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Abstract 

This thesis explores the rationale and effectiveness of diversification across time 

and strategies, which is an important philosophy for risk management in practice, in 

the framework of developing trade execution strategies. In this thesis, the strategies 

are defined as making a series of decisions based on real-time state variables over a 

fixed period to achieve high reward and low risk with given resources. Trade 

execution strategies are to make a series of decisions on how to place an order in 

markets based on real-time market information over a fixed period to fill the order 

with low cost and risk in the end. 

In the I st part, this thesis explores diversification across time. The research of 

trade execution has shown that although limit order strategy achieves lower cost 

than market order strategy does, it may incur nonexecution risk and miss trading 

opportunities. This thesis proposes a strategy that reflects the idea of diversification 

across time to improve the limit order strategy. In the 2"d part, this thesis explores 

diversification across strategies. Techniques for implementing this idea have been 

proposed to acquire strategies from a candidate strategy set and determine their 

weights. For those techniques, the candidate strategy set normally only contains 

finite strategies and the risk that they reduce is only measured by one specific 

standard. This thesis proposes a technique that overcomes those drawbacks. In the 

3rd part, the proposed technique is applied to improve trade execution strategies. 

The strategy proposed in the I st part is called DF (Qynamic focus) strategy, which 

incorporates a series of small market orders with different volume into the limit 



order strategy and dynamically adjusts each market order volume based on two real-

time state variables: inventory and order book imbalance. The sigmoid function is 

adopted to map the variables to the market order volume. Experiments show that the 

DF strategy achieves lower cost and risk than the limit order strategy does. 

The technique proposed in the 2nd part extends the key idea of the AdaBoost 

(adaptive boosting) technique, which is discussed mostly in the supervised learning 

field. It is named DAB (Qiversification based on AdaBoost) in this thesis. The DAB 

technique adaptively updates the probability distribution on training examples in the 

learning process, acquires strategies from a candidate strategy set and determines 

their weights. Resources (e.g. money or an order) are allocated to each acquired 

strategy in proportion with its weight and all acquired strategies are then executed 

in parallel with their allocated resources. The DAB technique allows the candidate 

strategy set to contain infinite strategies. Analysis shows that as the learning steps 

increase, the DAB technique lowers the candidate strategy set's risk, which can be 

measured by different standards, and limits the decrease in its reward. 

The DAB technique is applied in the 3rd part to acquire DF strategies from a 

candidate DF strategy set and determine their weights. The entire order is allocated 

to each acquired DF strategy in proportion with its weight and all acquired DF 

strategies are then executed in parallel to fill their allocated order. In this thesis, this 

parallel execution is called BONUS (QQosted dynamic foe!!§) strategy. Experiments 

support theoretical analysis and show that the BONUS strategy achieves lower risk 

and cost than the optimal DF strategy and two simple diversification techniques do. 

This thesis is contributed to both finance and computer science fields from the 

theoretical and empirical perspectives. First, the proposed DF strategy verifies the 

effectiveness of diversification across time through improving the existing trade 

execution strategies. Second, the proposed DAB technique provides a flexible way 

for implementing diversification across strategies to complement the existing 

diversification techniques and enrich the research of the AdaBoost technique. Third, 

the proposed DAB technique and BONUS strategy provide a flexible way to 

improve trade execution strategies. 
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Chapter 1 

Introduction 

This thesis explores the rationale and effectiveness of diversification in the 

framework of developing trade execution strategies from the theoretical and 

empirical perspectives. In the 151 part, this thesis proposes DF (Qynamic focus) 

strategy, which reflects the idea of diversification across time, to achieve lower cost 

and risk than the existing trade execution strategies do. In the 2°d part, this thesis 

extends the AdaBoost (adaptive boosting) technique in the machine learning field to 

propose DAB (Qiversification based on AdaBoost) technique for implementing 

diversification across strategies. Analysis shows that the DAB technique lowers a 

candidate strategy set's risk, which can be measured by different standards, and 

meanwhile limits the decrease in its reward. In the 3rd part, this thesis applies the 

DAB technique to trade execution and proposes BONUS {QQosted dynamic focyfil 

strategy, which reflects the idea of diversification across DF strategies. The 

BONUS strategy reduces a candidate DF strategy set's risk, which can be measured 

by different standards, and limit the increase in its cost. This chapter is composed of 

four sections. The 1st section describes the research motivation and goals of this 

thesis. The 2"d section illustrates the research issues and methodologies of this 

thesis. The 3rd section clarifies the research contributions of this thesis. The 4th 

section outlines the organization and structure of this thesis. 

1 



CHAPTER 1. JNTRODUCTION 2 

1.1 Research Motivation and Goals 

This thesis explores the rationale and effectiveness of diversification across time 

and strategies in the framework of developing trade execution strategies. In this 

thesis, the strategies are defined as making a series of decisions based on real-time 

state variables over a fixed period to achieve high reward and low risk with given 

input resources. This general definition covers five key elements related to a 

strategy: a fixed period, input resources, real-time state variables, decisions, an 

objective of achieving high reward and low risk. The five elements involved in the 

definition have their specific meanings in applications. 

In a financial investment strategy, for example, the fixed period can be several 

days, several months or several years; the input resources are referred to as capital; 

the real-time state variables as real-time market information like price; the decisions 

as how to buy and/or sell financial products; the objective of achieving high reward 

and low risk as achieving high investment return and low investment risk. A 

financial investment strategy is to make a series of decisions on how to buy and/or 

sell financial products based on real-time market information over a fixed period to 

achieve high investment return and low investment risk. 

In a trade execution strategy, the fixed period can be several minutes, several 

hours or several days; the input resources are referred to as a buy or sell order (e.g. 

purchasing or liquidating I million shares of one stock); the real-time state variables 

as real-time market information like price; the decisions as how to place the order in 

markets; the objective of achieving high reward and low risk as achieving low 

execution cost and risk. A trade execution strategy is to make a series of decisions 

on how to place the order in markets based on real-time market information over a 

fixed period to fill the order with low execution cost and risk in the end. 

Practitioners have been trying to design efficient trade execution strategies since 

economic activities came into being. With the development of modern financial 

markets, the research on trade execution strategies has attracted more attention from, 

academia and industry because execution cost and risk can significantly affect the 
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return in investment especially with high turnover. It was reported that the expected 

annual return during the period of 1979 - 1991 was around 26.2% for the stocks 

recommended by Value Line (a financial firm) whereas the fund that invested in 

these stocks had an actual annual return of 16.1% only. The 10% difference 

between the actual and expected annual returns was lost to transaction cost (Perold 

1988). It was also estimated that transaction cost per annum could be up to $120 

billion in the $12 trillion U.S. equity market. Research institutions and financial 

firms are actively involved in developing efficient strategies to reduce trade 

execution cost and risk. 

Diversification across time and strategies is an important philosophy for risk 

management in practices and its principal idea can be expressed as a saying "do not 

put all eggs in one basket". It has been emphasized in practice for a long time. 

Diversification across time is to allocate the input resources to different time points 

instead of a single one. Diversification across strategies is to allocate the input 

resources to various strategies instead of a single one. For example, rational 

investors allocate their money to different investment periods of time and/or various 

investment products such as stocks and bonds to hedge investment risk. Note that 

investing in one financial product can be regarded as a strategy as per the general 

definition of strategy in this section. The major objective of this thesis is to explore 

the rationale and effectiveness of diversification across time and strategies in the 

framework of developing trade execution strategies and apply it to improve the 

existing trade execution strategies from the theoretical and empirical perspectives. 

Following the major objective, three sub-objectives are respectively illustrated in 

the three paragraphs below. 

In the I 51 part, this thesis explores diversification across time in developing trade 

execution strategies. Various trade execution strategies have been proposed to fill a 

buy or sell order over a fixed period with low cost and risk. Two typical strategies 

are called market order strategy and limit order strategy. The market order strategy 

can immediately fill the entire order without any restrictions on price while the limit 

order strategy normally does not fill the entire order immediately by assigning a 

price to the order. Through assigning a price to the order, the limit order strategy 
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could capture trading opportunities as the market evolves and limit execution cost to 

an expected range. The research of trade execution has shown that limit order 

strategy achieves lower execution cost than market order strategy does. However, 

the limit order strategy could not fill the entire order (particularly a large order) at 

the end of execution (this is called nonexecution risk) and might miss trading 

opportunities in the period of execution because it assigns a price to the order. This 

thesis proposes a strategy to solve the problems that the limit order strategy faces. 

The proposed strategy reflects the idea of diversification across time. This thesis 

theoretically analyzes why the proposed strategy can improve the limit order 

strategy and empirically evaluates its effectiveness. 

In the 2nd part, this thesis explores diversification across strategies, which aims to 

lower the strategies' risk and limit the decrease in their average reward. In the 

finance field, the techniques for implementing diversification across strategies have 

been proposed to acquire strategies from a candidate strategy set and determine 

their weights. There are two limitations in the existing techniques. First, the 

candidate strategy set normally only contains finite strategies (e.g. investing in 50 

stocks). Second, they are normally designed to reduce risk, which is only measured 

by one specific standard (e.g. the variance of returns). But in practice, a candidate 

strategy set can contain infinite strategies if the strategy parameter takes values in a 

range of real number. Besides, various standards have been proposed to measure 

risk in the finance field such as the variance of returns (Markowitz 1952), the k-

order lower partial moment (k-LPM) of returns and the minimum of returns (Bawa 

1975, Balzer 1994). Investors expect to achieve higher average return and lower 

risk, which can be measured by different standards (e.g. the variance of returns, the 

k-LPM of returns and the minimum of returns). This thesis proposes a technique for 

implementing diversification across strategies that overcomes the drawbacks of the 

existing techniques. This thesis also theoretically analyzes the proposed technique's 

advantages and statistical properties. 

In the 3rd part, this thesis applies the proposed technique for implementing 

diversification across strategies to trade execution to improve the strategy proposed 

in the I st part. The proposed techniq_ue acquires strategies from a candidate strategy 
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set, which is allowed to contain infinite strategies proposed in the 1st part, and 

determines their weights. This thesis theoretically analyzes its statistical property in 

trade execution, i.e. it lowers the candidate trade execution strategy set's risk that 

can be measured by different standards and limits the increase in cost. This thesis 

also empirically evaluates its effectiveness. 

1.2 Research Issues and Methodologies 

The market order strategy avoids nonexecution risk and captures the current trading 

opportunity by immediately filling the entire order, but it incurs large execution cost 

particularly when it fills a large order. Although the limit order strategy achieves 

lower execution cost than the market order strategy does, it may incur nonexecution 

risk and miss the trading opportunities in the period of execution since it does not 

immediately fill the entire order by assigning a price to the order. In the I st part, this 

thesis proposes a strategy to solve the problems that the limit order strategy faces. 

The proposed strategy is called DF strategy, which reflects the idea of 

diversification across time (also see Wang and Zhang 2006). 

The DF strategy does not only passively assign a price to the order but also 

aggressively fills part of the entire order at different time points over the period of 

execution. In other words, the DF strategy incorporates a series of small market 

orders with different volume into the limit order strategy and dynamically adjusts 

each market order volume based on real-time state variables. Dynamic volume 

adjustment of each small market order is expected to solve the problems that the 

market order strategy and the limit order strategy face, i.e. reducing execution cost, 

avoiding nonexecution risk and capturing trading opportunities. In the 1st part, this 

thesis poses three questions as QI, Q2 and Q3. The brief answers are given in the 

paragraph immediately following each question and the details will be illustrated in 

Chapter 3. 

(QI) - Which real-time state variables over the period of execution can be used to 

dynamically adjust the. volume of each market order from the DF strategy? 
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In the DF strategy, dynamic volume adjustment depends on two real-time state 

variables over the period of execution: inventory and order book imbalance. Here, 

inventory is represented as the ratio of the unexecuted volume of the order to the 

remaining time. Inventory changes over the period of execution and the unexecuted 

volume decreases as time goes by. The increase in inventory indicates that there is 

more unexecuted volume in less remaining time. In this case, the DF strategy 

assigns more volume to the market order for submission to reduce nonexecution 

risk. The decrease in inventory indicates that there is less unexecuted volume in 

more remaining time. In this case, the DF strategy assigns less volume to the market 

order for submission to wait for favorable price movement in future. Order book 

imbalance represents the relationship between supply and demand in financial 

products. When supply is stronger (or weaker) than demand, it indicates that prices 

would go down (or up). If order book imbalance forecasts that prices would move 

toward the adverse direction, the DF strategy will assign more volume to the market 

order for submission to capture the current trading opportunity. Otherwise, the DF 

strategy will assign less volume to the market order for submission to wait for 

favorable price movement in future. 

(Q2) - How to quantitatively describe the relationship between the real-time state 

variables and the volume of each market order from the DF strategy? 

The quantitative model should satisfy three conditions: 1) the volume of each 

market order for submission should not exceed the volume of the entire order; 2) the 

volume of each market order for submission should not be less than zero as it is 

assumed that for buying (or selling), no sell (or buy) order be submitted in the 

period of execution; 3) the quantitative model should be represented as an 

increasing function based on the qualitative description of dynamic volume 

adjustment. This thesis suggests the sigmoid function as the quantitative model to 

map the real-time state variables (inventory and order book imbalance) to the 

volume of each market order since it satisfies all the above three conditions. A 

parameter is involved in the sigmoid function and this means that there is actually a 

set of DF strategies with different parametric values. So an optimized parametric 
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value needs to be determined through in-sample test before the DF strategy is 

applied to out-of-sample test. 

(Q3) - How well does the DF strategy outperform the limit order strategy through 

in-sample and out-of-sample test based on real-life data? 

This thesis benefits from a unique advantage of accessing full order and trade 

records of all stocks from the Australian Stock Exchange (ASX). This advantage 

makes it possible to build a simulator to execute and testify trade execution 

strategies. The DF strategy is optimized and backtested through in-sample and out-

of-sample test based on 80 datasets, which comprise 5-month order and trade 

records of 20 stocks from the stock index "ASX20". The in-sample and out-of-

sample test show that the DF strategy achieves lower cost and risk than the limit 

order strategy does. 

In the existing techniques for implementing diversification across strategies, the 

candidate strategy set normally only contains finite strategies. In practice, the 

candidate strategy set can contain infinite strategies when the strategy parameters 

take values in a range of real number. Besides, the existing techniques are normally 

designed to lower risk, which is only measured by one specific standard. Since 

various standards have been proposed to measure risk in the finance field, it would 

be better for practitioners if a technique for implementing diversification across 

strategies could lower the candidate strategies' risk and the risk could be measured 

by different standards. In the 2nd part, thus, this thesis poses three questions as Q4, 

Q5 and Q6. The brief answers are given in the paragraph immediately following 

each question and the details will be illustrated in Chapter 4. 

(Q4) - Is there a technique for implementing diversification across strategies that 

allows the candidate strategy set to contain infinite strategies and lowers the 

candidate strategy set's risk that can be measured by different standards? 

The AdaBoost technique, which is discussed mostly in the supervised learning 

field, essentially reflects the idea of diversification across different learning models. 

The supervised learning model is to identify an object as exactly as possible. The 

AdaBoost technique acquires models from a candidate model set and determines 

their weights. An object is then identified based on the ensemble of the acquired 



CHAPTER/. INTRODUCTION 8 

learning models instead of each individual one. The research has pointed out that 

the ensemble achieves higher identification accuracy than each individual one does. 

In the AdaBoost technique, the candidate model set is allowed to contain finite or 

infinite learning models. Theoretical analysis has shown that for the ensemble of the 

acquired models, its misidentification rate decreases and its worst identification 

result on training examples (also called margin) is improved as the learning steps 

increase. The misidentification rate and the worst identification result can be 

regarded as different risk measures. These characteristics of the AdaBoost 

technique are what to be expected in Q4. But it cannot be applied directly to acquire 

strategies and determine their weights for implementing diversification across 

strategies. The AdaBoost technique trains supervised learning models based on the 

examples with labels. To acquire a strategy, however, the training examples cannot 

be marked with labels before a candidate strategy set is given. Chapters 2 and 4 will 

explain the difference between acquiring a supervised learning model and acquiring 

a strategy in details. 

(Q5) - Can the AdaBoost technique, which is applicable to training supervised 

learning models, be extended to acquire strategies and determine their weights 

for implementing diversification across strategies? 

The success in the AdaBoost technique results from its key idea - adaptively 

updating the probability distribution on training examples at each learning step. 

After the AdaBoost technique acquires a model, higher probability is assigned to 

the training examples misidentified by the acquired model. At the next learning step, 

this update makes the AdaBoost technique acquire a new model, which is more 

possible to correctly identify the training examples misidentified by the previous 

model. In the end, each acquired model can identify part of training examples well. 

The key idea of adaptively updating the probability distribution could be extended 

to implement diversification across strategies as below. After a strategy is acquired, 

higher probability is assigned to the training examples, on which the acquired 

strategy achieves lower reward. At the next learning step, it is more possible to 

acquire a new strategy, which achieves high reward on those training examples. In 

the end, each acquired strategy can achieve high reward on part of training 
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examples. Here, the training examples are not marked with labels and the 

probability distribution is updated based on the reward, which is achieved by the 

acquired strategy on the training example. The above extension composes the core 

of the DAB technique for implementing diversification across strategies proposed in 

this thesis. 

(Q6) - What are the advantages, statistical properties and theoretical foundation of 

the DAB technique? 

The DAB technique inherits the advantages of the AdaBoost technique. It allows 

the candidate strategy set to contain infinite strategies. Theoretical analysis shows 

that as the learning steps increase, the DAB technique lowers the candidate strategy 

set's risk that can be measured by different standards (e.g. the k-LPM and minimum 

of rewards) and limits the decrease in its average reward. From the perspective of 

the candidate strategy set's efficient frontier, the DAB technique moves it toward 

the favorable direction. The efficient frontier represents a set of optimal strategies in 

terms of achieving high reward and low risk. The DAB technique, as a meta-type 

method, can be generally used for implementing diversification across trade 

execution strategies. This thesis further applies the DAB technique to acquire DF 

strategies from a candidate DF strategy set and determines their weights. The entire 

order is allocated to each acquired DF strategy in proportion with its weight. All 

acquired DF strategies are executed in parallel to fill their allocated order. In this 

thesis, the parallel execution of all acquired DF strategies to fill their allocated order 

is called BONUS (Q.Qosted dynamic foe!!§) strategy. In the 3rd part, this thesis poses 

two questions as Q7 and Q8. The brief answers are given in the paragraph 

immediately following each question and the details will be introduced in Chapter 5. 

(Q7) - What are the advantages, statistical properties and theoretical foundation of 

the BONUS strategy based on the DAB technique? 

The DAB technique uses a DF strategy set as the candidate strategy set, which is 

allowed to contain infinite DF strategies. Theoretical analysis shows that as the 

learning steps increase, the BONUS strategy based on the DAB technique lowers 

the candidate DF strategy set's risk that can be measured by different standards and 

limits the increase in its cost. From the perspective of the candidate DF strategy 
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set's efficient frontier, the BONUS strategy based on the DAB technique moves it 

toward the favorable direction. The efficient frontier represents a set of optimal DF 

strategies in terms of achieving low cost and risk. The above theoretical analysis is 

further verified through the empirical study in this thesis. 

(QB) - How well does the BONUS strategy outpeiform the DF strategy through in-

sample and out-of-sample test based on real-life data? 

The in-sample and out-of-sample tests are conducted on the 80 datasets, which 

comprise 5-month order and trade records of 20 stocks. The in-sample test strongly 

supports the theoretical analysis on the BONUS strategy based on the DAB 

technique. The out-of-sample test shows that the BONUS strategy outperforms the 

optimal DF strategy and two simple diversification techniques. To sum up, this 

section has briefly described the key research issues listed in 8 questions and the 

methodology for each research issue. The following chapters will illustrate them in 

details from the theoretical and empirical perspectives. 

1.3 Research Contributions 

This thesis is contributed to both finance and computer science fields. This thesis 

explores diversification in the framework of developing trade execution strategies. 

