
2002 International Conference on Intelligent Information Technology Proceedings

Initial Value Generation for Matchmaking in Middle Agents

Zili Zhang'
School of Computing and Mathematics

, Deakin University
Geelong Victoria 3217, Australia

email: ·zzhang@deakin.edu.au

Chengqi Zhang
Faculty ofInfonnation Technology

, University of Technology, Sydney
PO Box 123 Broadway, NSW 2007 Australia

YuefengLi
School of Software Engineering and Data Communications

Queensland University of Technology
Brisbane Queensland 4001, Australia

Abstract

One of the major challenges that agents used in open en-
vironments must face is that they must be able tofind each
other. This is because in an open environment, agents might
appear and disappear unpredictably: To address this is-
sue, middle agents have been proposed. The performance
of middle agents relies heavily on the matchmaking algo-

.rithms used. Matchmaking is the process offinding an ap-
propriate provider for a requester through a middleagent.
Thepractical performance of service provider agents has a
significant impact on the matchmaking outcomes of middle
agents. Thus the track records of agents in accomplishing
similar tasks in the past should be taken into account in
matchmaking process. Considering that there are no track
records available at the launching of an agent system, this
paper discusses some ways to provide reasonable initial
values for the' track 'records: With the agents' history and
the initial values of the trackrecords. 'the p~tformance of
matchmaking algorithms can be improved significantly.

1. Introduction

An agent is an encapsulated computer system that is sit-
uated in some environment and that is capable of flexible,
autonomous action in that environment in order to meet its
design objectives [1]. A multi-agent system can be defined
as a loosely coupled network of agents that work together
to make decisions or solve problems that are beyond the in-
dividual capabilities or knowledge of each agent [2].

One of the most important driving forces behind multi-
agent system research and development is the Internet:
agents arepopulating the Internet at an increasingly rapid

pace. These agents invariably need to interact with one-
another in order to meet their designers objectives. In such
open environments, agents that would like to coordinate
with each other (either cooperate or negotiate, for exam-
ple) face two major challenges: first, they must be able to
find each other (in an open environment, agents might ap-
pear and disappear unpredictably), and once they have done
that, they must be able to inter-operate [3]. To address the
issue of finding agents in an open environment like the In-
ternet, middle agents [4] have been proposed. Each agent
advertises its capability to some middle agent. A number of
different agent types have been identified, including match-
makers or yellow page agents (that match advertisements to
requests for advertised capabilities), blackboard agents (that
collect requests), and brokers (that process both). Middle
agents are advantageous since they allow a system to oper-
ate robustly in the face ofagent appearance and disappear-
ance' and intermittent communications.

The performance: of middle agents relies heavily on the
matchmaking algorithms used: Matchmaking is the process
of finding an, appropriate provider for a requester through
a middle agent. The state of the art of matchmaking al-
gorithms is as follows: Agents provide meta-information
about the services they offer to middle agents. Based on rel-
evance calculation methods (mainly distance functions) the
middle agents use this information for matching and pro-
vide the best fitting offers to a requester agent. The fact that
is not taken into account is that the meta-information is de-
fined by the provider agent itself. This means that in general
the advertisements of the provider agents are not proven but
self defined.

On the other hand, there are usually more than one ser-
vice provider agents claim that they have the same or very
similar capabilities to accomplish a task in an application.

12

2002 International Conference on Intelligent Information Technology Proceedings

For example, in financial investment applications one usu-
ally needs to predict the interest rate. There are different
techniques for interest rate prediction such as neural net-
work (NN) technique and fuzzy logic with genetic algo-
rithm (FLGA) [6], but their prediction performances are dif-
ferent. If there are two interest rate prediction agents, one
based on NN, the other based on FLGA, which one should
be chosen to predict the interest rate? In such cases, cur-
rent matchmaking algorithms can only choose one provider
agent randomly. As the quality of service of different ser-
vice provider agents varies from one agent to another, even
though they claimed they have the same capabilities, it is
obvious that it is not a good strategy to randomly choose a
provider agent for the requester agents.

