2002 International Conference on Intelligent Information Technology Proceedings

Initial Value Generation for Matchmaking in Middle Agents

Zili Zhang -
School of Computing and Mathematics
Deakin University ,
Geelong Victoria 3217, Australia
email: zzhang@deakm.edu.au

Chengqi Zhang
“Faculty of Information Technology
University of Technology, Sydney

PO Box 123 Broadway, NSW 2007 Australia

Yuefeng Li
School of Software Engineering and Data Communications
Queensland University of Technology
Brisbane Queensland 4001, Australia

Abstract

One of the major challenges that agents used in open en-
vironments muist face is that they must be able to find edch
other. This is because in an open environment, agents might
appear and disappear unpredictably: To address this is-
sue, middle agents have been proposed. The performance
of middle agents relies heavily on the matchmaking algo-

" rithms used. Matchmaking is the process of finding an ap-
propriate provider for a requester through a middle agent.

The practical performance of service provider agents hasa -
significant impact on the matchmaking outcomes of middle -

agents. Thus the track records of agents in accomplishing
similar tasks in the past should be taken into account in
matchmaking process. Considering that there are no track
records available at the launching of an agent system, this
paper discusses some ways 1o provide reasonable initial
values for the track records. With the agean' hz.s'tory and

pace. These agents invariably need to interact with one-
another in order to meet their designers objectives. In such
open environments, agents that would like to coordinate
with each other (either cooperate or negotiate, for exam-
ple) face two major challenges: first, they must be able to
find each other (in an open environment, agents might ap-
pear and disappear unpredictably), and once they have done
that, they must be able to inter-operate [3]. To address the
issue of finding agents in an open environment like the In-
ternet, middle agents [4] have been proposed. Each agent
advertises its capability to some middle agent. A number of
different agent types have been identified, including match-
makers or yellow page agents (that match advertisements to
requests for advertised capabilities), blackboard agents (that
collect requests), and brokers (that process both). Middle
agents are advantageous since they allow a system to oper-
ate robustly in the face of agent appearance and disappear-

. ance and mtemnttent commumcatlons

the initial values of the track records, the perfonnance of

matchmaking algorithms can be improved significantly.

1. Introduction

An agent is an encapsulated computer system that is sit-
uated in some environment and that is capable of flexible,
autonomous action in that environment in order to meet it
design objectives [1]. A multi-agent system can be defined
as a loosely coupled network of agents that work together
to make decisions or solve problems that are beyond the in-
dividual capabilities or knowledge of each agent [2].

One of the most important driving forces behind multi-
agent system research and development is the Internet:
agents are populating the Internet at an increasingly rapid

12

The performance of middle agents relies heavily on the
matchmaking algorithms used. Matchmaking is the process
of finding an appropriate provider for a requester through
a middle agent. The state of the art of matchmaking al-
gorithms is as follows: Agents provide meta-information
about the services they offer to middle agents. Based on rel-
evance calculation methods (mainly distance functions) the
middle agents use this information for matching and pro-
vide the best fitting offers to a requester agent. The fact that
is not taken into account is that the meta-information is de-
fined by the provider agent itself. This means that in general
the advertisements of the provider agents are not proven but
self defined.

On the other hand, there are usually more than one ser-
vice provider agents claim that they have the same or very
similar capabilities to accomplish a task in an application.

2002 International Conference on Intelligent Information Technolagy Proceedings

For example, in financial investment applications one usu-
ally needs to predict the interest rate. There are different
techniques for interest rate prediction such as neural net-
work (NN) technique and fuzzy logic with genetic algo-
rithm (FLGA) [6], but their prediction performances are dif-
ferent. If there are two interest rate prediction agents, one
based on NN, the other based on FLGA, which one should
be chosen to predict the interest rate? In such cases, cur-
rent matchmaking algorithms can only choose one provider
agent randomly. As the quality of service of different ser-
vice provider agents varies from one agent to another, even
though they claimed they have the same capabilities, it is
obvious that it is not a good strategy to randomly choose a
provider agent for the requester agents.

