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Abstract

In this thesis, we address the problem of navigation and control for assistive robots.

Autonomously creating a suitable representation of the environment (a map) and having

the ability to localise a robot in that environment are considered to be the cornerstones

of autonomous robot navigation. We present a distance function based framework to

represent the occupancy of two-dimensional environments and a chamfer distance based

sensor model to relate measurements captured from a sensor mounted on the robot to

the environment representation. Employing the proposed representation and the sensor

model, we propose two novel strategies to localise the robot on the map using an extended

Kalman filter and an optimisation based method. These methods are computationally

more efficient and are free of environment dependent tuning, which are necessities for

assistive robots to operate in different environments ranging from small households to

large shopping centres. We also demonstrate an adaptation of the popular particle filter

based localisation algorithm using the distance function representation.

A mapping algorithm that utilises the proposed distance function based framework, which

can be used to create maps of considerably large scale crowded indoor environments with

low error accumulation is also presented. Although we do not consider the effect of sensor

uncertainties, we demonstrate that the algorithm can efficiently build high-quality maps

that can be used in practical scenarios of importance associated with assistive robots.



Abstract iii

We present experiments conducted using simulations, public domain datasets, and exper-

imental datasets we collected in real environments to evaluate and compare these algo-

rithms.

The control strategy used in an assistive robot needs to be specifically designed to suit the

task that the robot is expected to perform. Using standard user centred design methods

often result in complicated, unintuitive control interfaces for assistive robots, which are

difficult to be integrated into the daily activities of the end users.

We demonstrate that design approaches based on the principles of cooperative design can

be used to alleviate the complexities in the design process. We propose and develop a

control system based on admittance control for a robotic hoist, and evaluate it using user

studies to experimentally illustrate that this design framework could be used for developing

controllers for assistive robots in general.

The analysis of electromyographic measurements and forces exerted by the end users while

using the robotic hoist confirm that the robot has the potential to reduce musculoskeletal

injuries amongst care workers in the aged and disabled care sector, by providing assistance

during the patient transfer process. As a result of the cooperative design process, the

control interface became simple, intuitive, and easy to use, which made the robot readily

incorporable to the work-flow of care facility.
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(·) Product.∑
(·) Summation.
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Chapter 1

Introduction

1.1 Motivation and Background

Assistive robotics is an emerging field with the vision of developing fully autonomous

robots that are able to work collaboratively with a range of human users; as assistants,

as tools, and as companions. These machines need to perceive and understand human

behaviour and needs, communicate with users in a human-centred manner, and respond

safely and efficiently to directions. Aged and disabled care sector is where such robots are

expected to make an important impact.

Global ageing, the rapid increase in the global population over the age of 65, in developed

and developing countries is one of the greatest social and economic challenges for our

society [1, 2]. In 2010, an estimated 524 million people (eight percent of the world’s

population) were aged 65 or older. By 2050, this number is expected to nearly triple to 1.5

billion, which represents 16% of the world’s population. In Australia, where this research

was conducted, five years since June 2009, the number of people aged 65 years and over

has increased by 20% to reach 3.5 million people in June 2014. This accounts for 15% of

the total Australian population [3].

As people age, their capability in performing daily living activities can lessen due to cog-

nitive and physical impairments. Demographic trends in Australia indicate a continued

1



Chapter 1. Introduction 2

decline in the relative availability of informal carers, coinciding with an increased de-

mand for aged care services [4, 5]. Increases in the public costs of care [1, 2] for seniors

is inevitable, given their greater longevity, the reduced number of informal carers, and

increased community expectations.

The advances in robotics has given rise to increasing opportunities to implement assistive

robotic devices to assist senior citizens in their daily living activities and carers in safely

performing their duties without being overly exhausted [6]. These technologies are becom-

ing crucial given the ageing population and the decrease in the number of working-age

caregivers [7]. In general assistive robotic devises are studied in different categories such

as wheelchairs and walkers [8, 9], devices for formal carers such as the humanoid patient

transfer helper [10], and devices for families of the elderly people such as tele-presence and

health monitoring robots [11].

Assistive robots that are designed for aged and disabled care sector are untethered and

equipped with lightweight computers to minimise battery requirements and low-cost sen-

sors to make them affordable. They navigate in a wide variety of environments, for exam-

ple in private residences, hospitals, offices, and shopping malls, and sometimes even work

in multiple environments on the same day. Furthermore, these environments are usually

crowded. Therefore, the algorithms used for navigation of assistive robots should be robust

and should not have environment dependent tuning parameters. With these constraints in

computational resources and environment conditions in mind, the first part of this thesis

addresses the problem of developing strategies for navigation for assistive robots.

Maintaining an internal representation of the environment, localising on that environment

representation using the available sensors, and creating, updating, or expanding the avail-

able environment maps are considered the primary requirements for autonomous robot

navigation. Methods that are commonly used for localisation or mapping has evolved over

the years but were initially seeded in an era where the sensors mounted on robots that

perceive the environment were highly limited in terms of resolution and field of view and

produced highly uncertain readings, with low accuracy.

Particle filters, which are the go-to mechanism for localising a robot in environments repre-

sented using an Occupancy Grid Map (OGM), can estimate the pose of the robot without



Chapter 1. Introduction 3

resorting to extraction and association of features from the map and the environment.

However, these filters sometimes need thousands of particles, each representing a robot

pose hypothesis, which requires more computing power. Furthermore, existing algorithms

usually contain environment dependant tuning parameters that need to be adjusted ac-

cording to the map and the type of environment. Moreover, having dynamic objects such

as people walking about can cause these algorithms to fail. As Assistive robots work

closely with people in crowded environments, the localisation algorithm is expected to be

robust to dynamic objects and have less to no tuning parameters.

With the aim of solving the navigation problem for assistive robots, we present a suite of

algorithms that leverage the strengths of distance function representations, which can solve

the three key requirements of, (i) efficiently representing the environment, (ii) localising the

robot on that environment representation, and (iii) autonomously creating or updating the

map efficiently and accurately, within a sound mathematical framework. The algorithms

we present are robust to dynamic objects and can work out of the box without requiring

any environment specific tuning parameters.

We use simulations, datasets from the public domain, and experimental datasets collected

by us under real conditions using the robots shown in Figure 1.1 throughout this thesis

in order to evaluate and verify the localisation and mapping algorithms we present. Even

though we focused on developing computationally efficient algorithms as solutions to the

problems encountered in assistive robots, these algorithms are generic and can be used

with any autonomous robot as well.

While localisation and mapping are key requirements for helping assistive robots navigate

autonomously, they must also be capable of interacting with human operators intuitively.

Because the assistive robots may interact with people who are less technically savvy or

differently capable, the control mechanism for such robots should be simple and easily

adaptable. Furthermore, as the assistive robots replace a variety of other existing assistive

devices, the mechanism of controlling is unique to the particular class of robots, and is

difficult to generalise.

In the second part of this thesis, we present important steps to develop operator control

methodologies for assistive robots. We demonstrate how the design process can be made
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Figure 1.1: The robots we used to collect real-time data for experiments presented in
this thesis. In sequential order: Turtlebot - modified, Walker revision 1, Walker revision

2, Motorised Walker, Smart Hoist

simple, productive, and realistic by using a Co-Design concept which includes the end user

an integral member of the design team.

We use this approach to experimentally design and develop the Smart Hoist assistive robot

to aid carers of a retirement facility to more easily transfer non-ambulatory residents. We

show how our design of the robotic hoist and its control method was continually shaped

by the end user feedback which made it intuitive and easy to use and can be readily

integrated to the work-flow of a care facility. The findings from a series of user studies

conducted to evaluate the control strategy and user interaction for the Smart Hoist is

also reported. All of these experiments were conducted at an aged care facility with the

assistance of professional carers. While demonstrating the usefulness of the hoist, this
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example suggests the Co-Design framework as a solution to some ideologies surrounding

the design of control interfaces for assistive robotics in general.

1.2 Thesis Outline

This thesis is organised as follows:

The second chapter presents a novel method for representing the environment that a

robot operates in, together with a sensor model that can relate measurements from a

sensor mounted on the robot to that environment representation. This representation

is lightweight, and can be generated directly by observing the environment or converted

using any existing occupancy grid map. The sensor model does not require defining explicit

correspondence pairing of sensor readings and therefore is attractive for many applications.

In Chapter 3, we use the environment representation method and the sensor model pre-

sented in Chapter 2 to localise a robot using three different approaches, namely, an ex-

tended Kalman filter (EKF), an optimisation based technique, and a particle filter. While

the particle filter approach is a mere enhancement to the sensor model in the popular

adaptive Monte-Carlo localisation (AMCL) algorithm, the other two algorithms are novel,

computationally efficient, and more accurate and have far less tuning parameters. The

algorithms are proven to be effective by using multiple simulated and real time datasets

both available in the public domain and collected by us in real environments.

Chapter 4 presents a method to generate high quality maps with the use of a scan-to-map

matching approach, using the distance function based environment representation and

the chamfer distance based sensor model we propose in Chapter 2. Although, the maps

produced by the algorithm may not be statistically consistent as provided by Simultaneous

Localisation And Mapping (SLAM) algorithms widely used in the community, it is able

to generate accurate maps of considerably large crowded environments in real-time. As

with the localisation algorithm, this mapping strategy only uses one tuning parameter and

performs well even in clutter as demonstrated using simulated, public domain, and data

collected in crowded environments.
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Though maintaining a representation of the environment, localising and mapping are im-

portant necessities for any autonomous robot, understanding the user intention is a major

requirement for assistive robots. Assistive robots replace a variety of other existing assis-

tive devices. For each class of robots, the mechanism of human user interaction is unique

and generalising the control strategy is therefore difficult. Using a case study as an ex-

ample, Chapter 5 presents a framework based on Co-Design principles which can be used

to design control strategies and user interfaces for assistive robots. We use the proposed

framework to experimentally design and develop an assistive robotic hoist to aid carers

in the aged and disabled care sector. User experience during trials, surveys, analysis of

exerted force and Electromyography data involving carers at an aged care facility are used

to evaluate the viability of the robotic hoist, which intern experimentally demonstrates the

usefulness of the proposed design framework for designing control strategies for assistive

robots.

Finally, we will present a summary of conclusions which would include a discussion of

limitations of the work presented in this thesis, together with future work in Chapter 6.

1.3 Contributions

• A sensor model with theoretically sound uncertainty calculation for distance function

based maps.

• An extended Kalman-filter based localisation algorithm for a mobile robot on a 2D

occupancy grid map without the use of point or line feature extraction.

• An optimisation based computationally efficient algorithm for localisation of a mobile

robot on a 2D occupancy grid map that does not require environment based tuning.

• A theoretically sound likelihood model using the distance function based environ-

ment representation to make laser range finder version of Adaptive Monte-Carlo

localisation algorithm fast more theoretically sound.

• An efficient scan-to-map matching based mapping algorithm with very low error

accumulation, that can be used in practical scenarios of importance to assistve robot

navigation.
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• A framework for designing and developing control strategies and user interfaces for

assistive robots.
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Chapter 2

Environment Representation for

Robotics

2.1 Introduction

For autonomous robot navigation, a map of the environment together with a sensor model

is an essential requirement. The sensor model correlates the observations from a sensor

to the map which enables estimation of the location of the robot in the environment.

Knowing the pose of the robot in-turn facilitates other functionalities that are required

for the autonomous behaviour of the robot such as path-planning and exploration. The

method used for representing the map is crucially dependent on the capabilities of the

available sensors that observe the environment, as well as the tasks that the robot needs

to accomplish. In this chapter, a distance function based method for describing the map

of an environment and a strategy for building sensor models that relates the observations

from sensors to that map is presented.

A map is essentially a spatial model that represents the physical environment in which a

robot operates. Using sensors, the robot acquires information to learn the geometry of an

environment. The environment map allows the robots to safely navigate in the environ-

ment, identifying objects and people in the environment while intelligently interacting with

them. As mentioned earlier, the method used to represent the map depends on various

8
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factors. Most importantly it needs to be tailored for the task which the map is required

for. For example, for navigating in an uneven terrain, a three-dimensional (3D) description

of the terrain in the vicinity of the robot is required, while for localising a robot in a two-

dimensional (2D) environment, a representation that can easily relate measurements from

a sensor to the associated map is adequate. The robot either needs to be provided with

the map or needs to generate an appropriate map in order to facilitate navigation. The

problem of autonomously generating the map of an environment is regarded as another

important problem in the pursuit of building truly autonomous mobile robots.

Historically, there have been two major paradigms in building a map to represent the

environment: topological and metric. A topological map represents the places and rela-

tionships with connectivity between those places. In topological maps, places (0D), paths

(1D) and regions (2D) are symbolically described and are linked by relations such as con-

nectivity, order and containment. Sometimes metric relationships such as distance and

direction are also associated with topological maps. However, typically, there is no single

global frame of reference present in topological maps. Furthermore, these can have dif-

ferent levels of abstraction depending on the usage and the critical information that the

map needs to convey. Early work by Kuipers & Byun [12] and Mataric [13] are the most

significant in topological mapping, followed by many more work such as [14–22]. Topo-

logical maps encode the type of information humans typically use for navigation. Figure

2.1 shows an excerpt from an abstracted topological map of the Sydney-Trains transit

network in Sydney, Australia. These maps are more commonly used in applications such

as way-finding [23] and navigation [24]. Although topological maps are useful in many

situations, robot navigation in environments populated with obstacles and people requires

a much more detailed representation that encodes the environment geometry.

Metric maps, captures the geometric properties of the environment. When a sensor that

is able to capture properties of specific geometric primitives present in the environment

such as points or lines is available, it is more appropriate to represent the map of the

environment using the locations of these geometric elements. These are known as feature

based maps where a feature is defined to be a geometric entity that can be recognised

using sensor observations from different locations within the environment. Leonard et

al. [26] presented an extended Kalman filter based algorithm for localising a robot in a
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Figure 2.1: Excerpt from an abstracted topological map of the transit network in Syd-
ney, Australia [25]

map consisting of point features. While feature based maps are suitable for localisation,

when it comes to applications such as path planning, a more comprehensive representation

of the environment indicating the free space available for travel is necessary.

The Occupancy Grid Map (OGM) algorithm is one of the earliest and commonly used

metric map approaches. Initially proposed by Elfes [27, 28] and Moravec [29], OGMs

represent the environment as a discrete state random field with evenly spaced cells (i.e.

regular grid of cells). Depending on the probability of occupancy of each cell in the map,

the value of each cell encodes its state into one of the three states: occupied, free, or

unknown. These maps can be constructed and maintained via a Bayesian framework

using information gathered from sensors mounted on a robot. Representations that divide

the environment into cells of different sizes based on the extent of occupancy such as

quad-tree [30] maps or oct-tree [31] maps can represent environments in a more efficient

manner. Use of sets of polyhedra to describe the geometry of environments as proposed

by Chatila & Laumond [32], is another efficient alternative to OGMs.

Many existing algorithms that are used for path planning, obstacle avoidance and explo-

ration require maps to be represented as an OGM. Therefore, popular robotics frameworks

such as Robot Operating System (ROS) [33] have made OGMs the de facto standard for
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environment representation. For this reason, implementations of algorithms that do not

use OGMs internally, e.g. [34–36], empoly additional strategies to maintain an OGM.

Alternatively, distance function based map representations, where the function value at

any location represents the distance to the closest occupied space in an environment,

are increasingly becoming utilised to capture geometries of environments [37–41]. The

distance function not only encodes the occupied regions of the environment, but also

provides a continuous measure of the distance, making it a much richer representation in

comparison to an OGM. In KinectFusion, Newcombe et al. [38] extends the representation

method proposed by Curless & Levoy [37] that uses Signed Distance Functions (SDFs)

to encapsulate the 3D surfaces that are incrementally constructed with the use of range

readings from a depth sensor. In contrast to 3D OGMs, which do not have a clear notion

of where the surfaces of an environment are or how surfaces can be extracted, the work

by Carrillo et al. [40] makes it apparent that there is a clear mathematical strategy for

extracting surfaces in environments that are represented by SDFs. Work by Mullen et

al. [42] and Chazal et al. [43] uses unsigned distance functions for 3D surface reconstruction

and they point out that unsigned distance functions are much more robust to noise and

outliers than SDFs.

With a sensor that can acquire the distance to obstacles in its vicinity, it is easy for a robot

to build the environmental maps using distance functions. In [44], Thrun, Burgard, & Fox

have incorporated distance functions in the likelihood field model that they have proposed

for robot localisation using a particle filter. However, this approach is rather empirical

and does not capture the true characteristics of the distance function. One of the main

contributions of this thesis is a systematic strategy for representing the environment using

unsigned distance functions and subsequently using them for localisation and mapping.

It is also possible to use Gaussian process classifiers to learn continuous occupancy repre-

sentation of the environment. The surface generated by the Gaussian process is a single

continuous probabilistic spatio-temporal model of the environment which has the capa-

bility to overcome some of the limitations with conventional OGMs. Gaussian process

based maps have been used in several areas of robotics such as dynamic environment

mapping [45] path planning [46, 47], exploration [48], and is the preferred method for



Chapter 2. Environment Representation for Robotics 12

Wi-Fi based mapping and localisation. O’Callaghan et al. [49, 50] adopts a Gaussian pro-

cess based framework to construct continuous occupancy maps and shows that the maps

are more accurate compared to conventional OGMs because of their ability to estimate

properties in close-by areas that the sensor has not observed. Moreover, recent work by

Kim & Kim [41] uses SDF in a Gaussian process framework they call GPmaps to con-

struct surface meshes that are much more smooth and artefact free due to the surface

reconstruction qualities built-in to Gaussian processes. Though this representation has

multiple advantages and looks highly promising, the cubic computational complexity of

Gaussian processes highly limits their real-time applications and ability to be used in small

scale systems.

When such a diverse range of map types are available, selection of the appropriate rep-

resentation predominantly depends on the application. A robot autonomously operating

in an environment needs to use maps for a wide range of applications, including but not

limited to, localisation, navigation tasks such as path planning, obstacle avoidance, defin-

ing goals, and exploration tasks. Furthermore, not all map types can be used in practical

applications in real-time due to factors such as computational resource limitations.

In some scenarios, even though one type of map representation is good for localisation,

a complex conversion process may be required for that map prior to using it with other

applications such as path planning or obstacle avoidance. This may impede the use of such

representation. Moreover, representation method may sometimes depend on the environ-

ment. For example, a method which depends on prominent features in the environment is

bound to fail in a featureless environment. Therefore, the representation method should

be chosen by considering the dominant factors such as the environment, the computation

platform, and the application.

In this chapter, we propose the use of distance functions as the primary means to represent

the environment. Compared to an OGM, distance function based representations encode

more information about the environment in a simple data structure that can be easily

inferred by a range of other algorithms. With range measurement sensors, distance func-

tions seem to be a more natural way to represent the environment. We further propose

a distance function based sensor model which will be the basis for the next two chapters
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where we explore the problem of robot localisation and map building in a computationally

efficient manner that is suitable for small robots such as assistive robots that have limited

computational power.

This chapter is organised as follows: Section 2.2 introduces distance functions, types and

variations of distance functions and its properties in detail, with methods of computation

and transition from existing OGM based representations. We will formally introduce

sensing and sensor models in Section 2.3, and will continue to present a sensor model

that formulates sensor observation likelihoods and the associated uncertainties that can

be used with distance function maps and 2D range sensors in Section 2.4, which is an

original contribution of this thesis. Section 2.5 will conclude the chapter.

