996

SERP ‘03 International Conference

An Agent-Based Collaborative Architecture for Knowledge-
driven Process Management

Aizhong Lin, Brian Henderson-Sellers, Igor Hawryszkiewycz

Faculty of Information Technology
University of Technology, Sydney
POBox 123, Broadway
NSW 2007, AUSTRALIA
{alin, brian, igorh} @it.uts.edu.an

Abstract

This paper proposes an agent-based collaborative
architecture for collaborative work. This
architecture is applied to knowledge-driven process
management, which often requires quick
reconfiguration of applications. Using this
architecture, an open multi-agent system is
integrated with a virtual collaborative environment.
The virtual collaborative environment provides the
representation and management for knowledge-
driven processes. The open multi-agent system is
quickly reconfigurable to provide suitable
autonomous functions that perform the knowledge-
driven processes.

1 Introduction

A business process is a set of related activities to
achieve a business goal. Debenham [3) categorizes
business processes as activity-driven processes, goal-
driven processes, and knowledge-driven processes in
terms of their manageable properties. A knowledge-
driven process is a specific business process whose
goal or activities may not be completely specified in
advance but emerge over time as knowledge is gained
from the activities performed earlier. In other words,
it is the growing body of knowledge that provides the
direction to knowledge-driven processes. In its
decomposition, a knowledge-driven process contains
goal-driven processes or activity-driven processes as
its sub processes. Knowledge-driven processes are
normally collaborative because the knowledge comes
from not only the single process participant’s work
but also the process participants working in a team.
Managing knowledge-driven processes aims to
provide knowledge representation and management
functions that support collaborative work so as to
respond to progress in executing the process more
quickly, to reduce process cost, and to increase the
process performance.

This research provides an agent-based
collaborative architecture for knowledge-driven
process management. The architecture is an
integration of an open multi-agent system (OMAS)

with a virtual collaborative environment (VCE). The
VCE in this architecture represents and manages
knowledge for knowledge-driven processes and the
OMAS provides reconfigurable autonomous process
functions to support the achievement of process
goals, performance of process activities, and rapid
response to progress of the process enactment.

A business process in a virtual collaborative
environment is decomposed into related process
elements that are goals, activities, roles, participants
and artifacts. A workspace model is defined in the
virtual collaborative environment to represent and
maintain these process elements. The workspace
model is particularly suitable for representing the
growing body of knowledge that directs knowledge-
driven processes because the growing body of
knowledge can be represented as a workspace tree
[6].

The multi-agent system is open due to its
reconfigurable property. An intelligent agent cam
freely join the multi-agent system or quit from the
multi-agent system and one group of agents may
provide different functions from another group of
agents. Furthermore, the multi-agent system can
provide autonomous functions because an intelligent
agent as defined here is a software component,
situated in some environment, that is capable of
autonomous and flexible actions to respond to
changes in the environment in order to achieve
process goals [9].

The paper describes the agent-based
collaborative architecture. Firstly, the collaborative
architecture is introduced using a high level model
which illustrates how the open multi-agent system is
integrated with the virtual collaborative environment.
Secondly, the ontology of the virtual collaborative
environment and the open multi-agent system are
outlined. In particular, a reusable intelligent agent
architecture and the multi-agent interaction are
described. Then, the collaborative architecture that
contains the open multi-agent component and the
virtual collaborative component is illustrated in
detail. Finally, a knowledge-driven process
management application built on this architecture is

mailto:@it.uts.edu.au

SERP ‘03 International Conference

997

described. This application is currently utilized in a
university environment to support knowledge
intensive works.

2 The Agent-based Collaborative

Architecture

The agent-based collaborative architecture is
illustrated in Figure 1. Users or participants work
together in a virtual collaborative environment (as
described further in section 3). Any change taking
place in the collaborative environment made by one
or more users is also represented as an event in the
environment. Events can be detected by agents in the
open multi-agent system, as described in section 4.
Only the responsible agents employ the events to
drive actions. The actions, after they are executed,
may change the virtual collaborative environment and
those changes produce new events,

Fig. 1. A high level model of the agent-based
collaborative architecture

e R

iataligent Agen

Fig. 2. The description of an intelligent agent
connects to the virtual collaborative environment

Fig. 2 illustrates how a single agent in the open
multi-agent system connects to the virtual
collaborative environment. There is a collaborative
database that contains a description of the current
collaborative activities. These activities can use any
of the collaborative services provided by the
collaborative environment. The open multi-agent
architecture contains the agents and their associated

knowledge bases. These are linked to the
collaborative environment through “events” (from the
virtual collaborative environment to an agent) and
“actions” (from an agent to the virtual collaborative
environment). Coliaborative ~ services (e.g.
create_a_new_workspace) built by users can be
integrated into an agent as the actions of the agent
and those actions stored in the agent internal
knowledge base.