Diversification is an important philosophy, which has been emphasized in finance 

and computer science. The 3 research parts of this thesis are linked together through 

the philosophy of diversification. Each part composes one major contribution of this 

thesis. In the 151 part, this thesis develops the DF strategy, which reflects the idea of 

diversification across time, to improve the existing trade execution strategies. In the 

2nd part, this thesis extends the AdaBoost technique to develop the DAB technique 

for implementing diversification across strategies, which overcomes the limitation 

of the existing diversification techniques. In the 3rd part, this thesis applies the DAB 

technique to trade execution and develops the BONUS strategy, which reflects the 

idea of diversification across the DF strategies, to improve the DF strategy. Figure 

1.1 outlines the 3 major contributions and their relationship as below: 
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Figure 1.1 Research contributions of this thesis 

The DF strategy incorporates a series of small market orders with different 

volume into the limit order strategy and dynamically adjusts the volume of each 

market order based on two real-time state variables: inventory and order book 

imbalance. The sigmoid function is adopted to map the real-time state variables to 

the market order volume. A lot of experiments show that the DF strategy achieves 

lower cost and risk than the limit order strategy does. This research verifies the 

effectiveness of diversification across time in trade execution and enriches the 

family of trade execution strategies. 

The DAB technique extends the key idea of the AdaBoost technique to acquire 

strategies from a candidate strategy set and determines their weights. The resources · 

are allocated to each acquired strategy in proportion with its weight and all acquired 

strategies are then executed in parallel with their allocated resources. The DAB 

technique allows the candidate strategy set to contain infinite strategies. This thesis 

also builds the statistical foundation for the DAB technique. Theoretical analysis 

shows that as the learning steps increase, the DAB technique lowers the candidate 

strategy set's risk, which can be measured by different standards, and limits the 

decrease in its average reward. This research provides a flexible way for 
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implementing diversification across strategies, complements the existing 

diversification techniques and enriches the research of AdaBoost. 

The DAB technique is further applied to acquire DF strategies from a candidate 

DF strategy set and determine their weights. The entire order is allocated to each 

acquired DF strategy in proportion with its weight and all acquired DF strategies are 

then executed in parallel to fill their allocated order. The BONUS strategy is 

referred to as the parallel execution. A lot of experiments support the theoretical 

conclusions about the DAB technique and the BONUS strategy. The experiments 

also show that the BONUS strategy based on the DAB technique outperforms the 

optimal DF strategy and two simple diversification techniques. This research 

provides a flexible way for implementing diversification across trade execution 

strategies and improves the existing trade execution strategies. 

1.4 Organization and Structure 

This thesis is composed of six chapters. Chapter I introduces research motivation 

and goals, key research issues and methodologies, major research contributions, 

organization and structure. Chapter 2 reviews the work related to this thesis from 

both finance and computer science fields: trade execution and strategy analysis, 

diversification and risk management, supervised learning and AdaBoost. Chapter 3 

proposes the DF strategy, which reflects the idea of diversification across time, to 

achieve lower cost and risk than the limit order strategy does. Chapter 4 proposes 

the DAB technique, which reflects the idea of diversification across strategies, to 

lower the candidate strategy set's risk that can be measured by different standards 

and limits the decrease in its average reward. Chapter 5 applies the DAB technique 

to trade execution and proposes the BONUS strategy, which reflects the idea of 

diversification across the DF strategies, to lower the candidate DF strategy set's risk 

that can be measured by different standards and limit the increase in its cost. 

Chapter 6 draws conclusions, summarizes major research contributions and 

discusses future research for this thesis. 



Chapter 2 

Background and Literature Review 

The research issues and methodologies discussed in this thesis are closely related to 

several research subjects in both finance and computer science fields: trade 

execution and strategy analysis, risk management and diversification, supervised 

learning and the AdaBoost technique. This chapter introduces the basic concepts 

involved in these subjects and illustrates the limitations of the existing theories and 

methods. In addition, this chapter also describes the simulator for executing trade 

execution strategies and the experimental datasets for empirically evaluating the DF 

strategy, the DAB technique and the BONUS strategy. The simulator and datasets 

introduced in this chapter will be used consistently in the experiments in the 

following chapters. This chapter is composed of four sections. The I st section 

introduces the background of trade execution and strategy analysis and clarifies the 

drawbacks of the existing trade execution strategies. The 2°d section introduces the 

background of risk management and diversification and clarifies the limitations of 

the existing diversification techniques. The 3rd section introduces the background of 

supervised learning and the AdaBoost technique and explains the difference 

between training the strategy defined in this thesis and supervised learning. The 4th 

section summarizes the related work. 

13 
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2.1 Trade Execution and Strategy Analysis 

Investors implement their investment plan through submitting, amending and/or 

canceling their orders in modem financial markets like ASX. Their orders are 

accumulated in an order book, which evolves as time goes by. Figure 2.1 shows two 

real-life order books of one stock at two different time points t1 and ti. Each order 

book contains both buy (marked as "B") and sell (marked as "S") orders in 

sequence of prices, e.g. from $3.16 to $3.26 in the left book. There may be more 

than one order at the same price level. For example, "B-$3.17-x8694" in the left 

book represents that investors are going to buy 8,694 shares of the stock. The 8694 

shares can be either the volume of one buy order or the total volume of several buy 

orders at the price of $3.17. If there is more than one order at the same price level, 

they are placed in sequence of time when they enter the market. In an order book, 

the highest buy price and the lowest sell price is respectively called best bid and 

best ask. There is normally a spread between best bid and best ask. In the left book, 

for example, the spread between the best bid of $3.17 and the best ask of$3.18 is 

one cent. The volume accumulated at price levels of the buy (or sell) side is called 

bid (or ask) depth. 

12th March, 10:09:40 
Trading Price: $3.17 

... 
s - $3.26 - x110,000 
s - $3.25 - x103,000 
S - $3.24 - x11,000 

Executio 
Price 

n S- $3.23- x3,000 
s - $3.22 - x1,000 

3.210lf83 -s-::s3-:21=--x3i,153 ___ 
S-$3.20-x32,750 
s- $3.19 - x234,740 
S-$3.18-X40,300 3.170000 .. l>aclsio n B- $3.17-xB,694 

Price B - $3. 16 - x406,850 ... 

25th March, 15:33:11 
Trading Price: $3.25 

... 
S- $3.26- x100,000 
S - $3.25 - x468,297 
B - $3.24 - x118, 105 
B - $3.23 - x135,832 

__ ll:=-...$...:l,Z2.::...X2fil>1J.P __ 
B - $3.21 - X18,500 
B - $3.20 - X54, 106 
B - $3.19 - x7,550 
B - $3.18 - X60,915 
B - $3.17 - x222,900 
B -$3.16-x157,633 ... 

De cision 
ce Pri 

3 :2501100 

~ ._21_tp81 
ecution 
ce Dri 

Figure 2.1 Two real-life order books of one stock at two time points 
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Trades happen when buy and sell orders exist in the order book at the same time 

and the prices of buy orders are higher than or equal to the prices of sell orders. 

Suppose that a new order of buying 50,300 shares at $3 .19 enter the market at time 

t1 (the left book). In this case, trades then happen. According to the market rule of 

price priority, the new buy order will firstly hits all sell orders (40,300 shares) at the 

lowest sell price of $3.18. Then there are still 10,000 shares unfilled in the new buy 

order. So it will keep hitting sell orders with the higher price of $3.19. According to 

the market rule of time priority, the new buy order with 10,000 shares unfilled will 

firstly hit the sell orders with earliest time stamp at $3.19. The new buy order with 

10,000 shares unfilled will be filled at $3.19 since there are 234,740 shares to be 

sold at $3.19. Should there be less than 10,000 shares to be sold at $3.19, some 

shares in the new buy order still would have not been filled. In this case, the unfilled 

shares would remain in the book because all sell orders with prices lower than or 

equal to $3.19 (the new buy order price) would have been used up. In the order 

book, the best bid (and ask) would move up to $3.19 (and $3.20). 

"Trading Price: $3.1 T' in the left book represents that a trade happens at $3.17 at 

the time t 1• Investors can make decision on buying or selling the stock according to 

the change in trading prices. For example, an investor makes a decision to buy (and 

sell) 500,000 shares of the stock when the trading price of $3.17 (and $3.25) occurs 

in the left book at time t1 (and the right book at the time ti). In this case, the investor 

can make a profit of $40,000 from buying at the lower price and selling at the 

higher price. For the total capital, the return in this investment can be up to around 

2.5% over IO trading days (lzth -25th March 2002). 

It is assumed in the above investment plan that 500,000 shares of the stock could 

be bought at $3.17 and sold at $3.25. However, executing an investment plan in real 

markets may be much more complicated. For example, there is not any sell order at 

the same or lower prices (see the left book of Figure 2.1) though the investor plans 

to buy 500,000 shares of the stock at $3.17 at the time t1. In order to acquire 

500,000 shares immediately at ti, the investor has to place a buy order to hit the sell 

orders with prices higher than $3 .17 in the book. In this case, the actual average buy 

price is $3.210883 per share. The similar case occurs for selling 500,000 shares of 
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the stock at $3.25 at the time ti (see the right book of Figure 2.1) and the actual 

average sell price is $3.211581 per share. The actual average buy/sell prices are 

called execution prices, which may be much worse than the investor's decision 

prices (the buy price of $3.17 and the sell price of $3.25). The expected profit of 

$40,000 and expected return of 2.5% respectively decrease to $349 and 0.022% 

only (see Table 2.1 ). The big difference between the actual profit/return and the 

expected profit/return is lost to trade execution cost. 

Table 2.1 Investment plan and actual trade execution 

Buy Price($) Sell Price ($) Profit($) Return(%) 

Investment Plan 3.17 3.25 40,000 2.5 

Actual Execution 3.210883 3.211581 349 0.022 

Transaction costs are normally divided into explicit and implicit costs. Compared 

to explicit costs such as commission fee and tax fee, it i_s much more difficult to 

analyze and manage implicit cost, which is also called market impact cost (i.e. trade 

execution cost in the above example). Market impact cost is a key factor that affects 

the performance of trade execution particularly for a large order. It is referred to as 

the difference between the execution price and an expected (or benchmark) price. In 

the above example, the investor adopts a market order strategy, which immediately 

fills the entire order without any restrictions on price, to capture the current trading 

opportunity (t1 and ti). In the market order strategy, however, the order does not 

only cross the spread but also hits more orders in the book at worse prices. So the 

investor has to pay for significant market impact cost in this strategy. 

Theoretical and empirical researches have seen the evidence that limit order 

strategy achieves lower market impact cost than market order strategy does (Biais et 

al. 1995, Handa and Schwartz 1996, Hasbrouck and Harris 1996, Nevmyvaka et al. 

2005). The limit order strategy limits the market impact cost by assigning a price to 

the order. In the above example, the investor can assign the price of $3.17 in 

executing the buy order at the time t1• This means that the buy order does not hit the 

sell orders with prices higher than $3.17 and so it normally would not be filled 
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immediately. As time goes by, other market participants might submit their sell 

orders with prices lower than or equal to $3.17 to hit the investor's buy order. If 

prices (e.g. the best bid/ask) move toward the favorable direction, the limit order 

strategy would capture better trading opportunities in future since it does not fill the 

entire order immediately. 

However, the limit order strategy is a two-edged sword for trade execution. 

When a buy (or sell) order is required to fill in a fixed period, the limit order 

strategy may not fill the entire order at the end of execution because it assigns a 

price to the order, which other market participants may not provide enough sell (or 

buy) orders to hit the buy (or sell) order in the period of execution. This is called 

nonexecution risk, which means that in order to fill the entire order, the limit order 

strategy has to submit a market order at the end of execution regardless of price 

impact to fill the unexecuted order. Besides, the limit order strategy would miss 

trading opportunities if prices move toward the adverse direction. Dynamic price 

adjustment has been proposed to solve the above problems (Nevmyvaka et al. 2005, 

2006). Instead of assigning a fixed price to the order, the idea of dynamic price 

adjustment is to dynamically adjust the price based on real-time market information, 

e.g. inventory and order book imbalance. 

Inventory control has been discussed in the research of dealers' behaviors. If 

dealers accommodate more orders from other market participants, their inventory 

position will exceed the expected level. Theoretical and empirical researches have 

shown that dealers always optimize their inventory position to hedge the risk of 

holding extra inventory. This type of risk is incurred for two reasons: 1) it is 

unknown how long the extra inventory will be held; 2) future price movement is 

uncertain after dealers hold the extra inventory. The dealers can control their 

inventory and resume it to the expected level by dynamically adjusting their buy 

and sell order prices. For example, they can move their order prices downward (or 

upward) to attract more buy (or sell) orders from other market participants when 

their longer (or shorter) inventory position exceeds the expected level. This is called 

dynamic price adjustment based on inventory. It is described as below when the 

above idea is applied to improve the limit order strategy for trade execution. In 
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trade execution, inventory is referred to as the ratio of the unexecuted volume to the 

remaining time. As inventory increases and exceeds an expected level, the buy (or 

sell) order price is moved upward (or downward) to actively hit the sell (or buy) 

orders from other market participants and to reduce the nonexecution risk. As 

inventory decreases and exceeds an expected level, the buy (or sell) order price is 

moved downward (or upward) to avoid hitting the sell (or buy) orders from other 

market participants and to wait for favorable price movement. 

Order book imbalance is measured by the difference between the bid depth and 

the ask depth, e.g. 8694 shares to be bought at$ 3.17 vs. 40300 shares to be sold at 

the $3.18 (see the left book in Figure 2.1). It represents the relationship between 

demand (buy side) and supply (sell side) in stocks. Theoretical and empirical 

researches have shown that order book imbalance is closely related to short-term 

price movement (Harris and Panchapagesan 2005). The information of order book 

imbalance is valuable to investors in a general sense that prices would increase (or 

decrease) if the buy side of a book were heavier (or thinner) than the sell side. This 

information can be used to dynamically adjust the order price in trade execution 

since it is related to price movement. The idea of dynamic price adjustment based 

on order book imbalance is described as below. When order book imbalance 

forecasts that prices would move toward the favorable direction, the buy (or sell) 

order price is moved downward (or upward) to avoid hitting the sell (or buy) orders 

from other market participants and wait for favorable price movement. When order 

book imbalance forecasts that prices would move toward the adverse direction, the 

buy (or sell) price is moved upward (or downward) to actively hit the sell (or buy) 

orders from other market participants and capture the current trading opportunity. 

As two most important attributes of an order, price and volume have similar 

functions to respond the real-time market information and overcome the drawbacks 

of the limit order strategy. The DF strategy proposed in this thesis actively submits 

a series of small market orders with different volume in the period of execution and 

dynamically adjusts the volume of each market order based on inventory and order 

book imbalance. Dynamic volume adjustment in the DF strategy reflects the idea of 

diversification across time. The details will be illustrated in Chapter 3. 
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Trade execution cost is measured by the difference between the execution price 

and the expected (or benchmark) price. Several benchmark prices have been 

proposed and used in practice such as Volume Weighted Average Price (VW AP) 

(Berkowitz et al. 1988), open/closing prices (Barnea and Logue 1978, Beebower 

and Priest 1980) and arrival price (Perold 1988). The arrival price is normally 

referred to as the midpoint price between the best bid and the best ask at the time 

when a buy or sell decision is made. It has become more and more popular since it 

is closer to investors' expectation in contrast to other benchmark prices. In the 

above example (see Figure 2.1 and Table 2.1), the arrival price at the time tl (and t2) 

is $3.175 (and $3.245) while the decision price at ti (and t2) is $3.17 (and $3.25). 

Given the arrival price and the execution price, trade execution cost is measured as 

below (Treynor 1981, Perold 1988): 

c=sgnxlOOOOxpE-PA, 
PA 

where sgn = 1 (or -1) for buying (or selling), PE is the execution price per share, PA 

is the arrival price, c is called implementation shortfall (or shortfall) and its unit is 

called basis points (BPS). In addition, trade execution risk is measured by the 

standard deviation of shortfalls (Almgren and Chriss, 1997). 

In this thesis, the empirical study benefits from a unique advantage of accessing 

full order and trade records of all stocks from the ASX. This makes it possible to 

build a simulator for executing trade execution strategies and backtesting them. In 

simulation, the artificial orders from a backtested strategy are executed based on 

two market rules: price priority and time priority. In the rule of price priority, a buy 

(or sell) order with higher (or lower) price is executed prior to other orders with 

lower (or higher) prices. In the rule of time priority, the buy (or sell) order with an 

earlier time-stamp is executed prior to other buy (or sell) orders if they are placed at 

the same price level. Since the historical data available contains the detailed 

information of each order (price, volume, time stamp), the simulator in this thesis 

can identify whether the limit order from a backtested strategy would be filled in the 

period of execution according to the above two market rules. In simulation, the 

execution of a market order from a backtested strategy follows the assumption in 
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(Coggins et al. 2003) that the market order does not influence future order flows 

and the simulator only takes account of instantaneous market impact. In addition, 

the simulator in this thesis does not consider any market participant's reaction to the 

artificial orders from a backtested strategy due to the limitation of historical data. 

This is different from real markets where the participants would react to any event. 

The existing studies (Nevmyvaka 2005, 2006, Coggins 2003) also had to make this 

assumption for backtesting strategies due to the limitation of historical data. 

Nevertheless, this type of simulation still makes sense because the practitioners 

could have basic understanding for a new strategy so that they can further improve 

it with penetration. 

This thesis sets one specific example of trade execution for the experiments -

buying 40,000 shares of one stock in I 0 minutes. The experiments are conducted on 

the historical order and trade records during the period of 10:10:00 - 16:00:00 in 

each trading day of the ASX. So 35 time-interval examples (or time-series) can be 

used in one trading day of each stock. Each experimental dataset contains these 

types of examples in a 2-month test period of one stock and it is divided into an in-

sample test period and an out-of-sample test period (see Table 2.2). This thesis 

evaluates the proposed technique/strategy on 80 datasets, which comprise four 2-

month test periods of 20 stocks from the stock index "'ASX20". The raw data used 

in this thesis is provided through the Capital Market Cooperative Research Center 

in Australia. 

Table 2.2 Four in-sample and out-of-sample test periods of one stock 

In-sample Test Out-of-sample Test 

Test Period l January 2002 February 2002 

Test Period 2 February 2002 March 2002 

Test Period 3 March2002 April 2002 

Test Period 4 April 2002 May2002 
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2.2 Risk Management and Diversification 

Risk is referred to as the statistical measure of uncertain loss. This description 

covers two elementary components of risk: loss and its uncertainty. Various 

measure standards have been proposed in the investment field, where loss is 

referred to as the returns lower than a target return and so the uncertainty of loss 

results from the uncertainty of returns. Originally, the variance of investment 

returns is suggested to measure investment risk (Fisher 1906). It was then used in 

the portfolio theory for investment as the risk measure (Markowitz 1952). Let <I> 

denote an example set, in which each example <j> represents an investment period. 

Let r+ denote the return on the example <j>. The variance of returns is calculated as 

below: 

where l<I>I is the number of examples in the example set <l>. In the variance of returns, 

the average of returns is regarded as the target return. Thus, the variance of returns 

actually contains both two parts of the returns: those lower and higher than the 

target return. If the returns follow the normal distribution, it is reasonable that the 

variance of returns is used to measure risk because of the symmetry of the normal 

distribution. But if the returns follow a non-normal distribution with fat tail, the 

variance of returns is not the most appropriate measure of risk. 

The above problem is further illustrated through an intuitive example in the first 

row charts of Figure 2.2, where the horizontal coordinates represent returns and the 

vertical coordinates their probability. In the left chart, the returns, which are 

achieved by the investment strategies s1 (the solid curve) and s2 (the dash curve), 

follow the normal distribution. The variance of returns indicates that s 1 achieves 

lower risk than s2 does. If the risk measure only includes the returns lower than the 

target return (see the straight line), the same conclusion that s1 achieves lower risk 

than s2 does can be drawn. In the right chart, the returns, which are achieved by the 
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investment strategies SJ (the solid curve) and s4 (the dash curve), follow the non-

nonnal distribution with fat tail. Calculation shows that the variance of returns by s3 

is a bit smaller than that by S4. Thus, the variance of returns indicates that s3 

achieves lower risk than s4 does. However, if the risk measure only includes the 

returns lower than the target return (see the straight line), an opposite conclusion 
that S3 achieves higher risk than s4 does is drawn. 
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Figure 2.2 Risk and variance 

To solve the above problem, the semi-variance of returns was suggested as the 

investment risk measure (Markowitz 1959). The semi-variance of returns is 

calculated as below: 
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L:(max(o,-l 1 Ix L:r+ -r.)J
2 

+e<l> <1> +e<l> 

The k-LPM of returns was further suggested to measure investment risk (Bawa 

1975). The k-LPM of returns is calculated as below: 

where re is the target return and k is a nonnegative integral number. In this measure 

of risk (k-LPM of returns), the returns lower than the target return re are regarded as 

loss. The k-LPM of returns is a more flexible risk measure than the semi-variance 

of returns in that 1) the value of k can represent the degree of risk aversion or 

tolerance; 2) the target return re is not only the average of returns but also can be 

determined by investors. The risk measured by those types of standards such as the 

semi-variance or the k-LPM is called downside risk. In addition, the minimum of 

returns minr., which represents the worst case in the investment periods, is also 
+e<t> 

used as an investment risk measure is (Balzer 1994). A brief story of investment 

risk measures can be found in (Nawrocki 1999, Balzer 1994). 

