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Abstract Object matching has many potential ap-
plications in industry, defense and medical science.
Most matching methods introduced in recent years
are based on the invariant representations. Main
invariants applied in computer vision are algebraic,
differential invariants and integral invariants. Our
approach in this paper uses an affine integral in-
variant within a Spiral Architecture. The invariant
representation is based on the extracted object con-
tour. The parameter to be used for parameterizing
an object contour is derived from the enclosed area.
The Spiral Architecture posseses powerful computa-
tion features that are pertinent to the vision process.
We present a parallel algorithm for object recogni-
tion on clusters. Image partitioning based on Spiral
Architecture provides well-balanced load and abso-
lutely uniform sub-images. The cluster-based object
recognition greatly inC1'eases computation speed.
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1 Introduction

A fundamental problem of object recognition
is recognising objects within a given scene.
Many recognition algorithms have been pro-
posed. Typical of these are Chamfer recogni-
tion [2], Borgefors recognition [3]and the Haus-
dorff distance [10]. Remote motion detection is
one of the areas requires the object recognition.
One approach to the moving object recogni-
tion is to use the template matching technique
[11] to convert an image sequence into a static
shape pattern and then compare it to the pre-
stored prototypes during the recognition pro-
cess.

Contours extracted from images have proven
quite useful in many object recognition algo-

rithms. Based on the contours formed by
the edge points, feature-based methods for the
recognition of objects independent of their po-
sition, size, orientation and other variations
have been the goal of recent research efforts
(see, for example, [4, 7, 6, 9, 15]). Finding ef-
ficient invariant features is key to solving this
problem.

The three main invariants applied in com-
puter vision are algebraic, differential and in-
tegral invariants. Either type of invariant has
advantages and disadvantages in computer vi-
sion applications as elaborated in [12] .

In this paper, a recognition method is pre-
sented. It is approached by the construction of
an integral invariant [9Jbased on the enclosed
area within a Spiral Architecture. The Spiral
Architecture pocesses powerful computational
features that are pertinent to the vision pro-
cess.

In order to increase the computation speed,
we propose a parallel algorithm for object
recognition. We apply the high speed Spiral ro-
tation [13] to uniformly partition images. This
image partitioning not only divides an image
into absolutely equal sizes of sub-images but
also well guarantees the load balancing. Each
sub-image is actually a contraction of the ori-
gional image with a rotation. The parallel al-
gorithm assigns each slave node to work inde-
pendently on the object recognition based on a
sub-image. Edge detection and contour extrac-
tion of a 2D object play very important roles
in this research. The algorithm is implemented
on a cluster of Sun-workstaions,

The organisation of this paper is as follows.
Section 2 shows an image partitioning method
within the Spiral Architecture. We present the
extraction of an invariant object representation
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on each sub-image in Section 3. This is fol-
lowed by the presentation of the parallel algo-
rithm on clusters for object recognition in Sec-
tion 4. The experimental results are demon-
strated in Section 5. We conclude in Section 6.

2 Image Partitioning

The Spiral Architecture is used as an image
data structure because of its inherent computa-
tion speed in basic image operation [14]. This
section delas with image partitioning within
the Spiral Arcitecture.

2.1 The Spiral Architecture

An image may be considered as the collection
of pixels (picture elements). These elements
correspond to the position of the photo receiv-
ing cells of the image capturing device. In the
case of the human eye, these elements would
represent the relative position of the rods and
cones on the retina. The geometric arrange-
ment of cones on the primate's retina can be
described in terms of a hexagonal grid. This
leads to the consideration of an image as an
ordered collection of hexagonal cells. Each cell
is assigned a number called 'Spiral Address'
counted from 0 [14]. Along with the Spiral Ad-
dition and Spiral Multiplication operations on
the Spiral Addresses, this collection forms the
Spiral Architecture [14].

• Figure 1 shows a sample image (an arrow
) which is represented by a collection of 75

hexagonal pixels.

Here, we use a set of four rectangular pix-
els to mimic a hexagonal pixel as shown in [5].
Figure 2 is a collection of seven hexagonal pix-
els constructed in this way [8].

2.2 Uniform data partitioning

Sheridan in his PhD thesis [14] showed that
multiplying an image represented in the Spiral
Architecture by a Spiral Address represented a
rotation with a scaling (i.e., a contraction). He
also showed that the rotation implied a uniform
partitioning of a image with a proper selection
of the Spiral Address. In fact, each partition is

Figure 1: Sample image of "the arrow" in spiral
space.

