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Abstract.  A categorisation of business process 

covers the full business process spectrum from 
routine production workflows to high-level emergent 
processes.  The first of these categories is activity-
driven processes; they are managed by a single 
reactive agent architecture.  The second of these 
categories is goal-driven processes; they are managed 
by a multiagent system.  The third of these categories 
is knowledge-driven processes; they may not be 
managed as such.  Two agent-based architectures 
manage activity-driven and goal-driven processes 
respectively. 

INTRODUCTION 

Business process management is an established 
application area for multiagent systems (Jennings, et 
al, 2000).  The term business process here covers the 
spectrum from production workflow to emergent 
process (Dourish, 1998).  Production workflows are 
well-defined and highly repetitive processes.  
Emergent processes are processes that are not 
necessarily pre-defined, that may not be of a routine 
nature and that may rely on some level of initiative 
from the system to bring them to a conclusion.  The 
automated aspects of a business process are managed 
by a process management system that applies a 
sequence of activity instances to each process 
instance. 

Processes across the workflow / emergent 
process spectrum have differing management 
requirements.  A categorisation of processes is given 
into three categories.  Together they cover the full 
process spectrum.  The direction of a knowledge-
driven process is determined in part common sense 
and environmental knowledge; so they can not be 
managed, at best they may be supported.  The 
management of activity-driven processes is achieved 
with a single reactive agent architecture.  The 
management of goal-driven processes is achieved 
with a multiagent system based on a three-layer BDI 
(Belief-Desire-Intention) hybrid agent architecture. 

Systems for managing activity-driven and goal-
driven processes use virtual web documents that may 
be interactive.  In both systems it is possible to work 
remotely—all that is required is an Internet 
connection and a PC.  One of the design constraints 
on the systems was that it should be possible to use 
them using a laptop and the telecommunication lines 
provided in many commercial aircraft. 

THREE PROCESS CATEGORIES 

The terms “production workflow” and “emergent 
process” are types of business process and are usually 
defined in loose terms.  An alternative categorisation 
of business process is given here by defining three 
categories of process in terms of their process 
management requirements. 

Following (Fischer, 2000) a business process is 
“a set of one or more linked procedures or activities 
which collectively realise a business objective or 
policy goal, normally within the context of an 
organisational structure defining functional roles and 
relationships”.  Implicit in this definition is the idea 
that a process may be repeatedly decomposed into 
linked sub-processes until those sub-processes are 
“activities” which are atomic pieces of work.  [viz. 
(op.cit) “An activity is a description of a piece of 
work that forms one logical step within a process.” 
and “An activity typically generates one or more 
work items which together constitute the task to be 
undertaken by the user.”].  In general this 
decomposition will contain conditional branches.  So 
the decomposition of a process may be represented as 
a tree where the nodes are labelled with the names of 
activities and the arcs are labelled with conditional 
expressions.  Repetition is permitted and so these 
trees may be unbounded.  Each process and sub-
process has a process patron who is responsible for 
that process; this responsibility may be delegated.  
Each process has a goal that is a state that the process 
intends to achieve.  Each process has a termination 
condition that determines when that process should 
cease; the termination condition may be related to the 
process’ goal.  This definition of a business process is 
based on the assumption that such a decomposition 
will always work.  This assumption is valid for 
production workflows.  But for more sophisticated 
business processes, one decomposition may work 
well for a while and then, for reasons that are not 
understood within the system, may fail.  So some 
processes are associated with a unique, valid 
decomposition. 

Three categories of business process cover the 
business process spectrum.  Activity-driven processes 
are the simplest category to manage.  They are 
typically handled by clerical staff.  This category 
includes production workflows.  Knowledge-driven 
processes are the most complex.  They are typically 
handled by middle and senior staff and so represent 



  

the upper end of business process management.  The 
three categories of business process are: 
• An activity-driven process can be associated with 

a—possibly conditional—sequence of activities 
such that execution of the corresponding sequence 
of tasks “always” achieves the process goal.  Each 
of these activities has a goal, and is associated 
with a task that on its termination “always” 
achieves this goal.  Production workflows are 
often activity-driven processes. 