3 The Virtual Collaborative

Environment (VCE)

The virtual collaborative environment is based upon a
collaborative meta-model adapted from [1] (Fig. 3).
The meta-model centres on activities that could be
made up of a number of sub-activities as indicated by
the looping arrow. An activity, and its sub activities,
is represented in a workspace. A person, here called a
participant, ‘is-in’ a group and occupies one or more
roles. A group, which can evolve independently, may
contain subgroups. An activity ‘has’ any number of
roles and events and ‘contains’ any number of views,
which contains artifacts or define groups of artifacts.
The roles define access rights to views and can ‘take’
actions. Activities can access workitems, which are
composed of a number of actions. Actions ‘use or
create’ artifacts. An action could be a soloaction,
which is taken by an individual, or an interaction,
such as a discussion, which includes more than one
participant. An activity can cause a number of events,
which are used to ‘drive’ workflows. A workflow ‘is
in’ an activity and is composed of a sequence of
workitems.

The major elements of the collaborative
environment are Workspace, Activity, Group, Role,
Participant, View, Artifact, Workitem, Action,
Interaction, Workflow and Event. They are
specifically defined as follows.

* Workspace a workspace is an interface that
supports the representation of an
activity including its sub activities

* Activity an activity maintains a collection of
other process elements. For
example, it has roles and events,
contains views, and can access
workitems. The workitems are
composed of actions that can
produce defined outputs

* Group a group is a collection of
participants
* Role a role defines a set of

responsibilities in an activity or a
sub activity

998

SERP ‘03 International Conference

Fig. 3. The meta-model of the virtual collaborative
environment (adapted from [11)

» Participant a participant is a specific person

assigned to a role

a view is a collection of artifacts

an artifact is an information object

such as a document

a workitem is a set of actions

needed to produce intermediate

outcomes that eventually produce
an output. A workitem is composed
of a number of actions.

an action is a specific unit of work

carried out by a role {e.g. Change

an artifact, send an artifact)

» Soloaction a soloaction is an action that is
executed by an individual
participant

¢ Interaction an interaction is a set of message
exchanges between people when
they collaborate in activities. An
interaction may not produce an
explicit output although it may
change people’s knowledge

e View
* Artifact

» Workitem

* Action

* Workflow a workflow is a sequence of
workitems that are driven by events
* Event an event is when something takes

place in an activity or a sub
activity. For example, a document
is replaced.

The virtual collaborative environment has been
implemented using the Java 3-tier technology [7].
The interface of the workspace (shown in Fig. 2) is
implemented using Java Server Page (JSP) and Java
Serviet, the collaborative foundation (shown in Fig.
2) is implemented using Enterprise Java Bean (EJB),
and the collaborative knowledge base and the
collaborative service base (shown in Fig. 2) is
implemented on the Sybase database system.

4 The
(OMAS)

Open Multi-Agent System

The open multi-agent system (OMAS) takes events
from the VCE as its input parameters and provides
actions to the VCE as output in order to achieve
collaborative goals defined in the VCE. To describe
the open multi-agent system, we introduce the open
multi-agent architecture, the multi-agent interaction
protocol, the intelligent agent architecture, and the
agent internal knowledge base. The open muiti-agent
architecture describes how muitiple agents are
organized, the multi-agent interaction protocol
illustrates how agents interact with each other, the
intelligent agent architecture describes how an
individual agent achieve its goal and the agent
internal knowledge base describes the agent internal
knowledge and how it is maintained.

4.1 The Open Multi-Agent Architecture

The open multi-agent system is a collection of
individual intelligent agents that work together for a
common goal. An agent in the open multi-agent
system can join the system or leave the system freely.
In the virtual collaborative environment, an agent is
taken as a participant. Different agents have different
actions to achieve different goals. They are organized
in the multi-agent system to interact with each other
to achieve collaborative goals.

