

Agent-Based Process Management
John Debenham

Faculty of Information Technology, University of Technology, Sydney
debenham@it.uts.edu.au

Abstract. A categorisation of business process

covers the full business process spectrum from
routine production workflows to high-level emergent
processes. The first of these categories is activity-
driven processes; they are managed by a single
reactive agent architecture. The second of these
categories is goal-driven processes; they are managed
by a multiagent system. The third of these categories
is knowledge-driven processes; they may not be
managed as such. Two agent-based architectures
manage activity-driven and goal-driven processes
respectively.

INTRODUCTION

Business process management is an established
application area for multiagent systems (Jennings, et
al, 2000). The term business process here covers the
spectrum from production workflow to emergent
process (Dourish, 1998). Production workflows are
well-defined and highly repetitive processes.
Emergent processes are processes that are not
necessarily pre-defined, that may not be of a routine
nature and that may rely on some level of initiative
from the system to bring them to a conclusion. The
automated aspects of a business process are managed
by a process management system that applies a
sequence of activity instances to each process
instance.

Processes across the workflow / emergent
process spectrum have differing management
requirements. A categorisation of processes is given
into three categories. Together they cover the full
process spectrum. The direction of a knowledge-
driven process is determined in part common sense
and environmental knowledge; so they can not be
managed, at best they may be supported. The
management of activity-driven processes is achieved
with a single reactive agent architecture. The
management of goal-driven processes is achieved
with a multiagent system based on a three-layer BDI
(Belief-Desire-Intention) hybrid agent architecture.

Systems for managing activity-driven and goal-
driven processes use virtual web documents that may
be interactive. In both systems it is possible to work
remotely—all that is required is an Internet
connection and a PC. One of the design constraints
on the systems was that it should be possible to use
them using a laptop and the telecommunication lines
provided in many commercial aircraft.

THREE PROCESS CATEGORIES

The terms “production workflow” and “emergent
process” are types of business process and are usually
defined in loose terms. An alternative categorisation
of business process is given here by defining three
categories of process in terms of their process
management requirements.

Following (Fischer, 2000) a business process is
“a set of one or more linked procedures or activities
which collectively realise a business objective or
policy goal, normally within the context of an
organisational structure defining functional roles and
relationships”. Implicit in this definition is the idea
that a process may be repeatedly decomposed into
linked sub-processes until those sub-processes are
“activities” which are atomic pieces of work. [viz.
(op.cit) “An activity is a description of a piece of
work that forms one logical step within a process.”
and “An activity typically generates one or more
work items which together constitute the task to be
undertaken by the user.”]. In general this
decomposition will contain conditional branches. So
the decomposition of a process may be represented as
a tree where the nodes are labelled with the names of
activities and the arcs are labelled with conditional
expressions. Repetition is permitted and so these
trees may be unbounded. Each process and sub-
process has a process patron who is responsible for
that process; this responsibility may be delegated.
Each process has a goal that is a state that the process
intends to achieve. Each process has a termination
condition that determines when that process should
cease; the termination condition may be related to the
process’ goal. This definition of a business process is
based on the assumption that such a decomposition
will always work. This assumption is valid for
production workflows. But for more sophisticated
business processes, one decomposition may work
well for a while and then, for reasons that are not
understood within the system, may fail. So some
processes are associated with a unique, valid
decomposition.

Three categories of business process cover the
business process spectrum. Activity-driven processes
are the simplest category to manage. They are
typically handled by clerical staff. This category
includes production workflows. Knowledge-driven
processes are the most complex. They are typically
handled by middle and senior staff and so represent

the upper end of business process management. The
three categories of business process are:
• An activity-driven process can be associated with

a—possibly conditional—sequence of activities
such that execution of the corresponding sequence
of tasks “always” achieves the process goal. Each
of these activities has a goal, and is associated
with a task that on its termination “always”
achieves this goal. Production workflows are
often activity-driven processes.

• A goal-driven process has a process goal, and can
be associated with a—possibly conditional—
sequence of sub-goals such that achievement of
this sequence “always” achieves the process goal.
Achievement of a sub-process goal is the
termination condition for that sub-process. Each
of these sub-goals is associated with at least one
activity and so with at least one task. Some of
these tasks may work better than others, and there
may be no way of knowing which is which. A
task for an activity may fail outright, or may be
otherwise ineffective at achieving its goal. In
other words, unpredictable task failure is a feature
of goal-driven processes. If a task fails then
another way to achieve its sub-goal may be
sought.