• A goal-driven process has a process goal, and can 
be associated with a—possibly conditional—
sequence of sub-goals such that achievement of 
this sequence “always” achieves the process goal.  
Achievement of a sub-process goal is the 
termination condition for that sub-process.  Each 
of these sub-goals is associated with at least one 
activity and so with at least one task.  Some of 
these tasks may work better than others, and there 
may be no way of knowing which is which.  A 
task for an activity may fail outright, or may be 
otherwise ineffective at achieving its goal.  In 
other words, unpredictable task failure is a feature 
of goal-driven processes.  If a task fails then 
another way to achieve its sub-goal may be 
sought. 

• A knowledge-driven process may have a process 
goal, but the goal may be vague and may mutate 
(Dourish, 1998).  Mutations are determined by the 
process patron, often in the light of knowledge 
generated during the process.  The termination 
condition for a knowledge driven sub-process is 
not necessarily related to the achievement of the 
sub-process goal.  At each stage in a knowledge-
driven process instance the “next goal” is chosen 
by the process patron; this choice is made using 
general knowledge about the context of the 
process—called the process knowledge which 
may be used to direct knowledge-driven 
processes.  Unfortunately the process knowledge 
is far too complex to represent in general.  For 
this reason knowledge-driven processes may not 
be managed. 

Properties of the three categories of process are 
shown in Table 1. 

ACTIVITY-DRIVEN PROCESS 

An activity driven process can be associated with a—
possibly conditional—sequence of activities such that 
execution of the corresponding sequence of tasks 
“always” achieves the process goal.  The idea behind 
activity-driven processes is that process failure will 
not happen.  A workflow application in a draconian 
organisation may be seen to be failure-proof, and so 
could be treated as activity-driven.  In practice, even 
production workflow applications can fail; a clerk can 
“click the wrong button” for example.  So here the 
reactive part of the agents’ architecture is used for 
low level operations only. 

Given an activity-driven process, construct a 
node labelled with the activity that creates that 
process.  From that node directed arcs lead to other 
nodes labelled with activities so that every possible 
sequence of activities that leads to a node that 
destroys the process is represented.  If more than one 
arc follows a node then those arcs are labelled with 
the condition under which they should be followed.  
No arcs lead from a node that destroys a process.  
Then re-label the arcs as α(C) / D where α is the 
event that the activity that precedes the arc has 
terminated, C is the arc condition if any, and D is the 
actions that the management system should perform 
prior to the activity that follows the arc.  In this way 
activity-driven processes are represented as 
statecharts see Fig. 1. 

A Bα (C) / D

 
Fig. 1.  Statechart for activity-driven process 

Some of what a web-based process management 
system has to do is to add or delete pointers to virtual 
documents to or from the users work area.  

Table 1.  Properties of the three categories of process 

  Task-driven Goal-driven Knowledge-driven 
 Process goal Determined by process 

patron, remains fixed 
Determined by process 
patron, remains fixed 

Determined by process 
patron, may mutate 

 Process termination 
condition 

Process goal achieved Process goal achieved Determined by process 
patron 

 Next goal Determined by instance 
history 

Determined by instance 
history 

Determined by process 
patron 

 Next task Determined by instance 
history and next goal—
should achieve next goal 

Chosen (somehow) on 
the basis of instance 
history and next goal—
may not achieve next 
goal 

Chosen by process 
patron to generate 
process knowledge. 

 Next activity 
termination condition 

Next goal achieved Next goal achieved, if it 
fails then try another 
way 

Determined by process 
patron 



 

  

Operations of this sort are represented as actions D on 
the state chart. 

Some of what a web-based process management 
system has to do is to add or delete pointers to virtual 
documents to or from the users’ “In Trays”.  
Operations of this sort are represented as actions on a 
state chart. 

The resulting statechart has a natural 
implementation as event-condition-action state-
transition rules of the form: 

if in state A and event α occurs 
  and condition C is true 
 then perform action D and enter state B 

So activity-driven process management can be 
effected using a single reactive agent, or expert 
system, containing rules of this form.  If the rules in 
such a knowledge base are indexed by their “from 
state” then the maintenance of the knowledge base is 
quite manageable. 

The state label can be quite complex.  For 
example, a state label for a process that is to be 
circulated amongst n people, two at a time, until some 
event occurs can be represented as an  n � 2  matrix. 

