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Abstract

Two distinct aspects of the application of probabilistic reasoning to cricket are considered here.
First, the career bowling figures of the members of one team in a limited-overs competition are

used to determine the team bowling strike rate and hence the probability of dismissing the other
team. This takes account of the chances of running out an opposing batsman and demonstrates
that the probability of dismissing the other team is approximately doubled when there is a good
likelihood of a run-out.

Second, we show that under suitable assumptions the probability distribution of the number of
scoring strokes made by a given batsman in any innings is geometric. With the further assumption
(which we show to be tenable) that the ratio of runs made to number of scoring strokes is a constant,
we are able to derive the expression (A/(A + 2))0/2 as the approximate probability of the batsman
scoring at least c runs (c ~ 1), where A is the batsman's average score over all past innings.

In both cases, the results are compared favourably with results from the history of cricket.

1 Introduction
In an excellent survey of papers written on statistics (the more mathematical kind) applied to cricket,
Clarke [2] writes that cricket "has the distinction of being the first sport used for the illustration of
statistics", but: "In contrast to baseball, few papers in the professional literature analyse cricket, and
two rarely analyse the same topic."

This paper analyses two aspects of cricket. The first is an apparently novel investigation of bowling
strike rates to determine tl:!eprobability of bowling out the other team in one-day cricket. The likelihood
of running out one or more of the opposing batsmen is then incorporated for greater accuracy, and leads
to the useful conclusion that the probability of dismissing the other team is approximately doubled when
there is the likelihood of at least one run-out. These ideas were developed in the papers Cohen [4, 5],
and are presented here using an improved model and additional comments. (The opportunity is also
taken to make some minor corrections to the earlier papers.)

The second aspect, quite distinct from the first and not previously written up, is a further discussion
of a topic described in Clarke [2]. It concerns the distribution of scores in the traditional game. Rather
than seek directly a probability distribution for the number of runs scored by a particular batsman,
we derive instead the distribution of the number of scoring strokes. Scoring strokes are related to the
number of runs scored by assuming the ratio of these quantities to be (approximately) constant. Having
a probability distribution for the number of scoring strokes then allows the probability to be determined
of a batsman scoring a century, say, even if he has not previously made such a score.
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2 An application of bowling strike rates

We begin by showing that the strike rates of the bowlers on one team allow an estimate to be made
of the probability of getting an opposing batsman out in some manner that is credited to the bowler
(so we exclude run-outs for the moment). For one-day cricket, where there is a limit to the number of
balls to be bowled in an innings, this can be used to obtain the probability of getting the whole team
out. When we include the possibility of run-outs, we get a much better estimate for the probability of
dismissing the other side, as confirmed by comparisons with actual results from cricket's World Cup.

Let b and w stand, respectively, for the number of balls bowled by a certain bowler (excluding wides
and no-balls) and the number of wickets taken from his bowling in a season, or in his career, or against
a particular team, say. Then that bowler, for our purposes, has a strike rate given by b/w. If w = 0
(which is hardly likely, for our purposes) then the bowler is deemed not to have a strike rate. A bowler's
strike rate, along with his average and his economy rate (neither of which is used here by us), are in
common use when analysing the effectiveness of various bowlers; the better bowler has the smaller strike
rate. The reciprocal of the strike rate can be interpreted as the probability that the bowler subsequently
takes a wicket with each ball bowled.

For a complete team, suppose we have n bowlers so that, in one-day competition, 5 ~ n ~ 11. Let
their strike rates based on previous experience be 8k, for k = 1, ... , n. If the kth bowler is to bowl
bk balls in a coming match (excluding wides and no-balls), then experience suggests he will take Wk
wickets, where

for k = 1, ... , n.

Let B be the total number of balls to be bowled by that team in the match (excluding wides and
no-balls), and let W be the total number of wickets taken. Then

and
n n bk

W = 2:= Wk = L-'
k=l k=18k

and the team's strike rate 8 for that match may be predicted to be

(1)

This is a weighted harmonic mean of 81, ... , 8n, the weights being b1, ... , bn.

For example, if four bowlers are to bowl ten overs each, and two others five overs each, then b1 =
... = b4 = 60, bs = b6 = 30, and

10
- 8=222211·-+-+-+-+-+-

81 82 83 84 85 86

A bowling combination that allows 8 ~ 30, since B ~ 300 and W = 10 in a completed innings, would
be most desirable, though rarely achievable in practice.