To this end, we provided a solution to this issue by in-
troducing an algorithm which can consider agents’ track
records [5]. The work described in [5] advances the state of
the art by enhancing the existing matchmaking approaches
by a quality measure which relates to the agents perfor-
mance in live applications.

The track records or “credit histories” of agents are accu-
mulated gradually during the executing process of a multi-
agent system. Thus there are no track records available
when the system is first launched. In such cases the im-
proved matchmaking algorithm can only randomly choose
one agent with the requested capability, which is the same
as other matchmaking algorithms.

If one can find some way to provide reasonable initial

values for the track records, one can choose the agents
based on the initial values at the very beginning. With the
track records accumulated, the initial values and the track
records are combined to choose the agents. In this way, the
shortcoming of the algorithm considering track records —
no track records being available at the very beginning - is
overcome. This is just the task of this paper.

This paper will propose some ways to provide initial val-
ues for the track records. The basic idea is to give a set
of problems (called benchmark problems), and ask all the
agents who claimed that they have the capabilities to solve
these problems. By calculating the “distances™ between the
solutions to the problems the agents gave and the bench-
mark results, one can determine the initial values for the
track records of these agents. Of course, if the benchmark
results are unknown in advance, we must find the bench-
mark results first.

The rest of the paper is structured as follows. Section
2 gives the basic idea for initial value generation of track
records. Section 3 is the description of benchmark problems
and benchmark values. Section 4 presents the initial value
generation process with known benchmark results. When
benchmark results are unknown, an approach is proposed to
find them in Section 5. Section 6 concludes the paper.

13

2. Basic Idea for Initial Value Generation

Suppose we want to delegate a task to a person, but we
have ten persons all claimed that they have the capabil-
ity to accomplish the task. In such a case whom should
we choose to delegate the task? If we have the track
records of the ten persons in accomplishing similar tasks
in the past, we can make the decision based on their perfor-
mance/accomplishment history. This is what we discussed
in [5]. If there is no any information about the ten persons
in accomplishing similar tasks, one simple and efficient way
we usually utilize in real life is to design a set of problems
and ask all the candidates to solve these problems. We as-
sess the solutions provided by the candidates and delegate
the task to the candidate with the best solutions. The sim-
plest form of such kinds of problems is different examina-
tion papers. In this paper we call such a set of problems
“benchmark problems”. The “standard” solutions are called
“benchmark results™ or "benchmark values”. .

-According to the above scenario, we can summarize the
basic idea of initial value generation approach as follows.
Before putting a multi-agent system into practical opera-
tion, the system is “trained” with a set of benchmark prob-
lems. That is, the middle agent is run with a matchmaking
algorithm first (e.g.,, find nn algorithm [7]) . The middle
agent then asks the agents with the same or similar capabil-
ities (based on the returned results of the matchmaking al-
gorithm such as find .nn) to solve the benchmark problems.
By testing the results provided by these agents against the
benchmarks, one obtains an evaluation of these agents for
their performance on solving the benchmark problems. This
evaluation is then used as the initial value of these agents’
track records.

3. Description of Benchmark Problems and
Benchmark Values

In order to extract an approprizte description of bench-
mark problems and benchmark values, we take the software
risk analysis as an example.

