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Abstract

Photonic crystals (PC) are a novel class of complex materials which have properties
that make them the optical analogues of semiconductors. Accordingly, PCs will likely be
key building blocks for future micro-optical and communication technology, specifically
because of their ability to tailor the propagation of light on the scale of optical
wavelengths with minimal diffraction losses. This paper, which describes the
computational modelling of PC based devices being undertaken within the ARC Centre
for Ultrahigh-bandwidth Devices and Optical Systems (CUDOS), commences with an
outline of multipole and Bloch mode theory, outlines the implementation of the
computational algorithms using MPI and Open MP on parallel computer systems, and
presents briefly the results of the modelling of some PC based devices.
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1 INTRODUCTION

Photonic crystals (PC) (Joannopoulos, Meade and Winn, 1995; Soukoulis, 1995) are a novel
type of complex material in which the refractive index varies periodically with position.
Through interference action known as Bragg reflection, PCs can inhibit the propagation of
electromagnetic waves for various ranges of some frequencies, giving rise to "band gaps" in
their spectrum. It is these band gaps that make them the optical analogues of semiconductors
which have underpinned the electronics revolution. Because PCs have the capacity to tailor
the propagation of light on the scale of optical wavelengths with minimal loss, it is likely that
they will be a key building block for future micro-optical and communication technology. It
is anticipated that they will provide optical functionality analogous to that available in
electronic chips and facilitate information processing of unprecedented speed (Parker and
Charlton, 2000).

Of substantial, contemporary interest is the design of PC based devices that will allow the
miniaturization of photonic components, and the use of PCs to modify the radiation dynamics
of sources embedded within them. With respect to the former, various devices and
interconnections such as bends,junctions and filters have been modelled and fabricated (Lin,
Chow, Hietala, Villeneuve and Joannopoulos, 1998; Mekis, Chen, Kurland, Fan, Villeneuve
and Joannopoulos, 1996). The exploitation of their technological potential however requires a
thorough understanding of the coupling and guiding mechanisms. Coupling problems, which
are both challenging and general, involve interfacing various PC media and waveguide
devices to one another or to some external medium. While most investigations to date have
been largely computational, we have recently developed a new approach (Botten, Asatryan,
Langtry, White, de Sterke and McPhedran, 2003), utilising analytic techniques based on
Bloch modes and elaborated in §2.2. The method exploits the underlying physics and
provides substantial analytic and computational advantages.

The crystals described in this paper consist of infinitely long cylindrical inclusions embedded
in a background matrix. Sources, where appropriate, are modelled by line sources parallel to
the cylinder axes. Such structures represent idealised 2D models of actual devices consisting
of finite length cylinders bounded by slabs of a uniform material. For sufficiently long
cylinders it is hoped that the current 2D models will provide useful insight into the behaviour
of the 3D crystals.

The potential to exert control over the radiation dynamics through the ability to vary the
density of states available to electromagnetic radiation was seen as a prime motivation for the
advent of PCs (Yablonovitch, 1987; John, 1987). A key quantity that determines the
dynamics of a fluorescent source embedded in a photonic crystal is the spatially resolved or
local density of states (LDOS). In three dimensions, the LDOS provides the spectral
distribution of modes to which a fluorescent source couples: if, for a particular frequency, the
LDOS is large, then this indicates that the light emission at that frequency is enhanced by the
structure; correspondingly, a small value of the LDOS indicates suppression of light emission
at that frequency. In recent years, we have developed a novel theoretical method (Asatryan,
Busch, McPhedran, Botten, de Sterke and Nicorovici, 2001) based on multipole expansions
which is elaborated in §2.1 and (Botten, Nicorovici, Asatryan, McPhedran, de Sterke and
Robinson, 2000). These theories work well with both regular (periodic) and irregular or finite
clusters, yielding exceptional computational speed and accuracy, and considerable analytic
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Figure 1: Device designs which may be seen as either finite clusters of scatterers or extended
devices (when one or more regions is assumed to be semi-infinite in extent). (a) A directional
coupler exhibiting disorder in the coupling region (M2). (b) Waveguide coupling to free space.
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insight, albeit with some restrictions on the range of geometries that can be considered.

Despite the substantial research in this area, the strong similarities that exist between
photonic phenomena and their electronic counterparts suggests that this is a rich vein of
potential new opportunities that should be actively "mined". One such is the transfer of the
concept of electron conductance, one of the main properties of nano-scale wires, to
photonics, which we deal with briefly in §2.3.

