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ABSTRACT 

This thesis focuses on the control and implementation of the vehicle to grid (V2G) 
system in a smart grid. Important issues like structure, principle, performance, and 
control of energy storage systems for electrical vehicles and power systems are 
discussed. 

In recent decades, due to rapid consumption of the earth’s oil resources, air pollution 
and global warming (a result of the “greenhouse effect”), the development of electrical 
vehicles (EVs), hybrid electrical vehicles (HEVs) and plug-in electric vehicles (PEVs) 
are attracting more and more attentions. In order to provide regulation services and 
spinning reserves (to meet sudden demands for power), V2G services have a promising 
prospective future for grid support. It has been proposed that in the future development, 
such use of V2G could buffer and support effectively the penetration of renewable 
sources in power systems. This PhD thesis project aims to develop novel and 
competitive control strategies for V2G services implementation for EVs in smart 
electrical car parks or Smartparks.  

Through a comprehensive literature review of the current EV development and energy 
storage systems used for EVs, several energy storage technologies are compared and a 
hybrid energy storage system consisting of batteries and supercapacitors is proposed. 
This system combines effectively the advantages of high energy density of battery 
banks and high power density of supercapacitor banks. Supercapacitor and battery cells 
are tested in the laboratory using different charging and discharging procedures. 
Different supercapacitor and battery models are compared, discussed, and verified using 
the experimental data. For the energy storage system package, a cell voltage balance 
circuit is developed for the supercapacitor module. The principle of this circuit is also 
applicable to the battery module. The proposed balancing method is simple and reliable, 
and presents good performance for voltage balancing to prolong the lifetime of the 
energy storage system.  

The essential technology of V2G is based on the bidirectional power flow control of the 
charger. Besides charging the EV batteries, it can utilize the stored energy to feed 
electricity back to the power grid when there is a need. Three-phase AC/DC converters 
have been extensively used in industrial applications and also the V2G chargers. The 
power converters used for the V2G services are required to operate more efficiently and 
effectively to maintain high power quality and dynamic stability. Then the AC/DC 
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converter used for the bidirectional V2G charger is developed and modelled. For the 
control aspect of AC/DC converter, a new control approach using a model predictive 
control (MPC) scheme is developed for V2G applications. With the advanced control 
strategy, the EVs in Smartparks can exchange both active and reactive power with the 
grid flexibly. The MPC algorithm presents excellent steady-state and dynamic 
performance. 

When a very large number of EVs are aggregated in Smartparks, the charging and 
discharging power should be a significant viable contributor to the power grid. New 
challenges will be introduced into the power system planning and operation. While 
discharging, the V2G power brings more potential benefits to enhance the power quality 
and system reliability. Using V2G services, EVs can provide many grid services, such 
as regulation and spinning reserve, load levelling, serving as external storage for 
renewable sources. An effective approach to deal with the negligibly small impact of a 
single EV is to group a large number of EVs. An aggregator is a new player whose role 
is to collect the EVs by attracting and retaining them so as to result in a MW capacity 
that can beneficially impact the grid. From the aggregator’ decision, the EVs are 
determined by the optimal deployment. The aggregator can act as a very effective 
resource by helping the operator to supply both capacity and energy services to the grid. 
By supplying active power and reactive power from EVs, the aggregation may be used 
for frequency and voltage regulation to control frequency and voltage fluctuations that 
are caused by supply–demand imbalances. Different case studies of EVs’ support to 
grid are carried out; the results show that V2G services can stabilize the frequency and 
voltage variations and have control flexibilities to fulfil system reliability and power 
quality requirements.  

The main attractiveness of V2G to consumers is that it can produce income to the 
vehicle owner to maximize car use. On the other hand, the utility companies can use 
EVs to stabilize the frequency in the power system and improve the utility operation. It 
also makes the utility companies more efficient with less loss because the energy is 
generated locally. From this point of view, V2G is a source of revenue in both 
electricity and transportation system, and it can help the environment reduce pollution 
and global warming. Various data of V2G systems have been collected for economic 
analysis, such as EV battery capacities, charging time, and grid electricity price and load 
demands. Then for the economic issues related to V2G services, optimal charging based 
on different objectives is presented. Dumbing charging, maximization of the average 
state of charge (SOC), maximum revenue and minimum cost are compared. Economic 
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issues are a very special aspect of the V2G technology and how a large profit from V2G 
services can be produced is the main point of attraction to vehicle owners. 

Significant conclusions based on the research findings are drawn, and possible future 
works for further development including commercialisation of the V2G technology are 
proposed. 
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