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ABSTRACT 

A steady state, two-dimensional vertical section ground-
water flow model has been developed for a salinised area 
of the Xe Champhone catchment in Savannakhet prov-
ince, Southern Lao PDR.  The area is underlain by 
evaporite beds and clastic sedimentary rocks of the Khorat 
Group that are the source of salt found in groundwater and 
surface soils. The Xe Champhone catchment is of interest 
because of plans for construction of several new reser-
voirs and extensive expansion of irrigated areas. This 
study provides an example of how a relatively sparse and 
limited data set has been used to construct and success-
fully calibrate a numerical flow model to investigate 
groundwater flow patterns and potential impacts of in-
creased groundwater recharge on land salinisation. Re-
sults show the predominance of local flow systems and 
that deeper flow systems in contact with the rock salt 
layer operate over much longer time scales in the order of 
millions of years.  

1 INTRODUCTION 

In the early 1980s, salt affected soils covered 2.9 million 
hectares of land in Northeast Thailand or 17.5 per cent of 
the total land area (Arunin 1984). More recently, saline 
soils have been identified in neighbouring parts of the Lao 
Peoples Democratic Republic (Lao PDR). These include 
areas in Vientiane province, a narrow corridor along the 
Mekong River near the town of Tha Khek in Khammuane 

province and the Xe Champhone1 catchment in western 
Savannakhet province.  
 Impacts of salinity include reduced crop yields, wide-
scale loss of arable land and adverse effects on fresh-
water fisheries and forest resources. Increasing salt loads 
in surface water and shallow groundwater also threaten 
access to irrigation water and safe domestic water sup-
plies. The accumulation of salts in surface soils and 
groundwater in a geological setting characterised by 
evaporate deposits is a natural phenomenon and is re-
ferred to as primary salinity. Secondary salinity is a hu-
man-induced circumstance whereby certain activities alter 
the hydrological balance and lead to increased severity 
and rate of salinisation (Ghassemi et al. 1995). In North-
east Thailand, secondary salinity has been associated with 
deforestation, irrigation and reservoir construction (Rim-
wanich and Suebsiri 1983; Arunin 1984; and Arunin et al. 
1988) as these activities often lead to increased accessions 
of water to shallow and deep aquifers.  
 In Savannahket province, the Lao Department of Irri-
gation (DOI) has developed plans for construction of nu-
merous new storage reservoirs and a major expansion to 
the current irrigated area. Savannakhet province is one of 
the most important rice producing areas in Laos owing to 
its low lying topography and wide flat floodplains that are 
suitable for lowland paddy cultivation. Given the presence 
of saline soils and underground evaporite deposits there is 
concern that these new developments may exacerbate ex-
isting salinity problems. This modelling project builds on 
research carried out under Australian Centre for Agricul-
ture Research (ACIAR) project no. LWR1/97/150: Salin-

                                                           
1 Xe is the Lao term for ‘river’  
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ity Management in South-Eastern Australia, North-
Eastern Thailand and Lao PRD (ACIAR 2000).  
 This project utilised information collected for the Lao 
component of the ACIAR project to develop a relatively 
simple, steady state groundwater flow model to investi-
gate groundwater flow and salt transport mechanisms. 
Such a model will provide useful information with which 
potential impacts of planned expansion of reservoir and 
irrigated areas can begin to be evaluated. The specific 
aims of the project were to: 

• Investigate major patterns of groundwater flow; 
• Identify and quantify the relative proportion of 

various recharge and discharge mechanisms;  
• Assess which aquifer parameters and hydrologi-

cal stresses have the largest influence on 
groundwater levels at various points of the aqui-
fer system; 

• Gain information about rates of groundwater 
flow and solute transport to surface soils. 