Assessment.  The principal strength of the activity-
driven system is its simplicity.  The system itself is 
just an interpreter for rules of the form described 
above.  The interpreter was written from scratch in 
Java.  It operates by maintaining a virtual “In Tray” 
for each user represented as an HTML page.  Items 
on this page contain messages, which are typically 
quite simple, and references to the virtual web 
documents that are part of the process instance.  If the 
application is a production workflow problem, and if 
there is not a significant number of process 
constraints, then modelling the application and 
statecharts is usually a simple and natural business.  
The subsequent representation of this statechart in the 
system is then a trivial matter. 

One shortcoming of the activity-driven system is 
that the central system takes responsibility for 
managing each process instance.  That is, the central 
system is the process patron.  This poses no 
theoretical problem but it does mean that if processes 
are time (or cost) constrained then the state chart 
representation has to cope with these constraints.  
State chart representations that do not include time or 
cost constraints can be very neat, but when these 
constraints are included to allow for every possible 
constraint violation the charts can become an 
appalling mess.  In goal-driven process the 
responsibility for process instances is explicitly 
delegated, and so too the responsibility for complying 
with instance constraints.  This has the effect of 
simplifying the constraint management problem for 
two reasons.  First the goal-driven formalism is plan-
based and—unlike statecharts—includes the 
representation of failure in the formalism.  Second the 
distribution of the constraint management problem to 

the component agents in the system scales this 
problem down. 

Another shortcoming of the activity-driven 
system stems from the fact that it is a centralised 
system managing an essentially distributed task.  For 
example, if the personal preferences of each user are 
to be represented in a centralised system then this 
leads to a complex maintenance problem—
particularly if individual personal preferences are in 
conflict.  In the goal-driven system described below, 
conflicts of this form are dealt with naturally through 
the inter-agent negotiations. 

GOAL-DRIVEN PROCESS 

A goal-driven process has a process goal, and can be 
associated with a—possibly conditional—sequence of 
sub-goals such that achievement of this sequence 
“always” achieves the process goal.  Goal-driven 
process is like activity-driven process in that for each 
activity each task is intended to realise the sub-goal 
of that activity.  Goal-driven processes are unlike 
activity-driven processes in that execution of these 
tasks is unpredictable.  What has worked well for 
some time may now fail to work at all.  Further the 
reason for failure may lie outside the understanding 
of the system. 

Process Goal
(what we are trying
to achieve over all)

Performance 
Knowledge

(knowledge of how 
effective plans are)

Process Knowledge
(knowledge of how 
much the instance 

has/should cost etc)

Next-Goal
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achieve next)

Plan

Initialise
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Add to

New Process Knowledge
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?not SC and
not activity 
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Back-up Identify
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Do it
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Fig. 2.  Goal-driven process management (simplified 

view) 

Goal-driven processes may be modelled as state 
and activity charts (Muth, et al, 1998).  The 
primitives of that model are activities and states.  An 
activity chart specifies the data flow between 
activities.  An activity chart is a directed graph in 
which the arcs are annotated with data items.  A state 
chart is a representation of a finite state machine in 
which the transitions annotated with event-condition-
action rules; see Fig. 1.  (Muth, et al, 1998) show that 
the state and activity chart representation may be 
decomposed to pre-empt a distributed 
implementation.  Each event on a state chart may be 
associated with a goal to achieve that event, and so a 
state chart may be converted to a plan whose nodes 
are labelled with such goals.  Unlike activity-driven 
processes, the success of execution of a plan for a 
goal-driven process is not necessarily related to the 



  

achievement of its goal.  One reason for this is that an 
instance may make progress outside the process 
management system—two players could go for lunch 
for example.  That is, when managing goal-driven 
processes there may be no way of knowing the “best” 
task to do next.  Each high-level plan for a goal-
driven process should terminate with a check of 
whether its goal has been achieved.  To represent 
goal-driven processes, a form of plan is required that 
can accommodate failure.  This is discussed below. 

Fig. 2 shows a simplified view of the 
management of goal-driven processes.  The 
primitives shown in Fig. 2 are goals and plans.  Some 
goals are associated with executable activities and so 
with tasks.  If a goal is not associated with an activity 
then it should be the subject of at least one plan.  
Fig. 2 presents a simplified view because a sub-goal 
of a goal-driven process goal will not necessarily be 
goal-driven, and because that Figure does not show 
that plans may be aborted—as discussed below. 

