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Abstract 25 

This review synthesises recent and past observations on filamentous phage and describes how these 26 

phage contribute to host phentoypes.  For example, the CTXφ phage of Vibrio cholerae, encodes 27 

the cholera toxin genes, responsible for causing the epidemic disease, cholera.  The CTXφ phage 28 

can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the 29 

emergence of new pathogenic strains.  Other effects of filamentous phage include horizontal gene 30 

transfer, biofilm development, motility, metal resistance and the formation of host morphotypic 31 

variants, important for the biofilm stress resistance.  These phage infect a wide range of Gram-32 

negative bacteria, including deep-sea, pressure adapted bacteria.  Many filamentous phage integrate 33 

into the host genome as prophage.  In some cases, filamentous phage encode their own integrase 34 

genes to facilitate this process, while others rely on host-encoded genes.  These differences are 35 

mediated by different sets of ‘core’ and ‘accessory’ genes, with the latter group accounting for 36 

some of the mechanisms that alter the host behaviours in unique ways.  It is increasingly clear that 37 

despite their relatively small genomes, these phage exert signficant influence on their hosts and 38 

ultimately alter the fitness and other behaviours of their hosts. 39 

  40 
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Introduction 41 

It is clear that bacteriophage have a significant role in the ecology of microbial communities, 42 

biotechnology and molecular biology.  Phage include viruses with double- and single-stranded 43 

DNA (dsDNA, ssDNA), as well as double- and single-stranded RNA (dsRNA, ssRNA).  The 44 

majority of known phage are tailed (over 95 %), which may be a reflection of the ease of isolation 45 

and identification due to their bacteriolytic activity that results in plaque formation on bacterial 46 

lawns.  The remaining 5 % of phage display a broad range of morphologies, e.g. filamentous, cubic 47 

or pleomorphic.   48 

Here, we will focus on the filamentous phage (Inovirus), which have ssDNA genomes packaged 49 

into filament-like virions.  These bacteriophage were initially identified in Escherichia coli in the 50 

early 1960s, represented by F-pilus-specific closely related phage f1, fd and M13 (Loeb, 1960, 51 

Hofschneider, 1963, Marvin & Hoffmann-Berling, 1963).  These three phage were independently 52 

isolated from the USA and European sewage systems, however, they are 98.5% identical in their 53 

nucleotide sequence and have over the years been used interchangeably as well as in combination in 54 

studies of Ff biology and molecular biology applications.  Of these, M13, is probably the best 55 

known and was one of the first cloning vectors developed for molecular biology.  The CTXφ phage 56 

of Vibrio cholerae is equally well known and the best described example where horizontal gene 57 

transfer of the phage, which encodes cholera toxin (CT), can convert nontoxigenic strains into 58 

highly virulent pathogens (Davis & Waldor, 2003, Faruque & Mekalonos, 2014).  Filamentous 59 

phage from a range of Gram-negative bacteria have subsequently been described, including the 60 

Pseudomonas Pf phage (Kirov, et al., 2007, Klockgether, et al., 2010, Woo, et al., 2012), 61 

Xanthanomonas Cf phage (Kuo, et al., 1994), E. coli IKe, If1 and If2 phage (Meynell & Lawn, 62 

1968, Khatoon, et al., 1972), Neisseria Ngo and Nf phage (Bille, et al., 2005, Kawai, et al., 2006, 63 

Piekarowicz, et al., 2006, Piekarowicz, et al., 2014), Shewanella SW1 phage (Jian, et al., 2012, 64 

Jian, et al., 2013) and the Ralstonia RSM phage (Yamada, et al., 2007).  The goal of this review is 65 

to provide a historical and contextual insight into studies of filamentous phage.  In addition, this 66 

review will attempt to convey a sense that despite this vast body of knowledge on phage, even well-67 

characterized phage such as Ff continue to reveal new information, demonstrating that in contrast to 68 

their small size, they have significant impacts on the evolution and behavior of their bacterial hosts. 69 

 70 

Filamentous phage and their distribution 71 

Phage from the Genus Inovirus (family Inoviridae) (Day, 2011) are characterized by their long and 72 

thin filamentous shape (6 - 8 nm in diameter and 800 - 2000 nm in length) and a circular ssDNA 73 
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genome  (Frost, 1993, Webster, 1996, Russel & Model, 2006, Rakonjac, et al., 2011).  The filament 74 

is composed of several thousand major coat protein subunits arranged in a helical array around a 75 

ssDNA core, with a few copies of the minor coat proteins at each end.  The size of the phage is a 76 

function of the size of the genome, which ranges from 4 to 12 Kbp (Rakonjac, et al., 2011).  77 

Filamentous phage are mostly carried by Gram-negative bacteria, although there are two examples 78 

of filamentous phage found in Gram-positive bacteria, B5 from Propionibacterium freudenreichii 79 

and CAK1 from Clostridium acetobutylicum (Kim & Blaschek, 1991, Chopin, et al., 2002).   80 

The classification of viruses remains a complex issue given the lack of universally conserved genes 81 

and features.  As a consequence, viruses have largely been classified based on physical features, 82 

genome structure and host range.  This is also true for the filamentous phage, which were initially 83 

divided into two groups that were distinguished by the symmetries of the helically arrayed coat 84 

protein, as determined by X-ray fibre diffraction (Marvin, et al., 1974).  The size and conformation 85 

of coat proteins, as well as the overall distribution of intensity of the X-ray fibre diffraction patterns 86 

are similar in the two different classes virion structures.  However, class I diffraction patterns have 87 

some additional meridional reflections, due to a more complex symmetry, five-start helix and two-88 

fold screw axis (C5S2 symmetry), whereas class II filamentous phage have simple one-start helix 89 

with 5.4 subunits per turn (C1S5.4) (Marvin, 1998).  Details of phage structure along the filament as 90 

well as the structures of individual subunits of the major coat protein have been solved, however 91 

little is known about the structure of the ends of the filament.  Detailed structural data have been 92 

presented in a recent review by Marvin et al. (2014) and will therefore not be discussed here.  Class 93 

I phage include the well-studied E. coli phage Ff (M13, f1 and fd), IKe and If1, (Marvin & Hohn, 94 

1969) while class II consists of the Pseudomonas filamentous phage (Pf1) (Hill, et al., 1991).  95 

However, the structures of newly discovered filamentous phage have not been routinely analysed 96 

by X-ray fibre diffraction, hence they cannot be classified based on the symmetry.   97 

An alternative method to classify or distinguish the filamentous phage is based on phage particle 98 

length, which is directly correlated to size of the phage genome (Marvin & Hohn, 1969).  In this 99 

scheme, the Inoviruses represented by the Ff phage, have maximum lengths of around 870 nm, 100 

while the other genus, proposed as Dolichoinovirus (dolicho means long or narrow), includes those 101 

that are up to 1.3 µm long, e.g. the Pf phage.  Both classification methods appear to result in similar 102 

groupings of the phage where Ff phage are separate from the Pf phage.  However, since X-ray 103 

diffraction is not commonly used to characterize phage, it is not clear if differences in X-ray 104 

diffraction are closely tied to differences in phage particle length or differences in the major coat 105 

protein structures.  More recently, the International Committee on Taxonomy of Viruses has 106 

classified the ssDNA rod- or filament-like phage into the family Inoviridae with two genera 107 
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identified, Inovirus and Plectrovirus (Day, 2011).  Distinguishing features include width, which is 108 

approximately 6 nm for Inovirus and approximately 15 nm for the Plectrovirus.  The ratio of the 109 

length of the virion to genome size for the Plectrovirus is several-fold smaller than for the Inovirus, 110 

the former appear morphologically as rods and latter as filaments.  The diameter and the length 111 

differences are due to different packing and structure of ssDNA within the virion between the two 112 

genera.  Interestingly, Plectrovirus prophages are present in many copies throughout chromosomes 113 

of their bacterial hosts; possibly due to replication by transposition (Sha, et al., 2000).  The host 114 

range of the second Inoviridae genus, the rod-shaped Plectrovirus, is limited to the cell-wall less 115 

intracellular bacteria (mollicutes or mycoplasmas) of animals and plants (Day, 2011).  For the 116 

purposes of this review, we will focus on the genus Inovirus, or filamentous phage.   117 

In addition to morphology, Inovirus classification is based on genomic organization rather than on 118 

nucleotide or amino acid homology, due to the fact that the genes and proteins encoded by the 119 

phage are not well conserved across host species.  This is exemplified by only 13% amino acid 120 

identity between the major capsid proteins of Ff and Pf1 (Table 1).  However, the order of many of 121 

the core genes, their sizes and membrane topology (predicted reliably from positions of 122 

hydrophobic transmembrane helices) tend to be a conserved feature and hence can be used to 123 

putatively identify filamentous phage genes.  For convention, we will use the nomenclature of Ff 124 

(M13, f1 and fd) phage genes and proteins where possible (Table 1).  For example, the major coat 125 

protein, pVIII or CoaB, is usually between 44 and 86 amino acids in length and is encoded by a 126 

gene located in the first half of the genome (from the origin of replication), directly upstream of a 127 

gene encoding adsorption protein, pIII (described in more detail below).  Additionally, physical 128 

properties of the viral particles have been used to describe filamentous phage, including resistance 129 

to nucleases with a concomitant sensitivity to proteases (e.g. Nagarse, ficin, subtilisin and papain), 130 

sonication, SDS and chloroform treatment (Marvin & Hoffmann-Berling, 1963, Salivar, et al., 131 

1964, Williams & Fenwick, 1967, Minamishima, et al., 1968). 132 

A notable characteristic of filamentous phage is their ability to replicate without killing the host.  133 

There are two types of filamentous phage, those that integrate in the host chromosome and non-134 

integrative filamentous phage such as Ff (Rakonjac, et al., 2011), which replicate exclusively as 135 

extrachromosomal elements or episomes.  Both the integrative and non-integrative filamentous 136 

phage meet the criteria defined for ‘true lysogens’ (Delbrock, 1946), however in contrast to true 137 

lysogens, the filamentous phage commonly continually shed viral particles without host cell death, 138 

even when inserted into the bacterial genome as a prophage.  The chromosomally-inserted 139 

filamentous prophage of V. cholerae (e.g. VGJφ and CTXφ) and φRSM1 of Ralstonia 140 

solanacearum can excise from the genome without killing of the host (McLeod, et al., 2005, 141 
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Askora, et al., 2011, Das, et al., 2011).  In these respects, the bacteria infected permanently with 142 

filamentous phage represent an intermediate case where they carry the phage genome either 143 

integrated into the genome or episomally, but do not meet the strict definition of a lysogen.  To 144 

avoid confusion with the term lysogeny, we will use the term “stable infection” to describe the 145 

scenario where the phage is either present in the host genome as a prophage or that replicates 146 

episomally. 147 

 148 

Infection and replication cycles 149 

Filamentous phage infection begins at the cell surface when the virion attaches to the host cell.  The 150 

large phage-encoded adhesion protein, pIII, determines the specificity of this process by interacting 151 

with host surface receptors, which are typically pili or fimbriae.  Binding of the virion to the 152 

receptor causes the retraction of the pili through the outer membrane, drawing the virion into the 153 

host cell periplasm where it interacts with the secondary receptor, TolA.  The TolA membrane 154 

protein of E. coli belongs to a transmembrane complex TolQRA, which is essential for the entry of 155 

Ff phage into the host cytoplasm (Reichmann & Holliger, 1997).  As the DNA crosses the inner 156 

membrane, the sheath of coat proteins is removed and individual pVIII subunits are inserted into the 157 

inner membrane to expose the viral ssDNA for replication.  The ssDNA phage genome serves as a 158 

template for synthesis of the complementary (negative) strand via host RNA and DNA polymerases 159 

and DNA gyrase, forming double-stranded circular supercoiled form, called the replicative form 160 

(RF) (Higashitani, et al., 1997).  Once inside the host bacterial cell, the phage ssDNA can either 161 

directly insert into the host genome after conversion to dsDNA (e.g. CTXΦ) or first convert into the 162 

RF from, then insert (e.g. VGJΦ) to form a prophage.  Alternatively, they can replicate exclusively 163 

as an episome (e.g. Ff).  In all cases, virions are formed from ssDNA that is produced from double-164 

stranded template, either the RF or prophage, by replication of viral DNA initiated by a rolling-165 

circle mechanism from the positive strand origin of replication, resulting complete phage genome in 166 

a form of (positive strand) circular ssDNA.  The phage-encoded ssDNA-binding protein, pV, coats 167 

the newly synthesized ssDNA, forming a ssDNA-pV complex.  An exposed hairpin loop, called 168 

packaging signal, targets the ssDNA-pV complex to the assembly sites that are located in the inner-169 

membrane.  The assembly sites are composed of phage-encoded proteins pI/pXI, pVII and pIX for 170 

packaging into the virions (Russel & Model, 1989) (Fig. 1).  The assembly machinery traverses the 171 

cell envelope and is composed of the inner membrane complex of pI and pXI, and an outer 172 

membrane protein (Feng, et al., 1997, Feng, et al., 1999, Haigh & Webster, 1999, Marciano, et al., 173 

