SYNTHESIS OF A NON-AGED NEW ALKOXIDE SOL-GEL HYDROXYAPATITE MONITORED BY SOLUTION STATE 31P NMR

G. S. K. Kannangara, D. D. Green, A. Miley and B. Ben-Nissan
Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, PO Box 123 Broadway, NSW, 2007 Australia
Email: Kamali.Kannangara@uts.edu.au

KEYWORDS: Hydroxyapatite, synthesis, NMR, alkoxide, characterization, phosphates

INTRODUCTION
In has been established that ageing (24 hours) is necessary to convert starting precursors of calcium diethoxide [Ca(OEt)$_2$] and triethyl phosphite [P(OEt)$_3$] in an ethanolic sol-gel system to attain stable reaction intermediates. From this study impetus to examine an alternative phosphorous precursor that doesn’t require a 24-hour ageing period was initiated. Solution-state 31P NMR spectroscopy was successfully applied to monitor reactions during the ageing period that provided vital characteristics of the alternate phosphorous precursor. Using diethyl phosphite [H(O)P(OEt)$_2$] as an alternate precursor it was possible to produce hydroxyapatite, which did not require ageing of the sol. However, no attempt was made to postulate mechanism(s) and identification of the intermediate species formed in these sol-gel systems. This current work encompasses both these aspects; mechanism and identification of the reaction intermediates for P(OEt)$_3$ and H(O)P(OEt)$_2$ sol-gel systems. The 31P NMR spectra for both sol systems revealed that phosphorous precursors undergo reaction with alkyl anions to form anions of the monoalkyl ester of hydrogen phosphonate.

MATERIALS AND METHODS
Sol-Gel: Calcium precursor solution was prepared by dispersing 1.5 mmoles of calcium diethoxide [Ca(OEt)$_2$, Kojundo Chemical Lab., Saitama, Japan] in absolute ethanol (EtOH, Riedel-de Haen, Germany) followed by dissolving the calcium diethoxide with ethylene glycol [Et(OH)$_2$, Aldrich, USA]. Stoichiometric amount of phosphorus precursor solution was prepared by diluting, either P(OEt)$_3$ or H(O)P(OEt)$_2$ (Aldrich, USA) in absolute EtOH. After complete dissolution of the Ca(OEt)$_2$, the stoichiometric quantity of phosphorus precursor solution was added drop-wise to the calcium precursor solution. Vigorous stirring was maintained throughout the addition and for a further 10 minutes thereafter. Due to the hygroscopic nature of the reactants, the preparation was carried out in a glove box containing dry nitrogen atmosphere.

NMR: Phosphorus NMR spectra were acquired by employing a Bruker DRX-300 (300MHz for protons and 121MHz for 31P) and a Bruker DRX-500 (500MHz for protons and 202MHz for 31P) spectrometer, using 85% H$_3$PO$_4$ as an external reference.

RESULTS AND DISCUSSION:
31P NMR spectral data for P(OEt)$_3$ sol-gel over 0.5-20-hour time period revealed the presence of five major peaks (Figure 1, Trace: “1”). The single peak at chemical shift (δ) 139.9ppm is attributed to P(OEt)$_3$ while the two sets of doublet peaks at 9.5 and 4.3 ppm have a first order coupling constant (J_{PH}) of ~ 629Hz.

Figure: 1- 31P NMR (121MHz for 31P) of P(OEt)$_3$ sol-gel system – Trace: “1” is representative of 15 hours old, Trace: “2” is representative of 24 hours old solution.

Analysis of the sol at the end of the 24 hours using higher resolution NMR (202MHz for 31P) revealed the third order J (J_{PH}) splitting pattern of these two sets of doublets (Figure 2). Trace “A”, illustrates two sets of triplets which have a $J_{PH} \sim$ 8.5Hz. The J_{PH} triplet line formation is indicative of two protons coupling to the phosphorous nuclei through adjacent (O-C$_1$) bond [2].
Figure: 2 – ^{31}\text{P} \text{NMR (202MHz for }^{31}\text{P)} \text{ of } (\text{POEt})_3 \text{ sol-gel system, Trace "A" - peaks (1 and 2) and (3 and 4) contributes to the two set of doublets. Expanded region (Trace "B") shows the } J_{\text{H-P}} \approx 8.5 \text{Hz triplet line formation.}

Knowing that P(OEt)_3 has a septet line configuration, due to six coupling protons (three – CH_{2} groups) through the oxygen and no J_{\text{H-P}}, it is evident that P(OEt)_3 has been converted to a phosphorus species that only contains one ethoxide ligand rather than its original three, accompanied by the new formation of a hydrogen bonded directly to the phosphorus nuclei (P-H).

In contrast to the P(OEt), sol system, HO(POEt)₂ sol-gel system did not undergo a major change during the 24-hour period. The ^{31}\text{P NMR spectrum contains two sets of doublets with } \delta = 5.9, 2.8 \text{ppm corresponding to the peaks in the first set of doublet (assigned as nos. 5 and 6) and 4.9, 1.9 \text{ppm corresponding to peaks in the second set of doublet (assigned as nos. 7 and 8). Both doublets have a } J_{\text{H-P}} \approx 627 \text{Hz. (Figure 3, Trace "C").}

The use of higher resolution NMR (202MHz for ^{31}\text{P}) revealed the J_{\text{H-H}} splitting of these two sets of doublets is approximately 8.5Hz (Figure 3, trace “D”) [3]. This indicates that there is only one -O-CH_{2}- group rather than the two initial -O-CH_{2}- groups attached to the phosphorous nucleus.

CONCLUSION

The use of high-resolution solution state ^{31}\text{P NMR provided the information required to characterise the reaction species and to propose a reaction mechanism for HO(POEt)₂ calcium-phosphate sol-gel systems. The fact that there are two sets of doublets in the final ^{31}\text{P NMR spectrum suggests the formation of two different types of hydrogen phosphonates. Because these doublets are ~1\text{ppm apart indicates that both these species have very similar chemical environments in ‘A’ where R = –OEt and –O(CH_{2})_{2}OH. The differences in the intensities of the two sets of doublets leads to the conclusion that one alkoxy substituent is favoured over the other. However, it has not yet been determined which ligand exchange relates to these chemical shifts.}

REFERENCES

ACKNOWLEDGEMENTS

The authors would like to thank the NMR facility of University of Technology, Sydney for use of NMR equipment. The funding provided from the Australian Research Council-Small Grant is gratefully acknowledged.