difference method', Composites Engineering, vol. 2, no. 2, pp. 91-104. 

Murakami, H. & Yamakawa, J. 1996, 'On approximate solutions for the deformation of 
plane anisotropic beams', Composites Part B: Engineering, vol. 27, no. 5, pp. 
493-504. 

Murray, N.W. 1984, Introduction to the theory of thin-walled structures, Claredon 
Press, Oxford, United Kingdom. 

Noor, A.K. 1986, 'Global-local methodologies and their application to nonlinear 
analysis', Finite Elements in Analysis and Design, vol. 2, no. 4, pp. 333-46. 

Noor, A.K. & Peters, J.M. 1983, 'Recent advances in reduction methods for instability 
analysis of structures', Computers and Structures, vol. 16, no. 1-4, pp. 67-80. 

Nowzartash, F. & Mohareb, M. 2004, 'An elasto-plastic finite element for steel 
pipelines', International Journal of Pressure Vessels and Piping, vol. 81, no. 12, 
pp. 919-30. 

Ozkan, I.F. & Mohareb, M. 2009, 'Testing and analysis of steel pipes under bending, 
tension, and internal pressure', Journal of Structural Engineering, vol. 135, no. 
2, pp. 187-97. 

Pandey, M.D., Kabir, M.Z. & Sherbourne, A.N. 1995, 'Flexural-torsional stability of 
thin-walled composite I-section beams', Composites Engineering, vol. 5, no. 3, 
pp. 321-42. 

Pantazopoulou, S.J. 1992, 'Low-order interpolation functions for curved beams', Journal 
of Engineering Mechanics, vol. 118, no. 2, pp. 329-50. 

Petrolito, J. 1995, 'Stiffness analysis of beams using a higher-order theory', Computers 
and Structures, vol. 55, no. 1, pp. 33-9. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 82 
 

 

Pi, Y.-L., Bradford, M.A. & Uy, B. 2005, 'Nonlinear analysis of members curved in 
space with warping and Wagner effects', International Journal of Solids and 
Structures, vol. 42, no. 11–12, pp. 3147-69. 

Pi, Y.L., Bradford, M.A. & Uy, B. 2003, Nonlinear analysis of members with open thin-
walled cross-section curved in space, University of New South Wales, School of 
Civil and Environmental Engineering, Sydney. 

Pi, Y.L., Bradford, M.A. & Uy, B. 2007, 'A rational elasto-plastic spatially curved thin-
walled beam element', International Journal for Numerical Methods in 
Engineering, vol. 70, no. 3, pp. 253-90. 

Pi, Y.L. & Trahair, N.S. 1997, 'Nonlinear elastic behavior of I-beams curved in plan', 
Journal of Structural Engineering, vol. 123, no. 9, pp. 1201-9. 

Plank, R.J. & Wittrick, W.H. 1974, 'Buckling inder combined loading of thin, flat-
walled  structures by a complex finite strip method', International Journal for 
Numerical Methods in Engineering, vol. 8, no. 2, pp. 323-39. 

Poon, C.P. & Ronagh, H.R. 2004, 'Distortional Buckling of I-Beams by Finite Element 
Method', Advances in Structural Engineering, vol. 7, no. 1, pp. 71-80. 

Przemieniecki, J.S. 1973, 'Finite Element Structural Analysis of Local Instability', 
AIAA, vol. 11, no. 1, pp. 33-9. 

Qian, D., Wagner, G.J. & Liu, W.K. 2004, 'A Multi-scale projection method for the 
analysis of carbon nanotubes', Computer Methods in Applied Mechanics and 
Engineering Computations (Swansea, Wales), vol. 193, pp. 1603-32. 

Qiao, P., Davalos, J.F. & Wang, J. 2001, 'Local buckling of composite FRP shapes by 
discrete plate analysis', Journal of structural engineering New York, N.Y., vol. 
127, no. 3, pp. 245-55. 

Rasmussen, K.J.R. 1997, 'Bifurcation of locally buckled members', Thin-Walled 
Structures, vol. 28, no. 2, pp. 117-54. 

Reddy, J.N. 2004, Mechanics of Laminated Composite Plates and Shells: Theory and 
Analysis, 2nd edn, CRC Press, Boca Raton, Florida. 

Rendek, S. & Baláž, I. 2004, 'Distortion of thin-walled beams', Thin-Walled Structures, 
vol. 42, no. 2, pp. 255-77. 

Rhodes, J. & Harvey, J.M. 1971, 'Plates in uniaxial compression with various support 
conditions at the unloaded boundaries', International Journal of Mechanical 
Sciences, vol. 13, no. 9, pp. 787-802. 

Roberts, T.M. 2002, 'Influence of shear deformation on buckling of pultruded fiber 
reinforced plastic profiles', Journal of Composites for Construction, vol. 6, no. 4, 
pp. 241-8. 

Roberts, T.M. & Jhita, P.S. 1983, 'Lateral, local and distortional buckling of I-beams', 
Thin-Walled Structures, vol. 1, no. 4, pp. 289-308. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 83 
 

 

Roberts, T.M. & Masri, H.M.K.J.A.H. 2003, 'Section properties and buckling behavior 
of pultruded FRP profiles', Journal of Reinforced Plastics and Composites, vol. 
22, no. 14, pp. 1305-17. 

Rusch, A. & Lindner, J. 2001, 'Remarks to the Direct Strength Method', Thin-Walled 
Structures, vol. 39, no. 9, pp. 807-20. 

Saint-Venant, M. 1883, Discussion en Theorie de l’Elasticite des Corps Solides, by 
Clebsch. 

Salvadori, M.G. 1955, 'Lateral Buckling of I-beams', ASCE Transactions, American 
Society of Civil Engineers,, vol. 120, pp. 1165-77. 

Sandhu, J.S., Stevens, K.A. & Davies, G.A.O. 1990, 'A 3-D, co-rotational, curved and 
twisted beam element', Computers and Structures, vol. 35, no. 1, pp. 69-79. 

Sapkás, A. & Kollár, L.P. 2002, 'Lateral-torsional buckling of composite beams', 
International Journal of Solids and Structures, vol. 39, no. 11, pp. 2939-63. 

Sawko, F. 1967, 'Computer analysis of grillages curved in plan', International 
Association for Bridge and Structural Engineering, vol. 8, pp. 151-70. 

Schafer, B.W. & Pekoz, T. 1998, 'Direct Strength Prediction of Cold-Formed Steel 
Members using Numerical Elastic Buckling Solutions', 14th International 
Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, pp. 
69-76. 

Schardt, R. 1994, 'Generalized beam theory-an adequate method for coupled stability 
problems', Thin-Walled Structures, vol. 19, no. 2-4, pp. 161-80. 

Schardt, R.P. 1989, Verallgemeinerte Technische Biegetheorie, Springer, Berlin. 

Serna, M.A., López, A., Puente, I. & Yong, D.J. 2006, 'Equivalent uniform moment 
factors for lateral-torsional buckling of steel members', Journal of 
Constructional Steel Research, vol. 62, no. 6, pp. 566-80. 

Shanmugam, N.E., Thevendran, V., Liew, J.Y.R. & Tan, L.O. 1995, 'Experimental 
Study on Steel Beams Curved in Plan', Journal of Structural Engineering, vol. 
121, no. 2, pp. 249-59. 

Silvestre, N. 2007, 'Generalised beam theory to analyse the buckling behaviour of 
circular cylindrical shells and tubes', Thin-Walled Structures, vol. 45, no. 2, pp. 
185-98. 

Silvestre, N. & Camotim, D. 2003, 'Nonlinear generalized beam theory for cold-formed 
steel members', International Journal of Structural Stability & Dynamics, vol. 3, 
no. 4, pp. 461-90. 

Simo, J.C. 1985, 'A finite strain beam formulation. The three-dimensional dynamic 
problem. Part I', Computer Methods in Applied Mechanics and Engineering, vol. 
49, no. 1, pp. 55-70. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 84 
 

 

Simo, J.C. & Vu-Quoc, L. 1987, 'The role of non-linear theories in transient dynamic 
analysis of flexible structures', Journal of Sound and Vibration, vol. 119, no. 3, 
pp. 487-508. 

Simo, J.C. & Vu-Quoc, L. 1991, 'A Geometrically-exact rod model incorporating shear 
and torsion-warping deformation', International Journal of Solids and 
Structures, vol. 27, no. 3, pp. 371-93. 

Song, H.-W. & Tassoulas, J.L. 1993, 'Finite element analysis of propagating buckles', 
International Journal for Numerical Methods in Engineering, vol. 36, no. 20, 
pp. 3529-52. 

Sun, C.T. & Mao, K.M. 1988, 'A global-local finite element method suitable for parallel 
computations', Computers and Structures, vol. 29, no. 2, pp. 309-15. 

Szilard, R. 1985, 'Critical load and post-buckling analysis by FEM using energy 
balancing technique', Computers & Structures, vol. 20, no. 1, pp. 277-86. 

Timoshenko, S.P. 1910, 'Einige Stabilitatsrobleme der Elastizitatsprobleme der 
Elastizitatstheorie', Zeithschrift Fur Mathematik und Physik, vol. 337. 

Timoshenko, S.P. 1923, 'Bending Stresses in Curved Tubes of Rectangular Cross-
Section', paper presented to the ASME, Montreal, Canada, 28 May, 1923. 

Timoshenko, S.P. & Gere, J.M. 1961, Theory of elastic stability, 2nd edn, McGraw-Hil, 
New York. 

Timoshenko, S.P. & Woinowsky-Krieger, S. 1959, Theory of Plates and Shells, 2nd 
edn, McGraw-Hill, New York. 

Trahair, N.S. 1993, Flexural-Torsional Buckling of Structures, CRC Press, Boca Raton, 
FL, USA. 

Trahair, N.S. 2003, Flexural-Torsional Buckling of Structures, Spon Press, London. 

van der Neut, A. 1969, 'The interaction of Local Buckling and Column Failure of Thin-
walled Compression Members', 12th International Congress on Applied 
Mechanics, pp. 389-99. 

Van Erp, G.M. & Menken, C.M. 1990, 'Spline finite-strip method in the buckling 
analyses of thin-walled structures', Communications in Applied Numerical 
Methods, vol. 6, no. 6, pp. 477-84. 

Vlasov, V.Z. 1961, Thin-walled elastic beams, 2nd edn, Israel Program for Scientific 
Translations, Jerusalem, Israel. 

von Kármán, T. 1910, Festigkeitsprobleme im Maschinenbau, Encyklopädie der 
mathematischen wissenschaften, Leipzig. 

von Karman, T., Sechler, E.E. & Donnell, L.H. 1932, 'The Strength of Thin Plates in 
Compression', ASME, vol. 54, no. 5, pp. 53-70. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 85 
 

 

Wang, S.T. & Pao, H.Y. 1980, 'Torsional-flexural buckling of locally buckled columns', 
Computers and Structures, vol. 11, no. 1-2, pp. 127-36. 

Wang, S.T., Yost, M.I. & Tien, Y.L. 1977, 'Lateral buckling of locally buckled beams 
using finite element techniques', Computers and Structures, vol. 7, no. 3, pp. 
469-75. 

Weicker, K., Salahifar, R. & Mohareb, M. 2010, 'Shell analysis of thin-walled pipes. 
Part II - Finite element formulation', International Journal of Pressure Vessels 
and Piping, vol. 87, no. 7, pp. 414-23. 

Whitcomb, J.D. 1991, 'Iterative global/local finite element analysis', Computers and 
Structures, vol. 40, no. 4, pp. 1027-31. 

Whitcomb, J.D. & Woo, K. 1993a, 'Application of iterative global/local finite-element 
analysis. Part 1: linear analysis', Communications in Numerical Methods in 
Engineering, vol. 9, no. 9, pp. 745-56. 

Whitcomb, J.D. & Woo, K. 1993b, 'Application of iterative global/local finite-element 
analysis. Part 2: geometrically non-linear analysis', Communications in 
Numerical Methods in Engineering, vol. 9, no. 9, pp. 757-66. 

Wong, E. & Driver, R.G. 2010, 'Critical evaluation of equivalent moment factor 
procedures for laterally unsupported beams', Engineering Journal, vol. 47, no. 1, 
pp. 1-20. 

Yamao, T. & Sakimoto, T. 1986, 'Nonlinear analysis of thin-walled structures by a 
coupled finite element method', Structural Engineering / Earthquake 
Engineering, vol. 3, no. 2, pp. 225-35. 

Yoo, C.H., Kang, Y.J. & Davidson, J.S. 1996, 'Buckling analysis of curved beams by 
finite-element discretization', Journal of Engineering Mechanics, vol. 122, no. 8, 
pp. 762-70. 

Yoshida, H. & Maegawa, K. 1983, 'Ultimate strength analysis of curved I-beams', 
Journal of Engineering Mechanics, vol. 109, no. 1, pp. 192-214. 

Young, B. & Rasmussen, K.J.R. 1997, 'Bifurcation of singly symmetric columns', Thin-
Walled Structures, vol. 28, no. 2, pp. 155-77. 

Young, M.C. 1969, 'Flexibility influence functions for curved beams', American Society 
of Civil Engineers, vol. 94. 

Yu, C. & Schafer, B.W. 2003, 'Local buckling tests on cold-formed steel beams', 
Journal of Structural Engineering, vol. 129, no. 12, pp. 1596-606. 

Zienkiewicz, O.C. 1977, The Finite Element Method, Third Expanded and Revised edn, 
McGraw-Hill, U.K. 

Zienkiewicz, O.C. & Taylor, R.L. 2005, The Finite Element Method for Solid and 
Structural Mechanics, Sixth edn, Elsevier Butterworth-Heinemann, Oxford, 
United Kingdom. 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 86 
 

 

Appendix 2.A 

The interpolation matrix X̂  used in Eq. (2.78) can be written as 

1 1 2 2 3 3 4 4
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y y y y

x x x x x x x x x x x x

N N N N N N N N
N N N N N N N N

N N N N
N N N N
H H H H H H H H H H H H

X

1 2 3 4 5 6 7 8 9 10 11 120 0 0 ... ... ...y y y y y y y y y y y yH H H H H H H H H H H H

 
(2.A.1) 

where iN is the standard bilinear interpolation functions defined as 

1 1 1
4i i iN , 1,2,3,4i  (2.A.2) 

in which  and  are natural coordinates defines as x a  and y b , in which a 

and b are the half length of the rectangular shell element in x and y directions, 

respectively. x
iN  and y

iN are used to interpolate the membrane displacement 

components according to Allman-type interpolation as 

1
8

x
i j i l k i mN y y N y y N , 1,2,3,4i  (2.A.3) 

1
8

y
i j i l k i mN x x N x x N , 1,2,3,4i

 
(2.A.4) 

where  

21 1 1
2m mN , 8,5,6,7m  (2.A.5) 

21 1 1
2l lN , 5,6,7,8l

 
(2.A.6) 
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The elements of the plate-bending component of interpolation functions are given 

explicitly in Eq. (2.A.7) 

1 5 5 8 81.5xH a N a N  2 1 5 5 8 8
xH N c N c N  3 5 5 8 8

xH b N b N  

(2.A.7) 

4 6 6 5 51.5xH a N a N  5 2 6 6 5 5
xH N c N c N  6 6 6 5 5

xH b N b N  

7 7 7 6 61.5xH a N a N  8 3 7 7 6 6
xH N c N c N  9 7 7 6 6

xH b N b N  

10 8 8 7 71.5xH a N a N  11 4 8 8 7 7
xH N c N c N  12 8 8 7 7

xH b N b N  

1 5 5 8 81.5yH d N d N  2 5 5 8 8
yH b N b N  3 1 5 5 8 8

yH N e N e N  

4 6 6 5 51.5yH d N d N  5 6 6 5 5
yH b N b N  6 2 6 6 5 5

yH N e N e N  

7 7 7 6 61.5yH d N d N  8 7 7 6 6
yH b N b N  9 3 7 7 6 6

yH N e N e N  

10 8 8 7 71.5yH d N d N  11 8 8 7 7
yH b N b N  12 4 8 8 7 7

yH N e N e N  
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Appendix 2.B 

Due to the inclusion of the second-order displacement terms, the decomposition matrix 

N  is modified to Eq. (2.113). Consequently, the variation of N  is no longer equal to 

zero and has to be considered in the formulation. To this end, the last term in Eq. 

(2.114) is written explicitly as 

T

T
1 1 2 2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

00
00
00

T

x v y u

x v y ux v y u

H

d N d

H

 

 

(2.B.1) 

but 

T T

1 1 2 2 1 1 2 2
d d,
d d

T Tu u u u u v v v v v
z z

H H  (2.B.2) 

therefore, A  can be written as 
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 (2.B.3) 

The contribution of d N  in matrix A  is shown in grey in Eq. (2.B.3). 
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Chapter 2 list of symbols 

The following symbols have been used in chapter 2.  

