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Abstract—Modern cloud computing environments exploit 

virtualization for efficient resource management in order to 

reduce computational cost and energy budget. Virtual machine 

(VM) migration is a technique that enables flexible resource 

allocation and increases the computation power and 

communication capability within cloud data centers. VM 

migration helps successfully cloud providers to achieve various 

resource management objectives such as load balancing, power 

management, fault tolerance, and system maintenance. However, 

the process of VM migration can affect applications performance 

unless attended by smart optimization methods. This paper 

presents a multi-objective optimization model for this matter. The 

objectives are minimizing power consumption, maximizing 

resource utilization, and minimizing VM transfer time. The fuzzy 

particle swarm optimization (PSO), which improves the efficiency 

of convectional PSO by using fuzzy logic systems, is relied upon to 

solve the optimization problem. The model is implemented in a 

cloud simulator to investigate the performance. The results verify 

the performance of the proposed model. 

Keywords—Cloud computing, Resource management, Fuzzy 

particle swarm optimization. 

I.  INTRODUCTION 

Cloud computing is a service-oriented computing paradigm 
that has significantly revolutionized computing by offering 
three web-based services – Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), and Software as a Service (SaaS) 
[1]. These large scale services can be provided by applying 
shared virtualized cloud resources. In general, the cloud 
resources are provided as a collection of several proprietary 
processes in a virtual environment, called a virtual machine 
(VM). 

Virtualized computational resources are applied in a cloud 
environment to provision resources on demand. Virtualization 
also provides the opportunity of using an auto-scaling 
technique that dynamically allocates computational resources to 
the services to match their current loads precisely, thereby 
removing resources that would otherwise remain idle and cost 
[2]. Advances in virtualization techniques and the construction 
of numerous large commodity data centers around the world 
have resulted in a new approach to computing referred to as 
cloud computing becoming an important topic of research and 
development. The recent surge in the popularity and usage of 
cloud computing services by both enterprise and individual 
consumers has necessitated the efficient and proactive 

management of data center resources that host services with a 
variety of characteristics. 

One of the major issues concerning both cloud service 
providers and consumers is real time autonomic resource 
management in response to highly unpredictable demands [3]. 
There are two main process related to optimal autonomic 
resource management in cloud environments: (1) virtual 
resource discovery and selection to execute cloud services, and 
(2) physical resource allocation to virtual resources —or load 
balancing among PMs— to cover part of the self-configuring 
process.  

This paper considers the load balancing issue through the 
use of VM migration. Load-balanced systems are desirable for 
several reasons, such as to avoid large discrepancies between 
the level of service afforded to various VMs from the same 
service class and to keep an even ambient temperature to 
reduce cooling cost. Live migration enables hot spot mitigation 
and server consolidation with minimal disturbance to 
applications running inside the migrating VMs [4]. However, 
an improper migration can result to the VMs being executed on 
unsuitable hosts, which can then lead to unwarranted effects. 
Therefore, an efficient scheme is required to correctly allocate 
the VMs to the hosts that support their execution. This decision 
problem is called the VM mapping problem which is a NP-
Hard problem. This problem can be considered as a multi-
objective optimization problem. Literature review shows that a 
large number of approaches have been proposed to solve the 
VM mapping problem. Most of these approaches employed 
evolutionary techniques. For instance, Gao et al. have 
developed a multi-objective ant colony system that tries to 
minimize total resource wastage and power consumption for 
VM placement [5]. Genetic algorithm has also been used in 
some models, such as [6, 7], to adaptively self-reconfigure 
VMs in heterogeneous cloud data centers considering 
minimizing total resource wastage, power consumption and 
thermal dissipation costs. In addition, bin-packing technique 
has been relied upon in several studies. For example, a mapper 
system has been proposed using bin-packing to tackle power-
cost tradeoffs under a fixed performance constraint by 
minimizing migration costs while packing VMs in a small 
number of machines [8]. Our research shows that in addition to 
above mentioned objectives, network traffic is another 
important factor that needs to be considered in the mapping 
model. For example, many web applications rely on analysis of 



traffic data to optimize customers’ experience. Network 
operators also need to know how traffic flows through the 
network in order to make many of the management and 
planning decisions. 