2.2 Distance Functions

For any given environment populated with objects, a distance transform or distance field

is a representation (i.e. a map) of the environment where any point of the distance field

holds the shortest distance to the closest boundary. Although naturally the Euclidean

distance is used to measure this distance, other simple distance metrics such as City-

block distance, chessboard distance, quasi-Euclidean distance or complex metrics such as

Wasserstein metric that is used for 3D image reconstruction [43], are used as alternatives

depending on the application and computational efficiency. Table 2.1 shows the definition

of some simple distance metrics and Figure 2.2 illustrates equi-distant surfaces for each of

those metrics.

When V is the set of occupied space in an environment, Euclidean distance function can

be expressed by Equation (2.1) at any given point x in space.

dDF = DF (x) = min
vj∈V

‖x− vj‖ (2.1)

The most commonly used distance metric, the Euclidean distance measures the shortest

distance as a scalar value. In this case distances are positive values and therefore the

distance function is unsigned. However, the distance function values can be either positive
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Table 2.1: Different metrics for distance functions in 2D space. These can be directly
extended to 3D

Metric Description

Euclidean In 2D, the Euclidean distance between (x1, y1) and (x2, y2)
is
√
(x1 − x2)2 + (y1 − y2)2

City-block In 2D, the city-block distance between (x1, y1) and (x2, y2)
is |x1 − x2|+ |y1 − y2|

Chessboard In 2D, the chessboard distance between (x1, y1) and (x2, y2)
is max(|x1 − x2| , |y1 − y2|).

Quasi-Euclidean In 2D, the quasi-Euclidean distance between (x1, y1) and
(x2, y2) is |x1 − x2| + (

√
2 − 1) |y1 − y2| if |x1 − x2| >

|y1 − y2| , (
√
2− 1) |x1 − x2|+ |y1 − y2| , otherwise

or negative when representing environments with closed shaped objects. In this variant,

typically, the distance to a point inside the shape from the boundary is negative. This

distance value increases as the query point approaches the boundary of the closed shape

from inside. Then it takes positive values outside of the shape. Popular algorithms such

as KinectFusion [38] and GPmaps [41] use SDF when representing 3D environments and

objects. However, Mullen et al. [42] and Chazal et al. [43] demonstrate that unsigned

distance functions are more robust to outliers and noise.

Figure 2.3a represents a simple 2D closed shape. Figures 2.3b and 2.3c represent the

variation of unsigned and signed distance along the dotted line marked in 2.3a. Even

though distance functions are continuous by definition, as seen in the figure, the derivatives

of both signed and unsigned distance functions are discontinuous at the cut-loci [? ]; Cut-

locus is the boundary at which the object corresponding to the minimum distance changes

from one to another. In addition to that, in any distance function, the derivatives are also

discontinuous at the surface of the object.

As the distance functions are continuous, computing the distance value at any point ideally

should be done on demand. However, it is possible to pre-compute distance function values

at discrete intervals in space by quantising the environment to pixels (2D environment)

or voxels (3D environment). This is usually implied when using distance function to

represent environments already represented using discrete maps such as binary images or

binary OGMs.
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Figure 2.2: Different metrics for generating distance functions in 3D space. The figure
shows equi-distance surfaces in distance function of a point feature in space. [51]
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Figure 2.3: Shows (a) an example shape, (b) unsigned Euclidean distance variation and
(d) the signed distance variation along the dotted line in (a).
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Figure 2.4: Shows (a) a binary image and (b) its DF.

(a) (b)

Figure 2.5: Shows (a) a section from the binary OGM of the Intel research lab (b) its
distance function variation in grey levels.

The operator used to generate discrete distance functions is commonly known as a distance

transform. When näıvely implemented, the distance transform process is an exhaustive

search which depends on many factors including the resolution of quantisation. How-

ever, the algorithm proposed by Rosenfeld & Pfaltz [52] computes the distance transform

efficiently by only two passes over any given 2D environment. Furthermore, there are

numerous algorithms which are written for both CPU and GPU based systems that can

do distance transforms in real-time [53–56]. Figure 2.4 represents a binary image and its

distance function, the grey level of the image represents the distance value. Figure 2.5

shows a section from the binary OGM from the Intel research lab dataset [57], and its

distance function.
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2.3 Sensing and Sensor Models

A sensor is the device through which the robot “sees” the world. It measures a physical

quantity and converts the measurement into a tractable signal for the robot to use. The

sensors enable the robot to be aware of its environment and to perform tasks reliably

and accurately. The information (measurements of physical quantities) gathered by the

sensors is known as sensor measurements or observations. Sensors that are commonly used

in robots include: (i) contact sensors such as bumpers and wheel encoders, (ii) inertial

sensors such as accelerometers, gyroscopes and magnetometers (compasses), (iii) proximity

sensors such as infra-red sensors, sonar sensors, radar, and laser range finder (LRF), (iv)

visual sensors such as cameras and depth cameras, and (v) absolute sensors such as Global

Positioning System (GPS) and visual tracking systems.

The selection of a sensor predominantly depends on the accuracy required by the task,

suitability of a sensor for the operating environment of the robot and affordability. For

example, even though GPS is suitable for outdoor navigation, it cannot be used in indoor

environments where the satellite reception is poor. Even though sensors such as laser

range finders or 3D Light detection and ranging (LiDAR) sensors have high accuracy and

can be deployed in a wide range of environments, the high cost of these sensors limits

their applications. However, it is worthwhile to note that, with the recent growth of

robotics applications in the community, laser range finders with acceptable accuracy are

now available at affordable prices. In practice, it is quite common to use multiple sensors

on a robot as they can be used in a manner to complement each other to improve the

overall accuracy.

The observations captured by a sensor are associated with a sensor model, which is an

abstract representation of a physical sensor together with how the observations captured

by a sensor are processed, interpreted and associated with the internal representation of

the environment maintained by the robot.

A commonly used probabilistic sensor model in robotics can be described as follows: When

S is the space of all possible sensor readings, s ; s ∈ S denotes a single observation from
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a certain state of the robot x, together they can be used to formulate the conditional

density,

P (s | x) (2.2)

which can be a formal probabilistic representation of the sensor model1.

With some sensors, for example cameras, P (s | x) would be a high-dimensional density

capable of determining the probability of every possible pixel of the camera image, which

can make it difficult to compute meaningful estimates even if a full-blown representation

of the environment is available.

However, it is possible to overcome this problem by reducing the dimensionality of the

sensor observations by the use of appropriate filters, fex, to extract just a vector of readings

z. Then fex : S −→ Z [58]. The conditional distribution given in Equation (2.2) can

therefore be reduced to P (z | x), where z ∈ Z. Furthermore, the state of the robot is

usually referred to the robot’s pose x on a given map m. Then this model can be further

modified to,

P (z | x, m) (2.3)

The distribution in Equation (2.3) can be interpreted in two ways. First, if the state or

the pose of the robot is known to be fixed at the value x = x, then the probability density

function of the observation z can be expressed as P (z | x, m). Conversely, by making

actual observations from a sensor, z can be fixed at z = z, after which the state of the

robot x could be inferred with the distribution P (z | x,m). This distribution is commonly

known as a Likelihood Function [59].

When the environment is represented using geometric primitives, at an estimated pose

x = x , the distribution in the first variant of the sensor model P (z | x, m), can be used

to predict the readings from the sensor as it observes the environment. Provided the

1If the measurement is time variant, the observation s and the state x is subscripted with time-step, k.
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measurement noise is distributed as zero-mean Gaussian with a variance of R, the density

can be shown as,

P (z | x, m) ∼ N (z, R) (2.4)

This also forms a measurement model h(·) in Equation (2.5) which is suitable for Kalman

filter based or optimisation based frameworks which will be discussed in Section 3.3 in

detail.

h(m, x ) = z + w ; where measurement noise, w ∼ N (0, R) (2.5)

When the environment is represented as an OGM, features can be extracted from the map,

after which it can be considered as a feature based map, and therefore use a measurement

model as above [26]. However, a likelihood function based sensor model can exploit in-

formation from OGMs without resorting to feature extraction. The “beam range finder

model” is a sensor model that is traditionally used with OGMs and range sensors. Ray-

casting, which simulates a range reading on a given OGM at a given pose in the direction

of a given bearing until an obstacle is reached can be used to obtain the “true” measure-

ment which can be denoted as z ∗ [44]. With the sensor observation at the estimated pose

x = x available, z = z , then the likelihood model is,

P (z | x , m) ∼ N (z; z∗, R) (2.6)

This distribution can be used in a probabilistic framework such as particle filters (See

Section 3.5 for details) to evaluate the fitness of the robot pose hypothesis x .

2.3.1 A Sensor Model for Distance Function Representations

When the environment is represented using a distance function, the sensor model in Equa-

tion (2.3) can be rewritten as,

P (z | x, DF ) (2.7)
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Figure 2.6: Projection of the laser scan from an estimated robot pose, (a) on the binary
occupancy grid map and (b) on the distance function.

The “likelihood range finder model” or the End Point (EP) model proposed by Thrun et

al. [44] is a sensor model that uses a distance function based environment representation

with a laser range finder sensor. However, this is merely an empirical approximation of

beam range finder model which even approximate the uncertainties to the sensor uncertain-

ties by using an empirical mixture model introduced to cope with the high computational

expense associated with the ray-casting process.

2.3.2 Projection of a Laser Scan on a Distance Function

The observation vector zi ∈ Z; zi = (ri, θi), of a single laser scan obtained by a robot

equipped with a laser range finder, consisting of n range readings ri at given bearings θi

can be projected from the robot pose initial guess x = (x, y, φ)�, using Equation (2.8)

as shown in Figure 2.6a to obtain the observation vector in Cartesian space xo.

xoi =

⎧⎨
⎩xoi

yoi

⎫⎬
⎭ =

⎧⎨
⎩x+ ri cos(θi + φ)

y + ri sin(θi + φ)

⎫⎬
⎭ (2.8)

By projecting the entire laser scan on the distance function, a vector of distance values

can be extracted from the distance function at points xoi .
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dDF = DF (Z | x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DF (xoi)

.

.

DF (xoi)

.

DF (xon)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

Furthermore, the co-variance of this vector, ΣDF is a diagonal matrix which can be written

as,

ΣDF = diag(σ2
DF,xo1

, ..., ..., σ2
DF,xoi

, ..., σ2
DF,xon

) (2.10)

where σ2
DF,xoi

can be derived using Equation (2.11).

σ2
DF,xoi

= JDF,xoi
R J�

DF,xoi
(2.11)

where JDF,xoi
is the Jacobian of the distance function at the query points xoi and the

sensor noise co-variance matrix R.

Moreover, JDF,xoi
= ∂dDF

∂r , provided that the only contributing factor to sensor noise R is

the laser range noise σ2
r .

JDF,xoi
=

∂dDF

∂r
=

∂dDF

∂xo

∣∣∣
xoi

· ∂xo
∂r

+
∂dDF

∂yo

∣∣∣
xoi

· ∂yo
∂r

(2.12)

Therefore, we can express the distance function based sensor model for laser range finder

sensors as,

P (z | x, DF ) ∼ F(dDF , σ2
DF ) (2.13)

When the distance function is unsigned, F is a special Gaussian distribution which is

known as a folded normal distribution [60, 61], and F is a normal distribution for signed
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distance functions. The values, ∂dDF
∂xo

and ∂dDF
∂yo

, can be precomputed by using the distance

function of the map to increase efficiency.

The vector z in Equation (2.13) is a measure of disparity between a map and a sensor

measurement. A scalar measure of disparity has clear computational advantages in the

process of computing the measurement likelihood. In the context of image, computer

vision literature is abundant with scalar measures of disparity between distance functions

and binary images.

Chamfer distance is one of many such distance metrics available that does not require

defining explicit corresponding point pairings. Hausdorff distance [62, 63], another popular

method that is used in many applications, captures one point which has the worst mismatch

from a set of points as opposed to chamfer distance which captures average mismatch of

all given points. First introduced by Burrow et al. [64] in 1977, chamfer distance based

template matching has gone through many implementations, improvements and value

additions over the years which includes making it robust in rotation (i.e. minor orientation

changes) [65], scale changes [66], resolution changes, and even robust in high clutter [67].

In the next section, we will formally introduce chamfer distance, and use it to formulate

a sensor model that summarises Equation (2.13) into a single measure of disparity.

2.4 Chamfer Distance

In computer vision literature chamfer distance is defined and used for template matching

with binary images, where a semblance of the binary query shape is located within a

larger reference image. Let U = {ui} and V = {vj} be sets of query and reference images

respectively. The chamfer distance between U and V is given by the average of distances

between each point ui ∈ U, n(U) = n and its nearest edge in V ,

dCD = CD(U, V ) =
1

n

∑
ui∈U

min
vj∈V

|ui − vj| (2.14)

Here n is the number of points in U .
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With the use of a distance function, it is possible to reduce the cost function (2.14) to

(2.15) so that it can be evaluated in linear time, O(n) [67].

dCD = CD(U, V ) =
1

n

∑
ui∈U

DF (ui) (2.15)

The chamfer distance is a sum of positive distances and is defined for unsigned distance

functions.

In the case of 2D template matching using chamfer distance, the reference image and

the template are both binary edge images which can be obtained using an edge filter

on the original images. Furthermore, the highest computational complexity lies on the

distance transform process to create the distance function from the reference edge image

which should be done for every image frame. However, as discussed before, recent high-

speed implementations of distance transform enable faster execution and has even made

it possible to use chamfer distance for people recognition and tracking on surveillance

footage in real-time [56]. It should be noted that when distance function represents a

static environment map, its calculation is a one off process.

2.4.1 Chamfer Distance based Sensor Model for Distance Function based

Environment Representations

With the above preliminaries, it becomes apparent that chamfer distance serves as a

function that can map a high-dimensional sensor observation S from a camera to a low-

dimensional observation dCD, CD : S −→ dCD. With this we can derive the sensor model

specified in Equation (2.16). The probability density for chamfer distance, as with the

unsigned distance function, follows a special Gaussian distribution known as the folded

normal distribution (F).

P (s | x, DF ) ∼ F(dCD, ΣCD) (2.16)
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The co-variance of chamfer distance, ΣCD can be obtained by transforming the sensor noise

R as,

ΣCD = JCDR J�
CD (2.17)

The Jacobian, JCD = 1
n

∑ ∂dCD
∂s

∣∣∣
xs

, can be calculated by linearising the distance function

at the appropriate points.

It is also interesting to note that data association, which is a crucial step in the process

of obtaining the measurement likelihood, does not need to be explicitly considered in case

of chamfer distance. Data association is defined as the process of associating uncertain

measurements to known tracks or landmarks [68]. After extracting the feature vector z

from a sensor measurement, the correspondence of those features to the existing landmarks

in the map should be explicitly defined to relate the predictions from the sensor model to

the actual measurements. This is a challenging task and therefore is a highly researched

problem as any incorrect association could cause failure of the algorithm that uses the

measurements. As chamfer distance represents the entire laser scan as a single cluster of

readings, its value at any given robot pose x represents a measure of the placement of the

whole scan, not just any individual feature in the laser scan, and therefore data association

is implicit.

2.4.2 Chamfer Distance Based Sensor Model for a Camera

For camera images the sensor observation matrix s is obtained by pre-processing the image

to obtain an edge template; further, the appropriate image projective transform would

produce the location xs.

Consider the example shown in Figure 2.7. If a simple pinhole camera observes one element

of a shape in a 2D scene {C}xf = (xf , yf , zf )
�, its projection on the image plane, in the

image coordinate frame2 {I}xs = (xs, ys)
�, has the relationship shown in Equation (2.18),

which is commonly known as the projective transform [69]. Here f is the focal length

2Coordinate frames are denoted with {·}�. Global frame is {G}, camera frame is {C}, the image frame
is {I}, and the global image frame is {GI}
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of the camera. It has been further simplified considering that the camera is observing a

coplanar scene.

{I}xs =

⎛
⎜⎜⎜⎝
xs

ys

fs

⎞
⎟⎟⎟⎠ =

f

zf

⎛
⎜⎜⎜⎝
xf

yf

zf

⎞
⎟⎟⎟⎠ =⇒ f

zf

⎛
⎝xf

yf

⎞
⎠ =

f

zf
·{C} xf (2.18)

This can be translated to the image global coordinate frame by defining the transform

matrix
{GI}
{I} T with the use of the projection of the camera location on the 2D scene

(x, y)�.

{GI}
{I} T =

f

zf

⎛
⎜⎜⎜⎝ [R(θ)]

x

y

0 0 1

⎞
⎟⎟⎟⎠ (2.19)

where R(θ) is the rotation matrix of the camera for a yaw of θ, where,

R(θ) =

⎛
⎝cos θ − sin θ

sin θ cos θ

⎞
⎠

Then the location of the element in global image coordinate frame is given by,

xs or {GI}xs =
{G}
{I} T ·

⎛
⎝{I}xs

1

⎞
⎠ (2.20)

With the help of the transform given in Equation (2.20), the Jacobians in Equation (2.17)

can be expressed in terms of the distance function of the reference image, ∂dDF
∂s using the

chain rule similar to Equation (2.12).

2.4.3 Image Template Matching Using Chamfer Distance

Figure 2.8 shows a simple example of a sample template on the distance function of the

reference image shown in Figure 2.4. The lowest chamfer distance is usually identified by
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Figure 2.7: Pinhole camera model showing the projection of a 2D shape on the image
plane.

Figure 2.8: (a) shows an example template image, where (b) shows the template at an
initial location on the distance function of the reference image. Chamfer distance value

is 2.8

using a grid search [67].

With Figure 2.9, we can clearly see that the chamfer distance reaches a minimum when

the template overlaps with the reference image. In the ideal scenario, the chamfer distance

would reach zero at the perfect match.
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Figure 2.9: (a) is the colour map of variation of chamfer distance when the template
is placed across every location on the grid, while (b) shows the template on the location

with lowest chamfer distance.

Figure 2.10: The camera observes a section of a graffiti wall. Figures (c) and (d) show
the template extracted from the camera image to be matched with the total image of the

wall, (b). (Image courtesy of paper4pc.com)

Template matching essentially localises a smaller template image on a larger image which

is usually obtained using a camera. However, if a camera just observes a part of a larger

image as shown in Figure 2.10, provided the edge image of the template has enough unique

shapes, and the perspective transformation on the image with the camera is known, the

template captured by the camera can be localised in the larger image, effectively localising

the camera location provided the motion of the camera is only on a plane parallel to the

scene plane and therefore f/zf is a constant.

Figure 2.11 shows chamfer distance variation obtained by placing the template in Figure
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Figure 2.11: Shows chamfer distance variation obtained by placing the template in
Figure 2.10d across all the locations of the distance function obtained using the Figure

2.10b.

2.10d across locations on the distance function of Figure 2.10b, closer to the vicinity of the

true camera pose. We can observe that chamfer distance has a minimum at (147, 520),

which could be translated to the camera pose.

A similar attempt at localising a robot using an upward looking camera with a mosaic

map of the ceiling is discussed in Section 3.6.5. In this case, the larger mosaic of the total

ceiling is created using previously collected ceiling images at known poses. The camera

only observes a part of the planar ceiling. The chamfer distance based sensor model is

used to match the camera observation with the mosaic to obtain the pose of the camera,

from which the location of the robot is deduced.

2.4.4 Chamfer Distance Based Sensor Model for a Laser Range Finder

As discussed in Section 2.3.1, when distance function represents a 2D environment and

the sensor observing the environment is a laser range finder sensor, the chamfer distance is

still a good likelihood measure of disparity between the map and the sensor reading that

can be used to evaluate the robot pose hypothesis.

