
Design Method for Interoperable Web Services
George Feuerlicht

Faculty of Information Technology,
University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW 2007,
Australia

61 2 9514 1835
jiri@it.uts.edu.au

Sooksathit Meesathit
Faculty of Information Technology,
University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW, 2007,
Australia

61 2 9514 4512
smeesath@it.uts.edu.au

ABSTRACT
The emergence of Web services provides an opportunity to
address e-business application interoperability in the context of
service-oriented computing. In this paper we discuss the benefits
of the service-oriented approach to implementing e-business
applications and identify the need for well-designed service
interfaces to facilitate interoperability within application domains.
We describe a service interface design method based on
identifying elementary business function and converting standard
message (document) formats into a set of corresponding service-
interfaces. We then apply data engineering principles to refine the
interface design, and show how data normalization applied to
interface parameters can lead to minimization of coupling and
maximization of cohesion of service operations. We illustrate our
design approach using a travel application example based on the
Open Travel Alliance (OTA) specification.

Categories and Subject Descriptors
D.2.2 [Software engineering]: Design tools and techniques –
Modules and interfaces.

General Terms
Design

Keywords
Web services, service interface design, e-business interoperability

1. INTRODUCTION
Interoperability is a key requirement for inter-enterprise, e-
business (electronic business) applications. The principal
challenge is ensuring interoperability in an environment where
participating organizations use disparate business semantics and
technology platforms. Most existing approaches rely on
standardization of business documents and inter-organizational
business processes to allow automation of e-business. Early e-
business approaches such as EDI (Electronic Data Interchange)
[27] have not succeeded in addressing interoperability effectively,
producing proprietary document formats typically shared among
relatively small groups of companies. The proprietary nature of
EDI necessitates complex translations to overcome differences in
syntax, structure, and semantics of documents used by individual
partner organizations, resulting in costly and inflexible point-to-
point solutions. More recent approaches use XML formatted
documents and Internet communication protocols (e.g. BizTalk
[15]), but also suffer from limited scalability that characterizes

point-to-point solutions [13]. Other e-business approaches avoid the
problems associated with point-to-point solutions and rely instead
on the interchange of business documents with pre-defined structure
and semantics, and specification of standard business processes. For
example, RosettaNet [21] and ebXML [4] attempt to reach
agreement about common business semantics among a broad range
of partner organizations (e.g. across entire industry domains) by
defining common vocabularies of business objects (or components)
and business protocols. Although successful in some industry
domains (e.g. RosettaNet in the high technology industry domain)
wide adoption of such standards has been limited by their
complexity, inflexibility and high implementation costs.

In order to address the requirements of modern e-business
applications in an environment characterized by a large number of
autonomous partner organizations with independently evolving
business semantics, the interoperability mechanisms must be both
scalable and flexible. Scalability in this context is the ability to
accommodate a large number of partner organizations with diverse
business semantics without unduly increasing the complexity of the
specification and at the same time avoiding the need for point-to-
point transformations. Flexibility is needed to allow the evolution of
the standard specification to accommodate changes in business
processes and data semantics without impacting on existing
applications.

In this paper we argue that the requirements of e-business
applications cannot be satisfactorily addressed using an
interoperability mechanism based on document interchange (section
2), and that the service-centric model provides a superior
interoperability solution (section 3). Interoperability in the context
of the service-centric approach is critically dependent on service
interfaces used to expose business functionality. Poorly designed
interfaces result in duplication of functionality, limited reuse and
extensibility, and poor maintainability of applications. We describe
a service interface design method based on principles of object-
oriented programming and component design, and adapted for
service interface design (section 4). We then apply data engineering
principles to refine the interface design, and show how data
normalization applied to interface parameters can lead to
minimization of coupling and maximization of cohesion of service
operations. We illustrate our design approach using a travel
application example based on the Open Travel Alliance
specification, showing how a document-centric specification can be
transformed into s set of well-designed Web service interfaces. In
conclusion (section 5) we summarize the main contributions of this
paper and discuss the advantages and limitations of the proposed
design approach.