A
  

= cross-sectional area 

pA   
= sectorial pole (Figure 2.2) 

,x ya a   
= coordinates of the thin-walled pole 

D
  

= flexural rigidity of a plate (Figure 2.3) 

d   
= nodal displacement vector of the beam 

d̂   
= nodal displacement vector of the shell 

d   
= displacement difference term between the global and local 

models  

&
ˆ

i jd   
= displacement values and the boundaries of the local shell 

ˆδ INd   
= internal displacement values of the local shell 

E   
= constitutive matrix of the beam element 

Ê   
= constitutive matrix of the shell element 

E   
= modulus of elasticity 

f   
= external load vector of the beam element 

ˆ
sf   

= portion of the external load vector in the local model 



Chapter 2: Preliminaries to the Iterative Global-local Method P a g e  | 91 
 

 

&î jf   
= vector of tractions at the boundaries of the local shell model 

kf   
= external load increment 

H   
= vector of cubic interpolation functions 

H   
= interpolation functions for plate bending 

K   
= stiffness matrix of the beam element 

K̂   
= stiffness matrix of the beam element 

kK   
= tangent stiffness matrix of the beam model  

L   
= vector of linear interpolation functions 

L   
= length of the element  

N   
= overlapping domain decomposition matrix 

N   
= interpolation functions for the shell element 

n
kR   

= unbalanced force vector 

S   
= matrix of cross-sectional coordinates 

s   
= coordinate along the element sides 

t
  

= thickness of a plate (Figure 2.3) 

au   
= displacement vector of an arbitrary point in the beam element 

û   
= displacement field of the shell element 
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, ,u v w
  

= displacement components of the beam element (Figure 2.8) 

ˆ ˆ ˆ, ,u v w
  

= displacement components of the shell element  

,t nu u
  

= tangential and normal displacement components along element 

sides 

w
  

= out of plane displacement of a plate (Figure 2.3) 

aX   
= beam interpolation matrix 

X̂   
= shell interpolation matrix 

Y   
= matrix of thin-walled kinematical relations 

, ,x y z
  

= coordinates in Cartesian system (Figure 2.3) 

, ,x y z
  

= Cartesian directions for beam element (Figure 2.8) 

Z   
= matrix of overlapping domain interpolations 

, , ,L L N N
 

= strain components of the beam element 

, ,L Nε ε ε
 

= strain vectors of the beam element 

ˆ ˆ ˆ ˆ, , ,b mm Nε ε ε ε
 

= strain vectors of the shell element 

ε  
 

= strain difference term between local and global models 

  
= displacement in the tangential direction 

,   
= natural coordinates 
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, ,x y z  = rotation components 

  
= Poisson’s ratio 

  
= total potential energy of the beam element 

ˆ
  

= total potential energy of the shell element 

σ   
= beam element stress vector 

σ̂   
= shell element stress vector 

  
= normal stress (Figure 2.3) 

,   
= normal and shear stress of the beam element 

  
= twist rotation of the beam element (Figure 2.8) 

,L Nχ χ   
= vectors of linear and nonlinear displacement derivatives 

χ̂   
= curvature vector of the shell element 

  
= Drilling rotation 

C
  

= total structural domain (Figure 2.7) 

m
  

= overlapping local domain (Figure 2.7) 

S
  

= boundary of global and local model (Figure 2.7) 

  
= sectorial coordinate 

i   
= vertex rotations 
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,x y   
= rotation components of a normal line to the undeformed plate 

  
= differential operator 
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Chapter 3: The Iterative global-local method for the 

analysis of composite thin-walled elements 

3.1. Introduction 

The Iterative Global-local Method was introduced in the previous chapter as an efficient 

tool for the analysis of thin-walled beams subjected to localized behaviour (e.g. local 

buckling and web crippling). The method is based on considering two levels of 

structural idealization based on the expected scales of deformation. For that purpose, 

two-dimensional beam-type finite elements were adopted as the global/coarse scale 

while two-dimensional shell elements were used as the local/fine scale. The two models 

would overlap at the areas affected by the local deformations, and the two models were 

synchronised by the introduction of a domain decomposition operator and iterations 

were introduced in order to minimise the unbalanced forces between the two models.  

The application of the method proposed in the previous chapter was restricted to 

isotropic material. In this chapter, the Iterative Global-local Method is developed for 

fibre-reinforced polymer composite laminates. The proposed method can be used for 

composite polymer laminates with arbitrary fibre orientation directions in different 

layers of the material, and under various loading conditions. The material is assumed to 

be linear elastic in the current Chapter. Comparison with full shell-type finite element 
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analysis results are made in order to illustrate the efficiency and accuracy of the 

proposed technique.   

3.2. Literature review 

The use of fibre-reinforced polymer composite laminated plates as a construction 

material has increased in recent years. The primary reason for this increase is their non-

corrosive nature and long term durability, high tensile strength-to-weight ratio, 

electromagnetic neutrality and resistance to chemical attack. Because of their high 

strength-to-weight ratios, slender structural components may be formed by using 

composite laminates, which can be used in building, bridge, aerospace and marine 

applications. Consequently, they are susceptible to buckling because of their 

slenderness and relatively low shear strength. FRP composite structural materials are 

often cast in beam-type shapes (i.e. large span in comparison to cross-sectional 

dimensions), for which they are commonly analysed by using beam-type elements.  

A beam formulation was developed by Bauld & Tzeng (1984) to capture flexural and 

lateral-torsional buckling behaviour of thin-walled composite laminated members, and 

was later verified by Mottram (1992) using test results. Closed-form analytical solutions 

for buckling analysis based on beam-type formulations have been proposed by several 

researchers. Pandey et al. (1995) used the Galerkin method to solve the equilibrium 

equations and proposed a closed-form formulation for the lateral-torsional buckling of 

composite beams with I-shaped cross-section. Murakami & Yamakawa (1996) used 

Airy stress functions to determine the lateral buckling load of beams made of 

anisotropic materials. Sapkás & Kollár (2002) performed stability analysis of composite 

beams subjected to concentrated end-moments, end-forces and uniformly distributed 
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load. They solved the problem for simply-supported and cantilever beams with I-shaped 

cross-section. Similar studies are performed by Roberts (2002), Roberts & Masri (2003) 

and Kim et al. (2007). It should be noted that the above-mentioned closed form 

solutions are limited to certain boundary and loading conditions.  

On the other hand, the finite element method can be used to obtain solutions that are 

applicable to general boundary conditions and loading cases. Several finite element 

formulations have been developed for the flexural-torsional buckling analysis of thin-

walled composite beams. Omidvar & Ghorbanpoor (1996) developed a nonlinear finite 

element method based on the updated Lagragian formulation. Fraternali & Feo (2000) 

formulated a small strain and moderate rotation theory for laminated composite thin-

walled beams, and developed a finite element based on their formulation. Lee et al. 

(2002) presented a finite element model for I-shaped cross-sections based on classical 

lamination theory to account for material coupling for laminates with different stacking 

sequence and arbitrary fibre alignment. Lee (2006) generalised the method for arbitrary 

mono-symmetric cross-sections. Using the first-order shear-deformable beam theory, 

Back & Will (2008) developed a shear-flexible element for composite doubly- and 

mono-symmetric cross-section. The developed element included both the transverse 

shear and the thin-walled warping-induced shear deformations. Cardoso et al. (2009) 

presented a finite element based on three-dimensional two-node Hermitean elements.    

These types of elements are formulated based on the assumption that cross-sections 

remain rigid during the deformation, which limits their application to axis-related 

deformations only (i.e. flexural, torsional and flexural-torsional buckling), and hence 

they cannot capture local/cross-sectional deformations such as flange local buckling and 

web crippling. In order to account for the local buckling of orthotropic beams, Lee 

(1978) used deflection functions to obtain the buckling coefficients in terms of rigidities 
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of the plates composing the cross-section, and presented the buckling load in terms of 

flange-web ratio. Barbero & Raftoyiannis (1993) developed failure envelopes for box- 

and I- shape members, and introduced analytical models for various local buckling 

modes and buckling load values for axial and shear loading by considering the web-

flange interaction. The analysis of local buckling of FRP members can also be 

performed by discrete plate analysis method (Qiao et al. 2001), in which each plate 

segment of the cross-section (i.e. web and flanges) are analysed separately, and the 

minimum buckling stress is reported as the critical buckling stress of the cross-section. 

Alternatively, shell-type elements have to be utilised for a detailed analysis of local 

buckling, e.g. (Yu & Schafer 2003). 

Since modelling the whole structure by detailed shell elements is computationally 

expensive and practically impossible, the Iterative Global-local Method discussed in 

Chapter 2 is appealing for modelling of thin-walled composite elements where a 

local/cross-sectional deformation is expected in a relatively short span of the member, 

e.g. local buckling and locally-applied loads that can cause local buckling. In the 

following, the Iterative Global-local Method is developed for fibre-reinforced composite 

laminates by adopting a suitable beam-type element as the coarse-scale and a shell-type 

element as the fine-scale model. Numerical examples are then presented in order to 

justify the accuracy and efficiency of the proposed method. 

3.3. Constitutive relations of an orthotropic plate 

In order to obtain the stress-strain relationship of a laminate, we start from the basic 

mechanics of orthotropic materials (Jones 1975; Reddy 2004). Consider an orthotropic 

plate with moduli of elasticity 1E  and 2E  in parallel and perpendicular directions to its 
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fibres, respectively. If the loading of such a plate is either parallel or perpendicular to its 

fibres (Figure 3.1 a), it is considered “specially-orthotropic”. Otherwise, it is regarded as 

“generally-orthotropic” (Figure 3.1 b).  

 

 

(a) specially-orthotropic plate   (b) generally-orthotropic plate 

Figure 3.1: Orthotropic plate (1-2 fibre alignment, x-y load direction) 

For a specially-orthotropic plate, the stress-strain relationship can be written as (Figure 

3.1 a) 

1 11 12 1

2 12 22 2

12 66 12

0
0

0 0

Q Q
Q Q

Q
 (3.1) 

or in a more condensed form as 

σ Q ε  (3.2) 

where 

1
11

12 21

,
1

EQ
 (3.3) 
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2
22

12 21

,
1

EQ
 (3.4) 

12 2 21 1
12

12 21 12 21

,
1 1

E EQ
 (3.5) 

66 12.Q G
 

(3.6) 

in which 12  and 21  are Poisson’s ratios for the two directions and 12G  is the shear 

modulus. If the applied load has an angle different from 0o or 90o (i.e. generally-

orthotropic plate, Figure 3.1 b), a transformation matrix has to be multiplied to both the 

stress and strain vectors, i.e. 

1σ T Q T ε  (3.7) 

where 

2 2

2 2

2 2

cos sin 2sin cos
sin cos 2sin cos

sin cos sin cos cos sin
T  (3.8) 

 in Eq. (3.8) is the angle between the fibres and the coordinate in which the stress and 

strain values are calculated, as shown in Figure 3.1 b. The matrix Q  can be defined as 

1Q T Q T  (3.9) 

11 12 16

12 22 26

16 26 66

Q Q Q
Q Q Q
Q Q Q

Q
 (3.10) 

Eq. (3.7) can be written as 
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σ Q ε  (3.11) 

The components of Q  are written explicitly in the following. 

4 2 2 4
11 11 12 66 22cos 2 2 sin cos sin ,Q Q Q Q Q  (3.12) 

2 2 4 4
12 11 22 66 124 sin cos sin cos ,Q Q Q Q Q

 
(3.13) 

4 2 2 4
22 11 12 66 22sin 2 2 sin cos cos ,Q Q Q Q Q

 
(3.14) 

3 3
16 11 22 66 12 22 662 sin cos 2 sin cos ,Q Q Q Q Q Q Q

 
(3.15) 

3 3
26 11 22 66 12 22 662 sin cos 2 sin cos ,Q Q Q Q Q Q Q

 
(3.16) 

2 2 4 4
66 11 22 12 66 662 2 sin cos sin cos .Q Q Q Q Q Q

 
(3.17) 

It should be noted that unless 0  or 90 , 16Q  and 26Q  are nonzero. Therefore, 

normal strain would produce shear stresses and vice-versa. This phenomenon is called 

extension-shear coupling.  

3.4. The global model 

For the global/coarse-scale analysis, a thin-walled beam formulation based on second-

order nonlinear thin-walled theory is used (Trahair 2003). The kinematic assumptions 

and the corresponding displacement and strain values of the beam are presented in detail 

in Chapter 2. The difference in the current formulation arises from the material 

behaviour, which is characterised by the modified constitutive relations.  

The material is assumed to be composed of several laminated layers with different 

orientation of fibres in different layers. It is assumed that perfect interlaminar bond 



Chapter 3: The IGLM for the analysis of Composite Thin-walled elements  P a g e  | 104 
 

 

exists between the lamina of the laminate. For a laminate composed of n orthotropic 

layers, the orientation of the local k ks z -plane with respect to the global sz -plane is 

determined by the angle about the r -axis  (positive according to the opposite of the 

right hand rule) between z  and kz   (Figure 3.2 b). 

  

  (a) Thin-walled beam     (b) Fibre orientation     (c) Laminates across the thickness 

Figure 3.2: Thin-walled beam composed of fibre-reinforced laminates 

Recalling from Chapter 2, the stress vector of the thin-walled beam includes normal 

stresses in the axial direction of the beam only, i.e. 2  in Eq. (3.1) vanishes. 

Consequently, from the second line of Eq. (3.11) we have 

12 22 26 0y x y xyQ Q Q  (3.18) 

Therefore, y  can be calculated as  

2612

22 22
y x xy

QQ
Q Q

 (3.19) 

Eq. (3.19) can be used to modify the Q  matrix such that the stresses can be obtained 

from x  and xy  only.  
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* *
1 111 16

* *
12 1216 66

Q Q
Q Q  (3.20) 

where 

2
* 12
11 11

22

QQ Q
Q  

(3.21) 

* 12 26
16 16

22

Q QQ Q
Q  

(3.22) 

2
* 26
66 66

22

QQ Q
Q  

(3.23) 

In order to be consistent with the dimensions of strain and stress vectors of the beam 

element in Chapter 2, the above equations can be written as 

0

0

k
z

k k

k
zs

σ Q ε
 

(3.24) 

in which 

* *
11 16

* *
16 66

0 0
0 0 0 0

0 0
0 0 0 0

k k

k

k k

Q Q

Q Q
Q

 
(3.25) 

Superscript ( )k  in Eqs. (3.24) and (3.25) shows that the relationship is written for the 

kth layer in the composite laminate.  
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3.5. The local model  

The details of the shell element used as the fine-scale/local model are discussed in 

Chapter 2. Similar to the beam element, the only part of the formulation that requires 

modification is the constitutive relations. The coordinate systems used for the shell 

element are shown in Figure 3.3. 

 

(a) Shell local coordinates (b) Laminates across thickness (c) Global & local coordinates      

Figure 3.3: Deflections and coordinate system of the shell composed of fibre-reinforced 
laminates 

For a laminate composed of n orthotropic layers, the orientation of the fibre attached 

k kx y -axes with respect to the plate’s local x-y axes is determined by the angle  which 

is the angle about the plate’s local z -axis (positive according to the right hand rule) 

between x  and kx  (Figure 2(a)). In that case  is the same angle used in Section 3.4. 

Assuming that perfect interlaminar bond exists between the layers, the stress-strain 

relationship for the kth layer according to the plate local axis directions can be written as 

(Reddy 2004) 
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11 12 16

12 22 26

16 26 66
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0
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0

0 0 0

k k k
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k

k k k

k

Q Q Q

Q Q Q

Q Q Q

Q
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(3.27) 

3.6. Numerical examples  

As discussed previously, the Iterative Global-local Method is most advantageous when 

a limited portion of the member domain is affected by localized/cross-sectional 

deformations. Therefore, the accuracy and efficiency of the proposed iterative global-

local procedure is verified through numerical examples in which local deformations 

cause a softening effect in the global behaviour of the structure. In all of the examples, 

the accuracy of the model is checked by comparing the results of the global-local model 

with that of a full shell element.  

However, the accuracy of the developed shell element needs to be confirmed before 

being used as a benchmark. Consequently, the first three examples are presented to 

compare the buckling load obtained from the present model to the results from literature 

for various materials and loading conditions.  

The critical load values reported in the first three examples are obtained from a 

nonlinear analysis and are defined as load level that minimizes the determinant of the 

tangential stiffness matrix of the structure as depicted in Figure 3.4 (Szilard 1985). It 

should be noted that the determinant of the stiffness matrix does not necessarily become 

zero especially in cases with stable post-buckling behaviour. Consequently, the 

minimum point in the determinant (i.e. the softest achievable configuration of the 
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structure) can be suitably defined as the critical load of the structure for practical 

purposes. 

 

Figure 3.4: Definition of the buckling criteria in the nonlinear analysis 

The rest of the examples are designed to express the accuracy and efficiency of the 

proposed global-local model. In the first example, an isotropic material (structural steel) 

is used while orthotropic graphite- and glass-epoxy composite laminates are used in the 

rest of the examples.  

3.6.1. Verification of the shell element 

3.6.1.1. Example 1: Isotropic simply supported I-beam 

In order to verify the developed shell element, a simply supported I-beam made of 

isotropic material is analysed in example 1. Cross-sectional properties, loading and 

boundary conditions are shown in Figure 3.5. Geometrical dimensions of the I-section 
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are 200fb mm , 195h mm , 10ft mm  and 6.5wt mm  and the length of the beam is 

6000L mm . Material properties corresponding to construction steel (i.e. 200E GPa  

and 0.3 ) is used, and the beam is simultaneously subjected to axial load and 

uniformly distributed lateral load (Figure 3.5).  

 

(a) Loading and boundary conditions  (b) Cross-sectional dimensions 

Figure 3.5: Simply-supported beam 

Full nonlinear shell analysis is performed to obtain the buckling load as discussed 

previously, and the results are checked against the buckling results presented by 

Machado (2010). The buckling load is calculated for the simply supported beam 

subjected to axial and uniformly distributed lateral load. Two cases were analysed for 

the uniformly distributed load: firstly, the load was applied at the top flange and in a 

separate analysis, the load was applied on the bottom flange, which are denoted by 

/ 2ze h  and / 2ze h , respectively. The buckling loads are shown in Table 3.1, 

where for the lateral loads, the results are presented in terms of the corresponding 

maximum bending moment.  
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Table 3.1:  Critical load and bending moment for isotropic simply supported beam 

Load case Machado (2010) Present Difference 
(%) 

Axial 766.05 kN 771.75 kN 0.74 

Lateral / 2ze h   121.8 MNm 122.06 MNm 0.21 

Lateral / 2ze h  240.4 MNm 244.10 MNm 1.52 

The axial buckling load can also be calculated from the Euler formula 22
crP LEI , 

where L is the length of the beam and EI  is the flexural rigidity of the section about the 

minor principal axis. Using the properties of the member in this example, the Euler 

buckling load is calculated as 767.9 kN. It can be observed that the buckling load values 

obtained from the developed shell formulation are in good agreement with the results 

from the literature. 

3.6.1.2. Example 2: Composite laminate simply-supported I-beam subjected 

to distributed load 

The lateral-torsional buckling behaviour of a laminated simply-supported I-beam is 

investigated in this example. The beam length and the boundary conditions are the same 

as in the previous example, and the geometrical dimensions of the cross-section are: 

300fb mm , 600h mm  and 30f wt t mm  (Figure 3.5). The analysis is performed 

for two types of material; namely, graphite-epoxy and glass-epoxy composite laminates, 

the properties of which can be seen in Table 3.2.  
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Table 3.2: Material properties of composite laminates 

Material E1 E2 G12  12  21

Graphite-epoxy 144 GPa 9.65 GPa 4.14 GPa 0.3 0.02 

Glass-epoxy 48.3 GPa 19.8 GPa 8.96 GPa 0.27 0.11 

The plates are made up of four layers of composite material, each of which have a 

thickness of 7.5mm , with a stacking sequence of [0/0/0/0]. The uniformly distributed 

load is applied at three levels: the top flange, the shear centre and the bottom flange, 

which are depicted by / 2ze h , 0ze  and / 2ze h  , respectively. Similar to the 

previous example, the buckling load levels are obtained from the nonlinear shell 

analysis by drawing the lateral deflection versus the load level and considering the load 

level at which the tangential stiffness of the structures is a minimum, and the results are 

compared to the buckling loads reported by Machado (2010) for verification purposes. 

