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ABSTRACT 

The majority of research on bilevel programming has centered on the linear version of the problem in which only one 
leader and single follower are involved. This paper proposes a general model and Kuhn-Tucker approach for linear 
bilevel programming problems in which one leader and multiple follower(s) are involved, and there may (not) be sharing 
variables among the followers. Finally, a numeric example is given to show how the Kuhn-Tucker approach is applied to 
solve multi-follower linear bilevel problems.  
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1. INTRODUCTION 

Bilevel programming (BLP) was motivated by the game theory of Von Stackelberg [1] in the context of 
unbalanced economic market. In a basic BLP model, the control for decision variables is partitioned amongst 
the players. The upper-level is termed as the leader and the lower-level is termed as the follower. The leader 
goes first and attempts to optimize his/her objective function. The follower observes the leader’s decision and 
makes his/her decision. Because the set of feasible choices available to either player is interdependent, the 
leader’s decision affects both the follower’s payoff and allowable actions, and vice versa [2]. 

The majority of research on BLP has centered on the linear version of the problem in which only one 
follower is involved. There have been nearly two dozen algorithms, such as, the Kth best approach [3,4], 
Kuhn-Tucker approach [5,6], complementarity pivot approach [7], penalty function approach [8], proposed 
for solving linear BLP problems since the field being caught the attention of researchers in the mid-1970s. 
The most popular one is Kuhn-Tucker approach [2]. Kuhn-Tucker approach has been proven to be a valuable 
analysis tool with a wide range of successful applications for linear BLP [2,6].  

Our previous work presented a new definition of solution and related theorem for linear BLP problems in 
which one follower is involved, thus overcame the fundamental deficiency of existing linear BLP theory [9]. 
We also described theoretical properties of linear BLP, developed an extended Kth-best approach for linear 
BLP [10], an extended Kuhn-Tucker approach [11] and an extended branch and bound algorithm for linear 
BLP. We also identified five kinds of relationships among the followers through building a bilevel multi-
follower framework. Particularly, it proposed a model and Kuhn-Tucker approach for linear bilevel multi-
follower problems (BLMFP) in which there are not sharing variables among followers. We explored 
theoretical properties of linear BLMFP, developed a Kth-best approach and branch and bound algorithm for 
the model. This paper proposes a general model and Kuhn-Tucker approach for linear BLP problems in 
which one leader and one or multiple follower(s) are involved, and the followers may (not) share variables 
except the leader’s for multi-follower problems.  Following the introduction, this paper proposes a general 
model for linear BLP in Section 2. A general Kuhn-Tucker approach for this model is described in Section 3. 
A numeric example for this approach is given in Section 4. A conclusion is given in Section 5.  
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2. A GENERAL MODEL FOR LINEAR BILEVEL PROGRAMMING 

Let us consider a BLP problem in which one leader and one or multiple follower(s) are involved. In our BLP 
model, the control for the decision variables is partitioned amongst the players who seek to minimize their 
individual payoff objective functions. Perfect information is assumed so that all players know the objective 
and feasible choices available of the others. The leader goes first and attempts to optimize her/his objective 
function. In order to that, the leader must anticipate all possible responses of her/his opponents. Each 
follower executes simultaneously her/his policies after, and in view of, decisions of the leader. Because the 
set of feasible choices available to each player is interdependent, one player’s decision affects both the payoff 
and allowable actions of all of others. 
For nRXx ⊂∈ , im

ii RYy ⊂∈ , 1
1: RYYXF K →××× K , and 1

1: RYYXf Ki →××× K , 

Ki ,,2,1 K= , a linear BLP problem in which 1≥K  is given: 
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Definition 1 A topological space is compact if every open cover of the entire space has a finite subcover. For 
example, ],[ ba  is compact in R  (the Heine-Borel theorem) [12]. 
 
Corresponding to (1), we give following basic definition for linear BLP solution. 
Definition 2   

(a) Constraint region of the linear BLP problem: 
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The linear BLP problem constraint region refers to all possible combinations of choices that the leader and 
follower(s) may make. 

(b) Projection of S  onto the leader’s decision space: 
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Unlike the rules in non-cooperative game theory where each player must choose a strategy simultaneously, 
the definition of BLP model requires that the leader moves first by selecting an x  in attempt to minimize his 
objective subjecting to constraints of both upper and lower level. 

(c) Feasible set for each follower )(XSx∈∀ : 

  }),,,(:{)( 1 SyyxYyxS Kiii ∈∈= K . 
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The feasible region for each follower is affected by the leader’s choice of x , and  
 the allowable choices of each follower are the elements of S .  