Using Equation (2.15), the chamfer distance for a laser scan can be written as shown in

Equation (2.21).
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Figure 2.12: Shows chamfer distance variation against robot location, (x, y) at two
different locations of the Intel research labs dataset, in the vicinity of the true robot pose.
The corresponding laser scan (not to scale) is given above the contour-plots. φ is set to

its true value.
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Figure 2.13: Chamfer distance variation in the vicinity of the true robot pose x and y
at their true values and orientation φ varied.

dCD = CD(z | x, DF ) =
1

n

n∑
i=1

DF (xoi). (2.21)

where DF is the unsigned distance function of the environment map.

The sections highlighted in the contour map Figure 2.12, Figure 2.12a and Figure 2.12b

present the variation of chamfer distance relative to a hypothesised robot location (x, y)

that varies in the vicinity of the true pose. The approximate coordinates of the true
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pose for Figure 2.12a and Figure 2.12b are (1.1, 1.1)m and (0.45, 0.45)m respectively.

Assuming that there is no measurement noise, the minimum chamfer distance, which will

be equal to zero, is obtained when the robot is placed at its true pose in the map and the

laser scan is perfectly aligned.

Figure 2.13 shows the variation of chamfer distance when x and y are kept at their true

values and the orientation φ is varied between ±0.4 radians for the robot’s true location

used in Figure 2.12b.

Furthermore, the chamfer distance distribution is differentiable with respect to the robot

pose x, and the partial derivatives of chamfer distance can be deduced with the use of

partial derivatives of DF as shown in Equation (2.22).

∇dCD =
(
∂dCD
∂x

∂dCD
∂y

∂dCD
∂φ

)�

⎛
⎜⎜⎜⎝

∂dCD
∂x

∂dCD
∂y

∂dCD
∂φ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
n

∑ ∂DF
∂xo

|xoi
· ∂xo

∂x

1
n

∑ ∂DF
∂yo

|xoi
·∂yoi∂y

1
n(
∑ ∂DF

∂xo
|xoi

·∂xo
∂φ |roi+

∑ ∂DF
∂yoi

|xoi
· ∂yo

∂φ |roi )

⎞
⎟⎟⎟⎠ (2.22)

As with DF , the partial derivatives ∂DF
∂xo

|xoi
and ∂DF

∂yo
|xoi

can also be pre-computed and

stored to be used by other algorithms.

However, as a distance transform is used to obtain the distance function from an OGM, the

distance field is no longer continuous. A standard cubic spline can be used to interpolate

the distance function values to estimate distances and the derivatives in continuous space.

As an added advantage, the spline function would smooth-out the cut-loci and the oc-

cupancy boundaries making the derivatives continuous throughout the distance function.

Apart from splines, Gaussian processes have also been suggested as smoothing functions

for distance function [41], but as previously mentioned they are highly computationally

complex.
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2.5 Conclusion

Distance function based representations are quite versatile and they are popularly used to

represent both 2D and 3D environments. In 3D, distance function based representations

typically deal with depth based distance measurement sensors, but traditionally, 2D dis-

tance functions deal with image sensors such as cameras. In this chapter, we proposed the

use of distance functions to represent 2D environments, with a sensor model to relate the

observations from a laser range finder sensor to the environment. As the sensor readily

measures the distances from the sensor to the objects in the environment, representing the

environment as distances to the closest object leads to a simpler sensor model. Important

measures such as the sensor uncertainty can be easily translated to the distance function

uncertainty.

We also propose to use the chamfer distance as the likelihood measure of disparity between

the map and sensor readings (range and bearing measurements) from the laser range

finder sensor. Application of chamfer distance drastically reduces the dimensionality in

the observation vector which leads to a computationally light-weight implementation of

the algorithm that can be used in resource constraint applications such as assistive robots.

The next chapter, demonstrates how the distance function based environment represen-

tation method and the sensor model proposed in this section can be used to efficiently

localise a robot on an OGM.



Chapter 3

Distance Function based

Algorithms for Mobile Robot

Localisation

3.1 Introduction

Determining the position and orientation (pose) of a robot with respect to a given map of

the environment is known as localisation. Localisation is one of the prime requirements

for a robot to be fully autonomous. Functions that an autonomous robot is expected to

perform such as path planning and navigation require the location information. Along

with the mapping problem, the robot localisation problem has also been well studied over

the last two decades. The methodologies used for robot localisation differ depending on

various circumstances, from which, the composition of the environment, sensors that the

robot uses to observe the environment, and the type of map available to the robot are the

most influential. For example, if the robot is an unmanned aerial vehicle moving through

an uneven terrain, the localisation method should be able to track the robot in 3D space

with six degrees of freedom. However, if the robot is a wheeled robot that operates in a

planar environment, a 2D localisation method that provides the robot position and heading

would be adequate.

32
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Sensors mounted on the robot are the primary means for a robot to observe the environ-

ment. Application, the environment of operation, the required accuracy, affordability of

the sensor, are some factors that profoundly impact on the selection of the appropriate

sensors for a robot.

For a robot operating in an indoor Global Positioning System (GPS) denied environment,

which does not have access to position tracking systems, 2D laser range finders are one

of the go-to sensors for localisation. A laser range finder observes the environment by

measuring radial distances to objects at discrete intervals on a single plane. Due to its

higher resolution, the larger field of view and most importantly the higher accuracy, it

has become the widely accepted sensor for most robotics platforms. For a long time, laser

sensors have been unaffordable and therefore sparingly used for mass produced robots

such as service robots. However, recent popularity in hobby robots has given rise to much

more affordable laser range finders with the same accuracy as the expensive sensors. Other

sensors such as cameras and RGB-D sensors are also capable of being used for localisation,

but factors such as limitations of field of view and accuracy, and higher complexities

associated with pre-processing sensor observations make them less attractive even though

they are more affordable compared to laser range finders.

When a sensor makes an observation (also known as a measurement), a sensor model,

which is essentially a relationship between the observation, the state of the robot, and the

map of that environment, is defined.

Once the sensor model is formulated, a localisation algorithm that complements the char-

acteristics of the sensor model is able to resolve the robot’s location on the map using

the sensor observations. The back-end solver employed by the algorithm is the primary

means of classification for localisation algorithms. Particle filters, extended Kalman fil-

ters, or optimisation based approaches are some of the more common approaches used as

localisation back-ends. Most of the time these algorithms are specific to the sensor model.

Moreover, depending on the construction of the environment, a single observation from

a sensor might not provide enough information to localise the robot accurately. In such

scenarios algorithms which have the capability to fuse additional information such as

measurements from other sensors, knowledge of the approximate location or integrate
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temporal information from the primary sensor might be able to achieve proper localisation.

As such, each back-end comes with its own set of advantages and limitations, and should

be chosen to match the application.

In this chapter, we use the distance function based environment representation and the

associated sensor model presented in Chapter 2 to localise a mobile robot in an indoor

environment. We demonstrate the flexibility of the sensor model we propose by applying it

to three popular localisation strategies, namely a Kalman filter, a non-linear optimisation

based method, and a particle filter based approach to localise a mobile robot equipped with

a laser range finder sensor that operates in a 2D planar environment. This chapter also

presents the formulation of uncertainties related to the sensor model which is an original

contribution of this thesis. This work is the first extended Kalman filter formulation that

does not require explicit feature extraction or association to localise a mobile robot in

an Occupancy Grid Map (OGM). We use simulations, public domain, and experimental

datasets we collected in real crowded environments to evaluate these algorithms.

In order to further highlight the flexibility of the proposed sensor model, we also demon-

strate a strategy to localise a robot using observations from an upward looking RGB

camera. Here, the chamfer distance based sensor model with a distance function of the

ceiling mosaic is used.

The rest of this chapter is organised as follows. Section 3.2 presents related work conducted

in the field of robot localisation while Sections 3.3 to 3.5 presents the three strategies of

localisation. The Section 3.6 presents experiments conducted using multiple datasets,

while a discussion and a conclusion is presented in Section 3.7.

3.2 Related Work

Robot localisation is a well-studied problem with solutions available for many combinations

of sensors and map types. When the map is represented using geometric primitives such

as points or line segments, extended Kalman filter (EKF) based algorithms are capable of

efficiently estimating the robot pose within the map by fusing information gathered from

robot odometry and observations associated with geometric beacons in the environment
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[26]. EKF based methods are generally computationally efficient but require an initial

guess of the prior location of the robot. Therefore, such methods are incapable of solving

problems such as the kidnapped robot problem 1.

When the environment map is available in the form of an OGM, particle filter based

approaches have been the preferred method [70] for robot localisation due to their ability

to exploit all the measurements available in a range scan. Furthermore, they are relatively

easy to implement and are capable of global localisation: the ability to deal with the

situation when a suitable initial estimate for the robot pose is unavailable. The widely

used adaptive Monte-Carlo localisation (AMCL) [44, 71–75], that is also available as a part

of the popular Robot Operating System (ROS) [33] is a particle filter based probabilistic

approach for localisation.

The particle filter based approaches use a sensor model and a set of particles representing

hypothesised robot locations to estimate the true pose of the robot. A sufficiently large

number of particles, adequate to describe the probability density function describing the

robot pose needs to be selected in order to generate location estimates with acceptable

accuracy. This is the main drawback of this algorithm as the computational efficiency of

the particle filter is directly related to the number of particles used for the computation.

In AMCL [44], there are many tuning parameters and strategies to dynamically manage

the number of particles at an optimum level. Within the particle filter framework, it is

not straightforward to identify outliers or dynamic objects. In order to address this prob-

lem, AMCL uses a “mixture-model” which categorises the range readings by statistically

analysing the probable causes of such outliers and penalising these observations during the

particle update step. However, [44] caution that this method would only work in certain

limited situations and the categories should be analysed according to the environment.

Apart from estimation and filtering, optimisation based methods have also been used for

localisation. However, once again these methods predominantly focus on feature based

maps rather than on OGMs. In [76] a genetic optimisation algorithm is used to localise

a mobile robot on a geometric beacon based a-priori map. Genetic algorithms are also

used in [77] for localising on a satellite image geo-map of an outdoor environment using

1Localisation of a robot when the initial location is unknown is called the kidnapped robot problem.



Chapter 3. Distance Function based Algorithms for Mobile Robot Localisation 36

an laser range finder sensor. Kwok et al. [78] proposes the use of evolutionary computing

techniques which include genetic algorithms, particle swarm optimisation, and the ants

system for feature based localisation and demonstrates their effectiveness and robustness

to noise and dynamic environments.

Localisation of wireless sensor networks is another prominent application which relies

heavily on optimisation based methods. Mao et al. [79] explains how different techniques

are applied to this unique problem and how optimisation based methods can solve the

wireless sensor networks localisation problem.

Scan matching has been popularly used for both mapping and localisation. Techniques

like Iterative Closest Point (ICP) [80, 81], Iterative Closest Line (ICL) [82] or Iterative

Closest Surface (ICS) and probabilistic likelihood methods [44, 83] are some of the widely

used algorithms for matching laser scans obtained from different robot poses. In ICP,

each laser endpoint in the query scan is associated with a point, line, or surface in the

reference scan (or the map in case of localisation) using a distance metric such as Euclidean

distance, after which a rigid body transformation method such as [84] can be applied to

compute the alignment. This process is done iteratively for finer alignment of the scans. In

probabilistic scan matching methods, sensor error which is the difference between actual

sensor measurement and the predicted sensor reading is used to update the likelihood

probability of the robot pose hypothesis. The predicted reading is estimated by algorithms

such as ray-casting, which are computationally expensive, or likelihood fields [44] for which

environment dependent tuning is essential, as it is an approximation to the ray-casting

result.

Within the past decade, a variety of algorithms for solving much more complex problem of

localising a robot while at the same time building a map of the environment (Simultaneous

Localisation And Mapping (SLAM)) have also become available. While the most popular

methods for SLAM in the early literature have been based on estimation methods such

as EKF [85] and particle filters [34, 86], solving SLAM using optimisation techniques has

recently emerged as the preferred solution [87–89] due to their robustness and ease of use.

A detailed discussion about SLAM is provided in Chapter 4.
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Though optimisation and EKF based back-ends for localisation are easy to use and com-

putationally efficient, they have been so far limited to feature based maps due to the lack

of a suitable sensor model for capturing correlations between OGMs and sensor readings.

The methods currently available that uses the principles of scan matching either lack a

proper co-variance model or have many tuning parameters.

Using upward facing sensors for localisation, either by observing natural features or arti-

ficial markers attached to the ceiling is a popular strategy amongst service robots. One

of the main reasons for using this method is because the sensors pointed in a lateral di-

rection are highly susceptible to occlusion when operating in crowded environments. The

museum tour guide robot Minerva by Thrun et al. [90] uses an upward looking camera

to localise the robot within the museum. The light intensities and substantial structure

of the museum ceiling image directly above the robot provides one of the main inputs for

localisation [91]. However, the authors further elaborate on how the vaulted multi-height

nature of the museum ceiling can lead to errors and therefore this technique is only used

to complement the localisation results of lateral sensors specially when they are unable to

generate a consistent location estimate. Many other work after Minerva, for example, [92–

97] completely rely on upward looking sensors. If an upward looking camera is used, the

usual method of localisation is to extract features and landmarks from the ceiling [93–95].

These are usually corner features, lamps, ceiling tiles, etc. Work by Hwang, Song, & Kim

[93] proposes extraction of compounded features from arbitrary-shaped lines or patterns

in the ceiling as landmarks. When the ceiling lacks prominent features, artificial tags that

can be easily recognised using a camera can be placed [96] on the ceiling as artificial land-

marks. Localisation method for vacuum cleaning robots proposed by Gutmann et al. [92]

uses an upward looking optical sensor to detect artificial beacons projected to the ceiling

using a system known as “North-Star”. These projections create a pattern known as a

vector field, which is initially learned by the robot. However, all of these methods rely on

extracting and correctly associating features or landmarks.
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3.3 An Extended Kalman Filter for Localisation in an Oc-

cupancy Grid Map

As discussed earlier in this chapter, while a particle filter is indispensable in localising

a mobile robot when its initial position is unknown, it could be argued that once the

approximate location is known and if the length of time over which odometry is used to

predict robot pose without external sensor data is small (as is typically the case with

modern high scan rate laser range finders), the powerful machinery embedded in the

particle filter for non-Gaussian estimation is not essential.

In this section we propose a novel 2 EKF based algorithm to localise a mobile robot with

a laser range finder in a two-dimensional (2D) OGM when the initial location is approx-

imately known. The key challenge has been to formulate an appropriate measurement

equation that can be used to predict the expected observations from a range finder. In

the particle filter framework, this is done through techniques such as ray-casting. How-

ever, this strategy is not suitable for an EKF as an efficient implementation requires the

Jacobians of the observation function in closed form. Therefore, we propose that the ob-

servation equation be formulated using the sensor model proposed in Section 2.3, and use

the chamfer distance that corresponds to a laser scan within the OGM as a constraint.

However, such a constraint relates the robot state and the range readings in an implicit

function and as such is not in a form suitable for a standard implementation of an EKF.

The strategy proposed by Steffen et al. [99] is, therefore used. In contrast to typical par-

ticle filter implementations, the proposed algorithm is easy to tune as only one parameter

corresponding to the noise values of the inputs and measurements are required. Further-

more, it is relatively easy to deal with outliers through a probabilistic strategy that only

accepts measurements subjected to a desired confidence level.

2We published the main results of this section in “An extended Kalman filter for localisation in occupancy
grid maps.” [98]
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3.3.1 Chamfer Distance Based Observation Model

After representing the environment using a distance function, the sensor model proposed

in Section 2.3 can be used to formulate the observation function with the use of chamfer

distance. As shown in Figure 2.6, a robot equipped with a range scanner is placed on

the map at the prior pose estimate xk|k−1 = (xk|k−1, yk|k−1, φk|k−1)
�, and the observation

vector z projected from that pose. When the scan and the map are fully aligned, chamfer

distance would approach zero and the robot would be at its true pose. Therefore, setting

chamfer distance to zero in Equation (3.1) yields the measurement equation (3.2) that is

suitable for robot localisation.

h(x, z) =
1

n

n−1∑
i=0

DF (xoi) = CD (3.1)

h(x, z) = 0 (3.2)

In Equation (3.1), xoi corresponds to the endpoints of the observation vector z, obtained

using Equation (2.8) and DF (xoi) are distance function values obtained using a lookup of

the interpolated DF matrix.

Traditional formulation of the EKF requires an observation equation of the form z = h(x).

The alternative formulation that is proposed below can directly deal with an implicit form

of the measurement equation, is an adaptation of [99].

3.3.2 Formulation of the Extended Kalman Filter

3.3.2.1 Prediction

Let the estimate of the robot pose xk−1|k−1 = (xk−1|k−1, yk−1|k−1, φk−1|k−1)
�, be subjected

to a control command of uk = (vk, ωk)
�, where vk is the linear velocity and ωk is the

angular velocity over a period of Δt.

Then the predicted location of the robot is given by Equation (3.3) and its covariance by,
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xk|k−1 = F (xk−1|k−1, uk ·Δt) (3.3)

Pk|k−1 = ∇FxPk−1|k−1∇F�
x +∇FuQk∇F�

u (3.4)

where ∇Fx and ∇Fu are respectively the Jacobin of the control function F with respect

to x and u, obtained by linearising about the robot pose estimate xk−1|k−1 , while Qk is

the control noise covariance matrix.

3.3.2.2 Observation

Equation (3.2) provides the observation function, h(x, z) = 0.

Assuming that each range measurement ri of the scan z, corrupted by noise ηr with

N (0, σ2
r ) and bearing θi is noise free, the covariance of the measurement vector is given by

the diagonal matrix, Σz = diag(σ2
r )n×n.

3.3.2.3 Update

Update equations can be written as follows based on the derivations presented in [99]. The

filter gain K is given by,

K = Pk|k−1∇h�x (∇hxPk|k−1∇h�x +∇h�z Σz∇hz)
−1 (3.5)

The state update is given by,

xk|k = xk|k−1 +K(−h(xk|k−1, z)) (3.6)

while the covariance update is,
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Pk|k = (I −K∇hx)Pk|k−1 (3.7)

The Jacobians ∇hx and ∇hz at the appropriate linearisation points can be calculated using

Equation (3.8).

∇hx =
∂h(x, z)

∂x
z,xk|k−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h(x,z)
∂x z,xk|k−1

∂h(x,z)
∂y z,xk|k−1

∂h(x,z)
∂φ z,xk|k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂dCD
∂x z,xk|k−1

∂dCD
∂y z,xk|k−1

∂dCD
∂φ z,xk|k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∇hz =
∂h(x, z)

∂z
z,xk|k−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h(x,z)
∂r1 z,xk|k−1

∂h(x,z)
∂r2 z,xk|k−1

.

.

.

∂h(x,z)
∂rn z,xk|k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂dCD
∂r1 z,xk|k−1

∂dCD
∂r2 z,xk|k−1

.

.

.

∂dCD
∂rn z,xk|k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

∂dCD
∂x , ∂dCD

∂y , and ∂dCD
∂φ in Equation (3.8) can be obtained with the help of Equation (2.22).

As previously mentioned, the DF and its derivatives can be precomputed using the grid

map and can be stored to be used during the runtime to calculate the gradient computa-

tionally efficiently. The remaining components of the gradient can be analytically derived

from Equation (2.8).

3.3.3 Improving the Robustness of the Algorithm

A simple innovation gate is used in the algorithm to filter outliers that are related to

objects not present in the map, such as people walking around. The individual entries of
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DF (xo) vector in Equation (3.1) is tested to be within 2σDF bounds and the ones that are

beyond these are ignored.