The results can be seen in Table 3.3 in terms of the values of the distributed load (in 

MN/m) causing the buckling behaviour. 

 Table 3.3: Buckling bending moment for composite simply-supported beam under 

distributed load 

 Graphite/Epoxy Glass/Epoxy 

Load level Machado (2010) Present Machado (2010) Present 

/ 2ze h  0.25 MNm 0.25 MNm 0.12 MNm 0.12 MNm 

0ze  0.42 MNm 0.40 MNm 0.18 MNm 0.18 MNm 

/ 2ze h  0.67 MNm 0.63 MNm 0.26 MNm 0.24 MNm 
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 Like the previous example, a good agreement can be confirmed between the results of 

the adopted shell model and results from the literature. 

3.6.1.3. Example 3: Effect of fibre orientation on buckling behaviour of 

composite laminate columns 

Simply-supported columns with various fibre orientation angles are analyzed in this 

example. The cross-section is a doubly-symmetric I with the following dimensions: 

80fb mm , 40h mm  and 1f wt t mm  (Figure 3.5). The length of the beam is 

240L mm , and the boundary conditions are similar to the previous examples. The 

column is composed of eight layers of graphite-epoxy composite laminates (Table 3.4) 

each 0.125d mm  thick, with stacking sequence / / /
S

.  is the angle 

between the fibres and the axis of the beam, and is selected as 15 , 30 , 45 , 60 , 75

and 90 .  

Table 3.4: Material properties for Example 3 

Material E1 E2 G12  12  21

Graphite-epoxy  138 GPa 10 GPa 5 GPa 0.27 0.02 

In order to obtain the buckling load of the column, a geometric nonlinear shell analysis 

is performed by adopting shell element of 20 20mm mm size. The results of the 

analysis in comparison with the buckling results presented by Mittelstedt (2007) can be 

observed in Table 3.5.  
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Table 3.5: Buckling load for simply-supported column, various fibre angles 

 15  30  45  60  75  90  

Present study 14.67 25.00 29.70 24.09 14.19 9.35 

Mittelstedt [51 14.75 23.20 27.70 22.75 13.71 9.41 

It can be observed from the results that the accuracy of the developed shell element for 

the analysis of composite laminates can be confirmed. 

3.6.2. Verification of the proposed Iterative Global-local Method 

In the following, numerical experiments are performed in order to demonstrate the 

accuracy and efficiency of the proposed global-local procedure in capturing the effect of 

localized behaviour. The results of the global-local method are compared with the beam 

and shell results for verification purposes. The material is taken as glass-epoxy, for 

which the material properties are provided in Table 3.6. 

Table 3.6: Values of material properties used in Section 6.2 

Material E1 E2 G12  12  21 

Glass-epoxy 53.78 GPa 17.93 GPa 8.96 GPa 0.25 0.08 
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3.6.2.1. Flexural buckling of a C-shaped column 

The Iterative Global-local Method is used to analyze the buckling behaviour of the 

composite column shown in Figure 3.6.  

 

(a) Cross-sectional dimensions (b) Loading and boundary conditions 

Figure 3.6: C-section composite column  

The beam is composed of eight composite layers with equal thickness of 2.5mm with a 

stacking sequence of [0/-45/90/45]S. The analysis is performed using the beam-type 

element, the shell-type element and the global-local procedure. Apart from that, a 

constraint shell model is used to confirm that the beam-type analysis and the shell 

model are kinematically equivalent according to the kinematic assumptions of the thin-

walled beam theory. It is obtained by applying multi-point constraints (MPCs) on the 

nodal displacements of the shell model in each cross-section according to the 

decomposition matrix N . For beam analysis, 4 equal-span elements are used while the 

dimensions of the shell elements are approximately 200 200mm mm . 

The loading set presented in Figure 3.6 is applied at two stages; initially, the 

axial/vertical loads are applied (i.e. 0sP ). The values of the buckling load are 

44
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calculated using the linearized buckling analysis corresponding to beam, constrain-shell 

and full-shell and are presented in Table 3.7. The close-form solution presented in the 

same table is the Euler buckling load, which is calculated from 2 2/ (2 )crN EI L , 

where L is the length of the column, E is the Young’s modulus and I is the second 

moment of area of the cross-section around the minor principal axis. 

Table 3.7: Buckling load values for C-section column 

Analysis Beam Constrain shell shell Closed-from (Euler) 

Buckling load (kN) 52.19 52.12 53.48 51.93 

Additionally, nonlinear analysis are performed using the aforementioned finite element 

models and the results are depicted in Table 3.7 in terms of horizontal deflection and 

rotation of the tip of the column versus the applied load. It can be observed that the 

results of all of the models match at this stage. 

 



Chapter 3: The IGLM for the analysis of Composite Thin-walled elements  P a g e  | 116 
 

 

 
 

(a) Tip horizontal deflection 

     
 

(b) Tip rotation 

Figure 3.7: Load-displacement curves based on various finite element modeling 

At a second stage, local/cross-sectional deformations are introduced to the model by 

assigning 75sP kN . It should be noted that the Ps load couple cancel the effect of each 
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other at cross-sectional level. Consequently, the beam-type finite element, which is 

formulated based on rigid cross-sectional assumption, fails to capture the effect of this 

load couple on the behaviour of the column. However, the softening effect of the local 

deformations is significant on the global response of the column, as shown by the 

curves obtained from the full shell model (Figure 3.7). 

The above problem is also analyzed using the developed global-local model that is 

composed of beam and shell elements. The layout of the global-local model is shown in 

Figure 3.8.  

 

Figure 3.8: Layout of the global-local model 

The model is analyzed by considering two values for the length of the overlapping 

region: initially it was considered between 0z  and 1200z mm by using 6 4  shell 

elements, and then it was expanded to cover 0z  and 1600z mm by using 8 4

elements.  

The results of the global-local analysis are shown in Figure 3.7. It can be seen that the 

model with larger overlapping region (i.e. 8 4elements) has been able to capture the 

effect of localized behaviour accurately and is matching well with the full shell model. 
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On the other hand, the model with smaller shell span is not able to fully capture the 

effect. It should be noted that even the model with larger shell span has a considerably 

smaller number of shell elements and therefore smaller number of degrees of freedom 

compared to the full shell model. Therefore, the accuracy and the efficiency of the 

proposed model can be verified herein. Care should be taken in choosing the 

overlapping region to ensure that it covers all the region affected by the localized 

behaviour. 

3.6.2.2. Lateral-torsional buckling of an I-beam 

The effect of a localized load couple on the lateral-torsional buckling resistance of a 

simply-supported I-beam is studied in this section. The geometry, boundary conditions 

and loading of the beam are shown in Figure 3.9. 

 

(a) Cross-sectional dimensions (b) Loading and boundary conditions 

Figure 3.9: Properties of the simply supported I-beam 

The flanges and the web of the beam is composed of 8 layers of glass-epoxy with angle-

ply lay-ups of [0/-45/90/45]S. Similar to the previous example, the beam is analysed 

using beam, shell and global-local models. 8 equal-span elements are used for the beam 

model while the shell elements have an approximate size of 200 200mm mm . The 

loading is applied at two stages: firstly, only the global concentrated bending moments 
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are applied and secondly the load couple 15SP kN  are introduced to create the 

localized behaviour. Apart from that, a very small horizontal load ( 0.1BP kN ) is 

applied in order to initiate the lateral buckling behaviour in the first analysis. The 

global-local model is created by applying local shell elements in the vicinity of the local 

load couple (i.e. 1400z mm  to 4600z mm )  by using 16 6  shell elements, as 

demonstrated in Figure 3.10. 

 

Figure 3.10: Schematic of the global-local model  

The buckling behaviour is depicted using the lateral deflections of the beam mid-span 

(Figure 3.11). It can be observed that the reduction in the lateral buckling critical load, 

caused by the softening effect of the localized load couple, is captured accurately by the 

use of the global-local method.  
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Figure 3.11: Load-deflection curve based on different modeling types 

3.7. Conclusions 

In this Chapter, a numerical method based on the Iterative Global-local Method was 

developed for the analysis of composite thin-walled members. A coarse-scale 

decomposition operator was proposed based on kinematic arguments, which associates 

the beam solution as the coarse-scale component of the shell solution. This 

decomposition allows for the method to incorporate the effects of local deformations on 

the global behaviour of the thin-walled member by using a shell model only within the 

region of local deformations.  Thin-walled column and beam buckling cases were then 

analysed to show that the load carrying capacity can be influenced significantly by the 

local deformations, and the results of the multiscale procedure proposed herein were 

compared with those produced from full shell and beam-type analyses. In all cases, by 

selecting a sufficiently wide span of the local shell model in the global-local analyses, it 
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was confirmed that the behaviour according to the full shell-type analysis can be 

captured very accurately by using the global-local technique introduced in this chapter. 
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Chapter 4: The Iterative Global-local Method for the 

analysis of pipes 

4.1. Abstract 

The Iterative Global-local Method was presented in the previous chapters as a procedure 

to consider the effect of localized behaviour on the global response of thin-walled 

beams made of isotropic material and fibre reinforced laminates in chapters 2 and 3, 

respectively. In the current chapter, the Iterative Global-local Method is developed for 

the analysis of pipes. The material response, which was previously assumed as linear 

elastic, is generalised to include elasto plastic behaviour, which is common in pipelines.  

Elevated pipelines are commonly encountered in petro-chemical and industrial 

applications. Within these applications, pipelines normally span hundreds of meters and 

are thus analysed using beam-type one-dimensional finite elements when the global 

behaviour of the pipeline is sought at a reasonably low computational cost. Standard 

beam-type elements, while computationally economic, are based on the assumption of 

rigid cross-section. Thus, they are unable to capture the effects of cross-sectional 

localized deformations.  Such effects can be captured through shell-type finite element 

models. For long pipelines, shell models become prohibitively expensive. Within this 

context, the present chapter formulates an efficient numerical modelling which 
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effectively combines the efficiency of beam-type solutions while retaining the accuracy 

of shell-type solutions based on the Iterative Global-local Method. Solutions based on 

the present model are compared to those based on full shell-type analysis. The 

comparison demonstrates the accuracy and efficiency of the proposed method.  

4.2. Introduction 

Thin-walled pipes are widely used in industrial applications. Usually, they are 

susceptible to buckling and it is important to accurately predict their nonlinear response. 

Pipes usually span much larger distances in comparison to their cross-sectional 

dimensions. As such, beam-type elements are commonly adopted in their analysis. 

Standard beam-type elements, however, are based on the assumption of rigid cross-

section and thus, cannot consider the deformations of the cross-section such as local 

buckling (Karamanos 2002) and only allow considerations of the global behaviour such 

as flexural-buckling (Hobbs 1981). In contrast, shell-type finite elements can capture 

local effects. The buckling response for long pipes under combinations of bending, axial 

force, and external pressure using shell analyses were investigated in (Houliara & 

Karamanos 2006, 2010; Karamanos & Tassoulas 1996). On the other hand shell 

elements are computationally more expensive and time consuming, and for typical 

pipeline networks spanning hundreds of meters, such shell analyses become impractical.  

In pipe buckling behaviour, the interaction of local with global modes gives rise to 

multiple scales in the deformation fields. In order to capture the effect of local 

deformations, shell formulations have been utilised in the past e.g., (Ju & Kyriakides 

1992; Ozkan & Mohareb 2009; Song & Tassoulas 1993; Weicker et al. 2010). 

Localized plasticity effects have also been incorporated into pipeline analysis through 

generalized plasticity models (Nowzartash & Mohareb 2004). In order to capture 
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ovalization in pipe elbows, efficient beam type formulations have been developed 

(Bathe & Almeida 1980, 1982; Militello & Huespe 1988).   

In this chapter, the Iterative Global-local Method is extended for the elasto-plastic 

analysis of pipes. For that purpose, a beam-type element based on Euler-Bernoulli beam 

theory is adopted as the global/coarse-scale solution while a more-detailed elasto-plastic 

shell element is used as the local/fine-scale model. Similar to the previous chapters, the 

material behaviour of the global model is assumed to be linear elastic. However, elasto-

plastic material response is considered for the local shell element.  Comparisons with 

full shell- and beam-type models are provided in order to illustrate the efficiency of the 

proposed analysis.  

4.3. Beam-type analysis 

4.3.1. Kinematic assumptions, strains and stresses 

In order to simplify the global analysis a beam formulation is used, which is based on 

the classical kinematic assumptions of the Euler-Bernoulli beam theory. These are: (a) 

plane section remains plane after deformation; (b) longitudinal axis of the pipe stays 

perpendicular to the cross-sectional plane after deformation; (c) contour of the cross-

section does not deform in its plane; (d) normal stresses within the cross-sectional plane 

(hoop stresses) are zero. These assumptions imply that the nonzero strains in the pipe 

strain vector, i.e. ε  are due to the axial strains induced by membrane and bending 

actions, and shear strains induced by torsion only.  
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Figure 4.1: Deflections of the beam-type formulation 

The beam element strain vector can be written in terms of linear and second order 

nonlinear terms, i.e. L Nε ε ε . The linear axial and shear strains L  and L , 

respectively can be obtained in terms of the derivatives of displacements , ,u v w and the 

angle of twist  (Figure 4.1) as   

T0 0L L L Lε Sχ  (4.1) 

which can be decomposed in terms of a matrix of cross-sectional coordinates, i.e. 

1 0
0 0 0 0

0 0 0
0 0 0 0

x y

R
S  (4.2) 

and a vector of linear displacement derivatives, i.e. 

T ' '' '' 'L w u vχ  (4.3) 

x,
y,

R

v

wz,
u
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In Eq. (4.2), x and y  identifies coordinates of a point on the cross-section, and R  is 

the radius of the pipe (Figure 4.1). In Eq. (4.3), prime denotes derivative with respect to 

the axial coordinate z, i.e. () =d() dz . The nonlinear strains can be written as 

T0 0N N N Nε Sχ  (4.4) 

 in which N  is the nonlinear axial strain and N  is considered to vanish. Similar to 

linear strains, the nonlinear strain vector in Eq. (4.4) can be expressed by using the same 

matrix of cross-sectional coordinates S  post-multiplied by a vector of second-order 

displacement derivatives, i.e., 

T 2 21 ' ' 0 0 0 0
2N u vχ  (4.5) 

4.3.2. Interpolation functions for the beam displacements 

The element is developed by using linear interpolations for w  and and cubic 

interpolations for u  and v . Thus, the displacement vector of the beam axis is 

a au X d  , in which 

T

a w u vu  (4.6) 

where the matrix of interpolation functions can be written as 

T

T

T

T

a

L 0 0 0
0 H 0 0

X
0 0 H 0
0 0 0 L

 (4.7) 
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In Eq. (4.7), vectors L  and H  are used for linear and cubic interpolation, respectively, 

i.e., 

T

1 z z
L L

L  (4.8) 

and 

T2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 21 z z z z z z z zz
L L L L L L L L

H  (4.9) 

The nodal displacement vector d  of the beam type finite element can be written as 

T

1 2 1 1 2 2 1 1 2 2 1 2x x y yw w u u v vd  (4.10) 

in which subscripts 1 and 2 refer to each of the two end nodes, x  and y  refer to 

bending rotations in z x and z y  planes (Figure 4.1) respectively. Under the rigid 

sectional contour assumption of the beam theory, the displacement vector of a point  

on the cross-section can be written as u Nd  where 

T
w u u v vu  (4.11) 

and N YZ  in which Z  is a matrix of interpolation functions, i.e., 
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T

T

T

T

T

T

T

d
d

d
d

d
d

z

z

z

L 0 0 0
0 H 0 0
0 0 H 0
0 0 0 L

HZ 0 0 0

H0 0 0

L0 0 0

 (4.12) 

and Y is a matrix of cross-sectional coordinates, i.e., 

1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0 0

x y
y

y
x

x

Y  (4.13) 

4.3.3. Variational formulation 

The equilibrium equations for static analysis can be obtained in the variational form as 

Tδ δ d d δ 0
L A

A z Tε σ d f  (4.14) 

in which A is the cross-sectional area, L is the beam span and f  is the external load 

vector. In this study, in the region where no local deformations occur, the material 

behaviour is assumed elastic. Thus, in Eq. (4.14), the beam stresses can be obtained 

directly from the strains using the linear stress-strain relationship for an isotropic 

material, i.e., σ Eε , where the vector of beam stresses can be written as 
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T0 0σ  (4.15) 

and the beam constitutive matrix E  can be written as 

0 0 0
0 0 0 0

0 0 0
2 1

0 0 0 0

E

EE  (4.16) 

The first variation of the strain vector for the beam element can be written as 

δ δε SB d  (4.17) 

where B  can be written as 

1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

a

u v

B X  (4.18) 

in which 

T

2

2

2

2

d 0 0 0 0 0 0
d

d d0 0 0 0 0
d d

d d0 0 0 0 0
d d

d0 0 0 0 0 1
d

z

z z

z z

z

 (4.19) 
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4.4. Shell-type analysis 

4.4.1. Kinematic assumptions and strains 

A schematic of the shell element and the adopted coordinate system is shown in Figure 

4.2, in which the x and y axes define a plane tangential to the mid-surface of the shell 

and z axis is normal to the mid-surface. 

 

Figure 4.2: Deflections of the beam-type formulation 

Strains of the shell-type  analysis are composed of linear strains due to (a) membrane 

deformations ˆmmε , (b) plate bending deformations ˆbε , and (c) nonlinear components of 

strains due to membrane and plate bending action ˆ Nε , i.e., 

Tˆ ˆ ˆ ˆˆ ˆ ˆ ˆmm b N x y xy mε ε ε ε  (4.20) 

The vector of linear components for the membrane strain ˆmmε  can be written as  

0 0 0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1ˆ ˆ ˆˆ ˆ
2 2

T T
mm m z y z

v u u v u v v uf
x y x y r y x x y

ε ε  

(4.21) 

x

y
z

u
v

z

w
x

y
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in which  x̂  and ˆ
y  are rotations in local x-z and y-z  planes respectively (Figure 4.2), 

ẑ  is the drilling rotation  about the z  axis, and 0û  and 0v̂  are the displacements of the 

mid-surface in the local x-y plane (Figure 4.2). In Eq. (4.21) the term ˆ
yf r  is 

added according to Marguerre shallow shell theory (Cook 1990). 

