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Abstract—It is becoming increasingly achievable for steel
bridge structures, which are normally both inaccessible and
hazardous for humans, to be inspected and maintained by
autonomous robots. Steel bridges have been traditionally con-
structed by securing plate members together with rivets. However,
rivets present a challenge for robots both in terms of cleaning and
surface traversal. This paper presents a novel approach to RGB-
D image and point cloud analysis that enables rivets to be rapidly
and robustly located using low cost, non-contact sensing devices
that can be easily affixed to a robot. The approach performs
classification based on: (a) high-intensity blobs in color images,
(b) the non-linear perturbations in depth images, and (c) surface
normal clusters in 3D point clouds. The predicted rivet locations
from the three classifiers are combined using a probabilistic
occupancy mapping technique. Experiments are conducted in
several different lab and real-world steel bridge environments,
where there is no external lighting infrastructure, and the sensors
are attached to a mobile platform, i.e. a climbing inspection robot.
The location of rivets within 2m of the robot can be robustly
located within 10mm of their correct location. The state of voxels
can be predicted with above 95% accuracy, in approximately 1
second per frame.

I. INTRODUCTION

The inspection and maintenance of large scale infrastructure

such as steel bridges is vital to ensure the integrity is preserved.

However, often these tasks require humans to work in environ-

ments that are dangerous or difficult to access, such as due to

the presence of traffic, working at heights in confined spaces,

heavy manual handling, or nearby harmful contaminants, e.g.

asbestos and lead-based paint. Thus, there is motivation to

develop automated robotic tools [1], [2]. An autonomous robot

that is tasked with inspecting and maintaining an unknown

and complex 3D real-world environment must be capable of

generating an accurate and reliable map of the surrounding

surface geometry.

Recent advancements in sensing and robotic technology are

enabling infrastructure health inspection tasks to be automated,

even in complicated environments [1], [3]. It is advantageous

for a robot, tasked with performing interactive operations on

steel surfaces that contain rivets, to be able to accurately and

robustly identify the rivets. An accurate 3D geometric surface

map, coupled with rivet locations, can enable maintenance

operations, such as grit blasting or painting, to be properly

planned [4]. Building maps that incorporate rivet locations is

also important for mobile inspection robots that perform sur-

face traversals and transitions, especially for a bipedal climbing

robot, where safe foot placement and stepping motions must

be precisely planned [5].

Two example applications, shown in Fig. 1, that require

an accurate, far-field rivet-detection solution include, a steel

bridge maintenance robot capable of automatic grit-blasting,

and a bio-inspired climbing robot that traverses and inspects

surfaces covered in rivets [1], [4]. Each robot, is equipped with

an RGB-D sensor, to collect color and depth measurements of

the surrounding steel surfaces. In practice the density of surface

data is insufficient to accurately match templates of specific

rivet sizes. Instead rivet-shaped protrusions, divots, and heavy

rust patches need to be identified since they require particular

maintenance attention and should be avoided by a mobile robot

that is traversing the surface.

Mapping and exploration approaches exist to generate 3D

geometric maps of an environment that surround a robot. Most

engineering approaches greedily select sensing viewpoints that

are predicted to significantly reduce the uncertainty within

the map [6]–[8]. Alternatively, approaches may adopt optimal

exploration schemes based upon locating structural features

about an environment [5], [8], so as to fit templates that

encapsulate prior knowledge to the data [9].

In terms of determining the location of rivets, approaches

can be considered to broadly fall into two categories: near-field

non-destructive evaluation (NDE) and far-field techniques. In

applications such as inspecting ageing aircraft various NDE

techniques such as Magneto-optic Imaging (MOI) are used

to detect the presence of cracks initiated at rivet holes [10].

Existing eddy current [11] and ultrasonics techniques, such as

Guided Lamb Waves [12], [13] and acoustic structured wave

propagation [12], require contact or close contact with surfaces.

These NDE techniques can provide high resolution detail of

the condition of surfaces in, and around rivets. However, they

exhibit necessarily low efficiency and require close or actual

contact with surfaces. In our target application internal material

analysis is unnecessary and the location of rivets needs to be

found more rapidly and at a distance, in order to avoid stepping

on them, or to perform targeted surface maintenance tasks.

