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Abstract
Three-dimensional photonic band gap structures are the ultimate goal for photonic crys-
tals as, unlike one and two-dimensional crystals, they provide for total confinement.
One such configuration is the woodpile structure, consisting of crossed layers of dielec-
tric rods with a stacking sequence, repeating itself every four layers. Our study of
propagation in a woodpile involves the formulation of plane wave scattering matrices
for the structure, derived recursively from the scattering matrices of its component lay-
ers, using a Rayleigh method, in which the field quantities are written as multipole ex-
pansions. For each layer, there is dispersion in only one direction and thus the 20-
diffraction problem is characterised by a family of 10 problems, each associated with
incidence parameters corresponding to the diffracted orders of the orthogonal grating,
leading to scattering matrices that are block diagonal or some permutation thereof. The
theory is applied to deduce transmission spectra and band diagrams for woodpile
photonic crystals.

Introduction
Photonic crystals are periodic, loss less lattices that are the optical analogues of elec-
tronic crystals or semiconductors, in that their energy spectra contain bands of frequen-
cies for which light cannot propagate within the lattice [I]. With the development of a
lossless medium that is impervious to light, it is possible to control the flow of light in
ways hitherto not possible. This may ultimately lead to the development of integrated
optical circuits that will revolutionise communications technology, providing the capac-
ity to transmit and route signals optically without the need to ever convert the photons
to electrons and back, as is the case with the use of present electronic switching technol-
ogy.

Scattering matrices for woodpile structures
The woodpile structure consists of layers of cylindrical rods with a stacking sequence,
which repeats itself every four layers. Within each layer, the rods are parallel and sepa-
rated by a distance d. The distance between successive layer centres is h and the rod
axes in adjacent layers are orthogonal. To obtain a periodicity of four layers in the
stacking direction, rods separated by one intermediate layer are offset by a distance of
d / 2 in the direction perpendicular to the rod axes.

First, consider a single grating consisting of identical parallel cylindrical rods of radius
a whose axes are separated by d. In the chosen Cartesian coordinate system, the z
axis is vertical and the cylinder axes are parallel to the x axis and lie in the xy plane.
Fields above and below the grating are expressed as expansions of plane waves, com-
prising transverse electric (TE) and transverse magnetic (TM) components of the elec-
tric field, with respect to the vertical z axis. These TE/TM components are combined
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as block matrices according to the equations ~)± = [(E~»)J (FJ~ t rand

~± = [(E~ t (FnJJ, where E~ = [ EJ, ] and FJ± = [F/, ] respectively denote the TE

and TM components of the incoming plane wave electric field, while E~) = [ E~" ] and

FJ~ = [FJ~,' ] respectively denote the TE / TM components of the outgoing electric field.

Now let ~1 and ~ respectively denote reflection matrices for incidence from above

and below the layer and let ~ and 9" denote the corresponding transmission matrices.

These matrices will be functions of the incidence direction, the lattice geometry and the
refractive index of the rods. It is clear that a relationship of the form

will hold. Using a Rayleigh multipole method [2]. we have been able to obtain explicit
expressions for the reflection and transmission matrices [3].

To obtain scattering matrices for the woodpile
structure. we derive combined reflection and
transmission scattering matrices for a crossed
pair and then use an algorithm [2, 3] to form a
stack of such pairs. For a crossed pair, we
note that the bottom grating has cylinders
aligned with the x' axis in a secondary coor-
di "d 'mate system x = y, y = -x an z = z .
This enables us to derive scattering matrices
for the bottom layer with respect to the system
(x',j/, z'). After some intricate permutations
of their entries, we can express these matrices
in the primary coordinate system. It is then
straightforward [2, 3] to stack these one-
dimensional gratings in the woodpile fashion.

The Bloch Method
Crucial to the characterization of field propa-
gation in a photonic crystal is the elaboration
of its eigenstates or Bloch modes, which form
a complete basis in which to expand all field
quantities. These modes are derived via plane
wave representations of the field immediately
above and below any layer. It can be shown
that the modes of the crystal are the eigen-
states of the inter-layer translation operator T .

It is the propagating states u = e -,k e- that are

of greatest interest. Here, e3 is a vector that

characterizes the periodic stacking of the
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Figure I: Transmittance for a 20 layer
silicon woodpile. with d = 0.711 pm
and h = 0.21 f.1m. The cylinder radii
are 0,035. 0.05 and 0.1 f.1111. repre-
sented by the thick. dashed and thin
curves respectively.
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Figure 2: The woodpile of Fig. 1. with
cylinder radius 0.1 pm. showing 12.
16. 20 and 24 layers.



composite layers, Ji is an eigenvalue of T and k, is the Bloch vector [4], which defines
the quasiperiodicity that characterizes the given mode. The importance of the propagat-
ing states lies in their capacity to transmit energy over arbitrary distances within the
crystal. Band gaps are characterised by the complete absence of propagating states, thus
removing the mechanism of energy trans-mission through the crystal.

Figure 1 shows the transmittance for a 20-layer woodpile for vertical incidence, with the
electric field perpendicular to the axes of the top layer of cylinders. The large drop in
transmittance near the wavelength of 1.4 Jim signals the possibility of a photonic band-
gap. It is possible that the gap may not persist at all incidence angles, but in this case
the gap is a true one, as can be seen from the band diagram of Figure 3. Notice the
typical decreasing strength of the band gap and shift in the point of maximum transmis-
sion to lower wavelengths as the rod diameter decreases.

The transmission scattering matrix for a crystal of
t layers may be derived, following [4]. The as-
ymptotic behaviour of this expression with in-
creasing t is governed by its dominant eigen-
value and the field intensity decays as l/.lllt
within a band gap. This is clearly shown in Fig-
ure 2, where each additional group of four layers
causes the transmittance to diminish by a constant
factor.

Results

In Figure 3, we show a projected band diagram
for an infinite woodpile (as in Figure 2), with a
complete band gap evident. The vertical axis is
proportional to the wavenumber, while the hori-
zontal axis traverses the irreducible part of the
projection of the Brillouin zone ([5], p 37).
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Figure 3: Two dimensional projec-
tion of the band structure of an
infinite woodpile crystal, with
d =0.711,um. h =0.21,um. and
cylinder radius of O.I,um .
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