 

Figure 4.3: Arch elevation used in shell formulation       

As shown in Figure 4.3, f f r   is the expression for the elevation of the arch in Z-Y 

plane in terms of coordinate r. In calculating the element length and locations of the 

integration points, the arch length was considered.  

For the membrane component of the shell-type element, the finite element of 

Ibrahimbegovic et al. (1990) employing drilling degrees of freedom is adopted herein. 

Adopting the membrane element with drilling degree of freedom is important because it 

allows easy assemblage when non-coplanar elements exist (Figure 4.4), which is the 

case for pipes. 
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Figure 4.4: Global vs. local coordinate system in the shell element 

The last entry in Eq. (4.21) contains the skew symmetric part of the membrane strains 

which is introduced into the potential energy functional related to a penalty term to 

avoid numerical instability when drilling rotations ẑ  are used with Allman-type 

interpolations (Hughes & Brezzi 1989), as discussed in Chapter 2. According to 

Mindlin-Reissner theory (Cook et al. 2002), the plate bending strains can be written as 

ˆ ˆˆ ˆ
ˆ ˆ 0 0

T

T y yx x
b z z

x y y x
ε χ  (4.22) 

in which χ̂  is the curvature vector. It is assumed that the second order longitudinal 

displacement derivatives, second order lateral strains and second order shear strains are 

negligibly small, i.e., 2 2
0 0

1 ˆ ˆ 0
2

w y u y , 0 0ˆ ˆ 0w x w y . Thus, the 

nonlinear strain component can be written as 

2 2
0 0ˆ ˆ1 1ˆ 0 0 0

2 2

T

N
w v
x x

ε  (4.23) 

in which 0ŵ  is the out of plane deflection of the mid-surface in the local z direction 

(Figure 4.2). It should be noted that the second order strain component is consistent 

with the second order strains of the beam formulation (Section 4.3), so that the beam 

solution can be considered as a special case of the shell solution.  

X
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4.4.2. Constitutive relations 

The shell analysis is elasto-plastic. In this study, for convenience, we apply the one step 

forward Euler numerical procedure as described in Crisfield (1991). Initially, the vector 

of total stresses at any point within the shell is 

T
ˆ ˆ ˆ ˆ ˆx y xy mσ  (4.24) 

Assuming that the whole strain increment is elastic, the stress increment can be written 

as 

ˆˆ ˆσ E ε  (4.25) 

in which the matrix of elastic material properties of the shell element Ê  can be written 

as  

2

1 0 0
1 0 0

1ˆ 0 0 0
21

1
0 0 0

2

EE  (4.26) 

in which E is Young’s modulus and  is the Poisson’s ratio. The last diagonal term in 

Eq. (4.26) arises from the penalty term introduced into the potential energy functional 

(Hughes & Brezzi 1989). Within an incremental iterative solution, the trial stresses are 

obtained using stress increments. Under plane stress plasticity conditions, i.e. 

ˆ ˆ ˆ 0z yz zx , the von Mises yield criterion is used to determine whether the trial 
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stresses are elastic. According to the forward Euler procedure (Crisfield 1991), since 

0z , a four-dimensional yield surface f is assumed  as 

ef Yf  (4.27) 

where 
1/22 2 2 2ˆ ˆ ˆ ˆ6 2ef x y y z z x xy  and Y  is the yield stress 

limit. When yielding occurs, the relation between the stress increment and the elastic 

strain increment is re-written in a four-dimensional context as 

1
2

ˆˆ 1 0
ˆˆ 1 0

ˆ
ˆˆ 1 01 1 2
ˆˆ 0 0 0 1 2

x ex

y e y
a a ea

z ez

xy exy

E eσ E ε  

(4.28) 

The elastic part of the strain increment can be expressed as the plastic strain increment 

subtracted from the total strain, i.e., ˆ ˆ ˆea a paε ε ε , where  

T ˆ ˆ ˆ ˆˆa x y z xyε . Strains ˆx , ˆy  and ˆ xy  are obtained from the 

displacement increments as given in Eqs. (4.21) to (4.23). Strain ˆz  can be obtained 

by using the plane stress condition, i.e.,  0z  in Eq. (4.28) while assuming 

incompressible plasticity (Marques 1984) yielding 

1 2
1 2 1z x y x y

ef

 (4.29) 

From the Prandtl-Reuss flow rule for associative plasticity, the plastic strain increment 

vector paε  can be written as  
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pa
a

fε
σ

 (4.30) 

in which a a a

a a a

T e

T e

a E ε
a E a

. By setting 0z , one obtains aa  as 

T
T 1 2 2 6

2a x y y x x y xy
ef

fa
σ

 (4.31) 

It should be noted that ˆm  is assumed elastic. Updated stresses are collected in Eq. 

(4.24). 

The interpolation functions of the shell element are similar to the ones used in Chapter 2 

(Appendix 2.A.) 

4.4.3. Variational formulation and consistent linearization 

For the shell analysis, the equilibrium equations can be obtained in the variational form 

as 

T T ˆˆˆ ˆ ˆδ δ d d δ 0
L A

A zε σ d f  (4.32) 

in which ε̂  represents the vector of strain components. The virtual work functional of 

the shell element is modified in order to avoid numerical stability issues with Allman 

type interpolations of the membrane component as suggested in (Ibrahimbegovic et al. 

1990) and thus, the skew symmetric part of the membrane strains and associated drilling 

rotations are contained in the first term in Eq. (4.32). In the last term of Eq. (4.32), f̂  is 

the external load vector. The first variation of the strain field of the shell element can be 

expressed as 
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ˆ ˆ ˆˆδ δε SB d  (4.33) 

where B̂  and Ŝ  for an element are explicitly given in Appendix 4.A. The incremental 

equilibrium equations for the shell formulation can be obtained by subtracting the first 

variation of the modified potential energy in Eq. (4.32) at two neighbouring equilibrium 

states and then linearizing the results by omitting the second- and higher-order terms, 

i.e. 

ˆˆ ˆ ˆ ˆˆδ δ δ 0T Td K d d f  (4.34) 

where K̂  is the tangent stiffness matrix of the shell model, i.e.,  

T Tˆ ˆˆ ˆ ˆ ˆ ˆd d dep
L A L

A z zK B S E SB M  (4.35) 

where T Tˆˆ ˆ ˆ ˆδ d
A

AM d B S σ  and ˆ
epE  is the elasto-plastic constitutive matrix. 

4.5. Verification of the shell element 

Before using iterative global-local developments in the present model, the elasto-plastic 

shell model implemented in Section 4.4 is verified. Towards this goal, a cylinder panel 

under point load was considered. As shown in Figure 4.5, the curve edge nodes of the 

panel are assumed to be free in all directions while the side nodes are fixed against 

translation in all three directions.  
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Figure 4.5: Geometry, loading and boundary conditions of the arch  

The modulus of elasticity, the Poisson ratio and the yield stress is taken as 

3.103kN/mm2, 0.3, and .001kN/mm2, respectively. The material is assumed to be 

elastic-perfectly plastic. The results are obtained by using 20x10 elements, i.e., 20 

elements along the curved direction and 10 elements along the fixed edge direction, and 

compared with those obtained by the TRIC continuum formulation of Argyris et al. 

(2002) as shown in Figure 4.6. Acceptable agreement can be seen between the results 

considering the following two facts: a smaller number of elements are used in the 

current study (200 elements versus 800 elements used by Argyris et al. (2002)), and  a 

shear deformable shell element based on Reissner-Mindlin plate theory is used by them 

as opposed to a Kirchhoff element of the current study. 

 
 

Figure 4.6: Load-deflection relations for the arch 
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4.6. Numerical examples 

4.6.1. Cantilever pipe under compression, lateral force, and pinching 

forces 

As shown in Figure 4.7.a, the pipe analysed has a 17.15m span, a 1m diameter and a 

25mm wall thickness. The pipe is fixed at the bottom end and is subject to a 

compressive force up to N=15000kN acting at the top and a total lateral load up to 15 

kN (FY=7.5kN).   

 
 
(a) Dimensions & loading of the pipe (shell model)   (b) Equivalent global-local model 

 
Figure 4.7: Description of the modelling of the pipe 

The pipe is pinched at height z = 3430 mm through two equal and opposite sets of five 

forces 5Py as shown in Figure 4.7 (up to a value of PY = 1800 kN), in order to cause 

distortional deformations on the cross-section as well as plastic deformations. Modulus 

of elasticity and the Poisson’s ratio used in this example and the next example are 

N/12
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3200 10E  MPA and 0.3 , respectively.  The yield stress was taken as 300MPa 

and no hardening was assumed.  

For the beam-type and global-local analyses four equal-span elements were used. In the 

shell analysis, the cross-section was divided into 12 shell elements and the pipe span 

was sub-divided into 30 elements. The axial load was applied as a distributed load 

acting at the nodes of the cross-section of the shell model. In the global-local analysis 

the cross-section was again divided into 12 shell elements and span was sub-divided 

into 14 elements. In order to verify the validity of the beam-type analyses, we also 

present a comparison against the constrained shell solution which is obtained by 

applying multiple-point constraints on the nodal displacements of the shell model based 

on the decomposition matrix N  and adopting the beam constitutive matrix E . 

Firstly, a linearly elastic analysis was conducted. The applied loads were a compressive 

force (i.e., 15000N  kN) and a small lateral force, ( 7.5YF  kN). The load versus tip 

horizontal deflection and tip rotation curves are plotted as shown in Figure 4.8 a, and b 

respectively.  

Secondly, buckling loads based on a linearized buckling analysis corresponding to 

beam-type, constraint-shell-type and full-shell-type analysis are found as PA=15,277kN, 

PA=15,740kN and PA=15,587kN, respectively, thus verifying the validity of the beam 

analysis model, and suggesting that ovalization in this case has a negligible effect on the 

results. In the shell analysis, it was verified that no plastic deformations have taken 

place in the case without local deformation while plasticity is experienced when local 

loads are applied to the model. 
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(a) Tip lateral deflection  

 

(b) Rotation at the tip 

Figure 4.8: Load-deflection relations based on different modelling types  
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Thirdly, a nonlinear analysis was conducted, in which the loads were incremented from

0, 0yN F  to a maximum of 15000N  kN, 7.5YF  kN without pinching loads (i.e.,

0YP ). As shown in Figure 4.8 a-b, excellent agreement is observed between the beam 

analysis and the shell analysis.  

Fourthly, in addition to the applied compressive loads, pinching loads were 

incrementally applied from zero to 1800YP  kN in order to induce additional 

distortional deformations as well as plastic deformation. The corresponding load versus 

deflection curves are also shown in Figure 4.8. (a) and (b). It should be noted that 

comparison with fully elastic solution under local loads shows that plastic deformations 

are attained. The load versus deflection curves for the constrained shell and beam-type 

solutions are observed to be identical to those of the case where 0YP . On the other 

hand, when local deformations are introduced, the plastic deformations cause softening 

effect and increase the overall deflections of the full shell-type solution, which are not 

captured using the beam-type analysis given the rigid cross-section and elastic material 

response assumptions. In contrast, the global-local solution is very efficient in capturing 

the same behaviour as that predicted by the full shell-type analysis. In the global-local 

analysis, an overlapping region was considered between 0z  and 8003.33z  mm. 

The results are in very good agreement as can be verified from Figure 4.8. In Figure 4.9, 

the deformed shape and the stress contour for stresses in the longitudinal direction based 

on full shell-type analysis are shown for the loading of 7340N kN, 3.67YF  kN and 

880.8YP  kN.  
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                    Front   Back   Side 

 
              

Figure 4.9: Deformed shape and contour stress in the longitudinal direction based on 

the shell-type nonlinear analysis (displacements scaled by a factor of 10) 

In Figure 4.10, stresses in the longitudinal direction based on shell-type analysis are 

compared with those of the global-local solution. 
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Figure 4.10: Deformed shape and contour stress in longitudinal direction based on the 

shell-type nonlinear analysis  

The stresses are obtained at the middle of the elements by averaging the stresses at four 

integration points of the element. It can be verified that the global-local analysis results 

are very close to those of the shell analysis results. 

4.6.2. Ovalization in a simply supported pipe 

As shown in Figure 4.11, a 5m span simply supported horizontal pipe with a 200.25mm 

diameter and 3.25 wall thickness is analysed. The horizontal pipe is subject to a 

compressive force up to 6000N  kN. Self –weight of the beam is also considered in 

the analysis. 
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 (a) Dimensions of the pipe           (b) Equivalent global-local model 

Figure 4.11: Description of the modelling of the pipe 

In order to suppress inelastic behaviour, the yield stress was taken as 1450MPa. For the 

beam-type and global-local analyses, four equal-span elements are used. For the shell 

analysis the cross-section was divided into 12 elements and the span was divided into 

16 elements. In the global-local analysis the cross-section is again divided into 12 shell 

elements and the span was sub-divided into 12 elements.  Buckling loads based on the 

linearized buckling analysis corresponding to beam-type and full-shell-type analysis are 

PA=6477kN and PA=6022kN, respectively. 

As shown in Figure 4.12, load versus mid-span deflection curves are plotted up to a 

compressive load of 6000kN. A comparison of the displacements at the top and side 

nodes suggests the model successfully captures ovalization induced by bending. Results 

based on the global-local analysis closely match those based on the shell solution and 

thus successfully capture the effects of ovalization. 
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Figure 4.12: Load-deflection relations based on different modelling types 

The deformed shape based on shell analysis is shown in Figure 4.13 and the stress 

contours based on full shell-type, full beam-type and global-local analyses are shown in 

Figure 4.14. 
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Figure 4.13: Deformed shape and stress contour based on shell-type nonlinear analysis 

(displacements scaled by a factor of 30) 
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Figure 4.14: Stress in the  longitudinal direction based on global-local and full shell-

type analyses. 

Very good agreement is also observed between the longitudinal stresses predicted by 

the shell model and those based on the global-local model. 
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4.7. Conclusions 

In this chapter, an analysis method based on the iterative global-local approach was 

developed for the elasto-plastic analysis of pipes. The Iterative Global-local Method 

allows the method to incorporate the effects of local deformations on the global 

behaviour of the pipe by using a shell model only within the region of local 

deformations. A pipe buckling case was analysed and the results of the global-local 

procedure proposed herein were compared with those of the full shell- and beam-type 

analyses. It was shown that very accurate results are obtained using the proposed 

analysis procedure. Effect of ovalization on the behaviour of a thin-walled pipe is also 

illustrated and it was shown that the ovalization effect was successfully captured by 

using the global-local analysis procedure. 
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Appendix 4.A 

In Eq. (4.33), the incremental strains ˆδε   were expressed in terms of the incremental 

nodal displacements d̂  through ˆ ˆ ˆˆδ δε SB d  in which matrix Ŝ  can be written as 

ˆ zS I I  (4.A.1) 

in which I  is a 4x4 unit matrix and matrix B̂ can be written as 

ˆ ˆm Nm Nb

b

B B B
B X

0 B
ˆNbNb XNb  (4.A.2) 

and 

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

1 10 0 1
2 2

mB
000
0B  (4.A.3) 

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

bB
0 00 00 0

B  (4.A.4) 

0ˆ0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Nm

v
x

B 00B  (4.A.5) 



Chapter 4: The IGLM for the analysis of pipes  P a g e  | 157 
 

 

0ˆ
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Nb

w
x

B
xxxxxxxxx

00B  (4.A.6) 

and 

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1

x
f

y r

y

x

 (4.A.7) 

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x

y

x

y

x y

 (4.A.8) 
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Chapter 4 list of symbols 

A
  

= cross-sectional area 

d   
= nodal displacement vector of the beam 

E   
= constitutive matrix of the beam element 

Ê   
= constitutive matrix of the shell element 

f   
= external load vector of the beam element 

f̂   
= shell element external load vector 

f   
= expression for the elevation of the curved shell, yield surface 

H   
= vector of cubic interpolation functions 

K   
= stiffness matrix of the beam element 

K̂   
= stiffness matrix of the shell element 

L   
= vector of linear interpolation functions 

N   
= overlapping domain decomposition matrix 

R   
= radius of the pipe 

S   
= matrix of cross-sectional coordinates 

, ,u v w
  

= displacement components of the beam element 

u   
= displacement vector of an arbitrary point in the beam element 
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aX   
= beam interpolation matrix 

Y   
= matrix of thin-walled kinematical relations 

Z   
= matrix of overlapping domain interpolations 

, ,L Nε ε ε
 

= strain vectors of the beam element 

ˆ ˆ ˆ ˆ, , ,b mm Nε ε ε ε
 

= strain vectors of the shell element 

ˆ eaε
  

= elastic part of strain increment 

ˆ aε
  

= total strain increment 

ˆ paε
  

= plastic strain increment 

, ,x y z  = rotation components 

  
= total potential energy of the beam element 

ˆ
  

= total potential energy of the shell element 

σ   
= beam element stress vector 

σ̂   
= shell element stress vector 

ef   
= the effective stress (according to von Mises yield criterion) 

Y   
= yield stress limit of the material 

  
= twist rotation of the beam element 
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Lχ
  

= vector of beam linear displacement derivatives 

  
= differential operator 
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Chapter 5: Thin-walled curved beam formulation 

5.1. Introduction 

Curved beams are extensively used as structural elements especially in highway 

interchanges and railway bridges. Due to the couplings that arise in a curved beam 

between the displacement fields, straight beam formulations cannot be used for the 

analysis of these types of members especially when large displacements exist. As shown 

in the following, existing methods are accurate for small values of initial curvature only, 

which necessitates the development of a more robust technique.  

In this chapter, a finite element formulation is developed for the elastic analysis of thin-

walled beams curved in a single plane. Using a second-order rotation tensor, the 

curvature values of the deformed configuration are calculated in terms of the 

displacement values and the initial curvature. The principle of virtual work is then used 

to obtain the nonlinear equilibrium equations, based on which, a finite element beam 

formulation is developed. The accuracy of the method is confirmed through comparison 

with test results and shell-type finite element formulation. It was observed that the 

current element is more accurate than the previous formulations, especially for large 

included angle per beam finite element. 
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5.2. Literature review 

Curved members are extensively used in engineering structures such as highway 

interchanges and railway bridges. A horizontally curved member subjected to a vertical 

out-of-plane loading undergoes torsion, compression, and biaxial moments as primary 

actions. Apart from that, second order bending moments and torsional moments are 

generated by coupling between the angle of twist and the bending moment and between 

the vertical displacement and the torsional moment, respectively.  