Another key aspect of the theoretical and computational programs being undertaken within
CUDOS, the ARC Centre for Ultrahigh-bandwidth Devices for Optical Systems, is the
modelling of the performance tolerance of PC structures to fabrication defects. It is here that
the modelling programs exploit parallel computation. Accordingly, this paper commences
with an outline the multipo1e theory for a cluster, indicates its extension to the modelling of
linear, periodic structures, makes use of this in the determination of Bloch modes, and
exploits these tools in the modelling of linear PC devices (Botten et al., 2003). From there,
we outline the design of our simulation codes that are implemented on the APAC and ac3
systems, discuss the computational performance that is achievable, and present briefly some
results from our simulations.

2 THEORETICAL FORMULATION

In this section, we outline theoretical models for the diffraction of light by (a) a finite cluster
of scatterers and for (b) extended devices. Fig. 1, when considered as an ensemble of
cylinders, exemplifies a simple 2D cluster of finite size which is modelled using a multipole
expansion method (§2.1). The analysis of an extended device, such as that shown in Fig. 1, in
which the front and rear channels (or waveguides) seen in regions M1 and M3 are arbitrarily
long, requires a more elaborate analysis involving the basis of natural (Bloch) modes of the
various structural elements. Section §2.2 treats the structure in Fig. 1, known as afolded
directional coupler, and finally, §2.3 outlines the theoretical treatment for the quantification
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of photon conductance.

2.1 Multipale theory far pnotontc crystal clusters

We solve for the total field V (r) at a point r in a cluster of N; cylinders of radii {al} and
refractive indices {nl}, due to a line source located at c, and radiating at a frequency wand
wavelength A (related by w = kc, with k = 21r / A and c denoting the speed of light in free
space). For simplicity and brevity, we outline only the treatment for Ell polarised light for
which the electric field vector is aligned with the cylinder axes (the z-axis). In this case, the
only non-trivial component of the Green's function G is V ~ Gzz that satisfies the boundary
value problem

(1)

where V and u . VV are continuous across all cylinder boundaries. Here, n( r) denotes the
refractive index of the cylinders or the background matrix, and v is the outward normal unit
vector to the surface of the cylinders.

In the vicinity of each cylinder l, the exterior field in the background matrix of refractive
index nb = 1 is expanded in local coordinates rl = (TIl (JI) = r - C/o with

00

V(r; Cs) = L: [A~,Jm(kT/) + B:nH~)(krl)] eimO" (2)
m=-oo

and involves both singular or irregular components characterised by coefficients B:n and
regular components characterised by A~. This expansion is valid only in the annulus
extending from the surface of the cylinder l to the surface of the nearest cylinder or source.

A global field representation, known as the Wijngaard expansion, valid everywhere in the
matrix may be derived (for example, see Asatryan, Busch, McPhedran, Botten, de Sterke and
Nicorovici, 2001) using Green's theorem:

l~( ) ~ 00
V(r; c.) = 4iCs H~l) (klr - csl) +L: L: B~H~)(klr - Cql)eimarg(r-cq). (3)

q=l m=-oo

Here, the first term is due to the inhomogeneous source term in (1) (with 1ext (c.) acting as a
source term switch), while the second is associated with scattered radiation sourced by each
of the cylinders q.

Equating the global (3) and the local (2) forms of the field expansions in the vicinity of
cylinder l, and applying Graf's addition theorem to the global form in order to change the
field phase origin to the centre of cylinder l, we derive the Rayleigh multipole field identity

Nc 00

A~ = K:n + L: L: S~pBZ·
q=l,q#1 p=-oo

(4)

Equation (4) indicates that the regular part of the local field in the vicinity of cylinder l is due
to a combination of (a) the exterior source (which, when expanded in a local expansion, is
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characterized by coefficients K:n), and (b) sources on all other cylinders (q #- l), the
contributions of which to the multipole term of order m - p at cylinder l is given by S::ip• The
particular forms of the S::ip and K:n and details of the derivation may be found in (Botten et
al., 2000). The field identity is most conveniently cast in matrix form

A=SB+K (5)

and typifies the form arising in all problems solved using the Rayleigh multipole method.
Here, A = [AI], B = [BI] and K = [KI] denote partitioned vectors and S = [Slq]
denotes a partitioned matrix.