The architecture to support the open multi-agent
system is illustrated in Fig. 4. When an agent joins
this system, it sends a “register” message that
contains its personal information (e.g. ID, name,
creator, birthdate and goals) to the PIMA (personal
information management agent) situated in the VCE.
The PIMA saves the agent personal information in
the agent personal information database. Similarly,
before an agent leaves the multi-agent system, it
sends a “unregister” message to the PIMA so that the
PIMA deletes the personal information from the
agent personal information database. The open multi-
agent system can be dynamically organized because
agents can dynamically join or leave the system.

To achieve a common goal, agents interact with
other agents to share actions or knowledge. Agents
interact with each other by exchanging messages. A
message carries a piece of information or knowledge
that the sender wants the receiver(s} to know. In the
open multi-agent architecture as shown in Fig. 5, an
MMA (message management agent) situated in the
VCE receives messages from agents and then
dispense them according to the destination agents. An
agent message has a specific format that either obeys
KQML (Knowledge Query and Manipulate

SERP ‘03 International Conference

999

Language) [4] or the ACL (Agent Communication
Language) [5) standard. In the open multi-agent
system, agents use ACL to express messages.

Fig. 4. The PIMA supports agents joining and leaving
the OMAS dynamically (adapted from [8])

Fig. 5: The MMA supports agents exchanging
messages between agents

4.2 Multi-agent Interaction

Agents interact with each other by exchanging
messages. The interaction messages are normally
constrained by interaction protocols. An interaction
protocol defines a set of interaction messages that can
be understood by the agents. Fig. 6 illustrates an
example of a “delegation” interaction protocol by
which one agent asks another agent to achieve a goal.
From the beginning, the interaction initiator
(requester) sends a message that carmries the
“delegate” information to another agent (receiver)
The receiver agent could “not-understand”, “refuse”
or “commit” the request. Once a commitment is
made, the actions assocaited with this commitment
are taken at the scheduled time. However, the resuit
of doing those actions could be cancel, failure or
success. If it is failure, the reason for failure is sent to
the requester. If it is successful, the success with the
result is informed to the requester. Finally, if it is

cancelled, the reasons for this are provided. After the
requester agent checks the results, it decides to
terminate the interaction. Two interaction protocols
are designed in the OMAS., One is for the “delegate”
and the other is for a negotiation to “share” a piece of
knowledge.

ASi AS] {receiver)
L commt J

ll
success (result)

check resuit
\

4 v

Fig. 6: An interaction protocol for “delegation” by -

which one agent asks another agent to achieve a goal.
The interaction messages are managed by the MMA

The MMA is. built to° manage all messages
exchanged between the two parts of the “delegation”
interaction. The primitives used in this protocol are:

* delegate: A “delegate” primitive
initializes an interaction in
which the sender asks receiver
to do something. For example,
one agent requests another
agent to find a subject
instructor

* not-understand: The receiver agent does not
understand the semantics of the
request

* refuse: The receiver agent refuses to
do the task for the sender for
some reasons such as no time

* commit: The receiver agent commits to
do the task in a specified time

* cancel: The commitment is
decommited for some reason

* failure: The commitment is failure
when it is performed

* success: The commitment is done and

the results is placed in the
agent interaction workspace

e terminate: The interaction initiator
decides to terminate the
interaction after the results
have been checked

1000

SERP ‘03 International Conference

4.3 The
Architecture

Reusable Intelligent Agent

Individual intelligent agents in the open multi-agent
architecture have a reusable agent architecture
defined by the concepts and relationships between the
concepts as shown in Fig. 7.

Fig. 7. The reusable intelligent agent architecture

Events produced in the VCE can be detected by
an agent. When this happens, the agent uses the event
to match the ECA (Event-Condition-Action)_rule.
According to the matched ECA rules, the event could
trigger an action to be executed or a goal to be
targeted for achievement. If a goal is to be achieved,
the goal, beliefs and Inference rules (I rules) are
employed to derive a suitable plan to achieve the
goal. When a plan is selected, the actions contained in
the plan are scheduled and then executed. The results
of the actions that are executed change the VCE and
this change may, in tum, result in new events. The
concepts or terms used in the reusable agent
architecture are defined as follows:

s Environment: An agent environment is &
physical or software place that the agent
looks after

*» Goal: An agent must achieve goals
autonomously for its user or other
agents. A goal is a representation of
what the agent user or other agents
intend the agent to achieve. An agent
user {(or user) is a human who uses the
agent

