Mass Detection and False Positive Reduction in Mammographic Images

A Thesis submitted for the degree of

Doctor of Philosophy

By

Man To Wong

In

Faculty of Engineering and Information Technology
School of Computing and Communications

UNIVERSITY OF TECHNOLOGY SYDNEY AUSTRALIA

Submitted DECEMBER 2015

UNIVERSITY OF TECHNOLOFY SYDNEY SCHOOL OF COMPUTING AND COMMUNICATIONS

The undersigned hereby certifies that he has read this thesis entitled "Mass
Detection and False Positive Reduction in Mammographic Images" by Man
To Wong and that in his opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Doctor of Philosophy.
Principal Supervisor
Prof. Xiangjian (Sean) He

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Author

Abstract

Mass Detection and False Positive Reduction in Mammographic Images

Breast cancer is the most common type of cancer for women in America. Currently the most effective method for early detection of breast cancer is mammography. Mammography is the only widely accepted imaging method used for routine breast cancer screening. Masses are one of the important signs of breast cancer. However it is difficult to detect masses because masses have different size and shape and their features can be obscured or similar to the normal breast parenchyma. Reading mammograms is a demanding job for radiologists. A computer aided detection (CAD) system can provide a consistent second opinion to a radiologist and greatly improve the mass detection accuracy.

In this thesis, a computer aided detection system is developed which can segment the breast region from the background in the whole mammographic image, detect the suspicious regions from the breast region and then classify the suspicious regions to mass or normal breast tissue. The suspicious regions in the full mammographic image can be found by contrast limited adaptive histogram equalization and thresholding. These suspicious regions can be masses or normal breast tissue (false positives). To reduce the number of false positives in mass detection, a feature selection and classification approach using particle swarm optimization (PSO) and support vector machine (SVM) is proposed. Firstly, texture features are derived from the gray level co-occurrence matrix (GLCM) of each suspicious region. A PSO and SVM based feature selection is proposed to determine the significant features. The significant features found by PSO-SVM based feature selection are used by the SVM classifier to classify the suspicious region to mass or normal breast tissue.

One advantage of the proposed mass detection system is that it can detect different types of masses, including spiculated, circumscribed and ill-defined masses from the whole mammographic image. The number of false positives in mass detection can be reduced by the PSO and SVM based feature selection and mass classification method proposed

in this thesis. Experimental results show that the proposed PSO-SVM based feature selection technique can find the significant features that can improve the classification accuracy of SVM and perform better than other widely used feature selection methods. The proposed mass classification approach using PSO and SVM has better or comparable performance when compared to other state-of-the-art mass classification techniques, using sensitivity and specificity as the evaluation criteria.

In order to perform accurate image segmentation of the mass from the suspicious region, a mass segmentation method by PSO based image clustering is proposed. Two new fitness functions are proposed which can improve the performance of image clustering by generating more compact clusters and larger inter-cluster distance. The proposed PSO based image clustering, with the new fitness function, can improve the segmentation of the mass from mammographic image. It has been shown experimentally that PSO based image clustering can have better mass segmentation performance when compared to K-means, a widely used clustering technique.

Acknowledgement

This research would not have been possible without the guidance and the help of many people. My gratitude to my supervisor, Prof. Xiangjian He, for his guidance, support and encouragement. His comments and suggestions during preparation of this thesis have been valuable.

I also appreciate the following people for providing various assistance for the completion of this research work: Zhiyuan Tan, Aruna Jamdagni, Chao Zeng, Ruo Du, Muhammad Abul Hasan, Sheng Wang, Prof. Hung Nguyen, Dr Wenjing Jia, Dr Qiang Wu, Dr Min Xu and Prof. W.C Yeh.

Last but not the least, I would like to express my love and gratitude to my daughter Katherine for her understanding and tolerance so that I can concentrate on this thesis.

Author's Publication for the Ph.D

Published papers

Conference papers

- 1. M. T Wong, X. He, W. C Yeh, Z. Ibrahim, and Y. Y Chung. "Feature Selection and Mass Classification Using Particle Swarm Optimization and Support Vector Machine". In 21st International Conference on Neural Information Processing (ICONIP 2014), Part III, Lecture Notes in Computer Science, Vol. 8836, pages 439-446, Springer International Publishing, Kuching, Malaysia, November 3-6, 2014. (Tier A Conference)
- M. T Wong, X. He, H. Nguyen, and W.C Yeh. "Mass Classification in Digitized Mammograms Using Texture Features and Artificial Neural Network". In 19th International Conference on Neural Information Processing (ICONIP 2012), Part V, Lecture Notes in Computer Science, Vol. 7667, pages 151-158, Springer-Verlag, Berlin, Heidelberg, Doha, Qatar, November 12-15, 2012. (Tier A Conference)
- 3. M. T Wong, X. He, H. Nguyen, and W. C Yeh. "Particle Swarm Optimization Based Feature Selection in Mammogram Mass Classification". In 2012 International Conference on Computerized Healthcare (ICCH), pages 152-157, Hong Kong, December, 2012.
- 4. M. T Wong, X. He, and W. C Yeh. "Image Clustering Using Particle Swarm Optimization". In 2011 IEEE Congress on Evolutionary Computation (CEC), pages 262-268, New Orleans, USA, June, 2011. (Tier A conference)

