Inverse Kinematics, Kinematic Control and Redundancy Resolution for Chained-Link Robotic Manipulators

Nima Ramezani Taghiabadi

A Thesis submitted for the degree of Doctor of Philosophy

Faculty of Information Technology
University of Technology, Sydney

October 19, 2016
Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student
Acknowledgements

I would like to thank all people who have supported, encouraged and inspired me during the past four years of my candidture.

First of all, I would like to appreciate the inspiration, encouragement and helpful support that I received from my supervisor, Professor Mary-Anne Williams. She was a supportive, positive and flexible supervisor who maintained her kind positive motivation during all stages of my PhD project.

I would also like to thank some of my colleagues for their help on publishing my package. Special thanks to Dr. Xun Wang for his collaboration in the integration of my package to his valuable interface PyRide which was a great help in running my real-time experiments.

Finally, I would like to thank my wife Elahe and my parents for encouraging and motivating me. Without their inspiration and understanding, this thesis would not be accomplished.
# Table of Contents

## Abstract

## 1 Introduction

1.1 Introductory Background .................................. 3  
1.2 Project Objectives ...................................... 6  
   1.2.1 Introduce and compare various IK solution methods ............. 6  
   1.2.2 Introduce various pose metrics and analyse their influence in IK algorithms 6  
   1.2.3 Introduce and compare various redundancy resolution techniques . . . . . 7  
   1.2.4 Introduce and describe various geometric and algorithmic influensive factors 7  
   1.2.5 Introduce innovative techniques and apply new ideas ............. 7  
      1.2.5.1 Mathematical Techniques ................................ 8  
      1.2.5.2 Machine Learning Techniques ........................ 9  
      1.2.5.3 Computer Science Techniques ........................ 10  
1.3 Application Scenarios .................................... 10  
   1.3.1 Pose Projection Scenario .............................. 11  
   1.3.2 Trajectory Projection Scenario ........................... 11  
      1.3.2.1 Off-line Trajectory Projection ...................... 11  
      1.3.2.2 On-line(Real-time) Trajectory Projection ............... 11  
      1.3.2.3 Relative and Absolute Trajectory Projection ............. 12  
   1.3.3 Trajectory Generation Scenario .......................... 12  

## 2 Literature Review

2.0 Kinematic Modeling ................................ 13  
   2.0.4 Analytic IK Solutions .................................... 13  
   2.0.5 Newton Raphson Method ............................. 17  
   2.0.6 Jacobian-based Methods .............................. 18  
   2.0.7 Hessian-based Methods .............................. 20  
   2.0.8 Redundancy Resolution Techniques (RRTs) ................... 21  
      2.0.9.1 Velocity-based Redundancy Resolution ................ 22  
      2.0.9.2 Position-based Redundancy Resolution ............... 25  
   2.0.9 Convergence Control Techniques (CCTs) .................... 26  
   2.0.10 Heuristic Search Methods ...................... 27  
   2.0.11 Hybrid Analytic/Numeric Methods ..................... 27  
   2.0.12 Other Solutions ................................... 29  