2. DOCUMENT-CENTRIC
INTEROPERABILITY MODEL
The main advantage of the document-centric approach is the
ability to interoperate across heterogeneous environments, as
documents can be transmitted as message payloads using a
variety of messaging protocols (e.g. SMTP/POP, SOAP, or a
proprietary EDI protocol) irrespective of the underlying
technology platform. Standard document formats have been
defined for various industry domains, for example the Open
Travel Alliance (OTA) consortium specification [17] defines
XML Schemas and corresponding usage scenarios for messages
that support business activities in the travel industry. A large
number of message formats addressing various aspects of travel
business have been defined providing a comprehensive
specification of information requirements for travel applications.
Examples in this paper are loosely based on the OTA
specification and use simplified subsets of OTA message
structures in order to allow illustration of interface design
concepts within the limited scope of this paper; full description of
the OTA specification is available on:
http://www.opentravel.org/. Comments made about OTA
message structures are not intended as criticism of OTA design,
but as general comments about the limitations of the document-
centric approach in e-business applications.

2.1 Flight Booking Example
Consider the following flight booking scenario involving an
airline and a travel agent. A travel agent requests flight
availability information from an airline specifying the departure
and destination city, the date of travel, and other relevant
information. The airline responds with a collection of available
flights; the agent then requests pricing information, and finally
may proceed to book a selected flight. To implement this scenario
OTA defines relevant message payloads using XML Schema. For
example, the OTA Air Availability Request (OTA_AirAvailRQ)

message illustrated in Figure 1 is a schema specification for a
request for flight availability information. The OTA_AirAvailRQ
message contains a large number of schema elements including
origin and destination information, specific flight information, and
passenger travel preferences. We only show simplified message
content here; many elements are further structured as illustrated for
the Airline element, resulting in a complex message structure
designed to maximize the amount of information transmitted within
a single message payload. The intention is to transmit all
information required for processing the request in a single message
so that it can be executed as one transaction without dependence on
information transmitted in previous messages [17]. OTA
specification is based on the request/response paradigm, and a
corresponding Air Availability Response message
(OTA_AirAvailRS) that contains information about flights
matching the request criteria is also specified. Each message
implicitly represents a complex business process that the receiving
partly needs to decompose and map to local transactions.

2.2 Limitations of the Document-centric
Approach
Using document interchange as the interoperability mechanism for
e-business applications leads to message specifications with highly
complex data structures. The complexity of message formats leads
to corresponding complexity of applications, and consequently to
high implementation costs. Implicit in the structure of the messages
are various constraints, business rules, and control parameters. For
example, the OTA_AirAvailRS message allows up to four flight
segments for a given pair of origin (OriginLocation) and destination
(DestinationLocation) locations. The control parameter
DirectFlightsOnly (if set on), allows only a single flight segment
between the origin and destination location. Furthermore, as noted
above, individual messages are designed to be self-contained, i.e. to
contain all the data required for a particular transaction (e.g. flight
booking). This leads to duplication with the same data structures
used in multiple messages.

<xs:complexType name="CompanyNameType">
<xs:simpleContent>
<xs:extension base="StringLength0to64">
<xs:attributeGroup ref="CompanyID_AttributesGroup"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:attributeGroup name="CompanyID_AttributesGroup">
<xs:attribute name="CompanyShortName" type="StringLength1to32" use="optional"/>
<xs:attribute name="TravelSector" type="OTA_CodeType" use="optional"/>
<xs:attribute name="Code" type="StringLength1to8" use="optional"/>
<xs:attribute name="CodeContext" type="StringLength1to32" use="optional"/>
</xs:attributeGroup>

:
<xs:element name="Airline" type="CompanyNameType" minOccurs="0"/>

Figure 1. Simplified content of OTA_AirAvailRQ message.

.

Perhaps the most significant drawback of document-centric
model is that externalizing data structures in the form of
document schemas creates dependencies between partner
applications. This makes the document-centric standard inflexible
and difficult to evolve as changes in document specifications (i.e.
modifications of document structure, such as inclusion of new
elements, or removal of existing elements) directly impact on
existing applications. As experience with EDI indicates, even in
situations where there is initial agreement, message standards
tend to diverge over time to reflect the specific requirements of
individual partner organizations and industry sectors, resulting in
incompatible document specifications that require extensive
transformations to facilitate interoperability.