2001). 174 
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 175 

Genome organization and function 176 

Core genome 177 

The best studied of the filamentous phage are the F pilus-specific E. coli phage known as Ff (f1, 178 

M13 and fd) phage.  The core genome corresponding to genes of Ff, contains up to 11 genes 179 

clustered into three groups, coding for replication, assembly and structural genes (Fig. 1).  Genomic 180 

and metagenomic analyses of bacteria and bacteriophage revealed variations in the core genes in 181 

filamentous prophage and free filamentous phage, as described below.  Nevertheless, the “core” 182 

genes, whether encoded by the phage or prophage genomes, can be defined as a gene set that is 183 

required for a complete replication cycle in Gram-negative hosts, comprising infection of the host 184 

bacterium, replication and assembly/secretion. 185 

Genes gII, gX, and gV encode proteins that assist in the replication of the RF and prepare newly 186 

synthesized ssDNA for assembly (Table 1) (Ray, 1978).  Genes gVII, gIX, gVIII, gIII and gVI 187 

encode structural proteins that make up the phage particle (Grant, et al., 1981).  Gene gVIII encodes 188 

the major coat protein.  Thousands of the pVIII subunit form a shaft of the filament that that 189 

envelops the ssDNA.  Genes gVII and gIX encode two small coat proteins located on one tip of the 190 

phage particle (Endemann & Model, 1995), and are the first proteins secreted during assembly of 191 

the phage particle (Lopez & Webster, 1983).  Genes gIII and gVI encode two minor proteins 192 

located at the opposite end of the virion filament from pVII and pIX.  The pIII and pVI minor coat 193 

proteins mediate binding to the host cell receptors and entry during infection (Gailus & Rasched, 194 

1994) as well as release from the host at the end of assembly (Rakonjac, et al., 1999).   195 

Genes gI, gIX and gIV encode proteins that form a trans-envelope complex essential for assembly 196 

and secretion the filamentous phage particle as described above (Feng, et al., 1999).  Specifically, 197 

pI and pXI form an inner membrane complex that is the site of phage assembly; pI has an ATP-198 

binding Walker motif that is required for its function (Russel, 1991).  pIV is an outer membrane 199 

protein, which forms a large gated channel (made up of 14 identical subunits) for the growing phage 200 

particle to pass through (Marciano, et al., 1999, Marciano, et al., 2001, Spagnuolo, et al., 2010).  201 

This protein belongs to the secretin family of proteins that serve as outer membrane channels in 202 

type II and type III secretion systems and the type IV pilus assembly system found in many Gram-203 

negative bacteria.  Loss of either pI, pXI or pIV in Ff phage was shown to prevent assembly 204 

(Russel, 1995).  Interestingly, a pIV homologue is missing from the genomes of a number of 205 

filamentous phage of Gram-negative bacteria, such as the CTXφ phage, the RSM1 of R. 206 

solanacearum and Cf1 of Xanthomonas campestris.  In some instances, the function of pIV is 207 
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fulfilled by chromosomally encoded secretins that are normally either part of the host type II 208 

secretion system, as has been shown for the V. cholerae CTXφ phage (described below), or type IV 209 

secretion system as in Neisseria meningitidis MDAφ (Bille, et al., 2005).  For example, V. cholerae 210 

encodes a type II secretion system secretin epsD, otherwise mediating secretion of the CtxAB toxin, 211 

which functionally substitutes for the phage-encoded gene (Davis, et al., 2000).  Filamentous phage 212 

that infect Gram-positive bacteria (which do not contain an outer membrane) assemble in the 213 

absence of phage- or host-encoded secretin (Chopin, et al., 2002).  If pIV (or a host-encoded 214 

secretin) fulfills an unknown essential function in phage assembly, in addition to serving as an exit 215 

port through the outer membrane, this other assembly function may either be taken over by the 216 

extracellular domains of pI or by an as yet unidentified host-encoded protein. 217 

It should be noted that four phage-encoded genes are described as being virulence factors in V. 218 

cholerae i.e. the zonula occludens toxin (Zot), the core-encoded pilin (Cep), the accessory cholera 219 

enterotoxin (ACE) and a protein with unknown virulence function (OrfU) (Johnson, et al., 1993, 220 

Waldor & Mekalanos, 1996).  However, comparison of the filamentous phage core genome and the 221 

CTXφ phage reveals similar arrangements of the toxin-related genes cep, orfU, ace and zot with the 222 

core filamentous phage genes VIII, III, VI and I; the phage functions of the proteins encoded by cep 223 

and orfU genes were determined, respectively, as the major coat protein and the anti-receptor  224 

(Waldor & Mekalanos, 1996, Heilpern & Waldor, 2003).  The zot gene has homology to a family of 225 

nucleoside triphosphate-binding proteins, including the gene I (gI) products of other filamentous 226 

phage (Koonin, 1992).  As described above, the gI protein of filamentous phage plays a role as an 227 

inner membrane component of the trans-envelope phage assembly complex, (Feng, et al., 1997, 228 

Haigh & Webster, 1999).  In the absence of CT enterotoxin, V. cholerae is still capable of causing 229 

diarrhea due to expression of the Zot toxin that increases the permeability of the small intestinal 230 

mucosa by affecting the structure of the intracellular tight junctions, zonula occludens (hence the 231 

derivation of the name Zot) (Fasano, et al., 1991).  Interestingly, the effect of Zot is specific for 232 

intestinal cells and has been shown to play no role in lung infection in mice (Fullner, et al., 2002).  233 

To the best of our knowledge, the role of pI in binding to epithelial cells as a colonization or 234 

virulence factor has not been tested for other filamentous phage.  Closer comparison of gI and zot 235 

indicates that they share significant homology at the 5’ end of the gene.  However, zot has an 236 

additional 441 bp at the 3’ end that has been linked to the toxin activity of the protein which would 237 

suggest that gI homologues that contain the extra 3’ toxin domain could play a role in pathogenesis 238 

or association with a eukaryotic host (Baudry, et al., 1992).  Since gI and zot are related and since 239 

zot encodes an epithelial-cell-binding domain, we will refer to this gene as zot for the Vibrio phage 240 
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and gI for all others lacking this domain and will avoid use of the term ‘Zot-like’ which is often 241 

used to refer to gI homologues. 242 

Accessory genes 243 

In addition to the core genes described above, some filamentous phage carry additional genes that 244 

may be unique, or that may be conserved in other, but not all, filamentous phage.  We have termed 245 

these accessory genes.  While many of these genes have no demonstrable function or homology to 246 

known genes, some accessory genes have important roles; involvement in integration into the host 247 

genome, virulence (toxins) or interaction of the phage with its host.  Most filamentous phage have 248 

sequences called phage attachment site (attP) that are often homologues of specific bacterial DNA 249 

sequences that flank the attachment site (named universally attB), allowing for integration into the 250 

host chromosome.  For example, the CTXϕ phage of V. cholerae integrates into the dif site 251 

(recombination site at the chromosomal terminus of replication) (Huber & Waldor, 2002).  The 252 

CTXϕ genome contains an inverted repeat of two incomplete dif sequences which, within the 253 

ssDNA genome, anneal to each other to form a hairpin structure that is a functional attP site (Das, 254 

et al., 2011).  Other integration sites have also been described, such as tRNA Gly locus of Pf4 and 255 

Pf5 from Pseudomonas (Mooij, et al., 2007, Rice, et al., 2009).  Integration into these sites is 256 

dependent on the phage encoding a homologous region.   257 

Some filamentous phage encode their own integrase, recombinase or transposase genes, including 258 

some of the filamentous phage of Xanthomonas (Cf1t) (Shieh, et al., 1991), Pseudomonas (Pf1 and 259 

Pf4), Xylella fastidiosa (M23 Φ-Lf) (Chen, et al., 2010), Vibrio (VSK) and Ralstonia (ΦRSM) 260 

(Askora, et al., 2009) (Fig. 2).  Interestingly, the Pseudomonas Pf3 phage lacks an integrase-261 

encoding gene while this function is encoded by other Pseudomonas Pf phage, indicating that the 262 

Pf3 phage DNA integration mechanism is significantly different from the other Pf phage (described 263 

in more detail below).  For CTXφ of V. cholerae and other phage that integrate into the 264 

chromosome and do not encode an integrase, the insertion of the phage into the host chromosome is 265 

mediated by the host-encoded site-specific recombinases, XerC/XerD (McLeod & Waldor, 2004, 266 

Askora, et al., 2012), while others rely on a host-encoded transposase (Bille, et al., 2005, Kawai, et 267 

al., 2005, Kawai, et al., 2006).  This limited distribution of integrase genes amongst phage of the 268 

Inovirus genus would suggest that the integrase genes are either recently acquired by these phage, 269 

or that the integrase genes have been lost in most of the other lineages of filamentous phage in 270 

favour of using a host recombinase system.  It is interesting to note that phage encoding an 271 

integrase tend to have larger genome sizes in comparison to those that do not encode such enzymes.  272 

Some host- and phage-encoded integrases can mediate both excision and integration, which may 273 
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facilitate the spread of prophage genomes amongst bacterial genera or across families (Askora, et 274 

al., 2011, Das, et al., 2011). 275 

Filamentous phage are well-suited to the horizontal exchange of DNA and it is not surprising that 276 

some filamentous phage carry virulence factors as part of the accessory gene set.  The best 277 

understood is cholera toxin, encoded by the ctxAB operon within the CTXφ filamentous phage 278 

genome that infects V. cholerae.  Cholera toxin is an ADP-ribosylating enzyme that causes the 279 

characteristic, voluminous rice water stool of cholera (Fig. 2).  The distribution of cholera toxin in 280 

V. cholerae strains is described below.  While the φRSM3 phage of R. solanacearum does not 281 

encode a virulence factor per se, it does modify the virulence of its host.  This is accomplished by 282 

the activity of the phage-encoded gene, ORF15, which modifies expression of the virulence 283 

regulators, phcA and phcB (described below) (Addy, et al., 2012).  Thus, phage-encoded genes can 284 

influence host virulence indirectly by adding a layer of regulatory control to existing host virulence 285 

genes.   286 

Other unique genes identified in filamentous phage genomes have been hypothesized to contribute 287 

to interactions between the phage and its host.  The Pf4 filamentous phage encodes several genes 288 

unique to its genome, including a reverse transcriptase (RT), ABC transporter ATPase, toxin-289 

antitoxin (TA) system and a putative repressor or immunity gene (Rice, et al., 2009).  The putative 290 

RT and ABC transporter with an ATP binding domain are located at the 5’ end of the genome, 291 

which may suggest a role in phage replication.  In retroviruses, the RT is a multifunctional enzyme 292 

required for cDNA synthesis that uses the viral RNA genome as a template (Goff, 1990).  While 293 

there are no known retroviruses of bacteria, RT has been shown to be encoded in retron elements 294 

that are involved in the synthesis of unusual multi-copy, ssDNA extrachromosomal elements 295 

(msDNA) (Rice & Lampson, 1996).  The Pf4-encoded RT has amino acid motifs indicative of 296 

bacterial RTs (e.g. the RYADD box in domain five), but lacks the characteristic ‘VTG’ sequence in 297 

domain seven, suggesting that this RT is not associated with msDNA production (Rice & Lampson, 298 

1996).  The role of this putative reverse transcriptase is unclear, given that the filamentous phage 299 

genomes are composed of DNA rather than RNA; the latter, not the former, being a template for the 300 

RT.  However, this polymerase could potentially use ssDNA as template to synthesize a negative 301 

strand replication primer, a function that is carried out by host RNA polymerase in Ff phage 302 

(Higashitani, et al., 1997).  This novel function, if experimentally tested, would be unique to Pf4 303 

phage as it is the only example to date of an Inovirus encoding a RT.   304 

The ABC transporter proteins, a homologue of which is encoded by the Pf4 phage genome, are 305 

associated with a range of different functions, including DNA replication, protein degradation, 306 
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membrane fusion, antibiotic efflux, signal transduction pathways and chemoreceptors (Tam & 307 

Saier, 1993, Ogura & Wilkinson, 2001).  There are no current reports on the function of this gene in 308 