* Belief: An agent has a collection of beliefs. A

belief is a statement that the agent
believes to be true. For example, an
agent could believe “Peter is a good
instructor of subject x”. An agent
employs beliefs to select plans and
actions to execute

An agent can perceives the events
happening in the environment that it
looks after. An event is a signal
associated with an occurrence in the

s Event:

environment at a point in time. An event

could be “goal created(Workspace w,

Goal g)" that represents a goal created

in a workspace. An event could trigger

an action to be executed directly and it
is called agent reactive reasoning

Plans are used in the intelligent agent to

achieve goals. A plan is a description of

a sequence of actions that an agent can

execute when an event occurs such as

“goal_decided(Goal g)”

e Action: An agent can perform actions that
change the environment. An action is an
operation that can cause a change in the
environment

o ECA Rule: An ECA (Event-Condition-Action)
rule is a statement with the format of
“On an event if the condition is true
then do an action or achieve a goal”

» TRule: Anl (Inference) rule is a statement with
the format of “if x is true then y is true”

* Plan:

4.4 The Agent Internal Knowledge Base

The agent internal knowledge base is used to
represent and store the internal knowledge employed
by the agent to achieve its defined goals. The
knowledge (as shown in Fig. 8) includes
environments, beliefs, ECA rules, I rules, plans and
actions as defined in section 4.3. It also includes the
agent personal information and multi-agent
interaction messages and protocols.

An agent has its personal information that can be
assigned by its designer or user. The agent personal
information includes:

« ID: the unique identifier of an agent in
the agent community

* Name: the name of the agent

* Creator: the name of the person who
generates the agent

s Birthdate: the date of creation of the agent

/ Agont Intarnal Kaawladgs Base
\

D, parws, arveter. prenr—— vy
Y S——
ety amadl addrems Wertopmans e
o Subdara, —.... peomtyeney -
St
{aned by batiod swrining. rousaring wnd T - bt b7
éodsion making easisiomn} B ——

===

Fig. 8. An agent internal knowledge base

SERP ‘03 International Conference

1001

For interacting with other agents, an agent has &
message box that represents and stores agent
incoming and outgoing messages, and the agent has
an interaction protocol repository that represents and
stores interaction protocols. Messages could be
dropped by the agent or user according to the ECA
rules.

4.5 The Implementation of the Reusable
Intelligent Agent Architecture

The reusable intelligent agent architecture has been
implemented using Java. Fig. 9 is the interface that
shows how the ECA rules in an agent are modified

dynamically.

AT SRR e

i iRy

Fig. 9. The interface of the intelligent agent.
how an ECA rule in the agent is dynamically
modified

When an agent joins the OMAS, it starts to
detect events. Based on the detected events and the
ECA rules, an agent provides autonomous actions
that are derived either directly from an ECA rule or
from an ECA rules to goal then to plan and then to
actions. The agent internal knowledge base can be
dynamically change by an agent user when this
change is necessary.

5 A Knowledge-Driven Process
Management Application

An application for research project management in a
university environment is described here to illustrate
the applicability of this agent-based collaborative
architecture. A research project is typically a
knowledge-driven process because its goal and
activities and means to achieve that goal may not be
precisely specified in advance but emerge over time
as knowledge is gained from the actions performed.
A specific scenario is described as follows:

Igor (igorh) and Brian (brian) are supervising a
collaborative research project in which Alan
(alin) and Kevin (kevin) are the research
members. The initial goal of the research is to
construct an agent-based active knowledge portal
for process management. The research project is
represented and managed in this application. The
project members work together supported by the
collaborative architecture. They create their
personal workspaces to manage their own
knowledge; they publish their ideas, papers, and
documents to a collaborative workspace; and
they discuss the topics related to the research
project within the collaborative workspace. Each
member is equipped with a personal intelligent
agent that works on behalf of one and only one
team member. Those agents can detect events
produced in the collaborative workspace and
then derive autonomous actions to respond the
changes of the collaborative workspace. For
example, when the member “igorh” publishes a
new document in the workspace, the agent alin
detects that event and then produces a piece of
knowledge in alin’s personal workspace so that
member alin can quickly respond to the
document published by igorh.

Fig. 10 illustrates the structure of this
management scenario. In this structure, each project
member has a personal workspace and a personal
intelligent agent that looks after a personal workspace
and the collaborative workspace. The goal of the
agent is to transfer useful knowledge between a
personal workspace and the collaborative workspace
autonomously based on events detected and actions
executed. The knowledge is this application is a
document, a paper, an activity, a discussion, or an
ECA rule.