(d) Each follower’s rational reaction set for )(XSx∈ : 

)]}(ˆ:),,,2,1,,ˆ,(min[arg:{)( xSyijKjyyxfyYyxP iijiiiiii ∈≠=∈∈= K ,  

where Ki ,,2,1 K= , =∈≠= )](ˆ:),,,2,1,,ˆ,(min[arg xSyijKjyyxf iijii K  

)}(ˆ),,,,2,1,,ˆ,(),,,(:)({ 1 xSyijKjyyxfyyxfxSy iijiiKiii ∈≠=≤∈ KK .  

The followers observe the leader’s action and simultaneously react by selecting iy  from their feasible set to 
minimize their objective functions. 

(e) Inducible region: 
},,2,1),(,),,,(:),,,{( 11 KixPySyyxyyxIR iiKK KKK =∈∈= .  

 Thus in terms of the above notations, the linear BLP problem can be written as 
 }),,,(:),,,(min{ 11 IRyyxyyxF KK ∈KK .                  (2) 
We propose the following theorem to characterize the condition under which there is an optimal solution for 
a linear BLP problem. 
Theorem 1 If S  is nonempty and compact, there exists an optimal solution for a linear BLP problem. 
Proof: Obvious. 

3. A GENERAL KUHN-TUCKER APPROACH FOR LINEAR BILEVEL 
PROGRAMMING 

Let write a linear programming (LP) as follows. 
 cxxf =)(min         
 subject to bAx ≥   0≥x     
where c  is an n-dimensional row vector, b  an m-dimensional column vector, A  an nm×  matrix with 

nm ≤ , and nRx∈ . 
Let mR∈λ  and nR∈µ  be the dual variables associated with constraints bAx ≥  and 0≥x , 
respectively. Bard [2] gave the following proposition. 
 
Proposition 3.1 A necessary and sufficient condition that )( *x  solves above LP is that there exist (row) 

vectors *λ , *µ  such that ),,( *** µλx  solves: 
 cA −=− µλ         
 0≥− bAx          
 0)( =− bAxλ          

 0=xµ           
 0,0,0 ≥≥≥ µλx .       

Proof: (See reference [2] PP. 59-60) 
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Theorem 2 A necessary and sufficient condition that ),,,( **
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where Ki ,2,1 K= . 
Proof: 1. Let us get an explicit expression of (2). 
Rewrite (2) as follows: 
 ),,,(min 1 KyyxF K  

 subject to IRyyx K ∈),,,( 1 K . 
We have 
 ),,,(min 1 KyyxF K  

 subject to Syyx K ∈),,,( 1 K  

       )(xPy ii = , 

 where Ki ,,2,1 K= , by Definition 2(e). Then, we have 
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 where Ki ,,2,1 K= , by Definition 2(d). We rewrite it as: 
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                  ),,,(min 1 Ki yyxf K  
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                  subject to Syyx K ∈),,,( 1 K , 
where Ki ,,2,1 K= , by Definition 2(c). Consequently, we can have 
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where Ki ,,2,1 K= , by Definition 2(a).  
This simple transformation has shown that solving the linear BLP (1) is equivalent to solving (4). 2. 
Necessity is obvious from (4). 3. Sufficiency. If  ),,,( **
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where p
i Ru ∈ , Kqqq

i Rv +++∈ K21 , im
i Rw ∈ , Ki ,,2,1 K=  and they are not negative variables. 

Because ),,,( **
1

*
Kyyx K  is the optimal solution of (1), we have IRyyx K ∈),,,( **

1
* K , by (2). Thus we 

have  )( ** xPy ii ∈ , where Ki ,,2,1 K= , by Definition 2(e). Consequently, ),,,( **
2

*
1 Kyyy K  is the 

optimal solution to the following problem  
 ))(:),,,(min( *

1
* xSyyyxf iiKi ∈K ,             (6) 

where Ki ,,2,1 K= , by Definition 2(d). Rewrite (6) as follows 

 ),,,(min 1 Ki yyxf K  

 subject to )(xSy ii ∈  

       *xx =   
       *

jj yy = , ijKj ≠= ,,,2,1 K , 

where Ki ,,2,1 K= . From Definition 2(c), we have 

 ∑
=

+=
K

s
sisiKi yexcyyxf

1
1 ),,,(min K                          (7a) 

IADIS International Conference on Applied Computing 2005

85



subject to byBAx
K

s
ss ≤+∑

=1

                                      (7b) 

       j

K

s
sjsj byCxA ≤+∑

=1

, Kj ,,2,1 K=                                (7c) 