3. SERVICE-CENTRIC
INTEROPERABILITY MODEL
Web services [31] provide e-business infrastructure where
business partners interact by consuming partner services [22],
[19], shifting the focus from connecting to a particular business
partner to the definition of business interfaces that address
specific business requirements and are available to all
participating organizations [20]. In effect, Web services create a
homogeneous runtime environment for e-business applications
removing the need to use data interchange as the interoperability
mechanism. Although Web services can transmit XML
documents using the document style binding (so that, for example
OTA messages could be implemented with SOAP as the transport
mechanism) the main benefit of Web services is the ability to use
programmatic techniques for the implementation of e-business
applications, elevating the level of abstraction from document
interchange to service invocation. Web services support for
Remote Procedure Calls (RPCs) provides a mechanism for
transparent execution of remote services irrespective of the
underlying platform used by individual partners. Consequently,
the problem of standardizing structure and semantics of
documents can be reduced to a more manageable task of
standardizing service interfaces. Important advantage of the
service-centric approach is that service interfaces can be designed
to significantly reduce coupling between applications resulting in
improved scalability, and at the same time making applications
more resilient to change.

We note that adopting the service-centric approach does not
directly address the semantic issues of e-business interoperability.
Agreement on semantics across a domain of interest (e.g. travel)
is a pre-requisite for an interoperable e-business environment.
Well-designed service interfaces address the equally important
problem of externalizing complex and often redundant data
structures that characterize the document-centric approach, and
result in high levels of interdependency between applications.
Adopting the service-centric approach transforms the problem of
defining and maintaining complex document structures into a
more manageable problem of standardizing domain-specific
service interfaces. Moving away from an interoperability model
based on document interchange and adopting a programmatic
approach to e-business applications results in a higher level of
abstraction associated with the use of application programming
interfaces. As experience with programming APIs (Application
Programming Interfaces) demonstrates, the benefits of
standardized service interfaces include improved software
reliability, reusability, extensibility, and maintainability and can
lead to significant application development productivity gains.

Importantly, using the service-centric approach evolution and
refinement are supported via publishing new versions of existing
interfaces, and by adding new interfaces, while maintaining the
standard set of interfaces. This provides an effective mechanism for
evolution that maintains existing (externalized) interface without
any modifications [2].

3.1 Domain-Specific Service Interfaces
Web services are being increasingly used to implement e-business
applications in various industry sectors. Travel industry examples
include Galileo Web services (Galileo International,
http://www.galileo.com/) [8], [23], Dollar Rent A Car
(http://www.dollar.com/), and Southwest Airlines
(http://www.southwest.com/) [14]. Interoperability of such industry
domain-specific applications relies on well-defined service
interfaces used consistently across the application domain. Adoption
of standard service interfaces ensures that service providers (e.g.
airlines) publish identical interfaces, avoiding the need to interpret
the semantics of interfaces published by individual service
providers. Standardized, domain-specific service interfaces should
closely reflect business requirements for a particular application
domain and in effect provide application developers with a high-
level API for building domain-specific applications. APIs are used
extensively in programming environments and have been recently
applied to the problem of application interoperability. For example,
the Open Knowledge Initiative (OKI) consortium is developing a
specification for educational services in the form of a Java API to
enable interoperability for learning technology platforms [26]. The
OKI Open Service Interface Definitions (OSIDs) API is designed to
provide separation, encapsulation, and layering to facilitate
application interoperability and integration [25].

4. SERVICE INTERFACE DESIGN
Unlike the document-centric approach which is concerned with the
design of standard documents, the service-centric approach focuses
on the design of service interfaces. As noted earlier, well-designed
service interfaces are a key requirement for interoperability in
service-oriented e-business applications. In this section we first
discuss related work on Web services design (section 4.1), and then
describe a service interface design method based on identifying
elementary business function and converting standard message
formats into a set of corresponding service-interfaces (section 4.2).
We then apply data engineering principles to refine the interface
design, and show that normalization of interface parameters can
lead to minimization of coupling and maximization of cohesion of
service operations.