## 3 Velocity-Based Kinematic Control  
(Numerical IK) .......................................... 31  
   3.1 Solution Algorithms ..................................... 31  
      3.1.1 Jacobian Inverse .................................. 33  
      3.1.2 Jacobian Pseudo-Inverse .......................... 34  
         3.1.2.1 Formulation of update rule for redundant systems .......... 34  
         3.1.2.2 Solution of constrained optimization problem using lagrangian multipliers ............. 35  
   3.2 Convergence Control Techniques .......................... 36
3.2.1 Damped Least Squares Method ........................................ 37
  3.2.1.1 Damped Least Squares with Adaptive Damping Factor (DLS-ADF) 38
3.2.2 KD-Tree Lookup Approach ........................................ 39
3.3 Redundancy Resolution Techniques .................................. 40
  3.3.1 Gradient Projection Method ..................................... 41
    3.3.1.1 Singularity Avoidance .................................. 42
    3.3.1.2 Handling Joint Limits .................................. 42
    3.3.1.3 Obstacle Avoidance .................................... 43
    3.3.1.4 Second Priority Task .................................. 43
    3.3.1.5 Combination with DLS method ............................ 44
  3.3.2 Gradient Weighted Pseudo-Inverse ............................... 44
    3.3.2.1 Combination with DLS method and Gradient Projection ...... 46
3.3.3 Virtual Jointspace Mapping ..................................... 46
    3.3.3.1 Combination with Weighted Pseudo-Inverse and Gradient Projection 49
3.4 Kinematic Control .................................................... 49
  3.4.1 First Order Kinematic Control .................................. 50
    3.4.1.1 Constant Target (Trajectory Generation) Scenario ........... 50
    3.4.1.2 Variable Target (Trajectory Projection) Scenario ........... 51
  3.4.2 Second Order Kinematic Control ................................. 53
    3.4.2.1 Constant Target Scenario ................................ 54
4 Position-Based Kinematic Control (Analytical IK) .................. 55
  4.1 Redundancy Optimization in Position-Based Kinematic Control . 57
    4.1.1 Redundancy Jacobian ....................................... 58
    4.1.2 First Order Kinematic Control ................................ 59
    4.1.3 Second Order Kinematic Control .............................. 61
  4.2 Analytic IK for PR2 Arm ............................................ 62
    4.2.1 Kinematic Modelling of PR2 ................................. 62
    4.2.2 Closed-Form IK Equations for PR2 ARM ........................ 67
      4.2.2.1 Solving Inverse Kinematics for Position .................. 68
      4.2.2.2 Solving Inverse Kinematics for Orientation ............... 69
      4.2.2.3 Solution Existence .................................... 70
      4.2.2.4 Singularity ............................................ 71
  4.2.3 Handling Joint Limits ......................................... 71
  4.2.4 Optimal Kinematic Control Scheme for PR2 ..................... 77
      4.2.4.1 Fixed-Base Mode ...................................... 77
      4.2.5 Free-Base Mode ........................................... 79
5 Pose Metrics ............................................................. 81
  5.1 Position Metrics .................................................... 83
    5.1.1 Difference of Cartesian Coordinates .......................... 83
    5.1.2 Euclidean Distance .......................................... 83
  5.2 Orientation Metrics ................................................ 83
    5.2.1 Based on Rotation Matrix .................................... 84
      5.2.1.1 Axis Inner Product .................................... 84
      5.2.1.2 Relative Rotation Matrix ................................ 84
      5.2.1.3 Relative Rotation Matrix Trace .......................... 84
      5.2.1.4 Relative Rotation Angle ................................ 84
      5.2.1.5 Algebraic Difference of Rotation Matrices ............... 85
    5.2.2 Based on unit quaternions .................................... 85
      5.2.2.1 Difference of Normalized Quaternions .................... 85
      5.2.2.2 Relative Unit Quaternion ................................ 86
      5.2.2.3 Algebraic Difference of Unit Quaternions ............... 86
      5.2.2.4 Inner Product of Unit Quaternions (Cosine dissimilarity) 86
      5.2.2.5 Angle of Unit Quaternions ................................ 87
    5.2.3 Based on vectorial representations .......................... 87
      5.2.3.1 Orientation vector with identity parametrization ......... 88
      5.2.3.2 Orientation vector with linear parametrization .......... 88
5.2.3.3 Orientation vector with Cayley-Gibbs-Rodrigues parameterization 88
5.2.3.4 Orientation vector with Bauchau-Trainelli parameterization . . . 88
5.2.4 Based on unit Euler Angles ............................ 89