To this end, we provided a solution to this issue by in-
troducing an algorithm which can consider agents' track
records [5]. The work described in [5] advances the state of
the art by enhancing the existing matchmaking approaches
by a quality measure which relates to the agents perfor-
mance in live applications.

The track records or "credit histories" of agents are accu-
mulated gradually during the executing process of a multi-
agent system. Thus there are no track records available
when the system is first launched. In such cases the im-
proved matchmaking algorithm can only randomly choose
one agent with the requested capability, which is the same
as other matchmaking algorithms.

If one can find some way to provide reasonable initial.
values for the track records, one can choose the agents
based on the initial values at the very beginning. With the
track records accumulated. the initial values and the track
records are combined to choose the agents. In this way, the
shortcoming of the algorithm considering track records -
no track records being available at the very beginning - is
overcome. This is just the task of this paper.

This paper will propose some ways to provide initial val-
ues for the track records. The basic idea is to give a set
of problems (called benchmark problems), and ask all the
agents who claimed that they have the capabilities to solve
these problems. By calculating the "distances" between the
solutions to the problems the agents gave and the bench-
mark results. one can determine the initial values for the
track records of these agents. Of course, if the benchmark
results are unknown in advance, we must find the bench-
mark results first.

The rest of the paper is structured as follows. Section
2 gives the basic idea for initial value generation of track
records. Section 3 is the description of benchmark problems
and benchmark values. Section 4 presents the initial value
generation process with known benchmark results. When
benchmark results are unknown, an approach is proposed to
find them in Section 5. Section 6 concludes the paper.

2. Basic Idea for Initial Value Generation

Suppose we want to delegate a task to a person, but we
have ten persons all claimed that they have the capabil-
ity to accomplish the task. In such a case whom should
we choose to delegate the task? If we have the track
records of the ten persons in accomplishing similar tasks
in the past, we can make the decision based on their perfor-
mance/accomplishment history. This is what we discussed
in [5]. If there is no any information about the ten persons
in accomplishing similar tasks, one simple and efficient viay
we usually utilize in real life is to design a set of problems
and ask all the candidates to solve these problems. We as-
sess the solutions provided by the candidates and delegate
the task to the candidate with the best solutions. The sim-
plest form of such kinds of problems is different examina-
tion papers. In this paper we call such a set of problems
"benchmark problems". The "standard" solutions are called
"benchmark results" or "benchmark values".

According to the above scenario, we can summarize the
basic idea of initial value generation approach as follows.
Before putting a multi-agent system into practical opera-
tion, the system is "trained" with a set of benchmark prob-
lems. That is, the middle agent is run with a matchmaking
algorithm first (e.g., find...nn algorithm [7]). The middle
agent then asks the agents with the same or similar capabil-
ities (based on the returned results of the matchmaking al-
gorithm such as find..nn) to solve the benchmark problems.
By testing the results provided by these agents against the
benchmarks, one obtains an evaluation of these agents for
their performance on solving the benchmark problems. This
evaluation is then used as the initial value of these agents'
track records.

3. Description of Benchmark Problems and
Benchmark Values

In order to extract an appropriate description of bench-
mark problems and benchmark values, we take the software
risk analysis as an example.

Assume there is a software project and we want to an-
alyze the risk of this project. From software engineer-
ing risk management point of view, there are some prin-
cipal software risk factors that influence the risk of a soft-
ware project [8]. These software risk factors include or-
ganization, estimation, monitoring, development methodol-
ogy, tools, risk culture, usability, correctness, reliability, and
personnel. The software risk factor organization addresses
risks associated with the maturity of the organization struc-
ture, communications, functions, and leadership; The soft-
ware risk factor estimation focuses on risks associated with
inaccurate estimations ofthe resources, schedules, and costs

