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Abstract

We are arriving at the era of big data. The booming of data gives

birth to more complicated research objectives, for which it is impor-

tant to utilize the superior discriminative power brought by explicitly

designed feature representations. However, training models based on

these features usually requires detailed human annotations, which is

being intractable due to the exponential growth of data scale.

A possible solution for this problem is to employ a restricted form

of training data, while regarding the others as latent variables and

performing latent variable inference during the training process. This

solution is termed weakly supervised learning, which usually relies on

the development of latent variable models. In this dissertation, we

propose a novel latent variable model - multinomial latent logistic

regression (MLLR), and present a set of applications on utilizing

the proposed model on weakly supervised scenarios, which, at the

same time, cover multiple practical issues in real-world applications.

We first derive the proposed MLLR in Chapter 3, together with theo-

retical analysis including the concave and convex property, optimiza-

tion methods, and the comparison with existing latent variable models

on structured outputs. Our key discovery is that by performing “max-

imization” over latent variables and “averaging” over output labels,

MLLR is particularly effective when the latent variables have a large

set of possible values or no well-defined graphical structure is existed,

and when probabilistic analysis is preferred on the output predictions.

Based on it, the following three sections will discuss the application

of MLLR in a variety of tasks on weakly supervised learning.

In Chapter 4, we study the application of MLLR on a novel task of

architectural style classification. Due to a unique property of this



task that rich inter-class relationships between the recognizing classes

make it difficult to describe a building using “hard” assignments of

styles, MLLR is believed to be particularly effective due to its ability

to produce probabilistic analysis on output predictions in weakly su-

pervised scenarios. Experiments are conducted on a new self-collected

dataset, where several interesting discoveries on architectural styles

are presented together with the traditional classification task.

In Chapter 5, we study the application of MLLR on an extreme case

of weakly supervised learning for fine-grained visual categorization.

The core challenge here is that the inter-class variance between sub-

ordinate categories is very limited, sometimes even lower than the

intra-class variance. On the other hand, due to the non-convex ob-

jective function, latent variable models including MLLR are usually

very sensitive to the initialization. To conquer these problems, we

propose a novel multi-task co-localization strategy to perform warm

start for MLLR, which in turn takes advantage of the small inter-class

variance between subordinate categories by regarding them as related

tasks. Experimental results on several benchmarks demonstrate the

effectiveness of the proposed method, achieving comparable results

with latest methods with stronger supervision.

In Chapter 6, we aim to further facilitate and scale weakly supervised

learning via a novel knowledge transferring strategy, which introduces

detailed domain knowledge from sophisticated methods trained on

strongly supervised datasets. The proposed strategy is proved to be

applicable in a much larger web scale, especially accounting for the

ability of performing noise removal with the help of the transferred do-

main knowledge. A generalized MLLR is proposed to solve this prob-

lem using a combination of strongly and weakly supervised training

data.
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Chapter 1

Introduction

1.1 Background

With the rapid evolution of information systems and online sharing medias in

the Internet, the volume of data we are facing nowadays is becoming increasingly

enormous. Automatically discovering, analyzing, and understanding knowledge,

therefore, is widely acknowledged to be crucial in various real-world applications,

including finance, environment, healthcare, engineering, etc. Theoretically, in the

context of data mining and artificial intelligence, the approach of learning patterns

or structures from data automatically is termed “statistical machine learning”,

or “machine learning” for short. In general, machine learning algorithms can be

categorized into the following two classes.

Unsupervised Learning. Unsupervised learning aims to discover under-

lying structures of data without any human labeling effort. In particular, an

unsupervised learning method uses a set of unlabeled training examples {xi}ni=1,

where each xi ∈ R
d is represented as a d-dimensional feature vector. Typical ex-

amples include clustering, the expectation-maximization algorithm, and principal

component analysis [65].

Supervised Learning. Supervised learning targets on improving the recog-

nizing performance by introducing certain forms of supervised signal. Training

data in supervised learning scenarios contain a set of training examples, each of

which is a pair (xi, yi) consisting of an input object and a desired output value.
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The goal is then to produce an inferred function from training data that could

be used for mapping new examples, such as classification and regression [143].

Compared to unsupervised learning methods, supervised learning is believed

to be more specific and powerful due to its employment of manually labeled

supervision signals, leading to many successful real-world applications such as

face recognition [140], handwritten digit recognition [81], and fraud detection

[135]. However, there is always a cost in the performance boost brought by

the additional supervised signal. In practice, it is extremely time consuming to

provide detailed annotations in certain applications, for example pixel-level labels

for image segmentation, especially considering the increase of data scale in the era

of big data. Therefore, one may want to seek a method that is able to generate

high performing models with only a limited supply of supervised signals.

In general, there are two routines for learning with limited training data.

The first one is to learn with limited amount of supervised training data, while

exploiting a larger number of unlabeled data to facilitate the learning procedure.

This strategy is called semi-supervised learning [24]. The other routine is to

learn with limited forms of supervised signals. In this case, although some kind

of supervised signals are given for all training examples, there is still some critical

information, which is not directly provided or observable but plays an important

role in statistical modeling, remained missing in certain applications. Algorithms

are then designed to infer this hidden information from observed labels, and to

train classifiers or regressors based on the inferred information.

1.2 Weakly Supervised Learning and Latent Vari-

able Models

1.2.1 What is weakly supervised learning?

Although being arguable in the literature, in this thesis, the term “weakly su-

pervised learning” is specifically referred to the second strategy discussed in the

last paragraph, i.e., learning with “weak” supervision covering only part of the

functional variables. The remaining unlabeled variables, or hidden information,
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(a) Unsupervised learning

X Y 
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Figure 1.1: Illustration of unsupervised learning, supervised learning, and weakly
supervised learning. A variable within a circle indicates given information, while
others indicate hidden variables.

are usually represented by latent variables and can be inferred from the observed

information. It is critical to note that the definition of weakly supervised learning

does not require the supervised signal to be absolutely “weak” to some certain

extent; instead, the word “weak” is in fact a relative concept - it indicates that

the given supervision during training is weaker than the feature representation

employed in the model. From this perspective, the employment of latent variables

is the key of weakly supervised learning that act as a bridge between the feature

vectors and supervised labels.

The relationship between weakly supervised learning and two basic strategies

of unsupervised learning and supervised learning is illustrated in Figure 1.1. Sim-

ilar to standard supervised learning scenarios, in weakly supervised learning, each

input sample xi is associated with an output label yi. However, by introducing

an intermediate latent variable h, each input sample now corresponds to a set

of feature vectors according to multiple assignment of h. The goal is therefore

to learn a hypothesis given x and y, while the assignment of latent variable h is

inferred automatically through the observed information.
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Figure 1.2: Demonstration of the requirement of object-level bounding-box an-
notations. The models in the right shows template-HOG results learned by
DPM [47] using object-level supervision.

1.2.2 An intuitive example

There is a wide variety of hidden information (e.g., spatial relations, data struc-

tures, behavioral and mental states) in diverse research fields such as computer

vision, natural language processing, speech analysis and public health. As a re-

sult, many learning models have been proposed to exploit the value of hidden

information based on latent variables, attracting increasing attention in applica-

tions in the above research fields.

Here we give a heuristic example of weakly supervised learning in object recog-

nition to show how it operates in practical applications. Specifically, our goal is

to predict the existence and also the accurate location of a given object class in

an image. We consider a weakly supervised setting, where only image-level la-

bels, which indicate whether a concept exists in an image or not, are given during
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training. As shown in Figure 1.2, the discriminative power of image-level labels

is rather limited in this case, especially considering that the background regions

of the object categories “car” and “bicycle” are very similar and confusing.

To explicitly model the recognizing objects, we employ object-level feature

representations extracted from object bounding boxes, i.e., a region that bounds

the object. These features are supposed to be much more powerful than image-

level features since they directly model the visual appearance of a specific object

than the whole image. Since the exact object locations in training examples are

not given, they are regarded as latent variables and are inferred using the pre-

dicted class label and image features. The learning process consists of two stages:

predicting the object location through latent variable inferring, and training ob-

ject classifiers based on the inferred locations. Classifiers learned using this strat-

egy are naturally more focused on the object itself and thus are more specific for

the recognizing task (as shown in the rightmost column in Figure 1.2).

1.2.3 Latent variable models with structured output or

multi-class prediction

Weakly supervised learning is closely related to the topic of latent variable mod-

els. In particular, in applications including object recognition, protein structure

mining, and natural language parsing, usually the hidden variables or output

labels have a graphical structure or involve multi-class predictions.

Formally, in latent variable models, each training data is represented by a

triplet (x, y, h), where x and y are an input object and the respective output

label, similar to generic supervised learning scenarios, while h is an additional

latent variable. The problem can be modeled as x → h → y, which is further

defined in the following two phases.

Latent variable completion. The first phase conducts x→ h, which is also

called a latent variable completion problem. Specifically, this process is performed

on each single input example x; given a finite (or an infinite) set of latent variables

H = {hj}, the goal is to infer the feature vector for the input example based on

the current model status, considering all possible assignments of h.

There are some typical strategies in this phase:
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• Maximum a posteriori (MAP) inference, also can be regarded as performing

“maximizing over h”. This method deterministically assigns the latent vari-

ables to their most likely states; thus the feature vector with the optimized

assignment h∗ is then representing the input example.

• Marginal inference, also referred to as “averaging over h”. This method

follows the Bayesian assumption that assigns the resultant feature represen-

tation as a weighted sum of the feature vector for each latent assignment.

• Other inference. Except for the previous two strategies, one can also design

the inference approach flexibly. For example, in object recognition tasks, a

possible selection is to perform the marginal inference over a limited range

of latent variables reside near the optimized location, which in fact combines

the two strategies in a reasonable way.

Hypothesis training. Given the inferred feature vectors for input examples,

the second phase of latent variable models solves the learning problem of (x →
h) → y. It is nearly identical to standard supervised learning formulations,

where the goal is to obtain a hypothesis based on the input feature vectors and

the desired output labels.

Methods in this phase also have several possible selections:

• Maximum a posteriori (MAP) inference, i.e., “maximizing over y”. This

strategy is inspired by the support vector machines (SVMs) which maximize

the margin between positive and negative examples. Although the objective

function is usually non-convex, it is proved that surrogate upper bounds are

effective for solving this problem.

• Marginal inference, i.e., “averaging over y”. The Bayesian method in this

strategy can be regarded as generalization of the traditional conditional

random fields or logistic regression.

To present a more intuitive explanation, considering the example in Section

1.2.2, the latent variable completion phase finds the optimal location of objects

and extracts features on the inferred location. Hypothesis training is then con-

ducted based on the inferred latent variables. These two phases are performed

iteratively to produce the final models.
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Different inference approaches in these two phases lead to a variety of latent

variable models, which show different characteristics in various applications. In

practice, it is impossible to identify a best performing strategy under all circum-

stances. One should select a proper latent variable algorithm based on real-world

considerations flexibly.

1.2.4 Motivation of the proposed latent variable paradigm

Although existing latent variable models such as the latent structural support vec-

tor machines (LSSVMs) [167] and the hidden conditional random fields (HCRFs)

[113] have seen reasonable achievements, they may be suboptimal in certain ap-

plications. Due to the lack of an investigation and comparison of the properties

of existing latent variable models, a significant problem in real-world applica-

tions is then how to select a proper algorithm based on the characteristics of the

applications.

In this dissertation, we propose a novel latent variable paradigm termed multi-

nomial latent logistic regression (MLLR) that addresses certain problems of exist-

ing latent variable models on particular applications. By introducing latent vari-

ables into multimonial logistic regression algorithm, the new paradigm MLLR in-

corporates an MAP inference over latent variable h and a marginal inference over

output labels y. It has certain advantages by: 1) being efficient in latent variable

inference; 2) enabling powerful optimization methods for solving the objective

function; 3) providing effective probabilistic analysis on output labels. Based on

these discussions, a thorough investigation of existing latent variable models with

structured output or multi-class prediction is presented, which provides practical

advice on how to select a proper algorithm in real-world applications.

Following the standard way to study the characteristics of the a new learning

paradigm, we will concentrate on two major components: theoretical analysis

and practical analysis. The main content of this thesis is summarized as follows.

• Derive the objective function of the proposed paradigm from logistic regres-

sion.

• Study the convexity and smoothness property of the proposed latent vari-

able paradigm and design effective optimization methods.
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• Conduct a thorough investigation on the difference and connection between

the proposed algorithm and existing latent variable paradigms, so as to

propose advice on how to select the appropriate algorithm under different

application scenarios.

• Propose a novel application that the proposed algorithm can have the most

of its advantage over existing algorithms, i.e., efficient inference on latent

variables and reasonable probabilistic explanation on output predictions.

• Study practical issues of latent variable models, including probabilistic out-

put analysis, forms of initialization, and optimization methods.

• Based on the proposed paradigm, study weakly supervised learning on novel

applications including fine-grained visual categorization and webly super-

vised object recognition.

1.3 Significance and Organization

By proposing a new latent variable paradigm and studying the characteristics of

the new paradigm from multiple aspects, the significance of this thesis is summa-

rized as follows:

Theoretical Significance. This thesis introduces a new latent variable

paradigm MLLR which implements maximization inference over latent variables

and employs logistic loss functions. The proposed paradigm MLLR, along with

HCRF [113], LSSVM [167] and MSSVM [107], compose a complete set of la-

tent variable models with structured outputs. Two optimization algorithms are

proposed for solving MLLR. Meanwhile, by analyzing the properties of the pro-

posed MLLR, many fundamental issues in machine learning are studied, including

multi-instance learning, non-convex optimization, and sub-gradient descent. The

effectiveness of MLLR is discussed in several challenging computer vision tasks,

such as weakly-supervised object classification, fine-grained object recognition,

architectural style classification, and human action classification. MLLR provides

a new selection for researchers on various applications that may benefit from the

use of latent variables, especially in weakly-supervised multi-class classification
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Figure 1.3: The structure of the thesis.

problems where efficient inference is preferred and rich inter-class relationships

exist.

Practical Significance. Object recognition is an essential issue in many

practical computer vision applications, such as robotics, object counting and

monitoring, automatic car parking, and giving expert advices in medical appli-

cations. Weakly-supervised learning, by exploiting cheap and robust image-level

annotations, could lead to applications with a large number of training data and

training objectives (fine-grained categories) without extensive labeling effort. The

proposed latent variable paradigm is particularly effective in weakly-supervised

object recognition tasks. As a result, this research will contribute to building

more robust object recognition system from vast number of online data, espe-

cially when there are rich relationships between object categories.

This thesis is organized as follows (Figure 1.3):

• Chapter 2 briefly reviews existing works on latent variable models, weakly

supervised learning, and the application of fine-grained visual categoriza-

tion.

• Chapter 3 describes the theoretical fundamentals of the proposed multi-

nomial latent logistic regression, including objective function, convexness
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analysis, and optimization methods. A thorough investigation of the differ-

ence and connection between MLLR and existing related methods is then

presented, showing discussions about the optimized application scenarios

for those methods.

• Chapter 4 studies MLLR on a novel application of architectural style clas-

sification. The proposed MLLR is proved to be particularly effective in this

application as the rich inter-class relationships require an effective proba-

bilistic analysis on output class labels, while efficient latent variable infer-

ence is also important.

• Chapter 5 investigates weakly supervised learning on an extreme scenario of

fine-grained visual categorization. A carefully designed initialization strat-

egy is proved to be crucial in this problem considering the non-convex ob-

jective function of MLLR.

• Chapter 6 generalizes the application scenario of weakly supervised learning

to web scale. A fine-grained object recognition framework is proposed that

utilizes a large number of weakly supervised web images to augment existing

strongly supervised datasets with relatively smaller scale.

• Chapter 7 concludes the thesis and discusses some possible future directions.
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Chapter 2

Related Work

As discussed in Chapter 1, the main task of this thesis is to propose a new la-

tent variable model that is effective in weakly supervised learning scenarios, and

to study practical issues when exploiting the latent variable models in various

applications. This chapter provides a comprehensive overview of existing latent

variable models with structured outputs and the associated optimization meth-

ods, and outlines the position of the proposed MLLR in the literature. Meanwhile,

we also include a brief review of weakly supervised learning in object recognition,

and introduce recent developments on two of the latest object recognition tasks:

fine-grained visual categorization and webly supervised object recognition.

2.1 Latent Variable Models with Structured Out-

puts

Here we first briefly review related works on latent variable models, mainly with

multi-class outputs or structured predictions, and demonstrate the connections

and differences between them. As will be shown later, the proposed multino-

mial latent logistic regression algorithm can be regarded as a special case of the

generalized latent variable model.

Given a training set S of N examples associated with their labels as S =

{(x1, y1), ..., (xN , yN)}, where (xi, yi) ∈ X × Y. In latent variable models, we

assume that the output values are not only characterized by the input x, but
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also depend on some latent or hidden variables h ∈ H. Suppose that φ(x, y, h) :

X×Y×H→ R
D defines the feature vector describing the relations among (x, y, h),

and w ∈ R
D are the model parameters, then each pair of (x, y, h) attains a model

response of w · φ(x, y, h).
Specifically, in multi-class problems, let w = [w1, ..., wK ], where K is the

number of classes, and wi stand for the model parameters of the i-th class. We

can define the catenated feature vector as:

φ̃(x, y, h) = [0D1 , 0D2 , ..., φ(x, y, h), ..., 0DK
], (2.1)

where Di is the length of wi, φ(x, y, h) stands for the feature vector of example x

regarding the y-th class model. Therefore, the model response can be written in

a similar form as w · φ̃(x, y, h).
The difference of existing latent variable models mostly lies in two phases of

the training process. The first phase solves an inference over h on each training

example. The process can also be regarded as a score function of example xi on

class ŷ over current model parameters w. In the following, we denote the score

function as Ψ(xi, ŷ, w). The second one solves parameter estimation over y, i.e.,

the formulation of objective function l(w) given all the training examples and

ground-truth labels {(xi, yi)}.

2.1.1 Hidden conditional random field

The HCRF by Quattoni et al. [113] models the possible class labels y and latent

variables h consistently by a conditional marginal model. The computation of

conditional probability considers all possible values of the latent variables and

class labels, integrated by a sigmoid function,

P (y, h|x;w) = exp[wTφ(x, y, h)]∑
y,h exp[w

Tφ(x, y, h)]
. (2.2)

The score function is defined as:

Ψ(xi, ŷ, w) = log
∑

h

exp[wTφ(xi, ŷ, h)] (2.3)
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HCRF estimates the optimized parameters using a quasi-Newton method by

solving the maximum likelihood hypothesis. The objective function is denoted

as:

l(w) = R(w)− L(w) = R(w)−
N∑

i=1

logP (yi|xi;w)

= R(w)−
N∑

i=1

log
exp[Ψ(xi, yi, w)]∑
y∈Y exp[Ψ(xi, y, w)]

. (2.4)

where R(w) is the regularization form. The gradient of L(w) is further decom-

posed in terms of P (hj = a|xi;w) and P (y|xi;w), which can be computed using

belief propagation.

HCRFs have the same advantages and disadvantages as general CRFs. They

perform well when there are enough training examples and when the model as-

sumptions fit the data well. Given the efficient belief propagation approach,

HCRFs are widely used in applications of gesture recognition [152] and object

recognition [118]; in particular when the latent variables are highly related, form-

ing a tree structure or other undirected graph structures.

2.1.2 Latent structural support vector machine

The LSSVM [167], opposite to HCRF, solves a joint maximum a posteriori (MAP)

inference. It only considers the most likely latent state in computing the model

response of training examples, and the most violated constraint when computing

the objective function. The score function is denoted as:

Ψ(xi, ŷ, w) = max
h∈H

wTφ(x, ŷ, h). (2.5)

The form of the objective function involves a user-specified loss function

Δ(yi, ŷi), which quantifies the gap between the correct output yi and the esti-
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mator ŷi. In particular,

l(w) = R(w) +
N∑

i=1

(max
y∈Y

[Ψ(xi, y, w) + Δ(yi, y)])

−
N∑

i=1

Ψ(xi, yi, w). (2.6)

LSSVMs introduce a semi-convexity property in optimizing the objective func-

tion. Thus, they are usually solved by stochastic gradient descent or concave-

convex procedure (CCCP). Due to the maximization operator in both the latent

variables and possible class labels, LSSVMs requires less computational effort,

and are more robust to noises, leading to numerous applications like object de-

tection [178], human activity recognition [154], pose estimation [123], and dis-

criminative motif finding [167]. However, the loss of convexity leads to local

minima and requires careful designing of local search methods.

2.1.3 Marginal structured support vector machine

Ping et al. [107] proposed MSSVMs which properly account for the uncertainty of

latent variables by using a marginal MAP predictor. MSSVMs remain the same

Ψ(xi, ŷ, w) function with HCRFs, while designing the objective function l(w)

identical to LSSVMs. By combining (2.3) and (2.6) together, the final objective

function of MSSVM is:

l(w) =
N∑

i=1

max
y
{Δ(yi, y) + log

∑

h

exp[wTφ(xi, y, h)]}

−
N∑

i=1

log
∑

h

exp[wTφ(xi, yi, h)] +R(w). (2.7)

The authors provide two approaches to solve the objective function of MSSVMs,

including a sub-gradient descent algorithm and a CCCP algorithm. MSSVMs per-

form well in applications where there are large uncertainties in latent variables,

and when the number of training examples is insufficient.
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2.1.4 Latent support vector machine

The LSVMs by Felzenszwalb et al. [47] can be regarded as a special case of

LSSVMs. The reason why LSVMs are discussed independently here is mainly due

to the success of the Deformable Part-based Model - latent SVM (DPM-LSVM)

framework in object detection, which encourages a series of extensions such as the

kernel latent SVMs [165]. LSVM is designed for a binary classification task, i.e.,

Y = {−1,+1}. In the task of object detection, there are a large set of possible

object position which is regarded as a latent variable in the model. LSVMs

suppose that the set of latent variables relies on different training examples, i.e.,

h(xi) ∈ Z(xi) ⊂ H. Therefore, in each iteration, the algorithm only stores

the feature vectors for latent values whose model response scores exceed a given

threshold. In that way the computational effort is much reduced. From the

theoretical perspective, latent SVM is believed to be identical to multi-instance

SVM [4].

With the form of

l(w) = R(w) +

N∑

i=1

max(0, 1− yi max
h∈Z(xi)

wTφ(xi, y, h)), (2.8)

the objective function of LSVM is further decomposed into a concave part and a

convex part, then optimized using a coordinate gradient descent approach.