       *xx =                                                     (7d) 
                             0≥iy                                        (7e) 

       ijKjyy jj ≠== ,,,2,1,* K ,          (7f) 

where Ki ,,2,1 K= . Let us define: 
1

21
' ),,,( −= KAAAA K , 1

21
' ),,,( −= Kbbbb K , 1

21
' ),,,( −= iKiii CCCC K , Ki ,2,1 K= . To 

simplify (7c), we can have 

∑
=

+=
K

s
sisiKi yexcyyxf

1
1 ),,,(min K                    (8a) 

subject to byBAx
K

s
ss ≤+∑

=1

                                      (8b) 

       '

1

'' byCxA
K

s
ss ≤+∑

=

                            (8c) 

       *xx =                                                       (8d) 
                             0≥iy ,                                          (8e) 

       ijKjyy jj ≠== ,,,2,1,* K ,           (8f) 

where Ki ,,2,1 K= . Thus simplify (8), we can have 

iiiii yeyf =)(min                                             (9a) 

subject to 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑

∑

≠=

≠=

K

iss
ssi

K

iss
ss

i
i

i

yCxAb

yBAxb
y

C

B

,1

*'*''

,1

**

'
                                                 (9b)  

                            0≥iy ,                                       (9c)       

where Ki ,,2,1 K= . 

Now we see that *
iy  is the optimal solution of (9) which is a LP problem. By Proposition 3.1, there exists 
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Let p
i Ru ∈ , Ki qqq
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i Rw ∈  and define  

( )iii vu ,=λ  

iiw µ= , 

where Ki ,,2,1 K= . 
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KKKK wwvvuuyyx KKKK that satisfy (5). Our proof is 

completed. 
Theorem 2 means that the most direct approach to solving (1) is to solve the equivalent mathematical 
program given in (3). One advantage that it offers is that it allows for a more robust model to be solved 
without introducing any new computational difficulties. 

4. A NUMERIC EXAMPLE FOR THE KUHN-TUCKER APPROACH 

Let us give the following example to show how the Kuhn-Tucker approach works. 
Example 1 Consider the following linear BLP problem with 1Rx∈ , 1Ry∈ , and 

}0{ ≥= xX , }0{ ≥= yY . 

yxyxF
Xx

4),(min −=
∈

 

 subject to 3≥+ yx  
      423 −≥+− yx  

      yxyxf
Yy

+=
∈

),(min  

    subject to 02 ≤+− yx  
              122 ≤+ yx  . 
According to our approach, let us write all the inequalities but 0≥x  of Example 1 as follows: 
 03),(1 ≥−+= yxyxg           (11a)    

 0423),(2 ≥++−= yxyxg           (11b) 

 02),(3 ≥−= yxyxg            (11c) 

 0122),(4 ≥+−−= yxyxg           (11d) 

 0),(5 ≥= yyxg .           (11e) 
From (3), we have 
 )4(min yx −=            (12a) 

subject to 3−≤−− yx                        (12b) 
      423 −≥+− yx           (12c) 

    02 ≤+− yx           (12d) 
    122 ≤+ yx            (12e) 

      12 54321 −=−++−− uuuuu         (12f) 

      0),(),(),(),(),( 5544332211 =++++ yxguyxguyxguyxguyxgu    (12g) 

      0,0,0,0,0,0,0 54321 ≥≥≥≥≥≥≥ uuuuuyx .      (12h) 
From (12f) and (12h), we can have following three possibilities. 
Case 1: )0,0,0,0,1(),,,,( *

5
*
4

*
3

*
2

*
1 =uuuuu  
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Case 2: )0,0,0,5.0,0(),,,,( *
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1 =uuuuu  

Case 3: )1,0,0,0,0(),,,,( *
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*
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*
3

*
2

*
1 =uuuuu  

From Case1, (12g) and (11a), we have 
03),(1 =−+= yxyxg  

Consequently, (12) can be rewritten as follows: 
)4min( yx −          

subject to 3−=−− yx         
      423 −≥+− yx         

    02 ≤+− yx          
       122 ≤+ yx   
      0,0 ≥≥ yx  .    

Using simplex algorithm, a solution occurs at the point )2,1(),( ** =yx  with 7* −=F  and 3* =f . 

By using the same way as that of Case 1, we found that a solution occurs at the point )4,4(),( ** =yx  with 

12* −=F  and 8* =f  for Case 2; it is infeasible for Case 3. By examining above procedure, we found 

that the optimal solution occurs at the point )4,4(),( ** =yx  with 12* −=F  and 8* =f . This result is 
identical with that in [13]. 

5.  CONCLUSION AND FURTHER STUDY 

This paper proposes a general model and Kuhn-Tucker approach for linear bilevel programming problems in 
which one leader and one or multiple follower(s) are involved, and there may (not) be sharing variables 
among followers except leader’s for multi-follower problems. Numeric examples are given to show how the 
Kuhn-Tucker approach works. The further study of the research is to explore solution algorithms for the 
general model. 
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