• A knowledge-driven process may have a process
goal, but the goal may be vague and may mutate
(Dourish, 1998). Mutations are determined by the
process patron, often in the light of knowledge
generated during the process. The termination
condition for a knowledge driven sub-process is
not necessarily related to the achievement of the
sub-process goal. At each stage in a knowledge-
driven process instance the “next goal” is chosen
by the process patron; this choice is made using
general knowledge about the context of the
process—called the process knowledge which
may be used to direct knowledge-driven
processes. Unfortunately the process knowledge
is far too complex to represent in general. For
this reason knowledge-driven processes may not
be managed.

Properties of the three categories of process are
shown in Table 1.

ACTIVITY-DRIVEN PROCESS

An activity driven process can be associated with a—
possibly conditional—sequence of activities such that
execution of the corresponding sequence of tasks
“always” achieves the process goal. The idea behind
activity-driven processes is that process failure will
not happen. A workflow application in a draconian
organisation may be seen to be failure-proof, and so
could be treated as activity-driven. In practice, even
production workflow applications can fail; a clerk can
“click the wrong button” for example. So here the
reactive part of the agents’ architecture is used for
low level operations only.

Given an activity-driven process, construct a
node labelled with the activity that creates that
process. From that node directed arcs lead to other
nodes labelled with activities so that every possible
sequence of activities that leads to a node that
destroys the process is represented. If more than one
arc follows a node then those arcs are labelled with
the condition under which they should be followed.
No arcs lead from a node that destroys a process.
Then re-label the arcs as α(C) / D where α is the
event that the activity that precedes the arc has
terminated, C is the arc condition if any, and D is the
actions that the management system should perform
prior to the activity that follows the arc. In this way
activity-driven processes are represented as
statecharts see Fig. 1.

A Bα (C) / D

Fig. 1. Statechart for activity-driven process

Some of what a web-based process management
system has to do is to add or delete pointers to virtual
documents to or from the users work area.

Table 1. Properties of the three categories of process

 Task-driven Goal-driven Knowledge-driven
 Process goal Determined by process

patron, remains fixed
Determined by process
patron, remains fixed

Determined by process
patron, may mutate

 Process termination
condition

Process goal achieved Process goal achieved Determined by process
patron

 Next goal Determined by instance
history

Determined by instance
history

Determined by process
patron

 Next task Determined by instance
history and next goal—
should achieve next goal

Chosen (somehow) on
the basis of instance
history and next goal—
may not achieve next
goal

Chosen by process
patron to generate
process knowledge.

 Next activity
termination condition

Next goal achieved Next goal achieved, if it
fails then try another
way

Determined by process
patron

Operations of this sort are represented as actions D on
the state chart.

Some of what a web-based process management
system has to do is to add or delete pointers to virtual
documents to or from the users’ “In Trays”.
Operations of this sort are represented as actions on a
state chart.

The resulting statechart has a natural
implementation as event-condition-action state-
transition rules of the form:

if in state A and event α occurs
 and condition C is true
 then perform action D and enter state B

So activity-driven process management can be
effected using a single reactive agent, or expert
system, containing rules of this form. If the rules in
such a knowledge base are indexed by their “from
state” then the maintenance of the knowledge base is
quite manageable.

The state label can be quite complex. For
example, a state label for a process that is to be
circulated amongst n people, two at a time, until some
event occurs can be represented as an n � 2 matrix.

Assessment. The principal strength of the activity-
driven system is its simplicity. The system itself is
just an interpreter for rules of the form described
above. The interpreter was written from scratch in
Java. It operates by maintaining a virtual “In Tray”
for each user represented as an HTML page. Items
on this page contain messages, which are typically
quite simple, and references to the virtual web
documents that are part of the process instance. If the
application is a production workflow problem, and if
there is not a significant number of process
constraints, then modelling the application and
statecharts is usually a simple and natural business.
The subsequent representation of this statechart in the
system is then a trivial matter.

