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Abstract—A broadside radiating, linearly polarized, electrically 

small Huygens source antenna system that has a large impedance 
bandwidth is reported. The bandwidth performance is facilitated 
by embedding non-Foster components into the near-field resonant 
parasitic (NFRP) elements of this metamaterial-inspired antenna. 
High quality and stable radiation performance characteristics are 
achieved over the entire operational bandwidth. When the ideal 
non-Foster components are introduced, the simulated impedance 
bandwidth witnesses approximately a 17-fold enhancement over 
the passive case. Within this -10dB bandwidth, its maximum 
realized gain, radiation efficiency, and front-to-back ratio (FTBR) 
are, respectively, 4.00 dB, 88%, and 26.95 dB. When the 
anticipated actual negative impedance convertor (NIC) circuits 
are incorporated, the impedance bandwidth still sustains more 
than a 10-fold enhancement. The peak realized gain, radiation 
efficiency, and FTBR values are, respectively, 3.74 dB, 80%, and 
28.01 dB, which are very comparable to the ideal values.  

 
Index Terms—Directivity, electrically small antennas, 

front-to-back ratio, Huygens source antenna, impedance 
bandwidth, non-Foster elements. 
 

I. INTRODUCTION 

s a consequence of their advantageous radiation 
performance characteristics for wireless applications, 
including high directivity with large front-to-back ratios 

(FTBRs) and wide beamwidths, electrically small Huygens 
source antennas have been investigated extensively in recent 
years [1-6]. However, because they are composed of pairs of 
electric and magnetic radiating elements that are electrically 
small in size and whose resonances must overlap with proper 
weighting, their impedance bandwidths are narrow and 
severely constrained by known passive bounds [7-9]. In recent 
years, non-Foster elements have been considered and utilized to 
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achieve much wider impedance bandwidths in electrically 
small antennas (ESAs), overcoming the traditional tradeoff 
drawbacks between impedance bandwidths, radiation 
efficiencies, and directivities [10-16]. 
  In this letter, we numerically demonstrate that one can 
simultaneously augment the two pairs of near-field resonant 
parasitic (NFRP) electric and magnetic dipole elements of a 
Huygens source ESA [6] with corresponding pairs of properly 
designed internal non-Foster elements to achieve wideband 
operation while successfully maintaining its attractive radiation 
performance characteristics. All of the electromagnetic 
simulations were performed with the ANSYS/ANSOFT high 
frequency structure simulator (HFSS) and confirmed with the 
CST microwave studio (MWS) tools. The material parameters 
of all copper components: εr = 1.0, μr = 0.999991 and bulk 
conductivity σ = 5.8 × 107 Siemens/m, were properly taken into 
account. All of the circuit simulations were performed with 
Agilent’s advanced design system (ADS). 

II. PASSIVE HUYGENS SOURCE ESA  
The design principles of a realized low-profile, broadside 

radiating, high-FTBR Huygens source ESA were reported in 
[6]. An evolutionary pair of Egyptian axe dipoles (EADs) and a 
pair of capacitively loaded loops (CLLs) serve as the electric 
and magnetic NFRP elements coupled to a driven printed 
dipole antenna. The updated version of this experimentally 
confirmed configuration, which is reported here, is shown in 
Fig.1; and its optimized parameters are given in Table I. All the 
substrates used were Rogers Duroid TM 5880 with 0.5 oz (17 
µm) copper cladding. The substrate thickness with the CLLs on 
it was 0.508 mm; the remaining substrates were 0.787 mm thick. 
As shown in Figs. 1(a) and 1(b), a 50Ω coaxial cable was 
included in the model to enhance the simulation accuracy. It is 
noted that the EAD (electric) pairs and CLL (magnetic) pairs 
are orthogonally oriented and have vertical placements that 
facilitate the overlapping of their phase centers. 

Two pairs of capacitors and resistors in series were 
embedded into the rectangular slots at the center positions of 
both the CLL and the EAD NFRP elements as shown in Fig. 
1(a). As illustrated in Fig. 1(b), one capacitor: Cm = 1.6 pF, and 
one resistor:   R = 10-5 Ω , were placed in series in each centered 
gap of the CLLs. Similarly, one capacitor: Ce = 1.5 pF, and one 
resistor: R = 10-5 Ω, were placed in series in each centered gap 
of the EADs as depicted in Fig. 1(c). Note that the resistance 
value, which is very close to but not equal to zero, was 
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introduced simply to suppress any potential runtime software 
errors associated with the HFSS simulations. 