3.4 Optimisation Based Localisation in Occupancy Grid Maps

This section describes a method for localising a robot on a 2D map using information

gathered using a laser range finder mounted on a robot. It also uses distance function

based representation and the chamfer distance based sensor model that we presented in

Section 2.3. Therefore, it does not require defining corresponding point parings as required

by state-of-the-art optimisation based localisation methods. Unlike the method proposed

in Section 3.3 which required the knowledge of the sensor noise parameters, or particle

filter based methods which needs environment based tuning, this formulation only has one

tuning parameter. Most importantly, we will demonstrate that it is not essential to have

odometry measurements for the operation of this method in many practical situations.

The problem of localising a robot can basically be solved if there is a way to locate the

laser scan on the given map. If a cost function C, which is a measure of mismatch between

a sensor reading z and the map m can be defined such that the cost approaches zero when

the sensor reading and the map are in alignment, it could be the basis for the optimisation

problem as stated in Equation (3.9), with the robot pose as variables.

argmin
x y φ

C(z,m) (3.9)

When the initial pose is approximately known, the sensor model as described in Section

2.3 essentially defines such a cost function, as in the vicinity of the true pose, chamfer

distance between the laser scan and the map shows a clear minimum as shown in Section

2.4.4 c .3

3We published the main results of this section in “C-LOG: A Chamfer Distance Based Method for
Localisation in Occupancy Grid-maps” [100]
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3.4.1 Optimisation Algorithm

Robot localisation problem expressed in Equation (3.9) can now be written as,

argmin
x y φ

dCD(xo, DF ) (3.10)

where DF is the distance function of the OGM m and xo is the template generated using

the laser scan z in Equation (2.8) with the potential robot pose x = (x, y, φ)�. Therefore,

we propose to use an optimisation algorithm to solve this problem in order to obtain the

optimum pose x∗ that will yield minimum chamfer distance,

Given that the objective function in Equation (3.10) is twice differentiable, this uncon-

strained non-linear optimisation problem can be solved using a variety of gradient based

techniques. In the experiments presented in Section 3.6 the Matlab implementation of the

trust-region algorithm was used.

Algorithm 1 details the steps of solving the localisation problem.

Algorithm 1: Localise Robot

Require: DF , ∂dDF
∂xo

, ∂dDF
∂yo

, Initial pose estimate x = (x, y, φ)�

loop for every input laser scan = z

function argmin
x

(z,m)

return x∗

end function
Report current robot pose = x*

next x = CalcNextPoseGuess (x*)
� Compute the best guess to the pose estimate at the next time step: Update x* using

odometry information or use x* if odometry is not available.
end loop

The partial derivatives of the objective function with respect to the robot pose x are

required for solving the optimisation problem described by Equation (3.10), are given in

Equation (2.4.4) and Equation (2.22).
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A simple gate which only admits only the values that are smaller than a certain error ζ,

can be used to reject outliers.

dDT (xoi) ≤ ζ (3.11)

We define ζ = Δφ ·ri+Δx+Δy, where Δx,Δy and Δφ are the maximum expected errors.

In the experiments, 0.15m was used for Δx and Δy, while Δφ was set to 0.05 rad. This

is the only tuning parameter required for this algorithm and clearly it is relatively easy to

establish.

3.5 Particle Filter based Localisation on Occupancy Grid

Maps

As discussed before, particle filters are the preferred localisation algorithm for robots using

range-bearing sensors when an OGM is used [70]. Though many implementations have

been developed throughout the years, AMCL is considered the de-facto particle filter based

localisation method in the community.

An appropriate sensor model is a crucial prerequisite of any probabilistic localisation al-

gorithm. In a particle filter, the sensor model specifies how to capture the likelihood

P (z | x, m) of a measurement z given the map of the environment m and a hypothesised

robot pose x. Commonly used strategy to obtain the likelihood is to first compute the

difference, ei = zi−z∗i , between the actual measurement zi and the expected measurement

z∗i assuming that the robot’s true pose is the same as its hypothesised pose.

Clearly, for a hypothesis that is closer to the true robot pose, ei is small. Measurement

likelihood is then computed assuming that the probability density function of a range

measurement from the sensor has a Gaussian distribution with the mean equal to the true

range, and the covariance equal to a known fixed value. In addition, a number of authors

have proposed mechanisms for incorporating the impact of conditions such as the presence

of objects in the environment that are not available in the map, and the possibility of

receiving spurious range measurements [44, 101, 102].
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The two most common sensor models used to compute likelihoods for particle filter based

robot localisation are: (i) beam-based beam range finder model [103] which uses ray-

casting, a method that measures the length to the next obstacle from the hypothesised

robot pose along the path of the laser ray to predict the expected measurement and (ii)

the likelihood range finder model or the end point model [73] which uses the shortest

distance from the end of the ray to an occupied cell in the environment map with a small

perturbation to approximate the ray-casting results. These two models are selectable

within ROS-AMCL and the latter compromises accuracy for computational time. The

algorithm then combines the likelihood of individual beams as described in Section 3.5.1,

with an assumption that the likelihood of errors are independent of each other.

However, as identified by a number of authors [104, 105], although the measurements cor-

responding to the individual beams within a range scan from a given pose are theoretically

independent of each other (by definition), the difference e between the actual and expected

measurements are correlated unless the hypothesised robot pose x coincides with the true

pose. In other words, value for e for all the beams in the scan is influenced by the difference

in pose between the true robot pose and the hypothesised robot pose. Thus, multiplying

likelihoods calculated using measurements from individual beams to obtain the likelihood

of the entire scan can lead to a highly peaked distribution. Strategies to deal with this

issue reported in the literature vary from attempts to minimise the impact of violating

the independence assumption (for example, by using a subset of the beams) [44], to so-

phisticated methods for regularisation and place dependent covariance estimation [104] or

learning a sensor model based on Gaussian processes [105].

Interestingly the ROS-AMCL implementation uses the likelihood function given in Equa-

tion (3.12).

P (zk|xk,m) =

n∑
i=1

P (zik|xk,m)3 (3.12)

Although there is no theoretical basis for this formula. An excerpt from the file amcl laser.cpp

for ROS jade is shown in Listing 3.1. This formula together with appropriate tuning pa-

rameters, has enabled users to obtain good results from ROS-AMCL over the years. It
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200 // p *= pz;

201 // here we have an ad -hoc weighting scheme for combining beam probs

202 // works well , though ...

203 p += pz * pz * pz;

Listing 3.1: Weighting scheme used in AMCL v1.12.12, amcl_laser.cpp, retrieved on

25/06/2016

has also been used to benchmark performance of many other algorithms.

In likelihood field model, even-though distance functions are used for estimating the like-

lihood, multiple range readings within the range scan are treated as individual measure-

ments and the computation of the associated covariance is done in a somewhat ad-hoc

manner [44]. Use of the complete range scan as a single measurement is also a key moti-

vation behind correlation based methods [106].

In this section, a modification to the likelihood field sensor model [73] is proposed, which

makes it possible to compute the likelihood of the entire scan without resorting to the

independent beam assumption. We use the chamfer distance based sensor model that

was proposed in Section 2.3 for this purpose. Another contribution in this section is a

rigorously Bayesian approach to compute the covariance of the multiple range readings and

the measurement likelihood, while at the same time being more computationally efficient

than all currently available sensor models for particle filter based robot localisation. A

method to estimate the combined covariance of the chamfer distance in the presence of

unknown correlations between the distance functions is also presented.

The next subsection provides an overview of how Monte-Carlo Localisation (MCL) oper-

ates.

3.5.1 Monte-Carlo Localisation (MCL)

Consider the problem of estimating the pose x = (x, y, φ)� of a mobile robot with

respect to an a-priori map m using a particle filter. This is usually done by maintaining a
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probability density P (xk|z1:k, u0:k−1) of the pose xk at step k given all observations (z1:k)

up to step k and all control inputs up to step k − 1 ( u0:k−1). This probability can be

recursively calculated using the Bayesian scheme given by Equation (3.13).

P (xk|z1:k, u0:k−1) =

η·P (zk | xk)·
∫

P (xk|uk−1,xk−1)·P (xk−1)dxk−1

(3.13)

Here, η is the normalisation constant that makes sure all the probabilities sum up to one

for all xk and the term P (zk | xk) represents the probability of making an observation zk

given the robot is at pose xk.

A brief explanation of the MCL algorithm is as follows: First, a set of particles repre-

senting the prior probability density function of the robot pose is initialised. Since the

previous update, every particle in the cloud is propagated according to the motion model

or dynamics of the robot with control inputs uk−1 . This is known as the Prediction

Phase. Then, the likelihoods of obtaining the observed sensor reading P (zik|xk,m) are

determined for all particles on the basis of the observation model P (zk| xk) for the current

sensor readings zk. The likelihoods of the particles are used to perform “resampling” to

obtain a representation of the posterior probability density function. This is known as the

Update Phase. The mean of the posterior probability density function represents the

best estimate of the current robot pose. This process repeats as new information about

the robot motion and observations from the sensors are received.

A typical scanning range sensor provides a measurement zk that consists of n individual

readings corresponding to the distance to the closest occupied object in different directions

z = (z1, ..., zn)�, zi = (ri, θi). The ray-casting method [103] uses a process which follows

the ray projection on the occupancy grid map from the end point of the beam, in the

direction of the beam until an occupied cell is reached to obtain the expected measurement

from a hypothesised robot pose. Error ei for the ith beam is then obtained by subtracting

the ray-casting result from the actual measurement. In the likelihood field model [73], error

for an individual beam, ei is the distance to the closest obstacle from the end point obtained
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by drawing a ray of length equal to the corresponding measurement from the beam with

respect to the hypothesised robot pose. While ray-casting is computationally expensive,

the measurement covariance is simply given by the uncertainties associated with the range

sensor and the potential errors in the map. Measurement error is typically assumed to be

distributed as a Gaussian and the measurement covariance (σ2
r ) can be obtained through

experiments. However, as explained in [44], currently available implementation of the

likelihood field technique uses an educated guess for obtaining the measurement covariance.

Thus, while the likelihood field method is faster than the beam range finder method, it is

not as accurate.

The first contribution of this section is a rigorous method for computing the covariance of

the distance function representation from the variance of the sensor reading, σr.

In both approaches (i.e. beam range finder and likelihood field models), the likelihood

of a particle is calculated as the product of the likelihood of individual beam, zik as per

Equation (3.14).

P (zk|xk,m) =

n∏
i=1

P (zik|xk,m) (3.14)

where,

P (zik|xk,m) = η · e−e2i /(2·σ2
r)

Equation (3.14) implicitly assumes that the ei, i = 1, ..., n are uncorrelated.

Another contribution of this thesis is a strategy to compute the likelihood of a hypothesised

robot pose without the implicit assumption of independence.

3.5.2 Estimation of Covariance and Measurement Likelihood

Covariance of a range measurement from the sensor σ2
r can be used to compute the co-

variance of the each end point using Equation (3.15).
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Σxoi
= Jriσ

2
rJri

� (3.15)

where Jri =

⎛
⎝∂xoi

∂ri
∂yoi
∂ri

⎞
⎠

The covariance of dDFi corresponding to the ith laser beam can now be computed using

Equation (3.16).

σ2
DFi

= ΣDFi = Jxoi
Jriσ

2
rJri

�Jxoi

� (3.16)

where Jxoi
=
(
∂dDFi
∂xoi

∂dDFi
∂yoi

)�
.

Note that
∂dDFi
∂xoi

and
∂dDFi
∂yoi

can be pre-computed numerically from the DF of the map.

As dDFi are related through unknown correlations, the covariance of Chamfer Distance,

ΣCD is not equal to 1
n2

∑n
i=1 σ

2
DFi

. A number of techniques for fusing information with

unknown correlations are available in the literature [107, 108]. These methods typically

result in the need to solve an optimisation problem. As the chamfer distance is simply the

sum of individual distance transforms, a conservative estimate for ΣCD is obtained as per

Lemma I.

This result directly extends to E =
∑n

i=1 ei, leading to Equation (3.17), the measurement

covariance.

ΣCD =
1

n2
(

n∑
i=1

σDFi
)2 (3.17)

With the help of the distance function of the OGM, the observation likelihood can now

be obtained using Equation (3.18).

P (dCD,k|x,m) = η · e(−d2CD,k)/(2·ΣCD) (3.18)
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We use this observation likelihood to replace the sensor model of the particle filter in

AMCL, which can be used to localise the robot.

Lemma I

Consider two correlated error measurements e1 and e2 with covariance σ2
1 and σ2

2. If

E = e1 + e2 then the covariance of E, ΣE is given by Equation (3.19).

ΣE = cov(e1 + e2) = J · C · J� (3.19)

where C =

⎛
⎝σ2

1 a

a σ2
2

⎞
⎠.

Here a represents the correlation of the two errors. As J = (1 1) in this instance,

ΣE = σ2
1 + σ2

2 + 2a.

The matrix C should be positive semi-definite. Therefore,

σ2
1 · σ2

2 − a2 � 0

Then a conservative estimate (at full correlation, a = σ1σ2) for ΣE is given by Equation

(3.20).

ΣE = σ2
1 + σ2

2 + 2σ1σ2 = (σ1 + σ2)
2 (3.20)

3.6 Experimental Results

This section presents results from the following three datasets which consist of simulations,

data published in public domain, and experimental data to evaluate the three proposed lo-

calisation algorithms. In-turn it will also validate the applicability of the distance function

based map representation and the sensor model presented in Chapter 2.
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• Dataset 1: This dataset was generated using Player/Stage Robot Simulator for

ROS [109], using the Sample Hospital environment available in the package. The

ground-truth is available for this dataset.

• Dataset 2: Intel Research Lab [57] dataset.

• Dataset 3: This dataset was collected at the ground floor of Broadway Shopping

Centre, Sydney, NSW, Australia.

For the Dataset 1 with the simulated Hospital environment, the robot was equipped with

a simulated Hokuyo UTM-30LX laser range finder with a maximum range of 30m and

1080 beams with 0.25◦ angle increment, therefore a 270◦ field of view. The odometry

was simulated with the noise parameters given in table 3.1 and the ground-truth of robot

location was available.

The Dataset 2 is a public domain dataset in which a robot has taken three loops on a

floor with multiple rooms. Map of the environment was generated with the GMapping

algorithm [34] only using the information gathered during loop 3. The experiments were

carried out using the remainder of the data to ensure the integrity of the evaluation. This

dataset contains robot odometry, however, ground-truth is not available.

Dataset 3 was collected at a shopping centre in Sydney, Australia using a Hokuyo UTM-

30LX laser range finder, which has a maximum range of 30m and a 270◦ field of view,

with an angular resolution of 1/4◦, which produces 1080 range readings per scan. As it was

collected at normal operation hours, a substantial amount of obstruction made by people

moving about the shopping centre can be observed. Due to these dynamic objects and the

lack of odometry, the mapping method described in Section 4.4 was used to generate the

map instead of GMapping.

3.6.1 Experimental Set-up

• Extended Kalman Filter Algorithm
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Table 3.1: Simulation properties and noise parameters for Dataset 1

Sensor Properties

Laser range finder simulated Hokuyo UTM-30LX
Maximum range 30m
Minimum range 0.1m
Field of view 270◦

Angular resolution 1/4◦

No. of readings per scan 1080

Parameter Noise Value

Laser range finder measurement noise N (0, 0.022m2)
Linear velocity noise N (0, 0.042m2s−2)
Angular velocity noise N (0, 0.012rad2s−2)

The proposed algorithm detailed in Section 3.3 was implemented in the MathWorks

MATLAB R© R2016a environment. The datasets were imported to MATLAB prior

to the experiments.

• Optimisation Based Algorithm

The optimisation based algorithm was implemented for both MathWorks MATLAB R©

R2016a environment and ROS Indigo Igloo in C++ using OpenCV 2.8 and Eigen

3.2 libraries. However, we used the MATLAB variant for experiments due to ease of

analysis and presentation of results. It is important to mention that, even the MAT-

LAB variant has the capability to work with ROS in real time, as well as process

recorded ROS bag files off-line, with MATLAB Robotics Systems Toolbox.

• Chamfer Distance Based Particle Filter

We added our chamfer distance based sensor model presented in Section 3.5 to the

ROS Indigo Igloo implementation of AMCL [110]. On arrival of each laser scan, the

measurement likelihood was computed through this new model. All the other parts

of the ROS AMCL algorithm were left unchanged.

All experiments were conducted on a computer equipped with an Intel R© CoreTM i5-2400

CPU @ 3.10GHz with 4GB of RAM.
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Table 3.2: Error values

Algorithm
Mean error(abs) Mean error(squares)

Position (m) Orientation (deg) Position (m2×10−3) Orientation (deg2)

EKF(proposed) 0.0227 ± 0.0251 0.8999 ± 1.2109 1.146 ± 4.492 4.7226 ± 12.0253

Optimisation based(proposed) 0.0099 ± 0.0141 0.2387 ± 0.9590 0.299 ± 2.167 0.9766 ± 5.4322

Particle Filter(proposed) 0.0290 ± 0.0248 1.0762 ± 1.9899 1.453 ± 2.255 5.1161 ± 15.7643

Particle Filter(AMCL-Beam) 0.0296 ± 0.0243 1.4420 ± 2.4679 1.464 ± 2.078 8.1669 ± 23.4030

Table 3.3: Estimation credibility

Algorithm
Average-NEES

Position Orientation

EKF(proposed) 0.8929 ± 2.5728 3.3756 ± 14.4027

Particle Filter(proposed) 0.6241 ± 0.6997 1.6523 ± 6.9403

Particle Filter(AMCL-Beam) 0.1678 ± 0.1487 0.5159 ± 1.8033

3.6.2 Pose Accuracy and Uncertainty

As the ground-truth is available for the Dataset 1, we can easily compare the results

obtained from the three algorithms with the ground-truth. Figure 3.1 shows the trajectory

of the robot through the environment. Poses obtained from the three algorithms are

sparingly plotted to avoid clutter in the figure. For all three algorithms, 95% uncertainty

ellipses are also plotted on the pose.

In Figures 3.2 - 3.4, we compare the pose errors against the ground-truth. The 2σ error

bounds are also plotted when the algorithm provides uncertainty. The errors for the EKF

based algorithm and the particle filter based algorithm are well within the estimated 2σ

bounds. Furthermore, error values for the optimisation based algorithm is much low com-

pared to other two algorithms. When the sensor measurement cannot provide information

to optimise pose in one direction, the error in that direction can suddenly increase as no

motion model is used for the optimisation based algorithm as seen in Figure 3.3 (e.g. at

time stamps 1035s and 1206s for x error and time stamps 213s and 1405s at y error ).

Figures 3.5-3.6 shows results from AMCL using the original beam based likelihood model.

Table 3.2 compares the errors between the proposed algorithms. We present mean absolute

error and the mean squared errors. It can be seen that all three proposed algorithm has

less error values than beam based AMCL algorithm. While the proposed particle filter
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Figure 3.1: Trajectory of the robot in the Dataset 1. Ground-truth and results obtained
from the three strategies, with uncertainty ellipses. (a) Proposed EKF algorithm. (b)
Proposed Optimisation based algorithm. (c) Particle filter algorithm with the proposed

sensor model.
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Figure 3.2: Error for each component of robot pose against ground-truth using the
proposed EKF based algorithm for Dataset 1.

algorithm shows only a slight improvement, the EKF and optimisation algorithms have

significantly less mean errors.