Typically good individual strike rates satisfy 25 ~ 8k ~ 50. If selectors were to choose only that
combination of bowlers that allows 8 to be least, then they would accomplish this by taking the five
bowlers with smallest strike rates. However, economy rates or bowling averages and batting and "all
round" skills would also all be taken into account, and the captain has his tactical considerations, so it
is usually necessary to have a much more varied bowling attack. It would be useful to know then what
chances the various bowling combinations have of bowling the other side out.

The quantity p = 1/8 represents wickets per ball during the opposing team's innings of at most 50
overs and is the empirical probability with each ball of a bowler taking a wicket, by any of the means
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that allow a wicket to be credited to the bowler. The probability of the bowlers taking w wickets in 50
overs is

(300) W 300-wp q ,
w

where q = 1 - p, on the assumption that each ball bowled is an independent event. It was argued in [4]
that the other team has not been bowled out if w ~ 9, so the probability of bowling them out is

(2)

A more detailed analysis is given in [4] in terms of the bowlers' individual strike rates, but a numerical
argument there shows that, for practical purposes, it is sufficient to make use of (2).

However, because PI = L~o~lO e~O)pwq300-w, the use of (2) would seem to suggest that the rules
of the game in fact allow for ten or more wickets to be taken, but that the game is to be abandoned
after ten wickets, the others being defaulted. This whimsy is avoided with the following alternative
approach.

To bowl the other team out, ten wickets must be taken and this may be done in anything from ten
to 300 balls. If k balls are required, 10 ~ k ~ 300, then the tenth wicket must be taken with the kth
ball, and the first nine wickets with any of the first k - 1 balls. No wicket is taken with the remaining
k - 10 balls. Hence the probability of bowling the other team out is

It is reassuring to calculate that values of PI and P2 are, for practical purposes, very close. They
agree to four decimal places for 5 up to 42. In fact, for integer values of 5, the greatest difference
Pi - P2 is 0.00335, at 5 = 85. (Always, Pi > P2 since PI is, whimsically, the probability of taking ten
or more wickets in 300 balls.)

Coincidentally, the article [4] appeared just as the 1999 World Cup of one-day cricket was about
to get under way in England, and it was noticed by the science writer in The Times. He wrote a
column [12] describing the ideas above and giving his own calculations regarding the English team.
Two days later, on the morning of the first match in the World Cup and having seen the English article,
The Australian [16], in more journalistic style, prevailed upon the author to rank the twelve competing
teams in order of the probabilities of bowling their opponents out, even though bowling out the other
team does not ensure a win. These probabilities were compared with odds then being offered for each
team, and so the ideas in [4] were promoted to a level somewhat above the original conception. (The
author's top six ranked teams included five that made the Super Six, who then played off to determine
the finalists. This is praiseworthy but not relevant.)

The calculation of S,in (1) is described above as being for predictive purposes, based on bowlers'
strike rates prior to a match. It may subsequently be compared with the strike rate actually attained in
an innings, calculated as the number of balls bowled (not including wides and no-balls) divided by the
number of wickets credited to the bowlers. It seems to be standard, if perhaps wrong, that wides and
no-balls are not included when determining bowlers' strike rates, so we follow that practice. Moreover,
a team's actual overall bowling performance may be based on calculations made following a series of
games, such as in the World Cup. It was apparent to the author that the probabilities based on the
model in (2) and actual games played in the 1999 World Cup, underestimated the proportion of times
that each team in fact bowled out its opponents.

One presumed reason for this was clear: "bowling out" the opponents (as we will use the term) is
not the same as "dismissing" them, since the latter includes wickets lost by batsmen who are run out.
These are not credited to the bowler. In [5], the methods of [4] were made more realistic by allowing
for run-outs, including the possibility that run-outs may occur off wides and no-balls.
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World Good Bad Bowled Run Teams
Cup Matches balls balls out out dismissed

(n) ((3) (-r) (6) (€) (()
1987 27 15413 363 321 64 12
1992 37 20206 661 439 67 . 18
1996 35 19461 508 411 63 14
1999 42 22721 1218 549 49 27

Totals 141 77801 2750 1720 243 71

Table 1: Data from previous four World Cups.

All match results from the preceding four World Cups (in the years 1987, 1992, 1996 and 1999) were
scanned to arrive at estimates for the probability of a run-out with each ball bowled and the average
number of wides and no-balls in a 50-over innings. (The World Cups prior to 1987 were 60 overs a
side, and not considered for that reason, although the model could be easily adjusted to take this into
account.)