2.1.5 Weak-label structural support vector machine

The weak-label structural SVMs (WL-SSVMs) [59] are designed for weakly-

labeled data. For examples, in segmentation tasks, only bounding boxes or

just the names of the object occurring in the image are given as weak labels.

WL-SSVMs generalize SSVMs and LSSVMs to support weak training labels yi

together with strong predictions s, by introducing a relaxed loss Loutput(yi, s).

Since we focus on latent variable models in this paper, we will only review the

WL-SSVMs with latent variables.

The score function of WL-SSVM follows the same formulation as LSSVMs,

where a maximization operator is adopted to select the best scored latent value.

The most notable difference appears in the form of the objective function, where
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a surrogate training loss is defined in terms of two different loss augmented pre-

dictions:

l(xi, w) = max
s∈S

[Ψ(xi, s, w) + Lmargin(s, yi)]

− max
s∈S

[Ψ(xi, s, w) + Loutput(s, yi)]. (2.9)

The marginal loss Lmargin(s, yi) = Δ(s, yi), which corresponds to the user-

specified loss in LSSVMs. The difference appears in the formulation of Loutput.

LSSVMs assigns Loutput = I(s, yi), where I(a, b) = 0 when a = b, and I(a, b) = inf

when a �= b. This loss function requires the predicting label s to be the identical

with the training label yi. On the contrary, Loutput of WL-SSVMs relaxes the loss

between weak labels yi and strong predictors s, regarding s who are similar to

the weak labels yi as ground-truth labels under certain criteria, such as highly

overlapped bounding boxes. Therefore, WL-SSVMs introduce more flexible def-

inition of training labels, leading to applications including object detection and

segmentation.

2.1.6 Epsilon-extension model

The discussions above show that the differences between these algorithms rely on

the choice of max operator or log-sum-exp operator in the two training phases.

In general, existing algorithms including HCRFs, LSSVMs and MSSVMs can all

be regarded as special cases of a more general latent variable framework, which

introduces a “temperature” parameter that smooths between max and log-sum-

exp [109]. The ε-extension model was proposed by Schwing et al. [121], and

further generalized by Ping et al. [107], who introduced separate ε parameters for

latent variables h and predicted label y.

Let

ρh(f(·)) = εh log
∑

h

exp(
f(·)
εh

), (2.10)

and

ρy(f(·)) = εy log
∑

y

exp(
f(·)
εy

). (2.11)

Inspired by [109], (2.10) and (2.11) define a temperature function ρ which
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Table 2.1: Relationship between latent variable models in the view of unified
extension model. We use the same representation form as [107].

Model εh → 0+(maxh) εh = 1(
∑

h)

εy → 0+(maxy) LSSVM(LSVM) MSSVM
εy = 1(

∑
y) MLLR HCRF

εy = εh ∈ (0, 1) ε-extension model in [121]

reduces to the max operator if ε→ 0+, and becomes the log-sum-exp function if

ε = 1.

In the ε-extension model, the score of a training example is defined as:

Ψ(xi, ŷ, w) = ρh(w
Tφ(xi, ŷ, h)), (2.12)

The objective function has the form of:

l(w) = R(w) +
N∑

i=1

ρy(Δ(yi, y) + Ψ(xi, y, w))

−
N∑

i=1

Ψ(xi, yi, w) (2.13)

The ε-extension model introduces a unified framework of existing latent vari-

able algorithms as shown in Table 2.1. We will show later that the proposed

algorithm MLLR can be also regarded as a special case of the ε-extension model

with εy = 1 and εh → 0+.

2.1.7 Three-dimensional uncertainty model

The ε-extension model by Ping et al. [107] is so far the most general form in

the area and provides a lot of insights. However, as discussed in Sec. 2.1.5, WL-

SSVMs do not belong to the ε-extension model. In fact, following the idea of WL-

SSVMs, we can define a more generalized form that measures the uncertainty from

three dimensions, i.e., latent variables h, ground-truth weak labels y, and strong
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Figure 2.1: Illustration of latent variable models with structured prediction. The
three dimensions are: h standing for latent variables, s standing for strong pre-
dictions and y standing for weak labels. The axes represent degree of uncertainty
over the three dimensions.

predict labels s. The objective function of the three-dimensional uncertainty

model can be derived by replacing (2.13) by:

l(w) = R(w) +
N∑

i=1

ρy(Ψ(xi, y, w) + Lmargin(yi, s))

−
N∑

i=1

ρy(Ψ(xi, y, w) + Loutput(yi, s)) (2.14)

Figure 2.1 illustrates the connections between latent variable models with

structured prediction.

2.2 Optimization methods

The objective functions of the latent variable models mentioned above are non-

convex; some of them are even non-smooth, presenting much difficulty in the
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training procedure. Most of the algorithms employ concave-convex procedure

(CCCP) [169] to minimize the objective function, while the detailed inference

operators and convex optimization solvers differ between SVMs and logistic func-

tions, and various regularizers.

2.2.1 Concave-convex procedure

The concave-convex procedure (CCCP) [169] is a general non-convex optimization

algorithm widely used in machine learning. The basic idea of CCCP is to rewrite

the non-convex objective function into a sum of a convex function and a concave

function (or equivalently a difference of two convex functions). By linearizing the

concave part, the non-convex optimization problem is transformed into a sequence

of convex sub-problems.

CCCP provides a straightforward paradigm for solving latent variable models.

Take the ε-extension model in Section 2.1.6 as an example. The objective in (2.13)

can be rewritten as:

l(w) = l+(w)− l−(w), (2.15)

where

l+(w) = R(w) +
N∑

i=1

ρy(Δ(yi, y) + Ψ(xi, y, w)),

l−(w) =
N∑

i=1

Ψ(xi, yi, w).

The parameter vector is updated by minimizing a convex auxiliary function

where the concave part l−(w) is linearized:

wt+1 ← argmin
w

((f+(w)− wTΔf−(wt)), (2.16)

where f−(wt) =
∑

i Ep(h|xi,yi)[φ(xi, yi, h)]. Ep(h|xi,yi) denotes the expectation over

the distribution p(h|xi, yi). Computing the expectation equals to solving an in-

ference problem over latent values. Possible approaches include:
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• Belief propagation (BP). The (sub-)gradients of LSSVM and HCRF can be

conducted using max-product BP and sum-product BP respectively. For

MSSVM, Ping et al. [107] employed a mixed-product BP [94] to solve the

loss-augmented marginal MAP prediction.

• Latent variable completion [167]. Regarding the maximum inference con-

ducted in LSSVM and LSVM, the easiest while the most efficient way to

solve the inference problem is to find the optimized latent assignments for

positive examples and fix the assignments when optimizing the convex auxil-

iary function. Specifically, in (2.5), the linearized function is wTφ(xi, ŷ, h
∗),

where h∗ is the optimized latent assignment according to the current model

parameters w. The latent assignments h∗ remain fixed to achieve a convex

auxiliary function.

2.2.2 Convex optimization solver

After linearizing the concave part, the auxiliary objective functions become con-

vex and therefore can be solved using standard convex optimization solvers. Ex-

isting latent variable models employ varied solvers, including stochastic gradient

descent, cutting plane methods and quasi-Newton methods.

The most straightforward approach is stochastic gradient descent employed

by Felzenswalb et al. in their implementation of Latent SVM [47]. The process

involves the computation of a sub-gradient of the LSVM objective function as

follows,

Δl(w) = w + C

N∑

i=1

g(w, xi, yi), (2.17)

where

g(w, xi, yi) =

{
0, if yiΨ(xi, yi, w) ≥ 1

−yiφ(xi, hi(w)), otherwise

where φ(xi, hi(w)) is defined similar to (2.5).

In stochastic gradient descent, the sub-gradient is approximated using a single

example at each iteration, i.e., approximating
∑n

i=1 g(w, xi, yi) with ng(w, xi, yi).

A learning rate of αt = 1/t is used in the algorithm.
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Although stochastic gradient descent approach is easy to implement, it is

relatively inefficient, especially if there are many “easy” training examples which

do not make much progress using gradient descent. A significant improvement

is achieved in [60] by adopting the quasi-Newton method L-BFGS [93], which

employs second-order derivatives to accelerate the training process. L-BFGS

becomes the default training method in the latest DPM implementation [58].

Cutting plane methods are widely-used for training structural SVMs [69].

The main idea of cutting plane algorithms is to iteratively use the first-order

Tyler approximation, i.e., cutting plane, to bound the exact objective function;

then find the optimal model parameters respect to all the previous added cutting

planes. The algorithm terminates when the gap between the approximate and ex-

act objective function falls below a given threshold. Furthermore, Teo et al. [136]

proposed the Bundle Method for Regularized Risk Minimization (BMRM), which

generalizes the cutting plane method and involves no parameters to tune. How-

ever, as argued in [136], the optimization process of bundle methods can be

hindered by the “stalling” steps. For some steps, the bundle methods could not

find a new optimal solution. As a result, the objective values are not strictly de-

creasing. As shown in [168], the BMRM algorithm does not properly decrease the

function value and the norm of gradient for logistic regression on large datasets.

Most of the discussed methods are designed for SVMs and L2-regularizer. Due

to the ability to obtain sparse models and thus be applied for feature selection,

L1-regularized forms are also widely used in many areas. However, its non-

differentiability causes more difficulties in training. Existing methods solving

L1-regularizer for logistic regression include TRON (trust region Newton method)

[88], CDN (coordinate descent using one-dimensional Newton steps) [23], active

set methods [104] and quasi-Newton methods [3]. A thorough discussion can

be found in [168], where extensive comparisons of the state-of-the-art software

packages are presented in detail.

2.3 Weakly Supervised Learning

Weakly supervised learning is an effective way to scale learning algorithms by

relieving the labeling burden by learning from simpler labels. In object recog-
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nition tasks, weakly supervised algorithms can be employed in object localiza-

tion and classification [32, 66, 130, 151, 177], co-segmentation and co-localization

[70, 133, 146], semantic segmentation [108, 145, 162] and detection with mixture-

component models [1, 43, 47].

Most of the algorithms solving weakly supervised learning problems employed

multi-instance learning (MIL) methods [83,100,119]. First proposed in [39], MIL

assumes that the labels are applied to “bags”, in which a bag is labeled positive

if at least one of the instances in this bag is positive, and negative when all of its

instances are negative. In object recognition, this framework allows localization

and classification to benefit from each other. Specifically, the Latent SVM used

in DPM framework [47] is in fact identical to multi-instance SVM [4].

Different from supervised learning where the training labels are complete,

weakly labeled learning needs to infer the integer labels of training examples, re-

sulting in difficult mixed-integer programming (MIP). Most MIL algorithms start

from an initialization and perform some form of local minimization. Examples

include alternating optimization [170], in which the optimization is conducted

alternatively on one variable when the others are keeping fixed; and constrained

convex-concave procedure (CCCP) [169], in which the non-convex objective func-

tion is decomposed into a difference of two convex functions. Although the non-

convex optimization approaches are usually efficient, they are relatively sensible

to initialization; thus they are easily to be get stuck in local minima.

Considering the importance of initialization in non-convex optimization ap-

proaches, early attempts [31, 51] focused on datasets with strong object-in-the-

center biases. Since images in such datasets usually contain only one object that

is centered and fills much space of the image, weakly supervised learning in this

scenario allows the detected object to move around flexibly, albeit less freely than

that in an object detector. Recent work [128, 129] attempted to learn classifiers

from much more challenging datasets such as PASCAL VOC [45]. Some efforts

have been made to carefully design the initialization heuristics, such as [116].

Nonetheless, a better initialization strategy still remains an open issue.

Another idea to solve the non-convex objective function is to produce con-

vex relaxations. Li et al. [87] proposed a WEakly LabeLed SVM (WellSVM)

via a label generation strategy. WellSVM maximized the margin by generating
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the most violated label vectors iteratively, and then combined them via efficient

multiple kernel learning techniques. As a result, WellSVM was formulated as a

convex relaxation of the original non-convex objective, and involved a series of

SVM sub-problems which can be solved by efficient standalone SVM solvers.

Although most of the existing weakly supervised learning algorithms rely on

multi-instance learning methods, there are some novel attempts to solve this prob-

lem in other ways. Cabral et al. [19] employed the additive nature of histogram

features and formulated weakly supervised image classification as a low-rank ma-

trix completion problem. The method was convex and robust to labeling errors,

background noise and partial occlusions.

Mid-level visual element discovery [41] is an unsupervised method that au-

tomatically discovers patches with higher semantic levels than “visual words”.

They are both representative, i.e., frequently occurring within a visual dataset,

and visually discriminative. This idea is widely used in FGVC methods to dis-

cover object parts.

2.4 Webly Supervised Learning Approaches

Web data have long been a main supplier to acquire object recognition databases.

The construction of modern datasets, such as ImageNet [36] and Microsoft COCO

[91], usually involves a manually cleaning process after collecting a large number

of web images to ensure the correctness of image labels. Considering the extensive

effort required to label even larger numbers of images, it is drawing an increasing

interest to learn directly from labels and images acquired from the Internet.

Due to the complexity of learning tasks requiring higher supervision in web

scale. Recently, several works [29, 40] have been proposed to perform attribute

learning on specific concepts, which aims to extract significant or interesting

patterns. We mainly focus on methods on classification in this paper.

For previous work on image classification [14, 28, 120], web-scale learning can

be roughly classified into two categories: the “filtering” approaches and the

“grouping” approaches. In particular, the filtering approaches [50, 63, 86, 153]

first obtain a large pool of images from image search engines, then perform a

filtering operation to remove noises and discover visual concepts. Usually im-
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plemented as an unsupervised learning method, the main issue of this kind of

methods is to provide clusters pruned from outliers [63], i.e., to model both the

intra-class variance and irrelevant images returned by search engines. However,

the learned concepts are highly dependent on the gathered data, which is easily

to be biased [98].

On the contrary, the “growing” approaches [33, 48, 84, 161] first generate a

small group of labeled seed images, then grow the dataset from the starting seeds

by performing some kinds of iterative “self training” [159]. Although the semi-

supervised problem setting provides a way to combat both noise and data bias,

in practice it is tricky to achieve these two goals simultaneously. Intuitively,

one needs to prevent over specialised results biased towards the seed images.

However, too much generalization will possibly lead to semantic drift which forces

the learned concepts to move too far away from the initial seeds.

Recently, several algorithms [29,40] have been proposed to perform attribute

learning on specific concepts, which aims to extract significant or interesting

patterns. However, these methods are out of our scope as we mainly focus on

methods on classification in this thesis.

2.5 Fine-Grained Visual Categorization

Fine-grained visual categorization is one of the latest and most challenging ob-

ject recognition tasks. Different from basic-level object classification where the

objects belong to highly discriminative concepts such as dogs, chairs, and cars,

fine-grained categorization aims to distinguish objects in the subordinate level.

Typical examples include different subspecies of animals [13, 73, 103, 150], plants

[78, 101], and man-made objects [97, 144, 164]. We consider fine-grained visual

categorization as one of the most important applications of the proposed MLLR

in this thesis. The most predominant reason is that there are rich inter-class re-

lationships between subordinate categories, making it preferable for conducting

multi-class predictions and explaining the results probabilistically.

In the last few years, the performance of fine-grained visual categorization has

been increasing steadily, where the developments mainly come from the following

aspects.
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2.5.1 Feature representation.

Early attempts on FGVC mainly aimed at learning more discriminative fea-

ture descriptors. Using traditional feature representations such as SIFT [95] and

HOG [35], Bo et al. [15] introduced three types of matching kernels to measure

similarities between image patches, and showed that kernel descriptors outper-

formed sophisticated features including SIFT and deep belief networks by turning

any type of pixel attributes into patch-level features. Sanchez et al. [117] showed

that by adopting the Fisher Vector (FV) [105] which included higher-order in-

formation than standard bag-of-visual-words (BOV) as the feature embedding

method, superior results were achieved for FGVC tasks.

Recently, the traditional object recognition framework is greatly challenged

by the rise of deep learning algorithms [57,76,122], which have achieved superior

performance on varied visual understanding tasks. It has been proved that deep

feature representations trained on large-scale datasets can be easily generalized to

other object recognition tasks [114]. Not surprisingly, the latest FGVC methods

mostly adopted the highest performing CNN architectures up-to-date as the fea-

ture representations, such as AlexNet [76], VGGNet [127] and GoogleNet [132].

A more promising choice is to incorporate the features, models and learning of

CNNs in a unified end-to-end system specifically designed for FGVC problems.

A lot of recent works exemplified this strategy [92,174].

2.5.2 Model design

Except for the rather generic feature engineering approaches, researchers also de-

veloped a set of specific strategies for solving FGVC problems based on its unique

characteristics. Examples include segmentation based methods, part based meth-

ods, and alignment based methods.

Foreground/background segmentation is a fundamental problem in object

recognition. For fine-grained visual categorization, corroborative evidences are

presented to show that exploiting foreground/background segmentation can im-

prove the accuracy considerably [20, 101], since the discriminative power of sub-

ordinate categories mostly lie on detailed information of foreground objects.

Part-based methods are arguably the most widely used strategy in FGVC
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approaches [62, 139, 172]. For example, Zhang et al. [172] proposed a part-based

R-CNN method that trained a CNN model specifically on each of the object parts.

As a result, the resultant CNN representations carried much higher discriminative

power than features trained on the whole object bounding boxes. Meanwhile,

by adopting strong supervision including object part landmarks, Berg et al. [12]

presented a method that learned a set of part-based one-vs-one features (POOFs)

that each of which specialized in discrimination between two particular classes

based on the appearance of a particular part.

Motivated by face recognition methods, pose alignment [17,46,55] is a common

trick used in many FGVC approaches. In particular, pose alignment methods

either refined the objects to adjust the overall shape of a template image [55], or

proposed a pose-normalized appearance model [46] that enabled a fair comparison

of features extracted from various poses.

It is worth to be noted that the strategies discussed above are not mutual ex-

clusive. Very recently, Lin et al. [89] put all three strategies together and proposed

a framework called Deep LAC (Localization, Alignment and Classification).

2.5.3 Training supervision

Most of the aforementioned FGVC methods depended on strongly supervision,

which means that the methods used detailed annotations during training to sup-

port the explicit extraction of powerful features. However, the requirement of

strong supervision poses a problem for scaling up fine-grained recognition to an

increasing number of domains.

Human-in-the-loop methods [18,37,142,149] provided an effective alternative

for removing the requirement of strongly supervised datasets. Nonetheless, due

to the need of human interaction, these methods also could not scale up to larger

systems with thousands or millions of training samples.

Weakly supervised FGVC algorithms [74,92,126,160] were proposed recently

to cope with the scaling problem. Most of them adopted part discovery ap-

proaches that enabled the algorithm to select object parts using data driven

methods. Krause et al. [74] presented an FGVC method without using part an-

notations given the observation that objects in a fine-grained class shared a high
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degree of shape similarity, allowing them to be aligned via segmentation alone.

Similarly, Simon & Rodner [126] presented an approach that learned part models

in a completely unsupervised manner by finding constellations of neural activation

patterns computed using convolutional neural networks. Our weakly supervised

FGVC method in this thesis, on the contrary, is based on the standard multi-

instance learning methods [119] which are widely used in weakly supervised object

recognition approaches, instead of performing object part discovery as discussed

in the aforementioned works.

Another interest of the FGVC community currently is to employ webly su-

pervised methods [28, 40] that rely on the Internet which offers a nearly endless

supply of images with human generated labels or tags. Although labels crawled

from the Internet would be very noisy, Krause et al. [75] proved that by training

on publicly-available noisy web image search results, even higher accuracies could

be achieved than current state-of-the-art algorithms without using any expert-

annotated training data, while scaling to over ten thousand fine-grained cate-

gories. We also investigate webly supervised methods for FGVC in this thesis.

However, our observation is that existing strongly supervised datasets can offer a

reliable initialization strategy to remove noise in web images and also introduce

detailed part-level annotations. This results in better performance than using

noisy web images only for training.
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Chapter 3

Multinomial Latent Logistic

Regression

In this chapter, we will first introduce the proposed paradigm Multinomial La-

tent Logistic Regression (MLLR), including what is MLLR (the derivation of

its objective function), how to solve MLLR (analysis on its concave and convex

property and optimization methods), and what MLLR can do (possible forms of

latent variables and several typical weakly supervised problems). Meanwhile, we

will provide a thorough investigation of the difference and connection between

the proposed algorithm and existing paradigms of latent variable models with

structured outputs, which could be helpful for researchers to choose a proper

latent variable algorithm under various occasions. Based on these analysis, fur-

ther issues for conducting MLLR in practical applications will be discussed in the

sections later.

3.1 Introduction

Latent variable models are widely used in diverse research fields such as com-

puter vision, natural language processing, speech analysis and public health. By

modeling hidden information that plays an important role in statistical model-

ing as latent variables and inferring them from the observed information, latent

variable models extract additional information than standard supervised learning
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paradigms and thus have the potential to achieve superior performance.

Among various kinds of latent variable models, algorithms that are designed

for multi-class outputs or structured predictions are a special series particularly

effective in object recognition and natural language processing domains. For

example, in object recognition applications, very often one needs to distinguish

an object class from a large set of concepts, such as face recognition and generic

object detection, which inheritably results in multi-class problems. Meanwhile,

modeling the context between multiple words in a sentence can be naturally

regarded as a structural problem. In the literature, hidden conditional random

fields (HCRFs) [113] and latent structural SVMs (LSSVMs) [167] are perhaps the

most notable algorithms that attempt to address latent variable problems with

structured predictions, with successful applications including gesture recognition

[152], object recognition [118], object detection [178] and link prediction [163].

Approaches such as HCRFs and LSSVMs have their own advantages and

disadvantages. Specifically, generalizing the support vector machines (SVMs),

LSSVMs adopt a jointly maximum a posteriori procedure by treating the in-

ference on latent variables as a parameter selection problem and using a max-

margin strategy to formulate the objective function. Such algorithms are robust

to problems posed by insufficient training data, especially when the latent vari-

ables have a complicated structure and cannot be represented in a graph model ef-

fectively [155]. In contrast, from the perspective of probabilistic learning, HCRFs

treat both the possible class labels and latent variables marginally. As a result,

they perform well when a large uncertainty exists over the training data [107].

However, marginalization is much more difficult in applications in which a well-

defined probabilistic graphical model for latent variables is not available. In such

applications, it would be of benefit to maximize rather than marginalize over the

latent variables. Therefore, one should pick up a proper algorithm based on the

their practical needs in real-world applications.

