

Navigation and Control for Assistive Robotics

by

Lakshitha Dantanarayana

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at the Centre for Autonomous Systems Faculty of Engineering and Information Technology University of Technology, Sydney

October 2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed:

Date:

Navigation and Control for Assistive Robotics

by

Lakshitha Dantanarayana

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Abstract

In this thesis, we address the problem of navigation and control for assistive robots. Autonomously creating a suitable representation of the environment (a map) and having the ability to localise a robot in that environment are considered to be the cornerstones of autonomous robot navigation. We present a distance function based framework to represent the occupancy of two-dimensional environments and a chamfer distance based sensor model to relate measurements captured from a sensor mounted on the robot to the environment representation. Employing the proposed representation and the sensor model, we propose two novel strategies to localise the robot on the map using an extended Kalman filter and an optimisation based method. These methods are computationally more efficient and are free of environment dependent tuning, which are necessities for assistive robots to operate in different environments ranging from small households to large shopping centres. We also demonstrate an adaptation of the popular particle filter based localisation algorithm using the distance function representation.

A mapping algorithm that utilises the proposed distance function based framework, which can be used to create maps of considerably large scale crowded indoor environments with low error accumulation is also presented. Although we do not consider the effect of sensor uncertainties, we demonstrate that the algorithm can efficiently build high-quality maps that can be used in practical scenarios of importance associated with assistive robots. We present experiments conducted using simulations, public domain datasets, and experimental datasets we collected in real environments to evaluate and compare these algorithms.

The control strategy used in an assistive robot needs to be specifically designed to suit the task that the robot is expected to perform. Using standard user centred design methods often result in complicated, unintuitive control interfaces for assistive robots, which are difficult to be integrated into the daily activities of the end users.

We demonstrate that design approaches based on the principles of cooperative design can be used to alleviate the complexities in the design process. We propose and develop a control system based on admittance control for a robotic hoist, and evaluate it using user studies to experimentally illustrate that this design framework could be used for developing controllers for assistive robots in general.

The analysis of electromyographic measurements and forces exerted by the end users while using the robotic hoist confirm that the robot has the potential to reduce musculoskeletal injuries amongst care workers in the aged and disabled care sector, by providing assistance during the patient transfer process. As a result of the cooperative design process, the control interface became simple, intuitive, and easy to use, which made the robot readily incorporable to the work-flow of care facility.

Acknowledgements

I take this opportunity to thank many others around me, without whose support and encouragement, this work would not have been possible.

Especially to my primary supervisor, Professor Gamini Dissanayake for the opportunity to work on this topic and the guidance provided throughout. His direction, motivation, and expertise allowed me to reach this significant milestone in my life.

I'm also grateful to my alternate supervisor Doctor Ravindra Ranasinghe for his continuous support. It was an immense help, and he contributed significantly to the completion of this work.

I also wish to thank my co-supervisor, Associate Professor Shoudong Huang, for always being willing to render assistance whenever it was requested, even at short notice.

My gratitude also goes to Professor Tomonari Furukawa for his helpful advice and for providing me with the valuable opportunity to be a part of the Terrestrial Robotics, Engineering, & Controls Lab (TREC) at Virginia Tech, USA and the DARPA Robotics Challenge 2015 team. I gained an immense amount of valuable experience throughout my visit. I'm grateful to everyone in Team VALOR for making my stay at TREC and in Blacksburg, VA, memorable.

I'm appreciative to all my colleagues at Centre for Autonomous Systems (CAS), I find it to have been a privilege to work with such motivated and intelligent group of people. Thanks for making me a part of the CAS family and sharing all the laughs and good times.

Last, but not least, I'm forever in debt to my parents, because without the sacrifices they've made on my behalf, I wouldn't be where I am today.