The resulting data are given in Table 1. We use the term "good ball" for any delivery not resulting
in a wide or no-ball, and "bad ball" for a wide or no-ball. Wickets resulting from good balls, but not
run-outs, are credited to the bowler. A batsman can be run out from any ball, good or bad. There are
other means of getting out off bad balls (such as being stumped off a wide, in which case the wicket is
credited to the bowler), or off good balls with the result not credited to the bowler, but these are very
rare and ignored for our purposes. The columns in Table 1 are labelled o, (3, ... , ( for later use.

The 9th and 13th matches in the 1992 World Cup were abandoned due to rain, and the 5th and
14th matches in the 1996 World Cup were forfeited. These have not been included in Table 1. The 16th
match in 1996 was replayed after the first attempt was washed out, and only the replayed match has
been included. It is possible that some of the figures for balls bowled, both good and bad, in Table 1
may be off by a few from the true numbers, since, for example, umpires' errors (such as allowing a few
seven-ball overs) and rule changes for the 1999 World Cup that allowed penalty runs have not always
been easy to take into account. We have used the scorecards from CricInfo at www.cricket.org. "Bowled
out" refers to wickets credited to bowlers, and in this table includes batsmen who retired hurt or were
absent ill, so that they may be taken into account in determining overall bowling strike rates.

Suppose, in a completed innings of 50 overs, there are y bad balls bowled. Re-define B by B = 300+y,
the total number of balls bowled, so that the probability of any particular ball being good is 300/ B = g,
say. Since the strike rate S is based only on good balls bowled, we can give the actual probability of a
bowler taking a wicket as gp, where p = 1/5, as before. Let r be the probability of a run-out with each
ball bowled. Then the probability that the bowlers take Wb wickets, and that a further Wr batsmen are
run out, follows a multinomial distribution. It is

( B._c )(gp)WbrWr(l_gp_r)B-wb-wr
wb,wnB - Wb - Wr

B!= (gp)WbrWr (1_ gp _ r)B-Wb-Wr,
Wb!Wr! (B - Wb - wr)!

where, in practice, 0 ~ Wb + ui; ~ 10, assuming that each balI bowled is an independent event. If
Wb + ui; ~ 9, then the team has not been dismissed, so the probability of dismissing the other side is

When y = 0 and r = 0, so that g
understanding that then rWr = 1).

1 and ui; 0, this reduces to the result in (2) (with the

http://www.cricket.org.
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Although numerically accurate, this formula has the same conceptual drawback as for Pl' Instead,
we may argue as follows.

Let w be the number of wickets taken by the bowlers, 0 ::; w ::; 10, so that 10 - w is the number
of run-outs. The taking of wickets and the bowling of balls are considered to be independent events,
except that a wicket must be taken with the last of k balls bowled, 10 ::; k ::; B. Then the probability
of dismissing the other side is

(3)

When r = 0, we must have only the summand with w = 10 and then, as above, must interpret 0° as 1.
With y = 0, then P4 reduces to the expression for P2.

We can now demonstrate that this model approximates well the actual results from the four World
Cups.

World Cup 5 r y' IT P
1987 48.016 0.00406 7.07 0.222 0.220
1992 46.027 0.00321 9.81 0.243 0.222
1996 47.350 0.00315 7.83 0.200 0.199
1999 41.386 0.00205 16.08 0.321 0.268

Combined 45.233 0.00302 10.60 0.252 0.229

Table 2: Actual proportion (IT) of teams dismissed and predicted probability (P) of dismissing a team,
given Cup bowling strike rate (5), run-outs per ball (r), and average number of wides and no-balls (y').

From the data given in Table 1, we may calculate combined bowling strike rates 5 = f3/8 for each
World Cup, the proportion r = e] (f3 +,,/)of run-outs, and the average number y' = 300"//f3 of bad balls
in a 50-over innings. We also have from Table 1 the actual proportion IT = (/(20.) of teams dismissed.
We put p = 1/5, r and y (equal to v', rounded to the nearest integer) into (3) to obtain the values
P = P4 in Table 2. Compare the values of P and II.

Notice that the values for r in Table 2 show that there are on average about three run-outs per 1000
balls in world class one-day cricket, which equates to about one per innings of 50 overs. The values
for y' show that there are, say, seven to ten wides or no-balls altogether in a 50-over innings. (The 1999
World Cup seems to be exceptional in the latter regard-this was the time when accusations of corrupt
practice in cricket were rife and in many cases subsequently shown to be justified, and perhaps here we
see some evidence for the accusations.)