In this thesis, we present a new paradigm termed Multinomial Latent Logistic

Regression (MLLR) by introducing latent variables to the Regularized Multino-

mial Logistic Regression (RMLR). In particular, MLLR performs “averaging”

over possible class labels and “maximizing” over possible latent assignments;

thus enjoys several merits in certain scenarios inheriting the advantages of lo-
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gistic regression, including effective probabilistic analysis and natural multi-class

extension. In addition to multi-class classification applications, MLLR can also

be generalized to general structured output prediction, specializing the extended

ε-extension model described in Section 2.1.6.

In the following sections, we will first derive MLLR from the regularized

multinomial logistic regression (RMLR) to solve multi-class classification prob-

lems. Detailed analysis will be conducted on the objective function, optimization

methods, convergence analysis of the proposed algorithm. Furthermore, by gener-

alizing MLLR to structured outputs, we will present discussions of the connection

and difference between MLLR and other latent variable models with structured

outputs from both theoretical and experimental perspective.

3.2 Multinomial Latent Logistic Regression

The proposed multinomial latent logistic regression (MLLR) introduces latent

variables into the regularized multinomial logistic regression algorithm. Specifi-

cally, MLLR performs a “maximization” operator over possible latent values and

a “summation” operator over possible class labels. By modeling the optimiza-

tion of MLLR as a concave-convex procedure, we introduce two approaches to

optimize the convex part in the objective function, including a gradient descent

approach similar to LSVMs, and a new version of coordinate descent method us-

ing one-dimensional Newton direction (CDN) [168], which involves a recomputing

scheme for latent variables in the line search procedure.

3.2.1 Multinomial logistic regression

Given a training set of S = {(x1, y1), ..., (xN , yN)} where yi ∈ Y = [1, 2, ..., K].

The multinomial logistic regression has been developed as a result of the desire to

model the posterior probabilities of the K classes via linear functions in x. The

posterior probability has the form

pk(x;w) = Pr(Y = k|X = x) =
exp(wT

k x)∑K
l=1 exp(w

T
l x)

, (3.1)
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where wk are parameters of the model of the k-th class, with a dimension of Dk.

We denote the entire parameter set w = {w1, ..., wK}.
Logistic regression models are typically fitted by maximizing the likelihood

function, using gradient-based methods such as the Newton-Raphson algorithm.

The objective function for N training examples is:

L(w) = −
N∑

i=1

log pyi(xi;w). (3.2)

3.2.2 Latent variables

MLLR introduces latent variables into the logistic regression paradigm, where

each input example x is associated with a latent variable h. Let φ(x, y, h) be the

feature vector of an example x depending on the latent variable h and class y,

where h ∈ H and the set H defines all the possible latent variable assignments.

Various applications can be explained under this assumption. For example,

when detecting objects by parts, the latent variable h can be modeled as a possible

location for each part. φ(x, y, h) becomes the feature vector of an example x given

the location of each part fixed at h. In an application of language modeling such

as parsing sentences, x is the input sentence, while H is the set of all possible

parse trees and φ(x, y, h) is the feature vector for a sentence-tree pair.

Consider a score function of the form

Ψ(x;wk) = max
h

wT
k φ(x, k, h). (3.3)

The score is obtained by finding the optimal latent assignment h that gives the

highest score to the example x given a model wk.

We follow the terms of “positive” and “negative” examples in multi-class

classification settings. An example x is called positive example with respect to

model wk if the label y = k, and called negative example with respect to model

wk if the label y �= k. Therefore, an example becomes a positive example only

when the classifier with respect to the example’s true label is considered.
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From (3.3), we can get

h(wk) = argmax
h

[wT
k · φ(x, k, h)]. (3.4)

Analogous to standard logistic regression, we rewrite the posterior probability of

the k-th class given an example x as

pk(x;w) =
exp[Ψ(x;wk)]∑K
l=1 exp[Ψ(x;wl)]

. (3.5)

Since the parameter space has a large volume, MLLR will be easy to overfit to the

training data. To avoid the overfitting problem, we introduce a lasso regularizer,

which tends to gain sparse representation. Further dicussions on the choice of

the regularizer will be demonstrated in Section 3.3. The log-likelihood function

becomes

l(w) = L(w) +R(w)

= −C
N∑

i=1

log pyi(xi;w) +
K∑

l=1

|wl|

= −C
N∑

i=1

log
exp[Ψ(xi;wyi)]∑K
l=1 exp[Ψ(xi;wl)]

+
K∑

l=1

|wl|

= −C
N∑

i=1

Ψ(xi;wyi)

︸ ︷︷ ︸
A

+C

N∑

i=1

log
K∑

l=1

eΨ(xi;wl)

︸ ︷︷ ︸
B

+
K∑

l=1

|wl|
︸ ︷︷ ︸

C

,

(3.6)

where part A measures the effect of positive examples; part B is a divisor con-

sidering all examples in all models; part C is the lasso regularizer term. The

constant C controls the relative weight of the regularization term. In practice, C

will be set empirically or according to cross validation.

The training process can be explained from two perspectives. In the local

view, each example eagerly finds the K optimized latent configurations for all

models regardless of which class the example belongs to. In the global view, the
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models are refined to give higher scores to positive examples and lower scores to

negative examples, i.e., maximize the conditional probability.

3.2.3 Concave-convex procedure

Minimizing the objective function of the standard logistic regression model in

(3.2) leads to a convex optimization problem. Note that if we discard the latent

variable setting in (3.6) and redefine Ψ(x, wk) = Ψlr(x;wk) = wT
k x, the likelihood

function (3.2) can be written in the same form as (3.6).

However, when latent variables are introduced to the objective function, the

function is no longer convex. In particular, part C remains unchanged. Part B is

still convex since it involves only convex functions (log-sum-exp). However, part

A becomes the negative of a maximum of a set of linear function with respect to

w, which is a concave function.

A similar situation arises in relation to Latent Structural SVM [167] and

LSVM [47]. The former algorithm uses the Concave-Convex Procedure (CCCP)

to optimize loss function [169], while the latter introduces a semiconvexity prop-

erty and solves the problem by coordinate gradient descent.

MLLR can be also solved in a CCCP framework. We define an auxiliary

function that bounds the exact objective function by fixing the latent variable for

each positive example. In particular, the auxiliary function is defined as:

l(w,Hp) = C
N∑

i=1

log
K∑

l=1

exp[Ψ′(xi;wl)]

− C

N∑

i=1

Ψ′(xi;wyi) +
K∑

l=1

|wl|, (3.7)

where

Ψ′(xi;wl) =

{
wT

l φ(xi, y, h
∗
i ), yi = l.

Ψ(xi;wl), yi �= l.

and Hp = {h∗i , i = 1, ..., N} is a set of optimal latent assignments for all the N

positive training examples.
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It is noted that

l(w) = max
Hp

l(w,Hp). (3.8)

The auxiliary function bounds the exact likelihood function by linearlarizing the

non-convex part A into a linear function in w. In [167], the procedure is called

a “latent variable completion” problem. Since l(w,Hp) is a convex function, we

minimize l(w) using CCCP as follows (Algorithm 1).

1. Optimize positive examples : Optimize l(w,Hp) over Hp. For each example

xi, find the optimized latent value for its respective model wyi by (3.3), h∗i =

argmaxh wyi · φ(xi, yi, h) and set Hp = {h∗i , i = 1, ..., N}.
2. Optimize model parameters w. Optimize the convex function l(w,Hp) over

w and all possible latent values for negative examples.

Algorithm 1 Concave-convex procedure for training MLLR
Input: Training examples {(x1, y1), ..., (xN , yN )},
Initial latent variables for all training examples.

Output: Model parameters w.
for outerLoop:=1 to numOuterLoop do
{Solve the axillary function l(w,Hp) with Hp = {h∗

i } fixed}
Choice 1. gradient descent (Section 3.2.4)
Choice 2. latent-CDN (Section 3.2.5)
{Relabel latent variables for positive examples}
for i:=1 to N do

Optimize h∗
i = argmaxh wyi

· φ(xi, yi, h).
end for

end for

Recall that in Section 3.2.2, we argue that the training process needs to it-

eratively find optimal latent values and updates model parameters according to

logistic likelihood function. However, the CCCP here has to fix the latent val-

ues for positive examples to preserve the convexity of l(w,Hp) when updating

model parameters. Fortunately, in classification tasks, the number of positive

examples is much less than the number of negative examples. After convergence,

the algorithm has reached a strong local optimum considering an exponentially

large space of model parameters and latent values for negative examples. Still

the initialization of w should be carefully designed to avoid bad local minima.
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3.2.4 Gradient descent

Similar to [47], the axillary objective function l(w,Hp) can be optimized us-

ing a gradient descent method. Although the lasso regularizer term is non-

differentiable, we can compute a subgradient of (3.7) with respect to wk, k =

1, ..., K as:

∇l(wk) = C
N∑

i=1

φ(xi, k, hi(wk))
exp[Ψ′(xi;wk)]∑K
l=1 exp[Ψ

′(xi;wl)]

− C
∑

yi=k

φ(xi, k, hi(wk)) + sgn(wk), (3.9)

where sgn(·) ∈ {−1, 1} is a sign operator.

In fact, (3.9) can be rewritten as:

∇l(wk) = C
N∑

i=1

φ(xi, k, hi(wk)) · q(xi, wk) + sgn(wk), (3.10)

where

q(xi, wk) =

{
pk(xi;w)− 1 , xi is positive for class k.

pk(xi;w) , xi is negative for class k.

The gradient descent procedure iteratively updates model parameters and

latent variables for negative examples as follows,

1. In the (t+1)-th iteration, for all training examples xi and all class models

wk, let hi(w
(t)
k ) = argmaxh w

(t)
k · φ(xi, k, h), if yi �= k, and hi(w

(t)
k ) = h∗i if yi = k,

where h∗i ∈ Hp.

2. For all class models, set w
(t+1)
k = w

(t)
k − αt · [C

∑N
i=1 φ(xi, k, hi(w

(t)
k )) ·

q(xi, w
(t)
k ) + sgn(w

(t)
k )].

The form of q(xi, wk) has a clear probabilistic explanation. Similar to the

perceptron algorithm, the gradient descent method repeatedly pushes the model

wk towards positive examples and far away from negative examples. By adding a

probabilistic multiplier, the algorithm assigns a bigger penalization on “hard neg-

ative” where pk(xi;w) is large. For positive examples, “hard positive” indicates

an example that has a smaller probability regarding the current model, which
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Algorithm 2 Gradient Descent Algorithm

Input: Training examples {(x1, y1), ..., (xN , yN)},
Latent variables for positive examples Hp = {h∗i }.

Output: Model parameters w.
for t:=1 to numGradientDescentLoop do
{Relabel latent variables}
for i:=1 to N and k:=1 to K and yi �= k do
Optimize hi(w

(t)
k ) = argmaxh w

(t)
k · φ(xi, k, h).

end for
{Update model parameters}
for k:=1 to K do
Update w

(t+1)
k = w

(t)
k − αt · ∇l(w(t)

k ).
end for

end for

plays a more important role in updating the model parameters.

The training procedure is outlined in Algorithm 2.

3.2.5 Coordinate descent using one-dimensional Newton

directions with latent variables

Different from the gradient descent method discussed before, Yu et al. [69] used

an improved version of cutting plane algorithm to solve the objective function

of LSSVMs. The main idea of cutting plane algorithms is to iteratively use the

first order Tyler approximation, i.e., cutting plane, to bound the exact objec-

tive function; then find the optimal model parameters with respect to all the

previous added cutting planes. The algorithm terminates when the gap between

the approximate and exact objective function falls below a given threshold. Fur-

thermore, Teo et al. [136] proposed the Bundle Method for Regularized Risk

Minimization (BMRM), which generalizes the cutting plane method and involves

no parameters to tune.

However, as argued in [136], the optimization process of bundle methods can

be hindered by the “stalling” steps, which means that for some steps, the bundle

methods could not find a new optimal solution. As a result, the objective values

are not strictly decreasing. As shown in [168], the BMRM algorithm fails to prop-
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erly decrease the function value and the norm of gradient for logistic regression

on large datasets.

We propose a new algorithm that efficiently solves the axillary objective func-

tion l(w,Hp) in MLLR using second-order derivatives. Our optimization algo-

rithm is based on the coordinate descent method using one-dimensional Newton

directions (CDN) proposed by Yuan et al. [168]. The CDN algorithm is effective

regarding the characteristics of logistic functions and the L1-regularization term.

To deal with the latent variables, we add a step of recomputing optimal latent

assignments in the line search process of CDN. As a result, the new algorithm

termed latent-CDN ensures the objective value to be strictly decreasing, while

not imposing excessive computational efforts.

In detail, given current model parameters w(t), a coordinate descent method

updates one variable w
(t)
k,j at a time, where w

(t)
k,j stands for the j-th variable in the

k-th class model. CDN uses one-dimensional Newton direction to accelerate the

local convergence. However, since the L1-regularization term is not differentiable,

we employ the second-order approximation of the loss term L(w), and find the

optimal step z by solving

min
z

gk,j(z) = |wt
k,j + z| − |wt

k,j|+ L′k,j(0)z + L′′k,j(0)z
2, (3.11)

where

Lk,j(z) � L(w(t) + zek,j). (3.12)

The problem has a closed-form solution:

d =

⎧
⎪⎪⎨

⎪⎪⎩

−L′
k,j(0)+1

L′′
k,j(0)

, if L′k,j(0) + 1 ≤ L′′k,j(0)w
(t)
j

−L′
k,j(0)−1
L′′
k,j(0)

, if L′k,j(0)− 1 ≥ L′′k,j(0)w
(t)
j

−w(t)
k,j, , otherwise.

(3.13)
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For MLLR, the first-order and second-order derivatives are:

L′k,j(0) = C

N∑

i=1

q(xi, wk)φj(xi, k, hi(wk)),

L′′k,j(0) = C
N∑

i=1

pk(xi;w)(1− pk(xi;w))φ
2
j(xi, k, hi(wk)), (3.14)

where φj(x, k, h) = φ(x, k, h)ej.

Since (3.11) is a quadratic approximation of l(w(t)+zek,j)− l(w(t)), and due to

the non-smooth regularization term, the Newton direction d does not guarantee

to decrease the objective value. Instead, Tseng et al. [138] used a line search

procedure to find a shrinking parameter λ ∈ (0, 1), such that the step λd satisfies

a modified sufficient decrease condition:

l(w(t) + zek,j)− l(w(t)) = gk,j(λd)− gk,j(0)

≤ σλ(L′k,j(0)d+ |w(t)
k,j + d| − |w(t)

k,j|). (3.15)

To find λ, a backtrack line search is adopted in CDN, which checks λ =

1, β, β2, ..., where β ∈ (0, 1), until the condition (3.15) is reached.

The previous steps are nearly identical to the CDN algorithm in [168]. How-

ever, a significant property of MLLR is that once the model parameters w are

changed, the algorithm needs to recompute all the free latent variable assign-

ments. Since the line search procedure involves updating w, it is problematic if

we keep the previous latent assignments unchanged.

Considering the following toy example where two simulated objective func-

tions fh1 and fh2 for two latent values h1, h2 are shown in Figure 3.1. The goal

is to find the minimum value of the final objective function fh, which is denoted

as fh = max(fh1 , fh2). Here the line search procedure finds optimal objective

value with respect to fh∗ , while the latent updating process selects h∗ as h1 or h2

according to the current objective value.

Suppose that point O indicates the initial state, where function fh2 is acti-

vated. As shown in Figure 3.1(a)(b), if the latent assignments are not updated in

the line search process, the algorithm will find the optimal solution according to
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(a) (b) (c) (d)

Figure 3.1: Illustration for the importance of updating latent assignments when
performing line search in CDN. Figure (a)(b) shows the situation where no updat-
ing process is performed, while (c)(d) shows the situation after updating latent
assignments.

fh2 , resulting in point A. However, the actual objective value now should be B,

since fh1(B) > fh2(B). After line search, the optimized value is updated to B in

the latent assignment process, and then starts the next line search session. Again

the algorithm computes the Newton direction and finds an optimal solution, in-

dicated by C. This time the respective latent value for C turns to h2, and the

actual objective value is D. Following this kind of iteration, the algorithm gets

stuck in a bistable state that repeatably finds B and D as the optimal objective

value. Apparently, they are far away from the global optimal.

In the latent-CDN algorithm, we solve this problem by introducing an updat-

ing process of latent assignments to line search procedure. As shown in Figure

3.1(c)(d), when point A is reached, the modified algorithm notices that the actual

objective is B, which does not satisfy the sufficient decrease condition. Thus the

algorithm iteratively shrinks the step λd until a point B′ satisfies the sufficient

descent condition.

One possible drawback of the latent re-assigning process is that it could intro-

duce a high computational effort. To update the latent assignments, one needs to

compute all the score functions s(xi;wk) over possible latent variables. However,

since CDN only updates one variable wk,j at a time, the computation can be

drastically decrease by re-using the previous scores. The new latent assignments
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Algorithm 3 Latent CDN Algorithm

Input: Training examples {(x1, y1), ..., (xN , yN)}.
Latent variables for positive examples Hp = {h∗i }.
The initial model parameters w0.
Select β ∈ (0, 1) and a random permutation P .

Output: Model parameters w.
for t:=1 to numCDNLoop do
for i:=1 to

∑
k Dk do

Pick up a random variable wk,j according to Pi.
Calculate the Newton direction by (3.13).
{Line search procedure}
for λ:=1, β, β2, ... do
Check if the sufficient decreasing condition (3.15) is satisfied.

Update all latent variable assignments hi(w
(t)
k ) by (3.16).

If (3.15) is satisfied, terminate line search.
end for
Update w

(t+1)
k,j = w

(t)
k,j + λd.

end for
end for

have the form of:

hnew
i (w

(t)
k ) = argmax

h
[Ψnew(xi;w

(t)
k )]

= argmax
h

{Ψold(xi;w
(t)
k ) + wk,j[φj(xi, k, h)− φj(xi, k, h

old
i (w

(t)
k ))]},

(3.16)

where only one numerical multiplication is required for a basic latent variable

updating step.

Two implementation techniques are conducted in CDN to improve the con-

vergence speed, including a random permutation on the one-dimensional sub-

problem, and a shrinking technique that heuristically remove redundant model

variables. If wk,j = 0 and −1 ≤ L′k,j(0) ≤ 1, then the new w∗k,j = 0. We follow

the same techniques, and the resulting latent-CDN algorithm is demonstrated in

Algorithm 3. We will show in the experiments that the latent-CDN algorithm

can converge faster than BMRM by exploiting second-order Newton directions.
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3.2.6 Generalization to Structured Outputs

MLLR can be generalized to solve structured output predictions. Consider the

same problem statements for structured predictions in Section 2.1, where w de-

notes the model parameters. The objective function of MLLR involves a max-

imization over h, a log-likelihood function, and a lasso regularizer; it can be

therefore be rewritten as:

l(w) = |w| + C

N∑

i=1

log
∑

y

exp
{
max

h
[wTφ(xi, y, h)]

}

− C
N∑

i=1

max
h

[wTφ(xi, yi, h)]. (3.17)

The multi-class problem methods discussed in the previous sections can be adopted

for structured outputs with only minor modifications. Specifically, the calcula-

tion of derivatives in (3.10) and (3.13) involves belief propagation and results in

more complex formulations.

Consider the first- and second-order derivatives of the logistic function L(w)

in structured output formulation. The calculation of derivatives follows the for-

mulation of belief propagation:

∇Li(w) =
∑

y

py(xi;w)[φ(xi, y, h
∗
i,y)− φ(xi, yi, hi)],

∇2Li(w) =
∑

y

{
[φ(xi, yi, h

∗
i,y)− φ(xi, y, hi)]py(xi;w)

·
∑

y′
[φ(xi, y, h

∗
i,y)− φ(xi, y

′, h∗i,y′)]py′(xi;w)
}
, (3.18)

where py(xi;w) is computed by (3.21), optimal latent assignments are h∗i,y =

argmaxh[w
Tφ(xi, y, h)], and ∇mL(w) =

∑N
i=1∇mLi(w),m = 1, 2. The remaining

computational issues are similar to that of multi-class problems.
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3.3 Connection and Difference between MLLR

and Existing Methods

The objective function (3.17) can be regarded as a special case of the generalized

ε-extension model, where εh → 0 indicates a maximization over h, and εy = 1

indicates an “averaging’ over y. Taking into account the differences between ex-

isting latent variable models, in this section, we provide insights into appropriate

model selection for practical applications. Interested readers are also referred to a

more detailed discussion on the difference between probabilistic and max-margin

approaches in [134, 155].

3.3.1 Maximization vs. marginalization over h

To solve the inference problem on each training example, MLLR adopts a max-

imization operator over all possible latent variables h, which is the same as in

LSSVMs:

ΨMLLR(x, ŷ, w) = argmax
h∈H

[wTφ(x, ŷ, h)]. (3.19)

In contrast, HCRFs and MSSVMs adopt a marginalization strategy over latent

variables when computing the score function:

ΨHCRF (xi, ŷ, w) = log
∑

h

exp[wTφ(xi, ŷ, h)] (3.20)

The maximization strategy has certain advantages. In the computational

perspective, although dynamic programming and belief propagation can solve

each inference strategy (max vs. sum), the maximization strategy requires less

computational effort. Meanwhile, the marginalization strategy requires a defined

probabilistic graphical model, which is difficult to acquire in certain scenarios.

For example, in object localization, the positions of objects in the images are

represented as latent variables. This may lead to a large volume of |H| and
does not require definition of a graphical model. In the maximization strategy,

since we are only concerned with the best-scored latent value, latent values that

obviously conflict with the model hypothesis can be discarded, resulting in a much
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smaller latent value space for each example. Such an approach was adopted in

the DPM-LSVM framework [47] and significantly reduced the time and space

complexity.

The choice of maximization or marginalization also depends on the character-

istics of latent variable h. Specifically, if there is a probabilistic graphical model

that efficiently models the interaction between multiple latent variables, such as

neighbourhood superpixels in image segmentation or the star-structured part-

based model in object detection, marginalization should be the natural choice

since it is Bayesian optimal. Meanwhile, for applications with a large uncertainty

in latent variables, the maximization strategy may be “overly optimistic” on the

most likely states and overlook the influence of uncertainty. Nevertheless, if a

graphical model is hard to obtain or a graphical relationship does not exist be-

tween latent variables, maximization over latent variable h is a better choice.

When there is a large volume of |H|, the sum of an exponentially large number

of “incorrect” hs, could be larger than that of the small number of “correct” hs

and eventually dominate the inference process, even though each only carries a

very small probability.