So goal-driven process management has a 
requirement both for a software architecture that can 
cope naturally with failure, and for some technique 
for intelligently selecting which is the “best” task to 
do next (Debenham, 2000).  Any general-purpose 
architecture can achieve this first requirement but the 
process architecture described below is particularly 
suitable. 

System Architecture.  In the goal-driven process 
management system an agent supports each (human) 
user.  These agents manage their users’ work and 
manage the work that a user has delegated to another 
user/agent pair.  Sub-process delegation is the 
transfer of responsibility for a sub-process from one 
agent to another.  A delegation strategy decides who 
to give responsibility to for doing what.  Delegation 
strategies in manual systems can be quite elementary; 
delegation is a job that some humans are not very 
good at.  A user of the system may specify the 
delegation strategy and may permit her agent to 
delegate for her, or may delegate manually.  In doing 
this, the user has considerable flexibility first in 
defining payoff and second in specifying the strategy 
itself.  A delegation strategy may attempt to balance 
some of the three conflicting principles: maximising 
payoff, maximising opportunities for poor performers 
to improve and balancing workload. 

The goal of this system is to manage goal-driven 
processes.  The systems architecture consists of one 
agent for each (human) user; the role of each agent 
that of an assistant to its user.  The components of 
each node in this system are illustrated in Fig. 3.  The 
user interacts with a virtual work area and a virtual 
diary.  The work area contains three components 
which are: the process instances awaiting the 
attention of the user, the process instances for which 
the user has delegated responsibility to another agent, 
and the process instances that the agent does not 
understand.  The diary contains the scheduled 

commitments of the user.  The agent manages the 
work area and may also interact with the diary. 

Work area

Diary
Agent

other agents

User virtual documents
 

Fig. 3.  A system node in the multiagent system 

The basis for the interaction protocol is open 
cooperation; the agents are truthful with one another 
about the contents of their users’ diaries—for 
example.  Each agent manages the work of its user in 
the virtual work area and deals with the delegation of 
responsibility for sub-processes to other nodes.  This 
delegation is achieved by inviting a selected set of 
nodes to bid for work.  A bid from a node contains 
information on the firm and preferred constraints that 
that user presently has, and information about that 
user’s work—including an estimate of the cost, in 
time, that that user may incur. 

The conceptual architecture of the agents belongs 
to a well-documented class.  Wooldridge describes a 
variety of architectures (Ch. 1 in (Weiss, 1999)).  One 
well-documented class of hybrid architectures is the 
three-layer, BDI agent architectures.  One member of 
this class is the INTERRAP architecture (Müller, 
1996), which has its origins in the work of (Rao and 
Georgeff, 1995).  In the goal-directed process 
management system, the agent’s conceptual 
architecture differs slightly from the INTERRAP 
conceptual architecture; it is intended specifically for 
business process applications.  This conceptual 
architecture is shown in Fig. 4.  It consists of a three-
layer BDI architecture together with a message area.  
A message manager manages the message area.  
Access to the message area is available to other 
agents in the system who may post messages there 
and, if they wish, may remove messages that they 
have posted.  The idea behind the message area is to 
establish a persistent part of the agent to which the 
other agents have access.  This avoids other agents 
tampering directly with an agent’s beliefs, and 
enables agents to freely remove their messages from 
a receiving agent’s message board if they wish.  The 
message area is rather like a person’s office “in-tray” 
into which agents may place documents, and from 
which they may remove those documents if they 
wish.  The agents’ world beliefs are derived either 
from reading messages received from a user, or from 
reading the documents involved in the process 
instance, or from reading messages in the message 
area.  These activities are fundamentally different in 
that documents are “passive”; they are read only 
when information is required.  Users and other agents 
send messages when they feel like it.  Beliefs play 
two roles.  First, they may be partly or wholly 
responsible activating a local or cooperative trigger 
that leads to the agent committing to a goal, and may 
thus initiate an intention (eg. a plan to achieve what a 



 

  

message asks, such as “please do xyz”).  This is part 
of the deliberative reasoning mechanism.  Second, 
they can be partly or wholly responsible for 
activating a reactive procedure trigger that, for 
example, enables the execution of an active plan to 
progress.  This is part of the reactive reasoning 
mechanism. 

