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Abstract

In this thesis, we address the problem of navigation and control for assistive robots.

Autonomously creating a suitable representation of the environment (a map) and having

the ability to localise a robot in that environment are considered to be the cornerstones

of autonomous robot navigation. We present a distance function based framework to

represent the occupancy of two-dimensional environments and a chamfer distance based

sensor model to relate measurements captured from a sensor mounted on the robot to

the environment representation. Employing the proposed representation and the sensor

model, we propose two novel strategies to localise the robot on the map using an extended

Kalman filter and an optimisation based method. These methods are computationally

more efficient and are free of environment dependent tuning, which are necessities for

assistive robots to operate in different environments ranging from small households to

large shopping centres. We also demonstrate an adaptation of the popular particle filter

based localisation algorithm using the distance function representation.

A mapping algorithm that utilises the proposed distance function based framework, which

can be used to create maps of considerably large scale crowded indoor environments with

low error accumulation is also presented. Although we do not consider the effect of sensor

uncertainties, we demonstrate that the algorithm can efficiently build high-quality maps

that can be used in practical scenarios of importance associated with assistive robots.



Abstract iii

We present experiments conducted using simulations, public domain datasets, and exper-

imental datasets we collected in real environments to evaluate and compare these algo-

rithms.

The control strategy used in an assistive robot needs to be specifically designed to suit the

task that the robot is expected to perform. Using standard user centred design methods

often result in complicated, unintuitive control interfaces for assistive robots, which are

difficult to be integrated into the daily activities of the end users.

We demonstrate that design approaches based on the principles of cooperative design can

be used to alleviate the complexities in the design process. We propose and develop a

control system based on admittance control for a robotic hoist, and evaluate it using user

studies to experimentally illustrate that this design framework could be used for developing

controllers for assistive robots in general.

The analysis of electromyographic measurements and forces exerted by the end users while

using the robotic hoist confirm that the robot has the potential to reduce musculoskeletal

injuries amongst care workers in the aged and disabled care sector, by providing assistance

during the patient transfer process. As a result of the cooperative design process, the

control interface became simple, intuitive, and easy to use, which made the robot readily

incorporable to the work-flow of care facility.
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