Figure 2: Distribution of 7 pixels constructed
from rectangular pixels .

a contraction of the original image of the same
size as shown in Figure 3 1.

For example, multiplying an image by 10,
separates the image into seven sub-images of
the same size if the total number of hexagonal
pixels for the image representation is 72. As all
sub-images look almost the same, this parti-
tioning scheme guarantees well load balancing
for parallel processing. The importance of us-
ing this scheme is that the computation of the
Spiral Multiplication is very fast. Each multi-
plication is implemented using an addition by
taking a 'log' operation [13]. This significantly

1The occurrence of image distortion after partition-
ing is because the Spiral Structure in this paper is a
mimic structure.
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Figure 3: Seven partitions of "the arrow" III

spiral space.

increases the computation speed.

3 Local Object Representa-
tion

In this section, we present object recognition
on each sub-image. The recognition scheme
is based on an affine invariant and the object
contour extracted.

3.1 Affine invariant parameter

Let C be the pre-extracted contour on the
plane represented by (x(t), y(t)) with param-
eter t. There is a well-known parameter which
is linearly transformed under an affine trans-
formation [12], and can be used for parameter-
ising object contours. This is the enclosed area
a defined as in [1]

(1)

(2)

where Ie denotes the line integral along C,
then S is invariant under any affine transfor-
mation (See [9]), i.e., if s is obtained from s

undergoing an affine transformation, then s is
the parameter of 6 and equal to s. Here, (} is
the curve obtained from C through the affine
transformation. In this paper, we use s as the
parameter of the object contour. It is easy to
see that the range of s is [0,1].

We now proceed to find the s value at each
point or pixel on a contour. Let us denote the
enclosed area of a on the contour C by E(a).
The 'area' enclosed by the contour C, denoted
by E, is given by

(3)

Without loss of generality, we can choose
any pixel on the contour and assign the param-
eter value s = 0 to this pixel. Then this pixel
becomes the starting point of the contour. We
denote the starting point ao.

For any other point a on the contour, along
the positive tangent direction (see [5]) starting
from ao, find all pixels between ao and a. Sup-
pose that these pixels are ai, a2, "', an, where
n ::::;N, ai+1 is the adjacent pixel of ai in the
positive tangent direction of a; for ° ::::;i < n
and an = a (see Figure 4). Then the s value at
a, denoted by Sa, is implemented by

(4)

Figure 4: Distribution of contour points.

3.2 Representation of an affine inte-
gral invariant

Let the contour C be represented by

Define a new parameter s as follows
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(5)

where det[vI, V2] denotes the determinant of a
matrix which consists of two column veotors,
VI, V2 E R2. It easy to see that 1(s) represents
the area made by two vectors, V (s + lls) ---:-V (s)
and V(s - lls) - V(s), as shown in Figure 5.

Figure 5: 1(s) is the area made by V (s + lls) -
V(s) and V(s - lls) - V(s).

He et al. have proved in their paper [9] that
1(s) shown in Equation 5 is a relative invari-
ant under the affine transformation, i.e., it re-
lates to its image by a multiplication constant
det(A), where A is the affine transformation
matrix. The multiplication constant can be re-
moved then the representation is expressed in
a ratio form as

(6)

where the position v is the location of the
largest absolute magnitude of the relatively in-
variant representation 1(s ).

Equation 6 is defined as the affine invariant
representation at the contour point with pa-
rameter value s in this paper.

3.3 Local algorithm on object fea-
ture

The proposed affine integral invariant suggests
below a procedure for finding the object fea-
ture in a sub-image. The area or the set of
hexagonal pixels for the sub-image is called a
'local area'.

1. By applying a method for contour extrac-
tion to sub-image, the contour of the ob-
ject in the sub-image is extracted.

2. For the contour,

• the parameter value s at any contour
point is computed by Equation 4;

• determine contour points which have
parameter values approximate to s +
lls and s - lls for any given contour
point with parameter s and a fixed
lls (which is set to be the same for
all s, i.e., it is independent of s);

• 1(s) and hence M(s) defined in
Equation 6 for any point with param-
eter s is computed;

• compute the average AI(~) on the
contour and denote it by M, i.e.,

(7)

where C is the contour, V(5) is the
point on C with parameter 5 and N is
the number of points on the contour.

l\~1obtained in this section is the feature of
the object in the sub-image. This value is in-
variant under general affine transformation.