Assume there is a software project and we want to an-
alyze the risk of this project. From software engineer-
ing risk management point of view, there are some prin-
cipal software risk factors that influence the risk of a soft-
ware project [8]. These software risk factors include or-
ganization, estimation, monitoring, development methodol-
ogy, tools, risk culture, usability, correctness, reliability, and
personnel. The software risk factor organization addresses
risks associated with the maturity of the organization struc-
ture, communications, functions, and leadership; The soft-
ware risk factor estimation focuses on risks associated with
inaccurate estimations of the resources, schedules, and costs

2002 Intemational Conference on Intelligent Information Technology Proceedings

Table 1. Description of Benchmark (BM) Prob-
Agent Sy S
Vay (... an ap | ... | aq
A4 o b bi,‘?; b,
4 | Y bz | | o b2,
: Ak b{?‘ b{[xll.' e m’i b{‘n_’;_;_‘
- BM b_ll bln see brnl bmn

needed to develop software; The software risk factor moni-
toring refers to risks associated with identifying problems;
The software risk factor development methodology identi-
fies the methods by which software is developed; The soft-
ware risk factor fools focus on risks associated with the soft-
‘ware tools used when software is developed; and so on. To

analyzeg, the risk of a software project is to determine the -

values, (e.g., low, medium, high etc.) of these software risk
factors. The software risk factors here can be viewed as
attributes describing the software risk problem. More gen-
erally, we can say that solvea problem is to find the attribute
values related to the problem.

Formally, let A = {4;,4,..., Az} be the agent
set with the same or similar capabilities. We use S =
{S1,52,:..,Sm} to denote the problem set. Each prob-
lem S; € § (z' ‘= 1,2,...,m) has a related attribute set
a= {al,ay, ., an}. We say agent A; solved problem S;
if it returns the values of the 7 attributes related to the prob-

lem. The values can be mumeric or non-numeric (linguistic .
values). Suppose the benchmark values of these attributes .

denoted by B; = {bi1.b; 3, o} = 1,2,
and, the values returned by agent 4j denoted by B‘ I
(LY 6%, 0NN i=1,2,....mj =1,2,...,k). The
description of the benchmark problems is then summanzed
inTable 1.

The next step in the initial value generation process is
to calculate the “distances™ between the returned values by
agent .4; and the benchmark values. There are many defini-
tions of “‘distance”. Here the distance is defined in terms of

- standard Euclidean distance. The distance between J3; and
B;Y is defined to be d;, where d; = \/ YR (b — U2,
Then these distances are added to the database of the middle
agent as the initial values of the track records.

Considering that the initial values and the track records
need to be combined when accumulated, the distances were
mapped to the satisfactory degrees defined in [5]. Asthere
are 7 levels of satisfactory degrees—strong satisfaction, sat-
isfaction, weak satisfaction, neutral, weak unsatisfaction,
unsatisfaction, and strong unsatisfaction, each level ac-

.,m)

14

counts for 1/7 of the distance range. Therefore, if the dis-
tance is between 0 and 0.143, strong satisfaction will be
the initial value of the agent’s track record; If the distance is
between 0.143 and 0.286, satis faction will be the initial
value etc. The mapping results are shown in Table 2,

Table 2. Mapplng Results between Dlstance
and Satisfactory Degree

Distance Range | Satisfactory Degree
0t00.143 | . strong satisfaction
0.143t0 0.286 satisfaction
0.286 to 0.429 weak satisfaction
0.429 t0 0.572 neutral
0.572t00.715 | weak unsatisfaction
0.715 to 0.858 unsatisfaction
0.85810 1.0 strong unsatisfaction

In the process of initial value generation, there are two
situations that need to be considered. One is the benchmark’
values in Table 1 are known in advance, the other is the
benchmark values are unknown. We will discuss two cases
respectively inthe subsequent sections with examples.

4. Initial Value Generation with Known Bench-
mark Results

For different applications, the benchmark problems are
different. That is, the benchmark problems are application-
dependent. In this section, we take the financial application
as an example to discuss the initial value generatlon prob-
lem with known benchmark values, °

In financial applications, different models (e.g., fuzzy
logic and genetic algorithm model [6]) can be used for in-
terest rate prediction. In this section, two soft computing
(SC) agents for interest rate prediction (one is based on neu-
ral network, called SC_Agent NN, the other based on fuzzy -
logic and genetic algorithm, called SC_Agent FLGA) are
taken as examples to show how to determine the initial val-
ues for the two agents. The initial values are based on the
predictive capabilities of these two SC agents.