13

2002 International Conference on Intelligent Information Technology Proceedings

Table 1.Description of Benchmark (BM) Prob-
lems
Agent 81 ... 811£

al .,. a/I ... a'I ... a'll
Al b~;l ... u,·1.1 ... It,~\ ... lr.'11

'111 I I

..1,2 b~\2 ft."1:! ... 1t"1:1 ... [):l:l... '''' mi m

...
.-ik rr,1/o ... bfzZ ... ~i ... 10-;-'

>--- ..._ f-.:.l1 IT

l BM .. bll ... bIn ... bml .., bmn

needed to develop software; The software risk factor moni-
toring refers to risks associated with identifying problems;
The software risk factor development methodology identi-
fies the methods by which software is developed; The soft-
ware risk factor tools focus on risks associated with the soft-
ware tools used when software is developed; and so on. To
analyze. the risk of a software project is to determine the .
values.Ie.g., low, medium, high etc.) of these software risk
factors, The software risk factors here can be viewed as
attributes describing the software risk problem. More gen-
erally, we can say that solve a problem is to find the attribute
values related to the problem.

Formally, let A = {A.i,-'h, ... ,Ad be the agent
set with the same or similar capabilities. We use 8 =
{8I, 82, ... ,8m} 'to denote the problem set. Each prob-
lem S, E. 8 (i '= 1,2,· ... , m) has a related attribute set
a· = {~IJa2," ., ,an}' We say agent Ai solved problem 8j
if it returns the values of the n attributes related to the prob-
lem. The values can be numeric or non-numeric (linguistic
values). Suppose the benchmark values of these attributes
derioted by B, =. {bibbi2, ... ,bill}(i ~ 1,2,... ,m). A·
and, the values 'returned by agent Aj denoted by Bi J =

. .-1$.1j 'A,j: .' '._ . • .{bil ,bi2 , •.• ,bin}(1. = 1,2,... ,m,J -1,2, ... ,k).The
description of the benchmark problems is then summarized
in Table 1. .

The next step in the initial value generation process is
to calculate the "distances" between the returned values by
agent Aj and the benchmark values. There are many defini-
tions of "distance". Here the distance is defined in terms of
standard Euclidean distance. The distance between B i and

B;lj is defined to be dj, where dj = J"£:~==l(biT' - b~~!F·
Then these distances are added to the database ofthe middle
agent as the initial values of the track records.

Considering that the initial values and the track records
need to be' combined when accumulated, the distances were
mapped to the satisfactory degrees defined in [5]. As there
are 7 levels of satisfactory degrees-strong satisfaction, sat-
isfaction, weak satisfaction, neutral, weak unsatisfaction,
unsatisfaction, and strong unsatisfaction, each level ac-

counts for 1/7 of the distance range. Therefore, if the dis-
tance is between 0 and 0.143, st1'ong satie / action. will be
the initial value of the agent's track record; If the distance is
between 0.143 and 0.286, satief actioi: will be the initial
value etc. The mapping results are shown in Table 2.

Table 2. IVIapping Results between Distance
and Satisfactory Degree .~------ - Satls'factory negree~Distance Range

OtoO.143 . strong'saUs!action
0.143 to 0.286 satisfaction
0.286 to 0.429 weak satisfaction
0.429 to 0.572 neutral
0.572 to 0.715 weak unsatisfaction
0.715 to 0.858 unsatisfaction
0.858 to 1.0 strong unsatisfacuon

In the process of initial value generation, there are two
situations that need to be considered. One is the benchmark'
values in Table 1 are known in advance, the other is the
benchmark values are unknown. We will discuss two cases
respectively in the subsequent sections with examples.

4. Initial Value Generation with Known Bench-
mark Results

For different applications, the benchmark problems are
different That is, the benchmark problems are application-
dependent. In this section, we take the financial application
as an example todiscuss the initial value generation prob-
lem with known benchmark values.