This paper attempts to overcome the limitations of current 
studies by proposing a multi-objective optimization model that 
takes into account power consumption, resource utilization, and 
VM transfer time. New formulas are proposed for the 
objectives to effectively handle the cloud environment 
characteristics. In addition, the paper uses fuzzy swarm 
intelligence to solve the optimization model. Fuzzy logic, 
which mathematically emulates human reasoning, provides an 
intuitive way of designing function blocks for intelligent 
systems. It allows an expert to express his/her knowledge in the 
form of related imprecise inputs and outputs in terms of 
linguistic variables, which simplifies knowledge acquisition 
and representation, and the knowledge obtained is easy to 
understand and modify. Therefore, in this paper, a fuzzy logic 
system is utilized to tune the inertia weight in the particle 
swarm optimization resulting better results in comparison with 
typical particle swarm optimization. Furthermore, the solution 
can reduce the time processing for producing the optimal result 
compared to other evolutionary algorithms such as genetic 
algorithm. The performance of the proposed solution is 
investigated in a cloud simulation environment, and the results 
are compared to that of a bi-objective model.  

The paper is organized as follows: Section II describes the 
related background to this research. Section III presents the 
problem statement, and it is followed by proposed algorithm in 
Section IV. Section V shows the evaluation part, and Section 
VI summarizes the conclusion and future work. 

II. BACKGROUND 

A. Virtualization Architecture 

The informal interpretation of virtualization is that of a 
mechanism for running concurrently several operating system 
(OS) instances on a single computer node. These nodes are 
called physical machines (PMs). A typical virtualization 
architecture is shown in Fig. 1. The hypervisor is the core 
component of a virtualization platform. The main responsibility 
of the hypervisor is to delegate computer hardware to virtual-
machine monitors (VMMs). Each VMM is responsible for 
providing hardware abstraction for exactly one running VM. 
The VM typically hosts a guest OS. By running multiple VMs 
simultaneously on a PM, the hardware can be used more 
efficiently [4]. 

B. Virtual Machine Migration 

There are three different approaches to migrate a VM. 
When cold migration is used, the guest OS is shut down, the 
VM is moved to another host and then the guest OS is restarted 
there. Hot migration suspends the guest OS instead of shutting 
it down. The guest OS is resumed after the VM is moved to the 
destination host. The benefit of hot migration is that 
applications running inside the guest OS are not restarted from 
scratch. Some platforms offer a feature called live migration, as 
presented in Fig.2. 

This feature allows a VM to be moved from one host to 
another while the guest OS is running. Live migration reduces 
the downtime dramatically for applications executing inside the 
VM. It is highly valuable if the migrations can be performed 
automatically, without the involvement of a human operator 
[4].  There are also several VM live migration techniques that 
consider power consumption reduction as well as downtime 
and migration time. Liao et al. [9] developed a live VM 
mapping framework to map VMs onto a set of PMs without 
significant system performance degradation while reducing 
power consumption. Sallam and Li [10] also suggested a multi-
objective VM migration technique that considers power and 
memory consumption, thus making live VM migration more 
beneficial for cloud providers. Lin et al. [11] believed that the 
load balancing strategies that focus on VM migration for 
optimizing on-demand resource provisioning needed to be 
improved. They proposed a threshold-based dynamic resource 
allocation approach for load balancing that dynamically 
allocates the VMs among the cloud’s applications based on 
their load changes. Atif and Strazdins [12] also developed a 
similar cloud utilization optimization framework for 
Application as a Service. They used VM monitor facilities 
(which have traditionally been used for live migration) to create 
sets of homogenous clusters of computing frame (VMs). They 
used these clusters to schedule or migrate application tasks over 
a set of homogenous VMs based on estimated task execution 
time to optimize resource utilization and enhance application 
performance. However, this method cannot be used when a 
determined homogenous cluster has high utilization and is in an 
overloaded state. 