4.1, Construction of Benchmark Problems

When predicting the interest rate (as represented by 91-
day Treasury bill rates), both of the agents take the changes
of previous Treasury-bill (T-bill) rates, real gross national
product (GN.P), consumer price index (C'PI), M2 money
supply, and personal wealth (1¥) as inputs. Personal wealth
is the accumulation of the difference between personal in-
come and personal consumption. The M2 money supply
consists of all cash in circulation and deposits in savings

2002 International Conference on Intelligent Information Technology Proceedings

and check accounts, and represents readily available liquid
assets. The consumer price index is a measure of the infla-

tion trend. The outputs are the changes of next T-bill rates
(predicted interest rates). Quarterly data are used.

We use the history financial data of the five factors (from
1966 to 1987) provided in Appendix B of [6] to construct
the required benchmark problems.

There is some evidence to suggest that fundamental fi-
nancial market characteristics change over a period of four
to five yeiirs [9]. That is, the market “forgets” the influence

‘of data'that is more than five years old. For this reason, five-
‘year data windows are used. 15 data windows are examined,
each starting in the first quarter of the years 1967 through to
~l981 tespectively. The ending quarters for each data win-
dow will be the fourth quarters of the years 1971 through to
1985. This means there are 15 benchmark problems. The
inputs of benchmark problem S, for example, are the data
from 1967 to 1971. The benchmark value for these inputs
is the T-bill rate of the first quarter of 1972, —0.81.

4.2. Experimental Results

The 15 data windows are used to train these two agents
(neural network and genetic algorithm). We then let the
agents predict the interest rate of the first quarter following
the training data windows. For example, for training data
of 1967-1971, the outputs of the agents are the (predicted)
T-bill rate of the first quarter of 1972. The prediction re-
sults of the two agents on the 15 benchmark problems are
summarized in Table 3.

.The average distance for the prediction values of
SC_Agent NN is 0.287. The value for SC_Agent FLGA
is 0.123. Based on the prediction results and the average
distances, one can see that the prediction performance of
SC_Agent FLGA is better than that of SC_Agent NN for
the benchmark problems. Mapping the distances to sat-
isfactory degrees (refer to Table 2), weak satisfaction
is added to the track record of SC_Agent NN as its ini-
tial value, and strong satis faction to the track record of
SC.Agent FLGA as its initial value. Hence at this stage,
if the middle agent needs to pick one agent for interest rate
prediction, the result is SC._Agent FLGA. Of course, the sit-
U *ion may change with the accumulation of track records
of these agents.

S. Initial Value Generation with Unknown
Benchmark Results

In the case discussed in the previous section, one must
kriow a priori of the attribute values of the benchmark prob-
lems, but this is not always the case. In some situations,
it is impossible to obtain the attribute values in advance.

15

In such cases, one can ask the agents to solve these prob-
lems first. One can then try to cluster the attnbute values
returned by agents using cluster analysis methods. In this
way, “heuristic” attribute values can be obtained. One can
then use the “heuristic” attribute values as the benchmark
values and back to the situation discussed in the prevxous,
section.

There are seven steps involved using cluster analysis al-
gorithms to determine the benchmark results. Before pre-
senting these steps in details, a brief introduction to fuzzy
cluster analysis algorithms [10][11], which are used in our
experiments, is given,

5.1. A Brief Introduction to Fuzzy Cluster Analysis

The aim of a cluster analysis is to partmon a gnven set
of data or ‘objects into clusters (prototypes) “This’ parti-
tion should have the following properties: (1) Homogeneity
within the cluster, i.e., data that belong to the same cluster
should be as similar as possible; (2) Heterogeneity between
clusters, ie., data that belong to d1ﬁ“erent clusters’ should
be as different as possible. The concept of “smulanty” -has
to be specified according to the data. Since the data arein,
most cases real-valued vectors, the Euclidean distance be-
tween data can be used as a rheasure of the dissimilarity.

