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Abstract

Apparent failures in 1S development projects are often attributed to mistranslations of requirements as the
system is developed, to language incompatibility between users and technical experts. Many development
methodologies claim to overcome this misunderstanding through forcing acceptance of a common language or
through formalising the translation process, but we claim that this merely covers up the problem. Based on
constructivist models of communication and a case study we advocate techniques which will keep
misunderstandings visible thoughout the life of an information system.
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SEARCHING FOR A SEAMLESS DESIGN APPROACH

Between the idea

And the reality

Between the motion

And the action

Falls the Shadow (Eliot, 1925)

The theory of IS development has been haunted by the chasm between idea and reality, by the failure of the
systems we construct to live up to our imaginings. (Lyytinen and Hirschheim, 1987) This shadow may be more
theoretical than practical. While academics, managers and accountants believe that many IS projects, if not total
failures, are at least very expensive mistakes, the developers themselves seem to believe that they are doing as
well as could be expected and are producing many highly valuable systems. For managers the gap between idea
and reality is caused by inappropriate culture or lack of commitment on the part of the developers; for
theoreticians the cause is a failure to use or properly adhere to an appropriate methodology.

Traditional IS developments follow a "life-cycle" approach, prescribing a number of distinct development phases
to be followed more or less sequentially. A typical sequence of development phases is shown in Figure 1. A
major source of dissatisfaction, the chasm between idea and reality, becomes apparent when the behaviour of the
installed system in the real organisation does not match the expectations remembered from the time of
requirements development. Logically this implies that some mistake has been made, some mistranslation has
occurred, in analysis, in installation or in the passage from one development phase to the next. To avoid
mistranslation at the installation stage the usual recommendations are training and planning. For the preceding
steps the solution is often seen to lie with the proper choice of model used by the methodology. To facilitate the
translation at point "a" of Figure 1 some methodologies claim to use models that correspond to "natural ways of
thinking". The movement between development stages is facilitated by having a "seamless” methodology which
applies the same model, in more detail, at each stage (Jacobson, 1992:42), or by having robust algorithms to
translate the models of one stage to those of the next (Hawryszkiewycz, 1998). Uniform or reliably translatable
models can promote either business or technology as the dominant discourse. Nilsson et al (1999) have created a
methodology which attempts to translate the language of strategic planning through all stages of system
development, while object oriented approaches attempt to have users "think in objects” from the beginning.
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Figure 1: - Traditional Development Life Cycle

One difficulty with this type of approach is illustrated by the following thought experiment. Suppose we
simplified the translation in step "a" by recording the results of analysis in natural language, a natural way of
thinking for most potential users. It would then be possible to create algorithms, based on some formal model of
the organisation, to translate this natural language into code to control the computer component of an
information system (Rist, 1994). The problem is, would this translation correspond to what the users really
meant. Would they trust the translation? A second difficulty is that a high percentage of system failures are
attributed tochanges in organisational needs during the project (Fitzgerald et al, 1998). Thus uncertainty can
occur in two pathways, through the processes of the development methodology and within the user organisation,
external to the project. Crozier (1964) tells us that control of uncertainty is an important contributor to
organisational power, so it is understandable that both technical experts and users will attempt to claim their own
areas of uncertainty (expert judgement, creative freedom) while insisting that the other "stick to the
specification”.

A major contributor to the above difficulties is the notion that system requirements can be frozen in time at point
"a". Except for very short projects or quite static organisations this is clearly impractical. Hauffe (1998) sees
design as " a process in which the form of a product comes into existence alongside the determination of its
function”, that is the requirements are developed concurrently with the product. This is the basis of an
alternative approach to system development, prototyping, which has been available and used for several decades
and is illustrated in Figure 2. Here the stages of development are less distinct and the shadow between idea and
reality is always visible to both developers and users. While even the more democratic developers sometimes try
to impose limiting models on their discussion with users (Trigg et al, 1991), this shadow is always a site of
ambiguity where negotiations between competing discourses take place. In a recent research project, our aim
was to find a model of how these negotiations proceed and how the way they are conducted can affect the
outcome of a development project.
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Figure 2: - Prototyping

USING ANT TO UNDERSTAND SYSTEM NEGOTIATION

The recommendations in this paper arose from a case study of an internet based flexible delivery project
undertaken at an Australian university (not the author's university). This was a one year pilot project on a fixed
budget and was a user developed system, with a diverse community of potential users. Although the software
envisioned in early discussions was not produced, the majority in the user community saw the project as a
success. The original intention of the case study research was to find a suitable semiotic model to describe the
development or otherwise of shared meanings among the project participants. The progress of this research,
based on an analysis of design documents, e-mail discussions, minutes of meetings and interviews is described in
Underwood (1998).