Pf4 and hence, it is unclear if it provides a selective advantage to the Pf4-containing P. aeruginosa.  309 

Neither the RT nor the ATPase-encoding genes are present in the closely related Pf6 filamentous 310 

phage nor are they found in P. aeruginosa PAO1 strain chromosome, further suggesting they are 311 

not essential for the function of the Pf4 phage (Tay, 2008).   312 

The TA systems often affect cell viability and have been shown to influence motility, biofilm 313 

formation, quorum sensing, plasmid or episome maintenance and persistence (Gerdes, 2000, 314 

Gerdes, et al., 2005, Fozo, et al., 2008).  There are five major types of bacterial TA systems based 315 

on the nature and the mechanism of action the antitoxin (Goeders & Van Melderen, 2014).  In 316 

recent biofilm studies, a TA system was shown to play a role in biofilm formation and the switch 317 

between planktonic and sessile lifestyles in P. aeruginosa (Wang & Wood, 2011).  The parE-phd 318 

TA system found in the P. aeruginosa Pf4 phage is a type II toxin-antitoxin pair that targets DNA 319 

gyrase.  To date, the Pf4 phage is the only filamentous phage described with a functional TA system 320 

in its accessory gene set.  Disturbance of the toxin-antitoxin equilibrium in biofilm microcolonies 321 

could lead to cell death (Webb, et al., 2004) and the lack of the TA system in the Pf4 deletion 322 

mutant may explain why it does not undergo cell death during biofilm development (Rice, et al., 323 

2009).   324 

Several filamentous prophage carry transcriptional repressors, which have various phage-specific 325 

functions.  The repressor gene in λ is responsible for repressing the lytic cycle, thereby maintaining 326 

lysogeny (Oppenheim, et al., 2005).  The repressor can interfere with RNA-RNA and DNA-protein 327 

interactions that regulate lysogenic conversion (Cheng, et al., 1999).  Repressor genes have also 328 

been identified in the SW1 filamentous phage of Shewanella piezotolerans (Wang, et al., 2007) and 329 

in the CTXφ phage of V. cholerae (Waldor, et al., 1997).  The RstR repressor of CTXϕ phage 330 

regulates replication of the phage by repressing the rstA promoter, which controls the expression of 331 

all the CTXϕ phage genes required for phage production, thereby maintaining the non-productive 332 

prophage in the host chromosome (Quinones, et al., 2005).  In the tailed lysogenic phage of E. coli, 333 

such as λ, the repressors confer immunity to the lysogen against lytic phage superinfection. P. 334 

aeruginosa PAO1 chromosome encodes two repressors, both with homology to that of the P2 335 

phage, however their functions in cell physiology are yet to be determined.  Interestingly, deep 336 

sequencing of PAO1 biofilm dispersal cell populations demonstrated that one of these two putative 337 

repressor genes accumulates mutations at a disproportionately high rate relative other host genes in 338 

this population (McElroy, et al., 2014).  The repressors identified in filamentous phage genomes 339 

have almost no homology to each other at the nucleotide or amino acid level.  The highest similarity 340 
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was observed between the Xanthomonas Cf1 and Ralstonia RSM phage repressors, at less than 20% 341 

amino acid similarity.  This low level of similarity, also noted above for the pVIII protein, 342 

highlights the difficulty in identification of the filamentous phage genes and proteins by homology 343 

searches.  The Ralstonia RSM phage repressor has been shown to play a role in host virulence 344 

(Addy, et al., 2012), whilst the repressor of Cf1 filamentous phage of Xanthomonas has been 345 

identified to be an important component of the immunity system of the host against phage infection 346 

(Shieh, et al., 1991, Cheng, et al., 1999, Cheng, et al., 2009).   347 

 348 

Phylogenetic relationships 349 

The evolutionary relatedness of filamentous phage that infect different bacterial species, e.g. E. coli 350 

vs. V. cholerae, is apparent through the conserved order of genes in the genome as mentioned 351 

above.  The conservation of gene order (the synteny) and function argues against convergent 352 

evolution of morphologically similar phage.  However, individual genes often show low overall 353 

amino acid identities, ranging from 8% to 17% when compared to the Ff phage (Table 1), which 354 

can makes identification of the genes by homology analysis difficult.  The lack of homology could 355 

suggest low selection pressure on the maintenance of sequence integrity.  Alternatively, a low 356 

sequence homology in the core gene set may be a consequence of extensive horizontal gene transfer 357 

among phage infecting distantly related bacterial species, resulting in mosaic genomes.  This 358 

process, in conjunction with the subsequent selection for mutants that fit with the host codon bias or 359 

that allow functional integration (interactions) between the proteins encoded by the poly-origin core 360 

genome, would ultimately contribute to the overall low primary sequence conservation.  361 

Differences in the assortment and sequence of accessory genes among filamentous phage are likely 362 

to be a consequence of integration into different sites in the host chromosome and excision by 363 

imperfect recombination, thereby mobilising host genes adjacent to the phage integration site (attB).  364 

To investigate the phylogenetic relationship between common filamentous phage, phylogenetic 365 

trees were generated based on core and accessory genes.  Using the ‘Phylogeny.fr’ platform 366 

(Dereeper, et al., 2008) a tree was assembled from the major coat protein pVIII (CoaB), that 367 

determines the structure of the virion coat (Fig. 3).  This gene is found in all filamentous phage and 368 

is the most abundant protein, making it a good gene for comparison.  The pVIII subunit is largely 369 

an α-helix and is made up of approximately 50 amino acid residues.  While different phage can 370 

have quite different pVIII sequences, the resulting virion structures are similar.  Moreover, all pVIII 371 

subunits have a similar acidic N-terminal region, a stretch forming an amphipatic helix, continuing 372 

into a hydrophobic helix followed by basic residues near the C terminus (Pederson, et al., 2001).  In 373 
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most phage (e.g. Pf1, Ff) the pVIII subunit is synthesized with an N-terminal signal sequence which 374 

is later removed by a signal peptidase (Marvin, 1998).  375 

The organisation of the phylogenetic tree based on this protein largely follows the expected 16S 376 

rRNA gene-based phylogenetic tree of the host at the genus level (Fig. 3A) with some exceptions.  377 

The major coat proteins from the Enterobacteria phage group closely together, indicating a high 378 

similarity and common origin.  Phage that infect the Vibrio spp. cluster together, with the exception 379 

of the Vibrio parahaemolyticus phage KXV237, and three V. cholerae phage, VSK, fs1 and CTXφ.  380 

The major coat protein sequence of the V. parahaemolyticus phage KXV237 was previously 381 

reported to be different from that of the filamentous phage lvpf5 that infects the same species 382 

(Nakasone, et al., 1999), but was similar to that of V. cholerae phage fs1 and P. aeruginosa phage 383 

Pf1 (Nasu, et al., 2000).  This may suggest that either pVIII of a V. parahaemolyticus filamentous 384 

phage was acquired by the KXV237 phage or that this phage has jumped the host species barrier 385 

from one of the more closely related hosts, Ralstonia or Pseudomonas, into V. parahaemolyticus.  386 

More detailed analysis would be needed to determine which of these possibilities is correct.   387 

Phage from the Pseudomonad group appear to be more closely related to each other than to the 388 

phage of Vibrio spp., with the exception of Pseudomonas phage Pf3.  The Pf3 phage has a genome 389 

size and organization similar to the Enterobacteria phage Ff (except for a different order for genes I 390 

and IV) (Luiten, et al., 1985).  In contrast to Pf1, Pf4 and Pf5, the Pf3 major coat protein is not 391 

synthesized with an N-terminal signal sequence and thus is significantly shorter relative to the 392 

major coat protein of other Pf phage (Luiten, et al., 1983).  This difference may explain the 393 

phylogenetic divergence of the Pf3 coat protein relative to the other Pf Pseudomonas phage, despite 394 

the amino acid sequence conservation within the mature portion of the protein.  Xanthomonas phage 395 

Lf and Xylella phage Lf are closely related as shown by their neighbouring position in the tree 396 

(Moreira, et al., 2005).  The Xanthomonas phage Xf appears to be of similar origin to the 397 

Pseudomonas Pf1, Pf4 and Pf5 phage. 398 

The pI proteins are essential for the assembly of the phage, however in some they can also have a 399 

role in the interaction of the host bacterium with the eukaryotic host (Fig. 3B).  Their position in the 400 

phage genome appears to be conserved, the size of the proteins range from 242 – 461 amino acids 401 

and all have a nucleotide triphosphate-binding site.  A translational product from an internal start 402 

codon within gene I is pXI.  Protein XI has an N-terminal membrane-anchor but lacks the NTP-403 

binding domain and is essential for the Ff phage assembly.  A complex of pI and pXI form the inner 404 

membrane component of a trans-envelope complex (Haigh & Webster, 1999).  It is not clear 405 

whether pXI is produced in other filamentous phage. 406 
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In the full-length product (pI or Zot), the cytoplasmic NTP-binding N-terminal domain is conserved 407 

across all filamentous phage.  The larger variant of the Zot protein was originally identified in, and 408 

was primarily associated with, toxigenic V. cholerae strains (Fasano, et al., 1991, Baudry, et al., 409 

1992, Bakhshi, et al., 2008).  The Zot protein is encoded by the CTXφ and the filamentous phage of 410 

V. cholerae, Pseudomonas (Koonin, 1992, Johnson, et al., 1993, Mooij, et al., 2007, Rice, et al., 411 

2009) and Stenotrophomonas maltophilia (Hagemann, et al., 2006).  In contrast, Ike, I2-2, M13 and 412 

If1 from Enterobacteria and phage PE226 from R. solanacearum (Murugaiyan, et al., 2011) do not 413 

contain the zot toxin-specific domain.  Overall, relative conservation and presence of distinct 414 

grouping makes pI/Zot a good candidate for the study of phylogenetic relationships and possible 415 

gene transfer between phage. A tree was therefore assembled based on protein pI/Zot.  This analysis 416 

of pI suggests that the evolutionary history of the phage genomes follows that of the hosts, although 417 

there are some clear exceptions.  There are two main groups of Vibrio Zot protein homologues.  The 418 

Zot homologues from Vibrio phage VSK, Fs1, VGJ, VEJ, VS12 and VF33 cluster together on the 419 

phylogenetic tree, distinct from VFO4K68, VFO3K6, KSF-1 and the CTXφ Zot homologues, 420 

suggesting that the toxin may have been gained independently by the members of these two groups.  421 

This is also supported by the observation that the CTXφ does not cluster with the other Vibrio 422 

phage based on the pVIII analysis.  Interestingly, in the pI - Zot phylogenetic tree, the pI proteins 423 

from phage infecting P. aeruginosa cluster closely with the Zot protein from CTXφ.  Koonin et al. 424 

(1992) suggested that both Zot and pI proteins have a similar transmembrane topology.  It has been 425 

proposed that Zot proteins have evolved from Pf1-like bacteriophage, because the Zot sequence is 426 

most closely related to the pI protein from Pseudomonas bacteriophage, but more distantly related 427 

to pI proteins from other filamentous phage (Koonin, 1992, Di Pierro, et al., 2001).  This is also 428 

evident from the phylogenetic tree (Fig. 3B). 429 

All pI homologues from Enterobacteria phage lack the putative toxin module at the C-terminal end 430 

and cluster together in the tree, indicating that they are closely related.  Based on the complete 431 

amino acid sequence, pI from the two S. maltophilia phage, SHI and SMA9 (Hagemann, et al., 432 

2006), cluster with Vibrio and Enterobacteria phage, respectively, suggesting that although SHI and 433 

SMA9 infect the same host species, their respective pI homologues have separate origins.  434 

Interestingly, the pI of SHI and SMA9 both carry the C-terminal toxin domain found in the Pf and 435 

CTXφ phage.  This further supports that this gene was either acquired by SMA9 through horizontal 436 

gene transfer from a distantly related phage, e.g. a Vibrio or Pseudomonas phage, or that the SMA9 437 

phage was acquired by S. maltophila from another bacterial host.  438 

 439 
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Effects of filamentous phage on the host 440 

Enterobacteriaceae phage 441 

It has been shown that after phage infection with Ff phage, E. coli experiences envelope stress due 442 

to the presence of the large trans-envelope channel and LPS damage, coupled to a hugely increased 443 

membrane protein production and translocation, resulting in slowed growth and formation of turbid 444 