Timoshenko (1923) made the first effort to solve the problem of curved beams. He 

considered the curved beam shown in Figure 5.1, which is a portion of a circular ring 

fixed at one end with loading of a vertical out-of-plane point load applied at the free 

end. The deflections of the beam were considered as a combination of deflection in two 

perpendicular planes plus the twist of the section. He assumed that the cross-section 

remains rigid during deformations, and that warping deformations are negligible.  

 

Figure 5.1: Layout of the curved beam analysed by Timoshenko (1923) 

Based on these assumptions, Timoshenko found the potential energy functional based 

on bending in two directions and the torsion of the member, which were used to find the 

deflection of the bar. 
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Brookhart (1967) derived differential equations of a circular horizontally curved beam 

by extending Timoshenko’s theory of torsion. However, numerical methods have 

gained much more popularity in the analysis of curved beams since solving the 

corresponding differential equations to obtain stresses and displacements in the curved 

beams are very complicated in most of the cases.  

Traditionally, horizontally-curved beams were numerically analysed by a sequence of 

short straight beam elements. However, it was shown (Sawko 1967) that the straight 

idealisation error may be significant even for small included angle (in the order of 1˚). 

Consequently, several researchers proposed curved beam finite elements, starting from 

the late 1960s. Sawko (1967), Brookhart (1967) and Young (1969) proposed finite 

element models for beams curved in plan. El-Amin & Brotton (1976) included the 

warping restraint in the formulation of a displacement-based finite element. Later, El-

Amin & Kasem (1978) improved the efficiency of the model by assigning higher order 

polynomials for the angle of twist: in the former both the vertical displacement and the 

angle of twist of the beam were interpolated by cubic polynomials. While the vertical 

displacement polynomial was unchanged, a 7th order polynomial was utilized to model 

the angle of twist of the beam.  

Akhtar (1987) obtained the stiffness matrix of a circular member using flexibility 

matrix. To this end, he considered a beam element consisting of a portion of a circle 

with end actions of shear force, axial force and a bending moment. The flexibility 

matrix was then obtained by differentiating the energy equation with respect to each of 

the actions. Flexibility matrix was inverted at last to find the stiffness matrix. Krenk 

(1994) derived the stiffness matrix for beam element by using the static equilibrium 

state along with the principle of stationary complementary energy. The method was 

applied to a circular beam. However, neither of the two finites elements discussed 
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herein is applicable to horizontally curved beams because the torsional actions are not 

considered in formulating the stiffness matrices. Therefore, these two methods can be 

used when the curvature of the beam is in the vertical plane as in arches. 

Pantazopoulou (1992) proposed a displacement-based finite element for horizontally-

curved beams. In order to prevent locking problems, he used lower order interpolation 

polynomials and adopted a selectively-reduced integration procedure.  

All the aforementioned numerical models were based on the linear analysis of curved 

beams. However, the effect of geometric nonlinearity may be significant for curved 

members even under serviceability stage and therefore, several finite element 

formulations have been developed to capture the geometrically nonlinear behaviour. 

These works include those of Fukumoto & Nishida (1981) and Yoshida & Maegawa 

(1983) for the analysis of horizontally curved I-beams undergoing large displacements. 

The transfer matrix method was used to solve the differential equations in order to 

obtain the ultimate strength of the member. The transfer matrix method considers the 

second-order actions due to material and geometric nonlinearities as well as the residual 

stresses. Iura & Atluri (1988) developed a three dimensional beam element for elements 

curved in space. Liew et al. (1995) used triangular and quadrilateral shell elements in 

the finite element program ABAQUS to study the second order behaviour of 

horizontally curved I-beams by focusing on the effect of radius of curvature to span 

length and the residual stresses on the ultimate load capacity of the member. Based on 

the study, they proposed a design formula for predicting the ultimate load-carrying 

capacity of horizontally curved I-beams.  

All the nonlinear studies discussed so far (Fukumoto & Nishida 1981; Liew et al. 1995; 

Yoshida & Maegawa 1983) are limited to beams with very small horizontal curvature. 
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Yoo et al. (1996) presented a finite element formulation by the principle of minimum 

potential energy. They included the effect of curvature in derivation of elastic and 

geometric stiffness matrices; therefore, the model was capable of analysing beams with 

higher initial curvature. Using the model, they studied the bifurcation buckling of 

horizontally curved beams, and presented relations to predict the ultimate load. 

Several researchers have worked on developing finite elements based on the 

“geometrically exact beam theory”. The motivation is that conventionally in developing 

the finite elements based on energy equations, strain-displacement relations are used to 

specify the strain based on the kinematic assumptions that relate the displacement at an 

arbitrary point on the cross-section to the displacement and rotations of the centre line. 

In order to separate the linear relations from the nonlinear part, approximations are 

normally made. However, it has been reported (Crisfield 1990; Simo & Vu-Quoc 1987) 

that this sort of approximation may result in the loss of some important terms in the 

strain-displacement relations, resulting in overly stiff nonlinear response. To solve the 

problem, the geometrically exact formulations have been proposed that are based on the 

resultants of the equilibrium equations. Simo (1985) developed the first finite element 

formulations based on the geometrically exact descriptions, without considering 

warping effects. Simo & Vu-Quoc (1991) added the torsional warping effect and the 

warping due to combined bending and torsion to the theory.  

Sandhu et al. (1990) and Crisfield (1990) developed a co-rotational formulation for 

curved beams undergoing large deformations. In co-rotational formulations, the rigid 

body motion of the element is removed by assigning a local coordinate system attached 

to each finite element, which is capable of continuous translation and rotation with the 

element displacements during the loading.  
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Pi & Trahair (1997) studied the behaviour of horizontally curved beams under vertical 

loading and developed a curved finite element. They concluded that when the included 

curvature in the beam is small, the nonlinear behaviour of the beam becomes similar to 

straight beams (i.e. lateral-torsional buckling becomes the dominant mode of failure). 

However, when the included angle is relatively large, the coupling between the bending 

moment and the twisting moment become significant, and the nonlinear behaviour starts 

far before the lateral-torsional buckling load. Based on these observations, they stated 

that the term “Buckling load” may not have much significance in curved beams. 

Although mathematical values of the buckling load can be obtained from the nonlinear 

equilibrium equations, they don’t have a physical significance and are the maxima and 

minima of the load-deformation curve.   

Pi et al. (2005) stated that inclusion of Wagner moments and Wagner terms 

considerably increases the accuracy of the models dealing with cases with large 

torsional actions. As torsion is a primary action in horizontally-curved beam, they 

concluded that a sound finite element for such problems cannot ignore the Wagner 

effects. Consequently, based on the geometrically exact definition of kinematics of the 

deformations, a finite element was developed that included Wagner moments and 

Wagner terms in the finite strains to predict the torsional behaviour of the member more 

accurately. The model was made applicable for beams with initial curvatures in two 

directions as well as initial twist, and their interaction with large displacements. 

Erkmen & Bradford (2009) extended the work of Pi & Trahair (1997) by developing a 

finite element formulation for the elastic dynamic analysis of horizontally curved I-

beams. It was observed by the authors that the response of curved beams is considerably 

different when the initial curvature is medium to large. However, the formulation based 
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on Pi & Trahair (1997) is accurate when the initial curvature per the beam element is 

relatively small.  

In this study, using a second-order rotation tensor, the curvature values of the deformed 

configuration are calculated in terms of the displacement values and the initial 

curvature. The principle of virtual work is then used to obtain the nonlinear equilibrium 

equations, based on which a finite element beam formulation is developed.  

5.3. Assumptions and scope 

The following assumptions are made in this study: 

 The beam is assumed to be initially curved in a single plane.  

 The cross-section is assumed to remain rigid throughout the deformation. 

 The shear strains are considered to be negligible on the mid-surface. 

 Rotations and deflections are large, but strains are assumed to be small. 

5.4. Kinematics of the problem 

5.4.1. Displacements 

A schematic of a curved beam can be seen in Figure 5.2, where the undeformed and 

deformed configurations of the curved beam are shown by dashed and solid lines, 

respectively. 
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Figure 5.2: Schematic of the curved beam: Coordinate systems and displacements 

 In order to incorporate large deformations of the curved beam, we assign a fixed space 

and two sets of coordinate systems for undeformed and deformed configurations of the 

body. The fixed space axes OXYZ are formed by the orthogonal basis provided by the 

triad ( , , )X Y ZP P P P . In order to demonstrate the undeformed configuration of the curved 

beam, a body-attached oxys coordinate system is adopted, the origin of which is placed 

at the centroid of the cross-section. The axis os is tangent to the axis of the beam, while 

the axes ox and oy lie in the plane of the cross-section and pass through the principal 

axes. The three components of the triad ( , , )x y sp p p p  form an orthogonal basis of the 

system oxys in the direction of the tangent of the axes ,ox oy and os  respectively as 

depicted in Figure 5.2. The deformed configuration of the curved beam is shown by 

another set of axes 1 1 1 1o x y s , which form a (Lagrangian) curvilinear coordinate system 

qy 

y1 
x1 

qx 

o1 
qs 

s 

s1 

PY , 
,PX  a0 

PZ , ,py 

px 

ps 
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that changes with the deformation of the member and coincides with oxys in the 

undeformed state. Similar to the undeformed coordinate system, the axis 1 1o s lies in the 

direction tangent to the axis of the deformed beam and the axes 1 1o x  and 1 1o y lie in the 

cross-sectional plane of the deformed configuration. A triad ( , , )x y sq q q q  forms the 

orthogonal basis for the latter system, the components of which are in the tangent 

direction of 1 1,o x 1 1o y and 1 1o s  respectively.  

Based on the above definition, the position vectors of a point P on the cross-section 

before and after the deformation can be stated as 

0 0 x yx ya r p p  (5.1) 

( , ) ( )x y x y p sx y sa r q q q
 

(5.2) 

where 0r and r are the position vectors of the centroid o  before and after the 

deformation respectively in the fixed axes OXYZ , ( , )x y is the normalized section 

warping displacement function and ( )p s is the warping amplitude. The position vector 

of the deformed centroid can be obtained from the undeformed centroid and the 

displacement components as (Figure 5.2) 

0 x y su v wr r p p p  (5.3) 

The orientation of the triad q  is determined by the use of a rotation tensor R multiplied 

by the triad p as 

q Rp  (5.4) 
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According to the orthogonality condition of the rotation tensor, i.e. TR R I , only six 

out of the nine components of the rotation tensor are linearly independent. According to 

the Euler-Rodriguez formula (Koiter 1984), the rotation tensor can be calculated in term 

of the rotation components 1, 2  and 3  around the axes ,OX OY and ,OZ

respectively, as 

31 1
2 21ij ij k k ikj k i jR o  (5.5) 

where ij is the Kronecker delta, ikj is the permutation symbol and 3o  refers to 

terms higher than second order. The indices 1, 2 and 3 indicate the x , y and s axes, 

respectively. According to the right hand rule sign convention, the rotation components 

i  are related to the derivatives of the displacement of the beam centroid as 

X v  (5.6) 

Y uu (5.7) 

For a beam curved in plan, 0u u w0u u 0uu where ,u v  and w  are displacement 

components in ,x y and s directions respectively, and 0 is the initial curvature of the 

curved beam’s centroidal locus about the Y axis. By neglecting rotation terms higher 

than the second order, the rotation matrix can be written as 

2 21 1 1
2 2 2

2 21 1 1
2 2 2

2 21 1 1
2 2 2

1

1

1

u u v u v

u v v v u

u v v u u v

R

2 1 12 v1 v11 12 1 12 12u u v uu v u1112
2 2 v2 22 22 v222u u v u22

2 21 12 2 u1 u11 11 2 21 11 2 21 2 2v vv vu v 11 11 2 2
2 2 u2 22 22 u222 v vv vu v 221

2 21 1 1 21 1 1111 211 11
2 2 2 u v2u 2 2222

2vu u21u 2 v vv v 22
1 21u uu11u 1 11v v uv vv 111 211 11

 (5.8) 
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in which is the twist rotation of the cross-section, and the symbol () denotes the 

derivative with respect to the s coordinate. 

5.4.2. Curvature values at deformed configuration 

In the deformed configuration, the curvatures in x  and y directions, i.e. x and y , and 

the twist can be obtained by Frenet-Serret formulae (Love 1944) using the 

aforementioned rotation matrix (Appendix 5.A) to be 

1 1 1 1
02 2 21x v u u u v1 11 11111

2 2022 0
1
2 u v1
222 0222 0
1111111u uuu1111

02222 0
1111  (5.9) 

1 2 21 1 1 1
02 2 2 21 1y u v v v1111

22u 22
11
2
1

 
(5.10) 

1 1 1 1
02 2 21s u v u v v u1 11 111 11

2 202 20
1

2 20 u1
2 22 0
1 1111u v u v vu v v111

0222 0
111

 
(5.11) 

where 0 is the initial curvature of the curved beam’s centroidal locus about the Y axis, 

0w w uw ww and  can be written as 

2 2 21 1 1
2 2 2w u v w2 2 21 1 12 22
2 2 2 w1w 2 2 22
1 2 221 112 22w u vu v1 111
2 222
1 2 22  (5.12) 

5.4.3. Strains 

Using the right extensional strain definition we have 

D = RU- I  (5.13) 

where D is the deformation gradient tensor, R is the rotation tensor, I is the identity 

matrix and U is the right stretch tensor, i.e. .U I +ε  Pre-multiplying Eq. (5.13) by TR

we have 
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T TR D = I +ε -R  (5.14) 

 The strain can be obtained from Eq. (5.14) as 

T Tε R D I R  (5.15) 

Matrix D  is found by taking the gradient of the deformation vector with respect to ,x y

and s  coordinates. The deformation can be considered as the difference between the 

initial and final position vectors a and 0a  

0 0 0

x y s
a a a a a a

D  (5.16) 

Using the definitions of the position vector in Eq. (5.1), the deformation gradient tensor 

in calculated in terms of curvature components of the deformed configuration as 

0

0 0 (1 )

0 0 (1 )

(1 ) 1 1

s y

s x

y x

y p

x p

y p x p x y p x
x y

D =  (5.17) 

By performing the calculations (Appendix 5.B), the normal strain can be written as  

2 2 21 1
0 02 2

2 23 31 1
02 2 2 2

23 3 3 31 1
0 02 2 2 2 2 2

21 1 1 1 1 1 1
0 02 2 2 2 2 2 2

ss w w u uw u

x u v v w v

y v u u u v w w v w

u v u v v u u v w v w w w
 

(5.18) 

The shear strain is calculated to be 
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1 1 1 1
02 2 21sx y u v u v v u

x
1 11 111 11
2 202 20

1 u1
2 22 0
1 1111u v u v vu v v111

0222 0
111  (5.19) 

1 1 1 1
02 2 21sy x u v u v v u

x
1 11 111 11
2 202 20

1
2 20 u1
2 22 0
1 1111u v u v vu v v111

0222 0
111

 (5.20) 

On the other hand, from the assumption of negligible shear strain on the mid-surface, 

the only non-zero shear strain is through the thickness t  of the plate stiffness and can be 

approximated as 

1 1 1 1
02 2 22 2 1p sr r u v u v v u1 11 111 11

2 202 20
1

2 20 u1
2 22 0
1 1111u v u v vu v v111

0222 0
111  (5.21) 

in which r  is the normal distance from the mid-surface.  It can be seen that the latter is 

compatible with Eqs. (5.19) and (5.20). Replacing 0 ,u u w0u u 0uu the shear strain will be 

equal to 

1 21 1 1 1 1 1
0 02 2 2 2 2 22 2 1p sr r u v u v v u v w v w w  

(5.22) 

It should be noted that  
22

2r y x
x y

 and  2 2
p sx sy  were 

used in Eq. (5.22), and  is approximated as the Vlasov warping function  (Vlasov 

1961), i.e. .  

5.4.4. Variations of strains  

The first variation of the normal and shear strain can be written as 

T

p pε SB θ SBN u  (5.23) 
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The matrix S  in Eq. (5.23) contains geometrical characteristics of the point and can be 

shown explicitly as 

1 0
0 0 0 0 2 p

x y
t

S  (5.24) 

The non-zero elements of matrix B  are presented in Appendix 5.C, and vector θ  

contains displacement components of a point in the body as 

Tu u u u v v v v w w wθ (5.25) 

N includes shape functions that are polynomial functions of s , and u  is the nodal 

displacement vector (Appendix 5.E).  

5.5. Stresses and Stress Resultants  

In this study, linear-elastic material behaviour is assumed. Correspondingly, the 

constitutive relations can be of the form 

0
0

T p
p p

p

E
G

σ Eε  (5.26) 

where E  and G  are the Young’s modulus and the shear modulus of the material, 

respectively. The stress resultants vector can be written as 

T T
x y

A

N M M B T dAR S σ  (5.27) 

where ,N ,xM ,yM B  and T  are the axial normal force, bending moments about x  

and y  axes, bimoment and the torque, respectively, which are shown explicitly as 
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,p
A

N dA  (5.28)  

,x p
A

M ydA
 

(5.29) 

,y p
A

M xdA
 

(5.30) 

,p
A

B dA
 

(5.31) 

2 .p p
A

T t dA
 

(5.32) 

The cross-sectional properties associated with the above stress resultants are 

,
A

A dA  (5.33)  

2 ,xx
A

I y dA
 

(5.34) 

2 ,yy
A

I x dA
 

(5.35) 

2 ,
A

I dA
 

(5.36) 

while the torsional constant associated with the torque can be written as 

31
3

1

n

d i i
i

J b t  (5.37) 

where n  is the number of plate sections in the cross-section and ib  and it  are the width 

and thickness of the thi  segment, respectively.  
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5.6. Loading 

The vector of the external loading is defined as 

,
T

x y s ex ey es eQ Q Q M M M BQ  (5.38) 

 in which ,xQ yQ  and sQ  are the concentrated force in the X, Y and S directions, 

respectively, exM  and eyM  are the bending moments around X and Y  axes, esM  is the 

external torque and eB  is the externally applied bimoment. The distributed external load 

vector can be written in the same fashion as 

,
T

x y s ex ey es eq q q m m m bq  (5.39) 

The components of q  are the counterparts of concentrated external loads of Eq. (5.38) 

distributed along the s-direction throughout the member. The concentrated and 

distributed loads are all applied at the centroid of the cross-section. 