Moreover, we used the average normalised estimation error squared (NEES) metric to

characterise the filter performance [111]. When the ground-truth state is xk, NEES (εk )

is given by,

εk = (xk − x̂k)
�P−1

k (xk − x̂k) (3.21)

where x̂k and Pk are the estimated pose and its covariance. Then the average NEES can

be calculated by,

ε̄ =
1

nM

M∑
k=1

εk (3.22)

where n is the number of dimensions in the robot state and M is the number of poses in

the trajectory.
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Figure 3.3: Error for each component of robot pose against ground-truth using the
proposed optimisation based algorithm for Dataset 1.

Table 3.3 compares the average NEES values for the two algorithms 3.5 and 3.3 with the

standard beam based AMCL.

The closer the average NEES value is to 1, the better is the credibility of the estimator.

If this value is greater than 1 the filter is overconfident and therefore estimates can be

inconsistent. The average NEES value considerably below 1 suggests that the filter is

underestimating the covariance. This experiment shows that though the error values for

all three algorithms are mostly within the 95% confidence interval, the beam based AMCL

algorithm underestimate the covariances by a large margin. The proposed EKF algorithm

has an average NEES value closer to 1 suggesting the estimation of covariance is consistent.

Figure 3.7-3.9 shows the trajectory of the robot with Dataset 2 . As with the previous

dataset, to avoid clutter, not all poses are plotted. Further, to qualitatively analyse the

results, we have plotted the laser projection from the estimated pose.
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Figure 3.4: Error for each component of robot pose against ground-truth using the
proposed particle filter based algorithm for Dataset 1.

Figure 3.5: Trajectory of the robot in the Dataset 1. Results obtained by using standard
AMCL, with beam based likelihood model.
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Figure 3.6: Error for each component of robot pose against ground-truth using standard
AMCL, with beam based likelihood model for Dataset 1.

The Figure 3.11 presents the trajectory plots for the three proposed algorithms with

Dataset 3.

All three localisation algorithms perform well in comparison to ground-truth, both with

and without odometry. When qualitatively comparing the laser projections as shown in

Figures 3.7c-3.9c, the optimisation method has much more accurate alignment compared

to the others.

3.6.3 Performance with Dynamic Objects

As previously mentioned, the Dataset 3 was collected under natural conditions in a crowded

environment. Therefore, the laser observations are mostly corrupted by people. Figure

3.12 is a sparse illustration of the crowd movement during data collection.
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Figure 3.7: Trajectory of the robot in the Dataset 2. (a) GMapping poses and re-
sults obtained from the EKF based localisation algorithm, with uncertainty ellipses. (b)

Complete trajectory. (c) Projection of the laser scan from the estimated pose.
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Figure 3.8: Trajectory of the robot in the Dataset 2. (a) GMapping poses and results
obtained from the optimisation based localisation strategy. (b) Complete trajectory. (c)

Projection of the laser scan from the estimated pose.



Chapter 3. Distance Function based Algorithms for Mobile Robot Localisation 61

Figure 3.9: Trajectory of the robot in the Dataset 2. (a) GMapping poses and results
obtained from the particle filter localisation algorithm, with uncertainty ellipses. (b)

Complete trajectory. (c) Laser projection from the localised pose.
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Figure 3.10: Trajectory of the robot in the Dataset 2. (a) GMapping poses and re-
sults obtained from standard AMCL, using beam based likelihood model. (b) Complete

trajectory. (c) Laser projection from the localised pose.
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Figure 3.11: Trajectory of the robot in the Dataset 3. Poses from the mapping algorithm
and results obtained from the three localisation strategies, with uncertainty ellipses.

To further evaluate the performance of the novel EKF based and optimisation based

algorithms under dynamic objects, we performed a simulation experiment using Dataset

1. In this experiment we artificially corrupted a percentage of input laser scans with a

uniform random distribution of U(0, ri). Figure 3.13 shows the root-mean-square (RMS)

error at different degrees of corruption. Both algorithms can continue to localise without

losing track even with up to 60% of the input sensor measurements corrupted by dynamic

objects. After certain corruption level, the algorithms still work most of the trajectory,

however fails to keep track until the end of the robot trajectory.

3.6.4 Execution times

Figure 3.14 compares the time taken to process one laser scan by the three proposed

algorithms. For particle filter based algorithms, the number of particles was set to be
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Figure 3.12: A sparse illustration of crowd movement during collection of Dataset 3
over 29.54 minutes.

fixed at 5000 particles. The experiments on Dataset 1 which are used for measuring the

times and average time to process a laser scan are presented. The laser range finder (LRF)

sensor in Dataset 1 produces 1081 laser readings per scan. For comparison purposes, this

figure also show the execution times for the standard beam-based and likelihood-field

sensor models. However, it is noted that the above algorithms are the ones distributed

with ROS, which could not be the most efficient implementation of AMCL.

Although, all algorithms have linear time complexity, as expected, the beam based likeli-

hood function takes the longest due to the complexity of the ray-casting process. Particle

filter based methods have the highest computational times due high processing to manage

a large number of particles in each iteration.
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Figure 3.13: Shows the RMS errors of the proposed EKF based and optimisation based
algorithms when input sensor measurements are artificially corrupted.

Figure 3.14: Per scan execution time for localisation algorithms.
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3.6.5 Localisation Using Ceiling Data from an Upward Looking Camera

Localising a mobile robot with an upward looking camera is popular with service robots

that operate in dynamic environments as it is typical for commonly used lateral sensors

to generate inferior sensor measurements due to occlusions.

In order to evaluate the merits of the proposed chamfer distance based sensor model

(Section 2.4.1), we performed some preliminary experiments using an upward looking

camera as the sensor, together with a distance function map of the ceiling mosaic.

For these experiments, we used a modified version of the Willow Garage Turtlebot R© . The

upward looking camera that was fitted with the robot was a low cost Microsot LifeCam

VX-2000 webcam which has a resolution of 640× 480 and a diagonal field of view of 55◦.

The robot was also equipped with a Hokuyo UTM-30LX laser range finder sensor. The

laser range finder based localisation results were used as the approximated ground-truth

for this experiment. The robot was tele-operated at the office environment in the Centre

for Autonomous Systems(CAS), University of Technology, Sydney(UTS).

The ceiling of this environment is planar with lights and air-ducts inset onto the tiled ceiling

as shown in Figure 3.15. Camera observations from the initial run was used to create a

mosaic of the ceiling, which was transformed to a distance function. The observations are

images captured from the upward looking camera mounted on the robot. The robot has

wheel-encoders, and therefore reports odometry which was used in the ceiling localisation

process.

Figure 3.16 shows the trajectory when the robot makes two loops.

It can be clearly seen in the figure that when the robot travels under the textured area

of the ceiling the algorithm effectively localises the robot. However, when the robot goes

through the area where the ceiling does not have any extractable texture, or when the

camera is saturated by bright lights this algorithm fails to perform. In these occasions the

odometry is used to update the robot pose.
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Figure 3.15: Planar ceiling at the Centre for Autonomous Systems(CAS), University of
Technology, Sydney(UTS)

Figure 3.16: Shows the trajectory the robot takes with results obtained from ceiling
image based localisation algorithm.
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3.7 Conclusion

Chapter 2 of this thesis presented a distance function based environment representation

method together with a chamfer distance based sensor model to relate observations from a

laser range finder sensor mounted on a mobile robot to distance function based map. This

chapter demonstrates the use of the proposed chamfer distance based sensor model with

three different localisation algorithms namely (i) an extended Kalman filter, (ii) a particle

filter, and (iii) an optimisation based technique to estimate the pose of a robot in a given

2D map.

Localising a robot using an EKF framework is another popular technique that had been

used by the robotics community for a long time. Though it is highly efficient and performs

well when the environment is represented using features or geometric primitives, so far

EKF has not been able to use an OGM based environment representation without a

pre-processing step that converts the said Occupancy Grid to a geometric primitive based

map and defines explicit correspondence paring between such features of the sensor reading

and the map. The Section 3.3 describes the formulation of an EKF that uses the map

representation method and the sensor model proposed in Chapter 2. Unlike the standard

EKF based localisation methods, the algorithm we propose does not rely on extracting

features from the map or defining feature correspondence. Moreover, the sensor and the

control noise parameters are the only tuning parameters required by this algorithm. These

can be easily acquired through experiments.

The Section 3.4 introduces an optimisation based algorithm to localise a mobile robot on

an OGM. Similar to the previous algorithm, this method also uses the sensor model and

the environment representation proposed in the previous chapter, and therefore, does not

require extraction of geometric primitive features from the map or the environment as

needed by state-of-the-art optimisation based localisation algorithms. Though the use of

optimisation is not popular in solving the localisation problem, it is the most recommended

method for solving the much more complex SLAM problem (see Section 3.2). Furthermore,

when the initial location is approximately known, the proposed method can operate with

a modern day laser range finder without the use of odometry, making it an ideal solution
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for a standalone localisation package for a mobile robot. Having just one parameter that

can be tuned intuitively is a key benefit of this algorithm.

As the particle filter is the go-to localisation method used by the robotics community to

localise a robot in an OGM, the Section 3.5 evaluates the use of the proposed sensor model

with particle filters. The widely used particle filter based localisation algorithm, AMCL,

uses a sensor model which relies on errors from individual beams being independent.

However, in reality, the beams are not entirely independent as pointed out by a number

of authors and therefore AMCL uses empirical methods to deal with the issues that may

potentially arise. The proposed sensor model does not explicitly rely on this assumption

and estimates the associated sensor covariance in a theoretically sound manner rather

than using another heuristic mixture model as in AMCL. Although particle filter based

solutions can be used to localise robots in many challenging environments, having dozens

of tunable parameters and the fact that it requires a large number particles and hence

more computation power to maintain acceptable accuracy, makes it less attractive to be

used in robots with limited computing power.

Moreover, this chapter presents results from a number of experiments and evaluates the

proposed algorithms. These results also verify that the environment representation frame-

work and the sensor model proposed in Chapter 2 works with both range-bearing sensors

and monocular cameras.

The next chapter further extends the use of the proposed sensor model to generate distance

function maps from raw sensor readings obtained by a robot equipped with a laser range

finder. With a laser range finder, the algorithm can even operate without odometry and

generate accurate maps under considerable clutter and dynamic objects.



Chapter 4

A Distance Function based

Algorithm for Robotic Mapping

4.1 Introduction

The ability to create and update maps of unknown environments without any human

intervention is regarded as another one of the most important requirements in the pursuit

of building truly autonomous mobile robots. Simultaneous Localisation And Mapping

(SLAM) is the most prominent way of addressing this. Despite significant progress in

this area over the last two decades, SLAM still poses great challenges. At present, there

are many robust methods for mapping environments that are static, structured, and of

limited size. Mapping unstructured, dynamic, or large-scale environments remains largely

an open research problem [112].

Though SLAM is generally computationally expensive, it is an essential requirement for

building a statistically consistent map. The main complexities in SLAM deal with how

it handles uncertainties of the sensor observations. However, when the sensor accuracy is

much higher than the desired resolution of the map, and the map is of small to moderate

size, e.g. house, office or hospital building, shopping complex, the complex mechanisms

embedded in SLAM may no longer be necessary to create accurate maps of the environ-

ment.

70
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Scan matching is a method commonly used to create such maps with the use of 2D or 3D

Light detection and ranging (LiDAR) sensors that produce a depth scan of the environment

as the observation. There are numerous methods of scan matching present in the literature,

but in essence, the strategy involves matching every new observation to one or more

previous observations to estimate the relative displacement between the two frames. The

resulting trajectory can then be used to generate the map of the environment.

In this chapter we leverage the efficiency and simplicity of the distance function based

environment representation and the associated sensor model we introduced in Chapter 2

to present a novel mapping mechanism that could be used with a lightweight computing

platform. This method is able to generate accurate maps of indoor environments using

laser range finders, with and without the use of robot odometry. We use simulation, public

domain, and datasets we collected on real environments to assess the validity and the merits

of the algorithm. Comparisons with other state-of-the-art scan-to-map matching and scan-

matching based mapping algorithms are also presented. It is important to note that the

algorithm we propose does not consider the impact of sensor uncertainty. However, we

demonstrate that high quality maps can be generated to be used in practical scenarios of

importance to assitive robots.

This chapter is organised as follows: The next section presents related work in the field.

Section 4.3 discusses preliminaries of scan-to-scan and scan-to-map matching. Section 4.4

formulates the proposed chamfer distance based mapping algorithm. In Section 4.5 we

present normal distribution transform (NDT) based scan-to-map matching algorithm, an

extension to one of the state-of-the-art scan based mapping techniques which we used to

compare the proposed mapping method. Section 4.6 presents experimental results and

comparisons, while Section 4.7 concludes the chapter.

4.2 Related Work

Probabilistic methods have dominated the robotic mapping field since early 90’s after

Smith, Self, & Cheeseman [113, 114] published a series of seminal papers introducing a

powerful statistical framework for mapping, and introduced the problem of simultaneously
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solving the mapping problem while localising the robot relative to the growing map. Since

then many algorithms have emerged as solutions to this problem which became popular

as Simultaneous Localisation And Mapping or SLAM algorithms [115].

One family of solutions to SLAM use Kalman filters to estimate the map and the robot

location [85, 116–118]. The resulting maps usually describe the location of landmarks,

or significant features in the environment. Similarly, another branch of SLAM solutions,

which uses particle filters [34, 86, 119] as the solving mechanism where the map is con-

structed from as a tree of particle trajectories with each node representing a possible

realisation of the map. The node with the least error is chosen as the optimum estimate.

An OGM of Intel Research Laboratories Seattle, USA, obtained by the use of GMap-

ping [34] which is the most commonly used laser range finder based SLAM algorithm in

the community is shown in Figure 4.1. GMapping uses a Rao-Blackwellized particle filter

formulation [120] to derive the trajectory of the robot.

It is also possible to formulate SLAM as a parameter estimation problem with all the robot

poses where observations are taken from, and all observed landmarks or features are treated

as a set of unknown parameters that are to be estimated. An objective function that is

based on Maximum Likelihood (ML) of those parameter estimates can be formulated by

using robot odometry measurements and robot-to-feature observation information to relate

the unknown parameters [87–89, 121]. Due to the availability of large memory spaces, and

the fact that the Jacobians of the objective function to be optimised are sparse, current

algorithms that use the optimisation framework can even efficiently solve SLAM problems

consisting of a few thousand of robot poses and a few million robot-to-feature observations

[122]. The use of such optimisation techniques has become the preferred solution to SLAM,

due to their robustness and ease of use.

Even-though feature based SLAM has become extremely popular in the field and has

many applications, in environments where it is not straight forward to extract features,

or when an OGM is required from sensors such as laser range finders, scan based SLAM

methods [34, 123–125] are commonly employed. These methods directly utilise the un-

processed scan readings as observations which are generally sets of points obtained from

sensors such as laser range finders. One of the fundamental issues of the scan-based SLAM
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Figure 4.1: An occupancy grid map of the Intel Research Laboratories, Seattle, USA
generated using GMapping.

has thus been the association or matching of one scan to another, namely the scan-to-scan

matching. When the correct correspondence and a cost function that is known to align

the scans is available, a traditional SLAM back-end can be used to solve the problem. In

the Scan-SLAM framework proposed by Nieto, Bailey, & Nebot [123] and in the work by

Diosi & Kleeman [124], the authors propose the use of an EKF to estimate the robot poses

and the map after a scan matching process. More resent work on scan matching based

SLAM proposes a graph based optimisation solution to process the scan-to-scan matching

output [125]. In the method proposed by Lv et al. [126], incremental scan matching is

performed to construct sparse point sub-maps which are realigned to minimise error when

a loop is detected and a loop closure step is performed, which can be used to produce

more accurate maps.

Newer optimisation based algorithms, commonly known as pose-graph SLAM [122, 127,

128], completely marginalise the features or landmark locations and only maintain robot

poses and relationships between poses as its internal representation, without using an

explicit geometric representation of the environment. Such relative pose estimates can be

obtained using a scan matching technique for laser range finders or an image registration

method for cameras, provided that at different consecutive poses the sensors can observe

and recognise the same region of the environment. When the robot visits previously

observed regions after a long traversal, a loop-closure detection technique is used to create

further relationships[129]. Once the optimum robot pose estimates are available, a map of

the environment can be constructed if required. One main advantage in this framework is

that any sensor can be used to construct the pose relationship, which make the algorithms
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independent from the sensor selection.

However, with the advent of highly accurate laser range finder sensors, real-time map gen-

eration for practical purposes has shifted from the use of SLAM which is usually computa-

tionally expensive, to other techniques that solely rely on scan matching [35, 36, 83, 130–

132]. These methods range from using ICP scan-to-scan matching algorithm to grid based

algorithms that uses normal distribution transform methods. These methods do not con-

sider the uncertainties associated with the sensor measurement. Therefore, although they

are not guaranteed to be statistically consistent, maps generated may be adequate in

practical situations faced by assistive robots.

The most common scan-to-scan matching approach is based on the ICP technique [80,

133, 134] which allows the point-to-point matching between two scans by minimising the

total distance between them. Despite the popularity of the technique, the point-to-point

matching may yield inappropriate data association since two corresponding points are not

actually on the same position in the environment. Weiss & Puttkamer [135] proposed a

technique that avoids the point-to-point matching problem by calculating an angle between

two neighbouring scan points and using the angles to match the two scans. ICP has further

evolved to include point-to-line and point-to-plane to effectively deal with association

problems, but they are still environment dependant.

In order to overcome point and plane association issues, Biber & Straßer [131] represented

the environment as a subdivided grid space and collectively describing a scan within each

grid cell by a normal distribution (ND). This grid-based normal distribution transform

(NDT) technique spatially associates every point of the new scan inside a grid cell to the

corresponding normal distribution in the cell. NDT methods do not suffer from the point-

to-point correspondence issues and does not depend on the environment structure such as

point-to-plane matching does, though matching performance varies according to the grid

size and the accuracy of the initial guess.

Furthermore, a number of approaches have been proposed on integration of multiple scan

matching techniques to improve the accuracy. Early efforts include the work of Lu and

Milios [136], which performed the matching of the new scan to the previous scan and

further matched it to all the scans by storing the past scans. Thrun et al. [137] used an
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expectation maximisation (EM) algorithm that finds the best matching scan in the past

to the new scan from all the past scans. The matching of the new scan to all the past

scans is then achieved by the scan-to-scan matching of the new scan to this best past

scan. Although they have demonstrated capabilities in accurate matching, the approaches

could still see error accumulation without a loop closure as neither implement a powerful

scan-to-scan matching nor utilise all the past scans. In [131], the authors use a point-to-

ND technique to match the new scans to multiple past scans sequentially to reduce error

accumulation. Gutmann et al. [130] presents a similar method that matches the new scan

with a limited collection of scans using a sliding-window technique which improves the

accuracy of the map immensely, while keeping the algorithm computationally tractable.

In the ideal scenario a new scan should be matched with a combined scan of all past scans,

however this can be highly computationally expensive. Bosse et al. [138] introduced a

subspace-to-map matching technique where the new scan is matched to all the past scans

of a subspace of concern with any scan-to-scan matching technique and the subspaces are

subsequently associated to each other for global mapping. This technique achieves the

matching of the new scan to all the past scans, but the accuracy could still decrease as

the new scan points not in the subspace are not matched to the past scans. Ryu et al.

[139] extends work presented by Straßer and Biber [131] and proposes an ND-to-ND based

scan-to-map matching technique which can build further accurate maps with less error

accumulation due to the proposed multi-ND matching mechanism. Another advantage of

most of these techniques for scan matching is that they can directly be extended to 3D

mapping with minimal effort [132].