“plaques” on bacterial lawns; furthermore, the colonies derived from Ff phage-infected cells have 445 

changed morphology they are small and transparent (Chen, et al., 2009) (Table 2).  In part, slow 446 

growth can be attributed to over-expression of gI upon infection and the very existence of a trans-447 

envelope assembly-secretion system, which compromises the integrity of bacterial envelope.  For 448 

example, it was shown that expression of pI alone in E. coli inhibited host protein and RNA 449 

expression (Horabin & Webster, 1986).  Indeed, the authors also indicated that over-production of 450 

pI eventually resulted in host cell death (Horabin & Webster, 1986, Russel, 1995, Horabin & 451 

Webster, 1988).  This is thought to be due to membrane insertion and loss of the membrane 452 

potential (Horabin & Webster, 1988).  Thioredoxin, which is involved in detoxification of reactive 453 

oxygen species, is also required for Ike, f1 and fd (but not M13) phage assembly in its reduced form 454 

independently of its general function as a cofactor for reductases (Russel & Model, 1986).  While it 455 

has been proposed that the amino terminal end of pI, in the cytoplasm, may interact with 456 

thioredoxin (Horabin & Webster, 1988), the observed E. coli growth inhibition effect mediated by 457 

pI production was independent of thioredoxin.  Therefore it is unlikely that the growth effects of pI 458 

are associated with oxidative stress responses.  Conversely, it has been shown that during phage 459 

infection with the exception of gII, inactivation of any single phage gene results in the host cell 460 

death (Hohn, et al., 1971).  The mechanism behind this cell death is not clear, but it has been 461 

observed by electron microscopy that the cells accumulate christae-like invaginations of the inner 462 

membrane and become packed-full of the ssDNA-pV complex (Schwartz & Zinder, 1968).  This is 463 

similar to the observation that inhibition of phage release (by application of antibodies that cross-464 

link the hundreds of phage filaments emanating from bacterial surface or conditions that lead to 465 

abortive infection) also results in cell death of E. coli (Pratt, et al., 1966, Marvin & Hohn, 1969).  466 

While this has not been shown for other filamentous phage, it seems likely that disruption of the 467 

balance between phage synthesis and assembly/secretion in highly productive species may be 468 

detrimental to the host.   469 

The host-encoded protein that has been shown to accumulate to the highest level upon the Ff phage 470 

infection in E. coli is the aptly named phage shock protein, PspA (Brissette, et al., 1990, Russel & 471 

Kazmierczak, 1993).  The pspA gene is part of the psp regulon (pspFABCDE and the unlinked gene 472 
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pspG) and is highly induced in response to overproduction of pIV and those secretins that are 473 

partially mislocalised into the inner membrane.  The inner membrane proteins PspB and C have 474 

been shown to sense the stress and release the repression of the psp regulon transcription.  When 475 

stress reaches a critical threshold, a conformational shift in the cytoplasmic domain of PspC 476 

uncovers the cytoplasmic domain of PspB, which is then able to sequester the negative regulator 477 

PspA away from the transcriptional activator, PspF (Maxson & Darwin, 2006, Gueguen, et al., 478 

2009, Joly, et al., 2010).  Expression of the psp regulon is induced in response to a range of 479 

stressors in addition to phage infection and production of secretins, including the heat stress and the 480 

ethanol exposure.  Given that many of the phage assembly proteins are inserted into the cell 481 

membranes, it is tempting to speculate that pspA induction occurs in response to general membrane 482 

stress (Joly, et al., 2010).  Thus, while phage production is not lethal to the host, it could easily be 483 

perceived as a membrane-stressing event, due to the reported secretin mislocalization to the inner 484 

membrane, pI toxicity in the inner membrane and overproduction of membrane-targeted pVIII, with 485 

a possibility of energy loss due to some dissipation of membrane potential.  Interestingly, P. 486 

aeruginosa does not possess the psp regulon, hence it must have different mechanism for coping 487 

with the stress of filamentous phage infection (Seo, et al., 2009). 488 

In contrast to Ff, the filamentous phage of Ralstonia, Vibrio and Pseudomonas, have phenotypically 489 

remarkable effects on the host, including changes in capsule production, motility, virulence factor 490 

expression and biofilm development and will be described in detail in the following sections.  491 

Ralstonia phage 492 

R. solanacearum is a soil-borne Gram-negative bacterium that is the causative agent of bacterial 493 

wilt in many important crops.  Several filamentous phage from R. solanacearum are well-494 

characterized and sequenced, including φRSS1, φRSM1, ϕRSM3 ϕRSM4 and PE226.  Similar 495 

prophage are found in the genomes of various strains of R. solanacearum, Ralstonia pickettii and 496 

Burkholderia pseudomallei.  The ϕRSM3 and ϕRSM4 phage are closely related to, but differ from, 497 

ϕRSM1.  The nucleotide sequence of ϕRSM3 is highly conserved relative to ϕRSM1 with the 498 

exception of an unknown protein encoded by ORF2 and an adsorption protein responsible for host 499 

range determination, encoded by ORF9, which based on its position in the genome could be a gIII 500 

homologue (Askora, et al., 2009).  Several of the filamentous phage of the Ralstonia genus were 501 

shown to be important for pathogenicity of the host bacterium (Table 2).  Interestingly, harbouring 502 

different filamentous phage can either increase or decrease virulence of R. solanacearum towards 503 

plants, but this effect was observed to be specific for each phage type. 504 
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It has been shown that infection of R. solanacearum by φRSS1 leads to an altered physiological 505 

state and behavior of the bacteria by changing the expression of virulence factors, extracellular 506 

polysaccharide (EPS) production and twitching motility.  In phage-infected bacterial hosts the 507 

global virulence regulator, phcA, was found to be induced early and at low cell densities, leading to 508 

increased co-regulated EPS synthesis and twitching motility through increased number of functional 509 

type IV pili responsible for this type of motility.  It was further speculated that phage particles 510 

emanating from the assembly sites on the bacterial surface change the cell’s hydrophobicity leading 511 

to high local cell densities.  The enhanced virulence of φRSS1-infected R. solanacearum leads to 512 

early wilting of tomato plants compared to the non-phage carrying control (Addy, et al., 2012).  513 

Interestingly, strains of R. solanacearum that are sensitive to infection by φRSS1 were resistant to 514 

infection by another filamentous phage, φRSM1, and vice versa.  This would suggest that these 515 

phage share common immunity systems that can prevent infection, although the mechanism by 516 

which protection is mediated has not been described.  This cross-protection from infection is 517 

somewhat unexpected since it has been shown that φRSS1 and φRSM1 differ significantly in 518 

genome size (6.6 Kbp for φRSS1 and for 9.9 Kbp for φRSM1) and sequence, and they target 519 

different R. solanacearum strains as their hosts (Yamada, et al., 2007).  Cross-protection from 520 

infection is also intriguing since phylogenetic analysis based on pVIII suggests that φRSS1 is 521 

divergent from ϕRSM1 and ϕRSM3.  One possible explanation for the cross-protection is that the 522 

low expression of pIII from the prophage may block the periplasmic receptor, TolA, and/or cause 523 

retraction of the pilus that serves as a primary receptor for infection, as has been observed for the Ff 524 

phage (Boeke, et al., 1982).   525 

The different phage also have quite different effects on their host bacterium.  The ϕRSM1- and 526 

ϕRSM3- carrying strains have reduced virulence in tomato plants, in contrast to φRSS1-carrying 527 

strains, which have increased virulence in the same disease model.  A decreased virulence of 528 

φRSM3-infected cells was attributed to several factors, including reduced twitching motility and 529 

reduced expression of type IV pili, lower levels of β-1,4-endoglucanase activity and extracellular 530 

polysaccharides, and reduced expression of some virulence genes (egl, pehC, phcA, phcB, pilT and 531 

hrpB) (Addy, et al., 2012).  The φRSM3 phage carries a repressor gene (ORF15), which acts on the 532 

host-encoded regulators of virulence, phcA and phcB.  Deletion of the ORF15 from the φRSM3 533 

phage genome restores the virulence and levels of PhcA and PhcB in the host bacterium, 534 

comparable to the phage-negative cells (Addy, et al., 2012).  In this way, the phage appears to 535 

influence regulation of one of the key virulence mediators of the host bacterium.  Phage such as 536 

φRSS1, ϕRSM1 and ϕRSM3 display opposite effects on the virulence of their host bacterium, 537 

which is intriguing and it remains to be determined if this is in part due to the individual genetic 538 
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capacity of the host or if the phage carry specific determinants that differ that would account for 539 

these differences in effects.  540 

In a study aimed at characterizing bacteriophage from R. solanacearum, phage PE226 was 541 

identified as having a wide range of host strains.  This phage has a genome of 5,475 bp and its gI 542 

gene shares high homology in the N-terminal region to zot from V. cholerae and gI from 543 

Pseudomonas Pf1 phage (Murugaiyan, et al., 2011).  Sequence analysis indicates that the gI of 544 

PE226 lacks the C-terminal domain associated with binding to epithelial cells.  The lack of the Zot-545 

type C-terminal domain most likely also explains why these phage cluster together with the Vibrio 546 

phage K68, K6 and KSF-1 based on the pI-Zot analysis (Fig. 3B).   547 

Filamentous phage are also present in other Ralstonia species.  The R. pickettii strain 12J was 548 

originally isolated from a copper-contaminated lake sediment and is adapted to growth at high 549 

levels of copper.  This strain was found to contain a filamentous phage that was hypothesized to be 550 

important for horizontal gene transfer of a region containing genes encoding for a range of metal-551 

resistance proteins.  These include a gene encoding for a blue copper domain protein, one mercury 552 

resistance operon, two iron permease-encoding genes, three complete copABCD operons, five czc 553 

genes, five genes encoding RND efflux transporters seven genes encoding the metal-translocating 554 

P-type ATPases and eight genes encoding the heavy metal signal/sensor proteins (Yang, et al., 555 

2010).  The 12J phage genome sequence is partially syntenic to that of the R. solanacearum phage 556 

PE226 (Murugaiyan, et al., 2011).  With respect to organisation within the phage genome, nine 557 

ORFs of these two phage are similar in sequence, while 6 ORFs (ORFs 2 – 7) have identical 558 

organisation.  Both phage encode a pI/Zot protein where the conserved N-terminal region shows 559 

homology to the Zot family protein domain, but lack the Zot-like C-terminal domain (Murugaiyan, 560 

et al., 2011).  Its role in virulence remains to be elucidated.   561 

 562 

Vibrio cholerae phage 563 

The CTXφ phage of V. cholerae, which encodes the CtxA and CtxB, subunits of CT, has been well 564 

studied, primarily because of its remarkable effect on the host virulence (Table 2).  As a result, 565 

much of what is known about the filamentous phage, in conjunction with fd, Ff and M13, is based 566 

on CTXφ.  In this section, we will describe some of the key aspects of CTXφ biology and direct the 567 

reader to a number of reviews that focus explicitly on CTXφ (Faruque & Mekalanos, 2003, 568 

McLeod, et al., 2005, Faruque & Mekalonos, 2014).  V. cholerae is a common inhabitant of marine 569 

and estuarine habitats.  Interestingly, the majority of V. cholerae strains are non-toxigenic (do not 570 
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possess the CT genes).  However, strains that acquire the CTXφ phage become toxigenic, and such 571 

strains, including the Classical and El Tor biotype O1 strains and O139 strains (also called Bengal 572 

strains) are associated with epidemics.  Indeed, it has been shown that toxigenic El Tor strains can 573 

transfer the CTXφ phage into non-toxigenic, environmental strains, highlighting the role that these 574 

phage play in the conversion of non toxigenic strains into pathogens (Choi, et al., 2010).  575 

Integration of the CTXφ genome into V. cholerae chromosome is dependent on a functional 576 

chromosomal dif site.  Interestingly, in strains of V. cholerae that have a defective dif site, 577 

integration of a secondary or helper filamentous phage genome, TLC-Knφ1, contributes the 578 

functional phage dif sequence through XerCD-specific recombination, to restore a complete 579 

chromosomal dif site, correcting the defect in cell division and permitting integration of the CTXφ 580 

(Hassan, et al., 2010).   581 

Carriage of the CTXφ phage and hence, CT, is thought to allow for rapid amplification of V. 582 

cholerae in the host and dissemination as a consequence of intense diarrhea.  Thus, the phage plays 583 

an important role in the virulence and dissemination of V. cholerae.  Infection of V. cholerae by the 584 

CTXφ phage is dependent on the host expression of the toxin coregulated pilus, TCP (Waldor & 585 

Mekalanos, 1996).  Interestingly, this surface receptor is itself encoded by another filamentous 586 

phage, VPIφ; it should be noted that this is a different class of filamentous phage.  VPIφ is 587 

suggested to replicate as an extra-chromosomal element and to have a ssDNA genome of 588 

approximately 40 Kbp, encoding a putative transposase as well as integrase genes (Karaolis, et al., 589 