Finally in this section, we give Table 3. For team bowling strike rates S from 20 to 62, incremented
by 2, and three values (0.002, 0.003 and 0.004) for the probability r of a run-out with each ball (pick
the probability that matches the team's fielding skills or the opponents' lapses in running), we give the
probability of dismissing the other team. We have taken y = 10, although it turns out that, whether
y = 0 or y = 20, the computed values are rarely affected even in the second decimal place. (Because P4 is
used rather than P3, Table 3 differs in a few entries, but not at all substantially, from the corresponding
table in [5].)

The first row of Table 3, with r = 0, corresponds to the probability of dismissing the opponents if
run-outs are not to be considered. This should still be seen as important to assist a captain or selector
to estimate the ability of their chosen team to bowl out the opponents (the theme of the paper [4]), as
other considerations would not then be taken into account. Perhaps of more interest is a comparison
between the entries corresponding to r = 0 (no run-outs) and r = 0.003 (close enough to one run-out in
300 balls) for 46::; S ::;60 (a range for the team bowling strike rate that would be common in practice).
They may be interpreted as showing that the probability of dismissing the other team is approximately
doubled if there is a good likelihood of a run-out.
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r 8
20 22 24 26 28 30 32 34 36 38 40

0 0.93 0.88 0.80 0.72 0.63 0.54 0.46 0.39 0.32 0.27 0.22
0.002 0.95 0.91 0.85 0.78 0.70 0.62 0.54 0.47 0.41 0.35 0.30
0.003 0.96 0.92 0.87 0.80 0.73 0.66 0.58 0.51 0.45 0.39 0.34
0.004 0.97 0.93 0.88 0.82 0.76 0.69 0.62 0.55 0.49 0.43 0.38

r 8
42 44 46 48 50 52 54 56 58 60 62

0 0.18 0.15 0.12 0.10 0.08 0.07 0.06 0.04 0.04 0.03 0.02
0.002 0.25 0.21 0.18 0.15 0.13 0.11 0.09 0.08 0.07 0.06 0.05
0.003 0.29 0.25 0.22 0.18 0.16 0.14 0.12 0.10 0.09 0.07 0.06
0.004 0.33 0.29 0.25 0.22 0.19 0.17 0.15 0.13 0.11 0.10 0.08

Table 3: Probability of dismissing the other team, given the probability of a run-out (r) and the team
bowling strike rate (8), and assuming 10 wides or no-balls are bowled per 50 overs.

There was further newspaper interest in these ideas in January 2001, culminating in an article [6]
in Sydney's Daily Telegraph. That article included also a description of the main results in de Mestre
and Cohen [10], and it was reprinted with a little more mathematical detail in Cohen and de Mestre [7].
The newspaper article included probabilities of dismissing the other team for the triangular one-day
series about to commence between Australia, Zimbabwe and the West Indies. The predictions were
acceptably accurate, as detailed in [7].

3 An application of batting averages
As we have indicated above, the work of this section is quite distinct from the preceding work. It will be
convenient to use a similar notation to before, but now from a batsman's point of view. For example,
we will use b for the number of balls faced by a particular batsman, rather than the number bowled by
a particular bowler.

3.1 The distribution of scoring strokes
In cricket, a batsman's average is the number of runs he has scored divided by the number of times he
was out. If a tail-end batsman scores five in each of ten innings in a season and is not out nine times,
then he finishes the season with an average of 50. For good reason, this is not seen to be a properly
representative score.

It seems that there are two separate questions that people expect the one batting average to answer .

• First, how good is the batsman? What score would we expect of him if he were allowed to bat
on, leaving the field for the final time only when he is given out in a standard manner?

• Second, what score do we expect of him given the possibilities also of his retiring hurt, or running
out of batting partners, or having the team's innings declared closed or the match interrupted for
some reason such as rain, in all of which cases he would remain not out?

We will try to answer both questions.
At least two papers have attempted to determine more significant single measures of batting per-

formance, generally being more intent on answering the first of the above questions. Danaher [8] used
analogies with survival analysis to find an estimate of a cricketer's "true but unknown batting average"
based on the product limit estimator. Kimber and Hansford [14] also adopted an approach "akin to
that used in reliability and survival analysis", and also based on product limit estimation, to arrive at
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a different nonparametric estimator. The latter gives values generally much closer to the traditional
average than Danaher's estimator (with both always giving smaller values), and both have the property
that the fewer the number of not-outs, the closer their estimator is to the traditional average. On the
other hand, Davis [9, pages 96-98], argues from an empirical viewpoint for the worth of the traditional
average.