 
Fig. 2. VM live migration. 
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Fig. 1. Virtualization architecture. 
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C. Fuzzy Logic Systems 

Fuzzy logic is a concept for dealing with uncertainty, 
vagueness, or imprecise problems that uses membership 
functions with values between 0 and 1. Unlike conventional set 
theory based on Boolean logic, a particular object or variable in 
fuzzy set theory based on fuzzy logic has a degree of 
membership in a given set that may be anywhere in the range of 
0 (completely not in the set) to 1 (completely in the set). 

A fuzzy logic system includes three parts: fuzzification, 
fuzzy inference engine and defuzzification. In the fuzzification 
process, the fuzzy sets are formed for all input variables. The 
fuzzy inference engine takes into account the input variables 
and the logic relations/rules between them, and uses fuzzy logic 
operations to generate the output. In the defuzzification process, 
the output fuzzy set is converted into a crisp value. 

A rule contains information obtained from a human expert, 
and represents that information in the form of IF–THEN. The 
rule can then be used to perform operations on data to inference 
in order to reach appropriate conclusion. These inferences are 
essentially a computer program that provides a methodology 
for reasoning about information in the rule base or knowledge 
base, and for formulating conclusions [13]. 

There are several inference methods, however, Mamdani 
[14] and  Takagi and Sugeno [15] methods are most commonly 
used in industrial and fuzzy software tools. The characteristic of 
Mamdani’s model also known as the Max-Min fuzzy rule based 
inference are presented in Table I. 

TABLE I.  CHARACTERISTICS OF MAMDANI’S MODEL. 

Operation Operator Formula 

Union (OR) MAX 
  ( )     (  ( )   ( ))   

  ( )    ( ) 

Intersection (AND) MIN 
  ( )     (  ( )   ( ))   

  ( )    ( ) 

Implication  MIN    (  ( )   ( )) 

Aggregation MAX    (   (  ( )   ( ))) 

Defuzzification CENTROID        
∫   ( )   

∫   ( )   
 

Note: 

  ( )   value of the resultant membership function. 

  ( ) = value of the membership function of fuzzy set A. 

z = abscissa value, (  ( ) is the ordinate). 

D. Fuzzy Swarm Intelligence 

Particle swarm optimization (PSO) is a population-based 
search algorithm based on the simulation of the social behavior 
of birds which was originally proposed by Kennedy and 
Eberhart [16]. Although originally adopted for balancing 
weights in neural networks, PSO soon became a very popular 
global optimizer, mainly in problems in which the decision 
variables are real numbers. In PSO, particles are flown through 
hyper-dimensional search space. Changes to the position of the 
particles within the search space are based on the social–
psychological tendency of individuals to emulate the success of 
other individuals. The position of each particle is changed 
according to its own experience and that of its neighbors. Let 

 ⃗⃗  ( ) denote the position of particle i, at iteration t. The position 

of  ⃗⃗  ( ) is changed by adding a velocity  ⃗⃗  (   ) to it, i.e.: 

   (   )      ( )   ⃗  (   )                      (1) 

The velocity vector reflects the socially exchanged 
information and, in general, is defined in the following way:  

 ⃗⃗  (   )    ⃗⃗  ( )      . ⃗         ⃗⃗
 
 ( )/ 

     . ⃗         ⃗⃗
 
 ( )/           (2) 

where    is the cognitive learning factor and represents the 
attraction that a particle has towards its own success;    is the 
social learning factor and represents the attraction that a particle 
has towards the success of the entire swarm; W is the inertia 
weight, which is employed to control the impact of the previous 
history of velocities on the current velocity of a given particle; 

 ⃗       is the personal best position of the particle i;  ⃗        is the 

position of the best particle of the entire swarm; and       
,   - are random values [17]. 