KinectFusion by Nicombe et al. [38] and the method proposed by Tomono [140] constructs

a Truncated Signed Distance Function (TSDF) based three-dimensional (3D) global model

by doing global transform of all previously acquired scans, and uses signatures from the

global model for tracking the next robot pose, which is essentially a scan-to-map matching

technique. However, these methods can be computationally expensive as the metric that

is used for matching needs to be extracted from the global model every iteration by using

an expensive ray-casting strategy.
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4.3 Scan Matching Preliminaries

Scan matching is the process of estimating the rigid body transform between two 2D or

3D scans taken from different robot poses, so that the scans are best aligned.

When scans are captured by a range sensor on a moving robot, they are sequentially ob-

tained with respect to different robot coordinate systems. Let {R−}zk−1 = {{R−}zik−1|∀i ∈
{1, · · · ,m}} be the previous scan in the previous robot coordinate system, and {R}zk ={{R}zik|∀i ∈ {1, · · · , n}} be the new scan in the new robot coordinate system, where k

is the time step, n is the number of points in the scan. {R−} and {R} denote the

robot coordinate systems before and after correction, respectively. Given the two scans,

a scan-to-scan matching technique iteratively finds relative transformation parameters,

{R−}
{R} pk = [tk, φk]

�, composed of a translation, tk = [txk, t
y
k]

�, and a rotation, φk, between

the two coordinate systems by locally matching the two scans. The first step in this process

is to transform the new scan in the new robot coordinate system to that in the previous

coordinate system using an initial guess,
{R−}
{R} p′

k, of the transformation parameters using

Equation (4.1). This initial guess can be estimated from readings of other sensors such as

odometry, or set to zero assuming that the two scans are close enough.

{R−}zik({
R−}

{R} p′
k) = R(φ′

k)
{R}zik + t′k =

⎡
⎣ cos(φk) − sin(φk)

sin(φk) cos(φk)

⎤
⎦
⎡
⎣ {R}zxi

k

{R}zyik

⎤
⎦+

⎡
⎣ tx

′
k

ty
′

k

⎤
⎦

(4.1)

where t′k = [tx
′

k , ty
′

k ]
�, and {R}zik = [{R}zxi

k ,{R} zyik ]�.

Thereafter, any of the scan-to-scan techniques mentioned in Section 4.2 can be used to

compute the transformation
{R−}
{R} pk between points of the new scan {R−}zk and the

previous scan {R−}zk−1. In incremental scan-to-map matching, instead of matching the

new scan to the previous scan, it is matched to the already formed map.

When a new scan is obtained, it is first transformed to the previous robot coordinate using

{R−}
{R} p′

k. Some of the latest work on scan-to-map matching [36, 139, 141] uses scan-to-scan

matching methods such as ICP, as an initial conditioning step to improve the initial guess.
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Once the
{R−}
{R} p′

k transform is applied, the scan can be further transformed to the global

coordinate system {G} using,

{G}zik = R({G}θk−1)
{R−}zik +{G} xk−1 (4.2)

where {G}xk−1 = ({G}xk−1,
{G}yk−1,

{G}θk−1)
� is the robot pose in the global coordinate

system estimated at time step (k − 1).

However, at this point the scan is not yet perfectly aligned with the map due to errors

in the initial guess, and a scan-to-map matching algorithm is used to estimate the final

transform
{G+}
{G} pk, in the corrected global coordinate frame {G+}.

4.4 CD Mapping: Chamfer Distance based Scan-to-Map

Matching

In this section we present a scan-to-map matching mapping method which uses the distance

function based environment representation method and chamfer distance based sensor

model presented in Chapter 2.

Modern day laser range finders that are widely used in robotics applications have higher

data-rates compared to the motion speed of mobile robots. Therefore, when a new area

is being explored, a significant part of the new laser scan overlaps with the existing map.

This overlapping data is used to localise the robot on the map and the new component of

the scan is then merged to extend the map.

A more detailed description of the method is as follows:

When a new laser scan is obtained at time-step k, the scan is transformed from {R−}
coordinate frame to {R} using odometry information with the use of Equation (4.1). If

robot odometry is unavailable, the relative transform
{R−}
{R} pk can be set to zero. Con-

trary to other popular algorithms, the use of ICP to improve the initial guess can be

seen as unnecessary additional overhead as the typical convergence basin of the chamfer
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Figure 4.2: Flow chart for the CD mapping algorithm.

distance based objective function is approximately ±3m for translations of (x, y), and

approximately ±30◦ for rotations of φ as detailed in Section 2.4.4.

After the transform, it is necessary to convert the updated initial robot pose and the

scan to the global coordinate frame {G} using Equation (4.2), to perform scan-to-map

matching. At this stage, if the laser scans contain points that are out of the current map

boundaries, those points can be safely excluded from the matching phase.

After which, we use Equation (4.3) to perform matching of the new scan to the existing

distance function.

argmin
{G+}
{G} pk

dCD(
{G}zk, DF ) (4.3)

The objective function above forms an unconstrained non-linear optimisation problem that

can be solved using a variety of gradient based techniques similar to Section 3.4. We used

the Matlab implementation of the trust-region algorithm for the experiments presented in

Section 4.6.

The matching result would be the corrected transformation
{G+}
{G} pk, which can be used

to transform the scan to the corrected global coordinate frame {G+}. Figure 4.2 depicts

a flowchart for the mapping process.

Once the corrected robot pose is obtained, the new scan can be located in the global

frame. Thereafter the new scan can be merged to the existing distance function in order
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to expand the map. The update only happens to the area overlapped by the new scan.

First, the local distance function of the new scan, DFZk
is created. Then the updated

map can be obtained by fusing the distance function of the new scan to the existing map,

DF1:k−1, simply by Equation (4.4), without the need for recreating the entire distance

function from scratch.

dijk = min
(
dijk−1, dijZk

)
(4.4)

where dijk ∈ DFk [overlapping region], dijk−1 ∈ DTk−1 [overlapping region], and dijZk
∈ DFZk

.

4.5 An Extension to Grid-based ND-to-ND Scan-to-Map

Matching1

In this section we propose an extension to ND-to-ND based scan-to-map matching based

mapping algorithm proposed by Ryu et al. [139]. The resulting algorithm produces maps

that are more accurate than the existing NDT based mapping methods. This work was

aimed at comparing the accuracy of the proposed mapping algorithm discussed before

with a state-of-the-art scan-to-map matching based mapping algorithm.

This algorithm follows the generic scan-to-map matching methodology. A brief overview

of the algorithm is as follows:

In NDT based techniques, the environment map is represented using a set of grids with

each cell containing a normal distribution which represents all scan points in that grid

cell. Figure 4.3 shows an example map and the grid structure. For some of the cells, in

addition to the main normal distribution, multiple smaller map normal distributions are

initiated to make the algorithm viewpoint invariant.

Initially robot odometry is used to determine the transform between {R} and {R−},
{R−}
{R} p′

k. However, as an additional refinement step, ICP is performed between the new

1We originally published this work in “Grid-based scan-to-map matching for accurate 2D map build-
ing” [36]
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Figure 4.3: Two-dimensional grid space overlapped with the environment (left) and the
normal distribution based on scan points in the jth cell (right)

Figure 4.4: The grid map is represented by multiple normal distributions (right) and
new scans to be matched to the grid map (left)

scan and the previous scan and the transformation is updated to
{R−}
{R} pICP

k . Once the

points are transformed to the {G} frame using Equation (4.2), a ND-to-ND based global

correction is performed.

Figure 4.4 illustrates the grid map with multiple map normal distributions in each cell

together with possible new scans that would correspond to that map normal distribution.

As shown in the figure, the new scan of an object can be significantly different depending

on where the scan is taken, therefore one normal distribution would not be able to capture

every viewpoint. The grid map with multiple normal distributions allows the matching of

the new scan to a map normal distribution irrespective of the robot viewpoint.
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With the new scan in the {G} frame, it can be split into the same grid cells and a new set

of normal distributions are created for this scan.

The selection of a matching map normal distribution that corresponds to the scan nor-

mal distribution starts with quantifying the similarity of the scan normal distribution to

each map normal distribution in the same cell. The similarity score can be computed

by Kullback-Leibler (KL) divergence, DKL, which is a mathematically solid method for

measuring the distance between two probability distributions:

S
(
N ({G}z̄jk,

{G} Σ̄j
k),N (z̄jl1:k−1, Σ̄

jl
1:k−1)

)
= −DKL

(
N ({G}z̄jk,

{G} Σ̄j
k)||N (z̄jl1:k−1, Σ̄

jl
1:k−1)

)

= −1

2

{
tr
(
(Σ̄jl

1:k−1)
−1{G}Σ̄j

k

)
+ (z̄jl1:k−1 −{G} z̄jk)

�(Σ̄jl
1:k−1)

−1

(z̄jl1:k−1 −{G} z̄jk)− ln
det({G}Σ̄j

k)

det(Σ̄jl
1:k−1)

− λ

}
(4.5)

where l ∈
{
1, · · · , nj

k−1,
}
, λ is the dimension of the normal distributions, andN ({G}z̄jk,

{G} Σ̄j
k)

and N (z̄jl1:k−1, Σ̄
jl
1:k−1) are the scan normal distribution and the lth map normal distribu-

tion, respectively.

Out of several map normal distributions, the most similar one to the scan normal distri-

bution is the one with the highest similarity value. For the jth cell, this can be expressed

as:

min
{
S
(
N ({G}z̄jk,

{G} Σ̄j
k),N (z̄jl1:k−1, Σ̄

jl
1:k−1)

)
|∀l ∈

{
1, · · · , nj

k−1

}}
(4.6)

The optimum distribution from Equation (4.6), l∗th map normal distribution, is regarded

as the matching map normal distribution for the scan normal distribution if the similarity

is greater than the specified threshold parameter, γ:

S
(
N ({G}z̄jk,

{G} Σ̄j
k),N (z̄

jl∗
1:k−1, Σ̄

jl∗
1:k−1)

)
> γ (4.7)
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which can be tuned experimentally.

After the matching map normal distribution is identified for each scan normal distribu-

tion, it is possible to estimate
{G+}
{G} pk by matching all the scan normal distributions to

the corresponding matching map normal distributions with the use of the objective func-

tion given in Equation (4.8) which is the sum of similarity S between the scan normal

distribution and map normal distribution.

argmax
{G+}
{G} pk

∑
j

S
(
N (z̄jk, Σ̄

j
k),N (ẑjk, Σ̂

j
k)
)

(4.8)

After estimating the corrected transform
{G+}
{G} pk, the scan is transformed to the new

coordinate frame {G+} using Equation (4.1). Now the new scan can be merged to the

map using a weighted mean as given in Equation (4.9).

z̄
jl∗
1:k =

mj
1:k−1z̄

jl∗
1:k−1 +mj

k z̄
j
k

mj
1:k−1 +mj

k

(4.9)

Σ̄
jl∗
1:k =

mj
1:k−1Σ̄

jl∗
1:k−1 +mj

k Σ̄
j
k

mj
1:k−1 +mj

k

(4.10)

where mj is the number of scan points in the jth cell, which is also updated to include the

new number of points after the merger.

4.6 Experimental Results

In this section we compare the distance function based mapping algorithm with other state-

of-the-art algorithms. For this, we used several datasets which included public domain,

simulation and datasets we collected in real crowded environments. We present results for

qualitative comparison as well as quantitative comparison using established error metrics.

The following algorithms were used for comparing the performance of the mapping tech-

nique proposed in Section 4.4.
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1. Grid-based ND-to-ND Scan-to-Map Matching from Section 4.5.

2. Incremental ICP scan matching [142, 143].

3. GMapping [34]

4.6.1 Pose accuracy

First, we adopt the relative relations comparison proposed by Kümmerle et al. [144] in our

evaluation. This metric compares the relative relations of two poses from the trajectory

with near ground-truth relations. When δi,j = xj � xi at two instances i and j in the

robot trajectory, the error metric ε(δi,j) is given by,

ε(δi,j) = δi,j � δ∗ij (4.11)

Here, δij are the relations estimated by the mapping algorithm, while δ∗ij are near ground-

truth reference relations obtained by the authors of the datasets by manually matching

scans. The operator � is the inverse of the standard motion composition operator as

defined by Lu & Milios [136], which in the 2D case is given by Equation (4.12).

δa,b = xb � xa =

⎛
⎜⎜⎜⎝ [R(φb)

�]
0

0

0 0 1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
xb − xa

yb − ya

φb − φa

⎞
⎟⎟⎟⎠ (4.12)

where R(φb) =

⎛
⎝cosφb − sinφb

sinφb cosφb

⎞
⎠ is the 2D rotation matrix for yaw φb around the z axis.

We can present translational (trans(·)) and rotational (rot(·)) components of the collective

error as mean of absolute errors and RMS error forms with the use of Equation (4.13) and

Equation (4.14).
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Figure 4.5: Maps generated using the proposed CD mapping algorithm for four public
domain datasets.(From left to right: ACES Building at the University of Texas, Intel
Research Lab Seattle, MIT CSAIL Building Boston, and building 079 at University of

Freiburg.)

ε̄(|δi,j |) = 1

N

∑
i,j

|ε(δi,j)|

=
1

N

∑
i,j

|trans(ε(δi,j))|+ 1

N

∑
i,j

|rot(ε(δi,j))| (4.13)

RMS(ε(δi,j)) =

√
1

N

∑
i,j

ε(δi,j)

=

√
1

N

∑
i,j

trans(ε(δi,j)) +

√
1

N

∑
i,j

rot(ε(δi,j)) (4.14)

The following four public domain datasets were used for this evaluation: ACES Building

at the University of Texas, Intel Research Lab Seattle, MIT CSAIL Building Boston,

and building 079 at University of Freiburg. These datasets were selected because the near

ground-truth relations, δ∗i,j for the datasets, obtained using manual scan matching, are also

available in the public domain [145]. The results of other algorithms we use for comparison

are quoted from Kümmerle et al. [144] and Burgard et al. [146]. Table 4.1 presents our

results together with two other algorithms: Incremental scan matching using a variant of

ICP based on work by Censi [147] and GMapping based on a RBPF for learning grid maps

by Grisetti, Stachniss, & Burgard [34] available on OpenSLAM.org [148].
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Table 4.1: Quantitative Results of Different Approaches/datasets

Trans. error(m) CD Mapping Scan Matching∗ GMapping (50 particles)∗

Aces (abs) 0.024 ± 0.037 0.173 ± 0.614 0.060 ± 0.049
Aces (RMS) 0.050 ± 0.094 0.638 ± 1.651 0.077 ± 0.105

Intel (abs) 0.019 ± 0.042 0.220 ± 0.296 0.070 ± 0.083
Intel (RMS) 0.048 ± 0.102 0.369 ± 0.526 0.105 ± 0.184

CSAIL (abs) 0.019 ± 0.025 0.106 ± 0.325 0.049 ± 0.049 †

CSAIL (RMS) 0.032 ± 0.058 0.342 ± 0.853 0.071 ± 0.114 †

FR 79 (abs) 0.026 ± 0.172 0.030 ± 0.427 0.061 ± 0.044 †

FR 79 (RMS) 0.041 ± 0.391 0.066 ± 0.829 0.078 ± 0.141 †

Rot. error (deg) CD Mapping Scan matching∗ GMapping (50 particles)∗

Aces (abs) 0.3 ± 0.3 1.2 ± 1.5 1.2 ± 1.3
Aces (RMS) 0.4 ± 0.6 1.9 ± 3.3 1.8 ± 2.8

Intel (abs) 0.3 ± 0.4 1.7 ± 4.8 3.0 ± 5.3
Intel (RMS) 0.5 ± 1.0 5.1 ± 13.1 6.1 ± 13.7

CSAIL (abs) 0.4 ± 1.1 1.4 ± 4.5 0.6 ± 1.2 †

CSAIL (RMS) 1.2 ± 4.6 4.7± 10.5 1.4 ± 4.2 †

FR 79 (abs) 0.4 ± 0.4 1.7 ± 2.1 0.6 ± 0.6 †

FR 79 (RMS) 0.6 ± 1.1 2.7 ± 3.8 0.8 ± 1.4 †
∗ Results quoted from [146]. † Scan matching has been applied as a pre-processing step.

For the second evaluation we use a simulated dataset generated in the Intel Research

lab environment as the original Intel research lab dataset does not have ground-truth to

evaluate the results against. This dataset has the same noise parameters as stated in Table

3.1.

In Figure 4.6, we present the resultant maps from three algorithms.

Table 4.2 compares the pose output of each algorithm to the ground-truth. For the compar-

ison, we choose the method proposed by Kümmerle et al. [144] as it accounts for rotations

in the map. We have randomly chosen 500 pose pairs to compare the relations.

Moreover, as this is a simulated dataset, we can compare errors during the whole mapping

process as we have access to ground-truth. Figure 4.7 shows the relevant errors while

the Table 4.3 a summary of the errors. The plots clearly show that the errors do not

accumulate over time as they do with scan-to-scan incremental ICP mapping methods,
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Figure 4.6: Presents results of three algorithms from the simulation run on Intel research
labs map. (a) ROS Stage simulation environment and ground-truth, (b) resultant map
and poses from Distance Function based mapping algorithm, (c) resultant map and poses
from ND-to-ND mapping algorithm, and (d) Results from GMapping, for comparison.

(GMapping only provides poses for places marked with ‘×’)

Table 4.2: Quantitative results of different approaches on simulated Intel dataset, for
500 random relations.

Algorithm
Trans. error(m) Rot. error(deg)

Mean(abs) RMS Mean(abs) RMS

CD mapping 0.1852 ± 0.4281 0.4282 ± 0.8480 1.9396 ± 3.2517 3.2506 ± 4.3310

ND-to-ND 0.2302 ± 0.4437 0.4436 ± 0.8422 2.2676 ± 3.4026 3.4020 ± 4.4155

GMapping 0.7619 ± 1.3431 1.3427 ± 2.2948 7.8637 ± 10.4681 10.4699 ± 13.3662

ICP 1.0652 ± 1.4684 1.4762 ± 2.0037 7.4289 ± 9.4157 9.4051 ± 10.9317
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Figure 4.7: Errors for all poses for simulated Intel dataset

Table 4.3: Quantitative results of different approaches on simulated Intel dataset, for
all poses.

Algorithm
Trans. error(m) Rot. error(deg)

Mean(abs) RMS Mean(abs) RMS

CD mapping 0.0540 ± 0.0610 0.0635 ± 0.0649 1.1360 ± 2.2849 2.3102 ± 3.4830

ND-to-ND 0.1074 ± 0.1284 0.1309 ± 0.1554 1.3483 ± 2.3777 2.3778 ± 3.5324

GMapping 0.0630 ± 0.0808 0.0815 ± 0.0946 2.7425 ± 3.7186 3.8402 ± 4.1452

ICP 1.6646 ± 2.1226 2.1546 ± 2.6783 12.4516 ± 6.8402 14.1977 ± 13.9609

which is evidence of implicit loop-closure. However, as seen between times 0− 200s in the

plot, the error keeps on growing until the loop-closure point is reached.

4.6.2 Mapping Real Environments

We used the proposed mapping algorithm to generate maps in several real environments.

The data for mapping was collected using the instrumented walker revision 2 shown in
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Figure 1.1. It is equipped with a Hokuyo UTM-30LX laser range finder sensor, and the

rear wheels are fitted with wheel encoders to log odometry.

The map shown in Figure 4.8 is obtained from the Ground floor of the Roselands Shopping

centre, Roselands NSW Australia. The data collection was done in multiple runs starting

from different locations on the same floor. The poses are marked in different colours for

each individual run. When the robot start pose is at an unknown location, we initially use

the optimisation based localisation method introduced in Section 3.4 to localise the robot

on the existing part of the map, and then continue to expand the map after the robot

successfully localises itself.