6 Experimental Results 91
6.1 Tools and Methods ..................................... 91
6.1.1 Software ....................................... 91
6.1.2 Influensive Factors ................................. 94
6.1.3 Application Scenarios ............................... 95
6.1.4 Manipulators .................................... 96
6.1.5 Performance Criteria ............................... 102
6.1.6 Pose Metrics ..................................... 102
6.1.7 Joint Limit Handling ................................ 103
6.1.8 Task Specification .................................. 104
6.1.9 Termination Criteria ................................ 104
6.1.10 Precision (Success Criteria) ............................ 105
6.1.11 Starting Configuration (for PPS) ......................... 105
6.2 Experiments in Pose Projection Scenario(PPS) ...................... 106
6.2.1 Position-based Optimal Redundancy Resolution for PR2 ........... 106
6.2.1.1 Fixed-base results ............................ 106
6.2.1.2 Free-base results ............................. 107
6.2.2 Compare Solution Algorithms .......................... 109
6.2.2.1 Test 1: [ALGx-GPM-AxInPr(ijk)-MNI1000]
Comparison of Jacobian-based Solution algorithms on two manip-
ulators ....................................... 109
6.2.2.2 Test 2: [JPI-GPM-AxInPr(ijk)-MNIx]  
Evaluate the influence of Maximum Number of Iterations
....................................... 110
6.2.3 Compare Joint Limit Handling Techniques ................... 114
6.2.3.1 Test 3: [JPI-JLHx-AxInPr(ijk)-MNI60]  
Comparison of VJM with GPM using JPI algorithm
....................................... 115
6.2.3.2 Test 4: [JPI-VJM(TM)-AxInPr(ijk)-MNIx]  
Evaluate the influence of the Maximum Number of Iterations (MNI) using VJM-TM method for joint limit handling
....................................... 116
6.2.4 Compare Pose Metrics ............................... 119
6.2.4.1 Test [JPI-VJM(TM)-PMx-MNI60]  
Comparing different metrics on JPI algorithm with VJM(TM)
....................................... 119
6.2.5 Compare Convergence Improvement Techniques .................. 122
6.2.5.1 Test 6: [DLS(CDF)-VJ(M(TM)-AxInPr(ijk)-MNI60-DFx]  
Compare different values of initial damping factor in DLS-CDF method
....................................... 122
6.2.5.2 Test 7: [DLS(ADF)-VJ(M(TM)-AxInPr(ijk)-MNIx-DFx]  
Compare different values of initial damping factor in DLS-ADF method
....................................... 125
6.2.5.3 Test 8: [DLS(ADF)-VJ(M(TM)-AxInPr(ijk)-MNI60-MSPTx]  
Evaluate the influence of multiple starting point trials
....................................... 127
6.2.5.4 Test 9 [DLS(ADF)-VJ(M(TM)-AxInPr(ijk)-MNI60-KDT]  
Evaluating the influence of kd-tree search model in the IK solver performance
....................................... 128
6.2.5.5 Test 10 [DLS(ADF)-V]M(TM)-AxInPr(ijk)-MNI200-KDT]
IK performance with the best settings for Pose Projection Scenario

6.3 Trajectory Projection ........................................ 130
6.4 Trajectory Generation ....................................... 134

6.4.1 Test TGS-OFF-DLS(ADF)
Trajectory Generation using JPI method
............................................ 135

6.4.2 Test TGS-OFF-DLS(ADF)
Trajectory Generation using DLS(ADF)
............................................ 138

6.4.3 Test [TGS-OFF-DLS(ADF)-PMx]
Compare pose metrics in TGS
............................................ 139

6.5 Future Works ................................................ 140
6.6 Conclusion ............................................... 142

A 143

A.1 Formulations for Kinematic Modelling ...................... 143
A.1.1 Formulations for Fixed-base Control .................... 143
A.1.2 Formulations for free-base Control ..................... 146

Bibliography 151
### List of Figures

2.1 Standard DH parameters for a revolute joint \((\theta_n, \alpha_n, a_n, d_n)\). Picture is taken from [http://open-robotics.com/](http://open-robotics.com/). ........................................ 14

2.2 Modified DH parameters for a revolute joint \((\theta_i, \alpha_{i-1}, a_{i-1}, d_i)\). Picture is taken from [http://open-robotics.com/](http://open-robotics.com/). ........................................ 14

2.3 SU parameters for a revolute joint \((a_{jk}, \alpha_{jk}, b_{jk}, \beta_j, c_{jk}, \gamma_j)\). Picture taken from [112] 16