The fuzzy clustering algorithms that we
will use classify the elements ‘of the data set
X o= ’, tj,---y%n} C . x+into classes.

{pl p” s Pis :pC} C by means of a
membershlp matrix U C [0,1]¥ l""" A membership
grade u;,; denotes the degree of belongingness of datum
z; to class p;. The algorithms minimize the following
objective function by means of alternating optimization
(A0)

J(X W U, P) E'_lu w,-d'z(k- zi),

where d x X o ~+R measures the distance between data
vectors and prototypes and w ; j is the wexght for the data vec-;
tor z;. The term alternating optimization comes from the
fact that J is minimized by updating prototypes and mem-"
bership alternauvely If X = {x1. TgpeveaTines ,a:,,} andi
P = {p1.02: .. sPiseees pc} are finite, an analysxs result,
f:X = F(P) can be rcpresented as a ¢ X n matrix U,
where u;j := f (:cJ)(p,) ‘The algorithra used is shown ‘be-.
low.

Fuzzy Clustering Algorithm
Let a data set X = {%1.%2,...,%j, ., %} e given.
Let each cluster be uniquely characterzzable by an element
of a set P.
Choose the number c of clusters,2 < ¢ < n
Chooseanm € R(m > 1)
. Choose a precision for termination €

2002 International Conference on Intelligent Information Technology Proceedings

‘Table 3 Predicting Results on Benchmark Problems

Agent A Sa Ss Sy Ss - Se St

SC_Agent NN | -0.53 | 045 | 0.03 |-093 |-0.67 |-0.14 | 0.43

SC.Agent FLGA | -0.78 | 0.73 | -0.16 | -1.36 | -0.60 | -0.28 | 0.53

. Benchmark -0.81 1 0.70 | -0.40 | -1.20 {-0.69 |-0.28 | 0.47

Ss So |'Sio| Su | Sz | S13 | S | Sis

0.79 . 141. 1215]-095 |-1.16 {-0.33 |-0.45 |-041

1.03 1.84 | 2.66 | -1.17 | -1.00 {-0.22 | -0.87 |-0.53

1.02 191 | 2.57 | -1.10 | -0.82 | -0.03 |-1.08 |-0.11
Initialize U9, §:=0.. k problems returned by the m agents. That is, the in-
REPEAT - ' put of the algorithm is rn x n data matrix. There are
Increase i by I k such matrices. The outputs of the algorithm have the

. Determine P9 such that J is minimized by P for following format:
Sired Y=Y (cluster

. Determine U accordmg to certain conditions
UNTIL [[UG-Y —UD|| <&
There are many ways to determine UU{¥). Different ways

result in different fuzzy clustering algorithms. Refer to [10]

for more details.

. In the next subsecnon, we will discuss the steps in de-.
temnmng benchmark values by using this fuzzy clustering
algonthm.

5.2. Determining Benchmark Values by Fuzzy Clus-_

tering

» As discussed in Section 3, finding a solution to any prob-
lem can be viewed as determining the attribute values re-
lated to the problem ‘With thi§ observation in mind, a
set of benchmark problems can be designed, but the solu-
tlons to all these’ problems are ufiknown (e.g., we do not
know what the risk exactly is for a software project). Some
agents who claimed to have the capabilities are asked to
solve these problems and return the solutions (the attnbute
values).’ These attribute values are then as mputs {o the
-fuzzy clustering algonthm The algonthm partitions the so-
lutions into different clusters (called prototypes). We then
choose the center of the cluster with the highest werght as

the benchmark values for the - problems. This implies that
we should accept most agents opinions if their solutions are

similar. If is reasonable to do so. Specifically, this process
involves the following steps.