One shortcoming of the activity-driven system is
that the central system takes responsibility for
managing each process instance. That is, the central
system is the process patron. This poses no
theoretical problem but it does mean that if processes
are time (or cost) constrained then the state chart
representation has to cope with these constraints.
State chart representations that do not include time or
cost constraints can be very neat, but when these
constraints are included to allow for every possible
constraint violation the charts can become an
appalling mess. In goal-driven process the
responsibility for process instances is explicitly
delegated, and so too the responsibility for complying
with instance constraints. This has the effect of
simplifying the constraint management problem for
two reasons. First the goal-driven formalism is plan-
based and—unlike statecharts—includes the
representation of failure in the formalism. Second the
distribution of the constraint management problem to

the component agents in the system scales this
problem down.

Another shortcoming of the activity-driven
system stems from the fact that it is a centralised
system managing an essentially distributed task. For
example, if the personal preferences of each user are
to be represented in a centralised system then this
leads to a complex maintenance problem—
particularly if individual personal preferences are in
conflict. In the goal-driven system described below,
conflicts of this form are dealt with naturally through
the inter-agent negotiations.

GOAL-DRIVEN PROCESS

A goal-driven process has a process goal, and can be
associated with a—possibly conditional—sequence of
sub-goals such that achievement of this sequence
“always” achieves the process goal. Goal-driven
process is like activity-driven process in that for each
activity each task is intended to realise the sub-goal
of that activity. Goal-driven processes are unlike
activity-driven processes in that execution of these
tasks is unpredictable. What has worked well for
some time may now fail to work at all. Further the
reason for failure may lie outside the understanding
of the system.

Process Goal
(what we are trying
to achieve over all)

Performance
Knowledge

(knowledge of how
effective plans are)

Process Knowledge
(knowledge of how
much the instance

has/should cost etc)

Next-Goal
(what to try to
achieve next)

Plan

Initialise

New Performance Knowledge

Add to

New Process Knowledge

Add to

?not SC and
not activity

goal?

Select

Identify

Back-up Identify

?SC?
?activity

goal?

Procedure

Do it

Select

Evaluate it

Fig. 2. Goal-driven process management (simplified

view)

Goal-driven processes may be modelled as state
and activity charts (Muth, et al, 1998). The
primitives of that model are activities and states. An
activity chart specifies the data flow between
activities. An activity chart is a directed graph in
which the arcs are annotated with data items. A state
chart is a representation of a finite state machine in
which the transitions annotated with event-condition-
action rules; see Fig. 1. (Muth, et al, 1998) show that
the state and activity chart representation may be
decomposed to pre-empt a distributed
implementation. Each event on a state chart may be
associated with a goal to achieve that event, and so a
state chart may be converted to a plan whose nodes
are labelled with such goals. Unlike activity-driven
processes, the success of execution of a plan for a
goal-driven process is not necessarily related to the

achievement of its goal. One reason for this is that an
instance may make progress outside the process
management system—two players could go for lunch
for example. That is, when managing goal-driven
processes there may be no way of knowing the “best”
task to do next. Each high-level plan for a goal-
driven process should terminate with a check of
whether its goal has been achieved. To represent
goal-driven processes, a form of plan is required that
can accommodate failure. This is discussed below.

Fig. 2 shows a simplified view of the
management of goal-driven processes. The
primitives shown in Fig. 2 are goals and plans. Some
goals are associated with executable activities and so
with tasks. If a goal is not associated with an activity
then it should be the subject of at least one plan.
Fig. 2 presents a simplified view because a sub-goal
of a goal-driven process goal will not necessarily be
goal-driven, and because that Figure does not show
that plans may be aborted—as discussed below.

So goal-driven process management has a
requirement both for a software architecture that can
cope naturally with failure, and for some technique
for intelligently selecting which is the “best” task to
do next (Debenham, 2000). Any general-purpose
architecture can achieve this first requirement but the
process architecture described below is particularly
suitable.

System Architecture. In the goal-driven process
management system an agent supports each (human)
user. These agents manage their users’ work and
manage the work that a user has delegated to another
user/agent pair. Sub-process delegation is the
transfer of responsibility for a sub-process from one
agent to another. A delegation strategy decides who
to give responsibility to for doing what. Delegation
strategies in manual systems can be quite elementary;
delegation is a job that some humans are not very
good at. A user of the system may specify the
delegation strategy and may permit her agent to
delegate for her, or may delegate manually. In doing
this, the user has considerable flexibility first in
defining payoff and second in specifying the strategy
itself. A delegation strategy may attempt to balance
some of the three conflicting principles: maximising
payoff, maximising opportunities for poor performers
to improve and balancing workload.