1999).  However, the determination of whether VPIφ is a true phage remains unresolved, as it has 590 

been suggested that this genetic region does not produce active phage particles (Karaolis, et al., 591 

1999).   592 

The accessory cholera toxin (ACE) of V. cholerae has also been suggested to play an important role 593 

in infection and diarrhea in the human host.  Exposure of intestinal cells to this protein was 594 

associated with membrane depolarization as well as fluid secretion (Trucksis, et al., 1993).  This 595 

gene is located upstream of the zot and the two may be transcriptionally linked (Trucksis, et al., 596 

1993).  The ACE protein is a homologue of the minor virion protein pVI of other filamentous 597 

phage, is an integral membrane protein predicted using the TMHMM algorithm (Krogh, et al., 598 

2001) to have three transmembrane helices prior to incorporation in to the virion.  It functions in 599 

concert with pIII to release the virion from the bacterial cells at the end of assembly and presumably 600 

to facilitate entry of the phage into the host.  Since the pVI/ACE protein is present in the virion, 601 

even though it is mostly hydrophobic and covered by pIII (Endemann & Model, 1995), it is 602 

potentially partially exposed on the surface at the C-terminus (Hufton, et al., 1999).  Therefore, 603 

unlike Zot, which is shielded from the environment and epithelial cells by the outer membrane, 604 



 20 

pVI/ACE could potentially interact with the mammalian host cells to mediate toxicity, although this 605 

remains to be experimentally demonstrated.  In addition to the putative interactions of the Zot 606 

and/or the ACE proteins with the mammalian host, it has also been shown that some phage genes 607 

could be expressed in mammalian cells, independent of the bacterial host (Merril, et al., 1971, 608 

Bentancor, et al., 2013, Lengeling, et al., 2013), highlighting that the phage-bacteria-host 609 

relationship still holds some mysteries to be unraveled.  Thus, it would be of particular interest to 610 

investigate how these proteins, when applied in a purified form, from the bacterial membrane or 611 

viral extracts, interact with mammalian cells.  For example, even though the toxin domain of Zot is 612 

located in the periplasm, it would be interesting to explore whether this protein could become 613 

surface exposed upon cell lysis.  Additionally, where the CTXϕ phage penetrate mammalian cells, it 614 

is unclear whether this is mediated by a receptor-ligand interaction, as is the case for phage binding 615 

to its bacterial host.  Similarly, it would be of interest to determine if pVI/ACE homologues from 616 

phage other than CTXϕ have similar effects when infecting a mammalian host.   617 

Another question that remains unexplored is the fate of the CTXϕ and toxigenic hosts once out in 618 

the environment as they are rarely detected and it has been suggested that the phage therefore does 619 

not confer increased environmental fitness to V. cholerae, in contrast to its role in colonization of 620 

the human host.  Some evidence for the loss of the CTXφ phage from V. cholerae was recently 621 

reported and may account for the low prevalence of the CTXφ phage in environmental strains.  622 

Kamruzzanman et al. (2014) demonstrated that superinfection of CTXφ-carrying V. cholerae results 623 

in excision of the phage from the genome and ultimately loss of CTXφ, as it is not able to 624 

reintegrate.  This process is mediated by the activity of an antirepressor, RstC, encoded by the 625 

adjacent prophage RSφ that antagonizes the function of RstR of CTXφ, which is responsible for 626 

maintaining CTXφ in the lysogenic state (Kamruzzaman, et al., 2014).  This RSφ-mediated effect 627 

was observed to occur in the intestine of infected mice and ultimately resulted in the recovery of 628 

CTXφ-negative V. cholerae isolates.  In this way, environmental strains acquire the CTXφ phage by 629 

transduction, which may be a rare event in nature, infect a host, become superinfected by the RSφ 630 

phage and ultimately lose the phage and are distributed back into the environment through the 631 

stools of the infected host.   632 

 633 

Neisseria phages 634 

Several filamentous phage have been described for the genus Neisseria, including Ngoφ6-9 635 

(Piekarowicz, et al., 2006), MDA (Bille, et al., 2005) and Nf (Kawai, et al., 2006) (Table 2). 636 
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Subtypes of these phage are found in N. meningitidis and N. gonorrhoeae.  Nf phage carry their 637 

own transposases for integration, which are involved in phage rearrangements (Kawai, et al., 2006).  638 

The MDA phage element from N. meningitidis has been studied in detail (Bille, et al., 2005) and 639 

has high organizational similarity to other filamentous phage with all core genes present (Bille, et 640 

al., 2005).  The ORF 8 has similarity to the Zot toxin from V. cholera CTXφ.  Similar to CTXφ, the 641 

MDA element uses a chromosomally encoded secretin (PilQ) for its secretion.  While the 642 

mechanism of infection remains to be elucidated, it was speculated that the MDA island is spread 643 

by transformation of chromosomal NDA fragments derived from the lysed N. meningitidis cells, in 644 

addition to putative receptor-mediated binding and entry of the phage ssDNA genome into the host 645 

cell.  Integration of the MDA-containing chromosomal fragments acquired by transformation into 646 

the recipient’s chromosome would in this case be mediated by homologous recombination via the 647 

flanking homologous bacterial sequences, rather than through the site-specific  (non-homologous) 648 

recombination like other dif-integrating prophage (Bille, et al., 2005).  The occurrence of the MDA 649 

island in N. meningitidis isolates was correlated with invasiveness of disease causing strains.  This 650 

may indicate that the MDA phage plays a role in increasing the ability of N. meningitidis to invade 651 

mammalian cells and if so, the phage would represent an additional virulence determinant.  It was 652 

also shown that multiple MDA islands can exist within a single N. meningitides genome, for 653 

example in strains MC58 and FAM18 (Bille, et al., 2005).  While it is uncommon to have multiple 654 

copies of the same phage type integrated into the host genome, there is a clear precedence for this in 655 

V. cholerae (which encodes two copies of CTXφ, described below) and P. aeruginosa PAO1 (e.g. 656 

Pf4 and Pf6).  It was recently reported that a hybrid Ngoφ6 phage, from N. gonorrheae, could 657 

infect, replicate and produce phage particles in a range of Gram negative bacteria, including E. coli, 658 

Pseudomonas sp., Haemophilus influenza, and Paracoccous methylutens in addition to Neiserria 659 

sicca (Piekarowicz, et al., 2014).  It was further shown that infection and replication was not 660 

dependent on the large adhesin (Piekarowicz, et al., 2014), pIII, which is normally required for 661 

binding to the host cell receptor and that dictates host cell specificity (Heilpern & Waldor, 2003).  662 

  663 

Shewanella phage 664 

The first filamentous phage isolated from the deep-sea environment is SW1 that infects Shewanella 665 

piezotolerans WP3 (Wang, et al., 2007) (Table 2).  SW1 shares significant similarities in genome 666 

organization with M13 and CTXφ and its key genes are induced at low temperatures (Wang, et al., 667 

2007, Jian, et al., 2012).  SW1 phage was found to contribute to the fitness of its host by regulating 668 

genes important for flagellum production (Jian, et al., 2013).  Lateral flagella are necessary for 669 
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swarming motility which in turn is vital for the host bacterium for the acquisition of nutrients from 670 

the deep-sea sediment (Xavier, et al., 2011). 671 

 672 

Xanthomonas phage 673 

The plant pathogen, X. campestris, harbors several different types of phage, including the 674 

filamentous phage Cf1t and Cf1c (Kuo, et al., 1991) (Table 2).  Phage Cf1c and Cf1t are 675 

approximately 7.3 Kbp in size and encode 12 open reading frames, including a site-specific 676 

integrase.  Xanthomonas phage have been shown to play a role in genome rearrangement and strain 677 

differentiation as well as affecting growth of the host (Varani, et al., 2013).  While Cf1t has very 678 

little effect on the growth of the host, Cf1c was found to drastically reduce the growth rate of 679 

infected X. campestris (Kuo, et al., 1991).  Infection with Cf1tv, the superinfective form of Cf1t, 680 

leads to the formation of small colony variants and almost all infected cells are killed after 28 h 681 

(Kuo, et al., 1994).  The formation of small colony variants upon superinfection has also been 682 

reported for P. aeruginosa when infected by Pf4 (see below) and it is possible that superinfection 683 

by filamentous phage selects for SCVs, although the mechanism and selective advantage for this 684 

response is not currently understood. 685 

 686 

Yersinia phage 687 

YpfΦ (Table 2) is a filamentous phage that infects Yersinia pestis, the causative agent of plague. 688 

Genome organization of this phage is similar to other filamentous phage; it is comprised of the 689 

three genome modules necessary for production of infectious virions.  This phage replicates through 690 

an extrachromosomal RF, but can also integrate into the chromosomal dif site (Chouikha, et al., 691 

2010).  Interestingly, deletion of YpfΦ from the host results in alteration of pathogenicity in mice, 692 

although it had no effect in the classical flea-borne transmission of Y. pestis (Derbise, et al., 2007).  693 

It has been suggested that the acquisition of YpfΦ played a major role in the evolution of the highly 694 

virulent plague bacterium, because the avirulent ancestor Y. pseudotuberculosis does not contain the 695 

phage.  Moreover, the maintenance of the phage in all pathogenic sublines despite its in vitro 696 

instability suggests that it was advantageous (for example by increasing its pathogenicity) for the 697 

bacterium to maintain the phage (Derbise, et al., 2007).  698 

 699 
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Pf phage of Pseudomonas aeruginosa 700 

P. aeruginosa Pf phage were first described by Takeya and Amako (1966) (Takeya & Amako, 701 

1966) who characterized the plaque morphology as less than 1 mm in diameter, and indicated that 702 

the phage (Pf1) had a very limited host range, infecting only one strain, PAK, out of the nearly 50 703 

isolates tested.  The Pf4 phage does not form plaques on the wild-type PAO1 carrying the Pf4 704 

prophage, but readily forms plaques when the prophage has been deleted (Rice, et al., 2009).  The 705 

Pf phage were determined to be twice the size of previously identified Ff (Bradley, 1973).  Tests of 706 

a range of clinical and laboratory P. aeruginosa isolates indicate that most of the strains tested 707 

produce filamentous phage particles and hence, it is likely that most P. aeruginosa strains, and 708 

PAO1 sublines in particular, carry Pf phage (Kirov, et al., 2007, Klockgether, et al., 2010, Woo, et 709 

al., 2012).  Subsequent Pf phage were identified and given sequential names, Pf1 - Pf6.  All of the 710 

P. aeruginosa filamentous phage harbor the core genes as well as an integrase and a putative 711 

repressor C homologue.  The primary distinguishing features are in the accessory genes carried by 712 

each phage and the number and sizes of these are responsible for the differences in the size of the 713 

genome and corresponding phage particle sizes.   714 

The source of the Pf1 phage isolated by Takeya and Amako (Takeya & Amako, 1966) was not 715 

identified by the authors; however, Pf2, which they also identified, was isolated from P. aeruginosa 716 

strain P28 (Minamishima, et al., 1968).  Cross-reactivity of Pf1 antibodies with Pf2, indicated that 717 

the two phage are serologically related, while neither reacted to antibodies against fd.  These 718 

authors further demonstrated that infection of strain K (P. aeruginosa PAK) with either Pf1 or Pf2, 719 

yielding phage-producing colonies, suggesting that the Pf phage could stably infect the P. 720 

aeruginosa host.  The Pf1 phage (ATCC 25lO-Bl) genome sequence was reported in 1991 (Hill, et 721 

al., 1991) and was shown to be 7,349 nucleotides in length.  Comparison with the previously 722 

sequenced Pf3 phage indicated that the genome organization of Pf1 and Pf3 was conserved but they 723 

shared little identity at the nucleotide or protein level.  The Pf3 phage has a G + C content of 45 % 724 

(Luiten, et al., 1985) which is considerably different from the P. aeruginosa and the Pf1 genomes 725 

which are 67 (Stover, et al., 2000) and 61 % G + C (Hill, et al., 1991) respectively.  These results 726 

suggest that Pf3 is distinct from the other Pf phage, in agreement with the phylogenetic analyses, 727 

which in fact suggest that the Pf3 is more closely related to the CTXφ and VSK phage of V. 728 

cholerae than to other Pf phage (Fig. 3A).  Altogether, these findings suggest that the Pf3 phage 729 

was horizontally acquired by P. aeruginosa and may have originated from another species.   730 