The other category of rivet and surface inspection is far-

field (i.e. long range). Relevant methods in the literature

are generally dependant on reliable, controllable illumination

conditions, such as in a factory. One such method, using

”Edge of Light” technology and image processing techniques,



has presented rivet detection results [14]. Significant literature

describes the identification of features using RGB-D images,

such as rust on infrastructure [15], people [16], or objects

[17]. However, the existing approaches do not accurately and

robustly detect rivet locations from data collected by a mobile

robot in poorly lit, real-world environments.

The main contribution of this paper is three classifiers that

utilise data from different modes of sensing, and a probabilistic

fusion technique which improves the accuracy and robustness

of rivet detection. The environment is not lit by off-board

lighting infrastructure, and is naturally dim or dark. The RGB-

D data collected can be noisy but the location of rivets that are

within several meters of the robot’s sensor are found so that

nearby rivets, and areas determined to be free of rivets, can

augment the geometric map that is used for planning purposes.

This paper is organized as follows, Section II describes the

three classifiers: color, depth and surface normal, then the

methods for probabilistically fusing the outputs into a rivet-

occupancy map containing both rivet locations and space

which does not contain rivets. Section III presents experimental

results using data collected both in a laboratory and on-site

in a real steel bridge environment. Section IV discusses the

limitations of the approach. Section V provides conclusions

and future work.

II. METHODOLOGY

A. Robot and Sensors’ Models

Consider an n Degree of Freedom (DoF) kinematic chain

robot, positioned at a base location described by a homoge-

neous transform, 0Tb. Given a model and an n-dimensional

vector of joint angles, q = [q1, . . . qn]
T , the robots end-effector

location, bTf (q), can be computed using forward kinematics.

Where depth and color cameras are rigidly mounted close

together and on the end-effector, and the position relative to the

end-effector is given by fTc, then the position and orientation

of the sensor is,

0Tc(q) =
0Tb

bTf (q)
fTc, (1)

which describes both the camera’s center position, pc(q) and a

projection line from the camera’s center normal to the image

plane, nc(q). A depth camera, such as a Structure Sensor,

returns a grayscale image with resolution Md×Nd (e.g. 640 x

480) of depth values, D = dm,n∀{m,n} ∈ {Md,Nd}, where

Nd = {1 . . . Nd} and Md = {1 . . .Md}. A color camera, with

a field-of-view wider than the depth camera’s, can be calibrated

and synchronised such that the two cameras form a stereo

camera system. By using the cameras’ intrinsic and extrinsic

parameters from calibration and perspective projection [18],

each pixel of the depth image can be registered with an RGB

pixel hence converted into a colored 3D-point, pm,n, and

grouped into a colored point cloud, P = pm,n∀{m,n} ∈
{Md,Nd}.

The overall approach is shown inside the red box of Fig.

2. The goal is to turn the raw color and depth images into

probability rivet-occupancy maps that describe the predicted

locations of rivets, the volumes predicted to be free of rivets,

and all other volumes where the state is unknown. Three clas-

sifiers: two image-based (color and depth), and one surface-

normal based classifier, each outputs a point cloud which holds

the determined location of the rivets in the same coordinate

frame as the robot. These point clouds are then put into

individual probability maps, consisting of voxels that store the

probability that a given volume contains a rivet. The maps

output from the approach could be fused into one probability

map for further analysis or planning purposes.
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Fig. 2. Overview of data flow with the approach shown inside the red box.
The fusion of maps from the three classifiers and from multiple sensor readings
is shown for completeness but is outside the scope of this paper.

B. Color Image Classifier

In order to illuminate the normally pitch-black application

space for inspection purposes, a small light source is mounted

close to the camera. This camera sensor-light source combina-

tion basically turns a passive camera into an ‘active sensor’,

which most significantly illuminates protruding objects, such

as steel rivets due to their dome-shaped head. These protruding

objects generally give strong reflection from wherever they are

observed. The flowchart of the color image classifier is shown

in Fig. 3.
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Fig. 3. Overview of image processing in the image classifier with a registered
point cloud output for predicted rivet locations.