2 STUDY AREA 

2.1 Location, Topography and Drainage 

The focus of the ACIAR project research and this model-
ling work is the Kengkok study area located in Cham-
phone and Outhoumphone districts in western Savannak-
het province, Southern Lao PDR (Figure 1). It covers the 
lower portion of the Xe Champhone catchment where the 
river is characterised by large meanders and cutoffs and 
where saline soils are found on the wide adjacent flood-
plain. The Xe Champhone is a tributary of the Xe Bang 
Hiang which drains into the Mekong River south of Sa-
vannakhet and has a catchment area of just under 2 mil-
lion ha covering the entire eastern part of Savannakhet 
province. The study area is bounded in the west, south-
west and north by a ridge of low lying hills and high ter-
races (160-200 mASL). A number of small streams (huay) 
drain the mid-slope areas towards the gentle undulating 
wide floodplain (130-140 mASL) characterised by nu-
merous natural and seasonally flooded lakes, marshes and 
wetlands. The primary land-use on the floodplain and 
mid-slope areas is rain fed or irrigated rice paddy cultiva-
tion. Small-scale solution mining and refining of rock salt 
occurs near the district centre of Kengkok. The hills sur-
rounding the study area are covered by deciduous dry dip-
terocarp forest and shrubland with some rice and cash-
crop cultivation. 

2.2 Climate 

Southern Laos is subject to a monsoonal climate com-
prised of distinct wet (May-September) and dry (October-
April) seasons. At Xeno, average annual temperature is 
25.6ºC and pan evaporation is 1390 mm. Average annual 

rainfall at Xeno and Kengkok is 1318 and 1510 mm re-
spectively (record period: 1988-2002). Highest rainfall 
occurs during July and August (240-330 mm/mth) and 
lowest between November and January (<10 mm/mth). 
Over the available record period from 1988 to 2002, an-
nual rainfall at Kengkok ranged between 908 and 2054 
mm and at Xeno between 894 and 1928 mm.  
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Figure 1: Location of Study Area  

2.3 Irrigation and reservoir storage 

There are currently three storage reservoirs used for irri-
gation purposes in the Kengkok study area: Yor Huay Bak 
(362 ha), located at the headwaters of Huay Bak near the 
western catchment boundary; Souy (1021 ha), in the cen-
tre of the study area; and Bak (237 ha), at the downstream 
end of Huay Bak. Together these storage bodies irrigate 
an area of 8314 ha or 7.6 per cent of the study area. 
Within the larger Xe Bang Hiang catchment, 22 535 ha or 
3.5 per cent of the land area is currently irrigated and in 
the remainder of the province along the Mekong River, a 
further 4 636 ha is irrigated.  
 Within the Kengkok study area there are three new 
reservoirs planned for the upstream reaches of the Huay 
Phaleng, Huay Thuat and Huay Muang. The total poten-
tial irrigated area in the study area is 58 606 ha or 53.8 per 
cent of the total land area. This translates to a seven fold 
increase on the current area of irrigated land. Within the 
Xe Bang Hiang and Huay Som Pak catchments, these 
plans include the construction of several new reservoirs 
covering an additional area of 70 469 ha and a 17 fold in-
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crease in the total irrigated area to 461 418 ha or 20.5 per 
cent of the total catchment area.  

2.4 Geology  

The geology of eastern Savannakhet province, further 
north around the town of Tha Khek and also Vientiane 
province in central Laos is similar to that of Northeast 
Thailand as these areas lie within the Khorat Plateau, a 
large saucer-shaped basin tilted to the east. The Plateau 
consists of a sequence of Mesozoic and Tertiary aged 
sedimentary rocks known as the Khorat Group, which lie 
on a basement complex of Carboniferous metamorphic 
and igneous rocks and the Ratburi Limestone Formation 
(Bunopas 1992 and Piyasin 1995). The upper Khorat 
Group includes the Maha Sarakham Formation of 
evaporite beds and clastic sediments that were deposited 
in the late Cretaceous period. The three rock salt layers 
vary in thickness with reported averages of 20, 70 and 134 
m for upper, mid and lower layers respectively, however 
the lower layer has been found to be over 1 000m thick in 
some parts of  Northeast Thailand (Supajanya et al. 1992). 
The upper and mid salt beds are most often missing as a 
result of dissolution by groundwater percolation (Su-
wanich 1986), yet salt veins are readily found in and 
along bedding plains of the upper and mid clastic layers 
(Löffer and Kubiniok 1988).   
 Overlying the Maha Sarakham is the Phu Tok Forma-
tion of fluvial and aeolian origin, the younger red beds 
deposited between the late Tertiary and early Quaternary, 
and clays, silts, sands and gravels of the Quaternary allu-
vium (Lertsirivorakul 1999).  
 Tectonism during the early-Tertiary period led to the 
uplift of several ranges including the Phu Phan Range and 
division of the Khorat Plateau into a number of smaller 
sub-basins. The salt beds underwent extensive folding and 
deformation resulting in a variety of salt structures such as 
domes, ridges, anticlines and synclines (Suwanich 1986). 
Piyasin (1995) identified five distinct sub-basins, however 
most other authors (Workman 1975; Suwanich 1986; and 
Dheeradilok 1992) identify only three major sub-basins: 
Khorat, located in the lower central part of Northeast 
Thailand; Sakon Nakhon in the north, separated from the 
Khorat Basin by the Phu Phan Range and extending into 
Laos at Vientiane province and the western part of 
Khammuane province at Tha Khek; and Savannakhet, lo-
cated wholly within Laos on an east-west axis, extending 
from the Mekong River east to Xepone near the Vietnam-
ese border.  