It seems reasonable that the score you might expect a batsman to attain would be his "true average" ,
based on all relevant previous innings. To define this term, we take data pertaining to a particular
batsman over a particular period, such as his career or the previous season, or in a particular position,
or against a particular team. Let i, n, wand r be, respectively, the number of innings, the number
of not-out innings, the number of dismissals, and the number of runs scored. Then w = i - n. The
batsman's traditional and true averages are

r
B=-,

w

r
A=-;-,

z

respectively. Notice that
A= '!!/-B= i-.nB, (4)

z z
so that, for overall career results, say, the true average may be determined from the usual published
batting statistics. Of course, A = B when n = O.

We will justify our use of the term "true average" by obtaining in a theoretical fashion the probability
distribution of the number of scoring strokes and, based on this, showing that the expected value of the
batsman's score (in the statistical sense) equals this true average.

The same approach will allow us to find the probability of the batsman making 100 runs, or any
other score. Thus we answer the intriguing question: how do you estimate a batsman's probability of
making a century if he has not yet made one? We will see that our probability compares well with the
actual frequency of century scores by batsmen who have made a few centuries.

Our method relies on the new concept of the strike constant. This is the ratio of runs made to
number of scoring strokes and its introduction may be viewed as a device to serve our end: it is a first
approximation to a comparison of runs made and scoring strokes which indeed (as we will see) leads to
plausible and testable results. An investigation of this ratio for a large number of Sydney grade cricketers
by Cochran [3] came up with the value 2.16, with standard deviation 0.25, for traditional cricket,
and 1.82, standard deviation 0.43, for limited-overs cricket. (He also investigated indoor cricket: ignoring
runs subtracted for loss of wicket, the mean strike constant was 2.08 with standard deviation 0.41.)

We consider the main application of this work to be to the traditional form of cricket. Strike
constants for individual cricketers over a small number of matches might range between 1.9 and 2.4,
say, but this will be seen in any case to have little effect on the final calculations.

We will show that, subject to certain assumptions, the number of scoring strokes follows a geometric
distribution. The distribution of runs scored is related to this through the strike constant. The possibil-
ity that cricket scores are geometrically distributed goes back at least to the writings of Elderton [11].
Wood [15] gives further numerical evidence to support this. Both these papers are dismissed by Kim-
ber and Hansford [14]as "flawed because the authors treated not-out scores as if they were completed
innings", despite the evidence of the data. The details are summarised by Clarke [2]. Inter alia, Clarke
states: "If a batsman scores only singles and his probability of dismissal is constant, his scores should
follow a geometric distribution, the discrete equivalent of the negative exponential." This observation
appears to be based on a viewing of the empirical data,' but will be a direct consequence of our work
below.

3.2 Expected values
In addition to the quantities i, n, w = i - nand r introduced above, let band s be, respectively, the
number of balls faced and the number of scoring strokes made. We must have r ~ s ~ 0 and we will
assume that b > i > n ~ O. Then w > O. Recall that A = r Ii.
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We define

Pw = Pr (the batsman's innings ends, out or not out, with each ball faced) = f,
qw = 1- Pw, .
Ps = Pr(the batsman makes a scoring stroke with each ball faced I the batsman's

innings does not end with that ball) = -b S .,-z
qs = 1- Ps·

These probabilities are considered to be constant throughout a subsequent innings.
Notice that we have made an assumption that no scoring stroke is made from the ball on which the

batsman's innings ends (so that s ~ b - i). Therefore, we do not take into account the rare instance
in which the batsman makes at least one run and is then run out on the same ball while attempting
a further run, or the admittedly more common instance in which a captain declares an innings closed
following the batsman's final scoring stroke.

In any period, the ratio of the number of runs obtained to the number of scoring strokes made is
considered to be constant. This is the simplification described above. The ratio is the strike constant,
denoted by K.. Then

r
K. = -.

s
Let the random variable X be the number of scoring strokes made by the batsman in a subsequent

innings, and let R be the score (number of runs) obtained. In order that X = k for integer k ~ 0, the
batsman must face j + 1balls, for some j ~k, scoring on k of these and having his innings end on the
(j + l)th ball. (If the team's innings ends or the batsman is run out while not facing, some number
of balls after last facing a ball himself, this is still effectively the case.) Whether or not he scores off
any of the first j balls bowled are considered to be independent events, and so the distribution of the k
scoring strokes among the first j balls bowled to him will be binomial(j,ps)' Write Pr (X = k) for the
probability that the batsman makes k scoring strokes (k ~ 0), before being dismissed. (Later notations
will have a corresponding meaning.) Then

where
p = Pw , Q = Psqw = 1_ P.