The RGB image, is normalized to fully occupy its dynamic

range for optimal threshold-based detection. Contrast enhance-

ment is crucial for successful morphological operations, which

consist of three steps: (1) a intensity histogram equalization

step for contrast enhancement; (2) a dilation and erosion step

to achieve maximum separation between foreground objects

from background image; (3) the remaining foreground image

undergoes yet another filtering and histogram equalization to

come into a fully normalized state. This new image has clean
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Fig. 1. a) Grit-blasting robot [4], b) Climbing inspection robot [1], c) Simulated blasting robot cleaning rivets by pointing a blast stream of high-velocity air
and garnet particles at target points on the surface with an appropriate orientation, d) Simulated climbing robot stepping around rivets on a surface.

foreground objects embedded in the background. The image

is segmented and connected objects (i.e. blobs) are labelled.

At this point, foreground and backgrounds are completely

separated. The next stage is identification of elliptical shaped

rivets from blobs. This is achieved by firstly applying Canny

Edge Detection to obtain contours of the blobs, then ellipse

fitting to the connected contours. Thresholds, based upon a

priori rivet shape knowledge (e.g. ellipse area, long-to-short

axis ratio and “goodness” of fit), are applied to each fitted

ellipse to filter out noise. Registered colored 3D-points of the

rivets are then recovered from the 2D pixel position.

C. Depth Image Classifier

This classifier is similar to the Color Image Classifier, with

the normalization and background removal stage replaced with

a plane removal process. Planes are detected using an iterative

RANSAC plane fitting algorithm as shown in Algorithm 1.

In each iteration, i, RANSAC [19] processes points in P and

outputs the largest plane, Πi. If the plane is valid, i.e. the point

count, size(Pi) is above a threshold, τr = 1%, then these fitted

points are removed from P which becomes the input to the

next iteration. The algorithm terminates when the latest plane

is too small.

Algorithm 1: Iterative RANSAC Large-plane Removal

while 0 < size(P) do
Pass P into RANSAC;

Output is largest plane, Πi with point set Pi ;

if τr < size(Pi) then

P = P− Pi;

else
exit

RANSAC can mistakenly fit a group of rivets into one

plane when sections of the rivet data points are within plane

fitting tolerance. This problem can be resolved by performing

a dispersion test. A plane dispersion measure is defined as,

σ2 =
Ap.i

size(Pi)
(2)

where Ap.i is the ith plane’s contour area (i.e. area of the

contour of points on the plane in the 2D depth image), and

size(Pi) is the plane’s point count. A small σ2 indicates a

high density of closely located points. However, a large σ2

shows that points are sparsely distributed, as is typically found

at rivets, therefore the plane is discarded.

All pixels, IPlane and points associated with the N large

planes, Πi, ∀i ∈ {1, . . . N}, shown in Fig. 4a are then

removed. Such that an image, I∗D = ID − IPlane has plane-

associated points as black, and RANSAC outliers (i.e. rivets

and perturbations) as yellow (Fig. 4b). I∗D is then passed

through the image classifier (Fig. 3).

(a) (b)

Fig. 4. a) Original image with RANSAC applied to point cloud. b) Depth
image once all points on the main planes have been set to black.

D. Surface-based Normal and Patch Classifier

The third classifier, shown in Fig. 5, analyses the surface

normals of a triangulated point cloud to determine the points

with dissimilar normals, and thus a high probability of describ-

ing a rivet.
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Fig. 5. Overview of surface classifier.



The classifier takes in the point cloud and triangulates it

by grouping nearby sets of 3 vertices into a face definition

provided that: (1) the length of all edges ||a||, ||b|| and ||c||
are less than a reasonable bounds (i.e. 5mm), and (2) the set

of ratios of all sides, s = {a
b
, a
c
, b
c
} are within a pre-specified

thresholds range. Thus, preventing spurious data points cre-

ating non-existent triangles. The classifier then analyses and

groups similar normals together to iteratively generates patches

[20]. The output is a new point cloud that is a subset of the

grid-based samples generated by the methodology explained

henceforth.

A grid is created over the space, then at each grid point

the normals of the triangles are averaged as shown in Fig. 6a,

and an average normal value for that grid point is output as

shown in Fig. 6b. Note how the grid points do not correspond

to locations of the vertices, but instead are axis aligned

and regularly sampled. The grid points are clustered based

upon the normals. Patches with large numbers of points are

discarded and only the remaining vertices are returned. These

are generally on, or nearby, rivets or surface edges.
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Fig. 6. a) Average triangle surface normals, nj at a grid point, j. b) Normal
clustering example so large clusters can be identified and removed, leaving
normals dissimilar to surrounding normals as likely rivets candidates.