 
(a) 

 

 
(b) 

 
 (c)                                                         (d) 

Fig. 1. The Huygens source ESA; (a) 3-D isometric view, (b) side view of the 
magnetic NFRP elements, (c)  top view of the electric NFRP elements, and (d) 
bottom view of the driven, printed dipole element. 
 
TABLE I. OPTIMIZED PASSIVE HUYGENS SOURCE ESA PARAMETERS (IN MM) 

 
L1=35.8 L2=15.3 L3=5.5 Lcoax=5 
W1=2.1 W2=2.1 W3=2.1 W4=1.5 
W5=1 h1=9.5 h2=1.72 h3=0.787 

h4=0.787 R1=20.5 R2=20.5 R3=18.98 
R4=16.7 G1=1.15 G2=7.9 G3=1 
g_r=0.5 g_c=0.5 Null 

 
Fig. 2 gives the simulated performance characteristics of this 

passive Huygens source ESA. The resonant frequency is fres = 
1.580 GHz with |S11|min = -42.62 dB, and its -10 dB fractional 
bandwidth (FBW) (i.e., set of frequencies with |S11| ≤ -10dB) is 
very narrow: 0.60 %. Accordingly, its total height and electrical 
size ka (where a is the radius of the smallest sphere that 
completely encloses the antenna system at its operational 
wavelength λ0, and where k = 2π/λ0 = 2πfres / c is the free space 
wave number) are, respectively, 0.05 λ0 and 0.68. Compared 
with the Huygens source ESA design with a single CLL 
element reported in [6], the pair of CLLs in parallel placement 
in the present design enabled enhanced broadside radiation 

performance, i.e., the peak realized gain, radiation efficiency, 
and FTBR are increased, respectively, from 3.30 to 4.03 dB, 
from 71.6 to 82.74 %, and from 18.76 to 20.21 dB. Note that the 
simulated maximum cross-polarization levels in both planes 
were lower than -42.25 dB and, consequently, are not plotted in 
Fig. 2(b). These HFSS results were confirmed with 
corresponding CST simulations.  

 

 
(a)                                                        (b) 

Fig. 2. The Huygens source ESA performance characteristics.  (a) |S11| values as 
a function of the frequency and the 3-D realized gain pattern at fres, and (b) the 
2-D realized gain patterns in the E- and H- planes at fres = 1.580 GHz. 
 

III. THE IDEAL NON-FOSTER HUYGENS SOURCE ESA  
 Following the non-Foster augmentation design strategies 

reported in [11-13], the frequency-agile performance of the 
passive Huygens source ESA was first determined by varying 
the Cm and Ce values. In particular, by sweeping Cm (Ce) from 
1.2 (1.39) to 2.4 pF (1.85 pF) in 0.1 pF steps, one obtains the 
simulated values summarized in Fig. 3. It is clear that the FTBR 
values are higher than 7.8 dB for each of these frequency-agile 
states and |S11|min is much lower than -20 dB.  

 

 
Fig. 3. The frequency-agile characteristics of the Huygens source ESA. 
 

The combinations of these Cm and Ce values that produce the 
peak FTBR values are represented by the frequency-agile (blue 
square) marks shown in Fig. 4. In order to capture these 
requisite responses with the NFRP elements augmented with 
ideal non-Foster circuits, the equation C(fres) = a0 + a1/fres + 
a2/fres

2 was used as the curve-fit to these discrete Cm and Ce 
values [11]. The calculations of the coefficients in each case 
were carried out using the curve-fitting tools in Matlab R2010b. 
We determined Cm(fres) = 128.12 - 430/fres +363.55/fres

2 for the 
CLL elements, and Ce(fres) = 134.0 - 430/fres   +348.52/fres

2 for 
the EAD elements. Notice that in contrast to this curve-fit 
equation, L(fres) or C(fres) was expressed by a0 + a2/fres

2 for a 
single NFRP ESA in [11]. The extra term: a1/fres, in both the Cm 
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and Ce curve-fits, is introduced to account for the unavoidable 
capacitive coupling between the electric and the magnetic 
NFRP elements. The results defined by the curve-fit equations 
are represented by the solid red curves in Fig. 4 for easy 
comparison. These ideal values are the ones used to design the 
realistic NIC circuits. 