2.5 Geology and Hydrogeology of Study Area 

Geological and hydrogeological information for the study 
area has been acquired from a variety of sources: 

 1:250 000 scale geological map of Laos; 

 drilling activities conducted by ACIAR project; 
 drilling logs of water supply wells and mineral explo-

ration bores; 
 field observation by ACIAR project staff. 

 Figure 2 shows the geology of the Champhone area. 
Formations have been reclassified according to major 
geological formations in Northeast Thailand and field ob-
servations. Well logs of Vietnamese exploration drill 
holes near Kengkok indicate the presence of rock salt at 
depths ranging between 72 and 94 m below ground, and at 
an ACIAR drill hole in the mid-slope areas at Ban 
Phailom, rock salt was found at a depth of 85 m. The 
thickness of the rock salt at Kengkok ranges between 66 
and 110 m and is capped by a thin layer (3-7 m) of anhy-
drite. The top of the rock salt is relatively flat with some 
deformation in the vicinity of Kengkok. It is overlain by 
approximately 80 m of stiff to plastic clay. A pump-
ing/recovery test carried out on the ACIAR bore at Ban 
Phailom indicates that the hydraulic conductivity of frac-
tured clay zone above the rock salt is 1.78 x 10-7 m/s.  
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Figure 2: Geology of the study area 

 
In 2002, the ACIAR salinity project completed construc-
tion of nine piezometers within the Kengkok study area: 
two shallow screened at a depth of 15 m, six intermediate 
screened at 30 m, and one deep screened at approximately 
80 m. In addition to several field surveys where static wa-
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ter level and water quality measurements were collected 
from piezometers and 32 village wells, automatic water 
level loggers were installed in all nine piezometers during 
July/August 2002 to collect daily water level measure-
ments. The average static water level in the shallow allu-
vial aquifer during 2002 was 1.5 m below ground level in 
the wet season and 3 m in the dry season, with respective 
ranges of 0-8 m and 0-9.5 m.  

3 METHODS 

The first stage of the modeling task was to develop a con-
ceptual model of local geology and groundwater flow. 
This required compilation and interpretation of all avail-
able geological and hydrogeological data.  Since geologi-
cal data was sparse, development of the conceptual model 
relied heavily upon good understanding of geology and 
hydrogeological processes in Northeast Thailand. The 
conceptual model was used to construct the numerical 
flow model in Processing Modflow for Windows Profes-
sional (PMWIN Pro) which involved discretising the 
model domain, specifying boundary conditions and as-
signing initial estimates of hydraulic parameters and 
stresses.  Discretisation reduces the partial differential 
equations that describe 2 and 3-dimensional groundwater 
flow to a series of simultaneous algebraic equations that 
can be solved with a variety of iterative and direct matrix 
techniques. The Strongly Implicit Procedure (SIP) was 
utilised in this modeling project . The MODFLOW set of 

codes include the main code and a series of packages that 
handle various sources and sinks of the aquifer system. 
 The steady state model was calibrated against avail-
able hydraulic head observations at five locations. A sen-
sitivity analysis was performed to evaluate model uncer-
tainty and identify those parameters and stresses with the 
largest influence on hydraulic heads.  