In the trade execution field, the variance of shortfalls has been proposed to 

measure trade execution risk (Almgren and Chriss 1997). Let <1> denote an example 

set, in which each example 4> represents a trade execution period. Let c+ denote the 

return on the example cj>. The variance of shortfalls is calculated as below: 

In evaluating trade execution strategies, loss is ref erred to as the shortfalls higher 

than a target shortfall. When the variance of shortfalls is used to measure trade 

execution risk, there exists the similar problem that the variance of returns faces 

(see the charts 3 and 4 of Figure 2.2). Inspired by the research of investment risk 

measures, this thesis also suggests the k-order upper partial moment (UPM) of 

shortfalls and the maximum of shortfalls as the trade execution risk measures. The 
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k-UPM of shortfalls and the maximum of shortfalls are respectively calculated as 
below: 

where ca is a target shortfall. The variance of shortfalls, the k-UPM of shortfalls and 

the maximum of shortfalls will be used to measure the trade execution risk in the 
empirical studies of this thesis. 

Diversification across time and strategies is an important philosophy for risk 

management in practice. Its principal idea can be expressed as a saying "don't put 

eggs in one basket". The importance of diversification and its effect on risk have 

been paid attention for a long time since economic activities came into being. In 

Shakespeare's "The Merchant of Venice", for example, the merchant Antonio says: 

" ... I thank my fortune for it, 

My ventures are not in one bottom trusted, 

Nor to one place; nor is my whole estate. 

Upon the fortune of this present year; 

Therefore, my merchandise makes me not sad ... ". 

The merchant Antonio clearly understood that he could benefit from diversification. 

In Bernoulli's article about St. Petersburg Paradox, he pointed out " ... it is 

advisable to divide goods which are exposed to some small danger into several 

portions rather than to risk them all together" (Bernoulli 1738). The above examples 

show that risk-aversion investors prefer to diversify their investment across time 

and strategies. 

Because the uncertainty of market evolution results in the uncertainty of returns 

(or shortfalls), risk-aversion investors (or traders) adopt the idea of diversification. 

The researchers have done a lot of work about diversification and risk management 

for a long time (Fisher 1906, Hicks 1935, Marschak 1938, Williams 1938, Leavens 

1945). A milestone of the research on diversification is the portfolio theory for 

investment (Markowitz 1952), which points out that diversification would not 
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generally eliminate investment risk though it could reduce it. Different from the 

earlier work prior to 1952, the portfolio theory illustrates the relationship between 

diversification and correlated risks, clarifies the difference between an efficient 

portfolio and an inefficient portfolio, and emphasizes the tradeoff between 

investment risk and investment return in designing a portfolio (Markowitz 1952, 

19 5 9, 1991, 1999). The portfolio theory firstly formalizes the idea of diversification 

in investment from the mathematical point of view. Diversification can reduce (but 

generally not eliminate) risk and limit the decrease in return. 

The concept of efficient frontier was proposed in the portfolio theory to evaluate 

the performance of investment strategies (Markowitz 1952). It was also applied in 

the research of trade execution to evaluate the performance of trade execution 

strategies (Almgren and Chriss 1997). Figure 2.3 gives an intuitive example about 

efficient frontier. In Figure 2.3, the horizontal coordinates represent risk that 

investment strategies (left chart) and trade execution strategies (right chart) bring 

respectively, and the vertical coordinates represent average return that investment 

strategies bring (left chart) and average shortfall that trade execution strategies 

bring (right chart) respectively. For the strategy set (see the shade area), the arcs in 

the left and right charts are respectively called efficient investment frontier (EIF) 

and efficient trading frontier (ETF). The efficient frontier represents a set of optimal 

strategies because any other strategy in the shade area cannot achieve I) higher 

average return (left chart) or lower average shortfall (right chart) than that on the arc 

does given the same risk; or 2) lower risk than that on the arc does given the same 

average return (left chart) or average shortfall (right chart). 

It is not easy for investors (or traders) to find a strategy on the efficient frontier 

because the strategies on it represent either higher average return (lower average 

shortfall) but higher risk or lower risk but lower average return (higher average 

shortfall). In this case, the investors (or traders) normally find a strategy based on 

the degree of their risk aversion or tolerance. Given the degree of risk aversion or 

tolerance, the optimization objective is represented as the tradeoff between risk and 

average return (or average shortfall). Let y (y~O) denote the tradeoff factor in the 

optimization objective and n denote a strategy set. The optimization objective for 
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determining the investment strategy or the optimal trade execution strategy is 

respectively represented as below: 

min(--
1

1

1 
l:rs.+ +yxriskJ, 

sen <I> +e<t> 

min(-
1

1

1 
L cs.++ y x risk], 

seQ <1> +e<t> 

where rs,+ and Cs.+ respectively represent the return and the shortfall brought by the 

strategy s (se.O) on the example cj>. When y is assigned with a greater (or smaller) 

value, it represents higher risk aversion (or tolerance). When y = 0, it means that 

only the average return (or the average shortfall) is considered in the optimization 

objective but the variable "risk" is ignored. When y ~ oo, it means that only the 

variable "risk" is considered in the optimization objective but the average return (or 

the average shortfall) is ignored. After a strategy is determined by optimizing the 

above objective in in-sample test, the strategy is applied to out-of-sample test for 

evaluation. 

Figure 2.3 Efficient investment (left chart) and trading (right chart) frontier 

Following the concept of efficient frontier, it was further pointed out that the EIF 

(the arc in left chart) can be moved to the straight line called Capital Market Line 

(CML) in the left chart by diversifying between an equity portfolio (e.g. the arc in 
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left chart) and a risk-free asset such as a bond (e.g. the points in left chart) (Sharpe 

1964). It was also pointed out that the ETF (the arc in right chart) can be moved to 

the straight line called Capital Trade Line (CTL) in the right chart by diversifying 

between a set of agency trading strategies (e.g. the arc in right chart) and a risk-free 

principal trading strategy (e.g. the points in right chart) (Kissell and Glantz 2003). 

Thus, a strategy set's efficient frontier is expected to move toward the favorable 

direction (see the arrows in Figure 2.3) by diversifying across strategies so that risk 

decreases and meanwhile the decrease in average reward (the decrease in average 

return or the increase in average shortfall) is limited. Numerical techniques have 

been proposed to acquire strategies from a candidate strategy set and determine 

their weights for implementing diversification across strategies. 

But the existing techniques have two limitations. First, the candidate strategy set 

normally only contains finite strategies. For example, a portfolio of IO stocks and 

their weights are to be determined for diversification based on a set of 50 stocks. In 

practice, the candidate strategy set may contain not only finite but also infinite 

strategies when the parameters in the strategies take values in a range of real 

number. The DAB technique for implementing diversification across. strategies, 

which is proposed in this thesis, allows the candidate strategy set to contain infinite 

strategies. Second, the existing techniques are designed to reduce risk that is only 

measured by one specific standard such as the variance of returns (Markowitz 1956), 

the variance of shortfalls (Kissell and Glantz 2003) or the k-LPM of returns (Hogan 

and Warren 1974). The DAB technique inherits the key idea of the AdaBoost 

technique so that it lowers risk that can be measured by different standards and 

limits the decrease in reward. The DAB technique will be illustrated in Chapter 4 

and 5 from the theoretical and empirical perspectives. The next section will 

introduce the AdaBoost technique and supervised learning. 
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2.3 Supervised Learning and AdaBoost 

This thesis extends the AdaBoost technique to propose the DAB technique for 

several reasons: 1) it reflects the idea of diversification across learning models; 2) it 

allows the candidate model set to contain infinite models; 3) its statistical properties 

can be described in the DAB technique as lowering risk, which can be measured by 

different standards. This section introduces the AdaBoost technique and its 

background in the supervised learning field. 

The problem of learning has been discussed in the artificial intelligence (Al) and 

statistics inference fields. Many empirical methods such as Neural Networks and 

Decision Trees have been proposed to deal with this problem (Duda et al. 2000). A 

learning problem can be generally described as "a process that modifies a system as 

to improve, more or less irreversibly, its subsequent performance of the same task 

or of tasks drawn from the same population" (Simon and Langley 1981). In the 

statistical inference field, it is described as be low: a learning model is trained based 

on an example set and it not only fits in the training examples well but also 

identifies the unseen examples from an independently identical distribution as 

accurately as possible. The learning model/is referred to as the map from an input 

example <j>, which is extracted from an independently identical probability 

distribution P 1(<j>), to the example <j>'s label cp, which follows another probability 

distribution Po(<p). It is mathematically represented as <p = j(<j>). Let L(cp,./(<j>)) denote 

the loss, which the model f brings on the example cp. Given a candidate learning 

model set (also called a hypothesis space) F, the objective of learning is to minimize 

the following expectation: 

E(/)= fL(cp,/(<l>)}dP(<f>.cp), 

where P(<f>,cp) is a joint probability distribution 4> and cp. The expectation is also 

called risk functional in the statistical learning field. 

Let <I> denote an (input) example set, which comprises finite examples. In the 

example set <I>, each example <I> follows the probability distribution P1(<!>) and it is 
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marked with a label cp that follows the probability distribution P 0 (cp). In 'Supervised 

learning, a model, which maps the example cp to its label cp, is trained based on the 

example set <I> with labels. The model is expected to identify both the training 

examples in <I> and the unseen examples that follow the joint probability distribution 

P(cp,cp) as accurately as possible. Each example cp is normally described by several 

attributes, each of which takes symbolic or continuous values. The statistical 

foundation has been built to deal with the problem of learning and it is called 

statistical learning theory (Vapnik 1979, Vapnik and Chervonenkis 1971, 1974, 

1981, Vapnik and Stefanyuk 1978). A probably approximately correct (PAC) model 

was proposed to incorporate some requirements on computational complexity into 

the statistical learning theory (Valiant 1984). Proposing the PAC model is a 

pioneering attempt to introduce computational learning theory to the Al community. 

In the PAC model, the question on whether strong and weak learnability are 

equivalent was posed (Keams and Valiant 1988, 1989). This question is also 

described as whether a weak learner can be boosted to a strong one. A weak learner 

is only required to output the model that performs slightly better than random 

guessing does while a strong learner achieves low identification error with high 

confidence. 

The strength of weak learnability was regarded as an open question until a 

constructive polynomial-time boosting algorithm was proposed (Schapire 1990). 

More efficient boosting algorithms were then developed (Freund 1990, 1993 and 

1995). These early boosting algorithms have been testified based on optical 

character recognition (OCR) (Drucker et al. 1993). Proposing the AdaBoost 

technique is a milestone in the research of boosting because it overcomes several 

drawbacks of the earlier boosting algorithms (Freund and Schapire 1995, 1997). For 

a problem of two-class classification (a typical supervised learning problem), the 

AdaBoost technique initially sets a probability for each training example. Based on 

the probability distribution, it acquires a classifier from a candidate classifier set 

and calculates a weight for the acquired classifier based on its classification 

accuracy. Then the probability distribution is updated and higher probability is 
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assigned to the examples misidentified by the acquired classifier. At the next 

learning step, a new classifier is acquired based on the updated probability 

distribution. At the end of learning, the classifiers with weights are acquired and the 

classification decision depends on the weighted average of the acquired classifiers' 

outputs. Figure 2.4 shows how the AdaBoost technique deals with a typical 
classification problem. 

There are four points (examples), each of which has two attributes, in the left-top 

corner of Figure 2.4. In the four examples, two squares <j>2, <J>4 are categorized into 

the 1st class (e.g. face images) and two diamonds <j> 1, <j>3 into the 2nd class (e.g. non-

face images). The problem of learning is to construct a classifier to classify the four 

examples to two different classes as accurately as possible. This is called two-

dimensional XOR problem. It is clear in Figure 2.4 that a nonlinear classifier (e.g. 

the ellipse in the left-top comer) can correctly classify them but a linear classifier 

(i.e. the dot line in the left-top corner) fails. In the leamable point of view, the linear 

classifier is a weak classifier while the nonlinear classifier is a strong classifier. The 

AdaBoost technique can boost a set of weak classifiers to reach the learnability of a 

strong classifier. 

Suppose that the candidate classifier set comprises the vertical and horizontal 

straight lines. The AdaBoost technique initially assigns an equally probability to 

each example and acquires a classifier c1 according to the probability distribution at 

the 1st learning step. According to c1's classification error rate £i, the AdaBoost 

technique calculates a weight w1 for c1 and updates the probability distribution on 

the training examples. The misclassified example <!>1 is assigned with a higher 

probability in updating the probability distribution. The AdaBoost technique then 

acquires a new classifier and its weight according to the updated probability 

distribution. After four learning steps, the AdaBoost technique acquires four 

classifiers (ci. c2, c3 and C4) and their weights (wi. w2, W3 and w4). The classification 

decision depends on the weighted average of four classifiers' outputs, i.e. 

sign(w1xc1+w2xc2+w3xc3+w4xc4), wheresign(•)=l if•>O andsign(•)=-1 if•<O. In 



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 31 

the end, the ensemble of four classifiers is able to classify all four examples ~i. ~2, 

~3 and ~4 correctly. 
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Figure 2.4 The AdaBoost technique for two-class classification 

The AdaBoost technique has been successfully applied to solve many practical 

problems in application such as face detection (Viola and Jones 2004) and text 

categorization (Schapire and Singer 2000). Moreover, its statistical foundation has 

been built (Freund and Schapire 1997). For a two-class classification problem, as 

the learning steps increase, the classification error rate of the ensemble of classifiers 

acquired by the AdaBoost technique drops exponentially fast as long as the 

classifier, which achieves classification accuracy that is slightly higher than random 

guessing does, can be consistently found. It was also pointed out that as the learning 

steps increase, the AdaBoost technique increases the margin of an ensemble of 
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classifiers, i.e. improves the worst classification performance of the ensemble of 

classifiers on the training examples (Schapire et al. 1998, R~itsch and Warmuth 

2002). In addition, the AdaBoost technique allows the candidate model set (e.g. a 

candidate classifier set) to contain infinite models (e.g. all linear classifiers). The 

DAB technique is expected to inherit those advantages of the AdaBoost technique. 

But the AdaBoost technique cannot be directly applied to acquire strategies from 

a candidate strategy set for diversification across strategies. In the AdaBoost 

technique, updating the probability distribution on training examples depends on the 

model's identification accuracy, which is calculated by the model's output and the 

label of each example. In supervised learning (e.g. classification), each training 

example is normally marked with a label before the candidate model set is given. 

For training a strategy defined in this thesis, however, the training example cannot 

be marked with a label before a candidate strategy set is given. This difference is 

further illustrated through several research subjects: I) face detection, 2) horse 

racing, 3) playing go and 4) stock trading. 

Face detection is a typical classification problem. Chart I in Figure 2.5 shows 

some face images (from the MIT+CMU test set) and some background pictures. 

The goal of face detection is to distinguish between face images and non-face 

images as accurately as possible. The frames in Chart I are the results from (Viola 

and Jones 2004), in which only one face image is missed and one football image is 

misidentified. To train a classifier for face detection, a number of images like those 

in Chart I are collected. The images have their attributes (e.g. colors and textures) 

and are marked with labels (e.g. face or non-face). Various techniques of supervised 

learning can be used to build the classifier, which makes judgment on whether an 

image is face or non-face according its attributes. When the AdaBoost technique is 

applied, the model is represented as the ensemble of multiple classifiers with their 

weights (Viola and Jones 2004). 
Horse racing (see Chart 2 in Figure 2.5) can be regarded as the problem of 

supervised learning. Its goal is to achieve high return by making wise judgment on 

which horse would win the game of racing to. To train a model for this judgment, 

the historical records of each horse such as its status are collected as the attributes 
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of a training example and the result of racing as the example's label. The model is 
built based on the training examples with attributes and label. Similar to face 
detection, the AdaBoost technique can be used to acquire several different models 
and their weights for horsing racing. Then the judgment on whether a horse can win 
the game of racing depends on the ensemble of different models with their weights. 
An alternative method is to allocate money to those horses, which are recommended 
by different models as the potential winners, in proportion with the weights. This 
method reflects the idea of diversification and differs from face detection in that 
there are input resources such as money for horse racing. This is called dynamic 
allocating problem and an algorithm named Hedge has been proposed to deal with it 
(Freund and Schapire 1997). But Freund and Schapire pointed out that the Hedge 
algorithm does not possess the advantage of the AdaBoost technique (the 
exponential decreasing bound of misidentification rate). 

1 2 
Ol.Tlt RKfllO u-b J:SS.-

3 4 
Figure 2.5 Face detection, horse racing, playing go and stock trading 
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Playing go (see Chart 3 in Figure 2.5 from http://weiqi.sports.tom.com) differs 

from the above two examples in that all decisions in the process of playing game 

interact with each other and so a correct label does not exist for each individual 

decision. The training example cannot be marked with a label as what has been 

done in supervised learning. In stock trading (see Chart 4 in Figure 2.5 from 

http://au.finance.yahoo.com), the main goal is to make profit as much as possible by 

buying stocks at lower prices and selling them at higher prices. For example, the 

stock is bought in the area "A" and sold in the area "C". Further, higher profit can 

be made through selling the stock in the area "A" and buying it in the area "B". The 

difference between the above two decisions shows 1) the absolutely accurate 

prediction of stock prices is impossible due to their uncertainty; 2) all decisions in a 

process of stock trading interact with each other and each decision depends on the 

previous and next decisions so that a correct label actually does not exist for this 

type of training example (e.g. the area "A") if a training example is referred to as 

information at each time point. Suppose that the attributes of a training example be 

all information in the whole process of stock trading and its label be the profit. In 

this case, the profit actually does not exist before a strategy is given since its 

existence depends on a specific strategy. 

From the above explanation, the two examples of both playing go and stock 

trading cannot be regarded as the subject of supervised learning. The research of 

reinforcement learning has had deep insights into this type of problem (Sutton and 

Barto 1998). In addition, there is difference between playing go and stock trading. 

Different from the example of playing go, there are input resources in the example 

of stock trading, i.e. money for trading stocks. This is similar to the case of horse 

racing. While the AdaBoost technique is discussed mostly in supervised learning, 

the DAB technique proposed in this thesis extends the key idea of adaptively 

updating the probability distribution in the AdaBoost technique so that it is not only 

applicable to supervised learning. The DAB technique can acquire strategies from a 

candidate strategy set and determined their weights. The input resources are 

allocated to the acquired strategies in proportion with their weights and the acquired 

strategies are then executed in parallel with their allocated resources. 
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2.4 Summary 

This thesis covers several research subjects from both finance and computer science 

fields: trade execution and strategy analysis, risk management and diversification, 

supervised learning and AdaBoost. This chapter introduces the basic concepts about 

these subjects and illustrates the limitation of existing theories and methods. In 

addition, this chapter also describes the simulator for executing trade execution 

strategies and the experimental datasets for empirically evaluating the DF strategy, 

the DAB technique and the BONUS strategy. The following chapters will illustrate 

the proposed technique/strategies in details from the theoretical and empirical 

perspectives. 



Chapter 3 

Dynamic Focus Strategy 

The market order strategy can capture the current trading opportunity and avoid the 

nonexecution risk by immediately filling the entire order without any restrictions on 

price. But it may incur large market impact cost. Theoretical and empirical research 

have shown that by assigning a price to the order, the limit order strategy can 

achieve lower cost than the market order strategy does. But it may miss the good 

trading opportunities and incur the nonexecution risk since it normally does not fill 

the entire order immediately. This chapter proposes the DF strategy, which reflects 

the idea of diversification across time, to solve the problems that the limit order 

strategy faces. The DF strategies incorporate a series of small market orders into the 

limit order strategy and dynamically adjust the market order volume based on two 

real-time state variables: inventory and order book imbalance. The sigmoid function 

is adopted to map the state variable to the market order volume. The empirical 

results on 80 datasets show that the DF strategy achieves lower cost and risk than 

the limit order strategy does. This chapter is composed of 3 sections. The 1st section 

describes the DF strategy. The 2nd section empirically evaluates the DF strategy. 

The 3rd section summarizes the DF strategy. 