In financial 'applications, different models (e.g., fuzzy
logic andgeneticalgorithm model [6]) can be used for in-
terest rate prediction In this section, two soft computing
(SC) agents for interest rate prediction (one is based on neu-
tal network, called SC.Agent.NN, the other based on fuzzy
logic and genetic algorithm, called SC..Agent.FLGA) are
taken as examples to show how to determine the initial val-
ues for the two agents. The initial values are based on the
predictive capabilities of these two SC agents.

4.1. Construction of Benchmark Problems

When predicting the interest rate (as represented by 91-
day Treasury bill rates), both of the agents take the changes
of previous Treasury-bill (I-bill) rates, real gross national
product (GNP), consumer price index (CP I), M2 money
supply, and personal wealth (W) as inputs. Personal wealth
is the accumulation of the difference between personal in-
come and personal consumption. The M2 money supply
consists of all cash in circulation and deposits in savings

14

2002 International Conference on Intelligent Information Technology Proceedings

and check accounts, and represents readily available liquid
assets. The consumer price index is a measure of the infla-
tion trend. The outputs are the changes of next T-bill rates
(predicted interest rates). Quarterly data are used.

We use the history financial data of the five factors (from
1966 to 1987) provided in Appendix B of [6] to construct
the required benchmark problems.

There is some evidence to suggest that fundamental fi-
nancial market characteristics change over 'a period of four
to five years [9]. That is, the market "forgets" the influence
of data that is more than five years old For this reason, five-
year data windows are used. 15 data windows are examined,
each starting in the first quarter of the years 1967 through to
'f981, respectively. The ending quarters for each data win-
ciowwill bethe fourthquarters of the years 1971 through to
1985. This means there are 15 benchmark problems. The
inputs of benchmark problem S I, for example, arethe data
from 1967 to 1971. The benchmark value for these inputs
is!he T-bill rate of the first quarter of 1972, -0.81.

'4:2. Experimental Results

The 15 data windows are used to train these two agents
(neural network and genetic algorithm). We then let the
agents predict the interest rate of the first quarter following
the training data windows. For example, for training data
of 1967-1971, the outputs of the agents are the (predicted)
T-bill rate of the first quarter of 1972. The prediction re-
sults of the two agents on the 15 benchmark problems are
summarized in Table 3.

.The average distance for the prediction values of
SC-Agent ..NN is 0.287. The value for SC..Agent..FLGA
is 0.123. Based on the prediction results and the average
distances, one can see that the prediction performance of
SC-Agent..FLGA is better than that of SC..Agent.NN for
the benchmark problems. Mapping the distances to sat-
isfactory degrees (refer to Table 2), weak satisfaction.
is added to the track record of SCAgent.NN as its ini-
tial value, and /Strong satis jcctioti to the track record of
SCAgent..FLGA as its initial value. Hence at this stage,
if the middle agent needs to pick one agent for interest rate
prediction, the result is SC..Agent.FLGA. Of course, the sit-
u ',~ionmay change with the accumulation of track records
of these agents.

5. Initial Value Generation with Unknown
Benchmark Results

In the case discussed in the previous section, one must
know apriori of the attribute values of the benchmark prob-
lems, but this is not always the case. In some situations,
it is impossible to obtain the attribute values in advance.

In such cases, one can ask the agents to solve these prob-
lems first. One can then try to cluster the attribute values
returned by agents using cluster analysis methods: In this
way, "heuristic" attribute values can be obtained. One can
then use the "heuristic" attribute values as the benchmark
values and back to the situation discussed in the previous.
section.

There are seven steps involved using cluster analysis al-
gorithms to determine the benchmark results. Before pre-
senting these steps in details; a brief introduction to fuzzy
cluster analysis algorithms [10][11], which are used in our
experiments, is given.