3.1 Conceptual Groundwater Flow Model 

The conceptual groundwater flow model is illustrated as a 
vertical cross section spanning from Savannakhet to the 
Xe Champhone (Figure 3). The transect location is shown 
in Figure 2. The model domain was selected according to 
major aquifer boundaries. The western boundary is a 
groundwater divide along the ridge that separates the Xe 
Champhone and Xe Som Pak catchments and the eastern 
boundary corresponds to the groundwater divide below 
the Xe Champhone. The permeability of rock salt is typi-
cally very low (~10-12 m/s) so flow within the unit is as-
sumed negligible. The top of the rock salt layer is there-
fore taken as the base of the model domain. 
 According to well logs, the lower clastic layer is dis-
tinctly different from the upper two. It is saline and plastic 
and therefore more like clay than claystone, with minor 
flow occurring through pores rather than fractures as in 
the claystone of the upper two layers. Flow is also likely 
to occur along the contact with the rock salt.  Essentially 
however, the clay and claystone layers are considered to 
be aquitards.     
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The major inputs of water to the model are recharge from 
rainfall, leakage from reservoirs and infiltration of flood 
waters during the wet season. Land-use is divided be-
tween mosaic deciduous forest in the upland areas and 
rice paddy and remnant forest between Yor Huay Bak 
Reservoir and the River. The main recharge areas are be-
lieved to occur along the ridgeline that surrounds the 
catchment. Weathered and fractured sandstone and silt-
stone units and upper terrace gravel beds (not shown) 
provide preferential pathways for infiltration. Diffuse 
rainfall recharge also occurs in the mid-slope and lowland 
areas but is likely to make up a smaller proportion of rain-
fall than in upland areas.  
 The low hydraulic conductivity of claystone, clay and 
rock salt layers of the Maha Sarakham Formation means 
that local flow systems are likely to dominate in the study 
area. The major flow path is believed to be from the main 
recharge areas in the weathered and fractured bedrock aq-
uifers along catchment boundaries, down the topographic 
gradient in the shallow and thin alluvial aquifer and fi-
nally to discharge points in natural depressions, reservoirs 
and the Xe Champhone. Given the shallow depth of the 
water table (Mean SWL = 3.5 m in the dry season) an-
other major mechanism of groundwater discharge is likely 
to be evapotranspiration in the mid-slope and lowland ar-
eas, particularly in the dry season when there is little 
cloud cover, high radiation and low humidity levels. 
Groundwater is evaporated directly from the water table 
by capillary action and transpiration by plants. This is also 
the primary mechanism of salinisation of surface soils 
whereby dissolved salts present in shallow groundwater 
are transported to the surface via capillary action.      
 Deeper percolation of rainfall recharge may reach the 
upper claystone unit, particularly where it is weathered in 
upland areas. Further flow would be limited to fractures 
and bedding planes of the three clastic layers from where 
the upper and mid rock salt layers have been weathered 
away.  

3.2 Model development 

The major assumption in modelling groundwater flow 
along a vertical section of an aquifer is that no flow oc-
curs across the side boundaries of the section (Spitz and 
Moreno 1996). Potentiometric surface maps show that 
shallow groundwater flow is driven primarily by topogra-
phy so the transect was drawn using 1:10 000 scale topog-
raphic maps. The transect location and potentiometric sur-
face map is shown in Figure 4. The model domain was 
divided into six layers, one row (200 m wide) representing 
the vertical slice and 117 columns, each 200 m long. The 
layers vary in thickness along the length of the section and 
correspond to major aquifers and aquitards outlined in the 
conceptual model. Figure 5 illustrates the spatial discreti-
sation of the model domain along with the location of Yor 

Huay Bak and Bak reservoirs and head observations 
points. 
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Figure 4: Potentiometric surface for shallow aquifer and 
location of model transect and all monitoring points.  

 
 

 
 
Figure 5: Spatial discretisation of model domain and loca-
tion of head observation points (green cells), reservoirs 
and the River (blue cells).  