36 
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3.1 DF Strategy and Analysis 

This chapter discusses one type of limit order strategy, which assigns the best bid 

(or ask) price to the buy (or sell) order in the period of execution and fills the 

unexecuted volume at the end of execution. In this type of limit order strategy, the 

best bid (or ask) price is assigned to the buy (or sell) order for two reasons. One is 

that in order to avoid adverse price selection, the limit order strategy does not place 

the buy (or sell) order at a higher (or lower) price level than all limit orders from 

other market participants. The other is that in order to reduce nonexecution risk, the 

limit order strategy does not place the buy (or sell) order far away from the best bid 

(or ask) price. The reasonability of this type of limit order strategy also can be 

referred to (Harris and Panchapagesan 2005). It is called NPA (naive p_rice 

~djustment) strategy in this chapter because it naively follows the best bid or ask 

price but does not respond any other real-time market information. 

The DF strategy, which reflects the idea of diversification across time, does not 

only passively assigns the best bid (or ask) price to the order but also aggressively 

fill part of the entire order at different time points over the period of execution. In 

other words, the DF strategies incorporate a series of small market orders with 

different volume into the NPA strategy and dynamically adjust the volume of each 

market order based on two real-time state variables: inventory and order book 

imbalance. The D F strategy is expected to achieve lower cost and risk than the NP A 

strategy does. 

Inventory control is one of key issues discussed in the finance investment area. 

Traders' inventory position will exceed the expected level if they accommodate 

more orders from other market participants. In this case, the traders will achieve 

higher return if the market moves toward a favorable direction, but meanwhile they 

will face higher risk of holding extra inventory if the market moves toward an 

adverse direction. Theoretical and empirical studies show that in practice, the 

traders always need to optimize their long or short inventory position as per their 

risk aversion or tolerance. When the inventory position deviates from the expected 



CHAPTER 3. DYNAMIC FOCUS STRATEGY 38 

level, the traders can resume it to the expected level by adjusting their buy or/and 

sell order prices. For example, they can move their order prices downward (upward) 

to attract more buyers (sellers) when their inventory position is longer (shorter) than 

the expected level. This price adjustment is regarded as inventory control. 

Actually, the above concern on inventory control also exists in trade execution. 

Traders have to face nonexecution risk and adverse price movement when they 

execute a given order by using the limit order strategy. The traders normally do not 

know for sure when a limit order can be filled or if it can be completely fulfilled at 

the end of execution. In addition, due to the uncertainty of short-term price 

movement in the period of execution, the limit order strategy has both the advantage 

of waiting for favorable price movement and the disadvantage of missing good 

trading opportunities. The following example helps understand the relationship 

between real-time inventory control and nonexecution risk. Suppose that there are 

two cases for purchasing 10,000 shares of one stock in 10 minutes: in the first case, 

there is the unexecuted volume of 9,000 shares in the last I minute whereas in the 

second case, there is the unexecuted volume of 1,000 shares in the remaining 9 

minutes. Intuitively, the fust case would incur higher nonexecution risk than the 

second case. To reduce the nonexecution risk in the first case, the strategy should 

resume the inventory to the expected level as soon as possible by taking a more 

aggressive action. Risk management in trade execution may benefit from real-time 

inventory control. From the above example, the inventory control in trade execution 

is related to two factors: unexecuted volume and remaining time. Based on the two 

factors, the inventory i(t) at the time t (ts~ t < 4) is defined as below: 

i(t) = vu (t)_ 
te -t 

where vu(t) represents the unexecuted volume at the time t, ts and le are respectively 

the start time and the end time of execution. 

Dynamic price adjustment has been applied in trade execution to respond real-

time update of inventory (Nevmyvaka et al. 2006). Different from the dynamic 

price adjustment, the DF strategy controls inventory by dynamically adjusting the 

market order volume. The DF strategy assigns higher volume to the market order to 
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reduce the nonexecution risk if the unexecuted volume in the remaining time 

exceeds the expected level. Otherwise, the DF strategy assigns lower (or zero) 

volume to the market order to wait for favorable price movement. The DF strategy, 

which dynamically adjusts the market order volume based on the deviation of the 

real-time unexecuted volume from the expected level, is called DF-IC strategy in 
this chapter. 

Order book imbalance is closely related to short-term pnce movement as 

illustrated in the research of market microstructure such as (Harris and 

Panchapagesan 2005). Two types of traders who prefer limit orders are pre-

committed traders and value-motivated traders. The former aims to reduce 

transaction costs whereas the latter trades only at the acceptable price given the 

value estimates. They often place limit orders, which are close to the best bid-ask 

prices, to increase the possibility of their orders to be filled so as to fulfill their 

commitment or capture profitable opportunities. Their behaviors are one of the main 

sources to aggregate order book imbalance, which may indicate price movement. 

The pre-committed traders (or the value-motivated traders) will place more 

aggressive orders that affect prices such as market orders if they face the pressure of 

nonexecution risk (or their profitable information is being impounded into prices). 

Information indicated by order book imbalance may be valuable to traders in a 

general sense that prices would increase (or decrease) when the buy side of the 

order book is heavier (or thinner) than the sell side. Let Vbb(t) and Vba(t) denote the 

volume respectively at the best bid and ask price levels at the time t (ts ~ t < te). The 

order book imbalance obi(t), which represents the difference between the best bid 

volume and the best ask volume at the time t, is defined as below: 

obi(t) = /n(vbb(t)) -/n(Vba(t)). 

If obi(t) is positive, it means that the buy side of the order book is heavier than the 

sell side. Otherwise, it means that the buy side of the order book is thinner than the 

sell side. 
Order book imbalance has been testified in the study of dynamic pnce 

adjustment for trade execution (Nevmyvaka et al. 2006). If order book imbalance 

forecasts that the market would move toward the adverse direction, the order will be 



CHAPTER 3. DYNAMIC FOCUS STRATEGY 40 

placed at a more aggressive price level to capture the current trading opportunity. 

Otherwise, the order is placed at a more passive price level to wait for favorable 

price movement. Different from dynamic price adjustment, the DF strategy 

responds the forecast of order book imbalance by dynamically adjusting the market 

order volume. The DF strategy assigns higher volume to the market order to capture 

the current trading opportunity if order book imbalance indicates that the market 

would move toward the adverse direction. Otherwise, the DF strategy assigns lower 

(or zero) volume to the market order to wait for favorable price movement. The DF 

strategy, which dynamically adjusts the market order volume based on the order 

book imbalance, is called DF-OBI strategy in this chapter. 

The DF-IC strategy will assigns higher volume to the market order if the 

unexecuted volume in the remaining time exceeds the expected level. The DF-OBI 

strategy will assign higher volume to the market order if order book imbalance 

indicates that the market would move toward the adverse direction. The next 

question is how to quantitatively implement these ideas, in other words, how much 

volume should be assigned to the market order based on the real-time state variables: 

i(t) and obi(t). According to requirements in trade execution and the above 

qualitative description, the quantitative model should satisfy the following three 

conditions: 1) the market order volume should not exceed the entire order volume in 

trade execution; 2) the market order volume should not be negative since it is 

assumed that for buying (or selling), no sell (or buy) order be submitted during the 

execution period; and 3) the quantitative model should be represented by an 
increasing function according to the principle on dynamic volume adjustment 

illustrated above. The thesis suggests the sigmoid function as the quantitative model 

to describe the relationship between the state variable and the dynamically adjusted 

volume since it satisfies all of the three conditions. Let vp(t) denote the ratio of the 

market order volume at the time t to the entire order volume. The quantitative 

model based on the sigmoid function is represented as below: 

1 
vp(t)= I+exp(-A.xx(t))' 

where x(t) represents the state variable at the time t and A. is a parameter. 
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A family of sigmoid functions is given with different values of :A.. The sigmoid 

functions with different values of :A. represent various types of dynamic volume 

adjustment. Three sigmoid functions are shown in Figure 3 .1, where the horizontal 

and vertical coordinates respectively represent x(t) and vp(t). When A. takes a large 

value (e.g. 50), there is a highly sensitive area, where the sigmoid function's output 

vp(t) will significantly change as a slight change in the state variable x(t) occurs (see 

the dash curve in the shade area of Figure 3.1). When :A. takes a small value (e.g. 

0.5), the sigmoid function's output vp(t) changes in a smooth manner as the state 

variable x(t) changes (see the dot curve in Figure 3.1 ). This characteristic of the 

sigmoid function indicates the fact that as :A. increases, dynamic volume adjustment 

in the DF strategy could be more significantly affected by a slight change in the 

state variable such as inventory or order book imbalance. 
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Figure 3.1 Sigmoid function 
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When the sigmoid function is used in the DF-IC strategy, the state variable x(t) is 

defined as below: 

x(t)= i(t)-i(ts) b 
i ( t 5 ) ' 

where b is a bias, i(t) and i(t5) are the inventory respectively at the time t and the 

start time t5• When the DF-IC strategy determines to submit a market order, the ratio 

vp(t) is calculated as below: 
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I 
~ro= . 

I +exp(-1..x(i(t~ -i(ts) -b)) 
t{t5 ) 
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This definition means that the DF-IC strategy assigns higher volume to the 

market order to reduce nonexecution risk as the inventory i(t) increases while it 

assigns lower volume to the market order to wait for favorable price movement as 

the inventory i(t) decreases. Moreover, this definition guarantees that the market 

order volume never exceeds the entire order volume and is always nonnegative. 

When the sigmoid function is used in the DF-OBI strategy, the state variable x(t) 

is defined as below: 

x(t) = obi(t). 

Let obiu and obk denote respectively the upper and lower bounds of obi(t). So vp(t) 

is calculated as below when the DF-OBI strategy determines to submit a market 

order: 

{ 

0 
Vp(t) = 1 

l+exp(-A.xobi(t)) 

obiL ~obi( t) ~ obiu 

others 

where obk < 0 and obiu > 0. This definition means that the DF-OBI strategy does 

not take action in the insensitive area between the lower bound obiL and the upper 

bound obiu since the insensitive area represents the weak signal for short-term price 

movement. This definition also means that the DF-OBI strategy will assign higher 

(or lower) volume to the market order to capture (or wait for) trading opportunities 

if order book imbalance indicates that the market would move toward the adverse 

(or favorable) direction. Moreover, this definition guarantees that the market order 

volume never exceeds the entire order volume and is always nonnegative. 

The trading volume is one of the important standards that measure one stock's 

liquidity over a period of time. If there is higher trading volume over a period of 

time for one stock, it shows that the stock's liquidity is higher in this period of time. 

Let VioMin and Voaily respectively denote average I 0-minute trading volume and 

average daily trading volume. Table 3.1 lists the average I 0-minute volume and the 

average daily volume during 4 testing periods of 20 stocks. It is clear in Table 3.1 
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that liquidity is significantly different for different stocks while small liquidity 

difference exists for different testing periods of the same stock. The second section 

will compare the DF strategy to the NPA strategy. The dynamic volume adjustment 

in the DF strategy, which reflects the idea of diversification across time, will be 

empirically verified through in-sample test and out-of-sample test on 80 datasets. 

Table 3.1 Average trading volume (AMP - WPL) 

January- February- March- April-
February 2002 March 2002 April 2002 May2002 

VJOMin Voaily VIOMin Voaily VtOMin Voaily VJOMin Voaily 

AMP 40,143 1,404,990 38,736 1,355,754 34,500 ] ,207,513 45,668 1,598,391 

ANZ 63,309 2,215,816 53,949 1,888,201 63,800 2,233,008 70,117 2,454,108 

BHP 217,666 7,618,326 194,566 6,809,801 161,872 5,665,532 176,310 6,170,859 

BIL 77,844 2,724,549 84,879 2,970,757 69,128 2,419,491 66,253 2,318,847 

CBA 65,306 2,285,713 59,951 2,098,276 48,547 1,699,147 48,914 1,711,994 

CML 29,878 1,045,727 47,434 1,660,182 45,877 1,605,680 72,104 2,523,632 

FGL 170,611 5,971,368 163,752 5,731,336 105,967 3,708,848 111,281 3,894,820 

NAB 63,711 2,229,896 60,333 2,111,670 65,288 2,285,070 65,645 2,297,571 

NCP 147,053 5,146,872 149,535 5,233,733 109,636 3,837,266 122,642 4,292,458 

NCPDP 82,757 2,896,490 93,512 3,272,903 71,726 2,510,409 70,814 2,478,502 

PBL 28,698 1,004,417 24,082 842,864 16,974 594,099 16,589 580,606 

RIO 26,458 926,026 26,870 940,452 26,936 942,776 27,048 946,693 

SGB 11,348 397,187 7,662 268,174 9,872 345,518 11,876 415,652 

TLS 374,556 13,109,451 392,153 13,725,356 391,610 13,706,358 535,237 18,733,302 

WBC 61,650 2,157,750 64,692 2,264,231 80,638 2,822,338 92,149 3,225,200 

WES 6,946 243,121 6,582 230,366 7,524 263,342 9,534 333,698 

WFT 79,515 2,783,036 86,972 3,044,012 91,104 3,188,645 82,414 2,884,476 

WMC 56,371 1,972,984 50,638 1,772,324 51,884 1,815,931 63,290 2,215,149 

wow 47,014 1,645,499 46,102 1,613,575 46,701 1,634,536 45,587 l,595,551 

WPL 34,297 1,200,411 32,385 1,133,492 29,941 1,047,938 26,778 937,245 
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3.2 Empirical Evaluation 

The DF strategy has been proposed in the previous section. The limit order strategy 

sets a limit order at the start time of execution and fulfills the unexecuted volume at 

the end of execution. The DF strategy applies the idea of diversification across time 

to hedge nonexecution risk and adverse price movement, which the limit order 

strategy may have to face. The DF strategy submits a series of small market orders 

and dynamically adjusts the market order volume according to the real-time state 

variables (inventory and order book imbalance) during the execution period. 

Different values of the parameter A., which is involved in the DF strategy, determine 

various characteristic of dynamic volume adjustment. This section discusses the in-

sample test on the DF strategies with different values oO .. and compares them to the 

NP A strategy in terms of cost, risk and efficient frontier. 

The details of experimental setup can be found in the first section of Chapter 2. 

In-sample test is designed to check the cost and risk, which are brought by the DF 

strategies with different values of A, and compare them to those by the NP A 

strategy. Here, the cost is measured by the average shortfall Cµ and the risk is 

measured by the standard deviation of shortfalls Ca. Let cE(s,1,tf>) denote the 

shortfall, which is brought by the strategy s when it executes the order p on the 

example <j>. Given an example set ct>, the average shortfall Cµ and the standard 

deviation of shortfalls Ca are respectively calculated as below: 

I 
cµ = -

1 
II:cE(s,1,«I>), 

<1> +e<J> 

C11 = 

The average trading volume of the stock WFT is around twice of that of the 

stock FGL in the I st and 2°d test periods, while there is not much difference between 

them in the 3rd and 41h test periods. So this section chooses WFT and FGL to discuss 

the in-sample results on the four test periods, which are respectively shown in two 
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column charts of Figures 3.2, 3.3, 3.4 and 3.5. In those figures, the horizontal 

coordinates in the first and second row charts represent the different values of A. and 

the vertical coordinates respectively represent c(J and cµ- The third row charts show 

the study of efficient frontier, and its horizontal and vertical coordinates represent 

Ca and Cµ respectively. The dot and dash curves respectively represent the in-sample 

results of the DF-IC strategy and the DF-OBI strategy. The straight line and the 

triangle being circled represent the in-sample results of the NPA strategy. 

All of the first row charts clearly show that 1) the DF strategy with small value 

of A (this means that a smoother sigmoid function is used) results in lower volatility 

of shortfalls (measured by c(J); and 2) the DF strategy with the optimal value of A. 

can achieve smaller standard deviation than the NPA strategy does. Most of the 

second row charts show that neither extreme small value of A. nor extreme large 

value of A. helps the DF strategy to achieve low average shortfall. All of the second 

row charts show that the DF-IC strategy with the optimal value of A. achieves lower 

average shortfall than the NP A strategy does. Except for the 4th test period, all in-

sample results on WFT show that the DF-OBI strategy with the optimal value of A. 

achieves lower average shortfall than the NPA strategy does. But all in-sample 

results on FGL show that the DF-OBI strategy with the optimal value of A. cannot 

achieve lower average shortfall than the NP A strategy does. Based on the above 

discoveries, the DF strategy improves the NPA strategy more significantly on WFT 

than on FGL. A reasonable explanation is that WFT is more illiquid than FGL and 

the DF strategy is more applicable to improve the performance of trade execution 

on illiquid stocks. In addition, the fact that the DF-IC strategy outperforms the DF-

OBI strategy shows that inventory control is a more important factor for trade 

execution than order book imbalance. The effectiveness of the DF strategy is also 

verified from the perspective of strategies' efficient frontier. It is clear in all of the 

3rd row charts that the NPA strategy is not located on the efficient frontier. In the 

view of efficient frontier, the optimal solution is achieved by the DF strategy rather 

than the NPA strategy. The effectiveness of the DF strategy will be further verified 

by the statistical summary of out-of-sample test results on all 80 datasets. 
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Figure 3.2 In-sample test on the DF strategy (January 2002) 
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Figure 3.4 In-sample test on the DF strategy (March 2002) 
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Figure 3.5 In-sample test on the DF strategy (April 2002) 
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In in-sample test, the parameter A. is optimized based on different degrees of 

investors' risk aversion or tolerance. The tradeoff between cost (the average of 

shortfalls) and risk (the standard deviation of shortfalls) is represented as below: 

Cµ + y X Ca 

where y is the tradeoff factor that represents the degree of risk aversion or tolerance 

in trade execution. Greater (or smaller) y represents higher risk aversion (or 

tolerance) in trade execution. When y = 0, it means that only average shortfall cµ is 

involved in the optimization objective but risk (standard deviation of shortfalls c0.) 

is ignored. When y ~ co, it means that only risk (standard deviation of shortfalls c0.) 

is involved in the optimization objective but average shortfall cµ is ignored. This 

section testifies two values 0 and 1 for the tradeoff factory. With the given value of 

y, the DF strategy is optimized in in-sample test by minimizing cµ + y x Ca. Then the 

optimized DF strategy is applied to out-of-sample test and is compared to the NPA 

strategy in terms of Cµ and Ca. Let ICO, IC I, OBIO and OBil respectively denote the 

optimized DF-IC and DF-OBI strategies by setting y = 0 and 1. 

The tables 3.2, 3.3, 3.4 and 3.5 list the out-of-sample results on 80 datasets, 

which strongly support the DF strategy' effectiveness. The DF strategy achieves 

lower average shortfall than the NPA strategy does on 75 datasets. The DF-IC 

strategy achieves lower average shortfall than the DF-OBI strategy does on 79 

datasets. According to the research of market microstructure, order book imbalance 

is useful as it could forecast short-term price movement. But its forecast may not be 

very accurate due to high price volatility in markets. So the out-of-sample results 

show that inventory control is a more important factor for trade execution than 

order book imbalance. This conclusion was also implied in (Nevmyvaka et al. 2006). 