The control architecture is essentially to the 
INTERRAP control architecture.  In outline, the 
deliberative reasoning mechanism employs the non-
deterministic procedure: “on the basis of current 
beliefs—identify the current options, on the basis of 
current options and existing commitments—select the 
current commitments (or goals), for each newly-
committed goal choose a plan for that goal, from the 
selected plans choose a consistent set of things to do 
next (called the agent’s intentions)”.  If the current 
options do not include a current commitment then 
that commitment is dropped.  So if agent A sends 
agent B a message M asking agent B to do 
something, agent B may commit to do this.  If agent 
A then removes M from B’s message area then at B’s 
next deliberative cycle B should decommit to that 
task. 

The reactive reasoning mechanism takes 
precedence over the deliberative reasoning 
mechanism.  The reactive frequency is the frequency 
at which an attempt is made to fire all active reactive 
triggers.  The reactive frequency is thirty seconds.  
The deliberative frequency is the frequency at which 
the deliberative reasoning mechanism is activated.  
To maintain some stability in each user’s work area, 
the deliberative frequency is five minutes. 

KQML (Knowledge Query and Manipulation 
Language) is used for inter-agent communication 
(Finin et al, 1997).  If agent A wishes to tell 
something to agent B then it does so by posting a 
message to agent B’s message area.  Each message 
contains an instruction for the message manager.  
Two such instructions are: 
• post message and remove on condition—the 

sender agent is asking the receiving agent’s 
message manager to display a message in the 
receiving agent’s message area until the stated 
condition is satisfied, and 

• remove message—the sender agent is asking the 
receiving agent’s message manager to remove one 
of the sender’s previous messages from the 
receiving agent’s message area. 

Inter-agent communication has been implemented as 
socket-to-socket connections on the local network 
and email (using addresses known only to the agents) 
so that a user may continue to use the system 
remotely—even from an aeroplane. 
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Fig. 4.  Conceptual architecture 

Deliberative Reasoning.  The form of plan is slightly 
more elaborate than the form of agent plan described 
in (Rao and Georgeff, 1995) where plans are built 
from single-entry, triple-exit blocks.  Those three 
exits represent success, failure and abort.  Powerful 
though that approach is, it is inappropriate for process 
management where whether a plan has executed 
successfully is not necessarily related to whether that 
plan’s goal has been achieved. 

In goal-driven process management applications 
a plan can not necessarily be relied upon to achieve 
its goal even if all of the sub-goals on a chosen path 
through the plan have been achieved.  On the other 
hand, if a plan has failed to execute then it is possible 
that the plan’s goal may still have been achieved.  So, 
a necessary sub-goal in every high-level plan body is 
a sub-goal called the “success condition”.  The 
success condition (SC) is a procedure whose goal is 
to determine whether the plan’s goal has been 
achieved.  The success condition is the final sub-goal 
on every path through a plan.  The success condition 
is a procedure; the execution of that procedure may 
succeed (✓), fail (✗) or abort (A).  If the execution of 
the success condition fails then the overall success of 
the plan is unknown (?).  So the four possible plan 
exits resulting from an attempt to execute a plan are 
as shown in Fig. 5. 

A plan body is represented as a directed 
AND/OR graph, or state-transition diagram, in which 
some of the nodes are labelled with sub-goals.  The 
plan body may contain the usual conditional 
constructs such as if...then, and iteration constructs 
such as while..do...  The diagram of a plan body has 
one start state (activation condition “ac”, and 
activation action “α”), and stop states either labelled 
as success states “✓” (success action “σ”), fail states 
“✗” (fail action “φ”), unknown states “?” (unknown 
action “υ”) or abort states “A” (abort condition “ab”, 
and abort action “ω”). 



  

Plan Name[ Plan Goal ]
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[ ac] / α

[ab] / ω/ φ/ σ

A

•

?
/ υ

 
Fig. 5.  The process agent plan 

Reactive Reasoning.  Reactive reasoning play two 
roles:  first, if a plan is aborted then its abort action is 
activated; second, if a procedure trigger fires then its 
procedure is activated—this includes hard wired 
procedure triggers that deal with urgent messages 
such as “the building is on fire!”.  Of these two roles 
the first takes precedence over the second. 

Reactive reasoning is achieved by rules of the 
form: 

if <trigger state> and <belief state> then <action> 
and <trigger state> 

where the <trigger state> is a device to determine 
whether the trigger is active or not, and <belief state> 
is something that the agent may believe; <action> 
may be simply to transfer some value to a partly 
executed plan, or may be more profound such as to 
abort a plan and decommit a goal. 