1- qsqw 1- qsqw

Thus the number of scoring strokes made follows a geometric distribution. (Notice, for example, that if
Ps = 1 then this reduces to Pr (X = k) = q~pw, for k ~ 0.) Using the definitions of Pw and Ps, we find
that Z K. A

P= i+s = A+K.' Q= A+K.·
The expected number of scoring strokes is then easily determined,

particular case from results in Johnson et al. [13). We have
or it may be obtained as a

00 Q A
E (X) = '" k- Pr (X = k) = - = -.L.J P K.

k=O
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Name Inn. NO Runs Ave. A Aw 100+ E (100+) 50+ E(50+)

DG Bradrnan 80 10 6996 99.94 87.45 8,5.04 29 25.8 42 45.5

RG Pollock 41 4 2256 60.97 55.02 54.43 7 6.9 18 16.8

GA Headley 40 4 2190 60.83 54.75 45.61 10 6.7 15 16.3
H Sutcliffe 84 9 4555 60.73 54.23 54.64 16 13.7 39 34.0

E Paynter 31 5 1540 59.23 49.68 48.31 4 4.3 11 11.6

KF Barrington 131 15 6806 58.67 51.95 50.37 20 19.8 55 50.9
EdeC Weekes 81 .5 4455 58.61 55.00 54.88 15 13.6 34 33.2
WR Hammond 140 16 7249 58.46 51.78 46.19 22 21.0 46 54.3
SR Tendulkar 143 15 7419 57.96 51.88 48.85 27 21.6 57 55.5
GStA Sobers 160 21 8032 57.78 50.20 44.06 26 22.7 56 60.2
JB Hobbs 102 7 5410 56.95 53.04 53.34 15 16.0 43 40.4
CL Walcott 74 7 3798 56.69 51.32 51.03 15 10.9 29 28.5
L Hutton 138 15 6971 56.67 50.51 47.89 19 19.8 52 52.3
GE Tyldesley 20 2 990 55.00 49.50 47.22 3 2.8 9 7.4

MH Richardson 21 1 1088 54.40 51.81 50.75 2 3.2 10 8.1
DR Martyn 35 9 1413 54.35 40.37 35.88 4 3.1 9 10.4

CA Davis 29 5 1301 54.21 44.86 40.83 4 3.3 8 9.7
VG Kambli 21 1 1084 54.20 51.62 53.30 4 3.1 7 8.1
GS Chappell 151 19 7110 53.86 47.09 44.57 24 21.8 55 57.3
AD Nourse 62 7 2960 53.82 47.74 47.49 9 8.0 23 22.2

Table 4: The all-time top twenty Test batting averages, at 7 February 2002, with approximate expected
values of number of scores of 100 or more, or 50 or more (E(lOO+) and E(50+), respectively).

differing from the usual lists which give the number of scores from 50 to 99, inclusive); and their expected
values similarly calculated.

Unless it is possible to have access to the original score sheets, it is most unlikely that actual values
of «, the ratio over the past of runs made to number of scoring strokes, could be obtained. The easy
approach is to set x = 2, and this was done in Table 4. (The expected values, whether we took x = 1.9,
2 or 2.1 were not appreciably different.)

A large proportion of the expected values in Table 4 are observed to match their actual values very
well, so that, in this case at least, the model fits the data acceptably. The table suggests that our model,
wit h vc = 2, will allow reasonable predictions to be made.

Taking x = 2 allows a further simplification. By assuming that c is even, as in the common cases
c = 100 or c = 50, we obtain

(A) c/2
Pr (R 2: c);;::;; A + 2 ' (5)

and, if desired, this may be adopted as a useful approximation for all c 2: 1.
The wicket-average Aw in Table 4 is the average of only those innings in which the batsman was

out. (These values were obtained by going back to the lists of all Test scores, for each batsman.) This
information has been included to show that the true average and the wicket-average are in most cases
very close, as one would expect if abatsman averaged much the same in his completed innings as in
his not-out innings. However, the true average is greater in all but two cases, indicating that not-out
scores tend on average to be greater than completed innings. Sometimes this is emphatically so, as in
Headley's case: his not-out Test scores were 102, 169,270 and 7.