Several reports investigated the host ranges of Pf phage and compared the genomes and structures 731 

of the Pf phage particles or their capsid proteins (as indicated above), however there are few reports 732 
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on the biology of these phage.  Of the Pf phage, Pf4 is best understood, in part because Pf4 is one of 733 

the two filamentous phage gene clusters found in the genome of P. aeruginosa PAO1, arguably one 734 

of the most commonly studied strains of P. aeruginosa.  In contrast, the host-origin for Pf1 is 735 

unknown and the P28 strain producing Pf2 is not commonly described in the literature.  Similarly, 736 

the natural host for Pf3 is not defined.   737 

The Pf4 genome was shown to contain one of the most highly induced sets of genes during biofilm 738 

growth relative to planktonic growth and similarly, these genes were found to be highly upregulated 739 

when grown under anaerobic conditions in the presence of nitrate (Platt, et al., 2008).  It was 740 

subsequently shown that the Pf4 phage was associated with cell death within microcolonies during 741 

biofilm development (Table 2).  Further studies demonstrated that the cell death phenomenon was 742 

linked to a genetic change in the phage particles, where they adopted a superinfective phenotype.  743 

Here, superinfective is defined as the ability to cause plaques on a normally insensitive host, 744 

containing the Pf4 integrated into the chromosome as a prophage.  The superinfective phage is 745 

primarily detected during continuous biofilm cultivation system and is not normally isolated from 746 

planktonic cultures or batch biofilm systems (Tay, 2008).  Interestingly, the superinfective Pf4 747 

phage can induce the formation of morphotypic variants, which are observed when the cells are 748 

plated onto solid agar subsequent to the shift to the super-infectious Pf4 release.  For example, P. 749 

aeruginosa clones isolated from the superinfective Pf4-phage-releasing stage of the continuous 750 

biofilm were observed to form small colony variants, mucoid variants and wrinkly variants at a 751 

much higher frequency relative to the clones derived from the biofilm releasing the wild-type Pf4 752 

(Hui, 2014).   753 

Like Pf4, the Pf6 phage of PAO1 can also develop a superinfective form and this can induce 754 

morphotypic variant formation (Tay, 2008),  In contrast to the Pf4 or Pf6, another filamentous 755 

phage, Pf5 of P. aeruginosa PA14, does not appear to induce the formation of morphotypic variants 756 

under the same continual biofilm conditions (Mooij, et al., 2007).  The Pf5 encodes three unique 757 

genes at the 5’ end of the genome and lacks homologues of Pf4 genes encoding putative ABC 758 

transporter, RT and TA.  Thus the accessory gene sets of Pf4, Pf5 and Pf6 are distinct from each 759 

other and therefore it is unlikely that the P. aeruginosa morphotypic switch, as the one caused by 760 

Pf4 and Pf6, is related to the accessory genes.  This in turn suggests that there are biological 761 

differences in the interaction of the different Pf phage with their hosts or that there is an absolute 762 

requirement for the phage to be superinfective in order to initiate the formation or selection for 763 

morphotypic variants.  The mechanisms for this remain to be elucidated to develop a fundamental 764 

understanding of the diverse Pf phage and their effects on Pseudomonas.   765 
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The identification of superinfective forms of the Pf4 and Pf6 filamentous phage demonstrates the 766 

two major hurdles in identifying filamentous phage and understanding their effect on the 767 

corresponding bacterial host.  First, detection of filamentous phage requires a sensitive host, which 768 

may be difficult to find, considering that the host bacterium has to be prophage-free and contain a 769 

cognate receptor.  Second, even when a filamentous phage is identified, the major phenotypic 770 

effects on the host, that may have a major clinical relevance, may only be observed under certain 771 

laboratory growth conditions and may therefore be missed under the standard culture conditions.  772 

The formation of morphotypic variants is clinically important because of the appearance of 773 

morphotypic variants in the sputum of chronically infected cystic fibrosis patients as well as the 774 

detection of phage particles in the sputum.   775 

The Pf4 phage also confers additional virulence-related phenotypes on PAO1.  For example, the 776 

strain from which the Pf4 prophage was deleted using recombinant DNA approach is less virulent 777 

in a mouse model of acute lung infection and also forms biofilms that are less stable than the wild-778 

type biofilm when challenged with the surfactant, SDS (Rice, et al., 2009).  There is currently no 779 

direct explanation for either phenotype as the Pf4 phage does not encode obvious virulence factors 780 

nor is the mechanism of surfactant stress resistance clear.  The Pf4 encodes a TA system, but there 781 

is no evidence to date that these putative addiction systems are directly toxic to mammalian cells, so 782 

that their removal from the PAO1 genome would decrease virulence.  Other potential toxic proteins 783 

could be the pI of Pf4, which shows significant homology to the Zot toxin of V. cholerae and, as 784 

indicated above, the two may be related.  In V. cholerae, this protein has been linked to binding to 785 

the tight gap junctions in the intestine, thus facilitating infection and virulence.  However, the V. 786 

cholerae (and presumably PAO1) Zot protein does not bind to the tight junctions of the lung 787 

epithelia, and there is currently no evidence that this protein serves a similar function in P. 788 

aeruginosa.  Alternatively, virulence and biofilm stability may be related to the role of the phage in 789 

biofilm development, specifically the formation of colony variants and biofilm cell death, as 790 

morphotypic variants have increased stress resistance.   791 

The cell death observed during biofilm formation could result in the release of DNA (eDNA), 792 

which is incorporated into the biofilm matrix and has been shown to play an important role in 793 

biofilm development (Whitchurch, et al., 2002).  It should be noted that the role of eDNA in biofilm 794 

development is typically associated with the early stages of development and hence it is not clear if 795 

the phage, via cell lysis, plays a similar role in the later stages, e.g. after microcolonies are already 796 

fully formed.  While there are no current reports in the literature, it is tempting to speculate that the 797 

long, thin filamentous phage, which form bundles when viewed by TEM, act as a structural 798 

component of the biofilm matrix, perhaps by forming bridges between cells, the polysaccharides 799 
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and eDNA that are abundant within the biofilm.  Finally, there remains a possibility that the phage 800 

genes are also involved in regulating the PAO1 host genes, opening avenues for future exploration.   801 

Pf6 was initially detected by plaque formation in the Pf4 deletion strain (Tay, 2008) and was 802 

subsequently identified through whole genome sequencing of different P. aeruginosa sub-lines 803 

(Klockgether, et al., 2010).  In the latter report, this phage was given the name RGP42 and we 804 

suggest it should be subsequently referred to as Pf6 in-line with the current nomenclature.  Pf6 is 805 

distinguished from the remainder of the Pf phage by the presence, in addition to the core genes, of 806 

two genes encoding two putative protein kinases.  Pf4 and Pf6 genomes are inserted into two 807 

different loci in the PAO1 genome, in tRNA genes at positions PA0729.1 and PA4673.1.  The 808 

presence of the Pf6 as a second prophage in addition to Pf4 in the same genome was somewhat 809 

surprising given that the two phage are closely related.  V. cholerae also carries two copies of the 810 

CTXφ phage, which are normally present as tandem repeats in El Tor and O139 strains.  Phage 811 

production is relatively high in these strains and loss of one of the repeat elements results in low or 812 

no phage production (Davis, et al., 2000).  However, in the Classical strains, the two CTXϕ 813 

prophage are separately inserted into a different chromosome (V. cholerae has two chromosomes) 814 

(Davis, et al., 2000).  As noted above, the genes of the Pf4 phage were observed to be the most 815 

highly induced during biofilm development in PAO1.  Given that the genes of Pf6, which are 816 

annotated in the originally sequenced PAO1 genome, were not monitored (Stover, et al., 2000, 817 

Klockgether, et al., 2010), it remains uncertain as to whether the observed induction is a 818 

combination of the two phage clusters or was specifically due to expression of the Pf4 phage.   819 

 820 

Regulation of Pf phage 821 

For λ phage, it is clear that the host-encoded proteins, such as RecA and LexA, play important roles 822 

in the control of the lytic-lysogenic switch.  Surprisingly, there are few studies directly focused on 823 

such regulators for Pf phage and most observations come from global analyses focused on P. 824 

aeruginosa for other reasons.  When the Pf1 genome was sequenced, it was noted that there was a 825 

well-conserved Ntr-dependent promoter at the 5’ end of gene VIII (also known as PA0723, the 826 

coaB gene for PAO1) (Hill, et al., 1991), a gene that is strongly expressed during phage replication.  827 

The authors also concluded from their analysis that most of the Pf1 promoters are likely to be Ntr-828 

dependent (Hill, et al., 1991).  The implication of this is that phage expression is regulated by the 829 

alternative sigma factor RpoN, which is typically active under conditions of nitrogen limitation as 830 

well as under anaerobic conditions in P. aeruginosa.  In line with this suggestion, biofilms formed 831 

by a PAO1 rpoN mutant failed to undergo cell death during biofilm formation, suggesting that the 832 
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Pf4 gene expression may be under the control of the RpoN (Webb, et al., 2003).  The lack of cell 833 

death could be a consequence of reduced or no expression of the type IV pili, which are the primary 834 

receptor for the superinfective Pf4 phage and whose expression is, at least in part, dependent on 835 

RpoN (Ishimoto & Lory, 1989).  Based on this observation, the hypothesis would be that the 836 

biofilm microcolonies experience reduced or oxygen depleted conditions, inducing the 837 

denitrification pathway, under control of RpoN, which also induces the expression of type IV pili 838 

along with the phage and thus, reinfection can occur.   839 

It has been demonstrated that TolA, the essential receptor of filamentous phage for the Ff and 840 

CTXϕ infection, was upregulated four-fold during P. aeruginosa biofilm development (Whiteley, et 841 

al., 2001).  Given the almost universal role of TolA as the secondary phage receptor, it is likely that 842 

biofilm growth results in conditions that favor phage reinfection.  It was previously suggested that 843 

the P. aeruginosa pili serve as the Pf phage receptors (Bradley, 1973), although it was not 844 

confirmed until much later that the type IV pili were indeed the receptors.  It was proposed that 845 

phage are produced at the poles of P. aeruginosa (Bradley, 1973) where the type IV pili are 846 

assembled, although the significance of this is not currently understood.  The co-localization of the 847 

assembly points at the poles for the Pf phage and the type IV pili could be a reflection of the fact 848 

that the type IV pilus assembly system secretin PilQ (a homologue of the filamentous phage pIV) 849 

(Hobbs & Mattick, 1993) could be used for the Pf4 assembly, as is the case with the MDAφ of N. 850 

meningitidis (Bille, et al., 2005).  However, the Pf4 genome encodes for its own secretin (pIV) and 851 

should not depend on PilQ for assembly. 852 

MvaT and MvaU are homologues of DNA binding proteins in the HNS family.  Deletion of both 853 

genes resulted in increased Pf4 RF production, but this increase was not observed in the single 854 

deletion mutants (Li, et al., 2009).  The double mutant also produced phage particles that were able 855 

to form plaques on the wild-type PAO1 host, suggesting these were superinfective Pf4 mutants.  856 

Interestingly, the superinfective phage production, once induced in the double mutant, culture, 857 

could not be repressed by overproduction of MvaT and MvaU (Li, et al., 2009).  The lack of 858 

suppression by MvaTU complementation can be reconciled by mutations in the prophage genome 859 

that resulted in the superinfective Pf4, which is no longer repressed by MvaT and MvaU.  The 860 

induction of superinfective Pf4 is further supported by the observation that the double mvaT-mvaU 861 

mutations are typically lethal upon induction of superinfective Pf4 phage and the lethality is 862 

suppressed by the second-site mutations in the Pf4 prophage or genes encoding the type IV pilus 863 

components that prevent, respectively, the Pf4 phage production or infection (Castang & Dove, 864 

2012). 865 
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It was reported that superinfection in P. aeruginosa is regulated by BfmR, part of a two-component 866 

signal transduction pathway (Petrova & Sauer, 2011).  Surfactant treatment led to an induction of 867 

bmfR expression, suggesting that membrane perturbing stresses may induce BmfR, ultimately 868 

reducing the amount of phage produced.  BmfR was also demonstrated to regulate the expression of 869 

a chromosomal anti-toxin gene, phdA.  When PhdA levels are high, there is a reduction in phage 870 

production and decreased biofilm cell death and when low, there is increased phage production and 871 

cell lysis in the biofilm (Petrova & Sauer, 2011).  This is particularly interesting in light of the 872 

observation that the Pf4 phage itself encodes a phd homologue that is coupled to a putative toxin 873 

gene, parE (Webb, et al., 2003).  The phdA identified by Petrova and Sauer (2011) and the phd of 874 

the Pf4 prophage genome are independent loci and the significance of the strain carrying two copies 875 

of the phd, is currently not known.   876 

Another study showed that the primary oxidative stress response protein, OxyR, binds to a sequence 877 

within a small open reading frame, repC, in the Pf4 prophage genome.  RepC has homology to 878 

immunity proteins of other phage such as P2 (Wei, et al., 2012).  This would suggest that oxidative 879 

stress may in part control induction or expression of the Pf4 phage.  Thioredoxin was also shown to 880 

interact with OxyR in these experiments (Wei, et al., 2012).  What is particularly interesting about 881 

this observation is that thioredoxin is recruited to the phage assembly site, although it has been 882 

shown that its oxygen scavenging properties were not essential for phage production and that the 883 

reduced form of the thioredoxin is the active form required for phage assembly (Russel, 1991).  884 