The out-of-sample results on all 80 datasets show that the lower standard deviation 

of shortfalls is achieved by setting y = l than by setting y = 0. The out-of-sample 

results on 79 datasets show that the lower average shortfall is achieved by setting y 

= O than by setting y = 1. This supports the analysis about the effect of y on the 

optimization objective. 
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Table 3.2 Out-of-sample test on DF strategies (AMP- CBA) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Cc Cµ Cc Cµ Cc Cµ Cc 

NPA 15.96 18.99 20.62 19.95 19.08 18.96 17.00 23.35 

ICO 7.70 8.21 8.49 9.83 8.74 9.90 7.23 11.66 

AMP ICl 7.70 8.21 8.65 7.51 8.97 7.70 8.36 9.31 

OBIO 13.91 11.49 15.66 11.46 15.59 12.04 15.31 13.12 

OBil 13.91 11.49 15.50 11.10 15.59 12.04 15.39 12.99 

NPA 10.29 14.70 9.80 15.84 7.06 12.65 8.43 12.83 

ICO 5.32 8.23 5.03 8.58 4.04 7.83 4.66 7.54 

ANZ I Cl 6.10 6.06 5.94 6.98 4.70 5.93 5.55 5.80 

OBIO 10.25 7.91 10.18 9.92 7.38 6.19 9.05 7.44 

OBII 10.30 7.84 10.14 9.64 7.41 6.12 9.17 7.54 

NPA 2.16 9.28 3.61 9.83 4.57 10.53 3.23 8.94 

ICO 1.98 8.80 3.23 9.02 4.18 8.25 3.13 6.79 

BHP ICl 3.66 5.62 4.51 5.70 4.87 6.49 5.04 4.48 

OBIO 5.52 5.17 6.56 5.46 6.20 5.73 6.27 4.42 

OBil 5.51 4.60 6.57 5.40 6.23 5.64 6.21 4.26 

NPA 9.47 17.22 9.82 18.48 12.78 17.05 10.21 16.45 

ICO 5.98 10.09 6.13 12.06 7.49 9.90 6.41 10.03 

BIL I Cl 6.58 7.30 7.19 9.25 7.91 7.29 7.28 7.99 

OBIO 9.28 8.34 10.66 11.28 12.11 9.93 10.88 9.95 

OBil 9.28 8.34 10.72 10.96 l l.91 9.55 10.88 9.95 

NPA 8.65 15.43 10.24 15.97 10.24 14.28 13.60 16.57 

ICO 4.32 8.54 4.81 8.59 4.88 7.56 5.96 8.51 

CBA I Cl 5.53 6.60 6.17 6.89 5.55 5.49 6.54 6.76 

OBIO 10.04 9.29 11.23 9.56 9.63 7.57 11.70 9.67 

OBil I0.07 9.14 11.28 9.51 9.63 7.57 11.77 9.60 
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Table 3.3 Out-of-sample test on DF strategies {CML - NCPDP) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ccr Cµ Ccr Cµ Ccr Cµ Ca 

NPA 25.23 28.01 16.85 22.37 18.50 20.30 13.00 19.91 

ICO 13.29 12.11 10.92 11.52 9.68 12.23 8.42 12.45 

CML ICI 13.29 12.11 10.92 11.52 11.51 10.17 9.93 9.87 

OBIO 20.84 16.25 16.48 13.76 17.80 12.41 14.15 10.98 

OBII 20.81 15.99 16.61 13.75 17.81 12.30 14.21 10.83 

NPA 7.55 14.13 10.01 12.56 10.37 12.24 10.77 13.76 

ICO 7.80 10.37 9.74 11.71 9.73 9.06 9.74 9.90 

FGL ICl 9.89 6.22 11.09 5.82 I 1.11 6.37 10.55 7.20 

OBIO 9.29 8.81 10.83 9.81 I 1.36 9.68 11.95 10.48 

OBII 10.55 5.83 11.72 5.68 11.79 6.44 11.74 6.28 

NPA 9.87 15.93 9.61 16.81 9.15 15.51 9.98 14.83 

ICO 4.71 9.23 4.16 8.39 4.76 8.71 5.06 8.06 

NAB ICI 5.87 6.92 5.33 6.42 5.56 6.71 6.03 6.23 

OBIO 10.48 8.16 10.29 9.19 9.46 8.90 10.12 8.11 

OBil 10.48 8.16 10.29 9.19 9.33 8.53 10.19 8.12 

NPA 6.17 15.92 6.58 15.19 7.49 16.30 6.81 15.44 

ICO 4.71 11.63 4.40 10.06 4.95 10.54 4.65 10.92 

NCP I Cl 6.08 9.08 5.54 7.64 6.76 8.18 6.25 8.43 

OBIO 9.36 9.18 9.11 7.58 10.89 8.13 10.01 7.90 

OBil 9.37 8.55 9.16 7.42 10.96 7.86 10.10 7.79 

NPA 15.68 35.14 14.91 31.03 35.18 105.58 I 9.11 33.98 

ICO 9.04 19.18 7.64 15.IO 24.58 96.03 9.73 18.36 

NCPDP I Cl 10.51 14.03 8.47 11.29 25.41 91.80 11.02 13.51 

OBIO 17.30 17.51 14.15 13.72 33.16 92.48 19.66 20.42 

OBII 17.30 17.51 14.24 13.74 33.16 92.48 19.67 20.18 
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Table 3.4 Out-of-sample test on DF strategies (PBL- \VBC) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ccr Cµ Ccr Cµ Ccr Cµ Ccr 

NPA 47.62 47.54 49.31 38.81 53.45 54.08 58.63 44.65 

ICO 15.79 17.70 21.06 18.65 16.19 14.84 18.58 15.97 

PBL ICl 15.79 17.70 21.06 18.65 16.19 14.84 18.58 15.97 

OBIO 27.69 26.37 33.31 24.95 29.69 30.09 31.55 24.42 

OBII 27.19 25.30 33.31 24.95 29.69 30.09 31.49 23.94 

NPA 35.97 41.40 25.26 32.64 26.37 34.55 26.70 28.19 

ICO 11.92 12.50 8.47 11.00 9.21 10.18 9.16 9.17 

RlO ICl 11.92 12.50 8.47 11.00 9.21 10.18 9.16 9.17 

OBIO 24.06 23.35 16.79 20.82 17.16 20.60 17.74 17.18 

OBII 24.06 23.35 16.79 20.82 17.36 20.76 17.67 16.94 

NPA 65.52 37.16 61.78 42.12 66.42 55.71 53.05 36.01 

ICO 20.11 15.48 22.00 20.22 29.01 33.33 18.19 14.71 

SGB ICl 20.11 15.48 22.00 20.22 29.01 33.33 18.19 14.71 

OBIO 34.88 24.74 36.79 30.08 42.74 41.00 31.61 23.17 

OBII 34.88 24.74 36.79 30.08 42.91 40.93 31.61 23.17 

NPA 4.21 11.44 4.68 11.98 6.20 11.14 6.50 11.91 

ICO 4.29 11.38 4.68 11.98 6.21 11.15 6.51 11.88 

TLS ICl 8.82 4.32 8.53 4.75 9.66 4.38 9.71 4.37 

OBIO 5.92 8.96 6.60 8.85 7.71 8.37 7.24 9.36 

OBII 8.71 4.64 8.44 5.27 9.51 4.77 9.62 4.95 

NPA 13.61 20.75 9.31 18.22 8.12 17.80 7.73 13.51 

ICO 7.00 12.09 5.21 .9.47 5.49 13.39 4.41 7.84 

WBC ICI 8.01 9.25 6.18 7.42 6.33 12.11 5.24 6.09 

OBIO 12.71 11.27 10.19 10.17 9.44 12.84 8.47 7.88 

OBil 12.79 11.26 10.19 10.17 9.47 12.70 8.61 7.92 
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Table 3.5 Out-of-sample test on DF strategies (WES - \VPL) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ca Cµ Ca Cµ Ca Cµ Ca 

NPA 84.40 47.47 90.16 40.89 II 1.83 75.44 93.39 50.09 

ICO 33.88 26.22 33.47 25.54 44.90 64.44 28.51 24.23 

WES I Cl 33.88 26.22 33.47 25.54 44.90 64.44 28.51 24.23 

OBIO 58.01 36.76 57.36 34.48 75.15 72.00 56.65 37.09 

OBII 58.01 36.76 57.36 34.48 76.50 70.39 56.70 35.71 

NPA 17.07 13.69 16.56 12.43 15.83 11.36 15.89 13.01 

ICO 16.39 9.85 15.86 7.50 15.69 7.08 15.40 9.94 

WFT ICI 16.45 6.28 16.12 6.57 15.95 6.30 16.13 5.66 

OBIO 16.33 10.06 16.13 10.24 16.09 8.23 16.34 11.94 

OBll 16.73 6.45 16.53 6.36 16.17 6.17 16.34 7.06 

NPA 18.35 25.69 14.15 21.51 12.16 16.90 14.26 19.06 

ICO 9.66 10.53 8.13 12.66 6.98 9.22 8.35 11.15 

WMC ICl 9.66 10.53 8.45 9.52 7.32 7.03 8.42 8.17 

OBIO 14.80 13.62 12.59 l l.06 11.38 9.94 12.47 10.62 

OBII 14.80 13.62 12.67 I 1.03 11.37 9.86 12.47 10.62 

NPA 14.99 20.94 18.52 26.72 18.66 21.33 16.82 24.28 

ICO 8.55 9.16 9.62 15.99 10.06 12.36 7.85 12.87 

wow ICI 8.55 9.16 9.78 12.58 10.17 9.90 8.13 9.27 

OBIO 13.33 11.09 15.50 15.23 14.96 12.36 13.83 11.83 
-

OBII 13.41 10.95 15.62 15.20 14.96 12.36 13.89 11.65 

NPA 20.24 22.17 22.17 22.46 33.40 37.53 41.03 39.48 

ICO 9.94 10.11 10.72 13.28 12.70 17.16 12.26 11.96 

WPL ICI 9.94 10.11 10.99 10.59 11.80 12.25 12.26 11.96 

OBIO 16.15 12.33 17.25 13.11 23.02 20.99 23.86 22.00 

OBil 16.39 12.33 17.16 12.71 23.39 21.13 23.96 21.54 



CHAPTER 3. DYNAMIC FOCUS STRATEGY 55 

Let Cµ,NPA and cµ,DF denote the average shortfall brought respectively by the NPA 

strategy and the optimized DF strategy in out-of-sample test. The horizontal and 

vertical coordinates in Figure 3.6 respectively represent /n(vwMin) and the difference 

between cµ,NPA and cµ,DF (cµ,NPA-Cµ,oF). The four charts respectively represent the 

out-of-sample results on ICO, ICI, OBIO and OBII and the points in the charts are 

the out-of-sample results on 80 datasets. Figure 3.6 shows that the DF strategy more 

significantly improves the NP A strategy on the less liquid stock datasets (i.e. lower 

V10Min). A reasonable explanation for this conclusion is that the DF strategy is 

designed to reduce nonexecution risk, which is caused more easily on the less liquid 

stock datasets. Figure 3.6 also shows that ICO and ICl outperforms OBIO and OBil. 

This indicates that inventory control is a more important factor, which affects the 

reduction in trade execution cost, than order book imbalance. 

70 • • ICO 70 •• I Cl 
60 • 60 • 
50 • 50 • ... • .. • 'l 40 • • 'l 40 • • • • u • • u • • 

~ 30 • ~ 30 • •• •• .. • .. • • \ 20 • \ 20 • • u u 
10 .... . 10 .... 

·\:~·· ·~ '·· 0 ¥:1··-·· • • 0 ~1., .. # • 
-10 I I I I -10 I 

8.5 9.5 10.5 11.5 12.5 B.5 8.5 9.5 10.5 11.5 115 13.5 
/n(v10mm) In (vio..m) 

40 OBIO 40 OBil • • •• • • 
30 • 30 • • •• • • ... • • • ... • • 0 0 • .. ~ 20 • • u~ 20 • 
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u ., . "'. u 

•\·~ 
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/11 (Vtllmin) hl(V!o..m) 

Figure 3.6 Comparison of ICO/ICl/OBIO/OBil to NPA 
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3.3 Summary 

This chapter has proposed the DF strategy, which applies the idea of diversification 

across time to trade execution. The DF strategy incorporates a series of small 

market orders into the limit order strategy and dynamically adjusts the market order 

volume to hedge nonexecution risk and adverse price movement during the 

execution period. Dynamic volume adjustment in the DF strategy depends on two 

real-time state variables: inventory and order book imbalance. The sigmoid function 

is adopted as the quantitative model. The in-sample and out-of-sample test results 

on 80 datasets show that the DF strategy, which reflects the idea of diversification 

across time, outperforms the limit order strategy for trade execution. Moreover, the 

DF strategy is more effective for improving the limit order strategy on the less 

liquid stock datasets. In addition, the empirical results show that inventory control is 

a more important factor for trade execution than order book imbalance. The DF 

strategy can be further improved from severfil aspects: 1) combining dynamic price 

adjustment with dynamic volume adjustment; and 2) dynamically adjusting the limit 

order volume in trade execution. 



Chapter 4 

Diversification Based on AdaBoost 

Diversification is an important philosophy for risk management in various practices. 

Its rationale has been illustrated by the classical portfolio theory for investment and 

it was recently applied in the trade execution field. The idea of diversification is 

also reflected in the AdaBoost technique, which is discussed mostly in the 

supervised learning field. This chapter extends the basic ideas in the AdaBoost 

technique to propose the DAB technique, which reflects the idea of diversification 

across strategies. The DAB technique acquires strategies from a candidate strategy 

set and determines their weights. Then the resources are allocated to each acquired 

strategy in proportion with its weight and all acquired strategies are executed in 

parallel with their allocated resources. This chapter theoretically analyzes several 

advantages of the DAB technique over the existing diversification techniques: 1) it 

allows the candidate strategy set to contain finite or infinite strategies; 2) as the 

learning steps increase, it lowers risk that can be measured by different standards 

(e.g. the k-LPM of rewards and the minimum of rewards) and meanwhile limits the 

decrease in average reward. This chapter is composed of three sections. The I st 

sectio~ describes the DAB technique. The 2"d section theoretically analyzes its 

advantages. The 3rd section summarizes the DAB technique. 

57 
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4.1 DAB Technique 

Diversification is an important philosophy for risk management in various practices. 

Chapter 3 verifies that the idea of diversification across time can improve the 

existing trade execution strategies. This chapter discusses diversification across 

strategies, which can also be regarded as diversification across space in contrast 

with time. An investment example is that investors allocate their money across 

various financial products such as stocks and bonds to hedge investment risk. The 

classical portfolio theory has illustrated the rationale of diversification across 

various investment products (Markowitz 1952, Sharpe 1964). Note that investing on 

a product during a period of time can be regarded as a strategy since it satisfies the 

definition of strategies in this thesis. More recently, the idea of diversification 

across strategies was applied in the trade execution field to reduce transaction cost 

and risk (Almgren and Chriss 1997, Kissell and Glantz 2003). 

In order to implement the idea of diversification across strategies, analytical or 

numeric techniques have been proposed to acquire strategies and their weights from 

a candidate strategy set (Markowitz 1956, Sharpe 1964, Hogan and Warren 1974, 

Kissell and Glantz 2003). In the existing techniques for diversification, the 

candidate strategy set normally contains finite strategies. For example, IO stocks 

and their weights are determined for diversification from a candidate set of 50 

stocks. But in practice, the candidate strategy set can contain infinite strategies. For 

example, a DF strategy set contains infinite DF strategies when its parameter ).. 

takes values in a range of real number. In addition, the existing techniques for 

diversification were designed to lower risk that is measured by some specific 

standard such as either variance or k-LPM of rewards. It will be better for risk 

management if the technique for diversification across strategies can lower risk that 

can be measured by different standards such as the variance of rewards, the k-LPM 

of rewards and the minimum of rewards. 

The philosophy of diversification is also reflected in the AdaBoost technique, 

which is discussed mostly in the supervised learning field, e.g. classification 
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(Schapire et al. 1998), regression (Duffy and Helmbold 2002) and conditional 

density estimation (Stone et al. 2003). In the AdaBoost technique, it is emphasized 

that the ensemble of models (e.g. classifiers) can outperform each individual model. 

In the ensemble of models, the decision is made by the models altogether rather 

than each individual model does. Here, the AdaBoost technique is explained in the 

subject of two-class classification. The research about this subject is to build a 

classifier (or an ensemble of classifiers) to map an example with input attributes X 

to its label y (1 or -1) based on a training example set. The classifier is regarded as 

correctly identifying the example if its output is consistent with the example label. 

The classifier is expected to achieve high identification accuracy on both training 

examples with labels and unseen examples from an independently identical 

distribution. Let <I> denoted a training example set and it is represented as 

<I> = { <!> 14> = (X, y)} , where each attribute of X can be a real number or a symbolic 

value. Table 4.1 shows the pseudo codes to describe the AdaBoost technique for 

two-class classification. 

Table 4.1 The AdaBoost technique for two-class classification 

LEARNING INPUT: 

1. A training example set <I>; 

2. A probability distribution Po on <I>; 

3. A classifier set n; 
4. A base learner BL; 

5. Maximum number of learning steps tM. 

LEARNING INITIALIZATION: 

1. P1 ~Po; 

2. T~0; 

3. C~0; 

4. w~0. 
LEARNING PROCESS: fort= 1 ... tM do 
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1. Call BL to acquire a classifier Ct from Q; 

2. Calculate the edge et+-- LPi.+ xy( <!> )x c1 (X( <!>)); 
+e<t> 

3. If et :S 0 ore;= 1, then break; 

4. Calculate the weight Wt+-- 0.5x(ln(l+e,)-ln(l-e,)); 

5. Update the probability distribution 

where p1 = LPr.+xexp(-wtxy(<j>)xc1 (X(<I>})); 
+e<t> 

6. Let T +-Tu {t}, C +-Cu {ct} and W +-Wu {wt}; 

LEARNING OUTPUT: 

1. An index set T; 

2. A classifier set C = {Ct I t e T}; 

3. A weight set W = {w1 w1 = w 1 ,w= :Lw.,w1 eW,teT}; 
W leT 

4. A confidence Cnf(<j>) = y(<j>)x 2:w1 xc,(X(<I>)); 
teT 

5. A classifier c(X(<j>)) = sign(:L w1 xc1 (X( <I>))), 
teT 

where sign(•) = { 
1 

-1 

60 

The AdaBoost technique comprises four parts: learning input, learning 

initialization, learning process and learning output (see Table 4.1). The AdaBoost 

technique initially assigns a probability for each training example 4> in the training 

example set <I>. The base learner BL acquires a classifier Ct from the candidate 

classifier set n, where the acquired classifier Ci achieves higher classification 

accuracy on the training example set <I> than other classifiers in the candidate 
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classifier set n do. Here, the classificatio~ accuracy is calculated based on the 

probability distribution Pt (i.e. the edge in Table 4.1). It is more possible for the 

acquired classifier Ct to correctly classify the training examples that are assigned 

with higher probability. The AdaBoost technique then updates the probability 

distribution Pt based on the acquired classifier Ct's edge eh its output Ct(X(cf>)) on 

each training example cf> and the training example cf>'s label y(cf>). In updating the 

probability distribution Pi. higher probability is assigned for the examples that are 

misidentified by the acquired classifier Ct. This update mechanism leads the base 

learner BL at the next learning step to acquire a new classifier Ct+i. for which it is 

more possible to correctly classify the examples that are misidentified by the 

acquired classifier Ci. At the end of learning, the AdaBoost technique outputs the 

acquired classifier set S and the weight set W . The classifier ensemble is 

represented as the weighted average of the acquired classifier outputs c1(X(cf>)). The 

AdaBoost technique, as a meta-type method, provides a flexible way to boost 

supervised learning models. 

In the AdaBoost technique, the candidate model (e.g. classifier) set can contain 

finite or infinite models. Moreover, it has been proven for two-class classification 

that the classification error rate of the ensemble of classifiers acquired by the 

AdaBoost technique decreases exponentially fast as long as in the learning process, 

the base learner BL can consistently acquire the classifier that achieves slightly 

higher classification accuracy on the training example set than randomly guessing. 

When the confidence Cnf(cf>) is greater (or less) than 0, it means that the classifier 

c(X(<j>)) correctly (or incorrectly) classifies the example <j>. Greater positive (or 

negative) Cnf(<j>) represents higher confidence, with which the classifier c(X(cf>)) 

correctly (or incorrectly) classifies the example <j>. So the confidence Cnf(cf>) IS 

expected to be as great as possible. The minimum confidence min ( Cnf( cf>)) IS 
+e<I> 

named the classifier c(X(<j>))'s margin, which can be regarded as one of a classifier's 

risk measures. A theoretical conclusion about the AdaBoost technique is that the 

margin increases as the learning steps increase. While these advantages of the 
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AdaBoost technique are just what to be expected for diversification across strategies, 

the AdaBoost technique cannot be applied directly to strategy diversification 

because it is discussed mostly in the supervised learning field while the strategy 

defined in this thesis essentially differs from a supervised learning model. 

In supervised learning, each training example is marked with a label for 

identification. The AdaBoost technique for two-class classification updates the 

probability distribution at each learning step based on the acquired classifier's edge, 

its output and the training example label. But in training a strategy, each training 

example cannot be marked with a label before a candidate strategy set is given. An 

investment example is that investors make decision about whether to buy or sell a 

stock at each time point over a period of time. Following the methodology of 

supervised learning, a training example set needs to be given for determining a 

strategy and each training example comprises a multi-attribute input variable and a 

label. Suppose that the multi-attribute input variable of a training example be 

information at each time point such as real-time stock price and trading volume and 

its label be the decision on buying or selling. In this case, an exact label actually 

does not exist for each training example because all decisions during the period of 

time interact with each other and each individual decision depends on its previous 

and next decisions. Suppose that the multi-attribute input variable of a training 

example be all information in the whole investment process and its label be the 

investment return. In this case, the investment return actually does not exist before a 

strategy is given since its existence depends on a specific strategy. The research of 

reinforcement learning has given a deep insight into this kind of difference (Sutton 

and Barto 1998). 