The point of tabulating Aw is to give an example of other averages that might be determined for
more accurate predictions. Using equation (5) with A = Aw and c = 100 will give an estimate of the
chance of scoring a century, with the batsman getting out. (The earlier theory needs to be adjusted in
a minor way to allow for the different sample space: b, rand s now relate only to completed innings,
and i in the definitions of Pw and Ps must be replaced by w. Then, in particular, Pw is the probability
of the batsman losing his wicket, out, with each ball faced. The subsequent analysis would then refer
only to completed innings.)

\Ve return now to the question of determining a more useful means of estimating a batsman's future
score than simply giving the expected value. We will instead find "50% probability intervals" for the
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score, for differing values of A. That is, for each A, we will determine an approximate interval with the
property that the batsman would obtain a score in it with probability 0.5, with equal probabilities of
smaller or greater scores outside the interval.

We make use of (5). For a given probability p, the score c required to ensure that Pr (R ~ c) = P is
obtained approximately by solving ;

(A~2r/2 =p.

We obtain
210g(l/p)

c = 10g(1+ 2/A) , (6)

where the logarithms may be to any suitable base. Taking the ceiling value when p = 0.75 and the floor
value when p = 0.25, we obtain our approximate interval.

Examples of these intervals appear in Table 5. We have taken values of A from 10 to 65, incremented
by 5, and, in case the ghost of Sir Donald is watching, also A = 90. Notice that any sensible average
can be used. Thus, for Damien Martyn with Aw ~ 35 and A ~ 40 (see Table 4), we could say he has
a 25% chance of scoring 50 or more, getting out, but the same chance of scoring more than 56, out or
not out.

batting average 10 15 20 25 30 35 40
50% probability interval [4,15] [5,22] [7,29] [8,36] [9,42] [11,49] [12,56]
batting average 45 50 55 60 65 ... 90
50% probability interval [14,63] [15,70] [17,77] [18,84] [19,91] ... [27, 126]

Table 5: A batsman with true batting average shown (not the traditional average) has probability 0.5
of making a score in the given interval, with equal probabilities of smaller or greater scores outside the
interval.

Using equation (6) with p = 0.5 allows us to use a batsman's traditional average number of runs
scored to estimate his median number ofruns scored. In fact, for A ~ 20, say, we have In(1+2/A) ~ 2/A,
so that the median score is about A In 2. Thus 0.7A would be an easy approximate formula for the
median.

Data on median scores is almost nonexistent, but Wood [15, Table B] gives this information for 22
"leading batsmen" to September 1939. Their ratio of median score to traditional average score (B)
ranges from 0.61 to 0.71. Wood's list does not allow direct calculations of the true average A, since he
does not give the numbers of not-out innings. The CricInfo web site allowed this to be done (although
it differed from Wood on every occasion in the number of first class innings for the batsmen onhis list).
This exercise suggested that taking A ~ 0.9B would be acceptable in general (and is the rule of thumb
following the observation by Clarke [2] that "more than 10% of scores are not outs"), so that 0.63B
would be a useful theoretical estimate of a batsman's median score over a long career.

We also note that the formula (5) retains the non-aging (or Markovian, or lack of memory) property
of the geometric distribution (see Johnson et al. [13, page 201]). Thus, for example, Pr (R ~ 100) =
(Pr (R ~ 50))2.

Finally, we consider the probability of a batsman getting a duck. From our early work, the probability
of a batsman making no scoring stroke is

K,
Pr (X = 0) = p = --.A+K,

But this includes the probability of scoring 0, not out. Our earlier discussion suggests the following as
the way to go:

2
Pr (duck) ~ -:'"A--

w+2



12 G. L. Cohen

Name Inn. NO Aw ducks E(ducks)
DG Bradman 80 10 85.04 7 1.8

RG Pollock 41 4 54.43 1 1.4
GA Headley 40 4 45.61 2 1.7
H Sutcliffe 84 9 54.64 2 3.0
E Paynter 31 5 48.31 3 1.2
KF Barrington 131 15 50.37 5 5.0
EdeC Weekes 81 5 54.88 6 2.8
WR Hammond 140 16 46.19 4 5.8
SR Tendulkar 143 15 48.85 7 5.6
GStA Sobers 160 21 44.06 12 6.9
JB Hobbs 102 7 53.34 4 3.7
CL Walcott 74 7 51.03 1 2.8
L Hutton 138 15 47.89 5 5.5
GE Tyldesley 20 2 47.22 2 0.8
MH Richardson 21 1 50.75 0 0.8
DR Martyn 35 9 35.88 2 1.8
CA Davis 29 5 40.83 1 1.3
VG Kambli 21 1 53.30 3 0.8
GS Chappell 151 19 44.57 12 6.4
AD Nourse 62 7 47.49 3 2.5

Table 6: The all-time top twenty Test batsmen, by traditional batting average, at 7 February 2002, with
number of ducks scored and the approximate expected value of this number.