Figure 4.8a shows a zoomed in section of the place where the loop is completed after ap-

proximately 250m of travel. The path has accumulated approximately 1m of error during

this loop. Furthermore, the trajectory amongst the aisles of the lower-left corner does not

revisit previous places which causes the error to accumulate slowly, making the map incon-

sistent. Though the algorithm performs implicit loop-closures for shorter displacements

and smaller loops, a large loop which has a prominent displacement like the one shown

in Figure 4.8, requires active detection and adjustment of the whole trajectory inorder to

perform loop closure, which is not performed in the algorithm we propose. This demon-

strates a common limitation of scan-to-map matching techniques and the need for SLAM

in large scale environments.

Furthermore, the collection of data was done during normal working hours and the shop-

ping centre was crowded during this time. Figure 4.9 shows a sparse long exposure image

which highlights the crowd movement, so that the performance of the algorithm in clutter

can be qualitatively evaluated.

4.7 Conclusion

This chapter introduces a scan-to-map matching based mapping method which combines

and enhances the sensor model and the distance function based environment representation

proposed in Chapter 2. The algorithm has a number of advantages compared to the

existing algorithms, such as the ability to function without other inputs such as odometry,
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Figure 4.8: Ground floor at Roselands Shopping Centre, Roselands, NSW, Australia.
(a) Zoomed view of the end of the large loop.

light weight computation requirements, and having only one tuning parameter (ζ, defined

in Equation (3.11)).

We used the SLAM benchmarking metric proposed by Kümmerle et al. [144] and Burgard

et al. [146] to evaluate the algorithm using a number of public domain and simulated

datasets. The results from the algorithm are compared with GMapping, which is an

improved RBPF SLAM technique, as well as the extended version of ND-to-ND scan-to-

map matching, which we proposed in Section 4.5. This work is an extension of one of
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Figure 4.9: Long exposure time-lapse image showing movement of crowd during collec-
tion of data.
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the state-of-the-art normal distribution based scan-to-map matching methods presented

by Ryu et al. [139].

We further demonstrate that the proposed mapping technique can be used to generate

maps even in highly cluttered environments with very good accuracy, even without odom-

etry. As shown in Section 3.6.1 the distance function maps generated from the algorithm

can be readily used for localisation, or can easily be exported to an OGM for other tasks

such as path planning.



Chapter 5

Control of Assistive Robotic

Robots

5.1 Introduction

Control of a robot is the process of determining the forces and torques that are required by

the actuators in order for the robot to go to a desired position, follow a desired trajectory,

perform a task or achieve a low-level goal with desired performance needs [149]. For an

autonomous robot, this task becomes complicated as most of this process should happen

without human intervention using the information such as the map of the environment,

the localisation of the robot, and sensor measurements which the robot may have at its

disposal to reach high-level goals. The robot might also be subject to constraints and sub-

goals either to optimise the process or to prevent undesired consequences such as accidents

or the robot losing the position information (i.e. localisation).

In the case of assistive robots, the complexity of robot control further increases as they

need to closely interact with humans in order to assist them do the desired task. Another

major concern is the fact that most of the operators of assistive robots may not have

a technological background and therefore the interface for interaction with the operator

should be simple and intuitive. This not only means that the robot controller should

understand the user need using simple cues, but also discern the user intention accurately

92
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and quickly. Furthermore, as the assistive robots replace a variety of other existing assistive

devices, the mechanism of human user interaction is highly unique to a given class of

applications, and is difficult to generalise.

In this chapter, we present a framework for developing a controller and a user interaction

system for assistive robots. We take as an example, the process that we followed to

optimally design an assistive robotic hoist (hereafter referred to as the Smart Hoist),

and also report the results of user studies that accompanied the development process.

Throughout the entire design process, the end user of the robot was an integral member

of the design team. This ensured that the control interface is intuitive, easy to understand

and use, which is a novel strategy for designing assistive robots. Although we focus on

developing an assistive robotic hoist, the framework we use is more generic and answers

broader questions that might pertain to the development of control strategies for assistive

robotic devices.

This chapter is organised as follows: The next section presents the background for the

design of the Smart Hoist. Section 5.2 discusses the collaborative design approach we

use in building the Smart Hoist, while Section 5.3 gives a brief description of the user

intention recognition method used in the Smart Hoist which also explains how we map

the user input appropriately to the system output. This section will also demonstrate how

the influence of hardware and mechanical limitations were mitigated by understanding the

main user operation patterns and requirements. Section 5.4 presents results of experiments

conducted to validate the model in practice. We also present a basic evaluation done

using Electromyography (EMG) data that suggests assisted manoeuvring actually reduces

strain on the musculoskeletal system, and therefore may reduce injuries. In Section 5.5

we present a discussion about the experience of users from a set of trials conducted at an

IRT retirement village in Woonona, NSW, Australia. Section 5.6 concludes the chapter.

5.2 Background

Due to the increasing demand for aged care services and the continuing decline in the

relative availability of informal carers, the scarce trained aged care workforce often find
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itself overworked to meet community expectations. This, combined with the high rate

of work-related musculoskeletal injuries amongst carers [150–153] and injuries to non-

ambulatory residents occurring during transfer (e.g. bed to chair, chair to toilet and bath),

gives rise to significant costs and health and safety risks. Therefore, it is equally important

to assist carers in order to improve safety and the quality of care services. A report by the

Academy of Technological Sciences and Engineering titled “Smart Technology for Healthy

Longevity” [154, 155] canvassed various options based on the use of innovative technologies

to address this challenge.

With this in mind we initiated a case study to evaluate how assistive robotics can be

used to alleviate these issues. We approached Illawarra Retirement Trust (IRT) Research

Foundation to discuss avenues for introducing assistive robotics to the work-flow of their

age care facilities. A working group was formed which consisted of the care facility man-

agement and the operational staff of IRT to put forward suggestions that could potentially

help decrease the injury rate amongst carers.

A patient hoist or a patient lifter is the main device that is used to transfer non-ambulatory

residents in aged care, disability care and hospital facilities. Shown in Figure 5.1, a stan-

dard lifter, is usually equipped with a motorised or a mechanical hoist system. However,

moving the hoist is a manual process aided by four swerve drive caster wheels attached to

the base of the hoist, which enables holonomic motion. Though manual motion is easy and

effortless to operate when the device is not loaded, with a patient on the sling the carers

need to exert a considerable amount of force and effort to manoeuvre the hoist, especially

when in-place rotations take place.

We suggested to augment the standard hoist by embedding robotic capabilities to assist

the carers while they perform the transfer. The final advanced prototype, the Smart Hoist,

is a standard hoist integrated with sensors to capture the user intention along with other

sensory data about the environment, on-board computing to make decisions, and actuators

to provide assistance. Design considerations and system architecture of this Smart Hoist

are detailed in Appendix A.

User Centred Design (UCD) and Co-Design [156] are common approaches that solicit

end users’ views in design of products. Typically, the design process has four stages: (i)



Chapter 5. Control of Assistive Robotic Robots 95

Figure 5.1: Standard Joey patient hoist from Haycomp Pty. Ltd.

research, (ii) concept development, (iii) detailing, and (iv) implementation. In UCD, the

designer views the end user as the subject and he/she takes authoritative decisions and

controls all four stages, while using the end users as subjects to gather data necessary

for the design process. This has been the main approach of solving problems related to

robotics systems [157–159].

On the other hand, Co-Design approach consider the end user as a part of the design team

and the designers rely on users’ expertise on the domain knowledge. During the design

process, the designer no longer makes high-level design decisions. That means he/she acts

as a mediator while designing cooperatively with end users [160]. Although the Co-Design

approach is not widely used in designing robotic systems yet, there are a few examples

of its use in human robot interaction [161, 162]. As assistive robots closely interact and

associate with human operators, the design process of such robots can greatly benefit by

integrating end users in the design team.

The process we followed for designing the Smart Hoist was inspired by the principles of

Co-Design, with the end users (both carers and residents) always in the loop for every
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Figure 5.2: UTS-IRT Smart Hoist.

design decision. The working group consisted of 10-15 staff personnel of IRT Woonona

Facility, which included nurses, carers, physiotherapists, occupational health and work

safety coordinators and a few residents. Facility management were involved in a few of

these sessions where regulatory matters were being discussed. The nature of the design

workshops were more interactive and engaging, and for some components such as the

batteries and display, we used mock-ups and cardboard prototypes to narrow-down user

requirements.

Figure 5.2 shows a diagram of the Smart Hoist while an overview of the final system can

be found in the Appendix A.

5.3 User Intention Recognition

Use of a basic control pad/joystick is the most common way of controlling robots. However,

at the workshops the users did not favour the use of a control pad mainly due to the nature

of the device operation and ethical concerns. Therefore, a major requirement in the design

process was to ensure the Smart Hoist mimics the manoeuvring method of a standard hoist

as closely as possible. To achieve this, the Smart Hoist must be capable of recognising
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operator activity through the handle bars which is the only point of contact between the

operator and the Smart Hoist. As needed, the automatic actuation mechanism triggers

the motors to provide the required assistance, so that the operator feels they are pushing

a less heavy object which is essentially a change to the inertial properties of the system to

mimic a lower mass.

Though the retrofitted wheels are equipped with the swerve capability, the response time is

not as fast as the caster wheels due to physical constraints. This voids the easy holonomic

motion as the standard hoist. So another key consideration was how to address this loss

of freedom of motion so that the users have the least impact while fulfilling the essential

motions.

5.3.1 Admittance Controller

A simple admittance control strategy1 is used to control the Smart Hoist’s linear motion.

The admittance controller aims to generate motion commands such that the system has

an equivalent mass of m and an inertia of I irrespective of the actual inertial properties

of the system.

The motion of the system in response to a force F from the user is governed by Equation

(5.1) which can be used to generate a velocity command, v.

F = m · v̇ + C · v (5.1)

where C is the desired damping coefficient.

This strategy is only effective if the underlying velocity controller closely follows the input

velocity commands under different loads. The motor controller was experimentally verified

to uphold this condition.

Similarly, for torque inputs of τ around the handles’ z axis, we can use Equation (5.2) to

obtain the angular velocity ω when the desired angular damping coefficient is Cω.

1We initially published this work in “Smart Hoist: An Assistive Robot to Aid Carers” [163]
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τ = I · ω̇ + Cω · ω (5.2)

During the user trials, we experimentally tuned the parameters m, I, C, and Cω, which

constitutes the desired inertial properties of the Smart Hoist, to values the carers were

comfortable to use.

5.3.2 Classifying the Main Modes of Operation

The standard hoist has four swivel caster-wheels, which enables it to have holonomic

motion via changes in caster direction. However, the Smart Hoist wheels are not as

responsive as the caster wheels. Therefore, we studied main modes of operation of a

standard hoist to device a compromised solution.

We conducted several trials involving IRT carers who regularly do patient transfers using

a standard hoist to observe its motion during normal operations. Figure 5.3 shows a

typical floor plan of a resident’s room at the IRT Woonona care facility. As it can be

seen, the rooms and corridors are quite narrow with little or no free space. Even though

the standard hoist is holonomic, we could observe a few common modes of motion for the

hoist as shown in Table 5.1.

The users of the hoist interact with the device using the two handle bars. As shown in

Section A.1.1, we instrumented the handle bars with strain gauges to detect the forces.

Essentially we can resolve these forces to lateral linear forces in the x and y directions, Fx

and Fy and torque τ around the handles’ z axis.

These linear forces can be combined to a resultant force vector F in the direction α.

However, though F, α, and τ is enough to understand the intended operation mode,

the noise in strain signals prevents us from getting a clear estimate of α. Moreover,

the response time of the angle of change in the omni-directional wheels is much slower

compared to the changes in direction. Due to these limitations, mapping the intention

to the actual motion of the hoist is not straightforward. Therefore, user trials were used
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Table 5.1: Main modes of motion for a standard hoist

Direction Usage

Main modes of operation when moving the hoist
along corridors and where there is free space.

Forward,
backward, and

turning

Used while turning in tight spaces. The rooms and
corridors in the facility can be small and do not have

much space for turning.

In place rotation

Used to position the hoist against a bed or a
wheelchair.

Side-to-side
motion

Used when going through corridors or narrow
doorways.

Diagonal motion
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Figure 5.3: A typical floor plan of a resident’s room at the IRT Woonona care facility.

to experimentally obtain the thresholds illustrated in Figure 5.4 to set the direction of

motion.

The forward, reverse, left, and right motions were set to have a 20◦ dead-band with respect

to the input angle, after which the hoist will perform diagonal motion up-to a maximum

of 45◦ from the forward or reverse direction. This is a heuristic classification and the

thresholds were experimentally defined during the user trials.

A block diagram of the complete control system is shown in Figure 5.5. The motion logic

converts the input motion into the desired drive angles by mapping between the direction

of force α and the desired motion pattern. The navigation assist functionality provides

obstacle avoidance capabilities2.

2We previously published this work in “A Novel Collaboratively Designed Robot to Assist Carers” [164]
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Figure 5.4: Mapping the direction of force α to the direction of motion.

Figure 5.5: Block diagram of the Controller.

5.4 Experiments and Trials

In the first part of this section, we present a set of experiments conducted to investigate

whether the Smart Hoist helps to reduce the musculoskeletal injuries that carers of aged

care facilities commonly face during non-ambulatory resident transfers.

Thereafter, we analyse the results collected from the surveys and user trials to help validate

our design, which is directly applicable to the broader field of designing controllers for
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assistive robots.

We used both quantitative and qualitative methodologies for the evaluations.Quantitative

methods include a comparison of forces required to operate the hoist, an analysis of EMG

data collected while the subjects operated the hoists. Furthermore, we also present results

from a survey based on a questionnaire conducted during the user trials. For the qual-

itative evaluation we will discuss some key user experiences and feedback in detail. All

experiments were conducted with professional carers at the IRT care facility in Woonona,

NSW, Australia.

5.4.1 Comparing the Operation of the Smart Hoist vs. the Standard

Hoist

The first experiment is a comparison between the normal hoist and the Smart Hoist with

and without load. We use an identical standard hoist frame to conduct the experiments.

The handles of the standard hoist were also populated with strain gauges to measure the

forces exerted on the handles. Few tasks were performed using the same load of ≈ 75kg

(i.e. same subject) on both hoists and the forces on the handles were recorded. Both

hoists were manoeuvred on the same floor, and the task was completed approximately in

the same time duration. Conducted tasks were pushes, pulls, and in-place turns.

The comparisons presented in Figure 5.6a and Figure 5.6b show that the standard hoist

requires forces in the range of 50N-80N per handle to perform push and pull operations,

while the Smart Hoist only requires a force close to 20N per handle to perform the same

action as the mass parameter m of the Smart Hoist was fixed to be 40kg. In Figure

5.6a, it can be seen that the forces on the handles are considerably asymmetric when the

standard hoist is being manoeuvred. This is usually the case when the hoist is carrying a

patient, and extra manoeuvres are required to stabilise a straight linear motion. However,

the Smart Hoist avoids this problem as it a has clear linear operation mode. Similarly,

as Figure 5.6c shows, performing an in-place turn on the standard hoist requires a much

higher forces confirming the comments received from the IRT carers during the preliminary

discussions. It can be seen that the Smart Hoist can perform this in-place rotation task

with much less effort.
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(a)

(b)

(c)

Figure 5.6: Comparison of the forces required to do (a) Push, (b) Pull and (c) In-place
turn on the standard and Smart Hoists.
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Electromyography (EMG) refers to the electrical detection of signals arising from the de-

polarisation of skeletal muscle. These signals may be detected from skin surface electrodes

or from needles placed directly within the muscle [165]. In order to measure the muscle

activity while using the Smart Hoist, we used non-invasive EMG data collected using the

Delsys R© EMG system. This system uses wearable electrodes to collect surface EMG

signals. The electrodes are placed on the major muscle groups shown in Figure 5.7 that

contribute to the above basic actions that are performed while manoeuvring the hoists

while they are loaded with a person having a mass of ≈ 75kg.

We can observe a clear reduction of muscle activity while using the Smart Hoist while

doing both push and pull actions. However, we could not get a clear reading with the twist

action mainly due to the fact that non-invasive access to the abdominal external oblique

muscles are much limited on people with an average physique, which was the case amongst

the carers that volunteered for the experiments. Figure 5.8-5.10 shows a comparison of

the results for relevant muscle activity. The EMG signal is normalised to be between

[−1, 1] using values acquired by performing Maximum Voluntary Contraction (MVC) of

the relevant muscles immediately prior to the experiments.

5.4.2 User Trials

After we completed the first prototype of the Smart Hoist according to the specifications

laid down during the design workshops, we organised a set of user trials in early December

2013 to capture the first impressions of the carers who were part of the design process.

Fifteen volunteers were inducted to use the Smart Hoist, and they were asked to perform

basic manoeuvres. The feedback we received from carers during the early design stages of

the project and the user trial was extremely valuable in further development of the Smart

Hoist. Table 5.2 lists a summary of important comments from that trial. The Smart Hoist

underwent many hardware and software changes based on this feedback. Figure 5.11 shows

examples of the Smart Hoist in use during these trials.

The second trials were conducted late March 2014 with approximately 50 carers. The

carers participated in an interactive training workshop, after which they were asked to
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(a) Pectoralis major muscles (b) Triceps brachii muscles

Major muscle groups assisting push action.

(c) Latissimus dorsi muscles (d) Biceps brachii muscle

Major muscle groups assisting pull action.

(e) Abdominal external oblique muscles

Major muscle groups assisting twist/in place turn action.

Figure 5.7: Major muscle groups tested for activity while performing basic manoeuvres
with the hoist. (Images courtesy of BioDigital Human project, biodigital.com)
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Figure 5.8: Comparison of muscle action based on EMG signals during a push action.

Figure 5.9: Comparison of muscle action based on EMG signals during a pull action.
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Figure 5.10: Comparison of muscle action based on EMG signals during an in place
turn to the left.

Figure 5.11: User trials conducted at IRT Woonona, Australia.
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Table 5.2: Summary of carers’ comments from the first user trial

Evaluation cat-
egory

Evaluation Cri-
teria

Score
out of
10

Additional Comments

Confidence Driving & Turn-
ing

7
• “Need to be slow when mov-

ing sideways and turning un-
der load”

• “Too slow to change to side-
ways mode”

Comfort &
Ease of use

Handles & Grips 6 • “Needs too much force”

Screen 8 • “Bigger icons and text”

• “High contrast and bright-
ness”

• “Include descriptions for the
icons”

• “Arrow to indicate the wheel
direction”

Batteries 9
• “Long but OK”

• “No heavier please”

• “Must charge fast”

Cameras 9 • “Need a higher field of view”

• “Can I rely on it? Will it give
me a false sense of security?”

Safety & Effi-
ciency

Overall 10 • “I was never worried about my
feet”

perform a complete patient transfer from bed to bathroom in a simulated environment

similar to the bedroom shown in Figure 5.3. These included complex manoeuvres such

as lifting a patient from a bed, navigating through corridors and around tight corners

and lowering the patient into a chair. The aim of this experiment was to assess the

intuitiveness and responsiveness of the Smart Hoist in comparison to a standard hoist in

a routine transfer. Preliminary outcomes of the second trial upheld the results from the

first user trial.
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5.5 Discussion

Overall, the test results from analysing forces exerted while operating the Smart Hoist

confirm that use of the Smart Hoist can reduce the force required to manoeuvre the hoist.

Furthermore, the activity of muscles measured by EMG confirms that the muscles were

less activated while using the smart hoist, which suggests less strain on the musculoskeletal

system. Comments from the trial users confirm this claim as well. They found that they

do not need as much effort to use the Smart Hoist as the standard hoist when it is loaded,

especially when doing in-place turns on carpeted floors .