However, this thesis points out that the key idea of adaptively updating the 

probability distribution in the AdaBoost technique is not just applicable to 

supervised learning if it is illustrated in a general manner as below. Higher 

probability is assigned to the "worse" training examples according to the acquired 

model's "performance" at each learning step. The word "worse" means that the 

acquired model does not identify the training example well. Assigning higher 

probability to the "worse" examples aims to lead the base learner to acquire a new 



CHAPTER 4. DIVERSIFICATION BASED ON ADABOOST 63 

model, which is more possible to identify the "worse" examples well at the next 

learning step. This update mechanism can acquire various models, which identify 

different training examples well. In the AdaBoost technique, the "worse" training 

examples are referred to as those misclassified by the acquired classifier. The DAB 

technique extends the meaning of "worse" from misidentification in supervised 

learning to lower reward in training a strategy. Thus, the DAB technique assigns 

higher probability to the training examples, on which the acquired strategy achieves 

lower reward. This leads the base learner to acquire a new strategy, which is more 

possible to achieve high reward on the "worse" training examples at the next 

learning step. Diversification across strategies is then represented as allocating 

resources to the acquired strategies in proportion with their weights. 

To discuss the DAB technique, several symbols are introduced as below. Let <f> 

denote a time series, which is also called an example. The information at each time 

point of <f> is represented as a multi-attribute variable. A strategy s makes decision 

based on each multi-dimensional vector in <f>. Let p denote resources and w (0 < w ::::;; 

1) denote weight. The strategy s achieves the reward r(s,w,<f>) when it is executed on 

<f> with the weight resources (wxp). For example, when the strategy (s) makes profit 

of $10,000 by utilizing 10% (w) of a total capital of $1 million (p) over a period of 

time (<f>), the reward r(s,w,<f>) equals to I% for the total capital (p). Let n denote a 

candidate strategy set, which contains finite or infinite strategies. This thesis 

assumes that given a candidate strategy set n and an example <f>, the reward r(s,l,<f>) 

has a lower bound rINF( 4>) and a upper bound rsup( <f>) as below: 

rINF(<f>) =INF {r(s,l,<f>) Is e Q} 

rsuP(<f>) = SUP{r(s,l,<f>) Is e Q} 

When the candidate strategy set n contains infinite strategies, the lower bound 

riNF( <f>) and the upper bound rsuP( <f>) can be estimated by randomly sampling the 

strategies from n. In addition to the above assumption about bounds, there is no 

other limitation for the reward in the DAB technique. Given an example set <l> that 

contains finite examples <f>, the normalized reward r( s"l ,qi) is calculated as below: 
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_( 1 "') = r(s,w,~)-wxrINF(<I>) r s, , 'f' , 
~ 

where SUP{rsup(cp) I <I> e <l>} -INF {r1NF(<!>) I<!> e ct>}. 
The DAB technique inherits the basic idea of the AdaBoost technique, which 

adaptively updates the probability distribution on the example set at each learning 

step. The AdaBoost technique acquires a model (e.g. classifier) at each learning step 

according to the probability distribution. Higher probability is set for the examples 

misidentified by the acquired model when the AdaBoost technique updates the 

probability distribution. The AdaBoost technique can make judgment on whether an 

example is misidentified since each example in the training set is marked with a 

label in supervised learning. But the label of each example in the training set is 

unknown in training a strategy. So a normalized target reward ~ (0 :::; ~ :::; I) is set 

in the DAB technique as the benchmark to evaluate the reward and update the 

probability distribution at each learning step. Given the candidate strategy set n and 

the example set ct>, ~ = I means that the reward r(s,1,cp) is expected to reach the 

upper bound SUP{rsuP(<!>) I <!> e ct>}. Table 4.2 shows the pseudo codes to describe 

the DAB technique for strategy diversification. 

Table 4.2 The DAB technique for strategy diversification 

LEARNING INPUT OF THE DAB TECHNIQUE: 

1. Resources p; 

2. An example set ct>; 
3. A probability distribution Po on ct>; 

4. A candidate strategy set n; 
5. A normalized target reward ~ ; 

6. A base learner BL; 

7. Maximum number ofleaming steps tM. 

LEARNING INITIALIZATION OF THE DAB TECHNIQUE: 
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2. T f-0; 

3. sf- 0; 

4. Wf-0. 

LEARNING PROCESS OF THE DAB TECHNIQUE: fort= I ... tM do 

I. Call BL to acquire a strategy St from 0 (st achieves the reward r(si,l,<j>) and 

the normalized reward r ( s,, 1, <j>) with the resources p on the example <j>.); 

2. Calculatetheedgeet~ LP,,+xr(s"l,<j>); 
+ect> 

3. If et<~, then break; 

4. Calculate the weight w, <--In(~ -I )-in(:, -I} 

5. Update the probability distribution 

where p, = LP1,+ xexp(-w, xr(s"l,<j> )) ; 
+e<i> 

6. Let T ~ Tv {t}, S ~ S v {sr} and W f- Wv {wt}. 

LEARNING OUTPUT OF THE DAB TECHNIQUE: 

1. An index set T; 

2. A set of strategies S = {Sr I t e T}; 

3. AweightsetW={w1 w 1 = w 1 ,w=:Lw"wteW,teT}; 
\V 1eT 

4. A normalized reward r(S,W,<j>) = L:w1 xr(st>I,<j>). 
teT 

EXECUTION: 
I. Allocates to the resources p to each strategy St (st e S) in proportion with its 

weight w I ( w I E w ); 
2. Execute all strategies St (s1 e S) in parallel with their allocated resources 
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3. Achieve a reward rE(S,W,<I>) = 2:r(s1 ,wt1<1>) and a normalized reward 
IET 

~(s,w.<1>) = 2:r(s17 w"<J>). 
teT 

The DAB technique comprises two parts of learning and execution (see Table 

4.2). The DAB technique initially assigns a probability for each example in the 

example set. Given the probability distribution, the edge in Table 4.2 represents the 

average reward, which is achieved by a strategy on the training example set. The 

base learner acquires a strategy, which achieves the edge (i.e. the average reward) 

as great as possible, from the candidate strategy set. This means that the acquired 

strategy achieves higher reward on the examples that are assigned with higher 

probability. The DAB technique then updates the probability distribution on the 

example set based on the normalized target reward, the reward on each example and 

the edge. In updating the probability distribution, higher probability is assigned for 

the examples, on which the acquired strategy achieves lower reward. At the end of 

learning, the DAB technique outputs the normalized reward r ( S, W, <I>), which is 

the weighted average of rewards that are achieved by the acquired strategy in S. 

Before parallel execution, the DAB technique allocates the resources p to each 

acquired strategy in S in proportion with its weight in W. All strategies in S are 

then executed with their allocated resources in parallel in the execution part. At the 

end of parallel execution, the reward rE ( S, W, <I>) and the normalized reward 

~ (s, W,<I>) are achieved on the example <I> (<j>e<ll). The DAB technique, as a meta-

type method, is a flexible way for implementing diversification across strategies. 

A technique named "Hedge" has been proposed to solve the dynamic allocation 

problem (Freund and Schapire 1997). The DAB technique has an advantage over 

the Hedge technique. That is, it can be proven that the k-LPM fa(k) of rewards (one 

of downside risk measures) drops exponentially fast as the learning steps increase. 

The next section will theoretically prove the DAB technique's statistical properties. 
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4.2 Theoretical Analysis 

Given the resources p, the example set <I>, the probability distribution Po, the 

candidate strategy set n, the base learner BL, the normalized target reward~ and 

the maximum number tM of learning steps, the DAB technique inherits and extends 

the key idea of the AdaBoost technique to acquire the strategy set S, determine the 

weight set W in the learning part and output the normalized reward r(S, W,<j>) on 

the example <I> (<j>e<I>) at the end of learning. The DAB technique aims to lower the 

candidate strategies' risk, which can be measured by different standards, and limit 

the decrease in reward. From the perspective of candidate strategies' efficient 

frontier, the DAB technique moves it toward a favorable direction. This section will 

theoretically analyze several statistical properties about the DAB technique and then 

explain its reasonability and effectiveness. 

When the DAB technique updates the probability distribution at each learning 

step, higher probability is assigned for the examples, on which the acquired strategy 

Sc (sce S) achieves lower reward. Roughly speaking, this makes it harder for the base 

learner BL to acquire a strategy with a larger edge e, at the next learning step. The 

similar property also exists in the AdaBoost technique (Freund and Schapire 1997). 

Here, Hypothesis 4.1 is given according to the above property and it is strongly 

supported by the experiments in the next chapter. 

Hypothesis 4.1 (edge et): The edge e" which is achieved by the acquired strategy 

Sc at each learning step, decreases as the learning steps increase. 

Theorem 4.1 (r ( S, W, <I>)): 

r(S, W,cj>) ~ ln(Po.+) + ~ x L:(l-exp(-w,)). 
W W teT 

Proof: Po.+ x IT exp(-w, xr(s.,l,<I>)) 
teT 

= Pr+1.+ x IlP1 
teT 

(pi,oli 's definition) 
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(pT+1,41 and Pt are nonnegative) 

= llP1 
teT 

= 11(.LP .. + xexp(-w1 xr(s 1,l,t1>))) 
leT +e<I> 

(p,'s definition) 

~ 11(2: Pi.+ x(l-(l-exp(-w, ))xr(sl'l,4>) )) 
teT +e<I> 

(ab~l-{1-a)xb for O~a,b~l) 

= ll(t-(l-exp(-w 1))xe1 ) 

teT 
(er's definition, LPi.+ =I) 

+e<I> 

~ Lin( l-(l-exp(-w 1 ))xe1 ) 

teT 
(according to the above inequality) 

~ 2:(-(l-exp(-w1 ))xe1 ) 

teT 
(/n(l-a)~-a for O~a<l) 

Thus, r(s, W,tt>) 

= _!_x 2: w, xr(s.,1,4>) 
W teT 

(r(S, W,<j>) 's definition) 

ln(Po ) 1 
2:::: .+ +-x L(l-exp(-w1 ))xe1 

W W teT 
(divided by the negative number-w) 

ln(p ) -
;;::: o.+ +~x 2:(1-exp(-w,)) 

W W 1eT 

Corollary 4.1 ( r( S, W, 4>) ): When an equal probability l/l<f>I is set for each 

example in cf> at the beginning oflearning, i.e. Po is a uniform distribution, 

r(s,w,tP);;::: _lnl<t>I+ ~ x2:(t-exp(-w
1
)). 

W W IET 

Theorem 4.2 (average of r(S, W,cl>)>: 
- I 

LPo.+xr(S,W,<J>) 2:::: 1xl:(I-exp(-w,)). 
~<!> w ~ 
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Proof: TI exp(Po.+ x/n(TI exp(-w. xr(s.,1,<j> n)) 
+e<I> teT 

::::; LPo.+ x TI exp(-w. xr(s.,l,cJ>)) (the finite form of Jensen's inequality, 
+e<I> IET 

=TIP. 
leT 

= TI(LPi.+ xexp(-w, xr(s"l,<J>))) 
teT +e<I> 

Cover and Thomas 1991) 

U>-r+1,+ and Pt are nonnegative) 

(p,'s definition) 

::::; TI(LP•.+ x(I-{l-exp(-w 1 ))xr(s1,l,<j>) )) 
1eT +e<I> 

(ab:::;l-{1-a)xb for o:::;a,b:::;l) 

= TI(l-{l-exp(-w1 ))xe1 ) 

1eT 

- LPo.+X :Lw, xr(s.,l,<j>) 
<PE<I> teT 

~ :L1n{l-(l-exp(-w1 ))xe1 ) 

IET 

~ :L(-{l-exp(w1 ))xe1 ) 

IET 

Thus LPo.+ xr(S, W,cJ>) 
+E<J> 

(e1's definition, LPi.+ = 1) 
+e<I> 

(according to the above inequality) 

(/n(l-a):::;-a for O~a<l) 

Cr( S, W,cJ>) 's definition) 

(divided by the negative nurnber-w) 

Proposition 4.1 Suppose w1+1 ::::; Wi, where w1 and w1+1 are any two consecutive 

weights in W in Table 4.2. The following function is increasing as ITI increases: 
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.fCITI}= "I x(a+bxl:(t-exp(-w 1 ))), L.J W, teT 
teT 

where a (a$ 0), b (b ~ 0) are two constants, Tis the index set in Table 4.2. 

l-exp(-x) 
Proof: Let g ( x) = , where x ~ 0. 

x 

70 

a xx exp(-x)-(l-exp(-x)) The function g(x)'s first-order derivative is -g(x) = 
2 

• 
Ox x 

The first-order derivative ~ g ( x) ~ 0 for any x (x ~ 0) because 
Ox 

! ( x xe.xp(-x)-(l-exp(-x))) = -xxexp(-x) ~ 0 for any x (x ~ 0), 

and xxexp(-x)-(l-exp(-x)) = 0 for x (x = 0). 

The function g(x) (x ~ 0) is decreasing according to the fact that ~g(x) ~ 0 for 
ax 

any x (x ~ 0). 

Thatis, w 1 x(t-exp{-wtr1+i))-wfrl+ix{l-e.xp(-w1 )) ~O. 

Thus, (1-exp{-wfrl+i))x L:w1 -wfrl+i x 2:(1-e'.tp(-w,)) ~ 0. 
teT teT 

l:{I-exp(-w1 ))+(t-e.xp(-wrr1+i)) 2:(1-exp(-w,)) 
That is, reT reT ~ 0. 

l:w1 +w111+1 2:w1 
~T ~T 

Moreover, a - "a ~ 0 since a~ 0 and Wt~ 0 . .Lw, +wlTl+t L.J w, 
teT teT 

Thus, f (ITI +I)- f (ITI) 

= [L:w,:wlTI+• _Law,] 
teT teT 
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+bx teT """"IE:..:.T _____ _ 

( 
2:(1-exp(-w1 ))+(l-exp(-w1TJ+•)) 2:(1-exp(-w,))] 

2:w1 +wlTJ+i 2:w1 
teT teT 

~o 

So the functionfi]TI) is increasing as ITI increases. • 
Theorem 4.1, Corollary 4.1 and Theorem 4.2 show that the normalized reward 

r ( s, w' cf>) and its average L Po.+ x r ( s, w' <I>) are guaranteed by the lower bounds 
+e<l> 

as the DAB technique acquires more strategies with weights in the learning part. 

Hypothesis 4.1 states that the edge e1 decreases as the learning steps increase. The 

weight w1 decreases as the learning steps increase according to the relationship 

between e1 and w1 (see Table 4.2). Proposition 4.1 shows that in Theorem 4.1, 

Corollary 4.1 and Theorem 4.2, the lower bounds of r(S, W,cf>) and its average 

L Po.+ x r ( S, w, cf>) increase as the learning steps increase. The lower bound 
+e<l> 

involved in Corollary 4.1 is reasonable even for a large example set because it only 

logarithmically depends on the example set size J<t>I. 

The concept of Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) 

will be used in the theorem and corollary about the k-LPM of r(S, W,cf>). The KL 

divergence and its property are introduced as below. 

Definition 4.1 (KL divergence): Let DKL(pllq) denote the KL divergence of p 

and q (0 :Sp, q :S 1). Thus 

DKL(pllq) - px/n(:)+(l-p)xln(:=~l 
In the information theory, the KL divergence is represented as the difference 

between the cross entropy and the entropy. 

Proposition 4.2 (KL divergence): DKL(Pllq) ~ 0, where 0 :Sp, q ::S 1. 

Proof: According to Definition 4.1, 

DKL (p liq) - pxln( :)+(J-p)xln(:=:)- -pxln(: )-(H )xln(: =:). 
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Since the logarithm function is concave, 

DKL{pllq) ~ -/n(px~+{l-p)x 1 -q) =O. 
p 1-p • 

Theorem 4.3 (k-LPM of r ( S, W, <j>) ): 

where DKLC~ llet) is the KL divergence of~ and e1. 

Proof: Let <l>O = {<!>let> E <1> Ar( s, W,<j>) ~ ~}. 

Forany<j>(<j>e<l>O), r(S,W,<J>) = 2)v1 xr(s"l,<J>) ~~. 
IET 

leT teT 

Thus L Po.• x TI exp(-w1 x~) 
•ecJ>O teT 

~ LPo.+xTiexp(-w 1 xr(s"l,cJ>)) 
+ecJ>O teT 

= LPT+l .• x IlP1 
+e<l> IET 

= IlPr 
teT 

= n(LPi.+ xexp(-w, xr(s1 ,l,cJ>))) 
teT +e<I> 

~ n(L Pr.+ x(l-(l-exp(-w 1))xr(s"l,<j>) )) 
teT ;e<I> 

= Il(t-(l-exp(-w1 ))xe1 ) 

teT 

(<l>Oc<l>) 

(PT+i,+ and Pt are nonnegative) 

(LPT+1.+ =1) 
+e<SJ 

(Pi 's definition) 

(ab~l-{l-a)xb for O~a,b~l) 

(e1's definition, LPr.+ =l) 
+ecJ> 

be minimized by minimizing each.f{wt) since.f{w1) is positive for each t (teT). So w1 
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= In ( ~ -1 )- In(:, -1) by setting the first-order derivative of .I{ w,) to be zero, i.e. 

:V f ( w 1 ) = 0. Plug Wt= In(~ -1)-1n(..!...-1) into TI! ( w 1 ). 

I Jii el teT 

Thus 2:( max( o,(~ - r(s, W,<j> )))r 
+e<t> 

< -k """' - Iii x £....i Po.+ 
+e<l>O 

- (r(S, W,<f>) ~ 0, integral number k ~ 0) 

= ~k x exp(-LDKL (~II e1 )) 

teT • 
Corollary 4.2 (k-LPl\-1 of r( s, W,<f>) ): 

~(max( o,(~ - r(S, W,<j> )))f ::; ~k xexp{-ITlx'?e~ DKL (~II e,)), 
where DKL(~ lle1) is the KL divergence of~ and e1. 

Proposition 4.2 states that DKL(~ lle1) is nonnegative. Thus, Theorem 4.3 and 

Corollary 4.2 show that the k-LPM of r(S, W,cjJ) can decrease exponentially fast as 

long as DAB consistently acquires the strategy Si. which achieves the edge e1 that is 

slightly higher than the normalized target reward ~ in the learning process. There 

are similarities between Theorem 4.3 (and Corollary 4.2) in this chapter and 

Theorem 3 in (R~itsch et al. 2001) since the normalized target reward ~ and the 

exponential decreasing bound are involved in all of them. However, they are 

different in that Theorem 3 in (Ratsch et al. 2001) is proven in the research of the 
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AdaBoost technique for supervised learning (e.g. two-class classification) while 

Theorem 4.3 in this chapter is applicable to the analysis of downside risk for 

diversification across strategies, i.e. it provides the exponentially decreasing bound 

for the downside risk of diversification across strategies. Essentially, Theorem 3 in 

(R~itsch et al. 2001) can be regarded as the discussion on the bound of 0-order LPM 

(the probability of loss), while Theorem 4.3 in this chapter extends the conclusion 

to the bound of k-order LPM (k: nonnegative integral number). This extension (k 2: 

0) is important for evaluating the downside risk of a strategy because the values of k 

represent the degree of risk aversion or tolerance (Bawa 1975). 

For a finite strategy set Q and a finite example set <I>, a reward matrix is 

represented as below: 

r( ro1>l,<j>1) r( ro1,l,<j>i) 

r( ro2 ,I,<j>1) r( co2 ,l,cp2 ) 

r ( (J)I , 1, 4>i'l>f) 

r ( ro2, I, 4>1<t>I) 

The probability vector P(<I>) on the finite example set <I> is represented as below: 

p( 4>1) 

p (<I>) = p ( i2) 
P(4>~1) 

The probability vector Q(Q) on the finite strategy set n is represented as below: 

q ( C01) 
q(ro2) 

Q(n)= 

T 

Definition 4.2 (edge) Given a probability vector P(<I>) on the finite example set 

<I>, the edge e(P(<I>)) is represented as below: 

e { P (<I>)) = max L p ( 4>) r (co, 1, <I>) • 
roe!l +e<l> 
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Definition 4.3 (margin) Given a probability vector Q(O) on the finite strategy 

set n, the margin m(Q(O)) is represented as below: 

m ( Q ( n)) = min L q (co) r ( w, 1, <!>) • 
+e<t> <oeO 

Theorem 4.4 (minimax theorem, von Neumann 1928) 

max m( Q{n)) = min e(P( <I>)) 
Q(O)ep.Jtll P{<t>)eP~ 

where Prl°1 and Pr1<bl are respectively the IOI-dimensional and l<I>l-dimensional 

probability measures. 