3.3.2 Max-margin vs. log-likelihood over y

The formulation of objective function in MLLR follows multinomial logistic re-

gression. The posterior probability has the form:

pŷ(x;w) = P (Y = ŷ|X = x) =
exp[Ψ(x, ŷ, w)]∑
y exp[Ψ(x, y, w)]

. (3.21)

Based on the posterior probabilities, the loss function is defined as a log-likelihood

function:

L(w) = −
N∑

i=1

log pyi(xi;w). (3.22)

Compared to the max-margin criterion and the hinge loss adopted in LSSVMs

and MSSVMs, the log-likelihood function enables high-order optimization meth-

ods such as Newton methods. Meanwhile, the log-likelihood function produces

probabilistic models. The output posterior probabilities are valuable for building
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cascades of classifiers or in applications in which soft assignment outputs are pre-

ferred. However, the performance of logistic functions tends to drop significantly

when the training data are insufficient or the noise in the training data affect

the model hypothesis. SVM-based methods also require less training time than

logistic methods due to the absence of the time-consuming log-sum-exp operators.

3.3.3 Regularizer

We add a L1-regularizer in MLLR to avoid overfitting. Of a wide range of regular-

izers, such as L1-norm, L2-norm and group norm, the most notable characteristics

of the L1-regularizer is that it produces sparse model parameters. For MLLR, as

discussed previously, the maximization operator over h and the log-likelihood loss

function exploit their full advantages in large-scale datasets with complicated la-

tent variables. From an optimization perspective, complex latent variable models

require larger computational effort and are more prone to getting stuck in a poor

local minimum. To address this problem, sparse models are preferred due to their

ability to prune the redundant model parameters, providing robustness in noisy

datasets and with less computational effort. Nevertheless, the lost of smoothness

in the L1-regularizer may always lead to problems during optimizing.

Other than the advantages of MLLR, we also note that there are some po-

tential problems for the algorithm. The first issue is that MLLR is relatively

heavy weighted as it considers data from all the classes at the same time when

performing optimization, leading to quite a large burden of memory cost and

computational cost. Secondly, inheriting from the nature of logistic regression,

MLLR may perform poorly when training data is strongly unbalanced or ex-

tremely noisy.

From the theoretical and experimental analysis above, we summarize the ap-

plication scenarios of MLLRs as follows:

1. The number of training examples is sufficient, and the model assumptions

are not highly violated. On such occasions, logistic regression usually per-

forms better than SVM.

2. A probabilistic graphical model for latent variables is unavailable, or no

graphical relationship between latent variables exists. In other words, the
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latent values are independently distributed or mutually exclusive. The

marginalization over latent variables in HCRFs is inappropriate in such

scenarios.

3. Applications in which probabilistic analysis is preferred. SVMs result in

hard-margin classification assignments. They do not provide reasonable

probabilistic outputs.

3.4 Experiment

Here we evaluate MLLR on four different visual recognition applications, and

compare the performance of MLLR with LSSVM [167] and LSVM [47] under the

same definition of latent variables and employing the same visual features.

3.4.1 Handwritten digit recognition

Handwritten digit recognition is a traditional computer vision task. It is well-

known that the accuracy of digit recognition can be greatly improved by explicitly

modeling the deformations present in each image, such as arbitrary rotations.

Therefore, latent variable models such as LSSVM and MLLR can improve the

recognition accuracy by modeling the rotation angle as a latent variable.

For fair comparison, we follow the experimental setup and use the same fea-

ture representation of Kumar et al. [77] and Chen et al. [26], who both adopted

LSSVM approaches for recognizing digits. Specifically, [77] used uniform an-

gle selection and proposed a self-paced learning algorithm that outperformed the

CCCP algorithm in LSSVMs, while [26] proposed a group norm scheme to explic-

itly select a subset of discriminative rotation angles that controls the complexity

of latent space.

In the experiment, we use the MNIST dataset [80] and perform binary clas-

sification on four digit-pairs (1-7,2-7,3-8,8-9) following [77] and [26]. We ob-

tain the feature vector φh(x) by rotating an image x by an angle h, where

h ∈ H = {−60◦, 48◦, ..., 60◦}; then projectinto a ten-dimension representation

by PCA. Finally, a joint feature vector is specified regarding all 11 angles as
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Table 3.1: Prediction accuracies for four digit pairs. N stands for SVM or LR
methods without using latent variable models. GD and CDN stand for the two
optimization methods in Section 3.2. MLLR-CDN algorithm consistently outper-
forms two LSSVM-based algorithms.

Digit pair
LSSVM MLLR

N [77] [26] N GD CDN

1 vs 7 0.976 0.945 0.988 0.978 0.987 0.994
2 vs 7 0.813 0.941 0.956 0.902 0.970 0.977
3 vs 8 0.784 0.916 0.923 0.836 0.938 0.973
8 vs 9 0.868 0.933 0.954 0.913 0.956 0.977

φ(x, y, h) = {0, ..., φh(x), ..., 0}. We run 50 iterations for each digit pair and each

algorithm. The results are averaged using 10 random trials.

Table 3.1 reveals the resulting prediction accuracies. In general, MLLR out-

performs LSSVM-based methods by a margin. That is partially because the

MNIST dataset has a relatively large number of training examples (about 6000

for each digit pair), which makes logistic functions more effective. Compared

to the general setting of LSSVM adopted in [77], a boost of performance was

achieved in [26], where a L1-L2 regularizer was adopted to select a subset of

latent variables h. It can be explained that redundant rotation angles may per-

form as noise, and eventually degrade the accuracy. The L1-regularizer in MLLR

provides sparse models and reduces the effect of noise. Meanwhile, the resulting

sparse models accelerate the testing process by approximately 3 times. Results

show that the models learned by MLLR can also obtain a similar group sparsity

as in [26]. Figure 3.2 shows the L1-norm of the parameter vectors for different

angles.

Compared to gradient descent approaches, the latent-CDN algorithm con-

verges significantly faster and obtains better performance. The phenomenon

advocates the use of second-order gradients, which is impossible for SVM-based

methods due to the non-smoothness in objective functions. In practice, the latent-

CDN algorithm usually converges within 10 iterations.
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Figure 3.2: L1-norm of the model parameter vectors for different angles learned
by MLLR. x-axis stands for angles and y-axis reveals model responses. Although
the L1-regularizer is not specified to produce group sparse models, the resulting
model parameters follow a similar pattern.
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Table 3.2: Average Precision on the PASCAL VOC 2011 Action Classification
task.

Method
Jump Use Play Read Ride Ride Run Take Use Walk Ove.

Pho. Inst. Bike Hor. Pho. Comp.

LSSVM 38.5 29.2 30.8 26.0 49.9 58.4 47.4 18.0 33.4 40.0 37.1
MLLR 38.1 25.8 28.1 25.2 59.4 70.6 60.4 24.0 52.7 40.2 42.4

3.4.2 PASCAL action classification

Considering the characteristics of the maximization inference for latent variables,

we argue that the most important application scenario for MLLR lies in weakly

supervised classification. In weakly supervised problems such as object recogni-

tion, the ground-truth only contains image-level labels. The exact object location

is regarded as a “semi-structured” latent variable, for which it is impossible to do

formal graphical model inference and marginalize them out in a principled way

as done in HCRFs.

Human action classification can be regarded as a weakly supervised learning

task. We use the PASCAL VOC 2011 [45] action classification dataset, and follow

the experimental setting of [10]1, who used the DPM person detector [47] and the

standard poselet-based feature vector [96], resulting in a 2405 dimensional feature

vector. The classification results are obtained via a 5-fold cross validation on the

‘trainval’ set, including 1940 training images and 484 testing images.

Table 3.2 shows the Average Precision (AP) of LSSVM using CCCP optimiza-

tion and MLLR with latent CDN optimization. MLLR significantly outperforms

LSSVM in this task by five percents in overall. Moreover, due to the use of second-

order derivatives, the computation of MLLR-CDN is around 2 to 10 times faster

compared to LSSVM-CCCP, and reach better solutions after convergence. Ex-

perimental results on different parameter settings obtain similar results on the

comparison between LSSVM and MLLR.

1We use the implementation by Kumar et al. in their tutorial in CVPR2013, available on
http://cvn.ecp.fr/tutorials/cvpr2013/.
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Figure 3.3: Visualization of the result of MLLR for 3 human actions (cricket-
defensive battling, tennis-forehand and croquet). Detected root filters are dis-
played in red, and part filters are shown in yellow. Note that for the images of
the class croquet, people usually have strong interactions with the background,
which degrades the performance.

3.4.3 Sport action recognition

We show another application of MLLR on the task of sport action recognition. In

this experiment, we use the sports action dataset, which has six possible actions

[64]. The classes are selected so that they have significant confusion due to scene

(tennis-serve and tennis-forehand) and pose (volleyball-smash and tennis-serve).

Here we utilize the DPM framework [47], i.e., regard the exact object location as a

latent variable and use the entire image as the training instance. The aspect-ratio

of the root-filter in DPM is set as the average of all training images. Detailed

analysis of the DPM-MLLR framework will be discussed in the next chapter.

We use 30 images per class for training and 20 per class for testing. MLLR gets

a classification accuracy of 78.33%, outperforms LSVM of 74.17%. It is noticeable

that the accuracy is comparable with the performance with the fully supervised
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model in [64] of 78.67%, indicating that without using the supervision of human

body segmentation, the proposed method can achieve comparable performance

with the fully supervised approaches. The confusion matrix (Figure 3.4(b)) shows

that the proposed algorithm achieves better performance on actions that only

allow deformation of a small amount, such as cricket-defensive battling. Most of

the misses occur when the aspect-ratio of the DPM model is not suitable for the

testing images, e.g., images of croquet usually involve a large area of background,

making it hard to model the action of human subject. Figure 3.3 shows typical

results for human action recognition using MLLR.

3.4.4 Animal classification

In this section, we show another object classification task with image level su-

pervision for classifying mammals. Analagously, the training data only indicates

whether or not an object appears in the image. The exact location of the object

is not given, thus we consider the location of the object to be a latent variable z.

By enumerating all possible locations in different scales, the latent variable has a

huge value space.

We evaluate the performance of non-Latent SVM, LSVM and MLLR on the

mammal dataset [77]. The dataset contains 6 mammal classes, with about 50

images per class. We randomly choose half of the images for training and run 10

rounds of experiments. For all the algorithms, the template HOG features are

extracted to indicate the approximate sketch of each object category [47]. The

shape of the HOG template is determined as the average aspect ratio of all images

in an object category.

First, a linear SVM classifier is constructed for each object category consider-

ing the binary classification problem. As shown in Figure 3.5, the template HOG

models learned by SVM carry vague semantic information since the training im-

ages share similar background scenes.

The model parameters of non-Latent SVM are used to initialize LSVM and

MLLR. These two algorithms consider the exact object localization as a latent

variable and define the feature vectors f(x, z) as the HOG feature from image x at

location z. Therefore, the process to optimize a latent variable here means to find
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Figure 3.4: Confusion matrices of MLLR in the task of Mammal dataset (a) and
Sports dataset (b).

the highest scored position for the foreground object. Figure 3.6 visualizes the

change of latent variable (object location) during learning of MLLR. The train-

ing process iteratively switches between the two procedures of finding the best
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Table 3.3: Classification results for the mammal dataset. Linear SVM is trained
without latent variables. All algorithms use the same feature extraction method.
We show the mean/std of classification accuracies over 10 rounds of experiments.

Method linear SVM LSVM MLLR

ACC(%) 64.23± 2.06 69.59± 4.38 73.31± 2.77

Figure 3.5: Visualization of the result of distributed MLLR on the mammal
dataset. The first column contains the HOG models trained by non-latent linear
SVM. Given the non-latent linear SVM model as the initialization status, MLLR
models remove some of the noise data in the models, as shown in the second
column. The last five columns visualize typical results of the latent position
found by MLLR. The rows show three of the object categories, which are bison,
elephant and giraffe respectively.

bounding box for the object and optimizing the model parameters. As shown in

Table 3.3, by introducing latent variables, MLLR and LSVM significantly outper-

form non-Latent SVM. In most cases, the resulting latent values can accurately

locate the objects. On the other hand, MLLR consistently outperforms LSVM

by a slight margin. Figure 3.7 shows a typical example in which LSVM fails to

achieve correct result due to the calibration problem, while MLLR obtains the

correct result.
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Figure 3.6: Visualization of how the latent variable (object location) changes
during learning. Starting from the full bounding boxes, the algorithm iteratively
finds the highest scored location of the object. The numbers underneath indicate
the output probabilities of MLLR at various stages.

elephant−0.44

rhino−0.40

(a)

rhino−0.23deer−0.20

elephant−0.18

(b)

Figure 3.7: Visualization of the comparison between MLLR (left) and LSVM
(right). The text on the bounding box indicates the prediction label and the
number shows its probability. We use the sigmoid function to turn the deci-
sion values of LSVM into probabilities. Although both algorithms find the same
bounding boxes for the classes “elephant” and “rhino”, MLLR correctly classifies
the object due to a better calibration process.
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3.5 Summary

This chapter has introduced theoretical analysis of the proposed latent variable

model MLLR. By introducing latent variables into the objective function of lo-

gistic regression, MLLR provides efficient latent variable inference and effective

probabilistic analysis. We have presented two optimization methods in the frame-

work of concave-convex procedure to solve the objective function of MLLR. Ex-

perimental results reveal that MLLR outperforms LSVM in multi-class classifica-

tion problems, and further beats LSSVMs when the learned hypothesis is strong

enough. Weakly supervised object recognition, which introduces a large value set

of latent variables (e.g., object location) and performs multi-class classification,

could be considered as an important application scenario for MLLR.

By conducting a detailed comparison between MLLR and existing latent vari-

able models with structured output, we have provided suggestions of how to select

a proper model in real-world applications. In the following chapters, a set of novel

applications will be presented, by which we will study several practical issues for

conducting MLLR and also other latent variable models in weakly supervised

tasks.

Publications Related to This Chapter

1. Zhe Xu, Zhibin Hong, Junjie Wu, Ah Chung Tsoi, Dacheng Tao. Multi-

nomial Latent Logistic Regression for Image Understanding. IEEE Trans-

actions on Image Processing (TIP), 25(2): 973-987, 2016.
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Chapter 4

MLLR for Architectural Style

Classification

In this chapter, we will study one distinguishable property of the proposed MLLR

- the ability to produce probabilistic outputs. For this purpose, we focus on archi-

tectural style classification, a new application as a typical example which involves

complicated inter-class relationships including re-interpretation, revival, and ter-

ritoriality. We conduct the proposed MLLR together with deformable part-based

model (DPM) and solve this task in a weakly supervised setting. Except for the

standard classification results, we will also investigate the proposed DPM-MLLR

framework on producing additional discoveries on architectural styles using prob-

abilistic analysis.

4.1 Introduction

Object recognition has been extensively studied in the history of computer vi-

sion. In recent years, the research objective has evolved drastically, from highly

artificial experimental settings with small datasets and restricted range of cate-

gories [49], to more challenging recognition tasks involving an increasing number

of object categories and more real-world experimental settings [45, 112]. Except

for the increase of the number of recognizing object categories, such evolution also

raises new challenges to researchers due to the underlying inter-class relationships
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between categories.

Buildings can be classified according to architectural styles, where each style

possesses a set of unique and distinguishing features [44]. Some features, espe-

cially the façade and its decorations, enable automatic classification using com-

puter vision methods. Architectural style classification has an important property

that styles are not independently and identically distributed. The generation of

architectural styles evolves as a gradual process over time, where characteristics

such as territoriality and re-interpretation lead to complicated relationships be-

tween different architectural styles. Therefore, architectural style classification is

a typical example where inter-class relationships play an important role.

Most of existing architectural style classification algorithms focus on efficient

extraction of discriminative local-based patches or patterns [11,30,42,61,106]. In a

four-style classification problem, Chu et al. [30] extracted visual patterns by mod-

eling spatial configurations to address object scaling, rotation, and deformation.

Goel et al. [61] achieved nearly perfect results on published datasets by mining

word pairs and semantic patterns, and therefore tested this approach further on a

more challenging five-class dataset collected from the internet. Zhang et al. [171]

used “blocklets” to represent basic architectural components and adopted hierar-

chical sparse coding to model these blocklets. However, as argued in [148], some

patches that look totally different can be very close in the feature space, which

degrades the performance of local patches in understanding detail-rich architec-

ture images. One recent study showed the possibility of cross-domain matching

from sketches to building images [125], and this inspired us to employ sketch-like

features to represent the building façades.

The Deformable Part-based Model (DPM) [47] is a popular scheme that em-

ploys sketch-like Histogram of Oriented Gradient (HOG) features. DPM models

both global and local cues and enables flexible configuration of local parts by

introducing so-called deformation costs. By adopting a latent SVM (LSVM) al-

gorithm for training, the DPM-LSVM framework produces class labels effectively

via part-based modeling. However, the predicted labels are deterministic results;

in order to enable rational explanation of the gradual transition and mixture

of architectural styles, it would be preferable to provide soft assignments and

introduce the concept of probability into the model.

56



Figure 4.1: Schematic illustration of architectural style classification using Multi-
nomial Latent Logistic Regression (MLLR). Given a new large-scale architectural
style dataset, we model the façade of buildings using deformable part-based mod-
els. The resulting classifiers can provide probabilistic analysis along with the
standard classification results.

Therefore, for architectural style classification task, we employ DPM as the

feature representation method and adopt the proposed MLLR as the learning al-

gorithm. MLLR is supposed to enjoy great advantages in this problem setting. By

regarding object location as latent variables and producing probabilistic outputs,

MLLR can produce a set of interesting discoveries together with traditional classi-

fication accuracy, such as inter-class relationship modeling, and style analysis for

individual buildings (Figure 4.1). Experimental results reveal that the proposed

method can not only achieve state-of-the-art classification performance, but also

presents effective probabilistic analysis aware of the rich inter-class relationships

between architectural styles.

We have also noticed that one reason why few previous studies focus on ar-

chitectural style analysis lies in the lack of a well-organized, large-scale dataset.

Therefore, we collect a new and challenging dataset containing 25 architectural

styles. The dataset possesses several preferred properties enclosing in architec-

tural style classification, including multiple classes, inter-class relationships, hi-

erarchical structure, change of views and scales. Our new dataset provides an

improved platform for evaluating the performance of existing classification algo-

rithms, and encourages the design of new ones.
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4.2 Architectural Style Dataset

An architectural style is a specific construction, characterized by its notable fea-

tures. For instance, unique features, such as pointed arches, rib vaults, rose

windows and ornate façades, make it possible to distinguish the Gothic style

from other styles. Architectural history has dictated that there are complicated

inter-relationships between different styles, including rebellion, special territori-

ality, revivals, and re-interpretations. As a consequence, it is difficult to strictly

classify two styles using a standard criterion.

In order to study architectural styles and model their underlying relationships,

we collected a new architectural style dataset from Wikimedia1. We obtained the

initial list by querying with the keyword “Architecture by style”, and downloaded

images from subcategories following Wikimedia’s hierarchy using the depth-first

search strategy. The crawled images were manually filtered to exclude images of

non-buildings, interior decorations, or part of a building. Therefore, the remain-

ing images contained only the exterior façade of buildings. Styles with too few

images were discarded, resulting in a total of 25 styles. The number of images

in each style varies from 60 to 300, and altogether the dataset contains approxi-

mately 5, 000 images2.

We propose several challenges to extensively exploit the data size and rich

relationships between different architectural styles in this dataset. Figure 4.2

illustrates the dataset.

• Multi-class classification. To the best of our knowledge, this dataset is

the largest publicly available dataset for architectural style classification.

Other popular datasets related to buildings do exist, such as the Oxford

Landmark dataset [106]. However, their main purpose is for the retrieval

of individual landmark buildings rather than classification of architectural

styles. A discussion of the difference between “style” and “content” can

be found in [52]. There are some researches on different type of art styles,

such as painting [156, 179] and car designing [82], which may also provide

1From Wikimedia commons.
http://commons.wikimedia.org/wiki/Category:Architecture_by_style.

2https://sites.google.com/site/zhexuutssjtu/projects/arch
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Figure 4.2: Illustration of the architectural style dataset. Each of the 25 styles
is represented by a circle with the respective number in the middle, where dif-
ferent colors indicate broad concepts, such as modern architecture and medieval
architecture. The styles are arranged according to time order, where newer ones
are placed in the right of ancient ones. Various inter-class relationships exist
between the styles, e.g., lines between circles stand for following relationships;
smaller circles around large ones indicate sub-categories. Typical images of the
styles are shown in the background. Better viewed in color.

cross-domain knowledge from other aspects of art styles.

• Modeling inter-class relationships between styles. Various relation-

ships exist between the 25 architectural styles, e.g., following, revival, and

against. Styles can be roughly classified into broad concepts, such as an-

cient architecture, medieval architecture and modern architecture, and thus

further be arranged in a hierarchical structure. For reference, we summarize

the relationships between different styles verified by Wikipedia. It is of in-

terest to explore whether computer vision algorithms can efficiently extract

the underlying inter-class relationships.

• Modeling intra-class variance within a style. The establishment of
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an architectural style is a gradual process. When styles spread to other lo-

cations, each location develops its own unique characteristics. On the other

hand, each building is unique due the personalities of different architects.

Therefore, it is challenging to find common features within a style, as well

highlighting the specific design of an individual building.

• Style analysis for an individual building. When designing a build-

ing, an architect sometimes integrates several different style elements. The

building can therefore be represented as a mixture of styles. An algorithm

should be able to model this phenomenon, e.g., show that the window is

inspired by style I and the arch by style II.

4.3 Model Description

In general, buildings are constructed by a set of basic elements, such as doors,

windows, arches, and towers. Therefore, in order to recognize multiple archi-

tecture styles, it is reasonable to model buildings through part-based feature

representations. The Deformable Part-based Model (DPM) [47] is perhaps the

most popular part-based method in the field of object recognition. The defini-

tion of a DPM involves multiple forms of latent variables, and thus requires an

effective latent variable paradigm to train the models. Here, we adopt DPMs

to represent architecture styles, and show that the proposed MLLR is a better

solution to solve multi-class problems than the latent SVM algorithm used in the

original implementation of DPM.

4.3.1 Deformable part-based model

The Deformable Part-based Model (DPM) aims to model non-rigid deformations

for recognizing generic objects such as people and cars. The key assumption

is that objects can be represented by a combination of multiple object parts,

while the parts can be displaced flexibly around an anchor position with some

restrictions denoting by a deformable configuration. For example, to recognize a

pedestrian in still images, a DPM models people by several parts, such as head,

torso, arms and legs. Different parts have varied characteristics: a head should
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Feature pyramidImage pyramid

Figure 4.3: Illustration of the feature pyramid in a DPM. Part filters are placed
at twice the spatial resolution than the root filter. Original figure can be found
in [47].

be right above the torso with little displacement, while arms can be deformable

within a rather large region around the torso. These properties are then modeled

via the deformable configurations in DPMs.