The coefficients A and B are linked by the boundary conditions, viz. the continuity of the
tangential components of the electric and magnetic fields across cylinder-matrix interfaces.
Commencing with a local expansion of the field interior to cylinder l, we have

00 00

V(r; c.) = L Q~H~)(knITI)eimOl + L C:nJm(knITI)eimOl, (6)
m=-oo m=-oo

in which the first series denotes a possible, interior field source
lint(cs)H~1)(knzlr - csl)/(4i), analogous to the exterior source in (3). The boundary
conditions then take the form

B - HA+TQ,
C - T'A+H'Q,

(7)

(8)

where the matrices H, T, H' and T' are block diagonal matrices containing diagonal blocks
of cylindrical harmonic reflection and transmission coefficients. In (7) and (8), the regular
exterior field A and the irregular interior field Q are regarded as incident or source fields,
generating the irregular exterior B and regular interior C fields.

The Rayleigh identity, in the form of a system of linear equations in the source coefficients
B, is then deduced from (5) and (7) yielding the solution

B = (I - HS) -1 (ilK +TQ) , (9)

in which the right hand side comprises the multipole scattering operator ( I - HS) -1 and a

source term which is the sum of the reflection (H) of a source K exterior to the cylinder or
the transmission (T) of an interior source Q through cylinder interfaces. With the multipole
source coefficients BI determined from the solution of the system (9), the Green's function
can be reconstructed from its exterior (3) and interior (6) Wijngaard expansions. The LDOS p
at any point r is then given by

2w
p(r;w) = --2~[V(r,r;w)],

1rC

where ~ denotes the imaginary part of the expression.
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2.2 Bloch mode modelling of extended PC devices

While multipole methods are effective tools for compact structures, they are not an efficient
tool for handling extended structures such as that in Fig. l(a). The motivation for the
development of the Bloch mode tools was to develop an efficient design suite that could
handle the wide range of coupling and guiding problems that arise in the design and
development of PC devices. While the majority of previous investigations rely almost
exclusively on computational techniques, our tools use a combined analytic and
computational approach that separates propagation in straight "waveguide" sections from the
scattering of modes that occurs at interfaces. The latter is characterized by matrix
generalisations of the Fresnel reflection and transmission coefficients that are used widely in
thin film optics.

As an example, consider the propagation problem of Fig. 1(a) in which three distinct media
are jointed together. Each medium may be homogeneous (e.g., free space or dielectric) or a
periodically modulated structure such as a photonic crystal, possibly penetrated by
waveguides as shown. Each medium is characterized by its Bloch modes, generated (Botten
et al., 2001 via a transfer matrix technique based on supercell methods that exploit diffraction
grating theories. Initially, we consider the region M2 to comprise L identical layers.

Consider now a uniform structure, such as those of the guides in regions M1 and M3 of
Fig. l(a), in which all layers are identical and each has a cylinder removed in the same place.
The calculation of Bloch modes characterising a region M, follows from the solution of an
eigenvalue problem derived by considering an infinite region comprising only the layers of
region Ms. This infinite structure is unaltered by a translation of a single layer, and hence the
electromagnetic fields one layer apart must be related by a simple multiplication factor
/-L = exp( ikoyd) where d is the interlayer spacing and koy is the relevant component of the
Bloch vector. That is, V(x, y + d) = /-LV(x, y). At the boundary of each layer j (that is,
midway between the line of centres of the cylinders), we express the fields in expansions of
upward and downward propagating plane waves

00

V(x, y) = L [f~j)-e-ixp(Y-Yj) + f~j)+e+iXp(Y-Yj)] eio.px.

p=-oo

(10)

We use a supercell method with lateral period D (Fig. l(a)) chosen to be sufficiently large so
that there is negligible cross-talk between channels when the PC structure is operated in a
band gap. In this case, the direction sines and cosines of the plane wave terms in (10) are

given by O:p = 0:0 + 211"/ D and Xp = y'k2 - o:~. Defining Il = [fJi)'f] (vectors of plane
wave coefficients), the scattering action of a single layer is

I:; = Til +Rlt,
11+ AI Af+= R1+T2·

(11)