The model finally chosen was a combination of Foucault's discourse theory and actor-network theory (ANT).
We have mentioned "discourse” informally above, and in Figure 2. For Foucault (1972), a discourse is a
network of allowable potential statements (and their sanctioning institutions) which forms the basis of serious
talk in some discipline, such as accounting or computer science. The meaning of a statement is interpreted
within a particular discourse. ANT (Latour, 1992) is a type of stakeholder analysis (Mitroff, 1983) where the
stakeholders may be other than the usual people and organisations and the stakes may be reinterpreted as
negotiations progress. In ANT, however, the stakeholders (actors) are seen as internal to the network and so
have reciprocal influence on each other as well as on "the project” or any imagined manager. Influence is
exerted by inscribing other actors with scripts that will cause them to assist our project. A plan for inscribing all
necessary actors with the appropriate scripts is called a program and will of course be challenged by anti-
programs. Ideally an actor, be they a project, process, machine, idea or person, would like to be seen as a
blackbox whose behaviour is taken for granted and is not amenable to rescripting. Others, including researchers,
wish to de-scribe actors to understand their motives and possibly influence their behaviour. In our research we
used Foucault's discourse theory to access the content of scripts and to understand how the same script was
interpreted differently by different actors or by the same actor at different times. This is discussed in some detail
in Underwood (2001). In the current paper we concentrate more on the details of negotiation across the chasm.

As scripts pass from one actor to another they are translated and change their meaning. Whether this change is
seen as a faithful translation or as a betrayal may change over time as the implications of the translation work
their way through the network.

... there is always a difference between what a speaker means and what the speaker's words mean.
Moreover, signifiers produce signification (meaning) and that meaning is often constructed retroactively.
(Sarup, 1992:57)

In our case study we found two levels of scripting (figure 3). Espoused scripts such as "support flexible
delivery" were apparently subscribed to by new recruits while still retaining the script's identity. We suppose
(though this is hard to test) that these were "anchored" or personalised by various actors through some process of
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internal translation, possibly through reference to a preferred discourse. These then emerge as (different) scripts-
in-use, analogous to Argyris and Schon's (1978) theories-in-use. The translation/betrayal of these scripts-in-use
seems to happen externally in the network rather than within the actors. Thus we have conceptually two
networks, one of espoused scripts and one of scripts-in-use. It is not clear how these two levels interact, but it is
certain that neither can be understood independently.

espoused script

ACTOR1 .{¢—P| ACTOR?2
S 1 "*«..-...

.,

" scripts-in-use .~
2 N a7 s3
translation/betrayal

Figure 3 - Two levels of network

When these translations are regarded as betrayals, the internal translation is seen as failing through perversity or
ignorance of actors, the external through lack of a common language. Soft and hard systems development
methodologies respectively claim to deal with one or the other of these sources of mistranslation. Theoretically,
unless we specify some super actor whose discourse is dominant (such as the project manager), there can be no
distinction between translation and betrayal. The human participants in our case study were not particularly
concerned about this possibility of mistranslation, generally assuming that it occurred but not showing much
interest in where or how ("that's politics!"). These betrayals and the consequent ambiguity can in fact be used to
maintain stability in the project alliance. In the case study a major part of the non-technical activity was devoted
to having people "get with the program” - that is to the phases of interessement and enrolment (Callon, 1986),
where actors are first attracted to the project, and then retained through the cultivation of alliances and common
interests. Contrary to Argyris's (1978) apparent advice, a mixture of both artfulness and openness is required for
success. The art of promoting a project involves both finding the vague concepts on which we can all agree and
recognising the currently conflicting specific scripts which can be linked through mistranslation. One of the
keys to success in the case study project was to separate these two modes of scripting. Many times at project
working group meetings there were attempts to force agreement on the meaning of particular concepts, goals or
design elements. Whenever it became apparent that this was difficult the matter was deferred. This meant that a
script was not translated at all (in which case it dropped out of the network - for example "seek commercial
sponsorship for the web site") or a translation was allowed to develop without scrutiny (eg "support flexible
delivery" to "put lecture notes on the web"). This unremarked translation/betrayal was crucial in maintaining
"commitment” to the project.