Although this classifier may appear similar to the Depth

image classifier, there are several important differences that

allow rivet identification in certain situations, and mean that the

outputs are in fact quite different. Clustering for plane filtering

is done based upon the triangulated surface normals, rather

than RANSAC, and segmentation is based upon axis-aligned

sampled grid points. Thus, this classifier does not attempt to

locate rivets, but instead is looking for voxels that contain

rivets, which is a slight but important difference. This classifier

produces noisy results, but will identify rivets that one of the

image classifier may miss or filter out. Note that it is difficult to

recover the original RGB-D image from the grid points since

they are in different coordinate frames.

E. Probabilistic Map Storage

Since this is a classic perception problem with multiple

information sources, it was decided that information fusion be

done using a probability mapping technique [21]. The output

point clouds, Pcx from the three classifiers, cx ∈ {c1, c2, c3}
are fused using a probabilistic rivet-occupancy estimation and

the OctoMap library. Octrees are used as a hierarchical data

structure for 3D spatial subdivision. An octree node represents

space contained in a voxel (i.e. volumetric pixel), and enables

rapid searching by recursively subdividing a volume into eight

sub-volumes, and reduced memory requirements since when

a node’s children are in the same state they are pruned. Each

voxel can be assigned, and updated with a probability that a

rivet occupies this volume.

Firstly a 3D occupancy map is constructed with an axis-

aligned 3D grid at a resolution that is at half the size of

a rivet. Then each voxel is individually treated as having a

mutually exclusive reading about the existence of a rivet, which

are independent of the distance it was measured from the

sensor. For a certain classifier, cx, the probability, Pcx(n|z1:t)
of a leaf node, n containing a rivet according to the t sensor

measurements, z1:t is estimated according to

Pcx(n|z1:t) =
[

1 + 1−Pcx(n|zt)
Pcx(n|zt)

1−Pcx(n|z1:t−1)
Pcx(n|z1:t−1)

Pcx(n)
1−Pcx(n)

]−1 (3)

This update formula depends on the current measurement

zt, a prior probability, Pcx(n), and the previous estimate

Pcx(n|z1:t−1). The term Pcx(n|zt) denotes the probability of

voxel n containing a rivet given the classification output from

a specific classifier, zt which can theoretically be different,

depending upon the sensor model and the trustworthiness of

the classifier output. Then the map, Pm,cx of classifier, cx, is

updated using a Bayesian update given a prior and posterior

so that afterwards each voxel has a weighting. Each point in

the point clouds output by each classifier is iterated through so

that in the end there is a probability value for each classifier,

cx, for each voxel, Pcx(n|z1:t).
Although, it is possible for a single map to be generated

rather than producing separate maps, in this paper separate

maps allows for the results from the classifiers to be compared.

For practicality and visualisation, the output of probability

maps can be reduced to a point cloud where a point represents

the likely location of a rivets. The point clouds can then be

given to the climbing robot step path planner as obstacles that

the robot must avoid, or to other surface interaction planners,

such as a grit-blasting robot’s cleaning/maintenance module,

so as to enable well-rounded, complete coverage of rivets.

III. RESULTS

Three experiments have been conducted in the steel bridge

tunnel environments shown in Fig. 7 using a 7DoF climbing

inspection robot with two cameras mounted to the end-effector:

a Structure Sensor depth camera, and a Logitech C930e RGB

camera. The robot can attach one or two footpads to steel

surfaces in the environment using 3 controllable, permanent-

magnet toes that are in each footpad. Each RGB-D frame

is processed: the resultant point cloud data is triangulated

to generate a mesh, a large plane set, and the tunnel and

manhole plate are detected [8]. The presented approach then

generates a probability map for each classifier. Experiment

1 tests the accuracy of the two image-based classifiers by

comparing the distance between detected rivets with ground

truth in a simple lab environment. Experiments 2 and 3 aim

to demonstrate the robustness of the approach by processing

several different RGB-D datasets taken from different poses



in both the lab and in a real-world environment. The mesh

generated is manually classified to generate a ground truth

probability rivet-occupancy map. For each experiment, statis-

tics are provided about the accuracy, sensitivity and specificity,

as well as relevant computation times of the classifiers.