Contents

D	eclar	tion of Authorship	i
A	bstra	:t	ii
\mathbf{A}	ckno	ledgements	iv
\mathbf{Li}	st of	Figures	viii
\mathbf{A}	crony	ms & Abbreviations	xi
N	omer	clature	xiv
1	Intr 1.1 1.2 1.3 1.4	Oduction Motivation and Background Thesis Outline Contributions Publications Related to this Thesis	1 1 5 6 7
2	Env	ronment Representation for Robotics	8
	2.1		19
	2.2	Distance Functions	13
	2.0	2.3.1 A Sensor Model for Distance Function Representations	10
		2.3.2 Projection of a Laser Scan on a Distance Function	20
	2.4	Chamfer Distance	22 22
		2.4.2 Chamfer Distance Based Songer Model for a Camera	23
		2.4.2 Chamier Distance Dased Sensor Model for a Camera	$\frac{24}{25}$
		2.4.4 Chamfer Distance Based Sensor Model for a Laser Range Finder	$\frac{20}{28}$
	2.5	Conclusion	$\frac{20}{31}$
3	Dis	ance Function based Algorithms for Mobile Robot Localisation	32
	3.1	Introduction	32

	3.2	Related Work	34
	3.3	An Extended Kalman Filter for Localisation in an Occupancy Grid Map 3	38
		3.3.1 Chamfer Distance Based Observation Model	39
		3.3.2 Formulation of the Extended Kalman Filter	39
		3.3.2.1 Prediction	39
		$3.3.2.2$ Observation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	10
		3.3.2.3 Update	10
		3.3.3 Improving the Robustness of the Algorithm	11
	3.4	Optimisation Based Localisation in Occupancy Grid Maps	12
		3.4.1 Optimisation Algorithm	43
	3.5	Particle Filter based Localisation on Occupancy Grid Maps	14
		3.5.1 Monte-Carlo Localisation (MCL)	46
		3.5.2 Estimation of Covariance and Measurement Likelihood	18
	3.6	Experimental Results	50
		3.6.1 Experimental Set-up	51
		3.6.2 Pose Accuracy and Uncertainty	53
		3.6.3 Performance with Dynamic Objects	58
		3.6.4 Execution times	33
		3.6.5 Localisation Using Ceiling Data from an Upward Looking Camera . 6	36
	3.7	Conclusion	38
4	ΑΙ	Distance Function based Algorithm for Robotic Mapping 7	' 0
	4.1	Introduction	70
	4.2	Related Work	71
	4.3	Scan Matching Preliminaries	76
	4.4	CD Mapping: Chamfer Distance based Scan-to-Map Matching 7	77
	4.5	Grid-based ND-to-ND Scan-to-Map Matching	79
	4.6	Experimental Results	32
		4.6.1 Pose accuracy	33
		4.6.2 Mapping Real Environments 8	37
	4.7	Conclusion	38
5	4.7 Cor	Conclusion	38 92
5	4.7 Cor 5.1	Conclusion	38 92 92
5	4.7 Cor 5.1 5.2	Numpring recar Environments 1 Conclusion 8 ntrol of Assistive Robotic Robots 9 Introduction 9 Background 9	38 92 92 93
5	 4.7 Cor 5.1 5.2 5.3 	Numpring recar Environments 1	938 92 92 93
5	 4.7 Cor 5.1 5.2 5.3 	Numpring real Environments 9 Conclusion 9 ntrol of Assistive Robotic Robots 9 Background 9 User Intention Recognition 9 5.3.1 Admittance Controller 9	38 92 92 93 96
5	4.7Cor5.15.25.3	Number of the second	938 92 93 96 97
5	 4.7 Cor 5.1 5.2 5.3 5.4 	Number of the second)2)2)2)3)6)7)8)1
5	 4.7 Cor 5.1 5.2 5.3 5.4 	Number of the second)2)2)2)3)6)7)8)1)2
5	 4.7 Cor 5.1 5.2 5.3 5.4 	Number of the second	<pre>38 32 32 32 33 36 37 38 31 32 34 34 34 34 34 34 34 34 34 34 34 34 34</pre>
5	 4.7 Cor 5.1 5.2 5.3 5.4 5.5 	Number of the second	38 32 32 32 32 32 32 32 32 32 32
5	 4.7 Cor 5.1 5.2 5.3 5.4 5.5 5.6 	Number of the second	38 32 32 33 36 37 38 37 38 31 32 31 32 31 32 31 32 32 33 36 37 38 38 37 38 37 38 37 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 37 38 38 37 38 37 38 38 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 38 39 39 39 39 39 39 39 39 39 39