Each plan contains an optional abort condition 
[ab] as shown in Fig. 5.  These abort conditions are 
realised as procedural abort triggers that are activated 
when their plan is active.  Active abort triggers scan 
the agent’s beliefs for the presence of their abort 
condition.  Abort triggers are only active if the goal 
of the plan to which they are attached is a goal that 
the agent is presently committed to achieving.  If a 
plan is aborted then any active sub-goals of that plan 
are also aborted. 

If an agent A has an active plan P that requires 
input from its user or another agent B then a 
procedure sends a request message directly to B with 
a unique identifier #I, and a reactive procedure trigger 
is activated (ie. made “active”): 

if active and believes B’s response to #I is Z then 
pass Z to P and not active 

In this way ‘data’ is passed to partly executed plans 
using reactive triggers.  Reactive triggers of this form 
are associated with belief states of the form “B’s 
response to #I is known”.  Such a procedure trigger is 
active when its associated sub-goal is committed to 
but has not been realised. 

The abort triggers have a higher priority than 
reactive triggers.  So if a plan’s abort trigger fires and 
if an active sub-goal in that plan is the subject of a 
reactive trigger then that sub-goal will be deactivated 

so preventing that reactive trigger from firing even if 
the required belief is present in the world beliefs. 

Selection and Delegation.  For goal-directed 
processes, there may be no way of knowing what the 
“best” thing to do next is, and that next thing may 
involve delegating the responsibility for a sub-
process to another agent.  This raises two related 
issues.  The first issue is selection; that is, given a 
goal select the “best” plan or activity for that goal.  
The second issue is delegation; that is, the problem of 
deciding whom to ask to take responsibility for what 
and then following up on the delegated responsibility 
to make sure that the work is done.  The sense in 
which “best” is used here does not mean that 
selection and delegation are optimisation problems.  
A process management system is one part of an 
organisation.  Ideally the goal of a process 
management system should be that of its 
organisation, such as “to maximise corporate profits”.  
But, unless measurements on the full range of 
corporate activity are available to it, the management 
system is unable to address such a global goal.  On 
the other hand, attempts to optimise the performance 
of the process management system only can lead, for 
example, to over use of the best performing staff.  So 
if the only measurements available are derived from 
within the process management function then the 
meaning of “best” should take note of global 
implications, such as the equity in the working 
environment, as well as the quality of the process 
output.  An attempt to define what is meant by “best”  
in functional process management terms that attempts 
to address corporate priorities may lead to conflicting 
principles such as: maximising payoff, providing 
opportunities for poor performers to improve and 
balancing workload. 

To deal with selection and delegation, 
performance knowledge is gathered, as is illustrated 
on Fig. 2.  The performance knowledge comprises 
performance statistics on the operation of every plan 
and activity.  In the case of a parameter, p, that can 
reasonably be assumed to be normally distributed, an 
estimate for the mean of p, µp, is revised on the basis 
of the i’th observation obi to: 

µpnew  =  (1 – α) � obi  +  α � µpold 

which, given a starting value  µpinitial, and some 
constant α, 0 < α < 1, approximates the geometric 
mean of all observations to date.  In the same way, an 
estimate for   2 / π    times the standard deviation of 
p, σp, is revised on the basis of the i’th observation 
obi to: 

σpnew  =  (1 – α) � | obi  – µpold | 
 +  α � σpold 



 

  

which, given a starting value  σpinitial, and some 
constant α, 0 < α < 1, approximates the geometric 
mean of the modulus of difference of the 
observations and the mean to date.  The constant  α  
is chosen on the basis of the stability of the 
observations. 

Each individual agent/user pair maintains 
estimates for the three parameters: time, cost and 
likelihood of success for the execution of all of its 
plans, sub-plans and activities.  “All things being 
equal” these parameters are assumed to be normally 
distributed—the case when “all things are not equal” 
is considered below.  Time is the total time taken to 
termination.  Cost is the actual cost of the resources 
allocated; for example, time used.  The likelihood of 
success observations are binary—ie. “success” or 
“fail”—and so the likelihood of success parameter is 
binomially distributed, which is approximately 
normally distributed under the standard conditions.  
Unfortunately, value is very difficult to measure in 
process management.  The system does not attempt to 
measure value; each individual represents the 
perceived value of each other individual’s work as a 
constant for that individual.  Finally, the delegate 
parameter estimates the amount of work delegated to 
each individual in each discrete time period.  The 
delegate parameter is not normally distributed.  The 
delegate and value estimates are associated with 
individuals.  The time, cost and likelihood of success 
estimates are attached to plans and activities. 