3.3 Model parameters and stresses 

Initial estimated values of horizontal and vertical hydrau-
lic conductivity are presented in Table 1 together with 
calibrated values. Initial estimates are based on values re-
ported for similar rocks in Northeast Thailand (Lert-
sirivorakul 1999; Srisuk et al. 1999; Srisuk et al. 2000). 
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Table 1: Initial and calibrated values of horizontal (HK) 
and vertical (VK) hydraulic conductivity 

HK (m/s) VK (m/s) Layer 
Initial Calibrated Initial Calibrated 

1a 
  b 
  c 

5x10-5 
1x10-5 

1x10-5 

1x10-4 
1x10-5 

1x10-3 

1x10-5 

1x10-6 

1x10-6 

1x10-5  
1x10-6 
1x10-4 

2 1x10-5 8x10-5 3.5x10-6 3.5x10-6 

3/4a 
     b 

5x10-8 1 x 10-7 

1 x 10-7 
1x10-9 

 
1 x 10-9 
1 x 10-12 

5 5x10-8 5 x 10-7 
1 x 10-7 

1x10-9 

 
1 x 10-10 

1 x 10-12 

6 1x10-7 1 x 10-8 1x10-9 1 x 10-9 

 
Recharge from rainfall was modeled via the Recharge 
package in PMWIN Pro. Based on experience from Thai-
land, recharge was assumed to be 15 per cent of rainfall in 
upland areas and 10 per cent in lowland discharge areas, 
and applied to each cell in the top layer with the exception 
of reservoir and constant head cells. This corresponded to 
rates of 270 and 180 mm/yr in upland and lowland areas 
respectively. 
 Discharge of groundwater by plant transpiration and 
direct evaporation from the capillary zone was simulated 
via the Evapotranspiration (ET) package in PMWIN Pro.  
The package uses head-dependant boundary conditions 
and requires input of three parameters: Maximum ET rate 
(LT-1), elevation of the ET surface (land surface) and ex-
tinction depth. The maximum ET rates for upland and 
lowland areas are estimated at 900 and 700 mm/yr respec-
tively. These are based on values reported by Ler-
tisirivorakul (1999) for land-uses of upland crops and 
paddy rice respectively.  Extinction depths were set at 3 m 
and 2 m for upland and lowland areas respectively. 
 The constant head cell which represents the Xe 
Champhone was prescribed a head of 133 mASL, based 
on average annual stage measurements during 2001/02. 
Vertical exchange of water between the reservoirs and 
groundwater was simulated using a head-dependant 
boundary condition within the Reservoir package in 
PMWIN Pro. Required input parameters were reservoir 
stage, elevation of the reservoir bottom, thickness of the 
reservoir bed and vertical hydraulic conductivity of the 
reservoir bed. The stage of Yor Huay Bak was based on 
monthly data obtained from IRD for 2002, while that of 
Bak Reservoir was estimated from topographic maps 
since no other data was available. 

3.4 Calibration methodology 

The steady state model was calibrated by adjusting model 
parameters and stresses over successive model runs until 
an adequate match was obtained between simulated and 
observed hydraulic heads. Heads were compared at five 
observation points along the vertical section as indicated 

in Figure 5. MODFLOW assumes unit density and there-
fore calculates fresh-water heads. The hypersaline nature 
of deep confined groundwater at the contact of the clay 
and rock salt units meant that head observations at 
Phailom needed to be corrected for density differences. 
This was achieved by converting measured point-water 
heads into equivalent fresh water heads (Fetter 2001).  

4 RESULTS 

4.1 Steady state head distribution 

Simulated heads for the calibrated steady state model are 
presented in Figure 6. The residual error between mod-
elled and observed heads ranged between 0.04 and 0.33 
m. Overall, a good fit between observed and modeled 
heads was achieved. Flow (as interpreted from the hy-
draulic head contours) in the shallow aquifers is primarily 
horizontal and follows the topographic gradient from the 
upland recharge areas to Bak Reservoir and the Xe 
Champhone. Hydraulic gradients are greatest in the up-
land areas, especially immediately upstream and down-
stream of Yor Huay Bak Reservoir. 