6.	1 Sum	nary of Contributions
	6.1.1	Distance Function based Environment Representation and Chamfer
		Distance based Sensor Model
	6.1.2	Distance transform based Mobile Robot Localisation
	6.1.3	Distance Transform based Robotic Mapping
	6.1.4	Control for Assistive Robots
6.5	2 Discu	ssion of Limitations and Future Work

Appendices

118

\mathbf{A}	Syst	tem O	verview of the Assistive Robotic Smart Hoist	118
	A.1	Hardw	vare Structure	118
		A.1.1	Sensors	118
			A.1.1.1 Handles	118
			A.1.1.2 Cameras	119
			A.1.1.3 Boom Sensors	119
		A.1.2	Actuators	120
		A.1.3	The User Interface	120
		A.1.4	Hoist Computer	122
		A.1.5	Peripherals	122
			A.1.5.1 Hoist Controller	122
			A.1.5.2 Motor Controller	122
		A.1.6	Batteries and Uninterruptible Power Supply(UPS)	122
	A.2	System	Assembly and Enclosure Design	123
	A.3	Measu	res Taken for Occupational Health and Safety	124
		A.3.1	Foot-guards	124
		A.3.2	Maximum Run Speed	124
		A.3.3	Braking	125
		A.3.4	Emergency Stop (EStop)	125

Bibliography

List of Figures

1.1	The robots we used to collect real-time data.	4
$2.1 \\ 2.2$	Excerpt from the topological map of train transit network Sydney, Australia Different metrics for generating distance functions in 3D space.	$10\\15$
2.3	Shows (a) an example shape, (b) unsigned Euclidean distance variation and (d) the signed distance variation along the dotted line in (a).	15
$2.4 \\ 2.5$	Shows (a) a binary image and (b) its DF	16
2.6	function variation in grey levels	$16 \\ 20$
2.7	Pinhole camera model showing the projection of a 2D shape on the image	20
2.8	(a) shows an example template image, where (b) shows the template at an initial location on the distance function of the reference image. Chamfer distance value is 2.8	20 26
2.9	(a) is the colour map of variation of chamfer distance when the template is placed across every location on the grid, while (b) shows the template on the location with lowest chamfer distance.	27
2.10 2.11	A graffiti wall, with a camera observing a section of it	27
2.12	Figure 2.10b	28
2.13	labs dataset	29
	true robot pose	29
3.1	Trajectory of the robot in the Dataset 1	54
0.2	proposed EKF based algorithm for Dataset 1	55
J.J	proposed optimisation based algorithm for Dataset 1	56
3.4	Error for each component of robot pose against ground-truth using the proposed particle filter based algorithm for Dataset 1	57
3.5	Trajectory of the robot in the Dataset 1. Results obtained by using standard AMCL, with beam based likelihood model.	57