Based on this assumption, DPM describes an object by a star-structured part-

based model defined by a “root” filter plus a set of parts filters and associated

deformation models. The score at a particular position and scale is computed

as the score of the root filter at given location, plus the sum of part filters by

computing the maximum score over placements of each part through the part

filter score and a deformation cost. As shown in Figure 4.3, by representing an

image in a multi-scale HOG feature pyramid, DPM models visual appearance

at multiple scales, where the part filters resides at twice the spatial resolution

relative to the root filter.

Formally, a model for an object with n parts is defined by a (n + 2)-tuple

(F0, P1, ..., Pn, b) where F0 is a root filter, Pi is a model for the i-th part and b is a

real-valued bias term. Each part model is defined by a 3-tuple (Fi, vi, di) for the

part filter, anchor point, and deformation cost respectively. An object hypothesis

61



specifies the location of each filter in the feature pyramid, z = (p0, ..., pn), where

pi = (xi, yi, li) is the position and scale of the i-th filter respectively. The score

of a hypothesis is given by:

score(p0, ..., pn) =
n∑

i=0

F ′iφ(H, pi)−
n∑

i=1

di · φd(dxi, dyi) + b, (4.1)

where the first term are filter scores; part displacements are denoted by

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi),

and

φd(dx, dy) = (dx, dy, dx2, dy2)

are deformation features; b is a bias.

The score function sβ(x) can be simplified as a dot product β ·Ψ(H, z) between

a vector of model parameters β and a vector Ψ(H, z),

β = (F ′0, ..., F
′
n, d1, ..., dn, b), (4.2)

Ψ(H, z) = (φ(H, p0), ...φ(H, pn),−φd(dx1, dy1), ...,−φd(dxn, dyn), 1). (4.3)

A visualization of DPMs in architectural style classification is shown in Figure

4.4. Template HOG features model building façade by sketch-like representations.

DPMs can discover distinguishable object parts automatically, and organize the

discovered parts and the whole object as a star-structured framework that allows

slight deformation. For Gothic style shown in the figure, the resultant root model

shows typical façade outline of Gothic style buildings, and the part filters captures

discriminative architectural elements such as rose windows.

Given various problem settings, the definition of DPMs can involve as much as

three different kinds of latent variables. Consider the weakly supervised object

recognition task in our application where only image-level labels are provided

during training, the associated latent variables include:

• Root position. An object may appear at varied position, scale and in dif-

ferent aspect ratios in an image. Therefore, the position of the root filter
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(a) 

(c) (b) (d) 

Figure 4.4: Visualization of the use of DPM in architectural style classification.
(a)(c)(d) show detection results for different testing images. The trained model
for Gothic architectural style is shown in (b).

in a HOG pyramid is considered as a latent variable in the model.

• Part position. In DPM, each part model is defined by a triplet including a

part filter, an “anchor” position for the part relative to the root position,
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and a deformation cost for each possible placement of the part relative to

the anchor position. Part positions, therefore, are also regarded as a latent

variable, as each part can be displaced with respect of the anchor position

restricted by the deformation cost.

• Component label. DPM introduces a mixture-component model to account

for intra-class variance. The score of a mixture model at a particular po-

sition and scale is then the maximum over components. Here, the latent

variable specifies a component label and a configuration for that component.

4.3.2 Latent SVM

To train the model parameters β, DPM adopts a latent SVM algorithm described

in Section 2.1.4, whose objective function is defined analogically to classical SVMs

as:

L(D) =
1

2
||β||2 + C

N∑

i=1

max(0, 1− yisβ(xi)), (4.4)

where max(0, 1 − yisβ(xi)) is the standard hinge loss and C is the soft margin

parameter, which controls the weight of the regularization term. Due to the

non-convex training objective function, latent SVM is solved using a coordinate

descent framework.

As DPM is originally proposed for object detection [47], the latent SVM algo-

rithm is mainly focused on solving binary output predictions such as a classifier

for detecting people against the background. Following [47], Pandey et al. [102]

use DPM in a scene recognition and a weakly supervised object localization task.

They point out that scene recognition can also be viewed as a “part-based” prob-

lem, where the root captures the entire image and the parts encompass moveable

“regions of interest” (ROIs). In their experiments, they find that when the model

is trained using the entire image as the root, the resulting performance is not as

good as expected. They remark that the root filter should be allowed to move,

and regarding the position of the root filter as another latent variable.

However, there are some notably drawbacks of conducting this strategy to

train latent SVMs for classifying architectural styles. First, it is argued that SVM

tends to underperform when training data is highly imbalanced, i.e., negative
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examples far outnumber positive examples [158]. The vast “background” class in

the object detection framework introduces a serious imbalance between positive

and negative examples. Moreover, in LSVM, the training process needs to fix

the latent value for positive examples, while keeping all possible latent values for

negative examples. This process makes the imbalance problem even more severe.

Second, the dominant method for solving multi-class problems using SVM

has been based on reducing a single multi-class problem to multiple binary prob-

lems. However, since each binary problem is trained independently, adopting this

strategy is problematic because it cannot capture correlations between different

classes. As a result, the output decision values are not comparable, and this is

known as the “calibration” problem. MLLR trains all classes simultaneously by

introducing a unified objective function and in this way does not suffer from the

hazard of different biases occurring with the multi-class problem and imbalanced

training data.

Finally, SVM does not provide an effective probabilistic analysis with a soft

boundary. Given an input example, the corresponding output of SVM is called the

decision value, which is the distance from the example to the decision boundary.

A previous work [90], in which a normalization process was proposed to convert

the decision values of SVM to probabilistic outputs, does not provide a genuine

probabilistic explanation. MLLR produces comparable classification results for

multiple classes, and more reasonably turns them into probabilities.

Therefore, in our implementation, we follow the setup of Pandey et al. for

relaxing the position of root filter, i.e., use a square root filter and restrict it to

have at least 40% overlap with the image, and employ the proposed multinomial

latent logistic regression to train the DPM models.

4.3.3 DPM-MLLR framework

The proposed method utilizes DPM to represent non-rigid objects and employs

MLLR for multi-class predictions and probabilistic output analysis. Two forms

of latent variables are used in the proposed method: root position and part

position; mixture-component analysis is not introduced in our model in order

to reduce the computational complexity. The latent variable is then defined as
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z = (p0, p1, ..., pn).

Training procedure. The training procedure of DPM is relatively compli-

cated due to the definition of root and part filters, and the non-convex objective

function. We summarize the whole process as follows:

Initializing root filters. One predominant characteristic of architectural style

classification is that objects to be recognized usually follow an object-in-the-

center prior and are relatively large in scale. As a result, we adopt a rather

simple initialization strategy that extracts features from the largest crop with

squared shape in training images, and pre-train a set of classifiers via standard

logistic regression as the initialization for root filters.

Root filter training. The second step is to relax the location of root filters and

train classifiers using latent variable models. As parts are not yet introduced into

the model, the only latent variable now is the position of the root filter in the

feature pyramid. We adopt the gradient descent optimization method described

in Section 3.2.4 and train models iteratively by updating latent variables or model

parameters with the other one fixed.

Initializing part filters. After several iterations of outer loops in CCCP (typi-

cally 2-3), the resultant root filters can usually produce reasonable discriminative

power for the recognizing object. Based on them, a set of part filters are defined

to further model the details of objects. Following [47], part filters are defined

greedily by placing parts to cover high-energy regions of the root filter. Note

that for different object categories, the position and shape of part filters may be

different, resulting in different feature representations.

Joint training. After introducing part filters, the DPM-MLLR framework

jointly trains multiscale part-based models of the root filter and part filters on

multiple classes simultaneously. We adopt a dynamic programming strategy sim-

ilar to [47] to improve the efficiency of latent variable inference. The final DPMs

gather the filter weight of the root and multiple parts, and the associated defor-

mation costs.

Calibration between different subspaces. Compared to LSVM, a cru-

cial advantage of MLLR in multi-class classification problems is that it can pro-

duce comparable results when generating scores for different categories. Here we

present a detailed explanation of the definition of the “calibration” problem and
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why MLLR can tackle this problem.

Consider the process of predicting the class label for an image. Assume that

there are altogether K classes in the dataset, and there are Z possible values for

the latent variable in this image. As discussed above, the extracted feature vectors

by DPM for class A and class B are not always the same due to different shapes

and scales of the root filter and part filters. Therefore, the feature representation

is in fact defined by a triplet (x, y, h), where x is an input image, y is an output

label, and h is a possible latent assignment.

Note that in LSVM, when the one-against-rest strategy is used, each time a

classifier with binary outputs is learned for an object category. Therefore, for the

k-th class, the training process in fact only utilizes a single form of feature repre-

sentation φ(·, yk, ·) with yk fixed. As a result, the classifiers β = {βk} are trained
on multiple subspaces defined by φ(·, yk, ·) respectively. The scores generated

on different subspaces are not directly comparable, leading to the “calibration”

problem.

On the contrary, MLLR simultaneously trains the classifiers for multiple

classes in a unified framework. Specifically, given a training image, MLLR ex-

tracts K sets of feature representations, each of which corresponds to a specific

object category. An image is then associated with K × Z feature vectors, ac-

counting for each latent assignments on each output label. Although different

categories have their own set of feature representations lying in multiple sub-

spaces, the generated scores for multiple categories are comparable by projecting

the feature vectors into a single score and compute probabilities on them. The

probability of the image belong to a category k is then given by:

pk(x; β) =
exp(score(x, k))

∑K
l=1 exp(score(x, l))

, (4.5)

where score(x, k) = maxh βkφ(x, k, h). Figure 4.5 illustrates this process.

4.4 Experiment

In the experiments, we adopt the proposed DPM-MLLR framework to perform

architectural style classification and compare the results with DPM-LSVM. The
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(c) Subspace A (a) DPM 
for class A 

(b) DPM 
for class B 

(d) Subspace B (e) score 

Figure 4.5: MLLR maps the classifier results of multiple classes to a unified score
function. The resultant scores are directly comparable.

experiments are presented in three steps. In the first step, we choose ten ar-

chitectural styles that are relatively distinguishable by their façades and have

lower intra-class variance. As a result, using sketch-like HOG features, DPM

can clearly demonstrate the characteristics of these styles. Second, we evaluate

the effect of a more extensive multi-class problem and larger intra-class variance

using the full dataset. Given the probabilistic results, we formulate inter-class

relationships using a style relationship map. The third part illustrates individual

building style analysis of MLLR.
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Table 4.1: Results on the architectural style classification dataset. MLLR consis-
tently outperforms LSVM. Multiple features (e.g., MLLR+SP) are combined by
adopting a late fusion method using the softmax function on classifier outputs.

GIST SP
OB OB DPM DPM MLLR

w/o. part w. part LSVM MLLR +SP

10 classes 30.74 60.08 62.26 63.76 65.67 67.80 69.17
25 classes 17.39 44.52 42.50 45.41 37.69 42.55 46.21

Figure 4.6: Testing results for the ten architectural styles. The first two columns
visualize the result root and part filters for each model. From top to bottom:
Baroque, Chicago school, Gothic, Greek Revival, Queen Anne, Romanesque and
Russian Revival architecture. Detected root filters are displayed in red, and part
filters are shown in yellow. Better viewed in color.
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(a)

(b)

Figure 4.7: Confusion matrix for MLLR on the two experimental settings.
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4.4.1 Classification task

A ten-class sub-dataset is exploited for the first classification task, most of which

have prominent façade or decoration features, such as pointed arches, the ribbed

vaults and the flying buttresses characteristics of Gothic architecture. For each

class, 30 images are randomly chosen as training images and the remaining im-

ages are used for testing, 1, 716 in total. We run a ten-fold experiment. The

proposed algorithm is denoted by DPM-MLLR. Table 4.1 compares the classi-

fication accuracy of DPM-MLLR with other algorithms, including GIST [137],

Spatial Pyramid (SP) [79], Object Bank [85], and DPM-LSVM [102]. DPM-

MLLR outperforms LSVM in terms of overall accuracy. It is noted that DPM

and local patch-based algorithms, such as Spatial Pyramid, have complementary

properties. We therefore combine their results using a naive softmax function

and achieve the best result with nearly 70% accuracy.

Figure 4.6 shows the trained models and typical detection results of MLLR.

Close inspection of the results reveals that the models capture discriminative

features of the styles. For instance, the model representing American Queen

Anne architecture detects twin gables and allows them to move within limits

(in the top of the root). Thus, the model is robust to slight view changes and

intra-class variance.

The confusion matrices of the proposed algorithm on the 10- and 25-class

classification task are shown in Figure 4.7.

4.4.2 Inter-class relationships between styles

This part of the experiment is implemented on the full dataset. The 25-class

dataset has stronger intra-class invariance and is harder to distinguish purely by

the façades. The results show that algorithms that take the features of the entire

image into consideration, i.e., Spatial Pyramid and Object Bank, achieve superior

performance (Table 4.1). DPM-MLLR has slightly lower accuracy. However,

compared to the result of the ten-class problem, MLLR outperforms LSVM by

a larger margin due to the increased number of classes. Again, the combined

MLLR-SP algorithm achieves the best result.

Despite classification accuracies, the proposed algorithm provides a proba-
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bilistic style distribution for each building image. By summing the probabilities,

we obtain a probabilistic confusion matrix, which is further decomposed into a

style inter-relationship network by assigning an edge between two styles whose

confusion probability exceeds a given threshold. Figure 4.8 shows the resulting

relationship map of the 25-class dataset. According to the set of relationships

between styles collected from Wikipedia, the proposed algorithm gets a recall of

0.66, and the average precision AP@10 is 0.51.

Unlike hard-margin confusion matrices, large values can occur in the proba-

bilistic confusion matrix under two occasions. The first is when two styles are

similar to each other, making them hard to distinguish, and the second is when

two styles appear on different parts of the same building, which is most likely

to happen when the styles spread to a same place and start to mix. We try to

distinguish these two scenarios by considering whether the optimized detecting

bounding boxes of the two styles frequently appear at the same location. Exper-

imental results show that the averaging bounding box intersection ratio of the

Queen Anne and American Craftsman styles is higher than that of the Baroque

and Colonial style (0.56 vs. 0.46), which means that the first two styles have a

similar façade and should therefore be more dependent on local parts for classi-

fication. This phenomenon is in accordance with architectural history.

4.4.3 Individual building analysis

MLLR makes it possible to analyze the architectural style of a building proba-

bilistically. Figure 4.9 shows two typical situations in which the algorithm gives

comparable scores for at least two styles, which correspond to the two scenar-

ios discussed in the previous subsection. The first is when different architectural

styles share similar features, such as pear-shaped domes in both Baroque and Rus-

sian Revival architecture. The second scenario appears when architects design

new buildings that combine several different architectural styles. For instance,

Figure 4.9(b) shows a failed classification case in which the main body of the

building follows the Queen Anne style, while the terrace shows a strong Greek

sense. MLLR mistakenly classifies the building as Greek Revival style due to

the unusual shooting angle, which places the main body in side view. However,

72
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Figure 4.8: An architectural style relationship map generated by the proposed
algorithm. The confusion probability between style A and B is obtained by
summing the probabilities with regard to B for all images labeled by A. Only
links whose weight exceeds a given threshold are shown in the figure. Modern
styles, such as Postmodern and International style, are connected, while the
links between modern and medieval styles are weak. The figure is drawn using
NetDraw [16].

MLLR discovers interesting patterns in the building that indicates a combina-

tion of different styles, and assigns probabilities for each style according to the

training set.

4.5 Summary

In this chapter, we focus on the multi-class classification task, where the proposed

MLLR provides calibrated results on multiple categories and presents effective
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Russian Revival architecture−0.27

Baroque architecture−0.28

(a)

Greek Revival architecture−0.66

gt, Queen Anne architecture−0.11

(b)
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Figure 4.9: MLLR detects the optimized latent position for each class and outputs
a global list of probabilities for each class. (a) Parts shared by different styles.
(b) A building that combines several styles. (c)-(f) Typical detection results for
the four styles appearing in (a) and (b), i.e., from left to right, Baroque, Russian
Revival, Queen Anne and Greek Revival.

probabilistic analysis on output labels. Our study is conducted on a novel ap-

plication of object recognition - architectural style classification, in which rich

inter-class relationships exist between multiple categories. For this application,

except for the traditional evaluation criterion of classification accuracy, MLLR

also makes it possible for analyzing architectural styles in depth, including gener-

ating style relationship maps and performing style analysis on multiple elements

of individual buildings.

Meanwhile, we have shown that MLLR is an effective approach to train the

famous deformable part-based model in multi-class classification tasks. By simul-

taneously training classifiers for multiple categories, MLLR eliminates the calibra-

tion problem of latent SVM, leading to a reasonably performance improvement.

In the next chapter, we will employ MLLR on a more challenging task - weakly

supervised fine-grained visual categorization, and discuss the impact of various
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initialization strategies on the performance of weakly supervised learning.
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Chapter 5

MLLR for Fine-grained

Categorization

In this chapter, we will focus on an important aspect for training latent variable

models - the initialization. As the objective function of the proposed MLLR is

non-convex, a bad initialization could lead to poor local minima and thus result

in suboptimal results. To study this issue, we investigate an extreme case of per-

forming weakly supervised learning on fine-grained visual categorization which

aims to distinguish object categories in the subordinate level. Considering that

different subcategories in fact belong to a more generic concept, we propose a

novel multi-task co-localization algorithm to perform initialization for the non-

convex MLLR objective function, and incorporate MLLR into the framework of

multi-instance learning (MIL) to solve the weakly supervised problem. Experi-

mental results prove the effectiveness of the designed initialization scheme.

5.1 Introduction

One of the most intuitive applications of the proposed paradigm MLLR is for

solving weakly supervised problems [38,51,53] in the form of multi-instance learn-

ing [2,4,39]. Multi-instance learning (MIL) is a variation on supervised learning,

where the labels are provided on a set of bags (each contains several instances)

instead of individual instances. In a simple binary classification problem, MIL
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assumes that a bag is labeled as negative if all instances in this bag are negative;

but labeled positive if at least one of the instances is positive. From the perspec-

tive of learning approaches, MIL can be solved using a latent variable model, by

regarding the assignment of an optimized instance in a positive bag as a latent

variable and performing a maximum a posteriori (MAP) procedure to infer the

latent variable assignment. This property advocates the application of MLLR to

solve MIL problems, especially for ones involving multi-class predictions.

In the context of object recognition, MIL provides an intuitive way to solve

and explain the weakly supervised object recognition process, i.e., iteratively

answering the question of “where” the objects are and “what” the objects look

like, leading to numerous successes in the literature [47,67,102]. However, as the

objective function of latent variable models such as MLLR is usually non-convex,

it is crucial to design initialization strategies carefully before conducting multi-

instance learning extensively. In the chapter, we will study the effect of possible

initialization strategies for multi-instance learning using the proposed MLLR as

an example.

Here we focus on an extreme case of weakly supervised object recognition

on Fine-Grained Visual Categorization (FGVC) [36, 157,172]. FGVC is a highly

challenging task which aims to classify categories at the subordinate level, for

example different species of animals [13,73,103,150], plants [6,78,101], and man-

made objects [97, 131, 164]. Due to the subtle difference between subordinate

categories and the large intra-class variance introduced by various object scales,

poses and occlusions, the intra-class variance in fine-grained recognition could be

even larger than inter-class variance. Most of existing FGVC algorithms relied

on strong supervision [12,172] or employed human-in-the-loop approaches [18,37]

to introduce rich annotations including object-level bounding boxes and part-

level part landmarks. However, since the labeling process for rich annotations is

extremely time-consuming and sometimes requires domain expertise, it is very

important to investigate the possibility to recognize fine-grained categories with-

out manually-labeled annotations, which is rarely studied in the literature [160].

To perform multi-instance learning on weakly supervised object recognition

tasks, the standard approach is to regard images as bags with multiple instances

denoting possible regions of interest for an object. The learning hypothesis relies
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on the predicted object location. In particular, for FGVC, it has proved that by

retrieving the location of objects and performing background removal, the per-

formance could be significantly improved [22]. Therefore, MIL methods which it-

eratively update object locations and train classifiers based on the inferred object

instances could conceptively enjoy good potential for solving weakly supervised

FGVC problems.

However, we believe that standard routine for MIL cannot be applied to

weakly supervised FGVC problems directly due to the following two outstanding

concerns: 1) the lack of real “negative” training examples. Weakly supervised ob-

ject recognition methods usually involve a localization step to detect foreground

objects from the background, and a classification step to predict object labels.

In FGVC, the visual appearance of subordinate categories could be very similar

to each other; meanwhile, the intra-class variance could be large due to multiple

factors including pose, scale and occlusion. Consequently, the key characteristic

separates one category from another is not always able to distinguish it from

the background, leading to a conflict between the goals of the localization step

and the classification step. 2) Small amount of training data and high intra-class

variance in FGVC significantly degrade the accuracy of object localization. Lo-

calization errors further propagate to the classification process. As a result, the

non-convex MIL objective function is prone to be stuck in a bad local minimum.

Motivated by the above observations, we propose a new method for weakly

supervised FGVC that aims to explore inter-class relationships to perform an

effective initialization and thus generalize the traditional MIL framework. Based

on the standard pipeline for weakly supervised object recognition, the problem

is decomposed into two main phases: localization and classification. The key

is that due to the lack of real “negative” examples in the dataset, we adopt an

unsupervised co-localization method to locate objects, in which training exam-

ples in each category are regarded as a set of related images. The localization

process of similar subordinate categories now contributes to each other through

a novel multi-task (MTL) discriminative clustering algorithm that conducts co-

localization on similar categories simultaneously. Afterwards, a multi-instance

learning (MIL) algorithm is conducted in the classification stage to distinguish

subordinate categories explicitly. Localization results in the previous phase are
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Friends? 

Foe? 

Fine-grained Categories 

Figure 5.1: Illustration of the effect of inter-class relationships in fine-grained
categorization under weakly supervised settings. In the proposed algorithm, fine-
grained categories first act as “friends” in the localization phase against varied
backgrounds, then turn back to “foes” in the following classification phase.

used as an effective initialization for the MIL algorithm to avoid bad local min-

ima. In summary, as shown in Figure 5.1, the fine-grained subcategories first

act as “friends” in the localization stage; then turn back as “foes” in the clas-

sification stage. Moreover, this process provides object-level cues that enables

domain-specific fine-tuning of deep neural networks which significantly boosts the

performance. Extensive results on three well-known FGVC datasets CUB-200-

2010 [157], CUB-200-2011 [150], and Stanford Dogs [73] demonstrate the effec-

tiveness of the proposed method in both classification and localization accuracies.