4.1 Related Work
Web services design is an active area of research with most existing
approaches focusing on designing service interfaces from existing
components and using object-oriented methods or component-based
techniques [1], [12], [18], [24], [32]. For example, Ambler [1]
proposed a method for deriving Web services from UML models.
The method involves identifying class contracts that define public
interfaces for a given class, and combining the contracts to reduce
the number of services resulting in a cohesive collection of classes
called domain packages. Papazoglou and Yang [18] describe a
design methodology for Web services and business processes,
defining business processes as sets of collaborative Web services.
The methodology provides service design guidelines based on the
principles of minimizing coupling and maximizing cohesion to

ensure that the resulting services are self-contained, modular,
extendable and reusable, and produces definition of WSDL Web
service interfaces and WSFL service flow models. The
methodology also covers non-functional service design guidelines
including service provisioning strategies and service policy
management models. Stevens [24] focuses on the problem of
designing Web services operations with appropriate level of
granularity, differentiating between coarse-grained and fine-
grained services based on the scope of functionality covered by
the service. Wieringa, et. al. [32] describes design guidelines that
rely on functional decomposition to produce modular Web
services architecture. In summary, while there is some agreement
about the basic interface design principles there are no widely
used design frameworks for Web services design [6].
Rather then considering the design of Web services for individual
enterprise applications or components we focus on the problem of
defining domain-specific service interfaces (e.g. for the travel
domain). We do not consider work flow aspects of Web services
design and focus entirely on the design of service interfaces from
a programmatic view point, adapting principles of API design
and applying data engineering principles to refine the design of
interfaces.

4.2 Design Framework for Domain-Specific
Service Interfaces
The task of designing standard domain-specific service interfaces
is conceptually similar to the design of application programming
interfaces and we can draw from the extensive literature on this
topic to identify guiding principles for interface design [16], [9],
[11], [30], [28]. We summarize the key interface design principles
below:

• Orthogonality – the functionality of interfaces should not
overlap; each interface defines a distinct function within the
application domain

• Completeness – interfaces should fully cover functionality
of the application domain

• Minimality – interfaces should only be designed for
common functions; specialized functions should be
supported via an extendibility mechanism

• Universality – all service providers implement the standard
set of interfaces

• Extendibility support via non-standard interfaces - service
providers can define additional (non-standard) service
interfaces to support specialized functions

• Evolution support via interface versioning - evolution should
be supported via interface versioning, so that existing
interfaces can be maintained to support legacy applications

• Clarity and elegance – interfaces should have well-defined
semantics and should be easy to understand

• Uniformity – uniformity of naming services, operations,
parameters etc.

These general principles are useful as guidelines for the design of
service interfaces for a specific application domain. At the more
detail level of interface design for individual services two design
principles are of particular importance: maximizing method (i.e.
Web services operation) cohesion and minimizing method
coupling. Applying these principles to service interface design
leads to improved clarity of the interfaces, reduction in

undesirable side effects, and improved flexibility of applications
[18], [29], [30].

In the following sections we describe a service interface design
approach based on mapping elementary business functions to Web
services operations, and applying the above interfaces design
principles to maximize cohesion and minimize coupling of the
resulting service interfaces. The OTA message specifications and
accompanying description of business processes represent a
comprehensive model for the travel application domain, and provide
a useful starting point for the design process illustrated here. The
design methodology presented in this paper is of general
applicability and can be used to transform any document-centric
specifications (e.g. EDI document definitions) into well-designed
service interface definitions.

4.2.1 Identifying Operations
Service interface definition involves specification of operations
including identification of input and output parameters for each
operation. This task is analogous to designing method signatures in
the context of object-oriented design, and requires that suitable
candidate methods are identified. Our approach is based on
decomposition of complex business functions into elementary
business functions, i.e. simple atomic functions that cannot be
further decomposed [5], [10]. We then map the elementary business
functions to simple Web services operations and identify input and
output parameters using the corresponding OTA message structures.
This approach is consistent with maximizing method cohesion as
elementary business functions typically accomplish a single
conceptual task [30].

Now returning to our travel example introduced in section 2, we
model the interaction between a travel agent and an airline using a
Sequence Diagram as illustrated in Figure 2. For the purpose of this
example we assume that a flight booking is for a single flight
segment, i.e. a direct flight between the origin and destination
locations (this corresponds to the Direct Flight Only option in the
OTA AirAvailRQ message in Figure 1).