Fig. 10. The application of a research project
management built on the agent-based collaborative
architecture

1002

SERP ‘03 International Conference

(=)
—{==] ==
[
= ———
=
=T T,

Fig. 11. The message exchanging sequénce diagram
that describes the message flow between agents ina
“sharing” interaction

Fig. 11 shows an interaction between alin’s agent
and brian’s agent because alin’s agent wants to share
a piece of knowledge that brian’s agent owns. In this
interaction, primitives “ask-all”, “ask”, “reply”
“share”, and “approve” are used. Other primitives
such as “refuse” and “not-understand” could be used
in a “sharing” interaction protocol.

|| Povemttaree 1 Soit | sabt S | ke Aqriinpont | Astd deifamt | .
n Sumeatuncy E

e armetw ¢ Mepmtsaye partel o mrecess medeing

L b T4 i @ Artilats
e fLun wpbute Ve

Fig. 12. The interface of the collaborative workspace
in this application

Fig. 12 is an illustration of the interface of the
collaborative workspace for the activity “Knowledge
Portal for Process Modelling”. In the left panels, the
interface lists all artifacts, roles and participants of
workspace. The “agent” is a specific role that has four
participants — igorh’s agent, brian’s agent, alin’s
agent, and kevin’s agent. Some artifacts could be
transferred by agents from the participants’ personal
workspaces to the collaborative workspace.

6 Summary and Future Work

This paper described an agent-based collaborative
architecture to support coliaborative work. It is
applied here to knowledge-driven process
management. The collaborative architecture is an

integration of an open multi-agent architecture with a
virtual collaborative environment. This paper
describes the architecture in a high level model, the
virtual collaborative component, the open multi-agent
component and an application.

A further goal in this research is to provide a
methodology and associated tools using Agent UML
[2] as a notation for designing reusable agent
components so that agents can be constructed
efficiently based on the agent architecture.

. Acknowledgements

We wish to thank the Australian Research Council for
providing funding for building reusable agents in
collaborative environment. This is contribution
number 03/11 of the Centre for Object Technology
Applications and Research.

References

1. Biuk-Aghai, R.P. and Hawryszkiewycz, L.T.: “Analysis
of Virtual Workspaces” in Yahiko Kambayashi and
Hiroki Takakura (eds.), Database Applications in Non-
Traditional Environments '99, Kyoto, Japan, 28-30
November 1999, pp. 325-332, IEEE Computer Society.

2. Bauer, B., Muller, J. P. and Odell, J.: “Agent UML: A
Formalism for Specifying Multiagent interaction” in
Agent-Oriented Software Engineering, Ciancarini, P.,
and Wooldridge, M. (eds), Springer, Berlin, pp. 91-103.

3. Debenham J.K.: “Supporting Strategic Process” in
proceedings Fifth International Conference on The
Practical Application of Intelligent Agents and Multi-
Agents PAAM2000, Manchester UK, April 2000,
pp237-256.

4. Finin, T. and Labrou, Y.: “A Proposal for a new KQML
Specification” in University of Maryland Baltimore
Count (UMBC). Baltimore, 1997.

5. FIPA (Foundation for Intelligent Physical Agents):
Communication Language” in
http:/rwww.fipa.org/specs/fipa00003/0C00003A.html,

1998

6. Hawryszkiewycz, 1.T.: “Supporting Teams in Virtual
Communities” in Bench-Capon, T. Soda, G., Min Tjoa,
A. eds, Procededings of the DEXA99 Conference,
Florence, September, Springer, Berlin, 1999, pp. 550-
558. ISBN 3-540-66448-3,

7. J2EE 14
http://java.sun.com/j2ee/1.4/docs/

8. Lin, A.: “Multi-agent Business Process Management” in
proceedings of 1ISA'2000, International ICSC Congress
on Intelligent Systems and Applications on December
11-15, 2000, University of Wollongong, NSW, Australia

9. Wooldridge, M.: “Intelligent Agents: the Key Concepts,
Multi-Agent Applications and Systems II”, Springer
Verlag, 2001

Documentation.

http://www.fipa.orglspecs/fipa00003/0C00003A.html,
http://java.sun.comlj2eel1.4/docs/