This again suggests that there is considerably more to the control of phage production and 885 

superinfection than what is currently known.   886 

 887 

Biotechnology and applications of filamentous phage 888 

Original applications of Ff (M13, f1 and fd) bacteriophage were originally used as cloning vectors 889 

for sequencing and in vitro oligonucleotide-directed mutagenesis (Sanger, et al., 1980, Kunkel, et 890 

al., 1991, Messing, 1991).  In addition, Ff phage, most notably M13, have been used as cloning 891 

vectors, called phagemids.  Upon infection of cells with a helper phage, phagemids replicate using 892 

the phage origin of replication, producing copious amounts of ssDNA which is packaged into 893 

filamentous phage-like particles (Russel, et al., 1986, Vieira & Messing, 1987).  894 

The replicative features of the Ff phage have more recently been exploited for use in phage display, 895 

a combinatorial technology for identification of rare desirable variants of antibodies, proteins or 896 

short peptides in large libraries (Zwick, et al., 1998, Rodi & Makowski, 1999, Bradbury & Marks, 897 
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2004).  The key to this technology is a physical link between the protein displayed on the surface of 898 

the virion and its encapsulated coding sequence (Smith, 1985).  The protein-to-coding-sequence 899 

link allows amplification of a very small number of proteins or protein variants that are enriched for 900 

by binding to the “bait” or a ligand, so that one binder in a library billions of non-binders can be 901 

identified.  In principle, any bacteriophage can be converted into a display particle.  However, 902 

because of the small genome size, ease of manipulation by recombinant DNA methods and 903 

exceptional stability of the virions to a broad range of pH and temperatures (the latter allowing a 904 

variety of binding and elution conditions), the Ff filamentous phage are far more frequently used in 905 

phage display technology than tailed phage such as λ and T7.   906 

The Ff phage and phagemid vectors used in phage display are designed for constructing 907 

translational fusions to one or more virion proteins that are used as display “platforms” (Smith, 908 

1985).  All Ff virion proteins have been used as a platform for display, but most commonly used are 909 

the minor protein pIII or the major coat protein pVIII.  Examples of multiple proteins being 910 

displayed at two different ends and along the filament, using two or more virion proteins as 911 

platforms, have also been reported (Huang, et al., 2005, Hess, et al., 2012).   912 

In addition to peptide and antibody libraries, cDNA libraries displayed on filamentous 913 

bacteriophage have been constructed and used for identification of interacting proteins (Di Niro, et 914 

al., 2010).  High-throughput sequencing combined with limited affinity-screening has been used to 915 

identify a “landscape” of numerous binding variants in a phage display library, rather than a few 916 

high-affinity interacting proteins (Dias-Neto, et al., 2009, Di Niro, et al., 2010).   917 

Phage display has been used in bacteriology and vaccine development, to identify bacterial proteins 918 

that bind to targets of interest or to identify suitable vaccine targets, through construction and 919 

screening of bacterial shot-gun genomic phage display libraries (Mullen, et al., 2006).  For 920 

example, this approach was used to identify a cell-surface-associated agglutinin, RapA, from 921 

Rhizobium leguminosarum (Ausmees, et al., 2001) and adhesins of Borrelia burgdorferi (Antonara, 922 

et al., 2007).  Recently, a selective display of bacterial surface and secreted proteins has been used 923 

to characterize this group of bacterial proteins and to identify immunodominant antigens, 924 

respectively, in Lactobacillus rhamnosus and Mycobacterium tuberculosis (Jankovic, et al., 2007, 925 

Liu, et al., 2011).  This approach was expanded to a metagenome scale, in combination with next-926 

generation sequencing, to identify and display surface and secreted proteins in a microbial 927 

community (Ciric, et al., 2014).  The Ff virion is an excellent antigen carrier for immunization (van 928 

Houten, et al., 2010); the clone banks or libraries of phage-displayed bacterial surface and secreted 929 

proteins can therefore be used to facilitate identification of immunodominant antigens, whereas 930 
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individual antigen-displaying phage or phagemid clones can be amplified and used directly for 931 

immunisation.   932 

Filamentous phage, other than Ff, have not been used in phage display technology as yet.  The site-933 

specific XerCD-dependent integration of the CTXφ into into V. cholerae dif sequence at the 934 

chromosomal replication termini has inspired construction of a chromosome-integrating vector.  A 935 

CTXφ dif-like attP site in this vector mediates single-copy integration into the single chromosomal 936 

dif site in P. aeruginosa (Hoang, et al., 2000). 937 

Most recently developed applications of phage display technology cross into nanotechnology.  938 

Through screening of peptide libraries, peptides were selected that can nucleate nanocrystal 939 

assembly of metals (Huang, et al., 2005), semiconductors, paramagnetic aloys (FePt, CoPt; (Mao, et 940 

al., 2004) electrode (FePO4) (Lee, et al., 2009) and light-harvesting complexes (Dang, et al., 2013).  941 

Thousands of the major coat protein subunits displaying nanocrystal-nucleating peptides served as a 942 

scaffold for assembly of nanowires (Mao, et al., 2004), while display of distinct tag-binding 943 

peptides at the asymmetrical ends of the filament allow assembly of individual filaments into more 944 

complex nanostructures, such as nanorings and branched structures (Waites, et al., 1991, Huang, et 945 

al., 2005, Hess, et al., 2012).   946 

The fibrous nature of filamentous phage allows their electrospinning into microfibers.  Furthermore, 947 

the liquid-crystalline state of the phage at high concentrations (>1012 per mL), including the ability 948 

to transition between different liquid-crystalline forms, or to form colloidal membranes that can 949 

assume controllable shapes (Sanchez, et al., 2012, Sharma, et al., 2014), are opening new 950 

opportunities for applications in tissue engineering (Chung, et al., 2011) and colorimetric sensors 951 

(Oh, et al., 2014).  A curious, but widespread application of the filamentous phage as liquid crystals 952 

is their use as an ordering medium for the elucidation of macromolecule structures by Nuclear 953 

Magnetic Resonance (Hansen, et al., 1989).  The property of the phage liquid crystals to be aligned 954 

in strong magnetic fields facilitates alignment of DNA, RNA and many proteins, allowing structural 955 

analysis of aligned proteins by dipolar coupling.  Pf1 appears to be the preferred filamentous phage 956 

in this regard due to a low overall curvature of the filament (Zweckstetter & Bax, 2001).   957 

 958 

Future challenges 959 

Filamentous phage were described and characterized in the 1960s (Marvin & Hohn, 1969) but have 960 

recently received renewed attention.  After reviewing current literature, it is clear that our 961 

understanding of filamentous phage is rapidly growing but that the effects of these phage on their 962 

bacterial host are still underappreciated.  Effects range from influencing virulence (Waldor & 963 
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Mekalanos, 1996, Waldor & Mekalanos, 1996, Addy, et al., 2012, Addy, et al., 2012), biofilm 964 

formation (Rice, et al., 2009) and regulating swarming motility (Jian, et al., 2013).  To further 965 

advance our understanding, it is necessary to revisit the effects of various phage on their respective 966 

bacterial hosts.  967 

Analysis of the genome structure and organization, phylogenetic relationships as well as the 968 

lifestyle of several phage, suggest that two common features of filamentous phage are of note.  969 

Firstly, the relationship of filamentous phage with their bacterial hosts is universally characterized 970 

by the stable carriage and production of phage particles by the bacterial host and thus represents a 971 

stable infective state.  The second characteristic feature is the presence or absence of a phage-972 

encoded transcriptional repressor that has the key role in initiating phage replication, assembly and 973 

release and its role in the filamentous phage relationship with the bacterium as well as relationship 974 

of phage-carrying bacterium with its plant or animal host.  The phage transcriptional repressor may 975 

play a significant role in the lifestyle of the host bacterium, as its presence in the phage genome has 976 

been linked to increase in bacterial virulence (Yamada, 2013).  Coupled with further studies of 977 

phage-bacteria interactions, the presence or absence of repressor-encoding genes may be useful in 978 

predicting aspects of the phage life-cycle or its effects on the bacterial host that would have a 979 

consequence on the pathogenicity of the bacterium and in turn would influence consideration of a 980 

filamentous phage for use in the pathogen control.   981 

Some studies on Pseudomonas and Ralstonia phage have highlighted the phenomenon of 982 

filamentous phage superinfection, where the normally resistant bacterial host (containing the 983 

prophage integrated into its genome) nevertheless supports the infection, replication and plaque 984 

formation (Rice, et al., 2009, Yamada, 2013, Askora, et al., 2014).  Superinfection has particular 985 

importance for the lifestyle and virulence of the host bacterium.  For the filamentous phage, 986 

superinfection is required for plaque formation on a lawn of a stably infected host, therefore this 987 

state of infectivity overcomes the resistance of the lysogen and allows identification of both the 988 

phage and the host.  The mechanism of superinfection is still unclear and will be further elucidated 989 

by future studies, in particular because of its dramatic effect on virulence and bacterial physiology 990 

of both Pseudomonas and Ralstonia.  In particular, the role of inactivation of a phage-encoded 991 

repressor, proposed to be involved in acquiring the superinfective state, needs to be investigated.   992 

Because of their non-lytic lifestyle and ease of genetic manipulation, filamentous phage are used in 993 

a variety of applications, including phage display technology (Devlin, et al., 1990, Clackson, et al., 994 

1991), assembly of nanostructures (Mao, et al., 2004) and synthesis of biosensors (Lee, et al., 995 

2013).  However, other applications are feasible, for example, their use in phage therapy of bacterial 996 
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infectious diseases.  It was already shown that an M13 vector genetically engineered to suppress the 997 

SOS DNA repair response can enhance stress-induced killing of bacteria, including antibiotic 998 

resistant cells, biofilm and persister cells (Lu & Collins, 2009).  During their normal lifecycle 999 

filamentous phage do not lyse or otherwise kill the host bacterium.  However, mutations in specific 1000 

genes in the phage genome that prevent assembly and secretion of progeny phage lead to death of 1001 

the host bacterium (Pratt, et al., 1966, Marvin & Hohn, 1969).  Thus, a strategy of de-regulating 1002 

phage gene expression in such a way that it results in decreased virulence, growth inhibition and/or 1003 

killing of the host, may be utilized to engineer filamentous phage for applications in therapy of 1004 

diseases caused by pathogenic bacteria. 1005 

 1006 

Conclusions 1007 

The filamentous phage have been studied for some fifty years and have played an important role in 1008 

the development of molecular biology technology as well as our understanding of gene regulation.  1009 

These phage, which do not normally kill their host, are widely distributed in the Gram-negative 1010 

bacteria,.  Despite having relatively simple genomes, it is increasingly apparent that they can have 1011 

high impact on the physiology, adaptation and virulence of their host bacteria.  As novel 1012 

filamentous phage are being constantly discovered, it becomes apparent that, besides the core genes 1013 

that are common to all, each newly discovered phage contains a distinct and novel set of accessory 1014 

genes, as well as novel variations to the modes of relationships with their hosts.  This variety adds 1015 

to growing evidence that filamentous phage are important mediators of horizontal gene transfer, 1016 

resulting in novel filamentous phage variants, novel virulent strains of pathogenic bacteria and 1017 

novel impacts on physiology of their hosts.  We submit therefore that there is yet a great deal to be 1018 

discovered about this group of phage and their contribution to biology, physiology and 1019 

pathogenicity of their host bacteria.    1020 
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Table 1.  Ff filamentous phage proteins and putative homologues.  Identity values were calculated 1514 
using clustalo (Soding, 2005). 1515 

Protein 

name 
Function Homologues 

pI (G1P) 

 

Virion 

assembly-

export 

protein 

Morphogenesis – Phage Assembly 

• Inner membrane component of the 
trans-envelope assembly/secretion 
system. 

• Interacts with pIV (G4P). 