ADVICE FOR PROJECT MANAGERS

Participants in IS development projects, and particularly project managers, usually concentrate on one or other of
the paths introduced in Figure 3. They either take a Machiavellian view and promote superficial agreement and
high sounding concepts while secretly working to their own goals, or they insist on all players subscribing to
detailed design specifications expressed in the language of some dominant discourse. They attempt to exert
either covert or overt control. It might be thought that to deal with both paths a participant needs to strive for
both types of control, but our experience with the case study suggests that successful project management is a
matter of facilitation rather than control. In Latour's version of ANT we can't place ourselves outside the
network. The project manager is just one more actor, who can promote programs through inscription of other
actors but cannot expect to control the entire network. Further, openly with prototyping and unnoticed in life-
cycle methodologies, the requirements for the system are constructed gradually along with the system, so there
are no fixed goals against which to measure control. To help the project manager in such a situation we suggest
a number of scripts which they might follow.

Don't be Afraid of Politics

For technically-oriented or inexperienced analysts and project managers, politics is usually regarded as an
intrusion, a distraction from the real work of the project. ANT provides a political model which can include the
interests of ambitious individuals, bureaucratic departments, technical artifacts, investors and the nominated
developers themselves. If politics are imagined as other, their effects on the project and operational information
system will be external disturbances, outside our control. If political scripts are routinely included in our
network they can, as with any other scripts, be more or less successfully translated to support our program.
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Keep Project Boundaries Broader and Less Technical

Information systems are usually defined as comprising people, processes, hardware and software, but many
development methodologies concentrate on the hardware and software. An actor-network view of an
information system can be similar to Checkland's (1972) human activity system, with an emphasis on the
activities and interests of the human actors. The question of which actors should be legitimately included in a
project network is discussed by McMaster et al (1998). Our model, through concepts, allows scripts of non-
actors (those outside the network) to be included as well, and we suggest project managers become comfortable
with the fact that the network will evolve, sometimes becoming more focussed, sometimes growing, as the
project progresses.

Avoid Hierarchies of Project Definition

This continual evolution of the project undermines any techniques for hierarchical definition such as structured
analysis, encapsulation (Jacobson, 1992:48) or "sign-offs”. Traditional systems analysis recommends the
production of a simple top level model, the components of which are specifications for the behaviour of systems
at the next lower level, with this process iterated many times for a complex system. In an actor network there are
actors, scripts and programs, but within these there are no hierarchical levels. The apparently least significant
factor may rise to the highest importance at any moment.

... by following the movement allowed by ANT, we are never led to study the social order, in a
displacement that would allow an observer to zoom from the global to the local and back. In the social
domain there is no change of scale. It is so to speak always flat and folded ... (Latour, 1999:18)

Explicitly Discuss the Interests of Possible Technical Actors

Despite our plea for greater emphasis on non-technical aspects of information systems, the technical should not
be ignored or relegated to a "lower level” analysis. Scripts relating to technical aspects of possible solutions
should be introduced to the network as soon as they are found. Scripts such as "always use IBM products”, "the
maximum modem speed is 57K" or "don't use Mac servers” are neither unquestionable constraints nor
unexpected difficulties that arise in the later stages of implementation. They are on a par with "keep cost below
$100,000", "provide online feedback on student assignments” and "avoid gender bias", and may be involved in
facilitating or blocking alliances at any stage of IS development.

Keep Track of Important Scripts

Hughes et al (1995) kept actors' views of roles, rules and work flows (as discovered in interviews) in a hypertext
database so that designers could have access to the originals, uncontaminated by any process of requirements
definition. Similarly, we recommend what could be called a "script audit”, where significant scripts are recorded
and followed. It is not expected that all scripts will be satisfied by the project, but if a significant script is
dropped or drastically changed this should be noted. The function of the script audit is to detect those scripts
which have simply been forgotten, since they will probably reappear at an inconvenient time

Continue De-Scribing

The aim of any project is to be blackboxed, to become part of the environment, something which is taken for
granted. In that state the scripts which the project is following are invisible and the project is transformed into a
politically neutral artifact. Those actors who have succeeded in having their programs embodied in the artifact
(Winner, 1977) have "won", and the others are biding their time, expressing their disagreement through
passivity, sabotage, plotting revenge or de-scribing the artifact as a tool of the oppressors. To prevent this
situation, the project sponsors (and project manager) need to be continually de-scribing, keeping open decisions
about what scripts the project supports. Ideally, all actors should practice this de-scribing, even those who seem
to be "winning” at the moment. And this de-scribing will continue when the project has been "completed” to
become an operational information system, when de-scription becomes institutionalised in "support”,
"maintenance” and "enhancement”.