2.4 A Pioneer II robot arm. Picture taken from [https://www.generationrobots.com](https://www.generationrobots.com). ............................ 17

3.1 Linear and Trigonometric mappings .......................... 48

3.2 Block diagram of the first order kinematic control scheme in constant target application 51

3.3 Block diagram of the first order kinematic control scheme in variable target application with the error vector governed by a first order differential equation ............................. 52

3.4 Block diagram of second order kinematic control scheme in variable target application 54

4.1 A close view of forearm and wrist of the PR2’s right arm. The end effector reference points are denoted by \(E_{RF}\) and \(E_{FL}\) for right and left arms respectively. Original picture is adapted from [http://www.willowgarage.com](http://www.willowgarage.com). .......................... 64

4.2 A front view of the PR2 robot ................................. 65

6.1 General draft of a PUMA manipulator. Picture taken from [44]. .................. 97

6.2 Mechanical configuration of the PA-10 manipulator. Picture taken from [1]. .... 98

6.3 Mechanical configuration of the exoskeleton. Picture adapted from report AEP by Shams Feyzabadi, DFKI VI-Bot project documentation ............................ 100


6.5 Objective Function vs \(\phi\) .................................. 108

6.6 Percentage of Success among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Gradient Projection Method (GPM) is employed to handle joint limits but joint limits are not respected in the definition of success. ............................................. 112

6.7 Average Number of Iterations and Average Running Time among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Gradient Projection Method (GPM) is employed to handle joint limits but joint limits are not respected in the definition of success. .......................... 113
6.8 Percentage of success among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Gradient Projection Method (GPM) is employed to handle joint limits and joint limits are respected in the definition of success. ........................................ 114

6.9 Percentage of in-range success among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Virtual Joint-space Mapping (VJM) is employed to handle joint limits and joint limits are respected in the definition of success. ........................................ 117

6.10 Average number of iterations among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Virtual Joint-space Mapping (VJM) is employed to handle joint limits and joint limits are respected in the definition of success. ........................................ 118

6.11 Mean and median of running time among 1000 runs for different values of Maximum Number of Iterations performed on four robot manipulators. Virtual Joint-space Trigonometric Mapping (VJM-TM) is employed to handle joint limits and joint limits are respected in the definition of success. ........................................ 118

6.12 Percentage of success, average number of iterations and average running time among 1000 runs using eleven different metrics for orientation performed on four robot manipulators. Virtual Joint-space Mapping (VJM) is employed to handle joint limits and joint limits are respected in the definition of success. ........................................ 120

6.13 Performance evaluation in terms of percentage of success, average number of iteration and average running time implemented by the MAGIKS IK solver on four robot manipulators for 1000 randomly chosen target poses and different values of Damping Factor using Damped Least Squares method with Constant Damping Factor. ........................................ 124

6.14 Performance evaluation in terms of percentage of success, for 200 randomly chosen target poses with different values of Initial Damping Factor and Maximum Number of Iterations (MNI) using Damped Least Squares method with Adaptive Damping Factor (DLS-ADF). ........................................ 125

6.15 Performance evaluation in terms of percentage of success (success rate) on 200 randomly chosen target poses for the two 7-DOF manipulators:PA10 and PR2ARM with different values of Initial Damping Factor and Maximum Number of Iterations (MNI) using Damped Least Squares method with Adaptive Damping Factor (DLS-ADF). ........................................ 126

6.16 Success rates for 9-DOF EXO implemented on 200 randomly chosen target poses with different values of Initial Damping Factor and Maximum Number of Iterations (MNI) using Damped Least Squares method with Adaptive Damping Factor (DLS-ADF). ........................................ 127

6.17 S-Figure trajectory used for test TPS-OFF-ALG ........................................ 132

6.18 PR2 robot writing on the board using MAGIKS off-line IK engine in TP scenario ........................................ 133

6.19 Projected joint trajectories ........................................ 134

6.20 PR2 in the source and destination postures ........................................ 137

6.21 Joint values for the trajectory generated by MAGIKS in test TGS-OFF-JPI ........................................ 138