5.1. A BriefIntroduction to Fuzzy Cluster Analysis

The aim of a cluster analysis is to partition a given set
of data or objects into clusters (prototypes). "This parti-
tion should have the following properties: (1) Homogeneity
within the cluster, i.e., data that belong to the same'Clustet
should be as.similar as possible; '(2)' Heterogerieitybetween
clusters, Le.,.' data that belong' to different clusters' should
be as different aspossible, The concept of'vsinularity'vhas
to be specified according to the data. Since the data are in.
most cases real-valued vectors, the Euclidean distance" be-
tween data can be used as a measure of the dissimilarity,

The fuzzy clustering algorithms that we
will use classify the elements 'of the data set
X ~ JXl;X:l,;~,;:ij""'~'Xn} C'Xiinto 'classes
P = -tPI,P'2" .. ,Pi, ..• ,Pc} C P by means of a
membership matrix U C [0,1]IP1xIXI. A membership
grade 'UiJ denotes' the degree of belongingness of .datum
Xj to class Pi. The algorithms minimize the following
objective function by means of alternating optimization
(AO)

.J(X, W;U,P) =':Ei::i:Ej~~'UiJwjd2(ki,Xj),

whered : X x P -t R measures the distance between data
vectors and prototypes and wj is the weight for the data ye'q~,
tor Xj. The term alternating optimization' comes fromthe'
fact that J is minimized by updating prototypes arid mem- '
bership alternatively, If X=.{Xl,X~, ... ,Xj, ... '~ll}and
P = {Pl,P'2"" ,Pi, .•• ,pc} are firiite. ail analysis re~ul(
!:X-t,F(P) can be represented as a c >(n matrix,{!,'
where 'Ui;j := !(Xj) (Pi)' The algorithm used is shown be;:
low: '. .

Fuzzy Clustering Algorithm
Let a data set X =' {XbX:l"" ,Xj, .". ,XT~}be given

Let each cluster be uniquely characterizable by an element
of a set P. -

Choose the number c of clusters, 2 ::; c < n
Choose an mER (m>~)
Choose aprecision for termination e

15

2002lntematlonal Conference on Intelligent Information Technology Proceedings

Table 3. Predicting Results on Benchmark Problems
Agent 81 82 83 84 85 86 87

SC..Agent.NN -0.53 0.45 0.03 -0.93 -0.67 -0.14 0.43
SC..AgenLFLGA -0.78 0.73 -0.16 -1.36 -0.60 -0.28 0.53

Benchmark -0.81 0.70 -0.40 -1.20 -0.69 -0.28 0.47

88 89 810 811 812 813 814 815
0.79' 1.41 2.15 -0.95 -1.16 -0.33 -0.45 -0.41
1.03 1.84 2.66 -1.17 -1.00 -0.22 -0.87 -0.53
1.02 1.91 2.57 -1.10 -0.82 -0.03 -1.08 -0.11

Initialize U(O), i :=0
REPEAT·

Increase i by t
Determine pt.i) such that J is minimized by p(i) for

fixed U(i-1) "

.Determine u<i) according to certain conditions
UNTIL IIU(i-1) - U(i) II ~ e
There are many ways to determine U<i). Ditferent ways

result in different fuzzy clustering algorithms. Refer to [10] .
for more details.

In the next subsection, we will discuss thesteps in de-
termining benchmark values by using this fuzzy clustering
algorithm..

5.2. Determining Benchmark Values by Fuzzy Clus- _
tering

; As discussed in Section 3, finding a solution to any prob-
lem cari be viewed as determining the attribute values re-
lated: to the problem. With this observation in mind, a
set of benchmark problems can be designed, but the solu-
tions to all these" problems are lliiknown (e.g., we do not
know what the'rlsk exactly is for a software project); Some
agents who claimed to have the capabilities are asked to
solve theseproblems and-return the"solutions (the attribute
values): These attribute values are then as inputs tofue
.fuZZY'clustering algorithm, Thealgorithm partitions the so-
lutions into different clusters (called prototypes) .. We then
choose the center of the cluster with the highest weight as
the benchmark values forthe problems. This implies that
we sho.uld accept most agents .opinions if their solutions are
similar, .li is reasonable to do so. Specifically, this process
involves the following steps.

• Preparation: Given k similar problems (benchmark
problems): Choose Tn agents having the capabilities
to solve the k problems.respectively. The solution of
each problem consists of'li attributes.