(a) (b)

Fig. 7. Climbing robot performing inspection in two steel bridge tunnel
environments containing no lighting infrastructure: a) In the lab tunnel; b) In
the real-world tunnel, walking towards the photographer.

Experiment 1 was conducted in a laboratory mock-steel

bridge environment (Fig. 7a) containing 12 approximately

parallel plates (including steel, timber and foam), there are

also patches of surface roughness, blemishes and rust, and the

rivets (in white) that are trying to be detected. Fig. 8a shows

a collected RGB image overlayed with the Depth image. Note

how the field of view of the RGB camera is wider than the

depth camera. The blue arrows in Fig. 8a represent the known

ground truth distances between selected rivet pairs as measured

with Vernier calipers. The single frame shown is classified and

the location of the rivets from the first two image classifiers

is recorded and the errors are shown in Fig. 8b. As previously

mentioned the surface classifier produces probabilities for each

voxel rather than discrete rivet locations, so is not shown here.

The majority of the errors are less than ±10mm even up to

1m away from the sensor. Fig. 8c shows that errors within this

range are not a function of the sensor-to-rivet distance.

Experiment 2 has a similar setup to Experiment 1 with the

robot inspecting the controlled lab environment in Fig. 7a.

The robot was placed at several base locations and poses so

as to collect a variety of RGB-D images of groups of rivets

on the floor and walls. 10 different images were collected

and processed. Each triangle mesh collected has the vertices

manually classified as shown in Fig. 9a and a rivet-occupancy

probability map is generated. The ground truth is then com-

pared against the resulting maps from individual classifiers as

shown in Fig. 9b. Fig. 9c shows the output classification from

the RBG classifier, note one false positive misclassification

labelled as rivet 8.

In Experiment 3 the robot inspected several unlit, real-world

steel bridge environments as it walked along the walls (Fig.

7b). The ground truth of the rivet locations were manually

classified. Data past 2m is discarded since it is neither trust-

worthy (due to noise), nor useful, due to images being taken

every 1.5m for inspection purposes anyway. Fig. 9d shows a

color-image classifier result from Experiment 3.

As mentioned, each vertex from the triangle mesh of the

surfaces is manually classified to produce a ground truth.

Vertices are fused into a probability rivet-occupancy grid, such

that voxels are effectively in three states: containing a rivet

with high certainty, not containing a rivet, or unknown. The

test results are compared with ground truth and the binary

classification statistical measures of Accuracy, Sensitivity and

Specificity are calculated. Firstly each voxel is classified, and

compared to the ground truth, it is considered a true positive,

TP if a voxel containing a rivet is correctly identified as

containing a rivet; a true negative, TN if a voxel free of rivets

is correctly identified as not containing a rivet; a false positive,

FP if a rivet-free voxel is incorrectly identified as containing a

rivet; and finally a false negative, FN where voxel’s containing

a rivet is incorrectly classified as free of rivets. Thus, the goal

for each classifier is to output only “true” results and no “false”

results. The Accuracy measure is the total number correctly

classified as given by

Accuracy =
(

∑

TP +
∑

TN
)

/∆ (4)

where ∆ =
∑

TP+
∑

TN+
∑

FP+
∑

FP . The Sensitivity

measure is the test’s ability to correctly detect voxels which

do in fact contain a rivet as,

Sensitivity =
∑

TP/
(

∑

TP +
∑

FN
)

(5)

The Specificity measure relates to the test’s ability to correctly

detect rivets without a voxels as,

Specificity =
∑

TN/
(

∑

TN +
∑

FP
)

. (6)
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Fig. 8. a) Distance between rivets with RGB and Depth image overlayed.
Measurements (shown as blue arrow) taken manually to be compared with the
classification results. b) Rivet Separation Error Histogram; c) Rivet Separation
Error relative to Distance from Sensor:



(a) (b) (c) (d)

Fig. 9. a) Manually classified rivets from a single scan mesh; b) Simulated robot showing actual robot’s pose, and sensor data in a triangle mesh, with manually
classified rivet voxel locations in Magenta and depth-based classifier results in yellow, c) Results of just the RGB color classifier Exp. 1, d) and Exp. 3.

