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Abstract Edge detection of 3-dimensional physi-
cal objects in a 2-dimensional image is one of the
main research areas of computer vision. Edge point
is defined as a hexagonal pixel where an abrupt
change in grey level takes place. In this paper, we
present a new approach to edge detection based on a
neuml network. Our task is divided into two parts:

1. Mapping typical grey levels in primitive small
image blocks (groups of adjacent 7 hexagonal
pizels) within the Spirol Arlchitecture.

2. Combining this locally derived information
(including presence, orientation and strength
of edge) in a consistent way.

This new edge detection scheme, because of its par-
allel structure, is fast and can be easily imple-
mented.
Keywords: Edge Detection, Computer Vision,
Neural Networks, Image Processing

1 Introduction
Edge detection plays a key role in computer vi-
sion, image processing and related areas. It is
a.process which detects the significant features
that appear as large delta values in light inten-
sities. At an early stage of computation in a
large scale computer vision application, edge
points are detected from the original image.
Edge points contain useful structural informa-
tion about objects' boundaries in a compact
form. It requires a relatively small amount of
memory space for storage. If needed, a replica
image can be reconstructed from its edge map.
Thus edge detection serves to simplify the anal-
ysis of images by dramatically reducing the
amount of data to be processed. Edge infor-
mation is useful in many image understanding

problems such as segmentation, registration,
feature and line extraction, and stereo match-
ing [2].

During the last three decades, many algo-
rithms have been developed for edge detec-
tion (e.g. [6] and [13]), among which the
most important ones are the Man-Hildreth
[10] method based on detecting zero cross-
ings at the output of Laplacian-Gaussian op-
erators of different widths, Haralick's [3] facet
model based method that uses the zero cross-
ings of a second directional derivative of Gaus-
sian edge operator, and Canny's [1] computa-
tional approach to edge detection by formulat-
ing the task as a numerical optimization prob-
lem. There are also other algorithms for refin-
ing step edges derived from Gaussian operators
[14].

There are also some other edge detection
schemes in which neural networks are either
implicitly or explicitly involved. Moura [11]
and Lepage [8] have developed, independently,
a so called competitive-cooperative network to
refine edge patterns obtained from simple gra-
dient operators, e.g. Sobel's or Prewitt opera-
tors. The networks shown in their paper con-
sist of several neurons corresponding to pixels
in a small neighborhood of image. The neurons
have a competitive/cooprative effect on each
other. In Moura's method, gradient magnitude
and direction for image intensity (derived from
Sobel's operators) are given to the network
and based on that the. network enforces edge
patterns normal to gradient and weakens edge
patterns along gradient direction. In Lepage's
method, however, the competitive/cooperative
network idea is used in a multi-scale scheme.
The network consists of several layers cor-
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responding to different resolution levels, and
at each layer edges are detected using lateral
connections and Sobel's operator. Edges at
coarser scales will then reinforce corresponding
edge patterns at finer scales through competi-
tive/cooperative connections, so those edges in
finer scales which are not reinforced will tend
to disappear.

Furthermore, Etemad et al. [2]presented an
alternative approach to edge detection based
on neural networks. Their method has features
such as:

1. High speed and simplicity. Since it only
relies on the non-linear mapping capabil-
ity of a simple neural network that directly
provides binary edge patterns as well as
edge strangth.

2. Edge detection independent of edge
strength.

3. Incorporating contex in edge detection
without going to lower resolutions.

4. Robustness to noise.

5. Extendability to corner and line detection
as well as multi-resolution methods.

In this paper, we present a new algorithm
for edge detection based on neural network by
adapting the detection scheme shown in [2].
Our image algebra is established on the Spiral
Architecture and the edge definition is based
on the Gaussian operator [9].

The Spiral Architecture described by Sheri-
dan [12]and futher elaborated by He and Hintz
[5] is a relatively new data structure for com-
puter vision. The image is represented by a
collection of hexagons of the same size (in con-
trast with the traditional rectangular represen-
tation). The iniportance of the hexagonal rep-
resentation is that it possesses special compu-
tational features that are pertinent to the vi-
sion process.

As image data is typically massive in ma-
ture, it is always desirable to devise meth-
ods that involve parallel processing of data or
methods that can easily be implemented us-
ing parallel algorithms. On the other hand,
due to massive amounts of image data, except
for a small number of applications where im-
age sizes are small, it is not feasible to process
the whole image concurrently. An important

characteristic of typical images is that there
is a large amount of local spatial correlation
among pixels. Thus, in this paper, we establish
an efficient local processing scheme that has
many parallel computational structures. We
also show a method to combine information ex-
tracted from the local processing to arrive at
consistent global results.