Each step in the dialog between a travel agent and an airline is
modeled with a Request/Response message pair and corresponds to
an elementary business function; consequently the granularity of
operations is determined by the corresponding elementary business
functions.

The following candidate operations can be identified from the Flight
Booking Process Sequence Diagram in Figure 2 (brief descriptions
of the business processes are loosely based on the OTA
specification):

CheckFlight: The travel agent requests a list of flights for a pair of
origin and destination cities on a given departure date. The airline
responds with a collection of flights (i.e. zero or more flights). The
response includes flight number, departure airport, departure time,
arrival date, arrival time, and arrival airport for each flight.

CheckAvailability: The travel agent requests seat availability for a
particular flight specifying the flight number, departure airport,
arrival airport, departure date, and cabin type (e.g. economy). The
airline responds with the quantity of seats available.

CheckPrice: The travel agent requests pricing information
specifying the flight number, departure airport, arrival airport,
departure date, and cabin type. The airline responds with the pricing
information that includes the base fare and base fare code.

SeatingRequest: The travel agents request a traveler seating
preference (e.g. an aisle seat). The airline responds with a seat
number.

GetItinerary: The agent requests the travel itinerary specifying
the booking reference number. The airline responds with itinerary
information that includes traveler information, flight number,
departure airport, arrival airport, departure date, departure time,
arrival date, arrival time, cabin type, booking status, and journey
duration.
More complex operations can be constructed by composition
from the above defined low-granularity, elementary operations.
For example, a flight between origin and destination locations
(e.g. Sydney and London) in general consists of a number of
flight segments (e.g. Sydney to Singapore, and Singapore to
London) so that the corresponding flight availability request
needs to check availability for each segment separately and
provide programming logic to determine if the entire flight is
available. Another example involves the travel agent requesting
flight availability information from a number of airlines before
making a booking decision based on some criteria (e.g. the lowest
price).

4.2.2 Refining Interface Design
Following the identification of operations in section 4.2.1 above,
we can define interfaces (input and output parameters) for each
candidate operation using the OTA message structures as shown
in Table 1.

An important interface design goal is to minimize inter-
dependencies between applications. This requirement can be
expressed as minimization of method coupling as formulated for
design of methods in object-oriented programming [29], [30].
Minimization of coupling involves defining input and output
parameters so that inter-dependencies and side-effects are
minimized. This leads to consideration of data properties of
parameters, and the general rule that only data that is used
directly by a given method should be exposed as parameters to
maximize encapsulation and minimize coupling.

All input parameters must be used by the method as data, i.e. not to
control the execution of the method. Further, both input and output
parameter sets should be minimal; this leads to the formulation the
following interface design rules:

Rule i) input parameters should form a minimal set

Rule ii) output parameters should form a minimal set

Minimality implies that parameters are mutually independent; i.e.
cannot be derived from each other based on functional
dependencies. Venners [30] classifies methods according to the type
of the request performed into three types: state-view methods (query
operations that return data in output parameters, given query
formulated using input parameters), state-change (methods that
result in update, insert, and delete transactions based on input
parameters), and utility methods (notifications, etc. methods that do
not use data parameters). We formulate an additional rule for state-
view methods to maximize cohesion:

Rule iii) output parameters must be fully functionally dependent
on the input parameter set

Put in other words, method output should not include parameters
that are not directly generated by the method from the input
parameter set. In effect, the parameters of a State-View method
form a relation where the input parameters are the key attributes and
output parameters are non-key attributes, and therefore data
normalization rules can be applied to this situation to ensure that
output parameters are fully functionally dependent on the input
parameter set [3]. State-change methods use values supplied via
input parameters to create new records (i.e. insert records) or change
existing records (i.e. update or delete existing records), and typically
return a value that identifies the new record (e.g.
BookingReferenceID, when booking a flight), or an

:travel agent

CheckPrice

BookFlight

CheckFlight

CheckAvailability

SeatingRequest

:airline

GetItinerary

Figure 2. Flight Booking Process Sequence diagram.