The goal of this system is to manage goal-driven
processes. The systems architecture consists of one
agent for each (human) user; the role of each agent
that of an assistant to its user. The components of
each node in this system are illustrated in Fig. 3. The
user interacts with a virtual work area and a virtual
diary. The work area contains three components
which are: the process instances awaiting the
attention of the user, the process instances for which
the user has delegated responsibility to another agent,
and the process instances that the agent does not
understand. The diary contains the scheduled

commitments of the user. The agent manages the
work area and may also interact with the diary.

Work area

Diary
Agent

other agents

User virtual documents

Fig. 3. A system node in the multiagent system

The basis for the interaction protocol is open
cooperation; the agents are truthful with one another
about the contents of their users’ diaries—for
example. Each agent manages the work of its user in
the virtual work area and deals with the delegation of
responsibility for sub-processes to other nodes. This
delegation is achieved by inviting a selected set of
nodes to bid for work. A bid from a node contains
information on the firm and preferred constraints that
that user presently has, and information about that
user’s work—including an estimate of the cost, in
time, that that user may incur.

The conceptual architecture of the agents belongs
to a well-documented class. Wooldridge describes a
variety of architectures (Ch. 1 in (Weiss, 1999)). One
well-documented class of hybrid architectures is the
three-layer, BDI agent architectures. One member of
this class is the INTERRAP architecture (Müller,
1996), which has its origins in the work of (Rao and
Georgeff, 1995). In the goal-directed process
management system, the agent’s conceptual
architecture differs slightly from the INTERRAP
conceptual architecture; it is intended specifically for
business process applications. This conceptual
architecture is shown in Fig. 4. It consists of a three-
layer BDI architecture together with a message area.
A message manager manages the message area.
Access to the message area is available to other
agents in the system who may post messages there
and, if they wish, may remove messages that they
have posted. The idea behind the message area is to
establish a persistent part of the agent to which the
other agents have access. This avoids other agents
tampering directly with an agent’s beliefs, and
enables agents to freely remove their messages from
a receiving agent’s message board if they wish. The
message area is rather like a person’s office “in-tray”
into which agents may place documents, and from
which they may remove those documents if they
wish. The agents’ world beliefs are derived either
from reading messages received from a user, or from
reading the documents involved in the process
instance, or from reading messages in the message
area. These activities are fundamentally different in
that documents are “passive”; they are read only
when information is required. Users and other agents
send messages when they feel like it. Beliefs play
two roles. First, they may be partly or wholly
responsible activating a local or cooperative trigger
that leads to the agent committing to a goal, and may
thus initiate an intention (eg. a plan to achieve what a

message asks, such as “please do xyz”). This is part
of the deliberative reasoning mechanism. Second,
they can be partly or wholly responsible for
activating a reactive procedure trigger that, for
example, enables the execution of an active plan to
progress. This is part of the reactive reasoning
mechanism.

The control architecture is essentially to the
INTERRAP control architecture. In outline, the
deliberative reasoning mechanism employs the non-
deterministic procedure: “on the basis of current
beliefs—identify the current options, on the basis of
current options and existing commitments—select the
current commitments (or goals), for each newly-
committed goal choose a plan for that goal, from the
selected plans choose a consistent set of things to do
next (called the agent’s intentions)”. If the current
options do not include a current commitment then
that commitment is dropped. So if agent A sends
agent B a message M asking agent B to do
something, agent B may commit to do this. If agent
A then removes M from B’s message area then at B’s
next deliberative cycle B should decommit to that
task.

The reactive reasoning mechanism takes
precedence over the deliberative reasoning
mechanism. The reactive frequency is the frequency
at which an attempt is made to fire all active reactive
triggers. The reactive frequency is thirty seconds.
The deliberative frequency is the frequency at which
the deliberative reasoning mechanism is activated.
To maintain some stability in each user’s work area,
the deliberative frequency is five minutes.

KQML (Knowledge Query and Manipulation
Language) is used for inter-agent communication
(Finin et al, 1997). If agent A wishes to tell
something to agent B then it does so by posting a
message to agent B’s message area. Each message
contains an instruction for the message manager.
Two such instructions are:
• post message and remove on condition—the

sender agent is asking the receiving agent’s
message manager to display a message in the
receiving agent’s message area until the stated
condition is satisfied, and

• remove message—the sender agent is asking the
receiving agent’s message manager to remove one
of the sender’s previous messages from the
receiving agent’s message area.