We will present details about the proposed localization algorithm, classification

method and experimental results in the following.
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5.2 General Initialization Strategies for MLLR

We employ the proposed Multinomial Latent Logistic Regression (MLLR) as the

learning algorithm for weakly supervised fine-grained visual categorization in this

chapter. Recall that the objective function of MLLR is defined as:

l(W ) = −C
M∑

j=1

log
exp[Ψ(Ij;wyj)]∑K
k=1 exp[Ψ(Ij;wk)]

+R(W ), (5.1)

where R(W ) is an L1-norm regularizer, Ij is the j-th training image, yj is its

ground-truth label, and Ψ(I;w) is a score function calculating the best score of

all boxes in image I according to model parameters w:

Ψ(Ij;wk) = max
b∈Bj

[wkφ(b)]. (5.2)

The objective function in (5.1) is non-convex. As a result, MLLR has a

crucial problem that it is sensitive to the initialization status. In general, there

are several strategies to initialize latent variables, i.e., to locate objects from a

set of candidate regions.

The simplest approach is to assume an object-in-the-center prior and use a

bounding box at the center to locate objects [115]. Based on this simple strategy,

recent object proposal approaches provide an alternative by assigning category-

independent objectness scores to the candidate regions. The top-scored region as

the most salient patch could be selected to initialize MIL algorithms, as adopted

by Deselaers et al. [38] in their object recognition method. However, this strategy

is highly dependent on the effectiveness of object proposal methods; in most

cases, it is impossible to achieve a high accuracy through the first top-scored

object proposal only. As the goal of object proposal methods is to provide higher

coverage on detecting objects with a smaller number of proposals, usually it is

impossible to achieve a high accuracy using only one object proposal.

Another possible solution is to pre-train classifiers using original full images

without detecting accurate object location; then use the learned classifiers to

select the most discriminative region. Despite its success in scene recognizing

tasks [102], it is argued that the strategy could be erroneous in FGVC. Consider-
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Figure 5.2: Illustration of the difference of discriminative regions for detecting
objects from the background and classifying fine-grained categories. For an image
of Red winged Blackbird in (a), object parts such as forehead, eyes, back and tail
make it possible to detect the object, as shown in (c),(d). On the contrary, the
subcategory different from other ones mainly from its red wing, resulting in a
much smaller region of interest, as shown in (f),(g).

ing that fine-grained categories are very similar to each other, as shown in Figure

5.2, the most discriminative region for classifying fine-grained categories usually

appears in a specific part, such as heads for a bird category and windows for an

architectural style. As a result, categorical classifiers tend to fire on smaller part

regions and cannot explicitly locate the whole object. Therefore, the strategy

suffers on problems from varied view points and occlusion.

Instead, we want to seek a method that utilizes the high similarity between

fine-grained categories to facilitate the localization process. This is achieved by

a novel multi-task co-localization algorithm which will be detailed in the next

section.

5.3 Initialization via Multi-task Co-localization

In order to prevent the multi-instance learning process from being stuck in a bad

local minimum, we propose a method for initializing the latent variables, i.e.,

generate object detectors from image-level labels, which can be modeled as a
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Figure 5.3: Illustration of the proposed method for weakly supervised fine-grained
recognition. The first co-localization phase aims to detect foreground regions from
the background. We propose a multi-task algorithm to perform co-localization on
multiple subcategories simultaneously. The localization results are then employed
to initialize a multi-instance learning process to learn the final object classifiers.

weakly supervised object localization problem. We solve this problem under a

more relaxed scenario: the goal is to find and localize a common object within

a set of images; however, there is no knowledge of what the object is, and no

given negative images for which we know do not contain the common object. In

fact, the relaxed setting is closer to FGVC where no real “negative” class exists.

This problem is termed co-localization, which shares the same type of input as

co-segmentation [147].

Our co-localization algorithm is inspired by discriminative clustering [70, 71,

133], in which a classifier is trained to distinguish the common object from the

background, while enforcing consistency in appearance among foreground pixels

or regions. Based on it, we propose a new multi-task learning algorithm that

conducts co-localization on a set of similar categories. Figure 5.3 presents an

overview of the proposed algorithm.
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5.3.1 Preliminary

Given a set of N fine-grained training images I = {I1, I2, ..., IN}, our goal is

to train fine-grained classifiers using only image-level training labels, i.e., Y =

{y1, y2, ..., yN}. Suppose there are K subordinate categories in the dataset, i.e.,

yi ∈ [1, .., K]. We decompose this weakly supervised learning problem into two

phases: localization and classification. The first phase aims to obtain generic

object detectors (such as a bird detector), while the detected objects are further

classified in subordinate-level (such as California gulls and Western gulls) in the

second phase.

Region proposals. We employ the multi-scale combinatorial grouping (MCG)

[7] algorithm to extract category-independent proposals. Besides the need of ob-

jectness scores to initialize object locations, the proposed algorithm is agnostic to

the particular region proposal method. Here we use bounding-box-level proposals

and further reduce the number of object proposals by employing a non-maximum

suppression (NMS) strategy and pruning small bounding boxes. The process

results in averaging 15-20 bounding-box-level object proposals per image.

Feature representation. Convolutional neural networks (CNNs) recently

delivered significant improvement over traditional methods in the ImageNet recog-

nition challenge [76]. As shown by Razavian et al. [114], features extracted using

ImageNet pre-trained CNNs can transfer to a variety of visual recognition tasks

and achieve reasonable results. Inspired by this discovery, we employ CNN fea-

ture extractors in our work and extract a 4096-dimensional feature vector from

each object proposal using the CNN implementation of [25]. In order to com-

pute feature vectors from arbitrary-shaped object proposals, we warp the pixels

in a region proposal into a bounding box with the required size (a fixed size of

227× 227 in our implementation), regardless of the region size and aspect ratio.

Features are then computed by forward propagating a mean-subtracted 227×227

RGB image through the CNN architecture.

In detail, for each image Ij ∈ I, we generate a set of candidate regions Bj =

{bj,1, bj,2, ..., bj,mj
}. Let B = {Bj} be the set of all candidate bounding boxes

with the total number as M = |B| = ∑
j mj. Each candidate bounding box

bj,l is then associated with a 4096-dimensional feature vector φ(bj,l) ∈ R
d and a
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category-independent objectness score sj,l ∈ R.

5.3.2 Co-localization by discriminative clustering

We briefly review discriminative clustering on terms and motivations in the ob-

jective function, and highlight several unique modifications we made in our im-

plementation.

Optimization variable. Given a set of images I and bounding boxes Bj

for each image Ij ∈ I, each region bounding box bj,l is associated with a binary

variable zj,l, which is equal to 1 if bj,l is a positive box containing the common

object, and 0 otherwise. Denote z ∈ {0, 1}M by stacking zj,l for all the object

proposals. The goal is to find z that minimize an energy function combining the

following terms.

Objectness prior. A prior term conveying whether a box is an object or not

is introduced using category-independent objectness scores in MCG. By stacking

all sj,l into a vector sobj, a linear term that penalizes less salient boxes is given

as:

Eobj = −zT log sobj (5.3)

Box similarity. Boxes with similar appearance should have a large chance

coming out with the same label. We define a similarity matrix S to represent

local appearance similarities between boxes. For any pair (i, j) of boxes, Si,j is

defined as:

Si,j = 1− d̄(φ(bi), φ(bj)), (5.4)

where d̄ is the normalized Euclidean distance between two feature vectors. The

box similarity term is then defined as:

Ebs =
μ

M
zTLz. (5.5)

Here L is the normalized Laplacian matrix L = I −D−1/2SD−1/2, where I is

the identity matrix and D is the diagonal matrix composed of the row sums of

S; M is the number of all boxes, μ is a free parameter.

Box discriminability. Although co-localization is an unsupervised prob-

lem, [70] argued that a discriminative clustering algorithm which aims to classify
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objects from the background would contribute to the localization performance.

More precisely, a discriminative classifier finds the optimal parameters α ∈ R
d

and β ∈ R
d that minimize

Edc(z, α, β) =
1

M

M∑

i=1

l(zi, α, β) + λ||α||. (5.6)

Here we adopt the logistic loss function:

l(zi, α, β) = − log
exp[zi(α

Tφ(bi) + β)]

1 + exp(αTφ(bi) + β)
. (5.7)

Cluster size balancing. Discriminative clustering approaches have a clas-

sical problem that assigning the same labels to all the boxes leads to perfect

separation. [71] introduced a penalty term to encourage the proportion of points

per class through entropy:

H(z) = −
∑

i zi
M

log

∑
i zi
M

− (1−
∑

i zi
M

) log(1−
∑

i zi
M

). (5.8)

Joint formulation. Combining the terms in (5.3)(5.5)(5.6)(5.8), the joint

formulation of the optimization problem can be denoted as:

min
z∈{0,1}M

[
min
α∈Rd

β∈R
Edc(z, α, β)

]
+ Eobj(z) + Ebs(z)−H(z). (5.9)

5.3.3 Multi-task discriminative clustering

The co-localization method described before is designed for detecting common

objects from a set of related images. However, a slightly different scenario exists

in weakly supervised FGVC - images are from a series of subordinate categories

and we are aware of the category label of each image. In this situation, one could

perform co-localization on each subordinate category independently, or assume

that all images belong to one generic category and run co-localization on all of

them. Nonetheless, both of the strategies have certain problems: the first one

ignores underlying relationships between subordinate categories, while the latter

one requires a large memory to compute and store the similarity matrix for all

85



pairs of boxes.

Considering that the localization process of all the subordinate categories

share the same goal of classifying foreground objects from the background, multi-

task learning (MTL) is a natural choice here to take advantage of the relationship

between categories without extensive memory requirement. We thus introduce

a new multi-task discriminative clustering (MTL-DC) term that regards the co-

localization problem of each subordinate category as one single task. MTL is par-

ticular effective in our task due to the small number of images in each fine-grained

category and the employment of high-dimensional CNN feature representations.

Specifically, assume that the input images I belong toK classes. Denote Ik the

set of images and Bk the set of all object bounding boxes in class k, where |Bk| =
Mk. Let z = [z(1), z(2), ..., z(K)] be the ensemble of z’s of all classes. Altogether we

have K sets of classifiers: A = [α1, α2, ..., αK ] ∈ R
d×K , B = [β1, β2, ..., βK ] ∈ R

K .

The multi-task discriminative clustering term is then defined as:

Emtdc(z, A,B) =
K∑

k=1

1

Mk

∑

bi∈Bk

l(zi, αk, βk) + λ||A||∗. (5.10)

Introducing a trace-norm form ||A||∗ enforces a low-rank assumption on the

model parameter matrix A. As a result, the model parameters are optimized

simultaneously and a low-rank structure is achieved following underlying rela-

tionships between multiple subordinate categories. The final objective function

is given as:

min
z∈{0,1}M

[
min

A∈Rd×K

B∈RK

Emtdc(z, A,B)

]
+

K∑

k=1

[Eobj(z
(k)) + Ebs(z

(k))−H(z(k))]. (5.11)

5.3.4 Optimization

We optimize (5.11) using an expectation-maximization (EM) procedure following

[71]. The first step is to obtain a linear relaxation of the objective function by

relaxing the Boolean constraints on variable z to continuous, linear constraints

between 0 and 1. Here zj,l can be interpreted as the probability of a bounding

box bj,l being an object. Then the EM procedure is detailed as:
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M-step. For some given values of z, minimize Emtdc(z, A,B) in terms of

(A,B). It is a standard logistic regression problem with trace-norm regularizers,

which can be efficiently optimized using an accelerated gradient method [27].

E-step. Given model parameters (A,B), the objective function is convex in

z, and is thus minimized by a simple projected gradient descent method.

In practice, the EM algorithm usually converges within 10 iterations. We then

obtain the optimal object location in each image as the box with the largest score

according to the model parameters of the respective category.

As an initialization method, the proposed MTL-DC algorithm aims to dis-

tinguish common foreground objects from the background. Therefore, the fact

that fine-grained categories are largely similar to each other becomes no longer

a barrier; instead, it contributes to the co-localization process by sharing infor-

mation through the multi-task learning strategy. Moreover, multi-task learning

alleviates the problem caused by insufficient training data in each subcategory.

5.3.5 Fine-grained classifiers

Although the co-localization method discussed before is supposed to improve the

localization accuracy, it is still not guaranteed that the learned object detectors

could localize objects perfectly or are optimal for classifying fine-grained cate-

gories. The multi-instance learning strategy, therefore, is used to further refine

co-localization results and train the final fine-grained object classifiers.

Suppose that the FGVC classifiers are denoted as W = [w1, w2, ..., wK ] ∈
R

d×K . For each training image Ij, the exact object location is modeled as a latent

variable; the latent variable updating process thus equals to finding an optimal

bounding box from candidate object proposals Bj. Note that these classifiers are

different from those defined in Section 5.3: the goal here is to distinguish fine-

grained categories, while co-localization focuses on extracting foreground regions

from the background.

The weakly supervised learning problem here can be modeled as a multi-class

classification problem with latent variables, where the latent variable (object

location) is updated using a maximization inference procedure: an ideal setting

for the proposed MLLR. As the objective function of MLLR is non-convex and

87



can be formulated as the difference of two convex functions, we solve MLLR

using a convex-concave procedure by defining a convex auxiliary function that

bounds the exact objective. The auxiliary function is constructed by fixing the

latent variable assignments for all training examples with respect to their training

labels. Optimization is then performed in an iterative way: model parameters

and latent variables are updated iteratively with the other one fixed. The detailed

optimization process can be found in Section 3.2.

5.4 Experiment

In this section, we will present experimental results and conduct comparison stud-

ies with state-of-the-art methods on three widely used FGVC datasets. Specif-

ically, through quantitative studies, we will discuss the impact of each stage in

the proposed method.

5.4.1 Dataset and implementation details

Dataset. Experiments are performed on three challenging FGVC datasets, the

Caltech-UCSD Bird-200-2010 dataset (CUB-200-2010) [157], the CUB-200-2011

dataset [150], and the Stanford Dogs dataset [73]. CUB-200-2010 contains 200

bird species, with about 30 images per category; half of them are adopted for

training. We also use a subset of 14 classes from the Vireo and Woodpecker

family (CUB-14) following [46,111,166] to explicitly study the influence of model

parameters. CUB-200-2011 dataset is an updated version of CUB-200-2010 with

roughly 60 images per category; it is widely-used in recent works on FGVC. The

Stanford Dogs dataset contains 120 bog breeds with around 100 train images

and 70 test images per category. For all the datasets, we follow the original

training/testing split provided by the authors. Our study is conducted on the

scenario under the weakest supervision, i.e., except for image-level labels, no

additional annotations such as bounding boxes and part landmarks are used in

both the training and testing stage.

Performance Measures. The performance of the proposed method is eval-

uated by the classification accuracy on the three FGVC datasets. Besides, we
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also present localization results for reference, which are measured by the CorLoc

evaluation metric defined as the percentage of correctly located objects compared

to ground-truth ones according to the PASCAL criterion: area(bp∩bgt)
area(bp∪bgt) ≥ 0.5.

Classification Process. Given training images, the proposed multitask co-

localization algorithm is performed on the extracted object proposals to obtain

localization results. They are further used to initialize the training of a multino-

mial latent logistic regression (MLLR) model to generate fine-grained classifiers.

Testing stage involves no co-localization process; extracted region proposals are

directly fed into the resultant MLLR model to obtain classification results.

Implementation Details. We use a single scaled version of MCG called SCG

to extract object proposals [7]. Following the standard approach, CNN models

pre-trained on ImageNet are employed to extract deep features. In particular, the

standard seven-layer architecture is used for the CUB-200-2010 and the Stanford

Dog dataset, for which we employ the implementation of the VGG-f model [25],

and use the CNN’s fc6 and fc7 layer for the bird and the dog dataset respectively.

For the CUB-200-2011 dataset, a GoogleNet [132] is adopted in order to provide

comparable results with latest methods. Typically the object proposal and feature

extraction process require 10-20 seconds per image. After feature extraction, the

co-localization phase requires ∼ 5 hours, while the time cost for training the final

classifiers is trivial.

5.4.2 Localization results

The proposed method regards the co-localization problem of each category as

a single task, and implements a multi-task learning (MTL) approach to employ

shared information among subordinate categories. Therefore, we compare our

results with two baseline methods: 1) running co-localization on each category

independently; 2) regarding all subcategories as a generic category and perform-

ing co-localization on it. We denote the two baselines as method SINGLE and

method ALL for brief respectively. Since the latter strategy requires a large

memory cost and thus is not practical on large datasets, this comparison is only

conducted on the CUB-14 subset.

We run 5 times of random initialization and record the average results. All
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Table 5.1: CorLoc results for different co-localization strategies on the CUB-14
dataset. MCG denotes the baseline where boxes with the top objectness scores
obtained by MCG were adopted without performing co-localization methods.
“@n” denoted the best result among top-n candidates.

MCG SINGLE ALL MTL

Avg CorLoc@1 31.43 37.81 41.90 42.67
Avg CorLoc@5 60.00 65.52 67.24 68.57

methods are tuned within a range of model parameters μ and λ to gain the best

performance. Table 5.1 shows comparison results of baseline methods. Compared

to the strategy that simply assigns top-scored candidate regions given by MCG

as the objects’ location, co-localization methods achieve significantly higher lo-

calization accuracy. Method ALL further outperforms method SINGLE by a

remarkable margin. This shows the fact that considering the small number of

training images available in each subcategory, it is better to assume all subordi-

nate categories as a generic object “bird” and perform co-localization on all of

them than each of them independently. Multi-task learning shows its priority

by obtaining even slightly higher accuracy than method ALL without extensive

memory requirement, proving that the inter-class relationship between subordi-

nate categories indeed contributes to the performance of object localization.

We have further investigated the influence of tuning model parameters in

the co-localization algorithm, including the weight of box similarity μ, and the

amount of regularization in discriminative clustering λ. In general, localization

results are consistent when μ and λ are near 0.1 and 1, as shown in Figure 5.4.

It is worth noting that a special case of μ = 0 coincides with the category level

method in [22], where a foreground/background classifier is trained based on the

discriminative term only.

The co-localization approach significantly improves localization accuracy. How-

ever, localization results obtains from weakly supervised settings are still not reli-

able enough to detect foreground object regions perfectly. As shown in Table 5.1,

only about 40 percent of the top-scored bounding boxes after co-localization could
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Figure 5.4: The impact of model parameters μ and λ. In the first figure, λ was
fixed as 1, and the second figure set μ = 0.1.

locate objects with a high confidence. A relaxation of returning five candidates

after co-localization increases the number to 68%, indicating that it is still of need

to allow the object locations to be updated in the classification stage. Therefore,

in our implementation, the results of co-localization are used as an initialization

of the following multi-instance learning (MIL) step to refine localization results,

and to avoid bad local optima at the same time.

Figure 5.5 shows comparable studies of the object localization results in multi-

ple steps of the proposed algorithm. As an initialization method, the resultant top

scored candidates by MCG object proposal method usually appear in specific part

of the target object with the highest saliency. After performing co-localization,

the resultant bounding boxes tend to capture holistic information of the objects,

resulting in larger detected regions than the top scored windows by MCG. The

co-localization results are further refined by the following multi-instance learning

step which aims to classify objects at the subordinate level. As shown in the

third column in Figure 5.5, the MIL classifiers, on the contrary, captures detailed

part information that is valuable for distinguishing fine-grained objects. As a re-

sult, performing MIL does not always guarantee a boost of localization results; in

practice, localization results after MIL is approximately on par than that before

MIL. The last column showes localization results by performing SVM classifiers

on the whole images without running a previous localization process. Such base-
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Figure 5.5: Localization results in different stages. Column 1 to 4: best-scored
MCG candidate; results after performing co-localization; results after performing
multi-instance classification; best scored bounding box according to SVMs trained
using full images.

line fails to detect objects robustly, which proves the assumption that classifiers

distinguishing whole images are not always able to capture the exact location of

objects.

Table 5.2 summarizes the final localization results of our algorithm on the

three datasets. Figure 5.6 shows examples of the final localization results after

performing MIL.

5.4.3 Classification results

We hereafter analyze the classification results from three perspectives: compari-

son with baselines in which different localization strategies are employed, study-
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Table 5.2: Localization results for CUB-200-2010, CUB-200-2011 and Stanford
Dogs.

CorLoc@1 (%) CUB-2010 CUB-2011 Standford Dogs

MCG 40.56 48.65 56.17
Co-localization 48.69 51.96 66.68

ing the effect of fine-tuning CNNs using varied strategies, and finally showing the

comparison with state-of-the-art results.

Comparison with baselines. We first present an ablation study to analyze

the importance of each step in the proposed method. Take the results of CUB-

200-2010 as an example, as shown in Table 5.3, both the co-localization phase

and the multi-instance learning phase contributed to the final performance. The

simplest approach of training SVM classifiers on features extracted from the whole

images obtains a 31% accuracy. A five-percent gain is then achieved by training

SVMs on features extracted from foreground regions detected by co-localization.

Multi-instance learning delivers an additional 4% boost by allowing re-assignment

of object location according to discriminative information. On the other hand,

classification results also reveal the importance of a well-designed initialization

strategy for multi-instance learning methods. Models initialized using features

from whole images or top-scored object proposals both result in lower accuracy

than that using the proposed co-localization strategy.

The final co-localization initialized multi-instance method obtains a 40% ac-

curacy under the weakest supervised setting. As a comparison, when the ground-

truth bounding boxes are given at the training stage, classifiers using the same

feature representation achieve a 48% accuracy. Hence, our weakly supervised al-

gorithm can achieve half of the performance improvement brought by bounding

box supervision. The number is impressing considering the difficulty of weakly

supervised FGVC task and the challenging CUB-200-2010 dataset.

The effect of fine-tuning CNNs. Previous results are obtained by adopt-

ing pre-trained CNNs only as a feature extraction method; thus, other feature

extraction methods such as SIFT [95] and KDES [15] could also be adopted in the
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Figure 5.6: Example localization results for testing images after performing multi-
instance learning. The rightmost column shows cases in which the proposed
method failed to classify correctly due to multiple objects, uncommon object
pose, and background clutter.

proposed method without any modifications. However, this also indicates that

the performance could be further improved by performing specific designs regard-

ing the characteristics of CNNs. It has been proved that fine-tuning CNN models

could significantly boost the classification performance. Therefore, the standard

approach of employing deep CNN features on object recognition tasks is to pre-

train a CNN model on ImageNet, and then fine-tune the model on the target

domain. However, under weakly supervised settings, there is no straightforward

way to fine-tune CNNs to represent objects, which requires explicit object-level

labeling information.

