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Abstract

Photonic crystals are a novel class of optical materials that, almost certainly, will
underpin major advances in future communication and computer technology. In a
photonic crystal, the periodic distribution of refractive index gives rise to interferometric
action which leads to band gaps, or frequency ranges for which light cannot propagate.
Material or structural defects in the crystal can give rise to localised states, or field
modes, that are the analogues of impurity modes in semiconductors, changing the
radiation dynamics of the crystal and providing the ability to mould the flow of light in a
variety of ways. The radiation dynamics are characterised by the local density of states
(LDOS) and, in this paper, we describe a new, highly accurate and efficient technique
based on field multi pole methods for computing the LDOS. Its implementation on SMP
systems using the OpenMP and MPI protocols is discussed and we illustrate its
applicability in studies of ordered and disordered crystals. The latter are of particular
significance as they provide a framework for investigating fabrication tolerances for
realistic crystals.
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1 INTRODUCTION

Photonic crystals (Soukoulis, 1995; Joannopoulos, Meade and Winn, 1999) are a novel type
of material in which the refractive index varies periodically with position and which prohibit
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the propagation of electromagnetic waves for some frequencies, giving rise to "band gaps" in
their spectrum. Photonic crystals have the capacity to "tailor" the flow of light, and thus
represent a key approach to the design of components for future integrated photonics (Fan
and Joannopoulos, 2000; Noda, Chutinan and Imada 2000; Parker and Charlton, 2000).

Initially, much theoretical and experimental research was carried out to calculate band
diagrams and find the transmission and reflection spectra of such structures (Soukoulis,
1995), but this gives little insight into their radiation dynamics. However, both pioneering
papers in the area (Yablonovitch, 1987; John, 1987) were concerned with changing the
density of states, and thus the radiation dynamics of photonic crystals. The key quantity that
determines the radiation dynamics of a fluorescent source embedded in a photonic crystal is
the spatially resolved, or local density of states (LDOS) (Sprik, van Tiggelen and Lagendijk,
1996). In three dimensions, the LDOS provides the spectral distribution of modes to which a
fluorescent source couples: if, for a particular frequency, the LDOS is large, then this
indicates that the light emission at that frequency is enhanced by the structure;
correspondingly, a small value of the LDOS indicates suppression of light emission at that
frequency. To date, the LDOS has been computed for ID infinite structures, and for 3D
structures of infinite size at isolated points within the unit cell as a function of wavelengths.
In both cases, the infinite extent of the structure implies that the LDOS vanishes identically
with a band gap, yielding no insight whatsoever about the radiation dynamics of structures of
a finite size.

In this paper, we describe the development (§2) of a novel theoretical model, based on the
theory of multipole expansions, and the associated computational implementation (§§3~) on
an SGI Origin SMP system. Multipole methods, also known as Rayleigh methods, date back
to the classic, 1892 work of Lord Rayleigh (Rayleigh, 1892) who originally developed the
technique in the context of electrostatics. However, only since the mid-1970s has the
computational potential of the technique, in addition to its analytic application, been
recognised. The method has been extended to solve dynamic (i.e. wave) problems in
electromagnetics and is a standard tool within our group which has pioneered its application
within this context.

While much of the computational modelling in this field employs general purpose Fourier (or
plane wave) methods, they can suffer from serious convergence difficulties and an inability to
model finite (i.e. realistic) systems. The source of these convergence problems is two-fold
through (a) the series representation of discontinuous functions (which are particularly severe
for high index contrasts) and (b) the intrinsic disadvantage of using a global basis to model
structures with a wide variation of scale size. In contrast, the multipole method (McPhedran,
Botten, Asatryan, Nicorovici, Robinson and de Sterke, 1999; Botten, Nicorovici, McPhedran,
Asatryan, Robinson and de Sterke, 2000; Asatryan, Robinson, Botten, McPhedran,
Nicorovici and de Sterke, 1999; Asatryan, Busch, McPhedran, Botten, de Sterke and
Nicorovici, 2001) is based on local, multipole field expansions about each scatterer that
explicitly satisfy boundary conditions and which yield highly accurate and computationally
efficient solutions. The method is applicable to both finite and infinite periodic systems and,
unlike the plane wave method, generates exact solutions, yielding a most useful tool through
which to gain insight and understanding of the underlying physical processes in realistic
systems. Its structure is also amenable to implementation on parallel computer systems.