Given the example set <I> and the probability vector P(<I>) on it, the edge e(P(<I>)) 

can be regarded as the maximum average reward, which is achieved by one strategy 

in the strategy set n. The edge is used in the DAB technique to adaptively update 

the probability distribution Pt and adjust the weight w1• Hypothesis 4.1 states that 

the edge decreases as the learning steps increase. Given the strategy set n and the 

probability vector Q(Q), the margin m(Q(O)) can be regarded as the minimum 

reward, which is achieved by diversifying the strategy set n in the finite example 

set <I>. In the supervised learning field, the margin was proposed to measure the 

generalization ability of a model (Vapnik 1999, Freund and Schapire 1998). The 

margin was adopted as one of measures for risk in the investment field (Balzer 

1994). Theorem 4.4 connects the margin and the edge, i.e. maximizing the margin is 

equivalent to minimizing the edge. Thus, the margin (i.e. the minimum reward) is 

expected to increase as the edge decreases in the DAB technqiue. 

The DAB technique allocates the resources p to each acquired strategy in S in 

proportion with its weight in W before parallel execution and executes all 

strategies in S with their allocated resources in parallel in the execution part. The 

DAB technique achieves the reward rE ( S, W, <!>) and the normalized reward 

~ (s, W,<!>) on the example 4> (<j>e<I>) at the end of parallel execution. Let rµ, r,n Tcr(2) 

and rM respectively denote rE ( S, W, <I>) 's average, standard deviation, k-order LPM 

and minimum. They are calculated as below: 
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r µ = L Po,+ x rE ( S, W, <j>) , 
+e<I> 

ra= -
1 1

1
-x:2:(rE(s,w,<1>)-r11r, cf> -1 te<l> 

rcr(k) = :L( max( o,(r!NF (<I>)+ rx ~ -rE (s, W,<j> ))) r , 
+e<I> 

rM = Te~ ( rE ( S, W, <!>)) . 

This section has proven several statistical properties about r ( S, W, <j>) , its average, 

k-LPM and minimum. Based on these statistical properties, two hypotheses are 

given as below. 

Hypothesis 4.2 (k-LPM of rewards fcr(k) and average of rewards rµ): The k-

LPM rcr(k) of rewards decreases as the learning steps increase and meanwhile the 

reduction in the average reward rµ is limited. From the perspective of candidate 

strategies' efficient frontier, the DAB technique moves it toward the favorable 

direction. The efficient frontier's horizontal and vertical coordinates respectively 

represent rcr(k) and r µ· 

Hypothesis 4.3 (minimum of rewards TM and average of rewards rµ): The 

minimum rM of rewards increases as the learning steps increase and meanwhile the 

reduction in the average reward rµ is limited. From the perspective of candidate 

strategies' efficient frontier, the DAB technique moves it toward the favorable 

direction. The efficient frontier's horizontal and vertical coordinates respectively 

represent TM and rµ. 

Since r ( S, W, <j>) is not exactly the same as ~ ( S, W, <I>) in the hypotheses, the 

analysis in this section is rather theoretical explanation for Hypotheses 4.2 and 4.3 

than mathematical proof. The hypotheses will be verified by the experiments on 

real-life data in the next chapter. 
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4.3 Summary 

This chapter has proposed the DAB technique, which reflects the idea of 

diversification across strategies, for risk management in various practices. The DAB 

technique extends the key idea of the AdaBoost technique to acquire strategies from 

a candidate strategy set and determine their weights. The resources are then 

allocated to each acquired strategy in proportion with its weight before parallel 

execution and all acquired strategies are executed in parallel with their allocated 

resources. Theoretical analysis shows several advantages of the DAB technique: l) 

it allows the candidate strategy set to contain finite or infinite strategies; 2) as the 

learning steps increase, it lowers risk that can be measured by different standards 

(e.g. the k-LPM of rewards and the minimum of rewards) and limits the decrease in 

average reward. The DAB technique will be applied to implement diversification 

across the DF strategies for trade execution and will be verified by the experiments 

on real-life data in the next chapter. In future, the theoretical research of the DAB 

technique can be further extended to analysis of its generalization ability, i.e. its 

statistical properties in out-of-sample testing. 



Chapter 5 

Boosted Dynamic Focus Strategy 

In this chapter, the DAB technique, which reflects the idea of diversification across 

strategies, is applied to acquire DF strategies from a candidate DF strategy set and 

determine their weights. The entire order is allocated to each acquired DF strategy 

in proportion with its weights and all acquired DF strategies are executed in parallel 

to fill their allocated order. This parallel execution is called the BONUS strategy. 

Theoretical analysis shows that as the learning steps increase, the BONUS strategy 

moves the candidate DF strategies' efficient frontier toward the favorable direction. 

The efficient frontier's horizontal and vertical coordinates respectively represent the 

risk measured by different standards and the average shortfall. In-sample test based 

on 80 datasets strongly supports the theoretical analysis on the BONUS strategy. 

Out-of-sample test results on most datasets show that the DAB technique and the 

BONUS strategy outperform the optimal DF strategy and two simply diversification 

techniques. This chapter is composed of 3 sections. The I st section describes and 

analyzes the BONUS strategy. The 2nd section empirically verifies the theoretical 

analysis on the BONUS strategy and evaluates its effectiveness. The 3rd section 

summarizes the BONUS strategy. 

78 
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5.1 BONUS Strategy and Analysis 

A trade execution strategy is designed to fill a buy or sell order of p shares over a 

period of time (i.e. the example Q>) with low transaction cost and risk. A set of DF 

strategies, which reflects the idea of diversification across time, was proposed in 

Chapter 3 to improve the limit order strategy for trade execution. The DF strategies 

dynamically adjust the volume of each small market order over the execution period 

according to real-time state variables to reduce the trade execution cost and risk, 

which are brought by the limit order strategy. The DAB technique, which reflects 

the idea of diversification across strategies, was proposed in Chapter 4 to move a 

candidate strategy set's efficient frontier toward a favorable direction. It is applied 

to acquire DF strategies from a candidate DF strategy set and determine their 

weights. The entire order of p shares is allocated to each acquired DF strategy in 

proportion with its weight w and all acquired DF strategies are executed in parallel 

to fill their allocated order of wxp shares. This parallel execution is regarded as the 

BONUS strategy. 

Let $(s,w,<j>) denote the dollar value of the DF strategy s buying (or selling) the 

order of wxp shares on the example <j>. Let c(s,w,<j>) denote the shortfall, which is 

brought by the DF strategy s when it is executed on the example <I> to fill the order 

ofwxp shares. The shortfall c(s,w,<j>) is calculated as bellow: 

$( s, w .<I>) ("") -wxpo 'f 

c{s,w,Q>) = sgnx lOOOOx p ( ) 
Po <I> 

where sgn = I (or -1) for buying (or selling), po(Q>) is the midpoint price between 

the best bid price and the best ask price at the beginning time of <f>, the unit of the 

shortfall c(s,w,Q>) is BPS. 
Given a candidate DF strategy set n and an example cj>, any DF strategy s (s e 0) 

brings the shortfall c(s,I,cj>) when it is executed to fill the order of p shares on the 
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example q,. It is assumed in this chapter that the shortfall c(s, 1,4>) has a lower bound 

C1NF(<\>) and an upper bound csUP(<\>) as below: 

CINF(<!>) =INF {c(s,l,<j>) Is e Q} 

csuP(<!>) = SUP{c(s,l,<!>) Is e O}. 

If the candidate DF strategy set n contains infinite DF strategies, the lower bound 

C1NF( <!>) and the upper bound csuP( 4>) can be estimated by randomly sampling some 

DF strategies from n. Given an example set <l> that contains finite examples <!>, the 

normalized shortfall c( s, w,<!>), which is brought by the DF strategy s when s is 

executed on the example <!> to fill the order of wxp shares, is calculated as below: 

_( )- c(s,w,<f>)-wxcINF(<I>) c s, w,cf> - , 
!:::. 

where !:::. = SUP{csuP(<!>) I 4> E <l>} - INF {cINF(<!>) I 4> E <l>}. Table 5.1 shows the 

pseudo codes to describe the DAB technique and the BONUS strategy. 

Table 5.1 The DAB technique and the BONUS strategy for trade execution 

LEARNING INPUT: 

1. A buy or sell order of p shares; 

2. An example set <l>; 

3. A probability distribution Po on <I>; 

4. A candidate DF strategy set O; 

5. A normalized target shortfall c9 ; 

6. A base learner BL; 

7. Maximum number tM of learning steps. 

LEARNING INITIALIZATION: 

I. P1 +-Po; 

2. T +- 0; 

3. s +-0; 

4. W+-0. 
LEARNING PROCESS: fort = 1 ... tM do 
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1. Call BL to acquire a DF strategy St from n and St brings the shortfall c(st,l,<J>) 

and the normalized shortfall c(s 1 .i.) · 
" ''I' ' 

2. Calculate the edge e1 f- L Pa.+ x(l- c(s, ,1, <I>)); 
+e<l> 

3. If e, < 1-Ce, then break; 

4. Calculate the weight w, f- In( !- -1J-zn(_!_-1J; 
I Ce e, 

5. Update the probability distribution 

where p1 = LP,,+xexp(-w,x(l-c(s.,l,cfi))); 
+e<i> 

6. Let T f-T u {t}, Sf-Su {st} and W f- Wu {wt}. 

LEARNING OUTPUT: 

I. An index set T; 

2. A DF strategy set S ={st It E T}; 

3. Aweightset W ={w, w,= w 1 ,w=2:w"w 1 eW,teT}; 
W teT 

4. A normalized reward c(S,W,<I>) = 2:w1 xc(s 1,l,<j>). 
teT 

EXECUTION (THE BONUS STRATEGY): 

I. Allocates the entire order of p shares to each acquired DF strategy St (s1 E S) 

in proportion with its weight w, ( w, E W ); 
2. Execute all acquired DF strategies s1 (st E S) in parallel with their allocated 

order of w, x p shares; 

3. Output a shortfall cE ( S, W, <!>) = L c ( s., w" <I>) and a normalized shortfall 
teT 

~(s,w,<J>) = :Lc(s"w.,<J>). 
teT 

-----------·--·--·------------····-······--···-----------------
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Table 5.1 shows that given the buy or sell order of p shares, the example set <I>, 

the probability distribution Po, the candidate DF strategy set n, the target shortfall 

c0 , the base learner BL and the maximum number tM of learning steps, a set of DF 

strategies with weights is acquired by using the DAB technique in the part of 

learning, the entire order of p shares is allocated to each acquired DF strategy s1 in 

proportion with its weight w1 and all acquired DF strategies are executed in parallel 

to fill their allocated order of w 1 x p shares in the part of execution. The BONUS 

strategy is referred to as the parallel execution and it boost the candidate DF 

strategy set's performance. In this chapter, an equal probability 111<1>1 is initially set 

for each example <f> in the example set <I>, i.e. the probability distribution Po is a 

uniform distribution. 

The edge et in Table 5.1 is reversely related to the average shortfall, which is 

brought by a DF strategy on the training example set. The base learner acquires a 

DF strategy, which achieves the edge as high as possible (i.e. achieves the average 

shortfall as low as possible), from the candidate DF strategy set The DAB 

technique in Table 5.1 calculates the edge et and updates the probability distribution 

P1 at each learning step based on the formula 1-c( s.,l,<f>) instead of the normalized 

shortfall c( s1,l,cj>) while the DAB technique in Table 4.2 calculates the edge e1 and 

updates the probability distribution P1 at each learning step based on the normalized 

reward r (st> 1, <j>). Intuitively, the expectation on the normalized reward r ( s" 1, <I>) 

and on the normalized shortfall c ( s1 , 1, <f>) is reverse. This means that the essence of 

the DAB technique in Table 5 .1 is the same as that of the DAB technique in Table 

4.2. The theoretical analysis in Chapter 4 can be extended to explain the 

effectiveness of the DAB technique in Table 5.1 if I - c ( s" I, <I>) is regarded as the 

normalized reward r(s.,l,<j>). Suppose that r(s"l,4>)=1-c(s"l,<j>) and ~=l-c0 • 

Thus, r ( S, w, ~) = 1-c ( s, w, <f>) since L w I = 1. Based on the above relationship, 
teT 
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the theoretical analysis in Chapter 4 can be illustrated as below in the context of 
trade execution. 

Hypothesis 5.1 (edge e.): The edge et, which is achieved by the acquired strategy 

St at each learning step, decreases as the learning steps increase. 

Theorem 5.1 (c(s, W,<j>)): 

_( - ) ln(Po+) 1-c 
c S, W,<j> ::;; 1- · ---9 x L:(I-exp(-w,)). 

W W leT 

Corollary 5.1 (c(S, W,<j>)): 

( - ) tn l<t>I 1-c c S, W,<j> ::;; 1+-----0 x L:(l-exp(-w1 )). 

W W leT 

Theorem 5.2 (average of c(s, W,<j>) ): 

Proposition 5.1 Suppose W1+1 ::;; Wt, where Wt and w1+1 are any two consecutive 

weights in W in Table 5.1. The following function is decreasing as ITI increases: 

.f{ITI) = I - "
1 x (a +bx L ( 1-exp ( -w 1 ) )) , 

£..J Wt leT 
leT 

where a (a~ 0), b (b ~ 0) are two constants, Tis the index set in Table 5.1. 

Theorem 5.1, Corollary 5.1 and Theorem 5.2 show that the normalized shortfall 

c ( S, W, <!>) and its average L Po.+ x c ( S, W, <I>) are limited by the upper bounds as 
+e<I> 

the DAB technique acquires more strategies with weights in the learning part. 

Hypothesis 5.1 states that the edge e1 decreases as the learning steps increase. So the 

weight w1 decreases as the learning steps increase according to the relationship 

between et and Wt (see Table 5.1). According to Proposition 5.1, the upper bounds 

in Theorem 5.1, Corollary 5.1 and Theorem 5.2 decrease as the learning steps 

increase. The upper bound in Corollary 5.1 is reasonable even for a large example 

set because it only logarithmically depends on the example set size 1<1>1. 
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Theorem 5.3 (k-UPM of c(s, W,cf>)): 

Corollary 5.2 (k-UPM of c(S, W,cf>) ): 

L(max( o,(c(S, W,cf> )-Ce )))k ~ {1-c0 t xexp(-ITlx min DKL ((1-c9) II e,)). 
~~ ~T 

D KL ( { 1-Ce) II e1 ) is nonnegative according to the property of the KL divergence. 

Theorem 4.3 and Corollary 4.2 show that the k-order UPM of c ( S, W, cf>) can 

decrease exponentially fast as long as in the learning process, the DAB technique 

consistently acquires the strategy s1, which achieves the edge et that is slightly 

higher than 1-c9 • The 2-order UPM is tested in the following empirical study and 

more values ofk will be testified in future work. 

For a finite strategy set n and a finite example set <I>, a shortfall matrix is 

represented as below: 

c ( 0)1 , 1, 4>1 ) 

c( ro2,l,4>1) 

c(ro1>l,«j>2 ) 

c ( 0)2' 1, «1>2 ) 

c( ro1 ,l,~1 ) 
c ( 0>2 ' 1, «1>1~1) 

The probability vector P(<I>) on the finite example set <I> and the probability vector 

Q(Q) on the finite strategy set Qare represented respectively as below: 

p( «!>,) 
p( «1>2) 

P{<I>)= : 

P( 4>1w1) 

q ( ro1) T 

q ( ro2) 
and Q(O)= : 

q(~) 

Definition 5.1 (edge) Given a probability vector P(<I>) on the finite example set 

<I>, the edge e(P(<I>)) is represented as below: 
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e(P(<I>)) = maxl:p(<j>)x(l-c(co,1,<j>)) = 1-min ~p(<j>)xc(co,1,"'). 
roen ~ ~ roen "-' 'I' ,.e"' roeO 

Definition 5.2 (margin) Given a probability vector Q(.Q) on the finite strategy 

set n, the margin m(Q(.Q)) is represented as below: 

m ( Q ( .Q)) = Te~ L q ( ro) x ( 1-c ( ro, 1, <I>)) = 1-m+ ~ L q (co) x c ( ro, I, <I>) . 
roeO e roen 

Theorem 5.4 (minimax theorem, von Neumann 1928) 

min e ( P (<I>)) = max m { Q ( .Q)) , 
P{<l>)eP,J4'1 Q(O)e~ 

where Ptn1 and P~1 are respectively the IOI-dimensional and l<I>l-dimensional 

probability measures. 

Definition 5.1 shows that given an example set <I> and a probability vector P(<I>) 

on <I>, the edge e(P{<I>)) is reversely proportional to the minimum shortfall average 

min L p ( <!>) x c { ro, 1, <I>) • The edge is used in the DAB technique to adaptively 
(J)EQ OOEO 

update the probability distribution Pr and adjust the weight w, at each learning step. 

Hypothesis 5.1 states that the edge decreases as the learning steps increase. 

Definition 5.2 shows that given a strategy set .Q and a probability vector Q(.Q) on .Q, 

the margin m(Q(.O)) is reversely proportional to the maximum shortfall 

max L q ( ro) x c ( ro, 1, qi) . Theorem 5.4 connects the margin and the edge, i.e. 
+ecJ> <a>EO 

maximizing the margin is equivalent to minimizing the edge. Thus, the margin is 

expected to increase (i.e. the maximum shortfall is expected to decrease) as the edge 

decreases in the DAB technique. 

After the entire order of p shares is allocated to each acquired DF strategy in Sin 

proportion with its weight in W , all acquired DF strategies are executed in parallel 

to fill their allocated order of w 1 x p shares (i.e. the BONUS strategy). Let 

cE ( S, W, <I>) denote the shortfall, which is brought by the BONUS strategy on the 

example <j>. Let cµ, Ca, Ccr(2) and CM respectively denote cE ( S, W, <I>) 's average, 

standard deviation, k-order UPM and maximum. They are calculated as below: 
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Ccr(k) = LPo.+ x{ max( o,( CE (s, w,q, )-c!NF (<I> )-cfj xti) ))k' 
+e<J> 

CM = 7f1/ (CE ( S, W, cp)) . 
Ca, Ccr(k) and CM are used as different standards to measure risk. 

The theoretical analysis in this section illustrates the statistical properties on the 

learning output c(S, W,<j>), its average, k-UPM and maximum. The following two 

hypotheses are given according the theoretical analysis. Since c( S, w,q,) is not 

exactly the same as c;; ( S, W, 4>) in the hypotheses, the analysis in this section is 

rather theoretical explanation for the following hypotheses than mathematical proof. 

The following hypotheses will be verified through the experiments on real-life data 

in the next section. 

Hypothesis 5.2 (k-UP.M of shortfalls Ccr(k) and average of shortfalls cµ): The k-

UPM Ccr(k) of shortfalls decreases as the learning steps increase and meanwhile the 

increase in the average shortfall cµ is limited. From the perspective of candidate 

strategies' efficient frontier, the BONUS strategy moves it toward the favorable 

direction. The efficient frontier's horizontal and vertical coordinates respectively 

represent Ccr(k) and Cµ. 

Hypothesis 5.3 (maximum of shortfalls CM and average of shortfalls cµ): The 

maximum CM of shortfalls increases as the learning steps increase and meanwhile 

the increase in the average shortfall cµ is limited. From the perspective of candidate 

strategies' efficient frontier, the BONUS strategy moves it toward the favorable 

direction. The efficient frontier's horizontal and vertical coordinates respectively 

represent CM and Cµ. 

86 
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5.2 Empirical Evaluation 

This section evaluates the DAB technique and the BONUS strategy through the 

detailed in-sample results of the stock "WFT' in four test periods and the statistical 

summary of in-sample results on all 80 datasets. Figures 5.1, 5.2, 5.3 and 5.4 shows 

the in-sample results of the stock "WFT" in four test periods: January, February, 

March and April 2002. The three charts in the left column of each figure 

respectively show how the edge et, the maximum of shortfal1s cM and the 2-UPM of 

shortfalls Ca-(2) (see the vertical coordinates) change as the learning steps (see the 

horizontal coordinates) increase. The study of efficient frontier is shown in three 

charts on the right column of each figure, in which the vertical coordinates represent 

the average of shortfalls cµ and the horizontal coordinates represent respectively the 

standard deviation of shortfalls c11, the maximum of shortfalls cM and the 2-UPM of 

shortfalls Ca-(2)· In the three charts in the right column of each figure, the dot curves 

are the OF strategies' efficient frontiers and the solid curves are the BONUS 
strategy's in-sample test results. 