• Use the fuzzy clustering algorithm to determine the
clusters (prototypes) of the solutions for each of the

k problems returned by the Tn agents. That is, the in-
put of the algorithm is Tn x n data matrix. There are
k such matrices. The outputs of the algorithm have the
following format:

(cluster
(prototype (weight tJalue) (center (values for all the
attriliutes) ...

(prototype (weight value) (center (values for all the
attributes»

• Choose the prototype with the highest weight as the
benchmark values for this problem. Repeat this step
for k problems, .

• Calculate the distances (using Euclidean distance) of
the solutions given by the agents and the found. bench-·
);;.·rk values.

• i:i~.dthe average distances of all the solutions provided
by the m agents with the found benchmark values of
the k prob,lems', .

'. Normalize the distances to [0, 1]. Sort the 111, agents
according to the average distances. Mapping the aver-
age distances to the "seven satisfaction degrees (referto

.Table 2), lind use the satisfaction degrees as the initial
." values of these agents; respectively.

The average distances are used as the measurement of
agents' performance in accomplishing benchmark prob-
lems. Such a measurement meets the "majority principle".
That is, if one agent can accomplish most of the benchmark'
problems with high quality, another agent can only accom-
plish a few of the benchmark problems with high quality,
the average distance of the first agent is shorter than that of
the second one. Therefore, the results obtained according to
the above process are convincing, The key in this process
is step 2. In this step fuzzy clustering algorithm is used to
cluster the solutions provided by different agents. Based on
the clustering results, the "heuristic" attribute values, which
are reasonable benchmark values, are determined.

16

2002 International Conference on Intelligent Information Technology Proceedings

5.3. Experimental Results

Recall the software project risk example in Section 3.
Suppose some experts in this field are invited to assess the
risks of some software projects. The e~~rts are asked
to give their assessment results by providing a number
(E [0, 10]) for each of the ten software risk f~ctors. ~he
bigger the number, the higher the risk.c~n~ffi1ng that .nsk
factor. According to the process descnbmg m ~e preVIOUS
subsection, some experiments were conducted WIthk = 30,
m = 20, and n = 10. That is, 20 agents with similar capa-
bilities are delegated to assess 30 software projects ~nch-
mark problems). The answer for each problem COllSlStSof
10 attributes. The data for the risk factors used in the ~xper-
lments are randomly generated. For demonstration purpose,
Table 4 shows the solutions of the 10 agents for one of the
30 benchmark problems. .

Taking this as inputs, the clustering algorithm produces
the following output for this problem:
(clli;rer . . .
(piototype{weight 2.67437) (center (7.052511.84176 3.82815 5.14071
3.05296 1.948128.189946.235284.766344.21243)))
(p~otype(weight 2.01146) (center (6.92752 2.09169 4.33178 5.17589
2.661852.1582 8.16927 5.69102 5.11877 3.92546»)
(prototype(weight 5.45996) (center (6.99357 1.95553 3.98165 5.02628

3.01206 2.00627 7.999896.01413 5.01984 3.9859)))) .

There are three different clusters (prototypes). Choosing
the prototype with the highest weight (5.45996), we obtain
.the benchmark values for this problem. The attribute values
are Q.l = 6.99357, a2 = 1.95553, aa = 3.98165, a4 =
5.U2628, a;; = 3.01200, at! = 2.00627, a7 == 7.99989,
a·s = 6.01413, all = 5.01984, and Q.1O = 3.9859, re-
spectively. Table 5 lists the benchmark values for the first
5 benchmark problems determined by fuzzy clustering ap-
·proach .

. We then calculate the Euclidean distances between the
solutions provided by the agents and the found benchmark
values. The results are shown in Table 6. As space is lim-
ited, only the distances between 5 agents' solutions and
benchmark results of 5 benchmark problems are listed.