While the treatment of §2 is for 2D structures and a 2D source, it is readily generalised to a
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point source, and further 3D scattering geometries. Finally, §5 shows some applications of
relevance to the design of key components of future photonic devices.

2 THEORETICAL FORMULATION

The LDOS p(r; w) follows from the imaginary part of the trace of the electric Green tensor
Ge(r, c.; w) that is the solution of the field problem at a point r, for a cluster of N; cylinders
of radii {a,} and refractive indices {nil, due to a line source located at c, at a frequency w:

2wp(r;w) = --2ImTr[Ge(r,r;w)]. (1)
1rC

For simplicity and brevity, we outline only the treatment for Ell polarised light for which the
electric field vector is aligned with the cylinder axes (the z-axis). In this case, the only

non-trivial component of Ge is Ve ~ G~z that satisfies the boundary value problem

V2Ve(r; cs) + k2n2(r)Ve(r; c.) = 8(r - c.), (2)

where Ve and II • VVe are continuous across all cylinder boundaries. Here, k = w / c is the
free-space wavenumber, n(r) denotes the refractive index of the cylinders or the background
matrix, and II is the outward normal unit vector to the surface of the cylinders.

In the vicinity of each cylinder l, the exterior field in the matrix of refractive index nb = 1 is
expanded in local coordinates r, = (rl' 9,) = r - c"

00

Ve(r; cs) = L [A~,Jm(krl) + B:nH~)(krl)] eim8/, (3)
m=-oo

and involves both singular or irregular components characterised by coefficients B:n and
regular components characterised by A~. This expansion is valid only in the annulus
extending from the surface of the cylinder l to the surface of the nearest cylinder or source.

A global field representation, known as the Wijngaard expansion, valid everywhere in the
matrix may be derived (for example, see Asatryan, Busch et al., 2(01) using Green's theorem:

Ne 00

Ve(r; c.) = xext(cs)H~l)(klr - csl)/(4i) +L L B~H~)(klr - cql)eimarg(r-Cq). (4)
q=l m=-oo

Here, the first term is due to the inhomogeneous source term in (2) (with Xext(cs) acting as a
source term switch), while the second is associated with scattered radiation sourced by each
of the cylinders q.

Equating the global (4) and the local (3) forms of the field expansions in the vicinity of
cylinder l, and applying Graf's addition theorem to the global form in order to change the
field phase origin to the centre of cylinder l, we derive the Rayleigh multipole field identity

Ne 00

A' = K' + '" '" S,q Bq (5)m m L- L- mp p'
q=l,q:#1 p=-oo
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Equation (5) indicates that the regular part of the local field in the vicinity of cylinder l is due
to a combination of (a) the exterior source (which, when expanded in a local expansion, is
characterized by coefficients K:n), and (b) sources on all other cylinders (q :f:. l), the
contributions of which to the multipole term of order m - p at cylinder l is given by 8:;{p. The
particular forms of the 8:;{p and K:n and details of the derivation may be found in Asatryan,
Robinson et al. (2000). The field identity is most conveniently cast in matrix form

A= SB+K (6)
and typifies the form arising in all problems solved using the Rayleigh multipole method.
Here, A = [AI], B = [Bl] and K = [Kl] denote partitioned vectors and S = [Slq] denotes
a partitioned matrix. As is explained in §3, this form is particularly amenable to
implementation on parallel systems.

The coefficients A and B are linked by the boundary conditions, viz. the continuity of the
tangential components of the electric and magnetic fields across cylinder-matrix interfaces.
We begin with a local expansion of the field interior to cylinder l,

00 00

Ve(r; c.) = L Q~Hg)(knlrl)eim81 + L C~Jm(knITj)eim8l, (7)
m=-oo m=-oo

in which the first series on the right hand side denotes a possible, interior field source

xint(cs)H~l)(knllr - csl)/(4i),

analogous to the exterior source in (4). The boundary conditions are then readily expressed in
the form

B - RA+TQ,
C - T'A+R'Q,

(8)

(9)

where the matrices R, T, R' and T' are block diagonal matrices containing diagonal blocks
representing cylindrical harmonic reflection and transmission coefficients. In (8) and (9), the
regular exterior field A and the irregular interior field Q are regarded as "incoming" fields,
generating the irregular exterior B and regular interior C fields.