5.7. Principle of Virtual Work 

5.7.1. Nonlinear equilibrium equations 

According to the principle of virtual work, if a kinematically admissible virtual strain is 

applied to a structure in equilibrium, the sum of the work done by the external forces 

due to the virtual strain is equal to the work done internally by the stresses 

0U V  (5.40) 
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where U  and V  are the variation of internal work and the variation of work done by 

external forces, respectively. The variation of the internal work can be written as 

0 0

.
S S

T T T T T T T T

V A

U dV dA ds dsε σ u N B S σ u N B R  (5.41) 

The virtual work done by the external loads can be written as 

1 10 0

S Sn n
T T T T T T T

q i i i q i i
i i

V ds dsu q u Q u N A q u Q u F  (5.42) 

By the virtue of Eq. (5.40) we have 

0

S
T T T Tdsu N B R u F  (5.43) 

As the virtual displacement vector u is arbitrary, the equilibrium equation can be 

written as 

0

S
T T dsN B R F  (5.44) 

5.7.2. Consistent linearization 

The incremental equilibrium equation is obtained by subtracting the expressions for 

virtual work at two neighbouring positions, i.e. , ,u q Q  and

, ,u u q q Q Q , and linearizing the results by omitting second and higher 

order terms. Using the Taylor expansion, the difference between the aforementioned 

virtual expressions can be approximated with the second variation of the potential as 
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, , , ,u u q q Q Q u q Q
 

T T Tu q Q
u q Q

 
(5.45) 

As matrices B  and R  in the equilibrium Eq. (5.44) are functions of the displacement 

vector ,u the first term of Eq. (5.45) can be written as 

0 0

S S
T T T T T T

T ds dsu u N B R u N B R
u

 (5.46) 

By noting that 

T T

A A

dA dAR S E ε S ESBN u  (5.47) 

Eq. (5.46) can be written as 

0

,
S

T T T T
T dsu u N B R u K u

u
 (5.48) 

where K  is the stiffness matrix  

T T

S

dsK N B DBN  (5.49) 

in which  

T

A

dAD S ES  (5.50) 

is the elasticity matrix. The variation of the B  matrix is handled by the introduction of a 

14×14 matrix M  that satisfies the following equation 
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TB R M θ M N u  (5.51) 

Consequently, Eq. (5.48) takes the form 

0

S
T T T T

tT dsu u N M N u u K u u K u
u

 (5.52) 

Non-zero elements of the matrix M  are given explicitly in Appendix 5.D. The second 

terms of Eq. (5.45) can be written as 

0

,
S

T T
i qT dsq u N A q

q
 (5.53) 

and from the last term of Eq. (5.45), 

1
.

n
T

i iT
i

Q u Q
Q

 (5.54) 

By the virtue of Eqs. (5.45), (5.52), (5.53) and (5.54), the incremental equilibrium 

equation can be expressed as 

0tK u F  (5.55) 

where u  is the incremental displacement vector and F  is the incremental load, 

which is shown explicitly in Eq. (5.56).   

0

.
S

T T
q dsF Q N A q  (5.56) 
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5.7.3. Finite element formulation 

A finite element formulation is developed according to the abovementioned discussion, 

by assigning cubic interpolation for u , v  and , and a linear interpolation for w .The 

shape function matrix N  and the nodal displacement vector u  are presented in 

Appendix 5.E. 

5.8. Applications 

The accuracy of the proposed model is verified in the following numerical examples by 

providing comparisons with results from the literature and a full shell-type finite 

element formulation.  

The plate-bending component of the shell element is developed by using Discrete 

Kirchhoff Quadrilateral (Batoz & Tahar 1982) that omits the shear deformation effects 

to avoid shear locking in the analysis of thin plates. The finite element developed by 

Ibrahimbegovic et al. (1990) employing the drilling degree of freedom is used for the 

membrane component of the shell element. Using the Isoparametric formulation, a four-

noded quadrilateral is developed with 6 degrees of freedom per node. The finite element 

is developed by adopting standard linear interpolation function for the out-of-plane 

displacement and Allman-type interpolation functions for the in-plane deflections. The 

drilling degree of freedom is interpolated using the standard bilinear functions.  

5.8.1. Simply-supported horizontally-curved beam 

In the first example, simply-supported curved beams tested by Shanmugam et al. (1995) 

are analysed using the proposed beam element for verification purposes. The beams 
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were made of hot-rolled I-section and were simply-supported spanning 5 meters, as 

shown in Figure 5.3. The loading consisted of a vertical load applied at a distance of 

1 3.8L m  from the end of the beam.  

 

Figure 5.3: Cross-section, loading and boundary conditions of beams analysed in 

Example 1. 

The lateral, vertical and twist displacement were restrained at both ends (i.e. 

0A B A B A Bu u v v ) while two cases were introduced for lateral behaviour 

of the beam, namely “F” and “SS”. The former indicates that the beam is laterally fixed 

(i.e. 0u ) while the latter denotes that only the above simply-supported boundary 

conditions are applied. The beams were also laterally fixed at load application point (i.e. 

0Cu . The dimensions, material properties and boundary conditions of the analysed 

beams are shown in Table 5.1. 
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Table 5.1: Properties of the beams analysed in Example 1. 

Beam ( )E GPa  ( )h mm  ( )fb mm  ( )ft mm  ( )wt mm  ( )R m   Boundary 
CB1 205.1 

306.6 124.3 12.1 8.0 

20 14.32 F/F 
CB2 210.0 30 9.55 F/F 
CB3 216.2 50 5.73 SS/F
CB4 206.7 75 3.82 SS/F
CB5 206.7 150 1.91 SS/F

Shanmugam et al. (1995) also performed a finite element modelling of the tested beam 

using ABAQUS (1985) curved shell elements, results of which are presented in the 

following figures as well. The proposed curved-beam element is used to model the 

behaviour of the tested curved beams using 10 beams elements. The results are then 

compared with the aforementioned experimental and ABAQUS results.  

The vertical-displacement profile along the length of CB1 can be observed in Figure 5.4 

for three load levels.   

 

Figure 5.4: Displacement profile for CB1 
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It can be observed that the results of the proposed beam element formulation are in good 

agreement with the experimental and ABAQUS results. It should be noted that the 

ABAQUS results were obtained by using approximately 650 shell elements while in the 

current study only 10 beam elements are used.   

The load-displacement curves for the mid-span of 5 CB beams can be seen in Figure 

5.5. Very close agreement between the rest results and the results of the proposed beam 

element can be confirmed. It should be noted that since the material behaviour in the 

developed beam element is assumed to be elastic, the elastic portion of the test results is 

presented herein in order to make a comparison possible.  

 

Figure 5.5: Load versus vertical displacement of mid-span 

 The load-displacement at the location of the point load P is drawn in Figure 5.6 for 

CB5. Comparing the results with the test data and ABAQUS results, the accuracy of the 

proposed model can be confirmed.  
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Figure 5.6: Load versus vertical displacement of load location for CB5  

5.8.2. Cantilever curved beam  

A cantilever curved beam with I-shape cross-section is analysed in this section. The 

material is construction steel, which has material properties of 200E GPa , 0.3 , 

and is assumed to behave elastically. The beam is subjected to vertical point load 

applied at the tip of the cantilever, perpendicular to the plane of curvature. Cross-

sectional properties and a schematic of the beam loading and boundary conditions can 

be seen in Figure 5.7. Cross-sectional dimensions are 200fb mm , 400h mm and 

16f wt t mm . The length of the beam is chosen as 5000L mm . 
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Figure 5.7: Schematic of cross-section, loading and boundary conditions for example 2 

In order to demonstrate the accuracy of the present model in the analysis of highly-

curved beams, the load factor versus vertical displacements are plotted for beams with 

different curvature values (i.e. various included angles) using the current curved-beam 

formulation, results obtained from the formulation of Pi et al. (2005) and the shell finite 

element. The vertical displacements are plotted for point A (Figure 5.7) located at 3/5 of 

the beam span from the support in order to exclude the local effects of point-load 

application in the shell analysis. The beam model is formed by using 10 elements of 

equal size while the shell elements used have dimensions of approximately 

200 200mm . The shell finite element mesh used in the analysis can be observed in 

Figure 5.8. 

 

Figure 5.8: Finite element shell mesh for horizontally-curved beam 
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Analysis is performed for beams with 3 values of curvature, which are presented in 

Table 5.2 along with the corresponding radii and included angles.    

Table 5.2: Properties of the arches analysed in Example 2. 

Beam (1/ )Curvature mm   ( )R mm   
B1 1.00E-05 100000 2.86 
B2 1.00E-04 10000 28.65 
B3 3.14E-04 3184.7 89.95 

Load versus vertical displacement curves obtained from the shell finite element, curved-

beam finite element of Pi et al. (2005) and the proposed curved-beam element are 

compared in Figure 5.9 for 3 values of curvature and included angle. It can be observed 

that for small values of included angle, all the figures match. However, the results of the 

previous study diverges from shell results for larger values of included angle per 

element while the curved beam element developed herein is capable of capturing the 

behaviour of the beam accurately.   

 

Figure 5.9: Load vs. vertical displacement for cantilever curved beam 
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5.9. Conclusions 

An elastic curved-beam element is developed in this study for nonlinear analysis of 

thin-walled curved structures. The deformed configuration is obtained from the initial 

state using the Frenet-Serret formulae and a second-order rotation tensor. Right 

extensional strain definition is adopted to calculate the strain terms based on the 

translations and rotations of the cross-section. The  Principle of virtual work is then 

used to obtain a finite element with 7 degrees of freedom per node. It is assumed that 

the beam is curved in one plane only resulting in examples of beams curved in plan.  

The developed beam-element formulation was applied to various examples of beams 

curved-in-plan and arches, and the results were compared with experimental data and 

finite element results from the literature. The accuracy of the proposed element in the 

analysis of highly curved members is confirmed without necessitating the use of a large 

number of finite elements.  
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Appendix 5.A 

Eq. (5.4) can be used to obtain the deformed curvatures in terms of the initial curvature 

and displacement term. Differentiating this equation with respect to s yields 

d d d
ds ds ds
q p RR p  (5.A.1) 

where 
T

x y sq q q q  and 
T

x y sp p p p . We have (Pi et al. 2003) 

0
d
ds
p K p  (5.A.2) 

*

d
ds

q Kq
 

(5.A.3) 

where 0Κ and Κ  are curvature matrices in the undeformed and deformed 

configurations, respectively, which are defined as 

0

0

0

0 0
0 0 0

0 0
Κ  (5.A.4) 

0
0

0

s y

s x

y x

Κ

 

(5.A.5) 

where 0 is the initial curvature of the beam and x , y and s  are the curvature values 

after the deformations around x, y and s axes, respectively. It should be noted that it is 

assumed in the formulation that the initial curvature lies in one plane only resulting in 

the other terms of the initial curvature matrix vanishing. *ds  in Eq. (5.A.3) refers to the 

deformed length of the beam segment, for which the relation * (1 )ds ds  holds, 
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where  is the normal strain at the centroid of the beam along the beam axis and ds  is 

the undeformed length of the beam segment. Using the above definitions, the curvature 

matrix in the deformed configuration can be obtained as 

0(1 ) T Td
ds
RΚ RK R R  (5.A.6) 

If the elements of the rotation matrix R  are nominated as the following  

11 12 13

21 22 23

31 32 33

R R R
R R R
R R R

R  (5.A.7) 

the deformed curvature values can be obtained from the elements of the rotation matrix 

as  

1
13 12 23 22 33 32 0 32 13 12 331x R R R R R R R R R R  (5.A.8) 

1
11 13 21 23 31 33 0 33 11 13 311y R R R R R R R R R R

 
(5.A.9) 

1
12 11 22 21 32 31 0 31 12 11 321s R R R R R R R R R R

 
(5.A.10) 

where ()  denotes derivative with respect to s. After performing the calculations and 

ignoring third and higher order terms, we obtain Eqs. (5.9) to (5.11) in terms of 

displacement components.   
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Appendix 5.B 

The normal strain ,p which is the last diagonal term in strain matrix ,ε  is obtained as 

1 1
2 2

2 2 2 21 1
02 2

(1 ) (1 )

1 (1 ) 1 1 1 1

ss s y s x

y x

u v y p v u x p

u v x y p x u v

s y s x2 2 s(1 )u v y p v u x p2 (1 )(12 sss2 2 ( )(12
1 11 11 (1 )(11u v y p v u x pv y p v u xv y p v u x1
2 (1 ) (1 )) (1) (11

2
1 1

2 2 2 2222 22 22 2 22 2
2 u v2

2vu2
21 uu1

21 12 2 22 2
0y 000000(1 ) 1 1

 

A B C D  

(5.B.1) 

( )p s  is the warping amplitude function. For warping torsion it is approximated to be 

equal to the twist rate (Basler & Kollbrunner 1969; Pi et al. 2005; Vlasov 1961), which 

is the difference between the initial and final twist as 

0( ) ,s sp s  (5.B.2)

and since the initial twist is assumed to be zero in this study, the warping amplitude is 

assumed to be equal to the final twist of the member (i.e. ( ) sp s ). Consequently, the 

first term in Eq. (5.B.1) is calculated as 

21 1
0 02 2(1 ) s s yA y u v u v y u u v w v wy1 11 11 1 y2s y2 v22u v u v2 22

1 1u v u vv uv u1 1
2 2
1 1 uu  

(5.B.3) 

Similarly, the second term of Eq. (5.B.1) is equal to  

21 1
02 2(1 ) s s xB x v u v u x v vx111 x222 u2

1u v uvv 1
2
1

00v0vv  (5.B.4)

The third term of Eq. (5.B.1) is re-written as 

2 21
021 (1 ) 1 1 ,y xC u v x y p x2 22 22 22 22 22 22 2  (5.B.5)

which is separated as 
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0

2 21
02

(1 ) 1 1

(1 ) 1 1

y x

y x

C x y p x

u v x y p x

E F

u v2 22 2 (2 2u v2 2 ((((((  (5.B.6)

The elements of the first term of Eq. (5.B.6) are written explicitly as the following: 

2 2 21 1 1
1 2 2 2(1 ) 1E w u v w2 2 2

2 2 2 w1w 2 2 22
2 21 2 221 2 22w u vu v1 1112 22

2 222
1 2 22  (5.B.7) 

2 21 1 1 1
2 0 02 2 2 2(1 ) yE x x u v v w v

 (5.B.8) 

21 1 1 1 1 1
3 0 02 2 2 2 2 2(1 ) xE y y v u u u v w w v w

 
(5.B.9) 

4 (1 ) sE
 

21 1 1 1 1 1 1
0 02 2 2 2 2 2 2u v u v v u u v w v w w w

 

(5.B.10) 

The second term of Eq. (5.B.6) is calculated to be 

2 21
02 (1 ) 1 1 0y xF u v x y p xu v2 22 22 2 ((u v2 22 2 (((((  (5.B.11) 

It should be noted that the third and higher order terms are neglected in the above 

calculations. Using Eqs. (5.B.3) to (5.B.11), the normal strain can be written as 

2 2 21 1
0 02 2

2 23 31 1
02 2 2 2

23 3 3 31 1
0 02 2 2 2 2 2

21 1 1 1 1 1 1
0 02 2 2 2 2 2 2

ss w w u uw u

x u v v w v

y v u u u v w w v w

u v u v v u u v w v w w w

(5.B.12) 
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Appendix 5.C 

2
11 0 0 0 ,B w u  1,10 01 ,B w u  

23 1,B  

(5.C.1) 

3
26 02 3 ,B v  1

27 2 ,B  2,10 0 ,B  

1
2,12 02 ,B v  3

2,13 2 ,B v  3 3
32 02 2 ,B v  

1
33 2 ,B  23 3

36 0 02 2 ,B u w  37 1,B  

23 3
39 0 02 2 ,B v  1

3,10 02 ,B  1 1
3,12 0 02 2 ,B u w

3 3
3,13 02 2 ,B u w  1 1

42 02 2 ,B v  1
43 02 ,B  

1
44 2 ,B v  1 1

46 02 2 ,B u w  47 0 ,B  

1 1
48 02 2 ,B u w  21 1

49 0 02 2 ,B v  21
4,10 02 ,B  

1
4,11 02 ,B v  21 1

4,12 0 02 2 ,B u w  21 1
4,13 0 02 2 ,B u w  

4,14 1,B  1 1
52 02 2 ,B v  1

53 2 ,B v  

1 1
56 0 02 2 ,B u w  1 1

57 02 2 ,B u w  21 1
59 0 02 2 ,B v  

1
5,10 02 ,B v  21 1

5,12 0 02 2 ,B u w  5,13 1.B  
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Appendix 5.D 

2
11 0 1,M R  1,10 0 1,M R  3

26 0 32 ,M R  

(5.D.1) 

1
27 52 ,M R  1

28 42 ,M R  1
2,12 0 52 ,M R  

3 1
2,13 3 0 42 2 ,M R R  1

36 52 ,M R  1 1
3,12 3 0 42 2 ,M R R  

1
46 42 ,M R  3

62 0 32 ,M R  1
63 52 ,M R  

1
64 42 ,M R  66 0 23 ,M R  23

69 0 32 ,M R  

1
6,10 0 52 ,M R  1

6,11 0 42 ,M R  3
6,13 22 ,M R  

1
72 52 ,M R  1

79 0 52 ,M R  1
7,12 22 ,M R  

1
82 42 ,M R  1

89 0 42 ,M R  23
96 0 32 ,M R  

1
97 0 52 ,M R  1

98 0 42 ,M R  21
9,12 0 52 ,M R  

23 1
9,13 0 3 0 42 2 ,M R R 10,1 0 1,M R  1

10,6 0 52 ,M R  

10,10 1,M R  21 1
10,12 0 3 0 42 2 ,M R R  1

11,6 0 42 ,M R  

1
12,2 0 52 ,M R  1 1

12,3 3 0 42 2 ,M R R  1
12,7 22 ,M R  

21
12,9 0 52 ,M R

 
21 1

12,10 0 3 0 42 2 ,M R R
 12,12 0 2 ,M R  

3 1
13,2 3 0 42 2 ,M R R  

3
13,6 22 ,M R  

23 1
13,9 0 3 0 42 2 ,M R R

where  

1 2 3 4 5
TR R R R RR  (5.D.2) 
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Appendix 5.E 

The nodal displacement vector used in the development of finite element formulation is 

14 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2
Tw w u u u u v v v vu  (5.E.1) 

The displacement field functions are obtained using cubic polynomials for ,u v  and ,  

and a linear interpolation function for w : 

1 1 2 1 3 2 4 2( ) ,u s N u N u N u N u  (5.E.2) 

1 1 2 1 3 2 4 2( ) ,v s N v N v N v N v  (5.E.3) 

1 1 2 1 3 2 4 2( ) ,s N N N N  (5.E.4) 

1 1 2 2( ) ,w s M w M w  (5.E.5) 

where 1,N 2 ,N 3,N and 4N are the Hermitian polynomials 

2 3
1 1 3 2 ,N  (5.E.6) 

2 3
2 2 ,N S  (5.E.7) 

2 3
3 3 2 ,N  (5.E.8) 

2 3
4N S  (5.E.9) 

1M and 2M  are linear interpolations  
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1 1 ,M  (5.E.10) 

2 ,M  (5.E.11) 

where s S  and S  is the span of the member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Thin-walled curved beam formulation  P a g e  | 200 
 

 

Chapter 5 list of symbols 

The following symbols have been used in chapter 2.  