Inter-agent communication has been implemented as
socket-to-socket connections on the local network
and email (using addresses known only to the agents)
so that a user may continue to use the system
remotely—even from an aeroplane.

Social

Self

looks at

seen by

BELIEFS

other

agents

user

documents

GOALS

t
r
i
g
g
e
r

Cooperative

Local

Procedures

INTENTIONS

p
l
a
n

plans
are

and/or
lattices

in
terms

of
send
messages
to

reads

messages

AGENT

message
manager

s
c
h
e
d
u
l
e

reads

World

reactive procedure triggers
import data from beliefs

Cooperative

Local

Procedure

Fig. 4. Conceptual architecture

Deliberative Reasoning. The form of plan is slightly
more elaborate than the form of agent plan described
in (Rao and Georgeff, 1995) where plans are built
from single-entry, triple-exit blocks. Those three
exits represent success, failure and abort. Powerful
though that approach is, it is inappropriate for process
management where whether a plan has executed
successfully is not necessarily related to whether that
plan’s goal has been achieved.

In goal-driven process management applications
a plan can not necessarily be relied upon to achieve
its goal even if all of the sub-goals on a chosen path
through the plan have been achieved. On the other
hand, if a plan has failed to execute then it is possible
that the plan’s goal may still have been achieved. So,
a necessary sub-goal in every high-level plan body is
a sub-goal called the “success condition”. The
success condition (SC) is a procedure whose goal is
to determine whether the plan’s goal has been
achieved. The success condition is the final sub-goal
on every path through a plan. The success condition
is a procedure; the execution of that procedure may
succeed (✓), fail (✗) or abort (A). If the execution of
the success condition fails then the overall success of
the plan is unknown (?). So the four possible plan
exits resulting from an attempt to execute a plan are
as shown in Fig. 5.

A plan body is represented as a directed
AND/OR graph, or state-transition diagram, in which
some of the nodes are labelled with sub-goals. The
plan body may contain the usual conditional
constructs such as if...then, and iteration constructs
such as while..do... The diagram of a plan body has
one start state (activation condition “ac”, and
activation action “α”), and stop states either labelled
as success states “✓” (success action “σ”), fail states
“✗” (fail action “φ”), unknown states “?” (unknown
action “υ”) or abort states “A” (abort condition “ab”,
and abort action “ω”).

Plan Name[Plan Goal]

start

Plan body

✓ ✖

[ac] / α

[ab] / ω/ φ/ σ

A

•

?
/ υ

Fig. 5. The process agent plan

Reactive Reasoning. Reactive reasoning play two
roles: first, if a plan is aborted then its abort action is
activated; second, if a procedure trigger fires then its
procedure is activated—this includes hard wired
procedure triggers that deal with urgent messages
such as “the building is on fire!”. Of these two roles
the first takes precedence over the second.

Reactive reasoning is achieved by rules of the
form:

if <trigger state> and <belief state> then <action>
and <trigger state>

where the <trigger state> is a device to determine
whether the trigger is active or not, and <belief state>
is something that the agent may believe; <action>
may be simply to transfer some value to a partly
executed plan, or may be more profound such as to
abort a plan and decommit a goal.

Each plan contains an optional abort condition
[ab] as shown in Fig. 5. These abort conditions are
realised as procedural abort triggers that are activated
when their plan is active. Active abort triggers scan
the agent’s beliefs for the presence of their abort
condition. Abort triggers are only active if the goal
of the plan to which they are attached is a goal that
the agent is presently committed to achieving. If a
plan is aborted then any active sub-goals of that plan
are also aborted.

If an agent A has an active plan P that requires
input from its user or another agent B then a
procedure sends a request message directly to B with
a unique identifier #I, and a reactive procedure trigger
is activated (ie. made “active”):

if active and believes B’s response to #I is Z then
pass Z to P and not active

In this way ‘data’ is passed to partly executed plans
using reactive triggers. Reactive triggers of this form
are associated with belief states of the form “B’s
response to #I is known”. Such a procedure trigger is
active when its associated sub-goal is committed to
but has not been realised.

The abort triggers have a higher priority than
reactive triggers. So if a plan’s abort trigger fires and
if an active sub-goal in that plan is the subject of a
reactive trigger then that sub-goal will be deactivated

so preventing that reactive trigger from firing even if
the required belief is present in the world beliefs.