6.22 Joint values for the trajectory generated by MAGIKS in test TGS-OFF-DLS ........................................ 138
6.23 Joint values for the trajectory generated by MAGIKS in test TGS-OFF-DLS . . . . 139
6.24 Joint values for the trajectory generated by MAGIKS in test TGS-OFF-DLS . . . . 140
List of Tables

4.1 DH parameters of PR2 right arm and associated joint limits ........................................... 63
6.1 Manipulators used in the test layout .......................................................... 96
6.2 DH parameters, joint range and grid values for PUMA arm robot used in this test layout .......... 97
6.3 DH parameters, joint range and grid point values for PA-10 arm robot used in this test layout .......... 98
6.4 DH parameters, joint types, joint range and grid point values for the exoskeleton arm used in this test layout. (From report AEP by Shams Feyzabadi. DFKI VI-Bot project documentation) .................................................. 99
6.5 Iterative optimization for the fixed-base optimal redundancy resolution implemented on the PR2 right arm .................................................................................................................. 107
6.6 Parameter settings for test 1: [ALGx-GPM-AxInPr(ijk)-MNI1000] ........................................ 110
6.7 Results of test 1 [ALGx-GPM-AxInPr(ijk)-MNI1000] in terms of performance criteria basic descriptive statistics .......................................................................................................................... 110
6.8 Parameter settings for test 2: [JPI-GPM-AxInPr(ijk)-MNIx] ........................................... 111
6.9 Parameter settings for test 3 [JPI-JLHx-AxInPr(ijk)-MNI60] ........................................ 115
6.10 Results of Test 3 [JPI-JLHx-AxInPr(ijk)-MNI60] ........................................................................ 116
6.11 Parameter settings for test 5: [JPI-VM(TM)-PMx-MNI60] ........................................ 119
6.12 Detailed results of test 05 [JPI-PMx-MNI60] ................................................................. 121
6.13 Parameter settings for test 6 [DLS(CDF)-V[M(TM)-AxInPr(ijk)-DFx] ......................... 123
6.14 Parameter settings for test 7 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-DFx] ........................ 125
6.15 Parameter settings for test 8 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI60-MSPTx] ........ 127
6.16 Detailed results of Test 8 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI60-NSPTx] ........... 128
6.17 Parameter settings for test 9 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI60-KDT] ........... 129
6.18 Results of Test 9 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI60-KDT] ............................ 129
6.19 Parameter settings for test 10 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI200-KDT] ........... 130
6.20 Results of Test 10 [DLS(ADF)-V[M(TM)-AxInPr(ijk)-MNI200-KDT] .......................... 130
Abstract

This aim of this work is to present a comprehensive review and analysis with experiments and concrete comparison on the methods, algorithms and techniques proposed for the Inverse Kinematics, Kinematic Control and Redundancy Resolution problems in chained-link manipulators. In addition to the review of classic solutions proposed in the literature, this thesis introduces some novel and innovative methods from the author that have not been used for the IK and RR problems prior to this study.

This thesis also presents a targeted layout of experiments in order to evaluate and compare the performance of different solutions and techniques in the IK problem. Various algorithmic factors and settings have been tested on different solution methods for four manipulators with different geometries and degrees of freedom. The tests are designed to find the optimum values for different influential parameters in order to improve the performance step by step so that in the final test, a good performance with almost %100 success rate and reasonable computational cost is achieved.

In addition to the comprehensive review and proposition of novel techniques, this thesis presents two robust software packages named as Manipulator Generic Inverse Kinematic Solver (MAGIKS) and Skilled-PR2 (S-PR2) which have been used to implement the experiments. The first one is a local Jacobian-based numeric IK solver that can be used for any general chained-link manipulator with no limitation on degree of freedom and number of end-effectors. The second one is an analytic (position-based) IK solver for PR2 with the ability of redundancy optimization for this robot. Both solvers are able to project and generate smooth and feasible trajectories in the joint-space and can be used by researchers and developers working on robot kinematics.