The three parameters time, cost and likelihood of 
success are assumed to be normally distributed.  If 
working conditions are reasonably stable then this 
assumption is acceptable, but the presence of external 
environmental influences may invalidate it.  One 
virtue of the assumption of normality is that it 
provides a statistical basis on which to query 
unexpected observations.  If an observation lies 
outside the expected confidence interval then there 
are grounds, to the chosen degree of certainty, to ask 
why it is outside.  Inferred reasons Γ for why an 
observation is outside expected limits may sometimes 
be extracted from observing the interactions with the 
users and other agents involved.  If the effect of such 
a reason can be quantified—perhaps by simply asking 
a user—then the perturbed values of {obi} are 
corrected to {obi | Γ}. 

Delegation may involve forming a group (eg. a 
committee).  Estimating the effectiveness of every 
possible group of individuals in every possible 
situation and maintaining the currency of those 
estimates is not feasible.  To deal with groups, the 
effectiveness of individuals at forming and managing 
groups is estimated; this is feasible.  In this way, to 
form a group an individual is selected to whom 
responsibility of forming a group is delegated.  In the 
prototype system, selection may be handled either 
manually by the user or automatically by the system. 

Performance knowledge is historic.  If it is used 
to support future decisions then some allowance 
should be made for how those performance estimates 
are expected to have changed in time.  For example, 
if A was good yesterday and B was bad six months 
ago then how should we rate their expected relative 
performance tomorrow?  The probability of A being 
better than B will be greater than 0.5.  The standard 
deviation of a parameter can be interpreted as a 
measure of lack of confidence in its mean.  It may be 
shown that if ρ is the expected range of values for A 
and B, and if σB = ρ then the probability of A being 
better than B will be less than 0.79 no matter what 
µB, µA and σA are.  If σB = 2 � ρ then this 
probability is less than 0.66.  So to allow for the 
historic B estimate, determine a period by which the 
estimates should be “moderately useless”, say one 
year, and increase σB linearly by a half of the 
difference between its value and 2 � ρ (because six 
months is half of one year).  This has the effect of 
giving B the “benefit of the doubt” as B has not been 
given an opportunity for six months. 

In the absence of a satisfactory meaning of 
“best” and with only the performance knowledge to 
guide the decisions, the approach taken to 
plan/activity selection is to ask the user to provide a 
utility function defined in terms of the performance 
parameters described below.  If this utility function is 
a combination of (assumed) normal parameters then a 
reasonable plan/activity selection strategy is given a 
goal to choose each plan (or activity) from the 
available plans (activities) with the probability that 
that plan (activity) has the highest expected utility 
value.  Using this strategy even poor plans have a 
chance of being selected, and, maybe, performing 
better than expected. 

Contract nets with focussed addressing (Ch. 3 by 
Durfee in (Weiss, 1999)) are used to manage semi-
manual or automatic delegation.  A bid consists of the 
five pairs of real numbers (Constraint, Delegate, 
Success, Cost, Time).  The pair constraint is an 
estimate of the earliest time that the individual could 
address the task—ie. ignoring other non-urgent things 
to be done, and an estimate of the time that the 
individual would normally address the task if it “took 
its place in the in-tray”.  The Constraint estimates 
require reference to the user’s diary; diary 
management in the existing system is very basic; 
(Wobcke and Sichanie, 2000) describes an approach.  
The pair Delegate is delegations “in” and delegations 
“out”.  The pairs Success, Cost and Time are 
estimates of the mean and standard deviation of the 
corresponding parameters as described below.  The 
receiving agent then: 
• attaches a subjective view of the value of the 

bidding individual; 
• assesses the extent to which a bid should be 

downgraded—or not considered at all—because it 
violates process constraints, and 



  

• selects an acceptable bid, if any, possibly by 
applying its ‘delegation strategy’. 

If there are no acceptable bids then the receiving 
agent “thinks again”. 