4 Parallel Algor-ithm on Clus-
ters

One important application of the recognition
of an unknown object is to recognise the ob-
ject in an image as one of a number of model
objects. This process requires the representa-
tion (or the feature) of the object be matched
with one of those in the database. An object
in a scene is considered to belong to a specific
class if the degree of dissimilarity between the
unknown object and models of that class is the
smallest in comparision to the others. In this
section, we present a parallel algorithm for ob-
ject recognition based on a client-server model.
The algorithm applies the uniform partitioning
technique as described in Section 2.

1. Each image is represented by a collection
of 75 hexagonal pixels.
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2. The master node partitions the images
into sub-images. This is done by multiply-
ing the images by Spiral Address 104• The
images include those containing model ob-
jects and the one containing the unknown
object.

3. The master assign each sub-image to a
slave node.

4. Each slave node work independently on
the sub-image for contour and feature ex-
traction of the object within the sub-
image. The same b.s value is used by all
slave nodes.

5. The master node collects the results from
all slave nodes. These results include the
features (Ms) of the model objects and the
unknown object. Note that each of the
objects has seven feature values, of which
each is calculated by a slave node.

6. The master node compares the M value
of the contour of the unknown object with
the value of each model object within the
same local area. The difference between
the two values should be small if the two
contours represent the same object, of
which one can be obtained from another
using an affine transformation. This dif-
ference defines the degree of dissimilarity
between the two objects.

7. The master node take the average of the
degrees of dissimilarity for each pair of un-
known object and model object over the
seven local areas. This is the square root
of the sum of the degrees square.

8. The smaller average value indicates a bet-
ter match between the unknown object
and the model object.

5 Experimental results

As a simplified illustration of our parallel
matching algorithm, three images represented
in the Spiral Architecture are considered. One
is the image containing the arrow as shown in
Figure 1. The other two are shown in Figure 6.
The ellipsoid, disk and arrow are the objects in
these images. We are comparing the ellipsoid
with the disk and the arrow, i.e., we are going

Figure 6: (upper) an ellipsoid and (lower) a
disk.

to find out which of the disk or the arrow the
ellipsoid matches.

Twenty two Sun-Workstations (Ultra 5,
RAM 128MB, CPU 330Mbps) are used for the
computation. One is used as the master and
the remaining twenty one are used as slaves.
Applying a Spiral Multiplication to these im-
ages, each image is separated into seven sub-
images (see, for example, Figure 3 for the arrow
sub-images). The contours of these objects in
the seven local areas are shown in Figure 7.

For this algorithm, b.s set to be the value
such that the pixel with s ± b.s is about two
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Table 1: Object Features
Ellipsoid Disk Arrow

Area 1 0.360000 0.410526 0.106383
Area2 0.147260 0.258681 0.267025
Area3 0.136986 0.202128 0.214286
Area4 0.195946 0.225263 0.301075
Area5 0.138514 0.144737 0.159722
Area6 0.136905 0214286 0.245520
Area7 0.199324 0.299479 0.141053

pixels away from the pixel with s, It is calcu-
lated that 6.s = 0.023241. The values of M of
these contours with the 6.s values are listed in
Table 1. This table shows the following.

1. The feature values (Ms) of each object in
each local area.

2. The degrees of dissimilarity on local ar-
eas 1-6 indicate that the Ellipsoid match
the Disk better than the Arrow. For ex-
ample, in local area 1, the degree of dis-
similarity between the ellipsoid and the
disk is 0.410526 - 0.360000 = 0.05526 and
is much smaller than the degree of be-
tween the ellipsoid and the arrow which
is 0.360000 - 0.106383 = 0.253617.

3. However, in area 7, the degree of dissim-
ilarity between the ellipsoid and the disk
is bigger. Hence, results at this area tells
a wrong match. This is caused by the im-
age noise. Hence, it is necessary to take an
average of the results in all seven areas.

4. The average of the degrees of dissimilar-
ity (see Step 7 in Section 4) between the
ellipsoid and the disk is 0.027153, and the
average between the ellipsoid and the ar-
row is 0.047667. Hence, we conclude that
the Ellipsoid match the Disk better than
the Arrow.

5. If there is no noise, the Ai values of the
disk and ellipsoid must be 1.

6 Conclusion

In this paper, a parallel object recognition al-
gorithm was proposed within the Spiral Ar-
chitecture. A uniform partitioning method for

parallel algorithm was applied within the Spi-
ral Architecture based on 'Spiral Multiplica-
tion'. This proposed partitioning scheme guar-
antees well load balancing and fast approach.

This is implemented on a cluster of Sun-
Workstations. The proposed algorithm greatly
increases the computation speed. The time for
the object matching using the algorithm pre-
sented in this paper requires less than two min-
utes to complete in contrast with about three
hours using sequential approach.
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