Enterobacteria phage f1 (P03657) 99.7% 

identitya 

Enterobacteria phage IKe (P03658) 50.1 % 

identity 

Xanthomonas phage (O55247) 14.4% identity 

Zot toxin Vibrio cholerae (P38442) 15.5% 

identity 

Zot-like Pseudomonas phage Pf4 (Q9I5K2) 

13.6% identity 

pII (G2P) 

 

Replication 

protein 

Replication - Endonuclease 

• Plays an essential role in viral DNA 
replication (the positive strand 
synthesis). 

• Cleaves the dsDNA replicative form I 
(RFI) and after binding, generates the 
dsDNA replicative form II (RFII). 

• Joins the ends of the displaced strand 
to generate a circular single-stranded 
molecule ready to be packed into a 
virion. 

Enterobacteria phage f1(P69546) 

Enterobacteria phage Ike (P03660) 

Pseudomonas phage Pf3 (P03627) 

Xanthomonas phage ΦLf (Q38617) 

pIII (G3P) 

 

Attachment 

protein 

Structural - Minor Virion Protein, 
Coat protein A - Adsorption 

• Plays essential roles both in the entry 
of the viral genome into the bacterial 
host and in the release from the host 
membrane, as well as forming the pIII-
pVI virion cap. 

• Mediates adsorption of the phage to its 
primary receptor (F-pilus) during 
initiation and secondary receptor 
(domain III of TolA protein). 

• Mediates the release of the membrane-
anchored virion from the cell via its C-
terminal domain. 

• Interacts with pVI (G6P), pVIII (G8P) 
and host TolA 

Enterobacteria phage f1 (P69169) 99.8 % 

identity 

Enterobacteria phage Ike (P03663) 17.4% 

identity 

Pseudomonas phage Pf1 (P25129) 16.1% 

identity 

Pseudomonas phage Pf3 (P03624) 14.6% 

identity 

Xanthomonas phage ΦLf  (Q37972) 15.9% 

identiy 

Pseudomonas phage Pf4 (Q9I5K4) 17.1% 

identity 

ORF9 Ralstonia phage Rsm1 (A0JC13) 12.4% 

identity 

pIV (G4P) Morphogenesis - Phage Assembly 
and Virion Export 

Enterobacteria phage f1 (P03666) 
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Virion 

assembly-

export 

protein 

• Acts in the assembly and export of the 
bacteriophage by forming a gated 
channel across the host outer 
membrane. 

• Interacts with pI (G1P). 

Enterobacteria phage Ike (P03667) 

pV (G5P) 

 

DNA 

binding 

protein 

 

Replication – ssDNA binding 
• Binds to ssDNA in a highly 

cooperative manner without 
pronounced sequence specificity. 

• Prevents the conversion into the 
double-stranded replicative form 
during synthesis of the single-stranded 
(progeny) viral DNA. 

• Displaced by the capsid protein pVIII 
(G8P) during phage assembly at the 
inner bacterial membrane. 

Enterobacteria phage f1 (P69543) 

Enterobacteria phage Ike (P03670) 

Pseudomonas phage Pf1 (P03671) 

Pseudomonas phage Pf3 (P03672) 

Xanthomonas phage ΦLf (P68676) 

pVI (G6P) 

 

Minor 

virion 

protein 

Structural – Minor Virion Protein, 
Coat Protein D 

• Plays essential roles in the release of 
virions from the host membrane.  

• Formation of the G3P-G6P complex is 
essential for correct termination of 
filamentous phage assembly and 
formation (structure) of the pIII-pVI 
virion cap. 

Enterobacteria phage f1 (P69531) 

Enterobacteria phage Ike (P03674) 

Pseudomonas phage Pf1 (Q38066) 

Pseudomonas phage Pf3 (P03625) PA0725 

Pseudomonas Pf4 (Q9I5K3) 

Xanthomonas phage ΦLf (O55246) 

Ace V. cholerae phage CTX (Q7BBA3) 

ORF10 Ralstonia phage Rsm1 (A0JC05) 

pVII (G7P) 

 

Minor 

virion 

protein 

Structural – Minor Virion Protein, 
Coat protein C 

• Initiates with pIX (G9P) the virion 
concomitant assembly-export process 
by interacting with the packaging 
signal of the viral genome. 

Enterobacteria phage f1 (P69534) 

Enterobacteria phage Ike (P03676) 

Xanthomonas phage ΦLf (P68672) 

G8P 

 

Major 

capsid 

protein 

Structural Major Virion Protein – 
Coat protein B 

• Assembles to form a helical filament-
like capsid, wrapping up the viral 
genomic DNA. 

Enterobacteria phage f1 (P69540) 98.6% 
identity 
Enterobacteria phage Ike (P03620) 35.4% 
identity 
Pseudomonas phage Pf1 (P03621) 17.0% 
identity 
Pseudomonas phage Pf3 (P03623) 8.3% 
identity 
Thermus phage PH75 (P82889) 14.3% identity 
Xanthomonas phage ΦLf  (P68674) 8.8% 
identity 
Xanthomonas phage Xf (P03622) 9.6% identity 
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pIX (G9P) 

 

Minor 

virion 

protein 

 

Structural – Minor Virion Protein - 
Coat protein C 

• Initiates with pVII (G7P) the virion 
assembly-export process, by 
interacting with the packaging signal 
of the viral genome. 

Enterobacteria phage f1 (P69537) 

Enterobacteria phage Ike (P03678) 

Xanthomonas phage ΦLf (P68670) 

pX (G10P) 

 

Replication-

associated 

protein 

Replication 
• Translational product from an internal 

start codon within gene II; identical to 
the C-terminal domain of pII (G2P) 

• Binds to double-stranded DNA and 
prevents hydrolysis by nucleases. 

• Inhibitor of DNA replication.  

Enterobacteria phage f1(P69546) 

Enterobacteria phage Ike (P03660) 

Pseudomonas phage Pf3 (P03627) 

Xanthomonas phage ΦLf (Q38617) 

pXI (G1P) 

 

Virion 

assembly-

export 

protein 

• Translational product from an internal 
start codon within gene I. 

• Required for phage assembly. 
• Part of a trans-membrane complex with 

pI and pIV to protect pI from cleavage 
by endogenous proteases. 

Enterobacteria phage f1 (P03657) 

Enterobacteria phage IKe (P03658) 

Xanthomonas phage (O55247) 

V. cholerae (P38442) 

Pseudomonas phage Pf4 (Q9I5K2) 

a, percent amino acid identity compared to the M13 homologue 1516 
 1517 
  1518 
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Table 2.  The effect of filamentous phage on their bacterial host.   1519 

Phage 

Name 

Bacterial host • Effects of phage infection on the 
host  

References 

M13 

f1 

fd 

Enterobacteria • Lenghtens generation time, results 
in small and transparent colonies. 

• Induces the phage shock protein 
response, presumably through 
membrane stress due to 
mistargeting of pIV secretin to the 
inner membrane. 

• Impaired function of the oxidative 
and the glutamate-dependent acid 
resistance systems 

• Higher susceptibility to 
actinomycin D 

• Increased fragility 
• Affects cell membrane lipids 

(Roy & Mitra, 1970, 

Karlsson, et al., 

2005) (Bayer & 

Bayer, 1986) 

(Joly et al. 2010) 

If1 Enterobacteria • Induces small colonies and host 
cell death 

(Kuo, et al., 2000) 

I2-2 Enterobacteria • Not known (Stassen, et al., 

1992) 

IKe Enterobacteria • Changes membrane proteins in E. 
coli K12 

(Iyer, et al., 1976, 

Peeters, et al., 1985) 

ZJ-2 Enterobacteria • Not known (Snell & Offord, 

1972) 

Pf1 Pseudomonas • Suggested to be important for gene 
transfer or exclusion of other 
strains in PAO1 biofilms 

(Crowther, 1980, 

Hill, et al., 1991, 

Whiteley, et al., 

2001) 

Pf3 Pseudomonas • Not known (Peterson, et al., 

1982) 

Pf4 Pseudomonas • Induces biofilm cell death, biofilm 
dispersal, small colony variants 

• Increases host virulence 

(Webb, et al., 2004, 

Rice, et al., 2009) 

Pf5 Pseudomonas • Shown to not be involved in small 
colony variant formation 

(Mooij, et al., 2007) 

Pf6 

 

Pseudomonas • Not known (Tay, 2008) 

CTXΦ Vibrio • Phage carries cholera toxin genes 
and thus is important for 

(Waldor & 
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pathogenicity  Mekalanos, 1996, 

Davis & Waldor, 

2003) 

VSK Vibrio • Not known (Kar, et al., 1996) 

VEJΦ Vibrio • Can horizontally transmit cholera 
toxin 

(Campos, et al., 

2010) 

VGJΦ Vibrio • Not known (Campos, et al., 

2003) 

fs1 Vibrio • Not known (Nakasone, et al., 

1998) 

fs2 Vibrio • Reduces fimbrial production (Ikema & Honma, 

1998, Nguyen, et al., 

2008) 

VCY-Φ Vibrio • Not known (Xue, et al., 2012) 

KXV237 Vibrio • Not known (Nasu, et al., 2000) 

VPIΦ 

 

Vibrio • Encodes vibrio pathogenicity 
island 

(Li, et al., 2003) 

RSS1 Ralstonia • Enhances virulence 
• Increased EPS synthesis and 

twitching motility (through 
enhanced PilA and type IV pilin 
production) when phage is present  

• early expression of phcA (global 
virulence regulator) 

• surface-associated phage proteins 
may change the cell surface nature 
(hydrophobicity) to give high local 
cell densities 

(Kawasaki, et al., 

2007, Addy, et al., 

2012) 

RSM1 Ralstonia • Enhances bacterial cell 
aggregation and reduce host 
virulence 

(Kawasaki, et al., 

2007) 

RSM3 Ralstonia • Enhances bacterial cell 
aggregation and reduce host 
virulence 

(Addy, et al., 2012) 

p12J Ralstonia • Phage harbours zot-like toxin (Yang, et al., 2010) 

PE226 Ralstonia • Phage harbours zot-like toxin (Murugaiyan, et al., 

2011) 
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Xf Xanthomonas • Not known (Lin, et al., 1971) 

Φ-Lf Xanthomonas • Not known (Tseng, et al., 1990) 

Cf1c 

 

Xanthomonas • Reduces host growth rate (Kuo, et al., 1991) 

YPf Yersina • Contributes to pathogenicity 
• Confers protection against 

superinfection 

(Derbise, et al., 

2007, Chouikha, et 

al., 2010) 

M23 Φ-Lf Xylella • Not known (Chen & Civerolo, 

2008) 

PH75 Thermus  • Not known (Pederson, et al., 

2001) 

ΦB5 Propionibacterium • Not known (Chopin, et al., 

2002) 

ΦSMA9 Stenotrophomonas • Not known (Hagemann, et al., 

2006) 

SW1 Shewanella • Induces lateral flagella genes and 
enhances swarming 

(Jian, et al., 2013) 

NgoΦ Neisseria • not known (Piekarowicz, et al., 

2006, Piekarowicz, 

et al., 2014) 

MDA Neisseria • Correlates with invasivenes of host (Bille, et al., 2005) 

Nf Neisseria • not known (Kawai, et al., 2006) 

 1520 

 1521 
  1522 
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 1523 
Figure Legends 1524 

Figure 1.  Genes and genome organisation of filamentous phage.  A. The genes are grouped based 1525 

on function and colour-coded accordingly.  The Replication genes are shown in red.  Genes 1526 

encoding virion Structural proteins are shown in yellow, pink, purple and blue.  The Assembly and 1527 

Secretion genes are in green.  The same colour scheme is used to identify relevant proteins that 1528 

comprise the mature phage particle (B). 1529 

 1530 

Figure 2.  Comparison of filamentous phage genomes.  M13 is presented as the type phage for the 1531 

group 1 Inovirus with the standard gene notations of gI to gX.  The genes are coloured according to 1532 

function, where red indicates replication genes, blue represents structural genes and green arrows 1533 

represent the assembly and secretion genes.  White boxes indicate genes that are unique for each 1534 

phage. The orientation of the ORFs is indicated by the arrows.  Note that the genomes and genes are 1535 

not drawn to scale.  1536 

 1537 

Figure 3.  Phylogenetic relationships of the filamentous phage.  Phylogenetic trees were generated 1538 

using the phylogeny.fr platform (Dereeper, et al., 2008).  A) Analysis using the major coat protein, 1539 

CoaB or pVIII.  B) Analysis using Zot or pI proteins.   1540 

 1541 

 1542 