At the initial induction, we only introduced the basic manoeuvres to the carers. During the

trials, some of them were just explicitly using the motion patterns they were introduced

to. However, because of the way the controller is designed, it is possible to perform

some natural motion patterns with the Smart Hoist that are not explicitly defined in

the controller. For example, with the manoeuvre shown in Figure 5.12, even though not

frequently used, it is possible to perform such a motion with both standard hoist and the

Smart Hoist, and it could be useful on rare occasions. Though we did not mention such

motions during the induction, we were surprised to see the carers instinctively performing

such manoeuvres during the trial, making it a very good example of the intuitiveness of

the control interface of the Smart Hoist. This helps confirm the fact that the Smart Hoist

while reducing the load that the users need to exert for movements, closely mimics the

standard hoist.

We also had a joystick interface as an additional functionality on the operator interface

tablet. However, the carers’ reaction to the interface was not very appealing. Over the

65 trial participants only one person was confident and liked using the joystick and most

didn’t want to try the interface. Most of the comments were either,

“Not confident. [I] need more practice.”

or

“Need more instructions [about using the joystick]”
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Figure 5.12: Administering forces on the handles in the shown directions makes the
hoist rotate around an instantaneous centre of rotation.

Based on this feedback, we concluded that users do prefer their assistive robot (i.e. Smart

Hoist) to mimic the manoeuvring of the existing standard hoist that they are familiar

with. The user trials confirm that the learning curve associated with such a methodology

is mostly flat and users can intuitively change over to the robotic device quickly and easily.

Introduction of a joystick was not popular amongst users suggesting the unwillingness

to change the status-quo. This result can be directly extended to the design of other

assistive robotic devices, for example walkers and wheel chairs, which already have a

control methodology that users are familiar with.

Moreover, we can also use this exercise to analyse how to integrate an assistive robot

efficiently into the work-flow when it has been developed by the actual users.

One example is the design of the battery system for the Smart Hoist, which went through

a considerable amount of revisions to achieve the expectations of the users. Factors such

as ease of handling, weight, shape, docking mechanism, mounting structure, charging

system, and even aesthetics had to be taken into consideration during the development of

the batteries. As the Smart Hoist needs to be charged daily, it was important to make

sure the process is not cumbersome.

When analysing the results from the survey, another key point was whether the new

technological advancements would create a false sense of security. For example, the Smart
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Hoist comes with a reverse camera to show collisions while reversing. The Smart Hoist also

has an obstacle avoidance system. Both of these features can fail at times: The reverse

camera is a 2D camera and therefore has blind spots, while obstacle detection completely

fails when the hoist outriggers are under the bed and the camera is occluded. Therefore,

these features can actually cause undesired outcomes at times.

However, we observed that the Co-Design aspect of the Smart Hoist actually improved

the ability of the system to be smoothly integrated into the work-flow. The users who

helped design the device embrace the ownership of the hoist as they have contributed to

the design.

Therefore, we can conclude that in general, though there are many hurdles to overcome in

fully integrating an assistve robot into a work-flow, an approach such as Co-Design during

the design process can immensely improve the acceptance and ensure a smooth transition.

5.6 Conclusion

This chapter describes the outcomes of a series of case studies conducted to design and

develop an assistive robotic device, the Smart Hoist, with the aim of reducing workplace

injuries that could be sustained by the care workers in aged and disabled care facilities

when transferring non-ambulatory residents (e.g. bed to chair, chair to toilet and bath).

The device is an extension of the standard patient hoists that are commonly used in such

facilities, but with a motorised drive system rather than passive push drive. We use this

experiment as an example to validate that a Co-Design inspired framework for designing

control strategies for assistive robots can ensure development of intuitive and easy to use

robots that can be readily integrated to the daily activity flow of the end users.

Having the end user in the design loop, rather than an iterative approach, is now becoming

popular in most other fields, and is valid for the field of robotics. Especially in the design

of the drive controller, the interactive Co-design workshops guided us down the path of a

more intuitive human-robot interface rather than common control mechanisms such as the

joystick drive mode. Similar to a standard hoist, the Smart Hoist is operated by applying

forces on its handles. This intuitive control system allows the users to seamlessly migrate
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to the Smart Hoist without an added learning curve. Though the mechanical limitations of

the Smart Hoist wheels prevents it from operating exactly as a standard hoist, the system

we designed through observation and feedback from the end users makes the Smart Hoist

seamlessly mimic the standard hoist behaviour so it does not adversely impact the user

experience.

The Smart Hoist possesses a set of other features integrated into it which were developed

as a result of the Co-Design workshops but they are not discussed in this chapter; However,

some details regarding the system design for the Smart Hoist is discussed in Appendix A.

Furthermore, the Smart hoist was designed and built as part of a project with an indus-

try partner. Performance specifications of the Smart Hoist did not include autonomous

navigation. Therefore localisation and mapping algorithms were not implemented on the

Smart Hoist.
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Chapter 6

Conclusions

This thesis presented an environment representation framework with a suite of localisa-

tion and mapping algorithms designed to operate within this framework that are aimed

towards robot navigation in indoor environments. These findings are targeted towards

assistive robots, as so far there has not been a comprehensive solution to achieve robotic

mapping and localisation in real-time on a compact computational platform suited for

rapid deployment of assistive robots. We evaluated these algorithms using a range of

different datasets including simulated, public domain, and real-time data collected using

the assistive robotic platforms we have developed at the Centre for Autonomous Systems

(CAS), University of Technology, Sydney (UTS).

We also presented a framework inspired by the principles of collaborative design, for de-

signing control strategies for assistive robots. We experimentally verified this methodology

through an example design and development of an assistive robotic hoist: a robot that

can be used to reduce workplace injuries amongst care workers of aged and disabled care

sector, during the transfer process of non-ambulatory patients. The outcomes of a series of

user trials, surveys, and experiments corroborated that the design process is quite effective

in developing a robot that can be easily integrated in to the work-flow of the care facility.

Moreover, these results substantiate that the robotic hoist can reduce the muscle strain

during operation, hence may help reduce workplace injuries.

113
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6.1 Summary of Contributions

6.1.1 Distance Function based Environment Representation and Cham-

fer Distance based Sensor Model

A map of the environment together with a sensor model which correlates the observations

from a sensor to the map is an essential requirement for autonomous robot navigation. We

proposed and used distance functions to represent the environment. We also presented a

method for transforming the sensor uncertainties to the distance metric which forms one

of the key contributions of this thesis.

Thereafter, we also defined a chamfer distance based sensor model that makes use of

the proposed environment representation. This sensor model can be used to relate an

observation from a sensor to the distance function based representation without the need

for explicit data association.

6.1.2 Distance transform based Mobile Robot Localisation

We used the proposed distance function based environment representation and the asso-

ciated chamfer distance based sensor model to localise the robot in a 2D, GPS denied

indoor environment. We proposed three algorithms of using the sensor model: (i) an

EKF based approach, (ii) an optimisation based approach, and (iii) a particle filter based

method. Out of these three methods, the first two methods are novel contributions to

localise a robot on an OGM that do not rely on the extraction of geometric features or

landmarks. The first two methods are highly computationally efficient. While the EKF

approach requires sensor and control noise parameters to be experimentally estimated, the

optimisation strategy only contain one tuning parameter which can be easily deduced.

The experiment results demonstrated that the optimisation approach provide the most

accurate localisation results. However, the EKF approach reports and propagates the

robot pose uncertainty throughout the trajectory. Both algorithms require the initial pose

to be approximately known and cannot perform global localisation, and hence is unable

to solve the kidnapped robot problem. The particle filter algorithm on the other hand,
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though it is computationally expensive than other two proposed algorithms, is able to

localise the robot without the requirement of an initial pose.

6.1.3 Distance Transform based Robotic Mapping

Even though SLAM is the preferred approach for building statistically consistent maps

while localising in unknown environments, most of the time it comes at a large compu-

tational expense. For robots with limited computing power such as assistive robots, we

argue that the accuracy offered by scan matching based mapping would be adequate. We

proposed a scan-to-map matching based mapping technique which uses the distance func-

tion based environment representation and chamfer distance based sensor model proposed

in Chapter 2, that can be used to create high quality maps of 2D environments.

When compared to other algorithms such as ND-to-ND matching, incremental ICP, and

GMapping, the proposed algorithm performs well even in crowded environments as illus-

trated using both qualitatively (by appearance), and quantitatively by using the SLAM

benchmarking metric [144]. It is also shown that the proposed method has considerably

less error accumulation. We were able to use proposed algorithm in large crowded environ-

ments to create maps that can be used to localise a robot, when the other three mapping

algorithms failed to produce a coherent map due to dynamic objects in the environment.

However, as a loop closure detection and correction method is not built-in to the pro-

posed mapping algorithm, it is inevitable that it would accumulate errors unless there are

frequent implicit loop closures.

6.1.4 Control for Assistive Robots

Developing control methods for assitive robots is a very challenging problem that cannot be

generalised as it depends on the nature of the human user interaction and the functionality

of the assitive robot. In Chapter 5, we presented a framework suitable to design control

strategies for an assistive robot by using the design process of an assistive robotic hoist as

an example.
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Smart Hoist is a patient lifter device that was retrofitted with powered motors to pro-

vide assistance to transferring non-ambulatory residents at aged/disability care facilities.

Development of this assistive robotic device was in response to the growing number of

work-related musculoskeletal injuries amongst the carers of these facilities due to manual

manoeuvring of the lifter device. We followed the principals of Co-Design which keeps

the end user as an integral member of the design team throughout the conception, design,

development, and testing stages.

We further reported results from a number of experiments conducted to prove the effec-

tiveness of the Smart Hoist in reducing musculoskeletal fatigue which may help to reduce

related injuries. Feedback from the carers who participated the user trials and surveys

were presented to highlight the effectiveness of using such a design approach which is

generally applicable to design of any assistive robotic device.

6.2 Discussion of Limitations and Future Work

In Chapter 2, we introduced a distance function based representation method that can be

used to represent the environment of which the function value provides more information

about the obstacles in the environment over the traditional OGM based representations.

However, the distance function does not encode the uncertainties that may be present in

the process that was used to create the particular map, resulting in a map that is treated

to be perfect in the subsequent localisation algorithms. Distance functions used for 3D

applications use strategies such as Gaussian processes to represent map uncertainties that

can also be used to fill any gaps that may be present in the unexplored areas in the

3D surface [41]. Exploring possibilities of including the map uncertainties in distance

functions, while still maintaining the computational efficiency is likely to be fruitful in

future work.

Furthermore, in its present form, the environment representation treats the environment as

static. During the mapping process most of the dynamic objects present in the environment

are statistically filtered out. However, an assistive robot which operates for a long time in a

given environment should be able to augment the map to deal with moveable static objects
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such as furniture, bins, and pot-plants which are prevalent in indoor environments. In the

current mechanism, though we are able to update the map by adding new obstacles, once

we have included an obstacle, there is no sound strategy to remove it from the distance

function. Addressing the problem by dynamically updating the distance function requires

future work.

Another important problem that we faced while creating maps are the errors associated

with loop-closures. An active strategy to detect loops and command the robot such the

distance between implicit loop-closures are smaller than a predefined value is one pos-

sibility. It is also possible to apply a pose-graph based SLAM solver into the mapping

mechanism for further correction as suggested by a number of authors as mentioned pre-

viously. Investigating the suitability of such methods without sacrificing computational

efficiency is an avenue for future work.

We designed and developed a new wheel mechanism to help solve the issues we faced

with the previous wheels. These wheels are designed to have better swerve capabilities so

that we can closely follow the holonomic action provided by standard hoist caster system.

Analysing the impact of these through an extended user study would provide further

valuable insights.

Use of the proposed design framework to develop other assistive robotic devices may be

help to further regularise the proposed strategy, which is also suggested as future work.



Appendix A

System Overview of the Assistive

Robotic Smart Hoist

The UTS-IRT Smart Hoist incorporates and builds upon the standard JoeyTM Lifter from

AIS healthcare Pty. Ltd. As part of the transformation, the JoeyTM Lifter has undergone

a series of modifications which were completed with extreme care to avoid compromising

its structural integrity, Figures 5.1 and 5.2 shows the standard and Smart Hoist.

A.1 Hardware Structure

A.1.1 Sensors

The Smart Hoist is equipped with a number of sensors to gather information about the

environment as well as the user input.

A.1.1.1 Handles

The handles of the hoist consists of four strain gauge installations, each in a full-bridge

configuration. Each handle contains two bridges, the first pair measures torsion along the

mounting axis of the handle as shown in Figure A.1a, the other pair measures the deflection

118
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(a) (b)

Figure A.1: Modified handle bars of the Smart Hoist. (a) Torsion sensor pairs for
detection of forward and backward forces. (b) Deflection sensor pairs for detection of

sideways forces.

of the handle up and down along the top fixed axis, which is effectively a sideways force on

the handle (Figure A.1b). The location of these sensors were selected to obtain an optimal

stain reading by performing a Finite Element Analysis (FEA) of the handle structure. In

contrast to the standard hoist, the handle is disjointed in the middle to prevent strain

transmission from one side to the other.

A.1.1.2 Cameras

There are two cameras attached to the system. A High Definition, wide-angle RGB camera

at the top of the boom (Figure A.2b) to act as a rear view camera to aid when reversing

the hoist, and a RGB-D sensor at the bottom of the Smart Hoist. This camera is used by

the navigation assistance system for manoeuvring the hoist in confined spaces and avoiding

objects.

A.1.1.3 Boom Sensors

Weight measurement and the Body Mass Index (BMI) calculation is an added feature that

is generally not present in the standard hoist. As shown in Figure A.2 strain gauges were

placed at an optimal location that yielded the highest strain, determined by performing

an FEA of the boom structure.
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Figure A.2: Strain gauge location on the boom for weight measurement.

The strain gauge readings at a given height of the boom can be approximated to have a

linear relationship with the weight in the sling. The weight can be estimated at a maximum

error of about two percent after proper calibration.

This weight is displayed on the User Interface (UI) and BMI of the patient on the hoist can

be easily calculated from the UI. The system controller also uses the weight measurements

in its logic for safety actions.

A.1.2 Actuators

The standard system is factory fitted with two actuators, one controlling the lifting of the

boom and the other one controlling the width between the outriggers. These actuators

were retrofitted with encoders to monitor their location which is required in weight mea-

surement. In addition to these the rear wheels of the Smart Hoist were replaced with a

pair of powered castors shown in Figure A.3. The wheel is 360◦ steerable and uses the

Revolution 2TM assembly from 221 Robotic Systems [166].

A.1.3 The User Interface

For the purpose of interacting with the carers and displaying critical information of the

system, such as battery level, system status, and error messages, a UI has been included

with the Smart Hoist.

As Android is readily interoperable with ROS, a Google R© Nexus 7 - 2012 Tablet running

Android version Jelly bean has been used for the interface. The Tablet is tethered to

the Hoist PC using USB to ensure a reliable connection to the host. The kiosk mode UI

(Figure A.4) of the Smart Hoist is kept simple and intuitive, allowing users to interact with
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Figure A.3: Revolution 2TM omni-directional crab drive motors from 221 Robotic Sys-
tems, and how they’re retrofitted to the Smart Hoist.

Figure A.4: User Interface of the Smart Hoist, the main screen.

Figure A.5: Control pad/ joystick interface to control the Smart Hoist

it easily. Design, development and implementation of the Graphical User Interface (GUI)

also adhered to the corporative design approach.

There is a simple control pad/joystick interface to control the Smart Hoist that can be

enabled via a hidden settings menu as shown in Figure A.5.
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A.1.4 Hoist Computer

An Intense PCTM[167] is included in the Smart Hoist as the main processing platform

(Figure A.6). It is equipped with an Intel R© CoreTMi7 processor running at 2.8Ghz with

4GB of RAM. The underlying operating system is Ubuntu 12.04 LTE and ROS version

Fuerte Turtle.

A.1.5 Peripherals

A.1.5.1 Hoist Controller

A propitiatory embedded controller board was designed and built based on a Microchip

PIC24 micro-controller, for low level hardware monitoring, power management, interfacing

with other hardware (detecting e-Stop status) and data acquisition from the strain gauges.

The Hoist Controller is interfaced to the Hoist PC via a USB interface and it streams data

frames at 10Hz to the Hoist PC.

A.1.5.2 Motor Controller

The Sasquatch controller from 221 Robotics Systems based on AtmelR© AtMega 2560

Micro-controller is used for controlling the motors (Figure A.6). It receives information

from the Hoist PC at 10Hz through an Ethernet interface. The velocity and steer angle

of each individual motor are the input to the Motor Controller.

A.1.6 Batteries and Uninterruptible Power Supply(UPS)

The Smart Hoist was designed to have two LiFePO4 Batteries of ≈ 26V , which weigh

≈ 4.5kg (Figure A.7). This chemistry was specifically chosen to increase the life span of

the batteries. When both batteries are fully charged the Smart Hoist has a standby time

of more than 12 hours and about 5 hours when it is in operation.

A super-capacitor UPS was included to supply power to the Hoist PC and other critical

components for approximately three minutes in-between battery changes.
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Figure A.6: Motor controller (left) and the Hoist PC (right) assembly.

A.2 System Assembly and Enclosure Design

The enclosure forms part of the Smart Hoist that houses the majority of hardware compo-

nents including the Hoist PC, the Hoist Controller, the Revolution 2TM motor assemblies,

the Sasquatch motor controller, the Batteries and the UPS.

Since a standard hoist was used as the basis upon which to build the Smart Hoist, space

was limited. This meant the enclosure housing the hardware components needed to be

compact and provides its own structural integrity to support all hardware components.

Having an Ingress Protection rating of X4 (IPX4) for the enclosure was an additional

design consideration.

The majority of the design process was centred around the batteries. After estimating the

power budget, it was deduced that 16 cells are required for a usage cycle of ≈ 5 hours

per charge. As a result, the batteries were split into two packs (Figure A.7a) which were

designed to be manageable in weight and easily inserted and removed from the Smart

Hoist (Figure A.7b).

The design of the enclosure and placement of hardware components were planned and

mapped in SolidworksTM. A physical framework was then constructed using Aluminium.

All remaining hardware components were mounted to this framework and wired. The

external shell of the enclosure was then physically modelled in cardboard and FoamexTM
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(a) (b)

Figure A.7: Batteries used in the Smart Hoist.

for the initial iteration and the final version of the enclosure was manufactured in Poly-

amide using an additive manufacturing process called Selective Laser Sintering (SLS).

A.3 Measures Taken for Occupational Health and Safety

A.3.1 Foot-guards

As the Smart Hoist uses powered motors it is extremely important to restrict accidental

access to the powered wheels or caster wheels. Though covered foot wear is a mandatory

requirement for carers at IRT, for extra safety foot guards were added to all wheels.

A.3.2 Maximum Run Speed

The maximum speed of the motors were limited at the Motor Controller firmware level

to avoid the propagation of any undesirable velocities. Steps have also been taken to

disable the motors in the event of critical failure scenarios (e.g. motor controller loses

communications with the Hoist PC) .
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A.3.3 Braking

The Revolution 2TM motors were modified to have electro-mechanical brakes that would

get engaged whenever there are no forces on the handles. This ensures the stability of

the Smart Hoist and prevents the hoist from rolling while loading and unloading heavy

subjects.

A.3.4 Emergency Stop (EStop)

As with most industrial devices, Smart hoist is equipped with an eStop Button that can

be engaged in an emergency. This button immediately disconnects power to the actuator

systems. The electro-mechanical brakes are automatically applied in this scenario and can

be manually disengaged if necessary.
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