Selection and Delegation. For goal-directed
processes, there may be no way of knowing what the
“best” thing to do next is, and that next thing may
involve delegating the responsibility for a sub-
process to another agent. This raises two related
issues. The first issue is selection; that is, given a
goal select the “best” plan or activity for that goal.
The second issue is delegation; that is, the problem of
deciding whom to ask to take responsibility for what
and then following up on the delegated responsibility
to make sure that the work is done. The sense in
which “best” is used here does not mean that
selection and delegation are optimisation problems.
A process management system is one part of an
organisation. Ideally the goal of a process
management system should be that of its
organisation, such as “to maximise corporate profits”.
But, unless measurements on the full range of
corporate activity are available to it, the management
system is unable to address such a global goal. On
the other hand, attempts to optimise the performance
of the process management system only can lead, for
example, to over use of the best performing staff. So
if the only measurements available are derived from
within the process management function then the
meaning of “best” should take note of global
implications, such as the equity in the working
environment, as well as the quality of the process
output. An attempt to define what is meant by “best”
in functional process management terms that attempts
to address corporate priorities may lead to conflicting
principles such as: maximising payoff, providing
opportunities for poor performers to improve and
balancing workload.

To deal with selection and delegation,
performance knowledge is gathered, as is illustrated
on Fig. 2. The performance knowledge comprises
performance statistics on the operation of every plan
and activity. In the case of a parameter, p, that can
reasonably be assumed to be normally distributed, an
estimate for the mean of p, µp, is revised on the basis
of the i’th observation obi to:

µpnew = (1 – α) � obi + α � µpold

which, given a starting value µpinitial, and some
constant α, 0 < α < 1, approximates the geometric
mean of all observations to date. In the same way, an
estimate for 2 / π times the standard deviation of
p, σp, is revised on the basis of the i’th observation
obi to:

σpnew = (1 – α) � | obi – µpold |
 + α � σpold

which, given a starting value σpinitial, and some
constant α, 0 < α < 1, approximates the geometric
mean of the modulus of difference of the
observations and the mean to date. The constant α
is chosen on the basis of the stability of the
observations.

Each individual agent/user pair maintains
estimates for the three parameters: time, cost and
likelihood of success for the execution of all of its
plans, sub-plans and activities. “All things being
equal” these parameters are assumed to be normally
distributed—the case when “all things are not equal”
is considered below. Time is the total time taken to
termination. Cost is the actual cost of the resources
allocated; for example, time used. The likelihood of
success observations are binary—ie. “success” or
“fail”—and so the likelihood of success parameter is
binomially distributed, which is approximately
normally distributed under the standard conditions.
Unfortunately, value is very difficult to measure in
process management. The system does not attempt to
measure value; each individual represents the
perceived value of each other individual’s work as a
constant for that individual. Finally, the delegate
parameter estimates the amount of work delegated to
each individual in each discrete time period. The
delegate parameter is not normally distributed. The
delegate and value estimates are associated with
individuals. The time, cost and likelihood of success
estimates are attached to plans and activities.

The three parameters time, cost and likelihood of
success are assumed to be normally distributed. If
working conditions are reasonably stable then this
assumption is acceptable, but the presence of external
environmental influences may invalidate it. One
virtue of the assumption of normality is that it
provides a statistical basis on which to query
unexpected observations. If an observation lies
outside the expected confidence interval then there
are grounds, to the chosen degree of certainty, to ask
why it is outside. Inferred reasons Γ for why an
observation is outside expected limits may sometimes
be extracted from observing the interactions with the
users and other agents involved. If the effect of such
a reason can be quantified—perhaps by simply asking
a user—then the perturbed values of {obi} are
corrected to {obi | Γ}.

Delegation may involve forming a group (eg. a
committee). Estimating the effectiveness of every
possible group of individuals in every possible
situation and maintaining the currency of those
estimates is not feasible. To deal with groups, the
effectiveness of individuals at forming and managing
groups is estimated; this is feasible. In this way, to
form a group an individual is selected to whom
responsibility of forming a group is delegated. In the
prototype system, selection may be handled either
manually by the user or automatically by the system.