¢ Preparation: Given k similar problems (benchmark
problems). Choose mm agents having the capabilities
to solve the k problems, respectively. The solution of
each _problem consrsts of 7 attnbutes

¢ Use the fuzzy clustering algorithm to determine the

clusters (prototypes) of the solutions for each of the.

16

(prototype (weight value) (center (values for all the
attributes) ...

(prototype (weight value) (center (values for all the
attrtbutes))

Choose tlie prototype w1th the lnghest weight as the
benchmark values for this problem Repeat this step
for k problems ‘ .

Calculate the distances (usmg Euclidean dlstance) of
the solutions given by the agents and the found bench-’
etk values.

Fiud the average distances of all the solutions provided
by the m agents with the found benchmark values of
the & problems

Normalize the distances to [0,1]. Sort the m agents
according to the average distances. Mapping the aver-
age distances to the seven satisfaction degrees (refer to
“Table 2), and use the satisfaction degrees as the initial
o values of these agents respectrvely

The average d1stances are used as the measurement of
agents' performance in accomplishing benchmark prob-
lems. Such a2 measurement meets the “majority principle”.
That is, if one agent can accomplish most of the benchmark '
problems with high quality, another agent can only accom-
plish a few of the benchmark problems with high quality,
the average distance of the first agent is shorter than that of
the second one. Therefore, the results obtained according to
the above process are cohvincing. The key in this process
is step 2. In this step fuzzy clustering algorithm is used to
cluster the solutions provided by different agents. Based on
the clustering results, the “heuristic” attribute values, which
are reasonable benchmark values, are determined.

2002 International Conference on Intelligent Information Technolbgy Proceedings

5.3, Experimental Results

Recall the software project risk example in Section 3.
Suppose some experts in this field are invited to assess the
risks of some software projects. The experts are asked
to give their assessment results by providing a2 number
(€ [0,10]) for each of the ten software risk factors. The
bigger the number, the higher the risk concerning that risk
factor. According to the process describing in the previous
subsection, some experiments were conducted with k = 30,
m = 20, and n = 10. That is, 20 agents with similar capa-
bilities are delegated to assess 30 software projects (bench-
mark problems). The answer for each problem consists of
10 attributes. The data for the risk factors used in the exper-
iments are randomly generated. For demonstration purpose,
Table 4 shows the solutions of the 10 agents for one of the
30 benchmark problems.

Taking this as inputs, the clustering algorithm produces

the following output for this problem:
(cluster

(pmtotype(welght 2. 67437) (centex (7.052511. 84176 3.82815 5.14071

3.05296 1.94812 8.18994 6.23528 4.76634 4.21243)))
(prototype(weight 2.01146) (center (6.92752 2.09169 4.33178 5.17589
2.66185 2.1582 8.16927 5.69102 5.11877 3.92546)))

(prototype(weight 5.45996) (center (6.99357 1.95553 3.98165 5.02628
3.01206 2.00627 7.99989 6.01413 5.01984 3.9859)))) -

There are three different clusters (prototypes). Choosing
the prototype with the highest weight (5.45996), we obtain
't_he benchmark values for this problem. The attribute values
are a; = 6.99337, a» = 1.95533, az = 3.98163, a4 =
5.02028, a; = 3.01206, ag = 2.00627, a7 = 7.99989,
ag = 6.01413, a9 = 5.01984, and a;o = 3.9839, re-

. spectively. Table 5 lists the benchmark values for the first
5 benchmark problems determined by fuzzy clustering ap-
-proach.
- We then calculate the Euclidean distances between the
solutions provided by the agents and the found benchmark
‘values. The results are shown in Table 6. As space is lim-
ited, only the distances between 5 agents’ solutions and
_benchmark results of 5 benchmark problems are listed.