In (11), Rand T denote reflection and transmission scattering matrices that characterise the
diffraction properties of the cylinder grating layer. These are calculated using a variant of the
earlier multipole method (Botten et al., 2000). In this case, the periodicity of a single layer
relates the multipole coefficients in each supercell by a quasi-periodicity condition, reducing
the solution of the problem to the calculation of multipole source coefficients in only the
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primary supercelL The structure of the previous analysis is preserved, with the Rayleigh
identity for each of the N; cylinders in the primary supercell, the analogue of (4), being

Nc 00

A~ = L L S~pB: + K:n,
q=1 p=-oo

(12)

where

SlI = '" ° H(1) (kIJoID)e-i(m-p)arg jeiaojDmp LJJ::f.o m-p , (13)
S~p - ~j H~~p(k(ljDx + Cl - cql)e-i(m-p)arg (jDz+c/-eq)eiaojD

denote lattice sums (Botten et al., 2000) and x is a unit vector in the direction of the supercell
axis. As before, the term K:n in (12) denotes cylindrical harmonic coefficients of the exterior
driving field, due here to incident plane wave trains from above and below. Solving, as
before, for the source coefficient B~, we can then generate the outgoing plane wave fields
that are radiated by the grating. This in turn leads to the plane wave reflection (Rs) and
transmission (Ts) scattering matrices for medium M, which, for this up-down symmetric
structure, are defined by the reflected (r = Rs8) and transmitted (t = '1'8) fields due to the
incident plane wave field 8. Here,

n; = ~X-l/2 K+ (I _ RS) -1 RJ+X-1/2,

'1's = 1+ ~X-1/2K_(I_RS)-1RJ+x-1/2,

where X-1/2 = diag(xp). In (14) and (15), the multipole scattering operator (I - RS) -1 is
again evident. The terms J ± and K± are transformations that perform changes of basis,
respectively from plane waves to cylindrical harmonics and vice versa.

(14)

(15)

Solving (11) for I:; and rr. we obtain an interlayer translation operator r from which
follows the eigenvalue equation that determines the Bloch modes. In particular,

(16)

where

RT-1
]s s1'-1 .

s
(17)

The matrices in (17) have infinite dimension and must be truncated to permit the
computational solution. While (16) formally defines the modes, the problem involving r is
not well conditioned, particularly for matrices of large dimension, and thus an alternative
method (Smith, Botten, McPhedran and Nicorovici, 2002) is needed to compute the modes.

It can be shown that Bloch modes are paired, respectively corresponding to forward and
backward propagation. Only a finite number of modes carry energy through the structure,
while the remainder (formally, an unbounded set) carry no energy and are said to be
evanescent, decaying exponentially with propagation distance. Modes which carry energy
have eigenvalues Ipi = 1 while evanescent modes have either Ipi < 1 or Ipl > 1, respectively
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corresponding to forward and backward propagation. For propagating states that carry energy
through the structure, their direction of propagation is classified by the direction of energy
flow. In this way, we can diagonalise the operator T. The following expression is a simplified
form applicable to vertically symmetric structures (such as square or rectangular lattices):

(18)

where the matrices F~ comprise columns of eigenvector components fl associated with
forward propagating modes with eigenvalues A = diag {jlj}. In (18), the left and right
columns of the partitions respectively refer to the forward and backward propagation.

With the modes defined, the fields at the nth layer boundary in any finite slab of L layers can
be expressed as a combination of forwardlbackward states

(19)

In (19), Anand AL-n characterise propagation of the mode field through the layer. The
modes are normalised to carry unit flux and thus c~ represent vectors of modal amplitudes.
The same applies for semi-infinite media such as M1 and M3 of Fig l(a). In the case of M1,

there in an incident, forward propagating field characterised by the vector 6 of coefficients of
mode amplitudes, and a corresponding reflected, backward propagating field r. In the case of
M3, the field is represented solely by the forward propagating, transmitted field vector t.