3.6	Error for each component of robot pose against ground-truth using standard AMCL, with beam based likelihood model for Dataset 1		58
3.7	Trajectory of the robot in the Dataset 2, with the EKF algorithm		59
3.8	Trajectory of the robot in the Dataset 2, with the optimisation algorithm.		60
3.9	Trajectory of the robot in the Dataset 2, with the particle filter algorithm		61
3.10	Trajectory of the robot in the Dataset 2, with standard AMCL, using beam		-
	based likelihood model		62
3.11	Trajectory of the robot in the Dataset 3		63
3.12	A sparse illustration of crowd movement during collection of Dataset 3 over		
	29.54 minutes		64
3.13	Shows the RMS errors of the proposed EKF based and optimisation based		
	algorithms when input sensor measurements are artificially corrupted		65
3.14	Per scan execution time for localisation algorithms.		65
3.15	Planar ceiling at the Centre for Autonomous Systems(CAS), University of		
	Technology, Sydney(UTS)		67
3.16	Shows the trajectory the robot takes with results obtained from ceiling		
	image based localisation algorithm.		67
4.1	Map of the Intel Research Laboratories	•	73
4.2	Flow chart for the CD mapping algorithm.	•	78
4.3	Two-dimensional grid space overlapped with the environment (left) and the		~ ~
	normal distribution based on scan points in the j^{th} cell (right)	•	80
4.4	The grid map is represented by multiple normal distributions (right) and		~~~
	new scans to be matched to the grid map (left)	•	80
4.5	Maps generated using the proposed CD mapping algorithm	•	84
4.6	Presents results of three algorithms from the simulation run on Intel research		0.0
	labs map	•	86
4.7	Errors for all poses for simulated Intel dataset	•	87
4.8	Ground floor at Roselands Shopping Centre	•	89
4.9	Long exposure time-lapse image showing movement of crowd during collec-		00
	tion of data	•	90
5.1	Standard Joev patient hoist from Havcomp Ptv. Ltd		95
5.2	UTS-IRT Smart Hoist.		96
5.3	A typical floor plan of a resident's room at the IRT Woonona care facility.	. 1	00
5.4	Mapping the direction of force α to the direction of motion	. 1	01
5.5	Block diagram of the Controller.	. 1	01
5.6	Comparison of the forces required to do (a) Push. (b) Pull and (c) In-place		
0.0	turn on the standard and Smart Hoists.	. 1	03
5.7	Muscle groups assisting basic manoeuvres with the hoist	. 1	105
5.8	Comparison of muscle action based on EMG signals during a push action.	. 1	.06
5.9	Comparison of muscle action based on EMG signals during a pull action.	. 1	.06
5.10	Comparison of muscle action based on EMG signals during an in place turn	-	
0.10	to the left.	. 1	107
5.11	User trials conducted at IRT Woonona, Australia.	. 1	07

5.12	Administering forces on the handles in the shown directions makes the hoist rotate around an instantaneous centre of rotation
A.1	Modified handle bars of the Smart Hoist
A.2	Strain gauge location on the boom for weight measurement
A.3	Revolution 2^{TM} omni-directional crab drive motors from 221 Robotic Sys-
	tems, and how they're retrofitted to the Smart Hoist
A.4	User Interface of the Smart Hoist, the main screen
A.5	Control pad/ joystick interface to control the Smart Hoist
A.6	Motor controller (left) and the Hoist PC (right) assembly
A.7	Batteries used in the Smart Hoist

Acronyms & Abbreviations

1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
AMCL	Adaptive Monte-Carlo localisation
AR	Assistive robotics
BMI	Body Mass Index
C-LOG	A Chamfer Distance Based Method for Localisation in Occupancy Grid-maps
CAS	Centre for Autonomous Systems
CD	Chamfer distance
CPU	Central Processing Unit
DARPA	Defense Advanced Research Projects Agency

- DF Distance function
- DT Distance transform
- EKF Extended Kalman filter
- EMG Electromyography
- EP End Point
- FEA Finite Element Analysis

GP	Gaussian process
GPS	Global Positioning System
GPU	Graphics Processing Unit
GUI	Graphical User Interface
ICL	Iterative Closest Line
ICP	Iterative Closest Point
ICS	Iterative Closest Surface
IF	Information Filter
IRT	Illawarra Retirement Trust
KL	Kullback-Leibler
LiDAR	Light detection and ranging
LRF	Laser range finder
MCL	Monte-Carlo Localisation
ML	Maximum Likelihood
MVC	Maximum Voluntary Contraction
NEES	Normalised estimation error squared
NDT	Normal distribution transform
ND	Normal distribution
OG	Occupancy Grid
OGM	Occupancy Grid Map
PF	Particle filter
RBPF	Rao-Blackwellized particle filter

RGB	Red, Green, and Blue
RGBD	Red, Green, Blue, and Depth
RMS	Root-mean-square
ROS	Robot Operating System
SDF	Signed Distance Function
SLAM	Simultaneous Localisation And Mapping
SLS	Selective Laser Sintering
SVD	Singular Value Decomposition
TREC	Terrestrial Robotics and Control Laboratory
TSDF	Truncated Signed Distance Function
UCD	User Centred Design
UI	User Interface
UPS	Uninterruptible Power Supply
UTS	University of Technology, Sydney
VSDF	Volumetric Signed Distance Function
WSN	Wireless sensor networks