Performance knowledge is historic. If it is used
to support future decisions then some allowance
should be made for how those performance estimates
are expected to have changed in time. For example,
if A was good yesterday and B was bad six months
ago then how should we rate their expected relative
performance tomorrow? The probability of A being
better than B will be greater than 0.5. The standard
deviation of a parameter can be interpreted as a
measure of lack of confidence in its mean. It may be
shown that if ρ is the expected range of values for A
and B, and if σB = ρ then the probability of A being
better than B will be less than 0.79 no matter what
µB, µA and σA are. If σB = 2 � ρ then this
probability is less than 0.66. So to allow for the
historic B estimate, determine a period by which the
estimates should be “moderately useless”, say one
year, and increase σB linearly by a half of the
difference between its value and 2 � ρ (because six
months is half of one year). This has the effect of
giving B the “benefit of the doubt” as B has not been
given an opportunity for six months.

In the absence of a satisfactory meaning of
“best” and with only the performance knowledge to
guide the decisions, the approach taken to
plan/activity selection is to ask the user to provide a
utility function defined in terms of the performance
parameters described below. If this utility function is
a combination of (assumed) normal parameters then a
reasonable plan/activity selection strategy is given a
goal to choose each plan (or activity) from the
available plans (activities) with the probability that
that plan (activity) has the highest expected utility
value. Using this strategy even poor plans have a
chance of being selected, and, maybe, performing
better than expected.

Contract nets with focussed addressing (Ch. 3 by
Durfee in (Weiss, 1999)) are used to manage semi-
manual or automatic delegation. A bid consists of the
five pairs of real numbers (Constraint, Delegate,
Success, Cost, Time). The pair constraint is an
estimate of the earliest time that the individual could
address the task—ie. ignoring other non-urgent things
to be done, and an estimate of the time that the
individual would normally address the task if it “took
its place in the in-tray”. The Constraint estimates
require reference to the user’s diary; diary
management in the existing system is very basic;
(Wobcke and Sichanie, 2000) describes an approach.
The pair Delegate is delegations “in” and delegations
“out”. The pairs Success, Cost and Time are
estimates of the mean and standard deviation of the
corresponding parameters as described below. The
receiving agent then:
• attaches a subjective view of the value of the

bidding individual;
• assesses the extent to which a bid should be

downgraded—or not considered at all—because it
violates process constraints, and

• selects an acceptable bid, if any, possibly by
applying its ‘delegation strategy’.

If there are no acceptable bids then the receiving
agent “thinks again”.

Given a sub-process, suppose that we have some
expectation of the payoff Di as a result of choosing
the i’th individual (ie. agent and user pair) from the
set of candidates {X1,...,Xi,...,Xn} to take
responsibility for it. A delegation strategy at time τ
is specified as S = {P1,...,Pi,...,Pn} where Pi is the
probability of delegating responsibility at time τ for a
given task to individual Xi chosen from
{X1,...,Xi,...,Xn}. For example, the delegation
strategy best maximises expected payoff:

Pi =

�
�
� 1/m if Xi is such that Pr(Xi ») is maximal

 0 otherwise

where Pr(Xi ») means “the probability that Xi will
have the highest payoff” and m is such that there are
m individuals for whom Pr(Xi ») is maximal.
Another strategy prob also favours high payoff but
gives all individuals a chance, sooner or later, and is
defined by Pi = Pr(Xi »). An admissible delegation
strategy has the properties:
• if Pr(Xi ») > Pr(Xj ») then Pi > Pj
• if Pr(Xi ») = Pr(Xj ») then Pi = Pj
• Pi > 0 (�i)

So the strategy best is not admissible. The strategy
prob is admissible and is used in the existing system.
It provides a balance between favouring individuals
who perform well with giving occasional
opportunities to poor performers to improve their
performance. The strategy prob is not based on any
model of user improvement and so it can not be
claimed to be optimal in that sense.

Assessment. The goal-driven system is a distributed
multiagent system. This enables the management of
complex tasks to be handled as each node is
individually responsible for the way in which it goes
about its business. That is, the plan in each agent
only has to deal with the goals that that agent has to
achieve.

The business of delegation of responsibility was
discussed above. An over-riding principle is required
to determine how delegation is to be dealt with no
matter how the measurements as described above are
used to support delegation. For example, if A
delegates the responsibility for a sub-process to B
who, in turn, delegates the same sub-process to C
then should B advise A of this second delegation—so
removing B from the responsibility chain—or should
B remain in the responsibility chain?