.

acknowledgement (e.g. when ordering a special meal). We now
apply the above normalization rules to the interfaces of candidate
operations in Table 1, assuming the following functional
dependencies:

FD1: OriginLocation, DestinationLocation, DepartureDate

! FlightNumber

FD2: FlightNumber

! DepartureAirport, DepartureTime, ArrivalAirport,
ArrivalTime

FD3: FlightNumber, DepartureDate

! ArrivalDate

FD4: FlightNumber, DepartureDate, CabinType

FD5: FlightNumber, DepartureDate, CabinType

! BasicFareCode, BasicFare

FD6: BookingReferenceID

! TravelerName, FlightNumber, DepartureAirport
ArrivalTime, DepartureDate, DepartureTime,
ArrivalAirport, ArrivalDate, ArrivalTime, CabinType,
BookingStatus, JourneyDuration

Table 1. List of candidate operations and corresponding parameters for the Flight Booking Service

Operations Input Parameters Output Parameters

CheckFlight

Method type: state-view

OriginLocation
DestinationLocation
DepartureDate

FlightNumber
DepartureAirport
DepartureTime
ArrivalAirport
ArrivalDate
ArrivalTime

CheckAvailability

Method type: state-view

FlightNumber
DepartureAirport
ArrivalAirport
DepartureDate
CabinType

Quantity

CheckPrice

Method type: state-view

FlightNumber
DepartureAirport
ArrivalAirport
DepartureDate
CabinType

FareBasisCode
BaseFare

BookFlight

Method type: state-change

FlightNumber
DepartureAirport
DepartureDate
TravelerName
CabinType

BookingReferenceID

SeatingRequest

Method type: state-change

BookingReferenceID
SeatPreference

SeatNumber

GetItinerary

Method type: state-view

BookingReferenceID TravelerName
FlightNumber
DepartureAirport
DepartureDate
DepartureTime
ArrivalAirport
ArrivalDate
ArrivalTime
CabinType
BookingStatus
JourneyDuration

Applying Rule i) and using FD2 we can eliminate the parameters
DepartureAirport and ArrivalAirport from the input parameter sets
of CheckAvailability, CheckPrice, and BookFlight operations as
these parameters can be derived from FlightNumber. Applying Rule

ii) and FD2 we eliminate DepartureAirport, DepartureTime,
ArrivalAirport, and ArrivalTime from output parameters of
operation CheckFlight. This leaves FlightNumber and ArrivalDate
in the output parameter set; but this violates Rule iii) as ArrivalDate

is partially dependent on input parameter DepartureDate. This leads
to the elimination of ArrivalDate from the output parameter set. The
resulting set of operations (Table 2) includes two new operations:
CheckSchedule, and CheckArrival to preserve functional
dependencies, and represents a set of operations with maximum
cohesion and minimum coupling, i.e. consistent with the rules
defined in this section. The trade-off for maximizing cohesion of
and minimizing coupling of operations is an increased number of
operations. The designer may choose to optimize the design by
combining operations. For example, CheckAvailability and

CheckPrice operations could be combined without violating the
interface design rules as both have identical input parameters.

4.3 WSDL Specification
The resulting design of service interfaces for the Airline Booking
Service given in Table 2 can be implemented in the form of WSDL
specifications as described in our earlier publication [7]. The
implementation of operations uses Web services RPC binding style
(indicated in Table 2), consistent with the programmatic approach
advocated in this paper.

Table 2. List of operations and corresponding parameters for Flight Booking Service

Operations Input Parameters Output Parameters

CheckFlight

Method type: state-view
Implementation: RPC

OriginLocation
DestinationLocation
DepartureDate

FlightNumber

CheckSchedule

Method type: state-view
Implementation: RPC

FlightNumber DepartureAirport
DepartureTime
ArrivalAirport
ArrivalTime

CheckArrival

Method type: state-view
Implementation: RPC

FlightNumber
DepartureDate

ArrivalDate

CheckAvailability

Method type: state-view
Implementation: RPC

FlightNumber
DepartureDate
CabinType

Quantity

CheckPrice

Method type: state-view
Implementation: RPC

FlightNumber
DepartureDate
CabinType

FareBasisCode
BaseFare

BookFlight

Method type: state-change
Implementation: RPC

FlightNumber
DepartureDate
TravelerName
CabinType

BookingReferenceID

SeatingRequest

Method type: state-change
Implementation: RPC

BookingReferenceID
SeatPreference

SeatNumber

GetItinerary

Method type: state-view
Implementation: RPC

BookingReferenceID TravelerName
FlightNumber
DepartureAirport
DepartureDate
DepartureTime
ArrivalAirport
ArrivalDate
ArrivalTime
CabinType
BookingStatus
JourneyDuration