 

 
Figure 6: Steady state model simulation results: distribu-
tion of hydraulic head (mASL) (observation points 
marked in green). 

4.2 Water budget 

The water budget calculated for the steady state model 
shows that the primary accession of water to the ground-
water system is from rainfall recharge (74 per cent of all 
inputs) and the main discharge mechanism is by ET (65 
per cent of all outflow).  Leakage from reservoirs ac-
counts for 26 per cent of total inputs, while discharge of 
groundwater to reservoirs accounts for 16 per cent of all 
outflow. The water budget also shows that under equilib-
rium conditions, the river is primarily a point of dis-
charge; accounting for 19 per cent of all outflow.  

4.3 Sensitivity Analysis 

A sensitivity analysis was carried out on the steady state 
model and allowed model parameters and stresses to be 
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ranked in order of influence on simulated hydraulic head 
at five observations points in the model domain. Heads in 
the shallow unconfined layers were most sensitive to an-
nual rainfall, infiltration factor, hydraulic conductivity of 
Layer 1, maximum ET rate and reservoir stage. Heads in 
the deeper confined aquifers were sensitive to horizontal 
and vertical hydraulic conductivities at various depth and 
regions of the model domain as well as model stresses.    

4.4 Particle Tracking 

Particle tracking was carried out using the advective trans-
port model PMPATH. This model calculates groundwater 
paths and travel times based on the simulated steady state 
head distribution. Particles were placed in each cell of lay-
ers 1, 4, 5 and 6 and run forward and backward over 100, 
10 000 and 1 million year time periods (Figure 7).  
 

 
 

 
 

 
 
Figure 7: Forward and backward particle tracking for 
steady state simulation over a) 100, b) 10 000 and c) 1 
million year periods. Coloured lines correspond to simu-
lated flow paths of particles placed in Layer 1 (green), 
Layer 4 (pink), Layer 5 (yellow) and Layer 6 (red). 

5 DISCUSSION & CONCLUSIONS  

The results of the particle tracking show the time scales 
over which local, intermediate and deep groundwater flow 
systems operate. Over short time scales (~100 years), re-
charge entering the groundwater system remains in the 
shallow model layers and local flow systems are charac-
terised by localised recharge and discharge zones.   Over 
longer time scales (~10 000 years) particles originating 
from the water table begin to circulate through the upper 
claystone unit while flow in the lower claystone and clay 
units remains negligible. Recharge from Yor Huay Bak 
reservoir can be seen to enter the claystone unit.  
 Figure 6(c) shows that deeper flow systems operate at 
time scales of millions of years. After one million years, 
recharge to Layer 6 can be seen to occur from the overly-
ing layers in the upstream part of the model and discharge 
to the surface at the downstream end of the model. Flow 
in Layer 5, where vertical hydraulic conductivity ranges 
between 1x10-10 and 1x10-12 m/s, remains negligible even 
after one million years. 
 The implications of these results are that the rate of 
supply of salt to surface soils from the lower rock salt 
layer is likely to be extremely slow, with solute transport 
operating at time scales of millions of years. This means 
that changes to the hydrological regime that increase 
groundwater recharge are unlikely to affect the current 
rate at which deep rock salt is transported to the surface 
within the foreseeable future. They probably will on the 
other hand, affect groundwater flow times at shallow and 
intermediate depths and therefore may increase the rate at 
which more shallow salt stores are transported to the sur-
face. Potential shallow stores include remnants of top and 
middle rock salt layers and salt stored in clay soils. The 
critical issue for evaluating the impact of increased re-
charge then becomes the mechanism of salinisation.   
 Two main hypotheses on the process of salinisation 
have been proposed in Northeast Thailand. The first sug-
gests that salts are derived from deep confined groundwa-
ter in contact with rock salt of the Maha Sarakham Forma-
tion and flows upward through fractures of consolidated 
rock to contaminate shallow groundwater in the upper 
sediments (Haworth et al. 1966; McGowan Int. Pty Ltd. 
1983; Williamson et al. 1989; and Imaizumi et al.1996).  
 The second hypothesis proposed by Sinanuwong and 
Takaya (1974) (as cited in Tuckson et al. 1982) is that salt 
is derived from the weathered zones of shales and silt-
stones of the Maha Sarakham Formation in upland areas 
and is redistributed to lowland areas by interflow. Both 
hypotheses suggest that once in the shallow aquifer, salt is 
transported to the surface by capillary action.  
 Tuckson et al. (1982) and Löffer and Kubiniok 
(1988) propose that both hypotheses are valid and provide 
several field studies that illustrate the influence of one or 
both mechanisms depending on the hydrogeological set-
ting. The occurrence of salt seeps at the break of slope 