Avoid Linguistic Dominance

IS developers need to resist imposing their language on their clients. Those who have succumbed to the
temptation include numerous advocates of structured analysis and object oriented design, and even Stafford Beer
(1975) with claims that "everything is an information system". Other discourses also systematically attempt to
dominate IS development, discourses such as project management ("define testable deliverables”), cost
management ("on time and within budget"”), marketing and strategic business management ("align IT with
business strategy"). Through language dominance actors hope (consciously or otherwise) to pre-empt decisions
which might otherwise be made during the development or even the operation of the information system.
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The converse of dominance by a home discourse of one (or some) of the actors, is dominance by the project's
local language (Westrup, 1999). Words, phrases and other signs such as diagrams come to have an agreed
meaning within the project network. Should the actors become too comfortable with this local language they
will betray their home discourses, resulting in eventual rejection of the system by those whom they represent.
An early symptom of this is when outsiders perceive their colleagues inside the project network as speaking
incomprehensible jargon.

Patch Up (But Don't Cover Up) Differences

The previous script advises us at Foucault's macro level of language or discourse. Here we consider what can be
done at the more detailed level of individual translations. The model of (mis)understanding introduced in Figure
3 shows "patching up” mechanisms in place, both the superficial consensus of espoused scripts and the
mistranslations of scripts-in-use. Amongst those actors who care for the project there is a strong desire for this
patching up to succeed, a desire closely related to that noted in ethnomethodological conversation analysis.

"The big question is not whether actors understand each other or not. The fact is that they do understand
each other, that they will understand each other, but the catch is they will understand each other regardless
of how they would be understood.” [Garfinkel The Perception of the Other: a Study in Social Order
unpublished PhD, Harvard, 1952:367] (quoted in Heritage, 1984: 119)

The construction of espoused scripts that gain consensus, the enrolment of actors and the procurement of carers
for the project co-produce and support each other. If Garfinkel is right and the will to understand is deeply
ingrained, then facilitating the construction of a superficial consensus may be the first step to project success.
These agreed espoused scripts appear in formal documentation and meetings. For actual work to proceed,
however, the second mode of patching up, translation of scripts-in-use, must progress, and this occurs more
informally. According to conversation analysis this "alignment" is a matter of perception or assumption. The
first actor makes a statement, the second "pretends” that they understand and produces a response; the first actor
takes this response as a sign that they have indeed been understood. The process is repeated until one of the
actors becomes so uncomfortable with the pretence of understanding that they disrupt the normal flow of
conversation and take the risk of undermining the whole appearance of consensus.

Remenyi (1999:18) gives a good overview of this process of continual translation, questioning and
accommodation.

A process of continuous and dynamic evaluation and debate between knowledgeable stakeholders
recognising the need for shared values, individual autonomy and ambiguity, provides the best chance for
information systems optimisation.

CONCLUSION - COULD IT WORK?

The above scripts put anyone who is designated or assumed to be project manager in a difficult position. While
they, above all other actors, are supposed to be committed to the success of the project, its reaching the status of
a completed black box, the suggested scripts are designed to undermine this end. The simplest, most important
and most difficult script recommended for all actors, but particularly project managers is "let go". Managing a
project can be compared to teaching students or bringing up children. We have some ideas about what we hope
to achieve, some knowledge and experience, plenty of advice to give and a few techniques (of doubtful efficacy)
for influencing behaviour. We feel responsible, we care deeply about the outcome, but we should be neither
surprised nor disappointed when the reality turns out quite differently from anything we might have expected. In
this sense all projects are "research projects”. Even when the hardware and software to be used are "tried and
tested” they are being introduced to a particular and unique social situation. Loving the project means
supporting it and allowing it the freedom to grow. If any actors (including the project manager) insist on making
the project their creature then indeed "outside everything is cast in stone" and the project will not thrive.
(Latour, 1996)

Given the usual environment of information systems development, our advice to relinquish control, nurture
opposition and rely on the good will of other actors are unlikely to be received with enthusiasm. As well as the
fear (and sometimes impossibility) of defying budgets and timelines and of treating top management as "just
another actor”, there is the risk that, the more successful the project manager is in their role of facilitating
translation throughout the network, the less noticed their work will be; for a full-time project manager,
disappearing from notice might not be a good career move. We can only conclude with the suggestion:

The purpose of getting power is to be able to give it away. (Aneurin Bevan, quoted in Foot, 1962)
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