In PSO, the search process is a nonlinear and dynamic 
procedure. Therefore, when the environment is dynamically 
changing over the time, the optimization algorithm needs to 
adapt dynamically itself to the changing environment. The 
change of the particle’s situation is directly correlated to the 
inertia weight. Proper choice of the inertia weight W provides a 
balance between global and local optimum points. Several 
methods have been applied to handle the inertia weight during 
the progression of the optimization process. Constant inertia 
weight, linearly decreasing inertia weight and random inertia 
weight are some examples [18]. In this paper, a FLS is used to 
adaptively control the inertia weight of PSO. 

III. PROBLEM STATEMENT 

The VM mapping is a multi-objective optimization 
problem. The aim is to find an optimal placement, which is a 
mapping VMs over PMs, Fig.3 shows an example. Consider a 
system with ―m‖ host machines and ―n‖ VMs. Each VM is 
represented as VMi and each host is represented as PMj. A 
single decision variable for the problem is denoted by yij. The 
value of this decision variable is 1 when the ith VM is allocated 
to the jth PM and 0 otherwise. 

  

Fig. 3. An example of VM mapping [5]. 



In this problem, each PM can be represented by a vector 
like PMj = (IDj, CPUj, MEMj, BWj)  j=1,…,m where ID 
provides an identification number, CPUj gives the processing 
power, MEMj gives the amount of memory, and BWj is the 
amount of bandwidth for jth PM. Likewise, each VM can be 
represented by a vector VMi = (IDi, CPUi, MEMi, SIZEi) 
i=1,…,n where ID gives the identification of the VM, CPUi 
gives the processing power required by the VM, MEMi gives 
the amount of memory requested by the VM, and SIZEi 
represents the VM’s size.  To properly define the problem, the 
objectives are firstly introduced. 

A. Power Consumption 

It has been proved that an idle server consumes around 70% 
of the power consumed by a fully utilized server [19, 20]. 
Therefore, having fewer active PMs leads to lower power 
consumption in a cluster. Considering this fact, the ratio of 
active PMs to all available PMs is minimized to reduce power 
consumption: 

                 
    
 
                        (3) 

where      is the number of active PMs: 

     ∑    (∑    
 
     )                  

          (4) 

B. Resource Utilization 

The idle resources available on each PM may vary largely 
with different VM placement solutions. In anticipation of future 
requests, the resources left on each PM should be balanced 
along different dimensions. Otherwise, unbalanced residual 
resources may prevent any further VM placement, thus wasting 
computing resources. For example, Fig. 4 shows that the PM 
has a lot of unused CPU capacity but little memory available, 
causing the PM to not be able to accept any new VM because 
of memory scarcity [7]. Therefore, to balance the resource 
usage along different dimensions, the following equations are 
proposed: 
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where    
      is the amount of available memory (GB) on 

PMj. 
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      (∑    
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where    
      is the number of available CPUs on PMj.  

Fig. 4. Resources allocated to three VMs on a single PM [7]. 

C. VM Transfer Time 

The total VM transfer time is the time it takes from when 
the migration is initiated for a VM on the source PM until the 
VM is resumed on the destination host. In order to be able to 
provide the capability of live migration, a low downtime is 
required. Downtime is the time during which the virtual 
machine is not responsive. Suspending the state of the VM 
includes pausing the CPUs as well as other connected devices. 
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   (7) 

where    
     is in GB. 

D. Problem 

The problem is defined as finding a pattern to map the set of 
VMs over the set of PMs such that the cluster power 
consumption is minimized, the physical resource utilization is 
maximized, and VM transfer time is minimized as follows: 
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The constraints ensure that each VM is allocated to only one 
PM, however; one PM may have more than one VM, and the 
load on each PM is not greater than its capacity. 

IV. HEURISTIC ALGORITHM 

The proposed algorithm with the use of fuzzy PSO (FPSO) 
is presented in the following.  

A. Fuzzy Particle Swarm Optimization 

A normalized fitness value (NFV), which is between 0 and 
1, is defined as: 

    
        

           
                                 (8) 

where       is the worst solution for the minimization process. 
For the first iteration, the calculated value  of    may be 
selected as       for the next iterations [18]. 