A
  

= cross-sectional area 

0 ,a a
  

= position vector of an arbitrary point in undeformed and deformed  

   configurations 

B
  

= Bimoment 

D
  

= deformation gradient tensor, elasticity matrix 

E
  

= matrix of constitutive relation 

F
  

= load vector 

I
  

= identity matrix 

, ,xx yyI I I
 

= cross-sectional moment of inertia 

dJ
  

= St. Venant torsional rigidity constant 

K
  

= stiffness matrix of the curved element 

,x yM M
 

= bending moment about x and y axes 

N
  

= axial force 

, ,X Y ZP P P
 

= global coordinate system  

, ,x y sp p p
 

= orthogonal basis for undeformed configuration 
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p
  

= warping amplitude 

Q
  

= vector of external nodal forces 

q
  

= vector of external member forces 

, ,x y sq q q
 

= orthogonal basis for deformed configuration 

R  
 

= rotation tensor, vector of stress resultants 

0 ,r r  
 

= position vectors of cross-sectional centroid in undeformed and 

 deformed configurations 

r  
 

= normal distance from the mid-surface 

S  
 

= matrix of geometrical characteristics 

T  
 

= torque 

U  
 

= right stretch tensor 

U  
 

= internal potential energy 

V  
 

= external potential energy 

, ,u v w
  

= displacement components along x, y and z coordinates 

ε
  

= strain vector 

ikj
  

= permutation symbol 

θ
  

= vector of displacement components of a point in the body 
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0
  

= initial curvature 

, ,x y s
 

= curvature components of the deformed beam 

  
= total potential of the beam 

σ
  

= stress vector 

i
  

= rotation components 

  
= normalized section warping displacement function 
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Chapter 6: The Iterative Global-local Method for the 

analysis of curved beams 

6.1. Introduction 

In this section, the Iterative Global-local Method (Erkmen 2013) is developed for 

horizontally curved beams. As discussed previously, a global-local model for thin-

walled members consists of a one-dimensional beam-type finite element as the coarse-

scale/global model and two-dimensional shell-type element as the fine-scale/local 

model. Consequently, the development of a curved global-local model consists of 

adopting appropriate elements for each scale and synchronizing them together by the 

use of an appropriate overlapping decomposition operator N . For that purpose, the 

curved beam element developed in Chapter 5 is adopted as the coarse-scale model. Prior 

to that, its performance is enhanced by replacing the conventional interpolation 

functions with the direct result from the solution of the homogeneous governing 

differential equation obtained from the linear part of the strain definition. Then the 

required modifications are made in order to make the previously used shell element 

applicable for the analysis of thin-walled curved members, followed by the changes in 

the overlapping decomposition operator. Finally, numerical examples are presented in 

order to verify the accuracy of the proposed method.  
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6.2. The beam element for curved thin-walled members 

The beam element used in this section is the one developed in Chapter 2. In order to 

enhance the performance of this element, the conventional polynomial interpolation 

functions are replaced from the exact solution to the governing differential equation. 

The governing differential equation is obtained from the weak form of equilibrium 

equation by considering the linear portion of the strain vector.   

Conventionally, the displacement components of beam-type finite elements are 

interpolated independently over the domain of the element, as was done in Chapter 5. In 

other words, each of the components of the displacement field (e.g. u) are obtained 

solely from its nodal values (i.e. iu , ju , iu and ju  for a cubic interpolation) without any 

reference to the other displacement components. However, unlike a straight beam, in 

curved beams couplings exist between the lateral displacement component u and the 

axial component w on the one hand, and the vertical displacement component v and 

torsional rotation φ on the other hand. Consequently, the element can be made more 

efficient by taking this fact into account and modifying the interpolation functions 

accordingly. For that purpose, we need to obtain the governing differential equation of 

the developed curved beam and solve it throughout the element.  

6.2.1. Derivation of the homogeneous governing differential equation 

In this section, the governing differential equation of the curved beam is obtained. This 

equation can be derived from the weak form of the equilibrium equation by integration 

by parts. The weak form of the equilibrium equation is obtained from the virtual work 

principle, for which only the linear portion of the strain vector is used in this study. 

Consequently, the displacement field derived from the solution of the differential 
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equation will be exact for a linear structural response. As a result, the finite element 

formulation based on that will be accurate in the linear analysis domain. In other words, 

using only one element will give exact nodal results as long as the structural behaviour 

is linear but will be approximate when nonlinearities exist, and finer element will be 

required in such situations.  

Let a curved thin-walled member of length l be subjected to end tractions i  and i  at 

0s , and j and j  at s l , along with the member tractions 
T

x y sp p pp . The 

equilibrium equations can be obtained from the principle of stationary potential energy 

as 

0U V  (6.1) 

in which  is the first variation of the total potential energy of the element, and U  

and V  are the internal and external virtual works, respectively.  The internal virtual 

work can be written as 

n sU U U  (6.2) 

where nU  and sU  are the internal virtual work corresponding to the normal and St. 

Venant strain components, respectively. The strain components of the curved beam 

were obtained in Chapter 5 as 
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2 2 21 1
0 02 2

2 23 31 1
02 2 2 2

23 3 3 31 1
0 02 2 2 2 2 2

21 1 1 1 1 1 1
0 02 2 2 2 2 2 2

ss w w u uw u

x u v v w v

y v u u u v w w v w

u v u v v u u v w v w w w
 

(6.3) 

1 21 1 1 1 1 1
0 02 2 2 2 2 22 2 1p sr r u v u v v u v w v w w

 

(6.4) 

By ignoring the 2nd and higher order terms, the linear part of the strain components can 

be written as 

, 0 0 0 0ss l w u x u w y v v  (6.5) 

1
, 02 1p l r v

 
(6.6) 

where the subscript l refers to the fact that only linear terms are considered. The first 

component of Eq. (6.2) can be written as 

, , ,
0

L
T T

n l ss l ss l
V A

U dV E dAdsu xx u  (6.7) 

where  

1T x yx  (6.8) 

and E  is the Young’s modulus. By replacing the normal strain term from Eq. (6.5), the 

vector u  can be obtained as 
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0 0 0 0
T w u u w v vu  (6.9) 

The cross-sectional matrix D  
can be defined such that 

y x

y yy xy xT

x xy xx yA

x y

A S S S
S I I I

dA
S I I I
S I I I

D xx  (6.10) 

where the cross-sectional constants are defined as 
A

A dA , x
A

S ydA  , y
A

S xdA , 

A

S dA , 2
xx

A

I y dA  , 2
yy

A

I x dA , xy
A

I xydA , x
A

I xdA , y
A

I ydA

 

and 

2

A

I dA . By selecting an orthogonal coordinate system placed at cross-sectional 

centre, and considering doubly-symmetric cross-section, the off-diagonal terms of D 

would vanish, resulting in the following cross-sectional matrix (Murray 1984; Vlasov 

1961) 

0 0 0
0 0 0
0 0 0
0 0 0

yy

xx

A
I

I
I

D  (6.11) 

By replacing Eqs. (6.9) and (6.11) in Eq. (6.7), the virtual work resulting from the 

normal strain component can be written as 

2 2
, 0 0 0 0 0

0

2
0 0 0 0

2
0 0 0

{

}

L

n l yy yy

yy yy xx xx

xx xx

U w Aw Au I u I w u Aw Au

u I u I w v I v I I I v

I v I I I v ds

(6.12) 
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Similarly, the contribution of the shear strain due to St. Venant shear on the internal 

virtual work can be written as 

,
0

L
T

s l dU GJ dzψ ψ  (6.13) 

in which G  is the shear modulus of the material and dJ  is the St. Venant torsional 

rigidity constant. For a thin-walled section consisting of n rectangular pieces with the 

width of ib  and thickness of it , 1,2,...,i n , dJ  can be calculated as (Boresi & 

Sidebottom 1985)  

3

1 3

n
i i

d
i

b tJ  (6.14) 

ψ
 
in Eq. (6.13) can be written as 

0vψ  (6.15) 

Substituting Equation (6.15) in (6.13), the internal virtual work of the shear strain 

component can be obtained as 

2
, 0 0 0

0

L

s l dU GJ v v v ds  (6.16) 

In order to obtain the homogeneous displacement field expressions, we can set the 

external load values equal to zero, and therefore the equilibrium equation can be written 

as 

0n sU U U  (6.17) 
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In order to obtain the differential equations, the terms including w , v  and  in 

Eqs. (6.12) and (6.16) are integrated once by part, and the ones including u , v and 

 are integrated twice by parts. Considering that the virtual displacement components 

w , u , v  and  are arbitrary, the following coupled differential equation can be 

obtained. 

2 2 3
0 0 0

3 4 2
0 0 0

2 4 1 2 2 4 1 2
0 0 0 0 0

4 1 2 4 1 2 2
0 0 0 0

0 0

0 0

0 0

0 0

yy yy

yy yy

xx d xx d

xx d d xx

A I D AD I D w
AD I D I D A u

E
I I D E GJ D I D I E GJ D v

I D I E GJ D I D E GJ D I

0
 

(6.18) 

where the differentiation operators dD
ds

, 
2

2
2

dD
ds

, 
3

3
3

dD
ds

 and 
4

4
4

dD
ds

 are 

defined.  

6.2.2. Solution to the homogeneous differential equation 

6.2.2.1. w and u displacement fields 

From the first line of Eq. (6.18) we have 

2 (3)
0 0 0yy yyA I w Au I u  (6.19) 

(3)0
2

0
yy

yy

w Au I u
A I  (6.20) 

The second line of Eq. (6.18) can be differentiated to obtain 

(4) (5) 2
0 0 0 0yy yyAw I w I u Au  (6.21) 
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Replacing w and its second derivative (4)w from Eq. (6.20) into Eq. (6.21) results in the 

following linear homogeneous differential equation 

(5) 2 (3) 4
0 02 0u u u  (6.22) 

It can be solved to obtain the displacement field ( )u s . 

1 2 0 3 0 4 0 5 0cos sin cos sinu s C C s C s C s s C s s  (6.23) 

In order to obtain the axial displacement component w s , we firstly integrate Eq. 

(6.20) once to obtain 

0
2

0
yy

yy

w Au I u C
A I

 (6.24) 

where C  is an unknown integration constant. The displacement field ( )u s  and its 

second derivative are replaced from Eq. (6.23) to obtain 

1 2 0 0 3 0 0

4 0 0 0 0 5 0 0 0 0

cos sin

cos 2 sin sin 2 cosyy yy

w C AC C s C s

C s s I s C s s I s
 (6.25) 

where 0
2

0 yyA I
. It should be noted that the two constants 1AC  and C  can be 

combined in an unknown constant 7C . The resulting expression can then be integrated 

to obtain .w s  
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7 2 0 3 0 4 0 0 0
0

5 0 0 0 6
0

1sin cos sin cos 2 cos

1cos sin 2 sin

yy

yy

w s C s C s C s C s s s I s

C s s s I s C

 

(6.26) 

By replacing the expression for w s  from Eq. (6.26) in the second line of Eq. (6.18), 

we obtain  7 0 1C C . 

0 1 2 0 3 0 4 0 0 0
0

5 0 0 0 6
0

1sin cos sin cos 2 cos

1cos sin 2 sin

yy

yy

w s C s C s C s C s s s I s

C s s s I s C

 

(6.27) 

The unknowns 1C  to 6C  in Eqs. (6.23) and (6.27) can be obtained from the nodal values 

of w  and u at the two ends of the beam element. Considering 0 iu u , 0 iu u , 

ju L u , ju L u , 0 iw w

 

and jw L w , the nodal displacement can be written in 

terms of the constants 1C  to 6C  as 

ς ΞC  (6.28) 

in which ς  represents the nodal displacements corresponding to u  and w , and C  

includes the unknown constants, i.e., 

T

i i j j i ju u u u w wς  (6.29) 

1 2 3 4 5 6
TC C C C C CC  (6.30) 
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The 6 by 6 matrix Ξ   is given explicitly as 

0

0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0
0 0

1 1 0 0 0 0
0 0 1 0 0
1 cos sin Lcos Lsin 0
0 sin cos cos Lsin sin Lcos 0

10 0 1 2 0 1

1 1sin cos Lsin 2 cos Lcos 2 sin 1

yy

yy yy

L L L L
L L L L L L

I

L L L L I L L I L

Ξ

 

(6.31) 

The constants C  can be obtained from Eq. (6.28) by obtaining the inverse of the matrix 

Ξ . 

1C Ξ ς  (6.32) 

Consequently, the displacement fields u s  can be obtained as 

1u T Tη C η Ξ ς  (6.33) 

where 0 0 0 01 cos sin cos sin 0s s s s s s
T

η . Similarly, the 

displacement field w s  can be obtained from the nodal values as 

1w T Tω C ω Ξ ς  (6.34) 

in which ω  can be written as 

0 0 0 0 0 0 0
0 0

1 1sin cos sin 2 cos cos 2 sin 1yy yys s s s s I s s s I s
T

ω  

(6.35) 
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6.2.2.2. v and  displacement fields 

The 3rd and 4th line of the differential Eq. (6.18) can be written as 

(4) 2 1 2 1 (4)
0 0 0 0 0 0xx d xx dv I I v E GJ I E GJ I  (6.36) 

(4) 1 (4) 1 2
0 0 0 0 0xx d d xxv I v I E GJ I E GJ I  (6.37) 

In order to solve the set of differential Eqs. (6.36) and (6.37), the displacement fields v  

and  are assumed to have the following form 

0 0 0exp expv s R s a s b s  (6.38) 

0 0 0 0exp exps R s a s b s  (6.39) 

where R  is a function of s , and is at least 6 times differentiable. By replacing the above 

values, both Eqs. (6.36) and (6.37) reduce to 

(6) (4) 2 1 1 2
0 0 0 0exp exp 0d dR I R I E GJ R E GJ aq s bq s  

(6.40) 

where 6 4 1
0 02 2 dq I E GJ . For simplicity, the coefficients are renamed to obtain 

(6) (4)
0 0exp exp 0R R R aq s bq s  (6.41) 

Eq. (6.41) is solved to obtain 
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1 2 3 4 5 0 6 0 0

0

exp exp sin cos exp

exp

R s C C s C s C s C s C s m s

n s
 

(6.42) 

in which 
2 14

2
dE GJ

I
. The unknowns m  and n  are obtained in 

terms of a  and b  by replacing Eq. (6.42) in Eq. (6.43). 

m aq  (6.43) 

n bq
 

(6.44) 

Using the expression for R , we can obtain the displacement values v  and  as 

1 0 2 0 3 0 4 0 5 0 0 6 0 0

0 0 0 0

exp exp sin cos

1 exp 1 exp

v C C s C s C s C s C s

a q s b q s
 

(6.45) 

2 2 2 2
3 4 5 0 0 6 0 0

0 0 0 0 0 0

exp exp sin cos

1 exp 1 exp

C s C s C s C s

a q s b q s
 

(6.46) 

By calling the constant 7 01C a q  and 8 01C b q , the displacement fields 

can be re-written as 

1 0 2 0 3 0 4 0 5 0 0 6 0 0

7 0 8 0

exp exp sin cos

exp exp

v C C s C s C s C s C s

C s C s
 

(6.47) 
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2 2 2 2
3 4 5 0 0 6 0 0 7 0 0

8 0 0

exp exp sin cos exp

exp

C s C s C s C s C s

C s  

(6.48) 

The unknown constants of Eqs. (6.47) and (6.48) can be obtained from the boundary 

conditions of the two ends of the beam element. Considering 0 iv v , 0 iv v , 

jv L v , jv L v , 0 ,i 0 i , jL

 

and jL , the nodal 

displacement can be written in terms of the unknowns as 

ζ QC  (6.49) 

In which ζ  represents the nodal displacements corresponding to v  and , and C  

includes the unknown constants, i.e., 

1 2 3 4 5 6 7 8
TC C C C C C C CC  (6.50) 

The 8 by 8 matrix Q   is given explicitly as 

0 0 0 0
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0
2 2 2

0 0 0
3 3 3 2 2

0 0 0
2 2 2

0 0

0 0 1 1
0 0

exp exp sin cos exp exp
0 exp exp cos sin exp exp
0 0 0
0 0 0
0 0 exp exp sin

L L L L L L L
L L L L L L

L L

Q

2
0 0 0 0 0 0

3 3 3 3 2 2
0 0 0 0 0 0 0 0

cos exp exp
0 0 exp exp cos sin exp exp

L L L L
L L L L L L

 

(6.51) 

The constants C  can be obtained from Eq. (6.49) by obtaining the inverse of the matrix 

Q . 
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1C Q ζ  (6.52) 

Consequently, the displacement fields v s  can be obtained as 

1v T Tr C r Q ζ  (6.53) 

where  

0 0 0 0 0 0 0 0 0 0exp exp sin cos exp exps s s s s s s
T

r

(6.54) 

Similarly, the displacement field s  can be obtained from the nodal values as 

1T TΧ C Χ Ψ ζ  (6.55) 

in which Χ  can be written as 

2 2 2 2
0 0 0 0 0 0 0 00 0 exp exp sin cos exp exps s s s s s

T
Χ

(6.56) 

6.2.3. Verification 

In order to verify the efficiency of the obtained interpolation functions, a cantilever 

beam subjected to a point load at different directions is analysed in this section. The 

displacement values are calculated along the beam using the interpolation functions 

obtained in this section from the governing differential equation and the polynomial 

interpolation functions used in Chapter 2.  
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The beam is I-shaped and is composed of construction steel ( 200E GPa , 0.3 ). 