To measure the performance in accomplishing bench-
mark problems, the average distances between agents' solu-
tions and the benchmark values of all benchmark problems
are used. The shorter the average distance, the better the
performance. The average distance between agent A i and
the benchmark values is denoted by d Ai' Based on the ex-

-perimental data, these distances are d.·tl = 0.2141, d.t2 =
0.0631, d.ia = 0.0482, d.·4 = 0.0941, d.4 = 0.1795,
d'l(1 = 0.3442, d.t, = 0.2591, dAIS = 0.3157, dA9 =
0.1824, d.'1l0 = 0.2666, d.tu = 0.2181, dA12 = 0.215,
d'ha = 0.3946, d.'lH = 0.077, d.tl/; = 0.1818, dAlo =
0.1353, d..lli = 0.2724, dihlS = 0.2097, dA19 = 0.1442,
d"hlJ = 0.4322, respectively. From the average distances,
it is obvious that agent 3 has the best performance in do-
ing the benchmark problems, agent 2 has the second best

performance, etc. Mapping these average distances to sat-
isfactory degrees according to Table 2, the initial values of
agents 2,3,4, 14, and 16 are strong satisfactianzs their av-
erage distances are within ([0, 0.143]; the initial values of
agents 1,5,7,9, 10, 11, 12, 15, 18, and 19 are satisfaction
as their average distances are between 0.143 and 0.286; the
initial values of agents 6, 8, 13, and 17 are weak satisfac-
tion; and the initial value of agent 20 is neutral.

6. Conclusions

Matchmaking in middle agents is essential for rnulti-
agent systems used in open environments such as the In-
ternet. Agents' track records have a strong impact on the
outcome of matchmaking. Therefore agents' history per-
formance/accomplishment (track records) should be taken
into account in matchmaking. As the track records of agents
are accumulated gradually during the executing process of
a multi-agent system,there are no track records available
when the system is first launched. To this end, this paper
proposed ways to generate reasonable initial values for track
records of agents.

The basic idea for initial value generation is to provide
a set of benchmark problems and ask all provider agents
claimed to have the same capabilities to solve these prob-
lems. By comparing the distances ~tween the sol~t~o.ns
provided by agents and the benchmark values, the initial

.: values of these provider agents are then determmed
Two cases were identified in initial value generation. If

the benchmark values are known in advance, the distances
were calculated directly to determine the initial values of
agents. If the benchmark values are unknown, fuzzy cluster-
ing algorithms were employed to find the benchmark values
first. In both situations, experiments were conducted. The
experimental results show the proposed initial value gen-
eration approaches are workable and can produce reason-
able initial values. Combining the agents' history perfor-
mance/accomplishment information and the initial values of
track records, the performance of matchmaking algorithms
can be improved significantly.

Thus far, all the discussions are based on one assump-
tion: The t~ck records of agents are credible. The situation
with false track records is subject to further research.

Acknowledgement

The authors would like to thank Mr Hong Hu's support
in conducting the experiments.

References

[1] M. Wooldridge, Agent-Based Software engineering,
lEE Froc. Software Engineering, Vol. 144, No.1,

17

2002lntemational Conference on Intelligent Information Technology Proceedings

Table 4. Agents' Solutions to One Benchmark Problem
Agent 522

a'1 Q2 Qa a'4 Q" a-(l a7 all ((11 ((lU
..1

1 6.94 1.85 3.89 5.38 3.24 1.99 8.21 5.84 5.02 . 3.85
..1

2 6.93 2.04 4.07 4.96 2.97 1.95 8.06 6.0 4.97 3.97
Aa 6.99 1.99 4.0 5.0 3.0 2.0 8.0 5.99 5.0 4.01
..14 7.12 1.9 4.08 4.87 3.14 2.01 8.07 5.99 5.15 3.87