It is worth noting that for fuzzification process, triangular 
membership functions are lied upon for sake of simplicity. The 
membership function of inputs is presented in three linguistic 
levels Small, Medium, and Large, and the membership function 
of output is described as Negative, Zero and Positive as 
illustrated in Fig. 5. The fuzzy rules as shown in Table II are 
derived by an expert to achieve optimum results. The fuzzy 
rules are used to select the inertia weight correction (  ). In 
addition, Mamdani’ fuzzy inference method is used to evaluate 
the results. 

TABLE II.  RULES FOR INERTIA WEIGHT VARIATIONS. 

            

IF Small AND Small THEN Zero 
IF Small AND Medium THEN Negative 

IF Small AND Large THEN Negative 

IF Medium AND Small THEN Positive 

IF Medium AND Medium THEN Zero 

IF Medium AND Large THEN Negative 

IF Large AND Small THEN Positive 

IF Large AND Medium THEN Zero 

IF Large AND Large THEN Negative 

B. Proposed Algorithm 

In summary, the following steps should be conducted by 
VM mapping algorithm: 

 

VM mapping algorithm 

1. Gather data and information about VMMs, VMs, and PMs 
as input data. 

2. Determine a set of PMs as a new host for VMs. 

3. Determine the set of VMs which need to be mapped.  

4. Apply the FPSO method: 

4.1. Create an initial population array of every particle i 

( ⃗⃗  ) with random positions and velocities on n 
dimensions in the search space. 

4.2. Convert continuous position values vector of      to 

discrete vector  (   ) to determine optimal pattern for 
mapping VMs over PMs.  

4.3. Determine the value of 

   
       

       
        

         
        and  

   
   based on  (   )  to calculate the value of every 

fitness function. 

4.4. For each particle, calculate the values of objective 
functions by applying Equations 3, 5, 6, and 7. 

4.5. For each particle, evaluate the desired optimization 
fitness function. 

4.6. Compare each particle’s fitness evaluation with its 
personal best fitness function value (        ). If the 

current value is better than         , then set 

        equal to the current value, and the best position 

pi equal to the current location     in n-dimensional 
space. 

4.7. Identify the particle in the neighborhood with the best 
global success so far as          , and assign its index to 

the variable g as the best global position. 

4.8. Update the parameters, the proper choice of inertia 
weight is updated by the FLS. 

4.9. Change the velocity and position of the particle 
according to Equations 1 and 2. 

4.10. If a criterion is met (usually a sufficiently good fitness 
or a maximum number of iterations) then best particle 

position in n-dimensional space  (       ) is the 

optimal VM mapping schema. 

 Else go to 4.2 

5. Update the current PMs and VMs properties. 

V. EXPERIMENTAL EVALUATION 

To evaluate the proposed model, a cloud simulation 
environment called CloudSim toolkit [21] is utilized. It is an 
open source tool used by majority of the researchers to simulate 
the cloud environment. CloudSim allows the extension and 
definition of policies in all components of the software stack.  
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Fig. 5. Membership functions of inputs and output. 



A. Experiment setup 

The experimental setup is composed of five PMs that need 
to run ten VMs in total. The properties of PMs and VMs are 
summarized in Tables III and IV respectively. 

TABLE III.  PM PROPERTIES. 

PM ID Number of cores Memory (GB) Bandwidth 

1 8 16 1024 
2 8 8 512 
3 6 8 1024 
4 6 4 512 
5 4 2 512 

TABLE IV.  VM PROPERTIES. 

VM ID 
VM image 
size (GB) 

VM memory 
(GB) 

Number of CPUs VMM 

1 20 8 4 Xen 
2 20 4 2 Xen 
3 20 4 2 Xen 
4 10 2 2 Xen 
5 10 2 1 Xen 
6 8 2 1 Xen 
7 5 1 2 Xen 
8 5 1 1 Xen 
9 4 1 1 Xen 

10 4 1 2 Xen 

B. Results Analysis  

The simulation under the environment that was defined in 
previous section is performed to evaluate the proposed multi-
objective method of solving VM mapping problem with 
conflicting objectives by considering optimization transfer 
time, idle memory, idle CPUs and power consumption.  The 
efficiency of the proposed four-objective model is evaluated in 
comparison with current bi-objective model in terms of 
optimizing cloud utilization and power consumption. 