The goal-driven system was considerably more
expensive to build that the activity driven system. In

approximate terms it required four times the
programming effort despite the fact that it benefited
from being the second system built. Having made
this investment dividends flow from the comparative
ease by which new processes are included, in that
only those agents involved in a process need to
develop plans to cope with that process. There is also
a negative here. The system has grown around a
principle of customisation—ie. each individual is
responsible for deciding how their node operates.
This means that plans may be constructed at a
number of nodes by the users at those nodes to deal
with the same sub-process. One way around this is to
publish solutions as they are constructed, but that has
not been considered.

Fig. 6. Setting up a plan in the system

CONCLUSION

Three categories of business process are defined in
terms of their management properties. These three
categories cover the spectrum from production
workflow to emergent process. Two systems have
been described that manage activity-driven and goal-
driven processes. This sequence of systems is of
increasing power and increasing cost to build. The
“truth” about process management is a combination
of all of these ideas. For example, process
knowledge can be important in production
workflow—anecdotal knowledge about a “good way
to check a proforma” could be valuable process
knowledge. The majority of workflow management
systems do not capture this sort of knowledge. A
powerful process management system should
address: the management of goal-driven processes
(including activity-driven processes), the support of
knowledge-driven processes, the knowledge
management aspects of all processes, and the
provision of CSCW support that is fully integrated.
In the two systems described here, the LiveNet
workspace system (Hawryszkiewycz, 1999) is used to
handle virtual discussions. Process management
requires a solution to the selection problem and the
delegation problem. This is achieved on the basis of
historical data of past performance and on the basis of
inferred reasons for observed deviations in that

performance. Both systems have been implemented
in Java. The activity-driven system is implemented
as an interpreter of statecharts annotated with event-
condition-action rules. The goal-directed system is
implemented as an interpreter of high-level agent
specifications. This interpreter enables agents to be
built quickly. It also simplifies maintenance, which
only has to deal with high level specifications of
goals and plans. Both systems use virtual documents,
and all three systems may be used remotely. All that
is required is an internet connection. Fig. 6 shows the
screen for entering a plan into an agent’s plan library
in the goal-driven system.

REFERENCES
Debenham, J.K. (2000). “Supporting Strategic

Process”, in proceedings Fifth International
Conference on The Practical Application of
Intelligent Agents and Multi-Agents
PAAM2000, Manchester UK, April 2000.

Dourish, P. (1998) “Using Metalevel Techniques in a
Flexible Toolkit for CSCW Applications.” ACM
Transactions on Computer-Human Interaction,
Vol. 5, No. 2, June, 1998, pp. 109—155.

Finin, F. Labrou, Y., and Mayfield, J. (1997).
“KQML as an agent communication language.”
In Jeff Bradshaw (Ed.) Software Agents. MIT
Press (1997).

Fischer, L. (Ed) (2000). “Workflow Handbook
2001.” Workflow Management Coalition &
Future Strategies, 2000.

Hawryszkiewycz, I.T. (1999). “Supporting Teams in
Virtual Organisations.” In Proceedings Tenth
International Conference, DEXA’99, Florence,
September 1999.

Jennings, N.R., Faratin, P., Norman, T.J., O'Brien, P.
and Odgers, B. (2000) “Autonomous Agents for
Business Process Management”, Int. Journal of
Applied Artificial Intelligence 14 (2) 145—189.

Müller, J.P. (1996). “The Design of Intelligent
Agents” Springer-Verlag.

Muth, P., Wodtke, D., Weissenfels, J., Kotz D.A. and
Weikum, G. (1998). “From Centralized
Workflow Specification to Distributed Workflow
Execution.” In Journal of Intelligent Information
Systems (JIIS), Kluwer Academic Publishers,
Vol. 10, No. 2, 1998.

Rao, A.S. and Georgeff, M.P. (1995). “BDI Agents:
From Theory to Practice”, in proceedings First
International Conference on Multi-Agent
Systems (ICMAS-95), San Francisco, USA, pp
312—319.

Singh, M.P. and Huhns, M.N. (1999). “Multiagent
Systems for Workflow”, International Journal of
Intelligent Systems in Accounting, Finance and
Management, Vol 8, 1999, pages 105—117.

Weiss, G. (Ed) (1999). “Multi-Agent Systems”. The
MIT Press, Cambridge, MA.

Wobcke, W. and Sichanie, A. (2000). “Personal
Diary Management with Fuzzy Preferences” in

proceedings Fifth International Conference on
The Practical Application of Intelligent Agents
and Multi-Agents PAAM2000, Manchester UK,
April 2000.