Observe that in (19), it is the diagonal matrices Anand AL-n that characterise the
propagation of the mode field through the layer. The interfacing of different media (say M,
and Mj) requires application of continuity conditions at the boundaries and is best
represented in terms of Bloch mode interface reflection and transmission matrices which are
the matrix analogues of the familiar, scalar Fresnel coefficients in optics. To derive their
form, we consider a modal field of amplitude c~ incident from within a semi-infinite region
M, giving rise to a reflected field ct in M, and a transmitted field cj in Mj:

(F~) (F~)+ (F~)~+ ci + ~_ c, = ~+ cj. (20)

Solving these equations, we deduce the generalised Fresnel matrices ~j and Iij,
respectively defined by ct = ~jCi and cj = Iijci, are given by

~j = (Fi-r1 (I - Rj~r1 (Rj -~) Fj-

Iij = (Fj-r1 (I - ~Rjr1 (I - RD r;
(21)

(22)

In (21) and (22), R; = Fi+ (Fj-) -1 denotes the reflection scattering matrix of a semi-infinite
crystal of material M, from free space.

The reflection and transmission matrices Rand T of the entire structure of Fig. l(a), defined
by r = R6 and t = T6, may now be deduced from the solution of:
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r = RI2D +T2IAL4
C2" = TI2D + R2IAL4,

(23)

(24)

4 = R23ALc2,
t = T23ALC2".

(25)

(26)

Eq. (23), expresses the reflected field r as the reflection (R21) of the incident field D and the
transmission (T21)of the upward propagating Bloch modes of region M2 at the MI- M2

boundary. Similarly, (24) expresses the downward propagating waves in M2 at the MI-M2

boundary as a transmission of the incident field and a reflection of the upward propagating
modes in M2• Eqns. (25) and (26) fulfil the same roles for the M2-M3 boundary, although in
the absence of an incident field from M3• This ultimately leads to the Bloch mode reflection
and transmission matrices for the composite structure:

R = RI2 +T2IALR23AL (1 - ~IAL ~3ALrl T12,

T - T23AL (1 - R2IAL R23ALri T12.

(27)

(28)

In both cases, there is a striking resemblance to the scalar Airy formulation for a three layer
Fabry-Perot interferometer. We conclude by observing that for more complex structures (with
more layers), the treatment above may be extended by recurrence.

A question of interest in the design of PC devices is the issue of their tolerance to fabrication
defects. A statistical analysis of their performance requires that ensembles of realisations of
the properties of the exact structure in Fig. l(a) be analysed. In these, the layers in say M2 are
not identical and so the analysis requires some modification. Instead, we compute matrices
R2, m,T2, T~,respectively denoting the free space reflection and transmission matrices for
a composite M2 structure from above and below. Matching fields at the MI-M2 and M2-M3

interfaces, we derive the aggregate reflection and transmission matrices R and T:

R =

T =

R23 =

(FI-ri (1- ~3Rd-1 (R23 - RI) FI-, (29)

(F3-rl (1- R2R3rI T2 (1- RIR23rI (1- RD FI-, (30)

~ + T~R3(1- ~R3rl T2• (31)

2.3 Photon Conductance

The model of photon conductance 9 follows from the definitions for electron conductance
developed by Landauer (Landauer, 1957) in which the conductance is directly proportional to
the transmittance. We consider the single guide of Fig. l(b), regarding MI as free space and
M2 as either a finite slab bounded by free space M3, or a semi-infinite medium. The
conductance is defined as the total transmission in all propagating output channels caused by
unit input in all propagating input channels. Denoting by T = [t1q] , the scattering matrix of
the structure with incidence in M, and output in Mj, with p and q respectively denoting
output and input channels, it follows that

9 =L It1q12.
pq

(32)

In the case of a slab of L = 6 layers, Fig. 2 plots the variation of conductance with increasing
width, revealing clear "staircase" behaviour which can be understood easily with a modal
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Figure 2: Conductance 9 versus the guide width w / d, normalised to the lattice constant d. (a)
For a PC guide at >..jd = 3.15. Green curve: the number of propagating modes; Red curve:
conductance for a L = 6 layer slab; Blue curve: conductance of a semi-infinite PC guide. (b)
For a perfectly conducting semi-infinite metal guide for >..jd = 3.15.

analysis (Botten et al., 2003) similar to that in §2.2. Additional conducting modes, which
carry energy through the structure, are introduced with increasing guide width, with the steps
in the ladder corresponding to the threshold of each new mode. Oscillations in the steps are
easily understood in terms of Fabry-Perot resonances between the front and back interfaces
of the slab. The analysis is further enhanced by replacing the slab by a semi-infinite guide,
and exploiting the Reciprocity Theorem to write

9 = L It~~12~ L(1-!PmI2
).

qp m

(33)

The approximate form follows from an asymptotic analysis (Botten et al., 2003) and
characterises accurately the staircase behaviour as the sum over all propagating modes m of

the transmittance 1 - IPml2 of mode m where Pm ~ [(F2-) -1 R2F2-] mm and medium M2

denotes the semi-infinite guide. The quantity Pm is the effective reflection coefficient
experienced by mode m at the interface of the guide with free space. This diminishes rapidly
with increasing guide width, allowing the conductance of each mode to saturate rapidly and
carry unit energy (Fig. 2(b)).