A naive solution is to fine-tune CNNs using whole images and their associated

image-level labels. Such solution is definitely not optimal, since features learned

using whole images contain redundant background information and thus are not
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Table 5.3: A detailed comparison with baselines of different localization strategies
and classification methods on the CUB-200-2010 dataset. Row 1-3 show results
by training classifiers solely on the detected foreground regions. Row 4-6 show
results by performing a multi-instance learning (MIL) approach initialized by the
respective localization results. The final row presents an upper bound of our
algorithm by using ground-truth bounding box supervision.

ID Localization Classification Accuracy

1 whole image SVM 31.42
2 MCG top objectness SVM 25.02
3 Co-localization SVM 36.00

4 whole image MIL 35.97
5 MCG top objectness MIL 35.21
6 Co-localization MIL 40.16

7 GT bounding box SVM 48.17

always able to distinguish foreground objects effectively. As an alternative, we

propose to use the result of co-localization as the intermediate labels for fine-

tuning CNNs. Specifically, in our co-localization process, each object proposal

will output a score by discriminative clustering. A positive score indicates that the

object proposal is classified as foreground object; thus it should be regarded as a

positive example when fine-tuning CNNs. In practice, we labeled object proposals

with positive localization scores as training samples for their respective classes,

and fine-tuned CNNs using a 201-way classification layer for the CUB-200-2011

dataset accounting for the class “background”. A similar approach is adopted in

R-CNN [57]. However, R-CNN assumes that the ground-truth bounding boxes

of training examples are given, and labels object proposals with a large overlap

to ground-truth object bounding boxes as positive when fine-tuning CNNs. On

the contrary, in this paper, we tackle the weakly supervised problem where only

image-level labels are presented. As a result, the labels for fine-tuning CNNs are

generated by the previous co-localization process.

Table 5.4 shows classification results on the CUB-200-2011 dataset by fine-

tuning CNNs using various strategies. Strategies we investigate include using
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Table 5.4: Effect of fine-tuning CNNs. We achieved an accuracy of 77.37% on
the CUB-200-2011 dataset under the weakly supervised scenario.

localization whole image co-localization GT BBox
classification SVM MIL SVM

w/o ft 61.25 65.21 67.32
ft on img 72.67 75.72 77.20
ft on BBox 73.31 77.37 78.79

pre-trained models only, and fine-tuning on whole images or the predicted object

bounding boxes. Regardless of the specific fine-tuning strategy, the proposed

method consistently outperforms baselines that train SVM classifiers on features

extracted from whole images by a large margin. The last column in which ground-

truth bounding boxes are given in both training and testing phase is provided as

an upper bound of the performance. For example, in the scenario similar to the

first experiment where no fine-tuning process is conducted, the proposed method

achieves 65.2% accuracy on the CUB-200-2011 dataset, while training SVMs on

whole images obtains 61.2% and the upper bound accuracy using this feature

representation is 67.3%.

Results also reveal that fine-tuning definitely contributes to the classification

results - the simplest baseline strategy that directly relies on image-level labels

boosted the classification performance by approximately ten percents to 75.7%.

After generating object locations using the proposed co-localization method, fine-

tuning CNNs on these predicted object-level labels further raises the accuracy to

77.4%, even outperforming the upperbound of the baseline fine-tuning strategy

(77.2%). The results prove that fine-tuning CNNs under object-level supervision,

even when the labels are not strictly accurate, could achieve better performance

for classifying fine-grained categories.

Comparison with state-of-the-arts. Table 5.5 presents comparison results

of our method and several state-of-the-art FGVC methods. As our method is

agnostic to the particular CNN architecture, one can always employ stronger

deep networks as the feature extractor without additional computational cost
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Table 5.5: Performance comparison to the state-of-the-art results in the literature
with or without the use of ground-truth bounding boxes at the training stage.

Approach CUB-200-2010 CUB-200-2011 Stanford Dogs GT BBox used?

Symbotic [21] 47.3 59.4 45.6 yes
Alignment [55] - 67.0 57.0 yes
CNNaug-SVM [114] - 61.8 - yes
NoPart [74] - 82.0 - yes

BiCoS [20] 16.1 - - no
TriCoS [22] 25.5 - 26.9 no
Overfeat [114] 29.7 - 68.0 no
DeepCNN [9] - 67.2 - no
Attention [160] - 77.9 - no
Constellation [126] - 81.0 68.6 no
Biliear [92] - 84.1 - no

Our Method 40.2 77.4 71.4 no

during the co-localization and classification phase. Our results are significantly

better than previous state-of-the-arts, such as TriCoS [22] and Overfeat [114].

However, several latest weakly supervised FGVC methods [92,126] have achieved

better results than ours on the CUB-200-2011 dataset. It reveals the effectiveness

of part discovery strategies that is particular important in the bird dataset to

model object parts. Our algorithm that aims to locate object bounding boxes

more accurately could be supplementary to these part-based methods.

Meanwhile, most state-of-the-art methods such as R-CNN [57] and Attention

Model [160] employed selective search [141] to extract object proposals. Such

process typically generated 1000-2000 object proposals for each image. It is re-

markable that the proposed method could produce comparable results using far

less object proposals (usually 15-20) than selective search; thus the efficiency of

both feature extraction and CNN fine-tuning are largely improved.

We also present experimental results on the Stanford Dogs dataset. Images

in this dataset show a strong object-in-the-center bias; in most cases, each image

contains only one significant object. Under this more ideal setting, the proposed

method achieves a 67% CorLoc, much higher than that of the bird dataset. As

a result, the classification accuracy under weakly supervised settings (71.4%) is

97



nearly identical with that given the ground-truth bounding boxes (71.6%). This

result reveals that bounding-box-level supervision is not indispensable for datasets

that contain mostly large and significant objects such as the Stanford Dogs.

5.5 Summary

In this chapter, we have studied weakly supervised learning on an extremely

challenging problem - fine-grained visual categorization. Considering that the

objective function of the proposed MLLR has a semi-convex property, we carefully

design an initialization strategy for the algorithm, by proposing a novel multi-task

co-localization algorithm to localize a set of similar objects. Taking advantage

of the fact that subordinate categories in fact belong to a more generic concept,

the proposed method outperforms baseline strategies including modeling each

subcategory independently or regarding them as a unified category, and achieves

competitive results on fine-grained categorization benchmarks.

In the next chapter, we aim to further boost the classification performance

of fine-grained visual categorization through the employment of a larger scale of

training resources (web data) and more detailed annotations (strongly supervised

datasets). The objective function of MLLR, meanwhile, will be slightly modified

to support a combination of strongly and weakly supervised training data.

Publications Related to This Chapter

1. Zhe Xu, Dacheng Tao, Shaoli Huang, Ya Zhang. Friend or Foe: Fine-

grained Categorization with Weak Supervision. IEEE Transactions on Im-

age Processing (TIP), 2015 (under review)
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Chapter 6

MLLR for Webly Supervised

Learning

It is widely acknowledged that one of the most significant advantages of weakly

supervised learning appears in its scalability. In order to produce competitive

results while being able to scale the algorithm to a larger scale of webly super-

vised learning, an intuitive solution is to use a small set of strongly supervised

data as an initialization to guide the webly supervised learning process, espe-

cially considering the noisiness of labels acquired from the web. In this chapter,

we still study the problem of fine-grained visual categorization, but using a so-

phisticated strongly supervised algorithm trained on existing datasets with rich

annotations to introduce additional information in weakly supervised learning.

The proposed MLLR, therefore, is generalized to train models on a combination

of weakly supervised and strongly supervised examples, which leads to significant

higher results.

6.1 Introduction

Webly supervised learning [28,29,72,120], namely learning visual representations

from web data, has drawn much attention in object recognition recently for its

ability to scale learning paradigms to a higher level. It is also the ultimate goal of

weakly supervised learning, which acquires data with nearly no cost and achieves
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great scalability. Although webly supervised learning has seen monumental de-

velopments recently, when focusing on a particular task, in most cases webly

supervised methods have struggled to match up against contemporary methods

using extensive human supervision [28]; seldom have they reported significant

higher results. So why is that?

We argue that a crucial problem comes from the inadequate employment of

related knowledge available from existing manually labeled datasets. In general,

due to the scale issue, webly supervised learning methods usually adopt simple

and straightforward object recognition algorithms. More attention is paid on

employing data mining algorithms such as bootstrapping [34] and query expan-

sion [161] to reduce semantic bias and data noise in web data. Therefore, in order

to further boost the performance, a sound solution is to extract more powerful

perceptual representations from existing manually labeled datasets using sophis-

ticated object recognition algorithms, and then exploit the learned knowledge to

facilitate the webly supervised learning procedure.

Following this principle, our idea is to transfer knowledge from existing man-

ually labeled datasets as much as possible to guide the learning process in web

scale, then optionally transfer the learned representations back to further improve

the performance on original datasets. Implementing as a semi-supervised frame-

work, a unique design of the proposed method is that the labeled dataset utilizes

stronger annotations on individual images, but with a much smaller scale. This

is somewhat a more reasonable assumption than the standard label collection

process which focuses on label cleanness and data scale; compared to computer

algorithms, human beings are more favorable at doing explicit labeling job, in-

stead of repetitive jobs that aim to improve scalability.

This strategy has several advantages. First, by exploiting knowledge using

more sophisticated object recognition algorithms on stronger supervision, we can

largely enrich the supervision associated with web images. As a result, each

web image now carries more explicit knowledge and introduces a much higher

information gain. The semi-supervised method in fact acts as a bridge between

webly supervised paradigms and the counterpart object recognition algorithm

using manually labeled datasets.

Second, as having been discussed extensively, the main problem of using exist-
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Figure 6.1: Illustration of the proposed semi-supervised method via web data.
A strongly supervised dataset is introduced to “teach” web images how to learn
properly.

ing datasets to initialize webly supervised learning is the data bias introduced in

the construction of manually labeled datasets [110]. Here, the advantage of em-

ploying strong supervision is that the additional annotations, such as the defini-

tion of object parts or interpretable attributes, introduce a more reliable resource

of transferred knowledge. These definitions are generally more closely related to

common knowledge, while being inheritably shared among different categories.

Therefore, as a standalone measure, they make it possible for the selected web

images to be both diverse and precise at the same time.

To demonstrate the effectiveness of this strategy, we investigate fine-grained

visual categorization (FGVC) [12,74, 173], which is one of the problems that are

appealing for extensive training data. With the goal of classifying objects in

subordinate level, the data collection of FGVC problems is naturally harsh due

to the requirement of expert knowledge and detailed part-level annotations. As

a result, existing datasets [97, 150, 164] are relatively small in scale but richer in

annotations, which well motivate the proposed semi-supervised strategy. In par-
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ticular, as shown in Figure 6.1, we propose a warm starting scheme for performing

FGVC with the help of web data, which learns robust deep convolutional feature

representations and employs detailed object part annotations in a unified frame-

work, and overcomes the lack of training data with the help of weakly supervised

web images. The joint model is trained by a generalized version of the proposed

MLLR paradigm which enables training on a combination of strongly and weakly

supervised examples. Experimental results reveal a significant improvement over

state-of-the-art methods on the FGVC benchmark CUB-200-2011 dataset [150],

exemplifying the proposed strategy.

6.2 Webly Supervised Learning via Deep Do-

main Adaptation

The proposed method adopts a knowledge transferring strategy that utilizes do-

main specific knowledge extracted from existing strongly supervised datasets to

guide webly supervised learning. Our key guideline here is to transfer as much

knowledge as possible from existing strongly supervised datasets to weakly super-

vised web images, so that the proposed method enjoys the scalability brought by

web images and meanwhile benefits from the effectiveness of sophisticated object

recognition algorithms.

6.2.1 Preliminary

We start with a strongly supervised dataset S, in which ground-truth bounding

box annotations are provided not only for the entire objects p0 but also for a set of

n semantic parts {p1, p2, ..., pn}. Assume that there are K fine-grained categories

in the dataset.

Based on the strongly supervised dataset S, an auxiliary dataset containing

the same fine-grained categories is collected, but with only image-level labels.

Images can be collected from search engines or online media sharing communities.

Since the data acquirement process does not require human labeling, the weakly

supervised dataset (termed W) typically contains a larger number of images than

S. Denote the size of the datasets as NS and NW.
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Figure 6.2: Flowchart of the proposed algorithm. Green lines show modules
of strongly supervised method adopted in our framework, while red lines are
additional operations of semi-supervised learning.

For each image in the dataset, selective search [141] is used to extract category-

independent object proposals. Selective search typically generates 1000-2000 re-

gion proposals per image, significantly reducing the searching space for object

detection. Meanwhile, compared to the method of directly using the ground-

truth bounding boxes as positive samples, region proposals provide a relatively

larger set of labeled image patches for training CNNs.

6.2.2 Objective function via generalized MLLR

We adopt a generalized version of the proposed MLLR to solve the webly super-

vised learning problem. While traditionally semi-supervised learning exploits a

mixture of unlabeled data and labeled data, our method which uses weakly super-

vised data to augment existing strongly supervised dataset can be regarded as a

generalization of the standard semi-supervised learning approaches. We consider

a joint optimization algorithm that updates feature representations φ and model

parameters w iteratively on a combination of strongly supervised dataset S and

weakly labeled data W. The overall objective function is defined as:

min
w,φ

n∑

p=0

l(w(p), φ(p)),
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where

L(w(p), φ(p)) = λ
∑

k

Ω(w
(p)
k )

+
1

NW

∑

I∈W
q
(p)
I · l(yI , max

xp∈XI

w(p)
yI

T
φ(p)(xp))

+
1

NS

∑

I∈S
l(yI , w

(p)
yI

T
φ(p)(xp)) (6.1)

Here yI ∈ [1, ..., K] stands for the label of image I. For the p-th part, φ(p)(·) is
the feature representation, xp is the part location, and w

(p)
k stands for classifier

weights of the k-th category. For the auxiliary weak dataset, XI is the set of

candidate bounding boxes of image I. q
(p)
I denotes an indicator of whether the

detected region of p-th part in weakly supervised image I is selected to augment

the training set, in order to account for label noise.

As shown in Figure 6.2, the proposed method contains an initialization step

to extract robust perceptual representations from strongly supervised datasets

and a model updating step by employing noisy web data via effective knowledge

transfer.

6.2.3 Knowledge extraction on the strongly supervised

dataset

The first step in the proposed method is to introduce domain specific knowledge

via a strongly supervised algorithm. For the task of fine-grained visual catego-

rization, we employ part-based methods (e.g. [12, 172, 173]) which have shown

great success in the literature, and adopt deep convolutional networks (CNNs)

as the feature representation [76,127]. Whilst our method is agnostic to the spe-

cific form of part annotations and CNN architectures, here we study the same

problem statement with part-based R-CNN [172], but make several significant

modifications in our implementation to better deal with the lack of training data

in strongly supervised datasets.

The resultant domain specific knowledge acquired from strong supervision are

given in multiple forms, including deep convolutional feature representations, pre-
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cise part detectors, and also robust object classifiers. They are further employed

as a reliable initialization for the whole semi-supervised framework.

6.2.3.1 Feature representations

The core idea of part-based R-CNN [172] is to utilize deep convolutional features

specifically trained on each object part, so that the resultant feature representa-

tions carry explicit information of distinguishing objects from the part level. To

do so, in the original implementation of [172], a CNN model is trained on ground

truth crops of the whole object bounding box and each of the part bounding

boxes respectively. However, since the scale of the strongly supervised dataset is

supposed to be relatively small, it is argued that training CNNs only on ground-

truth crops will easily overfit the learning objective and thus could not achieve

optimal results.

To overcome this problem, we augment the positive set by adding object pro-

posals with high intersection-over-union (IoU ) over the ground-truth bounding

boxes, also known as a data jittering approach. Specifically, for each of the object

parts pi (or the whole object p0), our goal is to train part-specific deep convolu-

tional features φ(i)(x) on the extracted region proposals.

Starting from a CNN pre-trained on ImageNet [76], we replace the CNN’s

ImageNet-specific 1000-way classification layer with a randomly initialized (K +

1)-way layer that accounts for all the fine-grained categories and also a back-

ground class. Object proposals with IoU ≥ 0.5 over the ground-truth bounding

boxes are treated as positive examples for that box’s class, while the others are

regarded as the background. For each object proposal, the tight bounding box is

dilated by m pixels (we use m = 16) to introduce contextual information, and all

the pixels in the dilated region are warped into a fixed size of 227×227 pixels. The

warped regions are then used as the input to fine-tune the network by stochas-

tic gradient descent (SGD), starting at a learning rate of 0.001. As a result,

the learned CNNs (we call them part-CNNs) carry specific domain knowledge of

the fine-grained categorization, while not clobbering the initialization from large-

scale ImageNet pre-training. The process described above is implemented as a

fast R-CNN [56] with (K + 1) output categories for each part.
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6.2.3.2 Object part detectors

For the case of testing with no available part-level annotations, the algorithm

should be able to locate object parts automatically. Therefore, based on the fine-

tuned CNNs, we further train a linear SVM with binary outputs to obtain the

detector for each part. In order to achieve accurate detection results, only ground-

truth boxes are used as positive samples. In our implementation, we train SVMs

beyond features extracted from the fc7 layer of CNNs and adopt a standard hard

negative mining method [47] to fit the training data into memory. We also adopt

bounding box regression [57] to further regularize the detected regions.

Denote {v0, v1, ..., vn} as the weights of detectors for whole-object p0 and n

parts pi|ni=1. For a region proposal x, the corresponding detector scores {d0, d1, ..., dn}
are computed as

di(x) = σ(vTi φ
(i)(x)), (6.2)

where σ(·) is the sigmoid function and φ(i)(x) is the descriptor at location x

according to the i-th part-CNN.

It is worth to be noted that the goals of Section 6.2.3.1 and Section 6.2.3.2 have

a significant difference. The previous procedure aims to produce discriminative

feature representations for classifying fine-grained categories; therefore, training

is conducted with fine-grained output labels, with a “soft” IoU threshold that

introduces more training samples to prevent overfitting. On the contrary, the

latter step targets on obtaining accurate object detection results. Therefore,

when training a specific part detector, only the ground-truth regions of this part

are used as positive samples. Meanwhile, to introduce more robustness to factors

including various object poses, object scales and occlusion, we want the part

detector to be shared among all subordinate categories and thus ignore the object

categorical labels in this procedure.

6.2.3.3 Fine-grained classifiers

The next step is to integrate the learned detectors and use them to train fine-

grained classifiers. In part-based R-CNN, Zhang et al. [172] proposed three types

of geometric constraint to ensure that the relative location of detected objects and

their semantic parts follow a geometric prior. Here, however, the strength and
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robustness of the resultant part detectors result in geometric constraints that only

play a minor role in detection, especially considering that fine-grained datasets

usually contain only a relatively limited number of training images. Therefore,

in our implementation, we only conduct a simple box constraint to ensure object

parts do not fall outside the root bounding box.

For an image I, let X = {x0, x1, ..., xp} be the predicted locations (bounding

boxes) of an object and its parts, which are given during training, but unknown

for both weakly supervised images and testing images. The final feature repre-

sentation is then denoted as Φ(x) = [φ(0)(x0), ..., φ
(n)(xn)], where φ(i)(xi) is the

feature representation for part pi as the output of the fc7 layer of the i-th part-

CNN. Beyond them, a one-versus-all linear SVM is trained for each fine-grained

category. The classification score for an image I being class k is then calculated

as:

s(I; k) =
n∑

i=0

w
(i)
k

T
φ(i)(xi), (6.3)

where w
(i)
k is the classifier weights for class k on features extracted from the i-th

object part.

As a summary, given n object parts and a root, and K fine-grained categories

to be classified, the initialization step obtains:

• n+ 1 independently fine-tuned part-CNNs with (K + 1)-way classification

layers as the initialized feature extractors. We use the fc7 layer to obtain

a 4096-dimensional feature vector φ(i) for each part pi.

• n+1 part (or object) detectors. Each part (or root) pi is associated with a

detector di based on the respective CNN feature extractor φ(i).

• K(n+ 1) sets of classification model weights, with each w
(i)
k ∈ R

4096×1.

6.2.4 Knowledge transfer to the weakly supervised dataset

The second part of the proposed method is a model updating step that transfers

learned knowledge from the smaller strongly supervised dataset S to a larger col-

lection of images acquired from the web (termed W). Images in W are directly
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collected from the Internet with no human labeling effort. It leads to two inter-

esting facts: 1) the web dataset could contain a much larger number of images

than the strongly supervised dataset, say NW and NS respectively, which largely

scales the learning algorithm; 2) the web dataset is weakly supervised - images

are associated with only image-level labels, which could be also incorrect due to

label noises and outliers.

As shown in Figure 6.2, the domain transfer module (shown in red lines and

arrows) involves several steps including object part detection in weak images,

noise removal, re-fine-tuning CNNs, and final classifier training. We detail these

steps below.

6.2.4.1 Part discovery

The first form of knowledge transfer comes from object part detectors. Since

images in the web dataset are only associated with image-level labels, they are

inheritably weakly supervised and carry less information. With the detectors

trained on the strongly supervised dataset S, we are able to introduce part-level

“supervision” to web images by performing automatic part discovery.

The part detectors provide top-down messages to select relative patches with

high discriminative power for classification. After obtaining detecting scores for

all the parts, we adopt the box constraint restriction in part-based R-CNN to

introduce geometric relations between the object and its parts. The detected

locations X∗ = {x0, ..., xn} are given as:

X∗ = argmax
X

n∏

i=1

cx0(xi)
n∏

i=0

di(xi), (6.4)

where

cx(y) =

{
1, if region y falls outside x by at most 10 pixels

0, otherwise

6.2.4.2 Noise removal

As well as the lack of part-level annotations, web images are also “weakly su-

pervised” due to label noises: it is not guaranteed that images in the auxiliary
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dataset are all related to the fine-grained categories. Therefore, we introduce a

noise removal process to clean up the detected part patches.

In the context of generating part patches from weakly supervised images, the

strategy of selecting proper patches can be defined in two ways: (i) a sample

should be selected if we are confident about the accuracy of detected localization;

or (ii) a sample should be selected if it is easy to predict its true label. We argue

that, in our task, adopting these strategies individually is unlikely to produce

optimal results. As shown in Figure 6.3, an interesting finding here is that images

which are correctly classified do not always generate valid part patches due to

occlusion effects and the absence of a particular object part. Meanwhile, even

when an object part is successfully detected, an image could be also incorrectly

classified due to uncommon poses and imperfect object classifiers. Therefore,

directly selecting samples according to classification results is error-prone. On the

other hand, there is no clear boundary to perfectly separate “good” detections

from “poor” detections with respect to detection scores.