c) 1 million years 

b) 10 000 years

a) 100 years Simulated watertable
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surrounding low lying hills and ridges provide evidence of 
the upland weathered zone/interflow mechanism. Löffer 
and Kubiniok (1988) explain that this is particularly the 
case when the salt seep has emerged or increased in sever-
ity following land clearing in upland areas where the 
Maha Sarakham Formation is present.  
 In lowland areas underlain by saline groundwater 
such as the large alluvial plains of the Tung Kula Rong-
hai, Tuckson et al. (1982) and Löffer and Kubiniok 
(1988) attribute soil salinity to deep groundwater circula-
tion in contact with evaporites. In this situation, the distri-
bution of saline soils is irregular and both authors suggest 
that the volume of salt in groundwater is too large to be 
derived solely from adjacent upland areas.  
 There is evidence to suggest that both mechanisms 
are operating in the Xe Champhone catchment. The ab-
sence of deep alluvial deposits, suspected presence of 
shallow salt sources and occurrence of salinity at the 
break of slope all point towards the upland weathered 
zone/interflow mechanism. However, from a larger re-
gional scale perspective, the area of salt-affected land and 
shallow groundwater is highly localised and corresponds 
closely with the spatial distribution of rock salt deposits. 
 It should also be emphasised that the interpretations 
of very slow groundwater flow rates in the deeper aquifer 
layers are based on the very small values of vertical hy-
draulic conductivity for the clastic layers that were ob-
tained through the calibration process.  Vertical fractures 
that allow transport of deep brines to shallow aquifers 
may exist in other parts of the catchment. Accordingly, 
the interpretation that changes to the hydrological regime 
are not likely to increase rates of salt transport from deep 
aquifers in contact with the rock salt layer may not be 
valid for the whole study area. While groundwater flow 
velocities in the clastic units are low, changes in hydraulic 
pressure are transferred rapidly through confined aquifers 
and therefore if an increase to recharge occurs and prefer-
ential pathways for groundwater discharge such as verti-
cal fractures and faults exist, then rates of salt transport 
may increase over shorter time periods. This uncertainty 
could be resolved by developing a three-dimensional 
groundwater flow and solute transport model covering the 
whole catchment, dating deep brine waters with Carbon-
14 and Tritium methods and measuring stable isotope 
compositions of groundwater at various depths and aqui-
fer units. Analysis of groundwater age and stable isotope 
composition could also assist in determining recharge 
rates and sources of salt in surface soils and groundwater. 
 The sensitivity analysis highlights how uncertainties 
in recharge and hydraulic conductivity of the shallow un-
confined layer create the most concern for model confi-
dence and salinity management. Variation of these pa-
rameters within their expected ranges results in large 
fluctuations (1-3m) in calculated water-table depth in low-
land areas with potentially large impacts on the rate of 

transport to salt to surface soils by capillary action. In or-
der to increase confidence in the calibrated model and its 
ability to predict the impacts of planned land-use changes 
including irrigation development, future field investiga-
tions should focus on obtaining estimates of hydraulic 
conductivity of the shallow alluvium and infiltration ca-
pacities of soils and underlying sediments and rocks in 
various parts of the catchment.  
 While development of this model has increased our 
understanding of the groundwater system and allowed us 
to make certain hypotheses regarding the effect of in-
creased recharge to the system,  much more detailed data, 
interpretation and modeling is required for the impacts of 
reservoir and irrigation development to be properly as-
sessed.      
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