The Rayleigh identity, in the form of a system of linear equations in the source coefficients
B, is then deduced from (6) and (8) yielding

(I - RS)B = RK + TQ, (10)

in which the right hand side represents the reflection of a source K exterior to the cylinder or
the transmission of an interior source Q through cylinder interfaces. By solving the
partitioned system of linear equations (10), the multipole coefficients Bl are determined and
the Green function can be reconstructed from its exterior (4) and interior (7) Wijngaard
expansions.

3 COMPUTATIONAL METHODS

To gain insight into the radiation dynamics of a photonic crystal it is necessary to compute
the LDOS at a set of points in the crystal. The set may comprise a single point. or may
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sample the entire structure, yielding an LDOS map of the crystal. The computational problem
in this case is to develop a code which is both efficient and sufficiently flexible to be
applicable across this range. For convenience, we consider source points lying on a uniform
rectangular grid Z containing Nr = Nt; x Ny points:

Z = {(Xo + ixc5x, Yo + iyc5y) : ix = 0, ... , N; - 1; iy = 0, ... , Ny - I} .

Here c5x and c5y denote the mesh increments, and for convenience of notation we take the
corresponding value to be 1 in the case that Nx = 1 or Ny = 1.

Of particular significance are the effects on the radiation dynamics of perturbations in the
material and geometric properties, yielding insight into the tolerances acceptable in the
manufacture of photonic crystals. In particular, we are interested in how sensitive the LDOS
is to random perturbations in the positions of the scattering cylinders, their radii, and their
refractive indices. A corresponding computational problem is to estimate the mean LDOS
corresponding to random perturbations of these quantities with specified distributions.

We consider first the case of a single, unperturbed crystal. As mentioned in §2, equation (10)
is representative of the structure of multipole methods. Of particular importance is the fact
that the coefficient matrix (I - RS) depends only on the optical and geometrical properties
of the array of scatterers-it is independent of the source term, dependence on which is
restricted to the right hand side term RK +TQ. Consequently we use a single LU
factorisation of the coefficient matrix to solve (10) for the coefficient vector B corresponding
to each point of interest in the structure. The computation of each element of the coefficient
matrix requires multiple Bessel function evaluations and consequently the initialisation of the
matrix requires substantial execution time. Nevertheless, this time can be reduced by
exploiting the loop-level parallelism inherent in the problem-we use OpenMP (Chandra,
Dagum, Kohr, Maydan, McDonald and Menon, 2001) in a shared memory environment to
populate the coefficient matrix in parallel threads. Similarly, the solution of the linear system
for each source point in the map requires multiple Bessel function evaluations within a sum.
Again we can exploit loop level parallelism using OpenMP, with a reduction operation to
accumulate the required sum. The LU factorisation of the coefficient matrix is performed by
the relevant LAPACK routine (Anderson et al., 1999).

Next we consider the study of the effects of random perturbations of the crystal structure. We
use a Monte Carlo simulation to estimate the mean LDOS corresponding to perturbations
with given distributions. In particular, we apply a sequence of pseudo-random perturbations
to a given crystal structure, yielding a sample set of crystal instances. Each instance is then
analysed by the code described above. Since individual instances have little data in common,
these analyses can be executed by separate processes in a distributed environment, although
each process utilises shared memory parallelism as described above. The resulting simulation
program is structured using a master-slave strategy, with the MPI library (Pacheco, 1997)
being used to implement the required message passing. The master process is responsible for
generating the sequence of crystal instances. Each instance is then passed to a slave process
which generates the corresponding LDOS map using OpenMP and returns it to the master.
The master process is then responsible for accumulating the ensemble average LDOS and
tracking the convergence of the process.

Convergence is treated heuristically by tracking the change, between successive instances, in
the squared sample mean, normalised to the size of the map. In particular, let e = (€r, fa, en)
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be a partitioned vector denoting a random perturbation of the positions, radii and refractive
indices of the cylinders comprising the crystal. Denote by p( r, e; w) the LDOS of the
perturbed crystal, by p( r, w) the mean LDOS at rand w of the perturbed crystals, and define

the ensemble average of a sample of NT perturbations by p(NI)(rj w) ~ ~I 2:~1p(r, e; w).

[ ]

1/2
We estimate the absolute error IIp('j w) - P(NI)(';w))1I2 = J (p(rj w) - p(NI)(rj W)))2 dr
by

8p(NT) ~ L (p(N1)(rjw) - P(NI-1)(rjw))2 8r,
rEZ

where 8r = 8x8y. A corresponding estimate of the relative error is then easily obtained. We
note that, although a rectangular grid is used to obtain the LDOS maps presented in this
paper, the method can also be applied with non-uniform grids. These are of advantage where
the LDOS varies rapidly in certain regions but not in others.