Given a sub-process, suppose that we have some 
expectation of the payoff Di as a result of choosing 
the i’th individual (ie. agent and user pair) from the 
set of candidates {X1,...,Xi,...,Xn} to take 
responsibility for it.  A delegation strategy at time τ 
is specified as  S = {P1,...,Pi,...,Pn}  where Pi is the 
probability of delegating responsibility at time τ for a 
given task to individual Xi chosen from 
{X1,...,Xi,...,Xn}.  For example, the delegation 
strategy best maximises expected payoff: 

Pi = 

�
�
� 1/m   if Xi is such that Pr(Xi ») is maximal

  
     0      otherwise

  

where  Pr(Xi »)  means “the probability that Xi will 
have the highest payoff” and m is such that there are 
m individuals for whom Pr(Xi ») is maximal.  
Another strategy prob also favours high payoff but 
gives all individuals a chance, sooner or later, and is 
defined by  Pi  =  Pr(Xi »).  An admissible delegation 
strategy has the properties: 
• if Pr(Xi ») > Pr(Xj »)  then  Pi > Pj 
• if Pr(Xi ») = Pr(Xj »)  then  Pi = Pj 
• Pi > 0  (�i) 

So the strategy best is not admissible.  The strategy 
prob is admissible and is used in the existing system.  
It provides a balance between favouring individuals 
who perform well with giving occasional 
opportunities to poor performers to improve their 
performance.  The strategy prob is not based on any 
model of user improvement and so it can not be 
claimed to be optimal in that sense. 

Assessment.  The goal-driven system is a distributed 
multiagent system.  This enables the management of 
complex tasks to be handled as each node is 
individually responsible for the way in which it goes 
about its business.  That is, the plan in each agent 
only has to deal with the goals that that agent has to 
achieve. 

The business of delegation of responsibility was 
discussed above.  An over-riding principle is required 
to determine how delegation is to be dealt with no 
matter how the measurements as described above are 
used to support delegation.  For example, if A 
delegates the responsibility for a sub-process to B 
who, in turn, delegates the same sub-process to C 
then should B advise A of this second delegation—so 
removing B from the responsibility chain—or should 
B remain in the responsibility chain? 

The goal-driven system was considerably more 
expensive to build that the activity driven system.  In 

approximate terms it required four times the 
programming effort despite the fact that it benefited 
from being the second system built.  Having made 
this investment dividends flow from the comparative 
ease by which new processes are included, in that 
only those agents involved in a process need to 
develop plans to cope with that process.  There is also 
a negative here.  The system has grown around a 
principle of customisation—ie. each individual is 
responsible for deciding how their node operates.  
This means that plans may be constructed at a 
number of nodes by the users at those nodes to deal 
with the same sub-process.  One way around this is to 
publish solutions as they are constructed, but that has 
not been considered. 

 
Fig. 6.  Setting up a plan in the system 

CONCLUSION 

Three categories of business process are defined in 
terms of their management properties.  These three 
categories cover the spectrum from production 
workflow to emergent process.  Two systems have 
been described that manage activity-driven and goal-
driven processes.  This sequence of systems is of 
increasing power and increasing cost to build.  The 
“truth” about process management is a combination 
of all of these ideas.  For example, process 
knowledge can be important in production 
workflow—anecdotal knowledge about a “good way 
to check a proforma” could be valuable process 
knowledge.  The majority of workflow management 
systems do not capture this sort of knowledge.  A 
powerful process management system should 
address: the management of goal-driven processes 
(including activity-driven processes), the support of 
knowledge-driven processes, the knowledge 
management aspects of all processes, and the 
provision of CSCW support that is fully integrated.  
In the two systems described here, the LiveNet 
workspace system (Hawryszkiewycz, 1999) is used to 
handle virtual discussions.  Process management 
requires a solution to the selection problem and the 
delegation problem.  This is achieved on the basis of 
historical data of past performance and on the basis of 
inferred reasons for observed deviations in that 



 

  

performance.  Both systems have been implemented 
in Java.  The activity-driven system is implemented 
as an interpreter of statecharts annotated with event-
condition-action rules.  The goal-directed system is 
implemented as an interpreter of high-level agent 
specifications.  This interpreter enables agents to be 
built quickly.  It also simplifies maintenance, which 
only has to deal with high level specifications of 
goals and plans.  Both systems use virtual documents, 
and all three systems may be used remotely.  All that 
is required is an internet connection.  Fig. 6 shows the 
screen for entering a plan into an agent’s plan library 
in the goal-driven system. 
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