Nomenclature

	General Notations
t	Time (continuous)
k	Time (discrete step)
	Denotes any variable
α	Direction of linear force.
C	Coefficient of damping, linear motion.
C_{ω}	Coefficient of damping, angular motion.
$C(\cdot, \ \cdot)$	A cost function.
DF	A distance function matrix obtained by transforming a binary image
	or an OGM
d_{DF}	Abbreviation for $DF(\mathbf{x}_o)$
d_{CD}	Abbreviation for $d_{CD}(\mathbf{z} \mid \mathbf{x}, DF)$
δ_{ij}	Spatial relation between the pose at i^{th} and j^{th} locations.
ϵ_k	NEES metric.
$\bar{\epsilon}_k$	Average-NEES metric.
$arepsilon(\cdot)$	Error between pose relations (SLAM benchmarking metric).
$ar{arepsilon}(\cdot)$	Mean error between pose relations (SLAM benchmarking metric).
η	Normalisation constant.
η_r	Noise of a range measurement.
F	Linear force.
$F(\cdot)$	Control function.
f_{ex}	Feature extraction function.

γ	Threshold for association of NDs.
$h(\cdot, \ \cdot)$	Observation function.
Ι	Moment of inertia
J_{\Box}	Jacobian matrix with respect to \Box .
K	Kalman gain
m	Mass.
m	Map of the environment.
∇F_{\Box}	Jacobian of the control function with respect to \Box .
$ abla h_{\Box}$	Jacobian of the observation function with respect to \Box .
$\mathcal{O}(\cdot)$	Big O notation.
ω	Angular velocity.
$P_{\Box \mid \Box}$	Covariance matrix of the state vector.
${B} \\ {A} \mathbf{p}$	Relative transform between two coordinate frames.
ϕ	Orientation of the robot.
Q_k	Covariance matrix of control noise at time k .
r_i	The i^{th} range reading.
S	The space of all possible sensor readings.
Σ_{\Box}	Covariance matrix.
σ_r	Standard deviation of range noise.
s	$\mathbf{s} \in S,$ a single observation at a certain state of the robot, \mathbf{x}
au	Torque.
$ heta_i$	The bearing of the i^{th} sensor reading.
u_k	Control command at time k .
v	Linear velocity.
x	Robot Pose vector in 2D space. Consists of the position components
	x, y and the orientation component ϕ .
\mathbf{x}_o	Observation coordinates. In the case of a laser range finder sensor,
	consists of n readings of range r_i and bearing θ_i . Can be translated
	into global Cartesian coordinates x_{o_i} and y_{o_i} using (2.8).
Ζ	Space of all possible observations.
Z	Observation vector, $\mathbf{z} \in Z$.

	Coordinate Frames & Transforms	
$\{C\}$	Camera coordinate frame.	
$\{G\}$	Global coordinate frame.	
$\{I\}$	Image coordinate frame.	
$\{R\}$	Robot coordinate frame.	
${A} {\{A\}} {\{B\}} R$	Rotation matrix between the coordinate system A to coordinate system B .	
${A} {A} {B} T$	Homogeneous transform matrix from the coordinate system A to coordinate system B .	
${A} \\ {B} t$	Translation matrix between the coordinate system A to coordinate system B .	
	Distributions	
${\cal F}$	Folded normal distribution.	
\mathcal{N}	Normal distribution.	
U	Uniform distribution.	
	Operations	
□	The first derivative of \Box .	
\oplus	The standard motion composition operator.	
\ominus	Inverse of the standard motion composition operator.	
$CD(\cdot, \ \cdot)$	Chamfer distance between a template and a reference.	
$DF(\mathbf{x}_o)$	Value of the distance function at the observation coordinate \mathbf{x}_o .	
$R(\theta)$	2D rotation matrix for an orientation change of θ .	
$\prod(\cdot)$	Product.	
$\sum(\cdot)$	Summation.	

State Transitions

$\square_{k-1 k-1}$	Previous state.
$\square_{k k-1}$	Predicted current state.
$\square_{k k}$	Updated current state.