3 COMPUTATIONAL IMPLEMENTATION

Our initial computational studies of individual finite PC clusters relied on the multipole
method of §2.1, encoded in Fortran and executed sequentially. While adequate for small
crystals, the code relies on the solution of a dense system of linear equations obtained by
truncating the series expansion in (4). However, since the size of the Rayleigh matrix is
proportional to the square of the product of N; and the number of terms in the truncated
series, the method requires substantial memory and execution time for large clusters (ie of
order Nc > 200).

Later studies focussed on the effects of disorder (in the refractive indices, radii or positions of
the cylinders) on a cluster. These investigations relied on a Monte Carlo approach in which
an ensemble of sample perturbations were applied to a crystal specification, thus generating a
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set of realisations, each of which could be treated with the multipole method independently.
This approach necessarily placed further demands on execution time. Parallel
implementations of the code have been developed in response to these limitations.

Initially, a parallel code for the analysis of a single realisation was developed using OpenMP.
The source language used was Fortran90 (MIPSpro 7 Fortran compiler). The code was
implemented on the SGI Origin 2400 machine operated by ad. This is a 64-processor
shared-memory machine with 32 Gbyte of non-uniform memory access RAM. The cpus are
400MHz R12000 processors, each with a peak speed of about 800 Mflops. The code itself
was a direct port of the sequential code, with OpenMP directives used to parallelise the loops
responsible for the generation of the Rayleigh matrix, and the reconstruction of the electric
field. A full inversion of the Rayleigh matrix was performed by routines imported from the
reference version of LAPack (Anderson, Bai, Bischof, Blackford, Demmel, Dongarra,
Du Croz, Greeenbaum, Hammarling, McKenney and Sorenson, 1999).

Subsequently, this code was used as the basis for the slave component of a master-slave style
program which implemented the Monte Carlo analysis of an ensemble of perturbed PC
realisations. The master-slave code was developed using MPI to encapsulate master and slave
components as separate processes. The master process was responsible for: creating the
perturbed realisations comprising the ensemble by adding randomised perturbations to the
parameters of an underlying ideal crystal; farming these out to separate slave processes for
analysis; and performing the statistical analysis of the results returned by the slaves. Each
slave process could operate either sequentiallly or as a parallel process itself (via OpenMP).
In fact, multiple threads were used in each slave to reduce elapsed run time during studies of
large crystals. The master process was also responsible for checkpointing, as well as
automatic termination after checkpointing and resubmission of the partially completed job to
the batch queue.

Early performance data for these codes (on the SGI Origin 2400) was reported in Langtry,
Botten, Asatryan and McPhedran (2001). The initial test problems involved clusters of 136
cylinders, and the series expansion in (2) was truncated after 11 terms. The code later
successfully handled up to 526 cylinders with series truncation after 11 terms. For larger
problems, stack frame buffer overflows occurred. Thus for larger clusters it was decided to
port the code to the APAC AlphaserverSC, a distributed system comprising 127 compute
nodes, each with 4 Alpha 2 1264C processors and between 4 and 16 Gbytes of RAM, shared
by the four local processors. The architecture of this system is quite different from that of the
SGI Origin, and thus the code required some reconfiguration. In particular, since memory can
be shared by at most four processors, slaves could employ at most four threads when running
with OpenMP. However, system calls used by the master process for resubmitting a partially
completed job proved to be incompatible with the combined use of OpenMP and MPI.
Consequently the code was recompiled without OpenMP, leaving each slave running on just
one processor and communicating with the master process via MPI.

Production runs of the code on both the SGI Origin and the AlphaserverSc systems have
provided significant results (Langtry et al., in press). These have in turn suggested further
extensions to the code-in particular, the implementation of the Bloch mode method
described in §2.2. However, rather than further increasing the complexity of the code, the
program was partitioned into a suite of separate programs which can be executed
independently.
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Figure 3: Conceptual design of GenSeries suite: shell scripts govern the processing in parallel
of an ensemble of crystal realisations, producing multiple individual map files that are then
post-processed by a separate program yielding the statistical analysis.