The OF strategies and their weights need to be acquired by using the DAB 

technique before the BONUS strategy is implemented. As an input parameter of the 

DAB technique, the normalized target shortfall c9 needs to be determined at the 

start of learning. Here, c9 is set in the following way. Different values between 0 

and 1 (starting from 0 in an increasing order) are given to the normalized target 

shortfall c6 to see whether the in-sample test results can verify Hypotheses 5.1, 5.2 

and 5.3 with the given value of c9 • When a value of~ is found, with which the in-

sample test results verify Hypothesis 5.2, the acquired OF strategies and their 

weights are applied to out-of-sample test for implementing the BONUS strategy. 

It is clear in the left column charts of each figure that ei, CM and Ca-(2) decrease as 

the learning steps increase, though some oscillation happens in the learning process. 

The right column charts of each figure show that as the learning steps increase, the 

BONUS strategy based on the DAB technique lowers risk that can be measured by 
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different standards (the standard deviation of shortfalls ca, the maximum of 

shortfalls CM and the 2-UPM of shortfalls Cac2>) and meanwhile limits the increase in 

the average of shortfalls Cµ. From the perspective of candidate DF strategies' 

efficient frontier, the BONUS strategy moves it toward the favorable (left-bottom) 

direction as the learning steps increase. This supports Hypotheses 5.1, 5.2 and 5.3 
on the DAB technique and the BONUS strategy. 

The optimization objective is represented as the tradeoff between the average of 

shortfalls and the risk, i.e. Cµ + y x risk, where y (y ~ 0) is a tradeoff factor and the 

variable "risk" is measured by different standards (c<h Cac2> or cM). The tradeoff 

factory represents the degree of risk aversion or tolerance in trade execution. When 

y is assigned with a greater (or smaller) value, it represents higher risk aversion (or 

tolerance) in trade execution. When y = 0, it means that only the average of 

shortfalls Cµ is considered in the optimization objective but the variable "risk" is 

ignored. When y ---)- oo, it means that only the variable "risk" is considered in the 

optimization objective but the average of shortfalls cµ is ignored. Let -yo the slope 

of the straight line in each chart on the left column of each figure. When the 

tradeoff factor y is set to be less than yo, the optimization objective cµ + y x risk is 

minimized by the BONUS strategy rather than a strategy in the candidate DF 

strategy set. Moreover, the in-sample test on all 80 datasets shows that Hypotheses 

5.1, 5.2 and 5.3 are strongly supported by in-sample test respectively on 80, 77 and 

72 datasets. 
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Figure 5.1 In-sample test on the BONUS strategy (January 2002) 
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Figure 5.2 In-sample test on the BONUS strategy (February 2002) 
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Figure 5.3 In-sample test on the BONUS strategy (1\-tarch 2002) 
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Figure 5.4 In-sample test on the BONUS strategy (April 2002) 
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After the DF strategies and their weights are determined, the BONUS strategy 

allocates the entire order to each acquired DF strategy in proportion with its weight. 

All acquired DF strategies are executed in parallel with their allocated order. This 

section reports the out-of-sample test results of parallel execution on 80 datasets and 

compared the BONUS strategy to the optimized DF strategy and two simple 

diversification techniques. 

Let "DFO" and "DFI" denote the DF strategy optimized respectively by setting y 

= 0 and 1. Let BONUS denote the BONUS strategy. Let "Average" and "Ranking" 

denote respectively the I 51 and 2nd diversification techniques. The 1st diversification 

technique "Average" equally allocates the entire order to several DF strategies that 

bring lower shortfall than other DF strategies in the candidate DF strategy set do. 

The 2nd diversification technique "Ranking" allocates the entire order to the DF 

strategies, which bring lower shortfall than other DF strategies in the candidate DF 

strategy set do, in proportion with the weight Wt calculated as below: 

where T is the index set for the DF strategies, Ct is the shortfall that is brought by 

the tth strategy. 
Tables 5.2, 5.3, 5.4 and 5.5 report the out-of-sample test results of"DFO", "DFI ", 

"BONUS", "Average" and "Ranking" in terms of the average of shortfalls cµ and 

the standard deviation of shortfalls cG. The out-of-sample test results on 80 datasets 

show that "BONUS" brings lower average of shortfalls cµ than "DFO" and "DFI" 

does respectively on 74 and 79 datasets. The out-of-sample test results also show 

that in terms of the average of shortfalls cµ, two simple diversification techniques 

"Average" and "Ranking" cannot outperform the BONUS strategy (i.e. the DAB 

technique) on all 80 datasets except the dataset "WFT in April 2002". Moreover, 

the out-of-sample test on 80 datasets show that the lowest standard deviation of 

shortfalls Ca is achieved by "BONUS" on 12 datasets while by "DF l" (i.e. y = I) on 

68 datasets. This supports the analysis about the effect of y on the optimization 

objective. 
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Table 5.2 Out-of-sample test on BONUS strategies (AMP - CBA) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ c(J Cµ c(J Cµ Ca Cµ Ca 

DFl 7.70 8.21 8.65 7.51 8.97 7.70 8.36 9.31 

DFO 7.70 8.21 8.49 9.83 8.74 9.90 7.23 11.66 

AMP BONUS 6.73 8.20 7.44 8.04 7.84 7.72 6.85 9.27 

Average 10.42 10.67 11.94 9.90 12.52 10.93 11.06 13.07 

Ranking 9.77 9.96 10.59 8.94 11.36 9.77 10.07 11.87 

DFl 6.10 6.06 5.94 6.98 4.70 5.93 5.55 5.80 

DFO 5.32 8.23 5.03 8.58 4.04 7.83 4.66 7.54 

ANZ BONUS 5.11 7.26 4.88 7.55 3.96 7.05 4.56 7.02 

Average 7.79 7.56 7.63 9.15 5.71 6.98 6.83 6.76 

Ranking 7.02 6.99 6.76 8.26 5.12 6.58 6.11 6.27 

DFl 3.66 5.62 4.51 5.70 4.87 6.49 5.04 4.48 

DFO 1.98 8.80 3.23 9.02 4.18 8.25 3.13 6.79 

BHP BONUS 2.13 7.91 3.16 8.67 4.16 8.10 3.16 6.70 

Average 4.17 6.13 5.13 6.36 5.12 6.57 4.75 5.55 

Ranking 3.60 6.27 4.02 6.51 4.65 6.79 4.32 5.64 

DFl 6.58 7.30 7.19 9.25 7.91 7.29 7.28 7.99 

DFO 5.98 10.09 6.13 12.06 7.49 9.90 6.41 10.03 

BIL BONUS 5.89 9.16 6.05 11.21 7.12 8.64 6.30 9.42 

Average 7.27 8.85 8.52 10.82 9.82 9.45 8.68 9.87 

Ranking 6.92 8.39 8.02 10.28 9.05 8.91 8.17 9.16 

DFl 5.53 6.60 6.17 6.89 5.55 5.49 6.54 6.76 

DFO 4.32 8.54 4.81 8.59 4.88 7.56 5.96 8.51 

CBA BONUS 4.23 7.55 4.69 7.87 4.63 6.51 5.39 7.01 

Average 7.44 8.89 8.28 9.15 7.46 7.06 8.85 9.07 

Ranking 6.83 8.16 6.84 7.85 6.29 6.28 7.65 8.12 
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Table 5.3 Out-of-sample test on BONUS strategies (CML- NCPDP) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ca Cµ Ca Cµ Ca Cµ Ca 

DFl 13.29 12.11 10.92 11.52 11.5 I 10.17 9.93 9.87 

DFO 13.29 12.11 10.92 11.52 9.68 12.23 8.42 12.45 

CML BONUS 12.12 12.65 10.02 11.91 9.46 11.55 8.35 11.78 

Average 17.40 15.35 13.3 l 13.75 14.83 12.63 11.37 11.47 

Ranking 16.72 14.65 12.66 13.09 13.78 11.89 10.67 10.91 

DFl 9.89 6.22 11.09 5.82 11.11 6.37 10.55 7.20 

DFO 7.80 10.37 9.74 11.71 9.73 9.06 9.74 9.90 

FGL BONUS 7.61 9.52 9.22 9.11 9.56 8.53 9.46 8.87 

Average 8.58 7.99 10.14 7.43 10.35 7.69 10.38 7.91 

Ranking 8.47 8.10 9.94 7.65 10.26 7.74 10.28 7.96 

DFl 5.87 6.92 5.33 6.42 5.56 6.71 6.03 6.23 

DFO 4.71 9.23 4.16 8.39 4.76 8.71 5.06 8.06 

NAB BONUS 4.66 8.31 4.03 7.66 4.66 7.94 4.89 7.19 

Average 8.22 8.53 7.17 8.54 6.99 8.06 7.72 7.78 

Ranking 7.17 7.89 5.93 7.51 5.95 7.27 6.70 7.00 

DFl 6.08 9.08 5.54 7.64 6.76 8.18 6.25 8.43 

DFO 4.71 11.63 4.40 10.06 4.95 10.54 4.65 10.92 

NCP BONUS 4.72 11.49 4.39 9.69 4.96 10.44 4.65 10.86 

Average 7.17 10.30 6.89 8.64 8.18 9.10 7.62 9.34 

Ranking 6.44 10.08 5.81 8.47 7.04 8.95 6.42 9.26 

DFl 10.51 14.03 8.47 11.29 25.41 91.80 11.02 13.51 

DFO 9.04 19. I8 7.64 IS.IO 24.58 96.03 9.73 18.36 

NCPDP BONUS 8.92 16.86 7.36 13.21 23.92 93.30 9.29 I5.97 

Average I2.73 17.60 I0.92 14.73 29.26 92.53 14.87 17.78 

Ranking 11.72 15.9I 9.54 13.68 27.44 92.18 13.66 16.64 
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Table 5.4 Out-of-sample test on BONUS strategies (PBL - \VBC) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ccr Cµ c(J Cµ Ccr Cµ Ccr 

DFl 15.79 17.70 21.06 18.65 16.19 14.84 18.58 15.97 

DFO 15.79 17.70 21.06 18.65 16.19 14.84 18.58 15.97 

PBL BONUS 15.15 17.86 20.82 18.70 16.28 14.96 18.12 15.98 

Average 21.27 23.17 27.08 22.99 22.20 24.05 24.44 20.05 

Ranking 20.35 21.88 25.58 21.74 20.87 22.24 22.55 18.49 

DFl 11.92 12.50 8.47 11.00 9.21 10.18 9.16 9.17 

DFO 11.92 12.50 8.47 11.00 9.21 10.18 9.16 9.17 

RIO BONUS 10.36 11.95 7.46 10.07 8.56 9.47 8.31 9.03 

Average 16.78 18.02 11.48 15.56 12.56 15.69 12.40 13.27 

Ranking 15.60 16.41 10.26 13.61 11.17 13.26 11.34 11.79 

DFl 20.l l 15.48 22.00 20.22 29.01 33.33 18.19 14.71 

DFO 20.l 1 15.48 22.00 20.22 29.01 33.33 18.19 14.71 

SGB BONUS 19.20 15.50 21.36 19.81 28.39 33.92 17.57 15.13 

Average 26.32 20.51 28.89 25.64 35.98 38.50 24.78 20.02 

Ranking 24.65 19.57 27.51 24.73 34.67 37.47 23.73 19.34 

DFl 8.71 4.64 8.44 5.27 9.51 4.77 9.62 4.95 

DFO 4.29 11.38 4.68 11.98 6.21 11.15 6.51 11.88 

TLS BONUS 4.21 10.48 4.67 11.01 6.16 10.51 6.55 10.20 

Average 6.65 6.78 6.61 7.30 8.02 6.58 8.11 7.52 

Ranking 6.31 7.11 6.13 7.87 7.65 6.96 7.85 7.90 

DFl 8.01 9.25 6.18 7.42 6.33 12.11 5.24 6.09 

DFO 7.00 12.09 5.21 9.47 5.49 13.39 4.41 7.84 

WBC BONUS 6.73 10.61 5.11 8.66 5.45 13.08 4.32 7.33 

Average 9.92 10.99 7.58 9.40 7.59 12.78 6.28 7.68 

Ranking 9.23 10.41 6.86 8.55 6.83 12.42 5.65 7.11 
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Table 5.5 Out-of-sample test on BONUS strategies (\VES - WPL) 

February March April May 
Shortfall (BPS) 2002 2002 2002 2002 

Cµ Ca Cµ Ca Cµ Ca Cµ Ca 

DFI 33.88 26.22 33.47 25.54 44.90 64.44 28.51 24.23 

DFO 33.88 26.22 33.47 25.54 44.90 64.44 28.51 24.23 

WES BONUS 31.89 25.38 30.98 25.19 42.30 64.00 24.96 23.15 

Average 44.53 31.87 44.79 31.74 57.67 67.87 40.50 32.16 

Ranking 42.99 31.33 42.38 30.84 55.82 67.65 38.16 31.03 

DFl 16.45 6.28 16.12 6.57 15.95 6.30 16.13 5.66 

DFO 16.33 10.06 15.86 7.50 15.69 7.08 15.40 9.94 

WFT BONUS 15.64 8.29 15.60 7.76 15.60 7.17 15.32 8.84 

Average 15.98 7.89 15.69 8.06 15.52 7.38 15.66 8.45 

Ranking 15.98 7.91 15.70 8.07 15.53 7.39 15.65 8.45 

DFl 9.66 10.53 8.45 9.52 7.32 7.03 8.42 8.17 

DFO 9.66 10.53 8.13 12.66 6.98 9.22 8.35 11.15 

WMC BONUS 8.91 11.01 7.67 11.19 6.66 7.64 7.81 9.07 

Average 12.00 13.52 10.27 11.18 9.16 9.02 10.30 10.17 

Ranking 11.40 12.69 9.66 10.47 8.57 8.37 9.55 9.39 

DFl 8.55 9.16 9.78 12.58 10.17 9.90 8.13 9.27 

DFO 8.55 9.16 9.62 15.99 10.06 12.36 7.85 12.87 

wow BONUS 7.79 9.44 8.78 13.76 9.28 10.44 7.12 10.1 l 

Average 10.63 10.92 12.44 15.09 12.23 11.90 10.38 12.03 

Ranking 10.06 10.33 11.48 14.11 11.50 11.25 9.79 11.26 

DFI 9.94 10.11 10.99 10.59 11.80 12.25 12.26 11.96 

DFO 9.94 10.11 10.72 13.28 12.70 17.16 12.26 11.96 

WPL BONUS 8.97 10.52 9.73 11.58 10.53 13.47 11.20 11.63 

Average 12.26 12.50 13.79 12.69 16.20 17.24 17.62 18.31 

Ranking 11.61 11.74 12.96 12.07 14.97 15.79 15.66 15.98 
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5.3 Summary 

This chapter has applied the DAB technique to trade execution and proposed the 

BONUS strategy. The DAB technique acquires OF strategies from a candidate OF 

strategy set and determines their weights. The BONUS strategy allocates the entire 

order to each acquired DF strategy in proportion with its weight. The acquired DF 

strategies are then executed in parallel to fill their allocated order. Theoretical 

analysis shows that the BONUS strategy moves the candidate DF strategies' 

efficient frontier toward the favorable direction. In other words, as the learning 

steps increase, the BONUS strategy based on the DAB technique lowers the 

candidate DF strategies' risk that can be measured by different standards (e.g. the k-

UPM of shortfalls and the maximum of shortfalls) and limits the increase in average 

shortfall. In-sample test on 80 datasets strongly supports the theoretical analysis on 

the BONUS strategy. Out-of-sample test shows that the DAB technique and the 

BONUS strategy achieve lower average shortfall the OF strategy and two simple 

diversification techniques do. In further, the DAB technique, as a meta-type method, 

can be applied to implementing diversification across strategies in more practices. 



Chapter 6 

Conclusions and Future Work 

This thesis has verified the rationale and effectiveness of diversification in the 

framework of developing trade execution strategies from the theoretical and 

empirical perspectives. The philosophy of diversification connects all research parts 

together in this thesis. This thesis is contributed to both finance and computer 

science fields. Three major contributions compose three research parts of this thesis: 

the DF strategy, the DAB technique and the BONUS strategy. 

In the first part, this thesis proposes the DF strategy that reflects the idea of 

diversification across time. The DF strategy incorporates a series of small market 

order with different volume into the limit order strategy and dynamically adjusts 

each market order volume based on two real-time state variables "inventory" and 

"order book imbalance". The sigmoid function is adopted to map the state variable 

to the market order volume. The empirical results on a lot of real-life data show that 

the DF strategy achieves lower cost and risk brought by the limit order strategy does. 

In the second part, this thesis proposes the DAB technique that reflects the idea 

of diversification across strategies. The DAB technique extends the key idea of 

adaptively updating the probability distribution in the AdaBoost technique so that it 

is not just applicable to supervised learning. The DAB technique acquires strategies 

from a candidate strategy set and determines their weights. The resources are 
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allocated to each acquired strategy in proport,ion with its weight and all acquired 

strategies arc then executed in parallel with their allocated resources. The DAB 

technique allows the candidate strategy set to contain infinite strategies. The 

theoretical analysis shows that as the learning steps increase, the DAB technique 

lowers the candidate strategy set's risk that can be measured by different standards 

and limits the decrease in its average reward. From the perspective of the candidate 

strategy set's efficient frontier, the DAB technique moves it toward the favorable 
direction. 

In the third part, the DAB technique is applied to acquire DF strategies from a 

candidate DF strategy set and determine their weights. The entire order is allocated 

to each acquired DF strategy in proportion with its weights and all acquired DF 

strategies are then executed in parallel to fill their allocated order. The parallel 

execution is called the BONUS strategy. The empirical results on real-life data 

strongly support the theoretical conclusion on the DAB technique and the BONUS 

strategy, i.e. the BONUS strategy moves the candidate DF strategy set's efficient 

frontier toward the favorable direction as the learning steps increase. The empirical 

results also show that the BONUS strategy based on the DAB technique achieves 

lower cost and risk than the optimal DF strategy and two simple diversification 

techniques do. 
The thesis can be further extended from the following several aspects. First, 

while the DF strategy dynamically adjusts the volume of each market order, it also 

can be extended to dynamically adjust the limit order volume. Due to the 

uncertainty of price movement, a limit order may incur adverse price selection 

while it is waiting for favorable price movement in future. Moreover, a large limit 

order placed in the market will disclose trading intention. Dynamic volume 

adjustment of the limit order may be helpful for controlling its adverse price 

selection and limiting information disclosure. 
Second, dynamic price adjustment is suggested to combine with dynamic volume 

adjustment in trade execution. As two most important attributes of an order in trade 

execution, price and volume are complementary to each other and both of them 
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should be considered in practice. This combination may be reasonable and 

advisable for trade execution. 

Third, a problem called data-snooping has been pointed out in the finance field 

(Lo and MacKinlay 1990, Sullivan et al. 1999). This problem is about whether a 

parameter optimized on in-sample test can be well generalized in out-of-sample test. 

It is also called the problem of overfitting in the statistical learning field (Vapnik 

1999). The problem of overfitting in the DAB technique should be further discussed 

from the theoretical perspective as some parameters need to be determined in this 

technique. 

Fourth, the target reward (or shortfall) should be related to benchmarks in 

practice such as historical average of investment returns (or implementation 

shortfalls). So the DAB technique's effectiveness should be further verified through 

setting these practical benchmarks for the target reward (or shortfall). 

Fifth, the value of kin k-LPM (k-UPM) represents the degree of risk aversion or 

tolerance in practice. Except the value "2" used in this thesis, more values should be 

testified to verify the DAB technique's effectiveness. 

Sixth, the AdaBoost technique's performance is affected by the candidate 

learning model set (Meir and Ri:itsch 2003). In the two-dimensional XOR problem, 

the classification error rate decreases to zero after four learning steps. However, it 

cannot decrease to zero if the candidate classifier set is only composed of vertical 

lines. As a meta-type method, the DAB technique's performance is also related to 

the candidate strategy set. So it will be helpful to exploiting the effect of the 

candidate strategy set on the DAB technique. 
Seventh, this thesis applies the DAB technique to boost the DF strategies for 

trade execution and the boosted DF strategy is named the BONUS strategy. In 

future work, the DAB technique is expected to boost strategies in more applications 

such as financial investment and inventory management. 
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