Table of Contents

Table of Contents	viii
List of Tables	xi
List of Figures	xii
Chapter 1 Introduction	1
1.1 Introduction to Mammography	1
1.2 Abnormalities in Mammogram	3
1.3 Computer Aided Detection	6
1.4 Contributions	7
1.5 Organization of This Thesis	8
Chapter 2 Review of Mass Detection and False Positive Reduction T	echniques9
2.1 Introduction	9
2.2 Review of Mass Detection Techniques	11
2.2.1 Pixel-based Detection Methods	11
2.2.2 Region-based Detection Methods	14
2.3 Review of False Positive Reduction Techniques	18
Chapter 3 Mass Detection by CLAHE and Thresholding	20
3.1 Introduction	20
3.2 Breast Region Extraction	22
3.3 Contrast Limited Adaptive Histogram Equalization	25
3.4 Mass Detection by Thresholding After CLAHE	27
3.5 False Positive Reduction by Area and Shape Measure	28
3.6 Experimental Result and Discussion	30

Chapter 4 Mass Classification Using Particle Swarm Optimization	33
4.1 Introduction.	33
4.2 Feature Selection Using PSO and SVM	34
4.2.1 Traditional Classification Methods	34
4.2.1.1 Support Vector Machine	34
4.2.1.2 J48 Classifier.	38
4.2.1.3 K Nearest Neighbour Classifier	39
4.2.1.4 Artificial Neural Network	40
4.2.2 Particle Swarm Optimization	41
4.2.3 Parameters Tuning of SVM By PSO	44
4.2.4 PSO Based Feature Selection.	44
4.3 Texture Features.	48
4.4 Experimental Results	50
4.4.1 Experimental Setup.	50
4.4.2 Experimental Results and Discussion	52
4.5 Conclusion.	55
Chapter 5 Image Clustering by Particle Swarm Optimization	56
5.1 Introduction to Image Clustering	56
5.2 K-MEANS Clustering	58
5.3 PSO-Based Image Clustering	60
5.4 Results and Discussion	66
5.4.1 Image Clustering Using Standard Test Images	66
5.4.2 Mass Segmentation Using PSO Based Image Clustering	.71
5.5 Conclusion	.75
Chapter 6 Conclusion and Future work	.76
6.1 Mass Detection.	.76

Refe	rences	81
	6.4 Future Work	.79
	6.3 PSO Based Image Clustering and Mass Segmentation	78
	6.2 Mass Classification by PSO and SVM	77

List of Tables

Table 3.1	Summary of output result of various mass detection methods30
Table 4.1	Comparison of feature selection methods using SVM as classifier53
Table 4.2	Comparison of classification methods using BPSO-SVM (with feature selection) and other classifiers without feature selection
Table 4.3	Comparison of proposed BPSO-SVM based classification and other existing mammogram mass classification techniques
Table 5.1	PSO-based clustering using weighted quantization error only68
Table 5.2	PSO-based clustering using intra-cluster distance, inter-cluster distance and weighted quantization error
Table 5.3	PSO-based clustering using MSE only69
Table 5.4	PSO-based clustering using intra-cluster distance, inter-cluster distance and MSE
Table 5.5	k-means clustering

List of Figures

Figure 1.1	CC view and MLO view of mammogram2
Figure 1.2	Different types of mammographic abnormality
Figure 1.3	Three types of mass5
Figure 3.1	Breast region extraction
Figure 3.2	CLAHE: redistribute the part of the histogram that exceeds the clip limit equally among all histogram bins
Figure 3.3	ROI image after CLAHE contrast enhancement
Figure 3.4	ROI image after CLAHE and thresholding
Figure 3.5	Mass detection output after FP reduction
Figure 4.1	Maximum-margin hyperplane and margins for an SVM with samples from two classes
Figure 4.2	PSO: update strategy of direction of motion
Figure 5.1	K-means algorithm: initialization of randomized centroids59
Figure 5.2	K-means algorithm: association with nearest centroid59
Figure 5.3	K-means algorithm: re-calculation of centroids60
Figure 5.4	K-means algorithm: repeat until a stopping criterion is satisfied60
Figure 5.5	Mass segmentation using PSO clustering and k-means73