In its present form, the principal components of this suite (collectively referred to as
'genSeries2'; see Fig. 3) are genCrystalSpec, responsible for generating a crystal realisation
with a specified randomisation of one or more defining characteristics of the crystal;
genFieldMap, responsible for computing the Rayleigh matrix for a crystal based on its
geometry, physical properties and wavelength of radiation, and then computing the property
of interest (eg local density of states, field intensity) over a two-dimensional grid of specified
resolution; and genFieldAveMap, responsible for computing the average of the property over
the specified grid along with a statistical measure of the convergence of the Monte Carlo
process. Data is communicated between these programs via the use of files, as illustrated in
Fig. 4.

The new suite offers a number of advantages over the initial parallel version of the code:

1. The separation of the code into independent program units provides a more loosely
coupled system, simplifying the process of extending the functionality of the system.

2. Having the analysis of individual realisations performed by separate instances of the
one program allows the task farming aspects of the system to be implemented by shell
scripts rather than by MPI code, thus utilising a simpler model of parallel execution.

3. Checkpointing is greatly simplified, particularly for runs analysing large crystals and
requiring high resolution in the output field maps.
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Site Version No. cpus Reported Reported Reported cpu Speedup
of code Real time user time utilisation factor

(hours) (hours) (%)
ac3 SGI 1 1 35.24 35.22 100 1
ac3 SGI 1 2 20.11 39.49 197 1.75
ac3 SGI 1 4 23.01 68.52 298 1.53
ac3 SGI 2 4 10.31 40.04 389
ac3 SGI 3 4 9.20 36.71 399
APAC-SC 3 1 10.32 10.28 99 1
APAC-SC 3 2 9.02 17.97 199 1.14
APAC-SC 3 4 4.02 15.95 387 2.57
APAC-SC 4 1 1.45 1.73 98 1
APAC-SC 4 2 1.12 2.22 197 1.29
APAC-SC 4 4 0.72 2.62 386 2.01

Table 1: Performance data for versions of the genSeries2 code when executed on the ac3 SGI
Origin2400 system and the APAC Compaq Alphaserver-SC system.

4. SMP parallelism can once again be employed via multiple threads and OpenMP, as
illustrated in Fig. 5, in order to reduce elapsed run time and take advantage of the
customised parallel library routines provided by the proprietary version of LAPack.

Table 1 presents a comparison of the performance of different versions of genSeries2 on the
same problem: a study of the intensity of the electromagnetic field due to a line source
adjacent to the entry to a straight waveguide embedded in a finite cluster of 252 cylinders. All
versions use OpenMP to implement loop parallelism in previously sequential code. In
version 1, the calculation of the output field points for an individual realisation was carried
out by computing the full inverse of the Rayleigh matrix (9), computing the vector of
coefficients B and then using this to compute the field value. Version 1 used the reference
(source) version ofLAPack to compute the full inverse of the Rayleigh matrix. Version 2
simply replaced this routine by linking in the proprietary version of the same LAPack routine
from the vendor-supplied scientific library. In version 3 the full inversion of the Rayleigh
matrix is replaced by an LU factorisation of the matrix, again implemented by linking in the
appropriate routine from the vendor-supplied scientific library. In version 4 a user-coded
routine for performing matrix-vector multiplication used in earlier versions was replaced by
the proprietary version of the appropriate BLAS level 2 routine. Program runs were
undertaken on the ac3 system (SGI Origin 2400 system with 64 400MHz R12000 processors
and 32Gb of RAM) and on the APAC-SC system. The speedup factor quoted is the quotient
of the reported real time for the job and the corresponding reported real time for the
sequential job described in the first row of each part of the table. For purposes of comparison
of performance, individual runs were restricted to four cpus since this is the maximum
number available to OpenMP on the APAC-SC system. Note the apparent discrepancy in the
third row, where a 4 cpu job appears to have cpu usage corresponding to only 3 cpus. Similar
benchmarking jobs are currently being undertaken on the APAC Alphaserver-SC and Linux
cluster systems.