A" 7.06 1.93 4.22 5.21 3.31 2.14 8.14 5.76 4.88 3.8
Au 7.15 1.65 3.65 4.82 3.42 2.01 7.66 6.03; 5.16 .3.57·
.4.7 6.7 2.41 4.44 5.14 2.65 2.27 8.42 5.54 4.9 3.8
A.IS 6.93 2.03 3.69 5.28 2.99 1.75 8.45 6.46 4.45 4.34
..19. 6.86 1.9 3.73 4.78 3.21 2.15 7.87 6.02 5.17 4.29
:110 6.93 1.62 3.68 4.98 2.88 1.74 8.13 6.39 4.97 4.38

';

Table 5 Partial Benchmark Values for Benchmark Problems
Problems a1 ((2 . a'a a4 ai) <!6 a7 all ((1:1. QlO

P1 3.016 6.027 4.972 4.013 2.958 1.987 3.913 1.926 6.035 2.947
Pz 7.076 5.016 3.972 9.051. 4.005 4.009 2.977 2.987 4.042 3.975
Pa 4.012 6.949 2.937 3.021 5.011 4.934 2.072 6.978 3.062 2.011
P4 2.888 2.998 8.035 7.036 8.002 2.001 4.992 :3.013 8.069 9.009
Pi) 7.983 3.922 7.071 7.013 1.968· 7.041 1.995 3.988 7.017 5.000

T~ble 6. Distances between A~~nts' Solutions and Benchmark Values
Agents P1 P2 Pa P4 Pi) . P6 P7 Pa P9 PlU

:11 0.2148 0.2611 0.2258 0.2229 0.2522 0.1715 0.1772 0.189 0.2533 0.1963
.4.2 0.0554 0.0389 0.0622 0.0749 0.0403 0.0654 0.0579 0.0612 0.0509 0.0385

.• 4.a ;.. 0.0467 0.0364 0.0486 0.0428 0.0394 0.0435 0.0559 0.0342 0.0341 0.0303
.~ 0.0795 0.1035 0.0904 0.088 0.0813 0.0899 0.072 0.0831 0.1101 0.0627

..~ 0.1604 0.2026 0.1785 0.1585 0.17 0.1788 0.1578 0.1864 0.1554 0.2265

1997,26-37." ,
-'. ,.:.'., ~: ,.,. -. ..;. i-

[2] E.'H. Diirfee and Y.l,esser, Negotiating Task Decom-
position and Allocation Using .Partial Global Plan- .

. -., .. ' rv,'. ',:" -~'-."'.'
ning, in: L. Gasser and M.Huhns (Eds.),Distributed

. Artificial IntelligenceVoiutne'lI, Pitman Publishing
and Morgan Kaufmann, 1989; 2f9-244.- . ~ .

[3] N. R. Jennings, K-.Syc~an(rM. Wool~ridge, A .
Roadmap of Agent Research and Development; Au-
tonomous Agents and Multi-Agent Systems; Vol. 1,
No.1, 1998,7-38. . . .

[4] K.'Decker, K. Sycara, and M. Williamson, Middle
Agents for the Internet, Proceedings of 15th Inter-
national Joint Conference on Artificial Intelligence,
Nogoya, Japan, 1997,578-583.

[5] Z. Zhang and C. Zhang, An improvement to match-
making algorithm for middle agents, Proceedings
of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, ACM
Press, Bologna, Italy, July 2002 (forthcoming).

[6] Stephen T. Welstead, Neural Network and Fuzzy
Logic Applications in CI'C++, Wiley, New York,
1994,395-421.

[7] K. Arisha, F. Ozcan, R Ross et al., Impact: A Plat-
form for Collaborating Agents, IEEE Intelligent Sys-
tems & 1JzeirApplications, Vol. 14, No.2, 1999,64-
72. .

[8] D. W. Karolak, Software Engineering Risk Manage-
merit, IEEE Computer Society Press, 1996,43-51.

[9] E. Peter, Chaos and Order in the Capital Markets,
John Wiley & Sons, Inc., 1991.

[10] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler,
Fuzzy Cluster Analysis, John Wiley & Sons, 1999.

[11] F. Hoppner, Fuzzy Clustering Algorithms - A Tool
Library; Open Source Project, http://wwwfuzzy-
clustering. de.

18