 
(a)                                                    (b) 

Fig. 4. Comparison between the discrete capacitance values and their curve-fit 
lines as functions of the resonance frequency fres. (a) Ce and (b) Cm values. 
 

By importing these Cm and Ce equation curves into the HFSS 
and CST models, the radiation performance characteristics of 
the Huygens source ESA augmented with the ideal non-Foster 
elements were simulated. The results are summarized in Fig. 5. 
The presence of the ideal non-Foster elements enhances the 
-10dB FBW from 0.6% up to 10.04%, a 16.73-fold 
improvement. Within this operational bandwidth, the peak 
realized gain values (strictly along the +z-axis) fluctuate in the 
range 2.41−4.0 dB, less than a 2 dB variation. The associated 
radiation efficiency and FTBR values are, respectively, in the 
ranges: 79−88 % and 4.61−26.95 dB, confirming that the ideal 
non-Foster augmentation of the broadside radiating ESA has 
significantly improved its bandwidth while maintaining (and 
even enhancing) its radiation performance characteristics. 

 
(a)                                                  (b) 

Fig. 5. Performance characteristics of the ideal non-Foster Huygens source 
ESA. (a) |S11| and FTBR values versus frequency, and (b) peak realized gain 
and radiation efficiency values versus frequency. (The –10dB impedance 
bandwidth range is highlighted in yellow.) 

 

IV. THE REALISTIC NON-FOSTER HUYGENS SOURCE ESA 
A negative impedance converter (NIC) circuit was designed 

to reproduce as close as possible the ideal curve-fits to both the 
Ce and Cm values. It was based on the floating NIC design 
introduced in [12]. The ADS model of the resulting NIC circuit 
is shown in Fig. 6. The BJT transistors, pb_hp_AT41533, 
available in the ADS component library, were employed. The 
lumped element L, C, and R values were optimized numerically; 
the final parameter values are listed in Tables II(a) and II(b). 
The resulting Ce (fres) and Cm (fres) values are shown, 
respectively, in Figs. 7(a) and 7(b). While they were very close 
to their ideal capacitance values, the appearance of non-zero 

resistance values, Re and Rm, was inevitable, i.e., there are 
losses associated with all of the components. Since any large 
resistance values could lower the radiation efficiency 
significantly, the minimization of Re and Rm arising from the 
embedded NIC circuit was necessary and a fundamental aspect 
of the optimization process. This proved difficult because 
tradeoffs exist between the resistances and the accuracy of the 
curve-fit capacitance values over the frequency range of 
interest. As is shown in Figs. 7(a) and (b), both the Re and Rm 
values were optimized to be very small and non-negative to 
avoid any instability issues (as in [12], stability was tested with 
time domain simulations). Note that the values L1 and L2, and 
R3 and R4 are not identical. Their slight differences provided 
additional freedom for the NIC circuit to more accurately 
reproduce the ideal curve-fit capacity values. 

 
Fig. 6. Circuit model of the negative capacitor two-port floating NIC element. 

TABLE II. OPTIMIZED COMPONENT VALUES  

(a) NIC circuits embedded into the EADs  

Vdc=33.1 V R1=5.78 kΩ R2=145.8 kΩ R3=9 Ω 
R4=4.383 kΩ R5=904 Ω R6=1.144 kΩ R7=3.773 kΩ 
R8=2.05 Ω R9=2.05 Ω R10=0.99 Ω C1=0.141 pF 
C2=0.05 pF C3=8.12 pF C4=8.12pF C5=2.31 pF 
L1=92.2 nH L2=98.5 nH L3=41.1 nH L4=17.7 nH 