The context of this paper is arranged as fol-
lows. We briefly introduce the Spiral Architec-
ture in Section 2. In Section 3, a new defini-
tion of edge point in the Spiral Architecture is
developed. This is followed by an edge detec-
tion algorithm for a block of seven hexagonal
pixels based on a neural network in Section 4,
and the global edge detection in Section 5. We
conclude in Section 6.

2 The Spiral Architecture
Traditionally, an image is considered as a col-
lection of rectangular pixels of the same size.
Since the late 1990s, edge detection within a
relatively new data structure, called the Spiral
Architecture has been considered by He et al.
in their papers [4]and [7]. This significantly ex-
tends and simultaneously makes practical the
Spiral image structure. In the Spiral Architec-
ture, an image is represented as a collection of
hexagonal picture elements. As an example, a
collection of seven pixels is displayed in Fig-
ure 1. The distribution of cones on the retina

y

Figure 1: A cluster of 7 hexagons.

(see Figure 2) provides the basis of the Spi-
ral Architecture. In the case of the human eye,
these elements would represent the relative po-
sitions of the rods and cones on the retina.

A collection of seven hexagonal pixels is
displayed in Figure 1. Each of these seven
hexagons is labelled consecutively with num-
bers 0, 1, 2, 3, 4, 5 and 6. These numbers
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Figure 2: Distribution of cones on the retina.

are refered to as Spiral Addresses of individual
pixels [12].

3 Edge Definition within Spi-
ral Architecture

In the following, the image brightness function
will be parameterized. A large change in im-
age brightness over a short spatial distance in-
dicates the presence of an edge.

Let L : !R2 ~ !R be a brightness function
of an image which maps the coordinates of a
pixel, (x, y) to a value in light intensities. Lin-
deberg defined edges from the continuous grey-
level image function L : !R2 ~ !R as the set
of points for which the gradient magnitude as-
sumes a maximum in the gradient direction [9].
This can be further described as follows.

Let v be the gradient of L(x,y) at (x,y),
and Lz(x, y) and Ly(x, y) be the derivatives
of L(x, y) with respect to x and y. Denote
t.;(x, y) and Ly (x, y) Lz and Ly respectively.
Then ti is parallel to (Lz, Ly). Furthermore,
the derivative of L(x, y) in gradient direction at
(x, y) is JLi + L~. We denote this derivative
by Lfj i.e.,

Hence, by Lindeberg's definition, (x, y) is an
edge point (or edge pixel) if and only if Lv as-
sumes a maximum at (x, y).

Lindeberg's work assumed a continuous
space. In this section, we give a discrete app-
proach within the Spiral Architecture.

3.1 Approach to gradient of L
Given discrete data in the Spiral Architecture,
if we assume that the distance between centres
of two neighbouring hexagonal pixels is 1 and
the Cartesian coordinates of the Hexagon with
Spiral Address 0 is (x,y) (Figure 1), then the
hexagons with the spiral addresses 1, 2, 3, 4,
5 and 6 have Cartesian coordinates (x, y - 1),
(x - :/,},y - ~), (x - 4,y + ~), (x,y + 1),
(x+ :/,},y+~) and (x+ 4,y-~) respectively.
Let us denote the gradient of L at (x, y) by
G(x, y). We implement G(x, y) by

G(x,y)
= [L(x,y-1)-L(x,y)](0,-1)

V3 1 V3 1
+ [L(x - 2'y - 2) - L(x,y)](-2' -2)

V3 1 V31
+ [L(x-2'Y+2)-L(x,y)](-2''2)
+ [L(x,y+1)-L(x,y)](O,l)

V3 1 V31
+ [L(x + 2'Y+ '2) - L(x,y)](2''2)

V3 1 V3 1
+ [L(x+ 2'Y- 2) -L(x,y)](2'-2)

(2)

Let us use the cluster of seven hexagonal pix-
els as displayed in Figure 3 as an example of an
image block to calculate the gradient of L at
the central pixel. In Figure 3, the grey values

y

Figure 3: Gradient example in an image block.