The data in Table 1 clearly indicates that the most significant improvements in reported
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Figure 4: Architectural overview of GenSeries2 suite. Data flows between programs: rectan-
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Figure 5: Run-time overview of genFieldMap (gfm) component of the GenSeries2 suite for
shared memory processor (SMP) nodes on the APAC AlphaServer.
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Figure 6: Electric field intensity in a PC waveguide subject to refractive index disorder: (from
left to right): 0%, 10%,20%,30%.

execution time derive from the replacement of reference version LAPack routines and
user-coded routines by vendor-customised proprietary routines. As an indication of the
significance of these changes, we note that speedup factors due to increasing the number of
cpus available to a given version of the code lie in the range from 1 to 2.57. However,
comparing the reported real times for version 3 of the code with 1, 2 and 4 cpus to
corresponding times for version 4 yields improvements in these times by factors of 7.21, 8.05
and 5.58, respectively.

4 RESULTS

We begin with an investigation of the effects of disorder in square arrays of dielectric
cylinders using the codes described in §3. Our results indicate substantial robustness of the
PC bandgap effect and of localised modes when the cylinder positions, radii and refractive
indices are perturbed. This is illustrated in Fig. 6 by plots of electric field intensity subject to
refractive index disorder in a guide of length 20d embedded in a cluster of 252 cylinders of
radius 0.3d and average index 3.0, with disorder in the cylinder refractive indices given by
nl = n +~,where ~ is a random variable uniformly distributed in the range [-Q, QJ. More
succinctly, the level of disorder is defined as Q/n and expressed as a percentage. The guide is
excited by a line source parallel to cylinder axes radiating at wavelength 3.3d.

Fig. 7 plots the normalised local density of states versus wavelength in the middle of the
central cylinder of a circular cluster of 317 cylinders of normalised radius a/ d = 0.3 and
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Figure 7: Local density of states versus wavelength in the middle of the central cylinder of
a circular cluster subject to refractive index disorder of 0% (bottom curve), 10%, 20%, 30%,
40%,50% (top).
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Figure 8: Conductance of a disordered waveguide. As for Fig.2, but with disorder Q=O.O,
Q=0.2,Q=0.4,Q=0.8 from top to bottom.

index 3.0. Cylinders are subjected to increasing levels of disorder: 0% (bottom curve), 10%,
20%,30%,40%,50% (top). We note that the band gap is still observable at 20%, but has
effectively disappeared at 30%-reflected in the behaviour of the intensity plots in Fig 6.

Fig. 8 displays the conductance of a waveguide subject to disorder in the cylinder refractive
indices, given again by nl = n +~where ~ is a random variable uniformly distributed in the
range [- Q, Q]. It is seen that the ladder behaviour remains observable with disorder of up to
10%, while strong disorder destroys the effect.

Finally, we show in Figs. 9 and 10 field plots for a number of PC devices: in Figs. 9(a) and
9(b) the finite directional coupler (White, Botten, de Sterke and McPhedran, in press)
generated using a multipole calculation. Fig. 9(c) displays the transmittance, computed using
the modal analysis of §2.2, of such a coupler with an overlap region of L = 5 layers. The
sharp resonances in the transmission spectrum that are evident may be tuned in various ways
to produce ultra-compact devices with very high performance specifications. Fig. 10 shows a
field plot for a PC interferometer, also computed using the modal analysis of §2.2.
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Figure 9: Directional coupler: ideal at (a) A = 3.1d and (b) A = 3.3d.
The plot in (c) describes transmittance as a function of wavelength.
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Figure 10: Field plot of photonic crystal interferometer at resonance.
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5 CONCLUDING REMARKS

We have described both the theoretical basis and the development of a parallel suite for the
analysis of photonic crystals and finite clusters of cylinders. The suite provides a set of tools
that may facilitate the analysis and design of certain types of miniaturised PC devices, and we
have illustrated the application of these tools to the study of a number of examples. Issues of
implementation of the code on different platforms have been considered: of particular interest
are the effects on performance of the use of scientific libraries such as LAPack that have been
customised for the machine architecture.

Further development of the code is currently under way. We are particularly interested in
evaluating its performance, for different classes of problems, on the new cluster systems
installed at both ac3 and APAC. We are also in the process of extending the functionality of
the code to handle a wider range of design problems, including studies with different types of
light sources, such as beams with specified profiles. In future work we hope to extend the
code to handle certain types of three-dimensional crystals.
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