We therefore propose a two-threshold strategy that combines two kinds of

transferred knowledge, detection scores and classification results, to select valid

part patches. The basic idea is to flexibly adjust the threshold of “good” detec-

tions by setting a loose condition on the correctly classified images and requiring

harsher terms for misclassified images. Specifically, the criterion of whether a

part patch x is selected to augment the training set is determined as an indicator

q
(i)
I = I(di(x) > λ) where

λ =

{
λpos, if ỹI = yI

λneg, if ỹI �= yI
, (6.5)

Here yI is the label of image I and ỹI is the predicted label obtained by

our object classifiers. We set two thresholds for detection scores di(x), where

λpos < λneg. The two thresholds are defined as:

λpos = σd̄i(neg)

λneg = σd̄i(pos), (6.6)

where d̄i(·) is the average detection score of part patches over correctly or in-
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Figure 6.3: Detection results on weakly supervised images. Green frames indicate
the detected bounding box for part “body”. Image labels in the top two rows
are correctly classified; the bottom two rows show cases in which classification
has failed. Beyond the classification results, part patches in rows 1 and 3 are
associated with high detection scores, while rows 2 and 4 have low detection
scores.

correctly classified images, σ is a free parameter. The resultant threshold λpos

is guaranteed to be lower than λneg because successfully detected part patches

could always contribute to classification performance.

6.2.4.3 Re-fine-tuning CNNs

We employ part detectors trained using strong supervision and a two-threshold

denoising process to generate discriminative part patches from the weakly super-

vised dataset. These part patches, in addition to the strongly supervised training

data, are used to generate better feature representations by re-fine-tuning the
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part-CNNs. We use the same CNN architecture as discussed in Section 6.2.3.2,

and once again randomly initialize the (K+1)-way fc8 layer with the filter weights

of previous layers kept fixed. All region proposals that have ≥ 0.5 IoU over the

detected part bounding boxes are cropped, dilated, warped and then fed into the

CNN architecture as input. Re-fine-tuning the n + 1 part-CNNs actually serves

as an updating procedure of the feature representation φ in (6.1).

6.2.4.4 Final classifier

Having updated the feature representations and detected part locations on weakly

supervised images, the model parameters w are jointly retrained on the strong

and weak datasets to obtain the final object classifiers. Inspired by [67], we define

a multi-instance learning (MIL) formulation that includes bags defined on both

types of images. Specifically, for each image in the auxiliary set, the top 10

locations of the root bounding box are detected, each of which is regarded as an

instance in MIL. The objective function (6.1) is rewritten as:

L(w) = λΩ(w) +
1

NS

∑

I∈S
l(yI , w

T
yI
Φ(x)) +

1

NW

∑

I∈W
l(yI ,max

x∈XI

wT
yI
Ψ(x)), (6.7)

where Φ(x) = [φ(0)(x0), ..., φ
(n)(xn)] is the part-CNN feature representation for a

strongly supervised image; w = [w(0), ..., w(n)] denotes the joint model classifier;

Ψ(x) = [q
(0)
I φ(0)(x0), ..., q

(n)
I φ(n)(xn)] is the feature representation for a weakly

supervised image, in which a part filter p is set to a zero vector if the indicator

q(p) is zero.

As aforementioned, we employ a generalized version of the proposed MLLR

to solve the objective function. Recall that for MLLR, a logistic function is used

to estimate model parameters:

l(yI , wyIΦ(x)) = − log
exp(wT

yI
Φ(x))

∑K
k=1 exp[wkΦ(x)]

. (6.8)

(6.7) can be regarded as a generalized version of MLLR, which simultaneously

updates model parameters based on strongly supervised and weakly supervised

data. MLLR adopts a Concave-Convex Procedure (CCCP) [169] to solve the non-
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convex objective function. Analogously, we adopt the same paradigm to solve the

objective function (6.7) by iteratively optimizing latent variable assignment for

positive examples when fixing model parameters and optimizing model parame-

ters when fixing positive latent assignments. The positive assignments is given

as:

x∗I = argmax
x∈XI

[wT
yI
Ψ(x)]. (6.9)

The gradient of (6.7) is given as:

∂L

∂w
= λ

∂Ω(w)

∂w
+

∂l(S)

∂w
+

∂l(W)

∂w
. (6.10)

Therefore, (6.7) can be solved following the same optimization method as Section

3.2.4, despite that the computation of gradients includes both a linear term and

a multi-instance term.

Although the whole process can undergo several rounds of iteration, in practice

a single updating feature representation and object classifier iteration already

produces promising results. Due to the ensuing time complexity, further iterations

of the whole pipeline are not performed.

At the testing stage, for a new test image, we apply the whole object and part

detectors with the box geometric constraint to localize object parts; the features

of all parts are then concatenated into the final feature vector for prediction. No

additional annotations are required during testing.

6.3 Experiments

We present experimental results and analysis of the proposed method in this

section. Specifically, we will describe the acquirement of weakly supervised web

images, the effectiveness of part detectors, discuss factors on classification results,

and visualize learned part-CNNs.

6.3.1 Dataset and implementation details

Experiments are conducted on two widely used fine-grained classification bench-

marks: the Caltech-UCSD Birds dataset [150] (CUB200-2011) and the Oxford-
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IIIT Pet Dataset [103] (PET). The CUB-200-2011 dataset contains 11,788 images

of 200 types of bird, in which roughly 30 images per category are used for train-

ing. The dataset is strongly supervised, i.e., images are associated with detailed

annotations including image-level labels, object bounding boxes, and part land-

marks. Following the protocol of [172,173], we exploit the location annotation of

two semantic parts, head and body, along with whole object bounding boxes to

conduct part-based models. The PET dataset contains 37 cat and dog breeds,

with roughly 200 images per category. Ground truth object and head bounding

boxes are exploited as strong supervisions. We follow the provided train/test

split in both datasets.

An auxiliary weakly supervised dataset is then collected to augment the

strongly supervised data. Images are obtained from Flickr by conducting im-

age searches using the names of the 200 bird species or 37 pet breeds as queries.

For each category, the top 100 images for CUB and 200 images for PET are

downloaded and sorted by upload time to ensure no overlap between the crawled

images and test images in the datasets. No further manual filtering process is

conducted on the web dataset. These downloaded images only have image-level

labels, which are not always correct due to the ambiguity of query words and

label noise.

We use the open-source package Caffe [68] to extract deep features and fine-

tune part-CNNs from AlexNet [76]. The last fully connected layer fc7 in the

CNN architectures is used to train part detectors and in image representation for

classification.

6.3.2 Detection results and analysis of discovered part

patches

One of the key assumptions of our method is that the use of detectors learned from

strongly supervised data can effectively detect and locate object part patches in

the weakly supervised web images. Therefore, analysis commenced by evaluating

detection results and studying the discovered part patches.

The quantitative detection results are measured in terms of the “Percent-

age of Correctly localized Parts” (PCP) metric on the test set. A part patch
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Table 6.1: Part localization accuracy in terms of PCP on the CUB-200-2011
dataset.

BBox Head Body

Strong DPM [8] - 37.44% 47.08%
Part R-CNN [172] - 61.94% 70.16%
Ours 92.84% 70.89% 75.79%

Figure 6.4: Examples of detected part patches from web images selected as valid
training patches. From top to bottom: whole object, head, body. The left-
most five columns show top-scoring detections, while the right two columns show
patches with the lowest detection scores.

is marked as correctly localized if the predicted bounding box has IoU ≥ 0.5

with the ground-truth bounding box. The learned part detectors produce rea-

sonable results, achieving greater than 70% PCP for all parts (Table 6.1). The

improvement over part-based R-CNN [172] is due to the additional negative min-

ing process and from assigning the background as the (K + 1)-th category for

fine-tuning part-CNNs (as specified in [56]).

The high-performing part detectors ensure that a large number of part patches

can be discovered on the web dataset. However, since the parameter-rich CNN

architectures can easily overfit the training data, it is crucial to find a balance

114



Table 6.2: CUB-200-2011 Ablation study of different choices of fine-tuning, clas-
sifier, detector, and denoising.

Part Localization Predict BBox Oracle
feature\classifier Train Train+Weak Train

w/o ft 68.58 71.19 74.14
ft on train 78.56 79.89 82.12
ft on train/weak 81.17 82.16 85.07
ft on train/weak-dn 83.24 84.59 86.57

between adding more training data and ensuring clean labels. Hence, we use the

noise removal approach discussed in Section 6.2.4.2, with σ set to 0.5 empirically.

We have experimented different σ, but resulted in similar performance. These

part patches are then used to re-fine-tune part-CNNs. Example detected patches

from the web dataset are shown in Figure 6.4.

6.3.3 Classification results

Since our method involves multiple steps to boost classification performance, we

first analyze the effect of each step by detailed comparison with the baselines

shown in Table 6.2.

Feature Perspective. The first set of comparisons reveal that improved

feature representations by fine-tuning CNNs on domain-specific data significantly

contribute to classification accuracy. Directly exploiting an ImageNet pre-trained

CNN as the feature extractor achieves an accuracy of 68%. Fine-tuning part-

CNNs on the bird training set improves this result by a large margin to 79%.

Furthermore, by augmenting the part patches by performing part discovery on

the weak dataset and re-fine-tuning CNNs, a further improvement to 81% clas-

sification accuracy is obtained. These results show that the larger amount of

training data does indeed improve the discriminative power of the learned CNN

representation. Denoising on the weak dataset further improves the accuracy by

2%.

Model Perspective. It is argued that even without using CNN features,
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employing additional training data can boost classification results by increasing

data diversity in training examples. We study this factor by re-training object

classifiers on the augmented dataset and comparing the results to those trained on

strongly supervised training data only. Results show that when the feature rep-

resentations are fixed (as in traditional features such as SIFT), the performance

improvement is trivial (∼ 1%) compared to re-fine-tuning CNN features. This

reveals an interesting phenomenon that feature representation plays a greater

role in fine-grained object recognition than model training. Meanwhile, if the

multi-instance learning step in weakly supervised web images is not performed,

the performance will drop slightly of ∼ 1%. The proposed method of training

classifiers on the re-fine-tuned part-CNN features finally delivers 84.6% accuracy.

Localization Accuracy. The accuracy of part localization also has a large

impact on the final classification results. Although the learned detectors obtain

reasonable detection accuracy for object parts, an average 3% gap still remains be-

tween classification results using predicted bounding boxes and the oracle method,

which casts as an upper bound of classification performance by employing ground-

truth part annotations during both training and testing. It is worth noting that

our final classification result of 84.6% after introducing weakly supervised samples

exceeds even the upper bound accuracy of 82.1% when using strongly supervised

training data alone.

Role of Strong Initialization. Meanwhile, if the idea of part-based repre-

sentations is not introduced in the model, fine-tuning on image-level labels only

will obtain an accuracy of 74.2% even using additional web images, which is about

10 percent lower than our result. This proves that the knowledge learned from

existing strongly supervised dataset can be effectively transferred to the weakly

supervised web images and obtain significant stronger feature representations.

Comparison with state-of-the-arts. The comparison of accuracies be-

tween the proposed method and state-of-the-art methods on CUB-200-2011 is

shown in Table 6.3. Unlike most of the literature on this dataset, we consider it

more realistic that the birds’ bounding boxes are unknown during testing. In this

challenging setting, we achieve an accuracy of 84.6% using AlexNet, outperform-

ing state-of-the-arts. It is worth to be noted that our strongly supervised method

without web images already outperforms part-based R-CNN [172] by 5%, proving
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Table 6.3: Accuracy comparison on the CUB-200-2011 dataset. To conduct fair
comparison, we only list methods which use no annotation at testing time; for all
the methods, we report their results using the same CNN architecture (AlexNet)
if possible.

Method Train Anno. Accuracy(%)

Alignment [54] n/a 53.6
Constellation [126] n/a 68.5
Attention [160] n/a 69.7
Weak-Sup [176] n/a 75.0
Fused [175] n/a 76.0
Bilinear CNN [92] n/a 78.1
Without part [74] bbox 73.7
Part R-CNN [172] bbox+parts 73.9
PoseNorm CNN [17] bbox+parts 75.7
Multiple-Proposal [124] bbox+parts 78.3

Our Method bbox+parts 78.6
(AlexNet) bbox+parts+web 84.6
Our Method bbox+parts 81.1
(VGG16) bbox+parts+web 86.8

the significance of the new feature training design in our method.

Table 6.4 shows comparison results on the PET dataset. Again the proposed

method obtains promising results, being comparable to [9] who used deeper net-

work architectures. Although our method requires additional training data by

collecting weakly supervised images from the web, this data acquisition process

is easy to implement and requires no additional human labeling effort.

6.3.4 Visualization

Beyond the quantitative results presented above, here we present a more intuitive

description of how our method works on practical examples. The procedure of

classifying a fine-grained image using the proposed method is shown in Figure

6.5. Given a test image (a) belonging to Green Kingfisher, detectors were used

to localize the object and its semantic parts, detailed in (b) and (c). As shown
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Table 6.4: Accuracy comparison on the Oxford-IIIT Pet Dataset.

Method Accuracy(%)

Angelova et al. [5] 54.3
Murray et al. [99] 56.8
Azizpour et al. [9] 88.1
Simon et al. [126] (ALEXNET) 85.2
Simon et al. [126] (VGG19) 91.6

Our Method (Strong only) 86.1
Our Method (Strong+Weak) 88.2

in (d), the proposed strongly supervised method misclassified the image into a

very similar subcategory Pied Kingfisher. Closer inspections reveal that the bird

in the test image indeed belongs to a rare occurring subclass in the category

in which black and white spots decorate the chest. Unfortunately, the strongly

supervised dataset does not include sufficient training data for this subclass.

We solved this problem by introducing an auxiliary dataset of weakly super-

vised images collected from the web to augment the training data. As shown in

(e), the new feature representations obtained by re-fine-tuning part-CNNs on the

augmented training set improved the discriminative power in this case, especially

for the bird’s head, even when only images in the strongly supervised dataset

were employed to train the object classifiers. Naturally, inserting weakly super-

vised images into the training set also contributed to the classification process.

Nearest neighbors shown in (f) indicated that in the web dataset, there were a

larger number of images similar to the test image, making the classification result

more convincing.

6.4 Summary

In this chapter, we further scale up the application of weakly supervised learning

to the web scale, and present a semi-supervised strategy that transfers domain

specific knowledge learned from strongly supervised data to boost the perfor-
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Figure 6.5: Visualization of the classification process using the proposed method
with a root and two parts: head and body. (a) Test image with a ground-
truth label of 80. (b) Activation map for the three detectors. (c) Located part
bounding boxes. The top 9 nearest neighbours for the detected parts from the
training images are shown in (d)-(f). The original strongly supervised method
using training data only misclassified the test image into class 81, as shown in
(d). Green boxes demonstrate the image patches of label 80, and red boxes
for label 81. After re-fine-tuning part-CNNs with the augmented training set,
the new feature representations guaranteed that the test image was correctly
classified. (e) Nearest neighbours from the strongly supervised training set only
using the new feature representations. (f) Results after putting weakly supervised
images into the training set either. Yellow boxes indicate images in the weakly
supervised dataset with label 80. (g) and (h) show typical training images from
class 80 (Green Kingfisher) and 81 (Pied Kingfisher) respectively.

mance of webly supervised learning. Specifically, the proposed method is con-

ducted as a multi-instance learning framework, in which a generalized MLLR

is proposed to train strongly supervised and weakly supervised examples in a

unified framework. Our method acts as a bridge between the requirement for

extensive data to train deep representations and the difficulty in obtaining large-

scale strongly annotated datasets. Experiments on two benchmark datasets show
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that introducing additional weakly supervised images leads to an impressive im-

provement over baseline methods and achieves state-of-the-art results. Moreover,

we believe the most important advantage of the proposed method is its potential

usefulness in practice, especially considering the varied forms of part annotations

in existing datasets, and the increasing complicity of CNN architectures over

time.

Publications Related to This Chapter

1. Zhe Xu, Shaoli Huang, Ya Zhang, Dacheng Tao. Augmenting Strong Su-
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2. Zhe Xu, Shaoli Huang, Ya Zhang, Dacheng Tao, Webly-Supervised Fine-

Grained Visual Categorization via Deep Domain Adaptation, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (TPAMI), 2016 (un-

der review).
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Chapter 7

Conclusions

In this chapter, we will first conclude the entire thesis, and then elaborate possible

future research directions based on this thesis.

7.1 Thesis Summarization

This dissertation studies the problem of weakly supervised learning, which en-

ables the employment of highly discriminative feature representations when only

limited forms of training supervision is provided. Modeling this problem into

a latent variable framework, we first introduce a novel latent variable paradigm

termed multinomial latent logistic regression (MLLR) that offers preferred char-

acteristics including efficient latent variable inference and effective output proba-

bilistic analysis. A set of applications, mostly in the context of object recognition,

are then presented to show the effectiveness of the proposed MLLR. Meanwhile,

in the experiments, several practical issues of employing latent variable models

in weakly supervised scenarios are discussed extensively, including initialization,

optimization, inter-class relationships, and scalability.

Specifically, theoretical analysis on MLLR is presented in Chapter 3. By intro-

ducing latent variables with a maximum a posteriori (MAP) inference procedure

into the logistic regression framework, the proposed MLLR can be modeled as a

latent variable model with structured outputs or multi-class predictions, which

performs “maximization” over latent variables and “averaging” over output la-
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bels. The objective function of MLLR has a semi-convexity property, which leads

to effective solutions using the concave-convex procedure. We have proposed

two optimization methods for solving the convex part, including a novel Newton

approach using second-order derivatives. The proposed MLLR reveals superior

results than existing latent variable models on multi-class classification tasks in-

cluding hand-written digit recognition, human action classification, and animal

object recognition in the experiments. Meanwhile, by studying the connection

and difference between the proposed MLLR and other existing latent variable

models both theoretically and experimentally, we present a practical manual on

how to select a proper model under various application scenarios. This could be

of great value for followers on this research area.

Based on the discussions above, in Chapter 4, we present a novel application

of architectural style classification which is particularly suitable for the proposed

MLLR. For this task, we employ the high-performing deformable part-based

model to describe buildings, which introduces powerful part-based representa-

tions, while also leading to complicated latent variable definitions. Meanwhile,

due to the rich inter-class relationships between multiple styles, it is preferred an-

alyze styles using “soft” assignments instead of deterministic predictions. MLLR

is particularly effective in this application for its efficient latent variable inference

and the ability to produce probabilistic analysis on output predictions, leading to

several interesting discoveries including an inter-class relationship map and style

analysis for multiple regions of an individual building.

We further study the application of MLLR on an extremely challenging prob-

lem of weakly supervised fine-grained visual categorization (FGVC) in Chapter

5. Aiming to classify objects in the subordinate level, one critical challenge of

FGVC is that the associated inter-class variance could be lower than the intra-

class variance due to factors such as different object poses, scales and occlusions.

We model this problem in a multi-instance learning framework and employ the

proposed MLLR as the training algorithm. The unique design here is using a

novel multi-task co-localization algorithm to initialize the non-convex objective

function of MLLR. It is motivated by the fact that subordinate categories can be

regarded as “friends” when foreground/background classification is conducted to

find initialized object locations (also known as the latent variable here). The pro-
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posed method achieves remarkable results on several FGVC benchmarks under

the weakest supervision, where the robust initialization is shown to be crucial for

the final classification performance.

Our last work (Chapter 6) aims to study weakly supervised learning in a larger

scale using a generalized version of MLLR. It is achieved by employing the nearly

endless supply of web data for scalability, together with a small but accurate

strongly supervised set to introduce domain specific knowledge as an initializa-

tion. The proposed approach is implemented as a semi-supervised framework, for

which the proposed MLLR is generalized to learn models on a joint training set

of strongly and weakly supervised data. For the task of FGVC, this approach

acts as a bridge between the extensive demand of data in training deep convolu-

tional networks and the difficulty in acquiring detailed part-level annotations. As

a result, the proposed method enjoys the performance improvement brought by

discriminative deep feature representations and part-level classification cues in a

unified framework, and thus delivers a significant improvement over state-of-the-

art results which rely on the strongly supervised dataset only.

7.2 Future Work

In this thesis, we have proposed a novel latent variable model for weakly super-

vised learning, and studied its properties and application scenarios from both the

theoretical and practical perspective. Certainly, there are still some issues that

remain open and need to be further investigated.

• Study applications of MLLR on structured outputs. The proposed

MLLR is derived from logistic regression in a multi-class formulation. How-

ever, we have also proved that MLLR can be applicable for problems with

structured outputs, such as protein structure discovery and semantic seg-

mentation. It is interesting to see the comparison between MLLR and other

methods including latent structural SVM and hidden CRF in these appli-

cations.

• Generalize MLLR to the third dimension of uncertainty. In Sec-
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tion 2.1.7, we have mentioned a generalized form of latent variable models

that captures uncertainty from three dimensions, i.e., latent variables h,

ground-truth weak labels y, and strong predict labels s. By modeling the

uncertainty in the third dimension between ground-truth labels and the pre-

dicted labels, it is possible to employ inter-class relationships in the training

stage, instead of the testing stage as described in Chapter 4.

• Multi-label problems. MLLR can be adopted in multi-label problems,

such as predicting the existence of a particular concept in contents from

web-sharing medias. For example, for images in Flickr1, users may upload

several tags to describe the image content or his/her emotion for the image.

Therefore, weakly supervised learning with structured outputs could be a

reasonable solution for this problem.

• Additional theoretical analysis of MLLR. Possible extensions include

multi-task objective functions, the analysis of prior/dual form solvers, dis-

tributed computation of multiple classes, etc.

• Other optimization methods. MLLR is currently solved in the frame-

work of a convex-concave procedure using gradient methods. It would be

of interest to consider using other optimizers, such as meta-heuristics that

do not reply on the differentiability of the cost function, which will possibly

overcome the drawbacks of the current method such as local minima.

• Simplifying the form of MLLR. One of the possible drawbacks of MLLR

comes from the complexity of the framework. As MLLR itself is quite com-

plicated by implementing a unified framework using data from all the train-

ing classes, it is tricky to extend the algorithm on more advanced methods

such as part-based models and multi-task learning methods. Therefore, it is

of interest to find an approach to simplify the algorithm and make it more

flexible.

1www.flickr.com
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