5. CONCLUSIONS
In this paper we have argued the benefits of the service-centric
interoperability model for e-business applications, and we have

presented a design method for domain-specific service
interfaces that relies on the principles of maximizing method
cohesion and minimizing method coupling. Using a Flight
Booking example we have illustrated that data normalization
when applied to the design of service interfaces can lead to

minimization of method coupling by avoiding the externalization of
redundant information.

Using the proposed design framework for Web service interfaces in
real-world e-business applications leads to an increased number of
operations for a given Web service and consequently to a
corresponding increase in the number of RPC calls required to
implement a specific business function. This represents a challenge
given the current Internet environment characterized by unreliable
network connectivity and unpredictable response times, making the
programmatic approach using low-granularity operations advocated
in this paper only suitable for fast and reliable Intranet
environments. However, given the rapid development of Internet
technologies it is likely that Internet will provide service levels
comparable to today’s Intranet environments in the not too distant
future, and this will make the programmatic approach viable for
Internet-based e-business applications.

5.1 Service Granularity
Finding an optimal level of granularity for Web services and
individual service operations requires further investigation. Coarse-
grained operations tend to lack cohesion and limit design flexibility,
while fine-grained operations increase the number of service
interfaces and the number of RPC calls. It is possible to increase the
granularity by combining operations based on common parameters
as noted in section 4.2.2 for the CheckAvailability and CheckPrice
operations. Combining operation can lead to loss of cohesion as the
resulting operation no longer implements a single conceptual task,
but this trade-off may well be justified given the benefits of reduced
complexity of the application and reduction in RPC calls. The
application of data engineering principles to service interface
design has a potential to improve our understanding of the impact
of increasing granularity of operations on cohesion and coupling.
The precise method for combining elementary operations into
larger granularity operations while minimizing undesirable side
effects associated with loss of cohesion and increase in coupling
warrants further research.

6. REFERENCES
[1] Ambler, S.W. Deriving Web services from UML models, Part

1: Establishing the process. http://www-
106.ibm.com/developerworks/webservices/library/ws-uml1/,
March 1, 2002.

[2] Bieber, G. and Carpenter, J. Introduction to Service-Oriented
Programming (Rev 2.1).
http://www.openwings.org/download/specs/ServiceOrientedInt
roduction.pdf, 2001.

[3] Codd, E.F. Normalized Data Structure: A Brief Tutorial. In
Proceedings of 1971 ACM-SIGFIDET Workshop on Data
Description, Access and Control (San Diego, California,
November 11-12, 1971). ACM, 1971, 1-17.

[4] ebXML. http://www.ebxml.org, 2004.

[5] Eriksson, H.-E. and Penker, M. Business Modeling with UML:
Business Patterns at Work. John Wiley & Sons, New York ,
USA, 2000.

[6] Feuerlicht, G., Meesathit, S. Design Framework for Domain-
specific Service Interfaces. In Proceedings of the 2nd
International Workshop on Web Services: Modeling,
Architecture, and Infrastructure, WSMAI-2004, (Porto,
Portugal, April 13 - 14, 2004). INSTICC Press, 2004, 109-115.

[7] Feuerlicht, G. Implementing Service Interfaces for e-
business Applications. In Proceedings of the second
workshop on e-Business, WeB 2003, (Seattle, USA,
December 13-14, 2003). 2003.

[8] Fontana, J. Galileo travels down Web services path.
Network World [Online], April 9, 2002.
http://www.nwfusion.com/news/2002/0429galileo.html,

[9] HKNET5. API Design in Software Architecture.
http://hknet.tm.tue.nl/section33/tech_design.html, 2003.

[10] Larman, C. Applying UML and Patterns : an Introduction
to Object-Oriented Analysis and Design and the Unified
Process (2nd edn). Prentice Hall, Upper Saddle River, NJ,
USA, 2001.