Table I presents the statistical measures results of individual

classifiers: 1=color image, 2=depth image, 3=surface normal.

Exp. Classifier 1 2 3

Accuracy 0.978 0.981 0.967
1 Sensitivity 0.641 0.669 0.622

Specificity 0.988 0.99 0.977

Accuracy 0.983 0.987 0.976
2 Sensitivity 0.654 0.689 0.648

Specificity 0.99 0.994 0.983

Accuracy 0.994 0.996 0.979
3 Sensitivity 0.307 0.418 0.575

Specificity 0.998 0.998 0.981

TABLE I
AVERAGE STATISTICAL MEASURES FOR EACH EXPERIMENT’S DATASET.

The Accuracy of classifier 2 (i.e. depth image-based) was

the highest in the 3 experiments. However it is less sensitive

than classifier 3 (surface normal-based) in the field environ-

ment (Experiment 3). The image-based classifiers (i.e. 1 and

2) produce a cleaner result, whereas classifier 3 produces

more noise, due to the higher number of false positives. Each

classifier produces a relatively high count of true negatives

such that all classifiers reach upwards of 95% accuracy and

specificity. The sensitivity of the results is relatively low in the

field environment. It was found by looking at the overlapping

spheres of voxels classified as rivets and those manually

classified that the manual classification generally includes the

skirt around the rivets even where there may be sparse data

patches. Rivets are generally not missed, instead the manual

classification overestimates the rivet size, leading to increased

False negatives and thus lower sensitivity values.

The data from the three experiments was processed 10

times each, for a total of 280 runs of each classifier. For each

experiment the processing time for each classifier was recorded

and is shown as box plots in Fig. 10. Overall, the colour image

and Surface normal based classifiers (i.e. 1 and 3) consistently

take approximately 1.8secs, no matter the environment. In

the lab environment the Depth-based classifier (i.e. 2) is

significantly faster, averaging 750ms. However in the field

environment, which contains more surface anomalies, the time

taken varies significantly, although on average it is still less

than classifier 1 and 3. Classifier 2 depends on the RANSAC
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Fig. 10. Time taken to complete a single classification using each classifier
for each dataset (i.e. Depth and RGB frame) in each of the 3 experiments.

algorithm to generate the tunnel wall planes, and this takes the

majority of the time and varies most widely. Each classifier is

written in C++ and runs in its own thread, and since there is

no dependence between the data, all 3 classifiers can run in

3 separate threads simultaneously - such that the total time

is similar to the makespan of the three parallel classification

tasks (i.e. max. time of the three). The time to fuse the

classification data together into probability rivet-occupancy

maps, is negligible, taking less than 100 milliseconds.

IV. DISCUSSION

The proposed approach has been shown to detect the rivets

in several variations of the target environments. The approach

can generally process data within 2 seconds and is robust to

noise due to the probability fusion. There are several issues that

require further analysis, such as if the grid for the occupancy

map should be forced to align with prior knowledge about rivet

patterns, if it were available, rather than being axis aligned. It

has been observed that the patterns formed in infrastructure,

such as bridges, are not stochastic and generally follow some

sort of pattern, which have not been fully exploited by this

approach. Currently the classifier outputs have been shown to

be independent of the distance away from the sensor within

the test range. However, it has been observed that outside of

the stated range, the predictions become poorer possibly as

a function of this distance. Therefore, outside this range, a



different sensor model may be required to update the rivet-

occupancy probability map, due to the likely sensor-rivet

distance dependence.

V. CONCLUSIONS

This paper has presented an approach that utilises low-

cost, non-contact RGB-D sensors and classifies the data so

as to rapidly and robustly determine the location of rivets in

steel bridge environments. The predicted rivet locations output

from the classifiers are fused using probabilistic mapping.

The approach has been shown to work in several different

laboratory and real-world environments, even when there is

no external light infrastructure, and when the sensors are

attached to a mobile platform. Although the raw RGB-D data

may be noisy, the location of nearby rivets can be found and

the output probability map can augment existing geometric

maps, which are required for planning purposes. Future work

will evaluate improvements and additions to the classifiers

functions, investigate and optimise the parameters of the sensor

model so as to improve the output map, and incorporate the

approach into a guided exploration approach so as to build a

complete rivet map of the surrounds.
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