Loading, boundary conditions and cross-sectional properties of the beam are shown in 

Figure 6.1. Cross-sectional dimensions are 200fb mm , 400h mm and 

16f wt t mm , and the length of the beam is equal to 5000L mm . The beam is 

excessively curved with a total included angle of 286.5 . The initial curvature of the 

beam is equal to 0 0.001, and lies in the x-s plane. 

(a) Loading and boundary conditions  (b) Cross-sectional dimensions 

Figure 6.1: Cantilever curved beam used for verification of interpolations 

The load vectors are applied separately, and for each case the corresponding 

displacement field is calculated along the beam using only one element of the newly 

developed interpolation functions and the results are compared with the results of 

conventional polynomial functions. 

6.2.3.1. Curved-in-plan action 

At this stage, only the load vector along the y axis (i.e. perpendicular to the plane of 

initial curvature) is applied, i.e. 1 , 0y x skNP P P , corresponding to curved-in-plan 

beam action. The vertical displacement along the beam is shown in Figure 6.2, in which 

the results of the interpolation from the solution to the governing differential equation is 
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labelled as “new” while the results from polynomial interpolation functions (Chapter 2) 

are called “conventional”. 

 

Figure 6.2: Vertical displacement along the beam 

The exactness of the developed element can be confirmed from the figure. It can be seen 

that by using only one element, the “new” element is capable of capturing the out-of-

plane displacement accurately. It can be observed that twenty finite elements are 

required for accurate modelling of the response of the beam in the element with 

conventional interpolation functions. 

6.2.3.2. Arch action 

In order to verify the exactness of the proposed element in arch action, point loads are 

applied in the plane of curvature. Firstly, a point load is applied in the axial direction of 

the beam, i.e. 1 , 0s x ykNP P P . The axial component of displacement w along the 

beam is shown in Figure 6.3 . 
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Figure 6.3: w component of displacement along the beam 

It can be seen that around 400 elements of the conventional element are required in 

order to achieve a curve close to the figure obtained from only one element of the “new” 

element. It can be seen that the conventional element is less efficient in arch action in 

comparison with out-of-plane loading because the axial displacement in that element is 

interpolated linearly. Therefore, relatively more elements should be used in order to 

achieve the desired accuracy.  

Similarly, a load is applied in the lateral direction of the cross-section to verify the arch 

action of the beam in the other direction, i.e. 1 , 0x y skNP P P . The lateral 

component of the displacement, u, is depicted in Figure 6.4. Similar to the previous 

examples, it can be observed that the developed finite element is exact in obtaining the 

displacement field while a large number of elements are required to have acceptable 

results if the conventional element is used.  
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Figure 6.4: u component of displacement along the beam 

6.3. The shell element for curved thin-walled members 

The adopted shell element for straight thin-walled elements was presented in detail in 

Chapter 3. In order to utilize this element for the analysis of curved beams, we initially 

modify the mesh generation algorithm to organize the shell elements along a segment of 

a circle with a given radius of r instead of a straight line. Apart from that, two features 

of the shell element should be modified to match the new orientation, namely: 

 The transformation matrix that was used to relate the local element and global 

coordinate systems was defined based on the assumption that all elements lie in 

the same direction along the axis of the beam.  

 The elements had a rectangular geometry, which is suitable for a straight thin-

walled member but has to be generalized to a quadrilateral to be able to model a 

curved beam accurately.  
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6.3.1. Transformation matrix 

In order to develop a transformation matrix, we need to define a local coordinate system 

for each of the quadrilaterals. We can place the origin of this system on one of the 

corners of the element and the local x-axis along one of the sides, and define the y-axis 

so that the element lies in the x-y plane (Figure 6.5). 

  

Figure 6.5: Load-deflection curves based on different modelling types 

Since the coordinates of the corners in the global coordinate system are known, the 

vector 21V   defining side 1-2 can be obtained as (Zienkiewicz & Taylor 2005) 

2 1 21

21 2 1 21

2 1 21

x x x
y y y
z z z

V  (6.57) 

The direction cosines of 21V  are calculated by dividing its components by its length 

21

21 21
21

21

1xX

x xY

xZ

x
y

l
z

λ λ  (6.58) 
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where 2 2 2
21 21 21 21l x y z , and X, Y and Z refer to the global coordinate axes. The 

vector in the z direction zV , which is normal to the plane of the quadrilateral, can be 

obtained from the cross-product of two vectors in that plane. Using the two sides of the 

quadrilateral connected to joint 1, we can write  

21 41 21 41

21 41 21 41 21 41

21 41 21 41

z

y z z y
z x x z
x y y x

V V V  (6.59) 

The direction cosines of zV  are obtained by dividing each of the components of this 

vector by its length. 

1zX z

z zY z
Vz

zZ z

x
y

l
z

λ  (6.60) 

where 2 2 2
Vz z z zl x y z . Now that two of the three vectors of the local coordinate 

system are calculated, the remaining vector (i.e. yλ ) can be determined by vector cross-

product of zλ  and xλ since it is normal to both of these vectors.  

yX

y z x yY

yZ

λ λ λ  (6.61) 

It should be noted that we do not need to divide the components of yλ  by its length 

since it is a unit vector because both zλ  and xλ  are unit vectors. 
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6.3.2. Isoparametric formulation for quadrilateral element 

The isoparametric formulation is required to model the geometry of an arbitrary 

quadrilateral. In isoparametric formulation, the geometry of the element is defined using 

the 0C  continuous interpolation functions which are used to create a mapping between 

the actual element (Figure 6.6 a) and a parent element in a natural coordinate space 

(Figure 6.6 b) (Cook et al. 1989; Zienkiewicz & Taylor 2005).  

                     

(a) Original element in Cartesian system (b) Parent element in natural coordinate system 

Figure 6.6: Isoparametric transformation 

The coordinate of any point inside the element can be written in terms of the nodal 

coordinates as 

1 1 2 2 3 3 4 4x N x N x N x N x  (6.62) 

1 1 2 2 3 3 4 4y N y N y N y N y  (6.63) 

iN s in Eqs. (6.62) and (6.63) are one-dimensional Lagrangian interpolation functions 

and are defined as 
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1
1 1 1
4

N  (6.64) 

2
1 1 1
4

N  (6.65) 

3
1 1 1
4

N  (6.66) 

4
1 1 1
4

N  (6.67) 

where 1 , 1 . It is necessary to establish the derivatives of the variables with 

respect to the Cartesian coordinates. Using the chain rule, 

x x x
 (6.68) 

y y y  (6.69) 

Since the direct calculation of partial derivatives of the natural coordinates with respect 

to the global coordinates (e.g. 
x

 or 
y

) is difficult, the following method can be 

followed. We can write  

x y
x x

x y
y y

J  (6.70) 

where J  is the Jacobian matrix. Using Eq. (6.70), the derivatives with respect to the 

Cartesian coordinates can be found by calculating the inverse of the Jacobian matrix. 



Chapter 6: The IGLM for the analysis of curved beams  P a g e  | 226 
 

 

1x

y

J  (6.71) 

Forming the Jacobian matrix is quite simple in this context since it just requires the 

differentiation of the interpolation functions, which are polynomials.  

It should be noted that the shell element discussed in Chapter 3 requires interpolation 

functions for nodes in the middle of element sides as well (nodes 5 to 8 in Figure 6.7), 

which can be developed using the conventional Lagrangian interpolations. 

                         

Figure 6.7: Isoparametric transformation for quadrilateral with middle nodes 

2
5

1 1 1
2

N  (6.72) 

2
6

1 1 1
2

N  (6.73) 

2
7

1 1 1
2

N  (6.74) 

2
4

1 1 1
2

N  (6.75) 
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6.4. The overlapping domain decomposition operator 

The overlapping domain decomposition operator N  was presented in Chapter 2 for a 

straight beam subjected to uniform bending and for general loading conditions. In this 

section, a rotation matrix is added to account for the curvature of the beam. A 2D view 

of the curved beam in its plane of curvature is shown in Figure 6.8. 

 

Figure 6.8: Schematic of the curved beam in its plane of curvature 

The angle s  is defined as the angle of the tangent to the beam at each cross-section 

to the tangent at 0s (i.e. the starting point of the beam). As discussed previously, the 

decomposition operator imposes a constraint on the shell nodal displacement to obtain 

the equivalent nodal displacements of the beam element. It is easier to construct if it is 

thought of as an operator to apply to the nodal displacement of the beam element in 

order to obtain the nodal displacement of the shell. For that purpose, we can divide the 

development of the element into two stages:  
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Firstly, the appropriate interpolation functions are used to calculate the displacement of 

each of shell cross-section depending on its location relative to the beam elements.  

Cd Zd  (6.76) 

where d  represents the nodal displacements of the two end of the beam element 

containing the desired shell node, i.e.  

T

i j i xi j xj j yj j yj i i j jw w u u v vd  (6.77) 

Cd  represents the beam displacement field at the centre of the cross-section containing 

the desired shell node 
T

C C C C C C C Cw u v u vd , and Z  contains 

interpolation functions as developed in Section 6.3.  

Secondly, the displacements of each of the shell nodes on the cross-section are 

calculated from the central displacement vector Cd  according to the kinematics of the 

thin-walled theory.  

r Cu Yd  (6.78) 

where ru  refers to the displacement of the shell element,
 

T

r r r r r r rw u u v vu and the matrix Y  can be written as 
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d d1 0 0
d d

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0 0

y

y

x

x

v ux y x y
z z

y a

y a

x a
x a

Y  (6.79) 

ru in Eq. (6.78) is in the global coordinate system (i.e. X-S system in Figure 6.8) and 

needs to be transformed to the local coordinate system of the cross-section (x-s). For 

that purpose, the transformation matrix R is used. 

ru Ru  (6.80) 

in which R can be written as 

cos sin 0 0 0 0
sin cos 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cos sin
0 0 0 0 sin cos

R  (6.81) 

It should be noted that the curvature lies in X-S plane and therefore the displacement 

components outside this plane (i.e. ru and rv ) need not be rotated, which is why the 

number 1 is placed for the corresponding terms in the rotations matrix. 
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6.5. Numerical example 

In order to verify the accuracy of the developed curved global-local model, a curved 

cantilever beam is analysed in this section. The geometry and boundary conditions of 

the analysed beam are shown in Figure 6.9. 

 

 

(a) Schematic of the curved beam  (b) Cross-section of the curved beam 

Figure 6.9: Geometry and boundary conditions of the cantilever curved beam 

The beam is highly curved with the included angle of 90 degrees, and has a span of 5 

meters. The material used in this example is structural steel, (i.e., 200E GPa , 0.3

and 70G GPa ), and cross-sectional dimensions are 400fh b mm  and 

10w ft t mm . Loadings of the curved beam are shown in Figure 6.10.  
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Figure 6.10: Loading of the cantilever curved beam 

The beam is analysed using the developed Iterative Global-local Method and the full 

shell element. In the global-local model, 10 beam elements of equal size are used as the 

global model while shell elements with approximate size of 100 100mm mm  are used 

in the overlapping region as the fine-scale/local model.  The size of the shell elements in 

the full shell model is the same as the overlapping region in the global-local model. 

The analysis is performed in two stages. Initially, the beam is subjected to concentrated 

loads at the free end of the beam only, (i.e. 1500yP N , 150xP N  and 0SP ). 

Secondly, a load couple is added to the above loading in order to create cross-sectional 

deformations. It is applied at the tip of the top and bottom flanges at a distance of 

200a mm  from the support (Figure 6.10) and has a value of 100SP kN . It should be 

noted that since the two loads cancel the effect of each other at cross-sectional level, the 

global model of the iterative global-local solution, which is formulated based on rigid 

cross-sectional assumption, is not capable of capturing their effect. However, the 

softening effect of such local load on the global response of the curved beam is 

significant and can be seen from the result of the full shell model.  
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The overlapping region in the global-local model spans from the support up to 600mm 

from it, as show in Figure 6.11. 

 

Figure 6.11: Layout of the global-local model 

The analysis results are presented in Figure 6.12 in terms of the lateral displacement of a 

point C, located at a distance of 3000mm from the support (Figure 6.10).  

 

Figure 6.12: Load vs. lateral displacement of point C 
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It can be seen that the application of the local load couple Ps has a significant effect on 

the global response of the structure, which is denoted by considerable softening in the 

load-displacement curve of point C, far from the local loads. The accuracy of the 

proposed Iterative Global-local Method can be confirmed from the figure.  

6.6. Conclusions 

The Iterative Global-local Method was modified in this chapter to become applicable to 

curved thin-walled beams. To this end, the global/beam model was enhanced by 

replacing the conventional interpolation functions by the ones resulting from the 

solution to the linear differential equation, resulting in an exact beam formulation. The 

geometry and formulation of the shell model was also modified to become applicable to 

curved thin-walled members. Finally, the overlapping decomposition operator was 

changed by introducing a rotation matrix according to the location of the cross-section 

in the beam. Numerical examples were presented in order to verify the accuracy of the 

proposed model.  
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Chapter 6 list of symbols 

A
  

= cross-sectional area 

fb
  

= width of beam flange 

C
  

= vector of unknown constants 

iC
  

= unknown constants from the solution of differential equation 

D
  

= cross-sectional matrix 

2 3 4, , ,D D D D
 
= differentiation operators 

E
  

= modulus of elasticity 

G
  

= shear modulus 

h
  

= height of the cross-section 

, ,xx yyI I I
 

= cross-sectional moment of inertia 

J
  

= Jacobian Matrix 

dJ
  

= St. Venant torsional rigidity constant 

N   
= overlapping domain decomposition matrix 

iN
  

= interpolation functions 

R  
 

= transformation matrix 

R  
 

= 6-times differentiable function used in the solution of DE 
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, ,x yS S S
 

= first moment of area of the cross-section 

,f wt t
  

= thickness of flange and web 

U  
 

= internal potential energy 

nU  
 

= internal potential energy due to normal strain 

sU  
 

= internal potential energy due to shear strain 

u  
 

= displacement vector 

, ,u v w
  

= displacement components along x, y and z coordinates 

V  
 

= external potential energy 

ijV  
 

= vectors defining the local coordinate of the shell element 

Y   
= matrix of thin-walled kinematical relations 

Z   
= matrix of overlapping domain interpolations 

p
  

= shear strain 

,p l
  

= linear part of the shear strain 

ss
  

= normal strain 

,ss l
  

= linear part of the normal strain 

ζ
  

= nodal displacement vector corresponding to v  and  
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,   
= natural coordinates 

  
= included angle of the beam 

0
  

= initial curvature 

, ,x y zλ λ λ  = direction cosines of the shell element 

  
= Poisson’s ratio 

  
= total potential of the beam 

ς
  

= nodal displacement vector corresponding to u  and w  

i
  

= rotation components 

  
= sectorial coordinate 
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Chapter 7: Summary and recommendations 

7.1. Summary 

In this thesis, the Iterative Global-local Method (IGLM) is developed for the analysis of 

thin-walled members subjected to localised behaviour such as local buckling.  

A literature review of the available methods for the analysis of thin-walled members 

was presented in Chapter 2, along with the justification for the requirement of a 

computationally efficient method in this area. The Iterative Global-local Method was 

then introduced as a powerful procedure to analyse local buckling deformations in thin-

walled beams. The three main components of the method were presented afterwards, 

namely, the global model, the local model, and the overlapping decomposition operator 

which creates a mathematical link between the two. Later in Chapter 2, the kinematics 

of the Iterative Global-local Method were revisited and modified to make the method 

applicable to a beam with general loading conditions, i.e. non-uniform bending 

conditions. It should be noted that at this stage, the material is assumed to be isotropic 

linear elastic, and the structural element is assumed to be straight.  

Chapter 3 was devoted to the development of the IGLM for open thin-walled members 

made of fibre-reinforced composite laminates. For that purpose, the constitutive 

relations in both the local and global models were modified to incorporate the behaviour 
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of composite laminates with arbitrary orientation of the fibres in different layers. 

Numerical examples were presented for validation of the method.  

The IGLM was proposed in Chapter 4 to capture the ovalisation and local buckling 

behaviour of pipes. The pipe was assumed to experience inelastic material response in 

the local region. Therefore, the linear elastic local model was replaced by an elasto-

plastic shell element. Apart from that, the global beam element, which had seven 

degrees of freedom in the previous chapters for warping deformations, is replaced by a  

two-node six degree-of-freedom per node element based on classical beam theory, 

suitable for closed circular thin-walled sections. 

In an effort to introduce the IGLM for curved structural elements, a thin-walled curved-

beam formulation was presented in Chapter 5. By assuming large deformations and 

small strains, the strains were calculated using the undeformed and deformed curvature 

values.  

The Iterative Global-local Method was developed for curved members in Chapter 6. 

The beam element developed in the previous chapter was adopted as the global model, 

and the previously used shell element formulation was modified in this chapter to build 

the curved beam configurations. Furthermore, the decomposition operator has been 

amended to correctly relate the displacements of the local and global models of the 

curved beam.  

It was observed that employing the Iterative Global-local Method can significantly 

reduce the size of the finite element model in cases with local buckling.  
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7.2. Recommendations for further research 

a) As discussed previously, the IGLM is most advantageous in the presence of damage 

over a relatively short domain of the structure. As a result, the damage would create a 

difference between the internal stresses of the global and local models. This difference, 

which creates unbalanced forces, has to vanish. In cases where the damage is significant 

(e.g. plasticity, significant local buckling), the unbalanced force may be large in each 

solution step and a large number of iterations will be required to achieve convergence. 

Since the global model is not affected by the localised damage, the unbalanced forces 

can be accumulated and cause the convergence to become harder to be obtained.  

A way to overcome this difficulty is to modify the stiffness matrix of the global model. 

Some efforts have been made in this area by the author and the supervisors.  

b) Up to the present, the model is developed to deal with a known localised behaviour. 

In other words, it was assumed throughout the study that the place of local buckling is 

known a-priori. The method at its current capabilities is successful in capturing the 

effect of an existing defect in the global behaviour of the structure, but further research 

is required to automate the procedure of finding the critical regions and to apply the 

local models. Similarly, the method can be enhanced to become intelligent in assigning 

sufficient overlapping region to capture the effect of local deformations. 

c) The Iterative Global-local Method developed in this thesis deals with thin-walled 

beams. However, it has the potential to be developed for other structural elements as 

well. Generally, the method is computationally advantageous in any case where a local 

deformation could have global consequences. For example, the initiation and 
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development of cracks in reinforced concrete members can be considered as a local 

deformation that can give rise to modifications in the global behaviour of the structure. 
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