Fuzzy PSO is applied to optimize both the four-objective 
model and bi-objective model. The graph for the four 
objectives in 300 out of 2000 iterations is illustrated in Fig. 6. 
The values of the axis on the right show the range of 
of fTransferTime. 

 

Fig. 6. The value of objective functions. 

As can be seen from Fig. 6, objective functions for idle 
CPUs and idle memory are in conflict with each other and there 
is not unique solution for them. Therefore, as it was discussed 
before, considering them in one function would not be correct.  

The output VM mapping patterns resulted from Cloudsim 
using FPSO for the four- and bi-objective models are 
summarized in Table 5. For instance, the best particle position 

suggested by the optimal solution of the four-objective model is 

  (   )  (           ) = (1, 3, 2, 2, 3, 4, 4, 5, 4, 5) after 

converting the continuous position values to discrete. 
According to this solution, VMs: vm1, vm2, vm3, vm4,…,vm10 
are mapped to PMs as shown in first row of Table 5. The 
second row illustrates suggested solution for the bi-objective 
model. 

TABLE V.  VM MAPPING PATTERNS. 

VMs 1 2 3 4 5 6 7 8 9 10 

4Objs                                         

2Objs                                         

 

In the bi-objective model, the optimal value of 

fIdleCPUandMemory and fPowerConsumption is determined by FPSO, then 

the corresponding value of fIdleCPU, fIdleMemory and fTransferTime are 

calculated by applying the pattern of VMs mapping over PMs 

that resulted from the bi-objective optimal solution. The 

algorithm has been run 25 times for both models, and the 

results are almost the same. The optimal results of the models 

are summarized in Table 6.  
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As can be seen from Table 5, the estimated values for 
transfer time, the number of idle CPUs and the amount of idle 
memory obtained from the proposed model are less than these 
values achieved by bi-objective model. However, they have 
used all PMs in the set as host for VMs resulting the same 
amount of power consumption.  

Based on this, the model achieves the highest resource 
utilization because the less number of CPUs and amount of 
memory are idle after VM mapping.  In addition, this model 
decreases the bandwidth traffic because the same amount of 
data (VMs’ size) is transferred in lower time where a micro 
second is important. This means, the model selects the optimal 
path to transfer VMs to their new host. 

As a result, the proposed model that considers more aspects 

of VM mapping optimization, determines an optimal trade-off 



solution for the multi-objective problem with objective 

functions that are in conflict with one another, and results the 

best possible compromise between objectives. 

VI. CONCLUSION AND FUTURE WORK 

Virtualization technology is used to increase resource 
utilization and reduce operating costs in cloud data center. Two 
key mechanisms for flexible resource utilization offered by 
virtualization are: a) allocating resources dynamically to virtual 
machines (i.e., changing CPU share or memory allocation), and 
b) migrating VMs to other PM. In this paper, the VM mapping 
is formulated as a multi-objective combinatorial optimization 
problem aiming to simultaneously optimize possibly conflicting 
objectives. The objectives include making efficient usage of 
multidimensional resources, reducing energy consumption, and 
reducing network traffic. The paper uses a fuzzy particle swarm 
optimization algorithm including a fuzzy logic system for 
tuning inertia weight, and the conventional particle swarm 
optimization to solve the mapping problem. Computational 
experiments on benchmark problems are carried out. The 
results show that the proposed algorithm can compete 
efficiently with other promising approaches to the problem. 

As interdependencies and inter-communication patterns 
among VMs are overlooked in this paper, the future research 
direction is to consider the complete application context 
running on top of the VM when choosing the most appropriate 
PM to host that VM. It takes into account the communication 
dependencies among VMs of a multi-tier enterprise application, 
the underlying data center network topology, as well as the 
capacity limits of the PMS of the data center. 
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