(1)
of individual pixels are indicated by the num-
bers under the corresponding Spiral Addresses.
For example, the grey value at Spiral address
1 is 90. By Equation 2, the gradient at spiral
address 0 is

V31
(90 - 90)(0,-1) + (20 - 90)(-2' -2)
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v'31+ (90- 90)(-2' 2) + (10 - 90)(0,1)

v'31 v'3 1
+ (10- 90)(2' 2) + (10 - 90)(2' -2)

= (-5v'3, -85) (3)

3.2 Decide edges at central pixels

Given any Spiral address i, denote the values
of G(x,y) at i by Gi, and the correspond~
derivative at gradient direction by Li. Let p;,
and Pi- be grey values of the neighbouring pix-
els of i in the positive gradient direction and
in the negative gradient direction respectively.
Then we define

IP~-p·-IL. - 1 1
S - 2 . (4)

For example, in Figure 3, the grey levels of
pixel 1 and pixel 4 are 90 and 10 respectively,
and pixel 1 and pixel 4 are the neighbouring
pixels of pixel 0 in the positive gradient direc-
tion and in the negative gradient direction re-
spectively. Hence,

Lo = 190 - 101 = 40.
2

In the following, we propose a procedure to
determine whether the central pixel of a block
of seven pixels as displayed in Figure 1 is an
edge point. Without loss of generality, we as-
sume that the seven pixels for the block have
Spiral addresses as displayed in Figure 1. De-
note the angle between Go and (1,0) Ao.

• If 0 5 Ao < ~ or 7r 5 Ao < 1~, then
it is obvious that pixels 2 and 5 among
the neighbouring pixels of 0 contribute
the most to the change of brightness (or
grey value) at 0 in the gradient direction.
Hence,

- if (Lo ~ L2 and Lo > L5) or (Lo >
L2 and Lo ~ L5),
we record 0 as an edge pixel. This
is because that Lo in these cases is
a local maximum along the gradient
direction at O.

• Similarly if i 5 Ao < 2; or Ii 5 Ao <
1211' then

3 '

- if (Lo ~ L1 and Lo > L4) or (Lo >
L1 and Lo ~ L4)
record 0 as an edge pixel.

• And if 2: 5 Ao < 7r or 12; 5 Ao < 27r,
then

- if (La ~ L3 and La > L6) or (La>
L3 and La ~ L6)
record 0 as an edge pixel.

The above procedure implies that if 0 is an
edge pixel, then La is a local maximum in the
gradient direction.

4 Edge Detection in Primitive
Blocks

(5)

The basic idea for the edge detection in this
paper is the following: if for each primitive im-
age block (a block of seven pixels) one can cor-
rectly distinguish the edge (if there is an edge)
and can proberly combine the edge informa-
tion (e.g., existence, orientation and strength)
extracted from adjacent blocks, then a set of
consistent boundaries for the whole image can
be obtained.

So the problem can be broken into two parts:

1. Given any grey level pattern in a small
block of an image, find the corresponding
'most likely' edge pattern. We discuss this
problem in this section.

2. Combine the information derived from
neighboring blocks in a consistent way.
This problem will be discussed in the next
section .

The problem to find the 'most likely' edge
pattern is basically to find a nonlinear map-
ping from typical grey level patterns at the
input to their 'most likely' edges at the out-
put. For each pattern presentation (patterns
like those in the first and second columns of
Figure 4) at the input we require the traget
output to be the most likely edge pattern (e.g.,
edge patterns like those in the third column
in Figure 4). What we mean by 'most likely'
here is simply what humans may claim about
the presense and orientation of the edge in the
given input .

Considering the complexity of the mapping
one could expect that just two layers are not
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Figure 4: a. Perfet input patterns; b. Impect
input patterns; c. Most likely edge patterns.

enough. Hence, in this paper, we construct a
neural network for edge detection consisting of
three (i.e., input, hidden and output) layers as
shown in Figure 5 The hidden layer contains
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Figure 5: Three layer neural network.

information about the the derivative of L(x, y)
at each pixel of primary block in the gradient
direction. Hence, the hidden layer require in-
formation of grey-levels of all pixels in the pri-
mary block and of the pixels adjacent to the
primary block (see, for example, Figure 6a).

4.1 Segmentation of primary blocks

In the following, we decribe the procedures for
determining edge pixels or non-edge pixels in
any primary block based on the neural network

esblished above. See Figure 6 for the illustra-
tion.

II b c

~

d •• 0
Earle Point Non-Edge PoinI GtadienI DII8ClIon

Figure 6: Segmentation steps. a. Grey-levels
on extended block; b. Step 1; c. Step 2; d.
Step 3; e. Step 4; f. Final results.