The world's top twenty batsmen have been known to score a duck or two. Table 6 repeats some
information from Table 4, and gives the number of ducks scored by those batsmen in Tests and our
suggested expected value of this number using the probability estimate 2/(Aw + 2) multiplied by the
number i - n of completed innings. The table indicates some level of agreement between the actual and
expected values; any attempt to model small numbers like these would be generally acknowledged as
difficult.

4 Conclusion

Many papers concerned with tennis have exploited the fact that the proportion of points won by a player
in some situation allows estimates of the probability of winning a game, set or match in a similar future
situation. Considering separately points won on service and points won when receiving leads to refined
estimates. In Bennett [1], there are references to probabilistic analysis in tennis, baseball, basketball
and American football, and numerous other relevant references. Yet, as we have already quoted Stephen
Clarke as saying, hardly any such analysis has previously taken place in cricket.

A "winning" ball in a game of cricket is one that takes a wicket from the bowler's point of view, or
allows a scoring stroke from the batsman's point of view. The proportion of winning balls has been used
in this paper to give the probability. q(,~owling out a team, in the former case, or scoring a century, in
the latter case . .Along the way, refinements and other applications have been given.

Bowling strike rates, along with estimates of the probability of running out an opposing batsman,
have been used in Section 2 not only to find the probability of dismissing the other side in one-day
cricket, but to demonstrate that this chance is approximately doubled when there is a good likelihood
of obtaining at least one run-out.

At the beginning of Section 3, two questions were posed regarding conclusions to be drawn from the
traditional batting average. But, to make a pun of it, this average is a very demeaned statistic. Even
in cricketing circles, it is not seen as being properly representative of a batsman's past scores because
of the "ad hoc" treatment of not-outs.

We prefer instead the true batting average A: simply the average of all scores, out or not out. The
wicket average Aw, which refers specifically to completed innings, is approximately the same as A and
should be used for questions concerning completed innings (such as the first of those at the beginning of
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Section 3). Use A otherwise. Among other things, we have justified the simple formula (A/(A + 2))c/2
as the probability of scoring at least c runs, and the formula 2/(Aw + 2) as the probability of a duck.
Both of these have been compared favourably with results from the history of cricket.

The work of Section 3 depends crucially on the concept of the strike constant, although less crucially
on the value chosen for it. As a theoretical if hypothetical construct, its worth seems clear, and further
investigation of the notion would be extremely welcome.
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Conference Director's Report

Welcome to the Sixth Australian Conference on Mathematics and Computers in Sport. This year we
return to Bond University after the successful Fifth Conference in 2000 held in Sydney because of the
Olympic Year in that city. It is a pleasure to renew acquaintances with one of our principal speakers,
Ray Stefani who was at the First Conference in 1992, and has been collaborating with Steve Clarke
from Swinburne for many years now. Our second principal speaker, Steve Gray from Queensland, will
add a new dimension to the Sixth Conference with his interest in the economical aspects of sport.
Graeme Cohen (now retired from UTS) is our third principal speaker, but he and Tim Langtry have
once again taken over the responsibilities of producing the printed Proceedings. I thank Graeme and
Tim for relieving me of this major task.

The conference has once again attracted academics from New Zealand, the United Kingdom, the
United States and Canada. I welcome them all, including many familiar faces. I hope that you all
find the conferencerewarding in many aspects, including the content and presentation of the talks, the
many discussions that are generated, and the close social contact with like-minded academics. We now
have a website www.anziam.org.au/mathsportduetoElliotTonkes.whoisthewebmaster.This site
contains information about this and all previous conferences.

All the papers in these Proceedings have undergone a detailed refereeing process. I am indebted to
the referees for their time and comments to improve the quality of all papers. The Proceedings begin
with the papers of our principal speakers, followed by the contributed papers in alphabetical order
of author, or first author. The Proceedings conclude with an abstract-the paper was accepted for
presentation but was received too late to be submitted to the full refereeing process.

Neville de Mestre
June 2002
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