[11] Managebility Inc. Principles of Loosely Coupled API's.
http://www.manageability.org/blog/archive/20030628%23
principles_of_loosely_coupled_api/view, July 30, 2003.

[12] Mecella, M. and Pernici, B. Designing wrapper
components for e-services in integrating heterogeneous
systems. VLDB Journal, 10, 1(2001), 2-15.

[13] Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu,
A.H.H. and Elmagarmid, A.K. Business-to-business
interactions: Issues and enabling technologies. VLDB
Journal, 12, 1(May 2003), 59 - 85.

[14] Metz, C. Testing the Waters. PC Magazine [Online],
November 13, 2001.
http://www.pcmag.com/article2/0,4149,154693,00.asp.

[15] Microsoft. BizTalk. http://www.microsoft.com/biztalk/,
2004.

[16] OpenOffice.org. OpenOffice.org API-Design-Guidelines.
http://api.openoffice.org/docs/DevelopersGuide/Appendix
/IDLDesignGuide/IDLDesignGuide.htm, 2004.

[17] OTA. The Open Travel Alliance website.
http://www.opentravel.org/, 2004.

[18] Papazoglou, M.P. and Yang, J. Design methodology for
Web services and business processes. In Proceedings of
the 3rd VLDB-TES workshop (Hong Kong, August,
2002). Springer, 2002, 54-64.

[19] Piccinelli, G., Emmerich, W., Zirpins, C. and Schutt, K.
Web service interfaces for inter-organisational business
processes an infrastructure for automated reconciliation.
In Proceedings of the sixth international conference on
Enterprise Distributed Object Computing (EDOC '02)
(Lausanne, Switzerland, September 17-20, 2002). IEEE,
2002, 285-292.

[20] Piccinelli, G., Salle, M. and Zirpins, C. Service-oriented
modelling for e-business applications components. In
Proceedings of the Tenth IEEE international workshops
on Enabling technologies: Infrastructure for collaborative
enterprises (WET ICE 2001) (Cambridge, MA, USA, June
20-22, 2001). IEEE, 2001, 12 - 17.

[21] RosettaNet. http://www.rosettanet.org/, 2004.
[22] Sayal, M., Sahai, A., Machiraju, V. and Casati, F.

Semantic analysis of e-business operations. Journal of
Network and Systems Management, 11, 1(Mar. 2003), 13-
37.

[23] Schwartz, E. Triple A Launches Web Service Airline
Reservation System. InfoWorld [Online], August 12,
2002.

http://www.infoworld.com/article/02/08/12/020812hntriplea_1
.html,

[24] Stevens, M. Multi-Grained Services.
http://www.developer.com/design/article.php/1142661, May
21, 2002.

[25] The Open Knowledge Initiative. O.K.I. Architectural
Concepts.
http://prdownloads.sourceforge.net/okiproject/OkiArchitectural
Concepts.pdf?download, December 5, 2003.

[26] The Open Knowledge Initiative. http://web.mit.edu/oki/, 2004.
[27] UNECE. UN/EDIFACT (United Nations Directories for

Electronic Data Interchange for Administration, Commerce
and Transport).
http://www.unece.org/trade/untdid/welcome.htm, 2004.

[28] Vallee-Rai, R. Sable API Design Guidelines.
http://www.sable.mcgill.ca/publications/technotes/sable-tn-
1998-1.ps, March 3, 1998.

[29] Venners, B. API Design: The Object.
http://www.artima.com/apidesign/object.html, April 26,
2002.

[30] Venners, B. Introduction to Design Techniques. Note
http://www.javaworld.com/javaworld/jw-02-1998/jw-02-
techniques.html, February, 1998.

[31] W3C. W3C Web Services Activity.
http://www.w3.org/2002/ws/, 2004.

[32] Wieringa, R.J., Blanken, H.M., Fokkinga, M.M. and
Grefen, P.W.P.J. Aligning application architecture to the
business context. In Preceedings of 15th international
conference on Advanced information systems engineering
(CAiSE 2003) (Klagenfurt, Austria, June 16-18, 2003).
Springer, 2003, 209-225.