To measure the performance in accomplishing bench-
mark problems, the average distances between agents’ solu-
tions and the benchmark values of all benchmark problems
are used. The shorter the average distance, the better the
performance. The average distance between agent 4 ; and
the benchmark values is denoted by d_4,. Based on the ex-

*perimental data, these distances are d 4, = 0.2141, d4,
0.0031, d4, = 0.0482, d4, = 0.0041, d4, = 0. 1190,
di, = 03442, dy, = 0. 2391, da, = 03157, dy, =
0.1824, dy,, = 0.2666, d4,;, = 0.2181, dy,, = 0.213,
dayy = 0.3946, dg,, = 0.077, da,, = 0.1818, dy,, =
0.1333, da,; = 0.2724, da,, = 0.2097, dy,, = 0.1442,
da,, = 0.4322, respectively. From the average distances,
it is obvious that agent 3 has the best performance in do-
ing the benchmark problems, agent 2 has the second best

performance, etc. Mapping these average distances to sat-
isfactory degrees according to Table 2, the initial values of
agents 2, 3, 4, 14, and 16 are strong satisfuctionas their av-
erage distances are within ([0, 0.143]; the initial values of
agents 1,5,7,9, 10, 11, 12, 15, 18, and 19 are satisfaction
as their average distances are between 0.143 and 0.286; the
initial values of agents 6, 8, 13, and 17 are weak satisfac-
tion; and the initial value of agent 20 is neutral.

6. Conclusions

Matchmaking in middle agents is essential for multi-
agent systems used in open environments such as the In-
ternet. Agents’ track records have a strong impact on the
outcome of matchmaking. Therefore agents’ history per-
fonnance/accomphshment (track records) should be taken
into account in matchmaking. As the track records of agents
are accumulated gradually during the executing process of
a multi-agent system, there are no track records available
when the system is first launched. To this end, this paper
proposed ways to generate reasonable initial values for track
records of agents.

The basic idea for initial value generation is to provide
a set of benchmark problems and ask all provider agents
claimed to have the same capabilities to solve these prob-
lems. By comparing the distances between the solutions
provided by agents and the benchmark values, the initial

.- values of these provider agents are then determmecl

17

_ Two cases were identified in initial value generation. If
the benchmark values are known in advance, the distances
were calculated directly to determine the initial values of
agents. If the benchmark values are unknown, fuzzy cluster-
ing algorithms were employed to find the benchmark values
first. In both situations, experiments were conducted. The
experimental results show the proposed initial value gen-
eration approaches are workable and can produce reason-
able initial values. Combining the agents’ history perfor-
mance/accomplishment information and the initial values of
track records, the performance of matchmaking algorithms
can be improved significantly.

Thus far, all the discussions are based on one assump-
tion: The track records of agents are credible. The situation
with false track records is subject to further research.

Acknowledgement

The authors would like to thank Mr Hong Hu'’s support
in conducting the experiments.

References

[1] M. Wooldridge, Agent-Based Software engineering,
IEE Proc. Software Engineering, Vol. 144, No. 1,