Step 1. We apply the edge definition described
in the previous section to the central pixel of
the primary block. If the central pixel is an
edge point, then go to Step 2. Otherwise, we
claim that none of the pixels in the block is an
edge point. For example, in Figure 6, we have
that

Lo = 40, L .•.= 40, L1 = O. (6)

Hence, Lo is a local maximum in the gradient
direction of pixel O. Thus, pixel 0 is recorded
as an edge point.
Step 2. In the gradient direction (both positive
and negative), compare the differences of the
grey-levels between the central pixel and the
two pixels in the gradient direction. The pixel
of the two with greater difference is recorded
as a non-edge point. For example, in Figure 6,
the grep level difference between pixels 0 and 1
is 0, and between pixels 0 and 4 is 80. Hence,
pixel 4 is recorded as a non-edge point.
Step 3. This step is to determine the edge at
any other pixel in the primary block, which is
not yet classified as an edge point or non-edge
point, and which is next to a non-edge point.
Suppose a is such a pixel. We further assume
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that the vector from this pixel to the central
pixel is Vl and the vector from the same pixel
to the non-edge pixel is V2. Then we do the
following.

1. Calculate the gradient of L at a, denoted
by G(a), as we did at the central pixel.

2. Calculate the absolute values of G(a) . Vl

and G(a)· V2. If IG(a)· Vll ~ jG(a)· V2!, we
record a as a non-edge point. Otherwise,
we record a as an edge point.

In Figure 6, pixels 3, 5 and 6 are such pixels, of
which pixel 3 and 6 are classified as edge points
and pixel 5 is recorded as a non-edge point.
Step 4. Record all other undetermined pixels
as non-edge pixels. For example, pixels 1 and 2
are the pixels which are classified as non-edge
points in this step.

The final edge results of the primary block
are shown in Figure 6f.

5 Combining Edge Informa-
tion of Primary Blocks

In any dege detection scheme in addition to
edge presense and orientation one has to give
a relative measure of edge strength which can
be used in discarding weak as well as para-
sitic edges at the output. After the required
mapping is achieved we need to combine the
edge information derived from adjactive blocks
to get boundaries that are as consistent and
smooth as possible and to decrease the effect
of noise and spurious edges.

There are several ways of achieving this. For
example, one simple way is to use the following
observation.

As we sweep across the image each pixel ap-
pears in several window blocks. In our exam-
ple of seven pixel windows each pixel at a ap-
pears in its own 'principal block', which has
that pixel a at its centre, as well as six sur-
rounding blocks. For example, in Figure 7 all
seven blocks contain pixel O. Of course, pixels
on the image boundaries are contained in fewer
numbers of windows. Here, we concentrate on
interior pixels.

If a pixel is along an edge and if our pro-
posed network performs its job correctly it will
assign a 255 (corresponding to an 'edge point')
to that pixel several times. See, for example,

~-EEdg. point

Figure 7: a. Grey-levels on extended block; b.
Seven separated blocks.

Figure 7). In this figure, pixel 0 is on the edge
and therefore assigned to be on the edge by
four windows consistently. But on real images
where noise is present, it makes sense to use
a majority of votes based on the accumulated
vote given by all such windows compared to a
threshold. Also it is reasonable that in this ma-
jority voting policy we give more weight to the
principal block because logically it is the win-
dow that is most informative about its central
pixel. Suppose we want to claim that a is an
edge point if the principal block and one other
block, or at least three out of six blocks except
for the principal block assign 255 (grey level) to
this pixel. We claim that a is a non-edge point
otherwise. In order to implement this rule, we
add up the votes given by all seven windows
that contain pixel a, with two votes for the
principal block, and then compare the accumu-
lated number to three and claim an edge point
only if the number is greater than or equal to
three. Of course, we need to consider blocks
that are on the border separately.

In order to increase the accuracy of edge de-
tection, edge strength could also be considered
in our decision process either in the previous
section or in this section. These are classi-
fied as 'hard decision approach' and 'soft de-
cision approach'. For the hard decision ap-
proach, one can ignore all weak edge patterns
with strengths less than a threshold and just
consider strong edges in the previous section,
i.e., each window votes for a pixel to be an
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edge point only if our local edge detection in
that window gives a '255' at the corresponding
output neuron and the edge strength output is
above some threshold. For the soft decision ap-
proach, one can multiply the vote of each win-
dow for each pixel by the edge strength derived
at that window and add up all the combined
votes and strengths for a pixel and compare the
result to a final threshold. An edge is declared
if this combined result is more than a preset
threshold.

6 Conclusion

In this paper, we have done the following:
1. We implemented the gradient and the

derivative of the grey level function locally.
The gradient and the derivative were used
to re-define edge points.

2. A neural network was set up for edge de-
tection on a 'primary block'.

3. A global edge detection scheme was pro-
posed by combining the edge information
on all primary blocks.
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