4 PERFORMANCE

Table I reports the wall time, total cpu time and percentage of cpu usage (cpu%) for the
program in the case of analysing a single instance of a 2D photonic crystal comprising 136
cylinders. The crystal is described in greater detail in §5-here we are concerned with the
performance of the program. The code was run in four different configurations, each with one
master process and one slave process, the latter using 1, 2, 4 or 8 threads. We observe from
Table 1 that total cpu time tends to diminish as the number of threads increases: this is due to
the fact that for most of the time the master process is idling while waiting for the slave to
complete its analysis. Consequently, since the wall time (and hence the wasted master
process cpu time) decreases with an increasing number of threads, the total cpu time also
tends to decrease. The exception is for 4 threads, where the total cpu time exceeds that
required for 2 threads. We attribute this to the fact that the SGI Origin system on which the
code was run, whilst a shared memory machine, has non-uniform memory access times. In
particular, as more cpus are used, both the likelihood of, and costs associated with, non-near
memory accesses increase.

Use of the program for the analysis of a single crystal instance is inherently inefficient
because of the master/slave dichotomy, even though the master requires just one processor to
the slave's kt (one for each thread). On the other hand, Table 2 reports the performance of the

Table 1: Performance data for analysis of a single 2D photonic crystal of 136 cylinders. Con-
figuration: 1 master process plus 1 slave, with the slave having kt threads.

kt Wall time Total cpu time cpu%
h:m:s h:m:s

1 2:45:40 5:30:13 200
2 1:25:00 4:13:40 305
4 0:52:20 4:19:32 500
8 0:26:20 3:54:33 902
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program for a set of 40 realisations of 2D crystals, each again comprising 136 cylinders. As
described in §5, these realisations may be thought of as modelling small deviations from a
given design during manufacture. Timing data is reported for a range of configurations:
master plus k, slaves (kll = 1, ... ,4), with each slave having either kt = 4 or kt = 8 threads.
Total cpu time varies across the listed configurations by 19.8% of the lowest cpu time. The
code's performance appears to scale well with the number of slaves, although again we
observe that, comparing the results for 4 and 8 threads per slave, total cpu time is consistently
lower for kt = 4 than for kt = 8.

Table 2: Performance data for analysis of a set of 40 two-dimensional photonic crystals of 136
cylinders. Configuration: 1 master process plus k, slaves, with each slave having kt threads.

5 APPLICATION

The LDOS is a measure of the extent to which the environment can control the properties of
an emitter such as an atom. Indeed, spontaneous emission by an atom or molecule whose
transition lies in a band gap is suppressed as there are no available states into which emission
can occur. The key to the operation of a photonic crystal is their appearance as an ideal,
lossless mirror when operated in a band gap-with obvious implications for use in lasing (as
the containment mechanism) and guided signal propagation. Highly advantageous effects can
be obtained if perfect periodicity is violated. This is best exploited in photonic band gap
(PBG) materials, where structural or material defects give rise to localized modes (analogous
to the impurity modes of semiconductors) that appear in the band gap to form defect states
through which emission may occur (Yablonovitch, 1987). For photonic crystals containing
photoactive media, the material may emit light over a wide spectral range, but only those
wavelengths matching the defect states can propagate out of the crystal. This is important in
developing microlasers and LEDs with the number and size of the defects controlling the
spectral width and threshold. Similarly, the removal of entire lines or planes of scatterers
produces a band of defect states that enable the channel to guide light. PBG guiding is both
lossless and efficient as there are no states that let light leak from the guide, normally an
overwhelming problem.

As an example we model a waveguide obtained by cutting a channel through a rectangular
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kll kt Wall time Total cpu time cpu%
h:m:s h:m:s

1 4 34:03:56 167:56:26 533
1 8 19:53:51 171:30:14 963
2 4 16:00:40 143:20:50 975
2 8 9:29:00 157:07:03 1705
3 4 11:47:20 149:38:06 1312
3 8 6:31:20 155:54:38 2495
4 4 8:43:40 143:09:26 1699
4 8 5:30:40 160:00:13 3284



Figure 1: Plots ofloglO p( r; w) along a cross-section (lying on the y axis) of a photonic crystal
(a) without the waveguide channel, and (b) with the waveguide channel. Both plots indicate
exponential decay of the LDOS with increasing distance into the bulk of the crystal. Plot (b)
indicates also a range of frequencies at which the LDOS remains high in the waveguide while
having low values in the remainder of the crystal. Plots (c) and (d) indicate the corresponding
crystal structures by giving a view down the vertical axis, parallel to the cylinders.