L5=1043.5 nH L6=3.92 nH Null 

(b) NIC circuits embedded into the CLLs 

Vdc=28.1 V R1=5.86 kΩ R2=56.07 kΩ R3=6.95 kΩ 
R4=5.218 kΩ R5=561 Ω R6=900 Ω R7=4.48 kΩ 
R8=3.645 Ω R9=3.645 Ω R10=5.5 Ω C1=30.58 pF 
C2=0.38 pF C3=4.92 pF C4=4.92pF C5=11.9 pF 
L1=4.63 nH L2=914 nH L3=25 nH L4=14.7 nH 

L5=58.42 nH L6=0.04 nH Null 

Incorporating the Ce and Cm NIC elements into the antenna 
system, the simulated performance characteristics shown in 
Figs. 8 and 9 were obtained. Fig. 8 gives the |S11|, FTBR, 
realized gain, and radiation efficiency values as functions of the 
excitation frequency. Taking the center frequency to be 1.574 
GHz (GPS L1), the -10dB impedance bandwidth was 94 MHz, 
from 1.536-1.63 GHz (5.97 % FBW). Thus, a 10.03-fold 
increase over the impedance bandwidth of the passive version 
was realized. The realized gain, FTBR, and radiation efficiency 
values fluctuated, respectively, in the ranges: 0.04–3.74 dB, 
4.61–26.945 dB, and 42.5–80 %. These are comparable to the 
ideal Huygens source ESA valuations. 

It should be noted that despite their low values, the 
resistances of the actual NIC circuit do have an impact on the 
radiation characteristics of the entire antenna system and 
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cannot be neglected. This is a consequence of the intense 
resonance behavior of the system. Moreover, when compared 
to the ideal non-Foster results, the actual accuracy of the 
curve-fits obtained with the NIC circuit is what limits the 
obtainable impedance bandwidth.  

 
(a)                                            (b) 

Fig. 7. Comparison between the capacitance and resistance values produced by 
the NIC circuits and their requisite frequency agile values. (a) EAD, and (b) 
CLL elements.  

Figs. 9 (a)-(c) show, respectively, the 3-D realized gain 
patterns at the lower edge, middle, and higher edge of the 
frequencies in the -10dB impedance bandwidth of the 
capacitive NIC-loaded Huygens source ESA. They illustrate its 
stable, broadside radiating (maximum strictly along the 
+z-axis), and high FTBR behaviors across that frequency range. 
Finally, a comprehensive comparison between the passive, 
ideal non-Foster, and the actual NIC-loaded versions of the 
Huygens source antennas is provided in Table III. 

 
(a)                                               (b) 

Fig. 8. Radiation performance characteristics of the NIC-loaded Huygens 
source ESA. (a) |S11| and FTBR values, and (b) peak realized gain and radiation 
efficiency values versus the excitation frequency. (The -10dB impedance 
bandwidth region is highlighted in yellow.) 

 
(a)                                           (b)                                      (c) 

Fig. 9. The 3D realized gain patterns of the NIC-loaded Huygens source ESA at 
the frequencies:  (a) 1.536,  (b) 1.58, and  (c) 1.631 GHz. 

V. CONCLUSIONS 
A non-Foster, low-profile, broadside radiating, high FTBR, 

efficient, Huygens source ESA was demonstrated. By 
embedding ideal non-Foster components into the NFRP 
elements, a 16.73-fold enhancement of the impedance 
bandwidth was achieved. When two pairs of realizable 
capacitive NIC elements were incorporated into the Huygens 
source ESA system, a 10-fold bandwidth enhancement was 
obtained. In both cases, the non-Foster augmented ESAs 
exhibit excellent, stable broadside radiation performance 
characteristics throughout their entire operational bandwidths. 
We anticipate that our future fabrication and testing campaign 

will be able to acquire quality components (e.g., RF inductors 
are commercially available with sufficiently large inductance 
values) to realize the reported designs.  

TABLE III. COMPARISON OF PERFORMANCE CHARACTERISTICS  

Category Passive 
version 

Ideal 
non-Foster 

version 

Actual NIC 
loaded 
version 

fres  (GHz) 1.580   

|S11|min (dB) -42.62   

FWB (%) 0.60 10.04 6.02 

Enhanced times  16.73 10.03 

FTBR (dB) 20.21 4.61-26.95 5.63-28.01 

Radiation efficiency (%) 82.74 79 – 88 42.5 – 80.0 

Peak Real. Gain (dB) 4.03 2.41- 4.00 0.04-3.74 
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