2002 International Conference on Intelligent Information Technology Proceedings

Table 4. Agents’ Solutions to One Benchmark Problem

Agent

Saz

ag a as a4

as

dy ar Ay ay al

A | 694185389538

3.24

199 (821 | 584 [502 |3.85

Ay | 6931204 [4.07]496

2.97

1.95 [8.06 | 6.0 [4.97 |3.97

As | 6991199 40 | 50

3.0

20 | 80 |599] 5.0 |4.01

Ay [702] 1.9 1 4.08 | 4.87

3.14

201 {807 |599 [5.15 [3.87

As [7061193422521

3.31

2.14 | 814 | 576 {488 | 3.8

A | 715 | 1.65 | 3.65 | 4.82

342

2.01 |7.66 | 6.03:|5.16 [3.57

Ay 6.7 | 241 {444 |5.14

2.65

227 1842 |554 | 49 | 3.8

. Ag [6931203 3.69 528

2.99

1.75 {845 | 646 [4.45 [4.34

Ao. | 686 1.9 [3.73|4.78

3.21

215 [7.87 16.02 |5.17 |4.29

Ajp 693 | 162|368 |4.98

2.88

1.74 | 8.13 | 6.39 | 4.97 |4.38

Table 5. Partial Benchmark Values

for Benchmark Problems

Problems a az . as a4

as

ae ay ay Qy a10

! 3.016 | 6.027 | 4972 | 4.013

2.958

1.987 [3.913 | 1.926 | 6.035 }2.947

I 7.076 | 5.016 | 3.972 | 9.051

4.005

4.009 |2.977 |2.987 | 4.042 [3.975

I 4.012 | 6.949 | 2.937 | 3.021

5.011

4.934 [2.072 16978 |3.062 |2.011

Py .. 128882998 | 8.035 | 7.036

8.002

2.001 14992 |3.013 | 8.069 [9.009

B 7.983 | 3.922 | 7.071 7013

1.968

7.041 | 1.995 [3.988 | 7.017 |5.000

‘Table 6. Distances between Agents Solutlons and Benchmark Values

Agents | I} FeA I& by

b;

- Dy Iy e Dy Py

A . 102148 [0.2611 | 0.2258 | 0.2229

0.2522

0.1715 10.1772 | 0.189]0.2533 |0.1963

Az . [0.0554 | 0.0389 [0.0622 | 0.0749

0.0403

0.0654 | 0.0579 |0.0612 |0.0509 |0.0385

- Ay | 0.0467 | 0.0364 | 0.0486 | 0.0428

0.0394

0.0435 | 0.0559 |0.0342 10.0341 |0.0303

Ay [0.0795 | 0.1035 | 0.0904 | 0.088

0.0813

0.0899 | 0.072 }0.0831 {0.1101 [0.0627

0.2026 0.1585

» A 0.1604 0.1785

0.17

0.1788 |0.1578 |0.1864 |0.1554 |0.2265

' 1997 2&37

(2] E. H Durfee andV Lesser Negouanng Task Decom—

posmon and Allocatlon Using Partial Global Plan- .
ning, in: L. Gasser and M. Huhns (Eds) Distributed -

. Artificial Intellxgence Volume I, Pitman Pubhshmg

and Morgan Kaufmann, 1989 229 -244.

3]
Roadmap of Agent Reséarch and Development, Au-
tonomous Agents and Multi-Agent .Systems Vol 1
No. 1, 1998, 7-38.

K. Decker, K. Sycara, and M. Williamson, Middle
Agents for the Internet, Proceedings of 15th Inter-
national Joint Conference on Artificial Intelligence,
Nogoya, Japan, 1997, 578-583.

[5] Z. Zhang and C. Zhang, An improvement to match-

making algorithm for middle agents, Proceedings

of the First International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems, ACM
Press, Bologna, Italy, July 2002 (forthcoming).

(4]

—~

N. R. Jenmngs, K. Sycara, and M. Wooldndge A'

18

{6] Stephen T. Welstead, Neural Network and Fuzzy
- Logic Applications. in C/C++, Wiley, New York,
1994, 395-421.

[71 K Arisha, F. Ozcan, R. Ross et al., Impact: A Plat-
form for Collaborating Agents, IEEE Intelligent Sys-
tems & Iheerpplzcalzons Vol. 14, No. 2, 1999, 64-
72. .

[8] D. W. Karolak, Software Engmeermg Risk Manage-
ment IEEE Computer Soc1ety Press, 1996, 43-51.

[9] E Peter Chaos and Order in the Capital Markets,
John Wiley & Sons, Inc., 1991.

[10] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler,
Fuzzy Cluster Analysis, John Wiley & Sons, 1999.

[11] F. Hoppner, Fuzzy Clustering Algorithms — A Tool
Library, Open Source Project, htip://www fuzzy-
clustering.de. '