(a)

(e)

(bl

(d)

array of cylinders (Mekis, Chen, Kurland, Fan, Villeneuve and Joannopoulos, 1996) whose
centres are separated by a distance of d units in the direction of each coordinate axis. In the
following discussion, the optical properties of the material are assumed to be dispersionless
(i.e., independent of wavelength) and all wavelengths A are normalised to the period of the
structure (i.e., AI d). The cylinders are all of normalised radius add = 0.3 units and their
refractive indices are all nj = 3.

We consider first the ideal, finite structure without the channel. The corresponding infinite
structure exhibits a photonic band gap that manifests itself as an LDOS of precisely O. In the
case of the finite structure, the LDOS is strongly reduced for frequencies in the gap, but is not
precisely zero, and indeed, for larger crystals, the LDOS at a fixed point inside the structure
decays exponentially as the size of the crystal increases. At other frequencies light propagates
readily. Figure 1 illustrates the existence of a band gap by plotting the logarithm of the LDOS
p against frequency along a cross-section (x = 0) of the crystal, both in the complete
structure (Fig. 1a) and in the waveguide structure (Fig. Ib).

As an example, in Figure 2 we see that for Aid = 3.3 the LDOS within the guide is high
relative to its value in the bulk crystal and slightly enhanced relative to its free space value.
Also evident is the efficient channeling of light around a sharp bend without significant
radiation losses. In contrast, conventional dielectric waveguides (such as optical fibres) are
unable to efficiently transmit light through tight, or intricate, paths without substantial
bending losses.
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Figure 2: Surface and contour plots of p for a photonic crystal with channel. The LDOS
is plotted for Aid = 3.3, a normalised frequency at which the crystal demonstrates strong
guiding properties.

While photonic crystal waveguides can efficiently guide light, particularly around sharp
bends, little is known about the effect on signal propagation of scattering losses arising from
fabrication defects. We thus consider the sensitivity of the LDOS to perturbations of the
waveguide structure. In particular, we consider:

(a) random perturbations, uniformly distributed on (i) [-0.03,0.03] and (ii) [-0.1,0.1], of
the radius of each cylinder,

(b) random perturbations, uniformly distributed on (i) [-0.3,0.3] and (ii) [-1.0, 1.0],of the
refractive index of each cylinder.

These trials may be interpreted as representing random variations, of maximum 10% in case
(i) and 33~% in case (ii), from an ideal crystal. The ensemble averages r!4~and r!4~of p over
a set of 40 perturbed instances were computed independently for cases (a) and (b)
respectively, and are plotted in Figure 3. In case (i) it is clear that the crystals still, on
average, demonstrate substantial guiding properties. However, at the 33i% level [case (ii)],
the mean LDOS indicates that these properties have been lost. Figure 4 plots the value of the
convergence indicators 8p(Nr) for case (ii).

We conclude with the simulation of the random laser, a major, recent advance in the
field (Cao, Xu, Zhang, Chang, Ho, Seelig, Liu and Chang, 2000). Here, the cylinders of the
photonic crystal are composed of material with gain and the structure is disordered, giving
rise to field localisation-that is, exponential decay of the field arising from the strong
scattering caused by the extreme disorder of the structure (John, 1984). Provided that the
field containment (due to localisation) is sufficiently strong and that the amplification is
sufficiently high, laser action can occur. In Fig. 5 we see traces of the formation of closed
loops at the lower left edge of the cluster where the amplification of light appears as an
enhancement of the Green's function due to a source located in the centre of the cluster.
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Figure 3: Contour plots of the ensemble averages rf4~and rf4~for crystals with perturbed radii
(left) and refractive indices (right).

Case (i): random variations with maximum deviation 10% from the ideal design of the crystal.
(a) (b)

Figure 4: Convergence of ensemble averages for perturbed (a) radii and (b) refractive indices
in case (ii): perturbations were uniformly distributed with a 33~% maximum deviation from
the mean value.

Case (ii): random variations with maximum deviation 33~% from the ideal design of the
crystal.

(a) (b)
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Figure 5: A strongly disordered photonic crystal composed of material with gain.

n=3+O.2·rd+i·O.1
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