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Abstract

Organizational decision making often involves two
decision levels. When the leader at the upper level
attempts to optimize his/her objective, the follower at
the lower level tries to find an optimized strategy
according to each of possible decisions made by the
leader. Furthermore, such bilevel decision making may
involve uncertain parameters which appear either in
the objective functions ar constraints of the leader or
the follower. Following our previous work, this study
first proposes a fuzzy parameter bilevel programming
modé] and related theories. It then develops an
approximation Kth-Best algorithm for solving such
fuzzy bilevel programming problems. A numerical
example further illustrates the proposed algorithm.

Keywords: Bilevel programming, Kth-Best algorithm,
Fuzzy set, Fuzzy optimization, Decision making

1. Introduction

Bilevel decision making (also called bilevel
programming, BLP) techniques, first introduced by
Von Stackelberg [19], have been developed for mainly
solving decentralized planning problems with decision
makers in a hierarchical organization [3, 9, 21].
Decision maker at the upper level is termed as the
leader, and at the lower level, the follower. Each
decision maker (leader or follower) tries to optimize
his/her own objective function, but the decision of
each level affects the objective value of the other level
[4].

Bilevel decision making theory and technology have
been applied with remarkable success in different
domains, for example, decentralized resource planning,
electric power market, logistics, civil engineering,
chemical engineering and road network management.
(1,2, 10-12]. The vast majority of research on BLP has
centered on the linear version of the problem, i.e.,
linear BLP problems. A set of approaches and
algorithms have been well developed such as well
known Kuhn-Tucker approach [4,5], Kth-best
approach [6,7] and Branch-and-bound algorithm [8].
However, existing BLP approaches mainly suppose

the situation in which the objective functions and
constraints are characterized with precise parameters.
Therefore, the parameters are required to be fixed at
some values in an experimental and/or subjective
manner through the experts’ understanding of the
nature of the parameters in the problem-formulation
process. It has been observed that, in most real-world
situations, for example, in a logistics planning, the
possible values of these parameters are often only
imprecisely or ambiguously known to the experts who
establish this model. With this observation, it would
be certainly more appropriate to interpret the experts’
understanding of the parameters as fuzzy numerical
data which can be represented by means of fuzzy sets
[22]. A BLP problem in which the parameters, either
in objective functions or in constrains of the leader or
the follower, are described by fuzzy values is called a
fuzzy bilevel programming (FBLP) or a fuzzy bilevel
decision making (FBLDM) problem in the study.

The FBLP problem was first researched by Sakawa et
al. in 2000 [14]. Sakawa et al. formulates BLP
problems with fuzzy parameters from the perspective
of experts’ imprecision and proposes a fuzzy
programming approach for cooperative BLP problems.
However, the solution concept for a cooperative BLP
problem proposed by Lai [9,18] is different from the
solution concept of Bard who deals with
uncooperative BLP problem.

Our recent research work has extended Bard’s solution
concept of BLP by proposing an extended solution
concept which can overcome the arbitrary linear form
problem indicated above. We then proposed a set of
extended approaches based on the new solution
concept for solving linear BLP problems [15-17]. This
paper is deals with FBLP problems based on the
extended solution concept and related theorems [23-7].
In particular, it proposes a general fuzzy number based
extended Kth-Best algorithm. This algorithm can solve
uncooperative FBLP  problems where fuzzy
parameters can be expressed by any forms of
membership functions. Following the introduction,
Section 2 proposes a definition of optimal solution for
FBLP problem and related transformation theory. A
fuzzy number based approximation Kth Best algorithm
is presented in Section 3. Section 4 shows a numeral
example for illustrating the proposed approximation



Kth Best algorithm. Conclusion and further study are
discussed in Section 5.

2. Fuzzy Parameter Linear Bilevel
Programming Problem Related
Solution Transformation Theory

Definition 3.1 A topological space is compact if every
open cover of the entire space has a finite subcover.
For example, [a,b] is compact in R (the Heine-Borel
theorem) [20].

Consider the following fuzzy linear bilevel

programming (FLBLP) problem:
For xeXcR" , yeYcR"” ,

F:XxY—>F (R),and f:XxY > F'(R),

min F(x, y) =Elx+c7,y (2.12)

subjectto A,x+ B,y <, (2.1b)
n;leiynf(x,y)=5x+§2y (2.1¢)
subject to A,x + B,y < b, .1d)

where €,C, € F'(R") , d,d,eF (R") ,

beF'(R), b,eF(R") , 4=(,) ,
i, eF'(R), B=6,) .5 <F®,
,=@),..5 <F®),

~

B,=(5,),..5 € F'(R).

l

Associated with the (FLBLP) problem, we now
consider the following (MLBLP) problem:

For xeXcR' yeYcR” ,
F:XxY—F (R),and f:XxY — F'(R),

min (Fx,»); =ctx+dly, Ae[0,1]

(2.2a

min (F(x,»)); =csx+dy, Ae[0,1]
subject to

A x+Buy<bu,A x+Buy<bu, A€[0,1]

(2.2b)
min(/(x, 0); =¢,;x +d,y, 1€[0,1]
min(/(x, »));

(2.2¢)
=c x+d,y, Ae[0,1]

subjectto

A4, x+Buy<bu,A x+B y<b A€[0,1]
(2.2d)

where CH,C‘: , Czi, RER" , du’du ’
d,.,d,, €R", b., b cR”, b’ bR,
45 =| .,ilAlf ~fo)er,
T

4, =(e,.ji),A2:=(e,.jf)€ R™ ’
B =(s,")} B, =(s,")e R*"

Theorem 2.1 [25] Let (x*, ") be the solution of the

(MLBLP) problem (2.2). Then it is also a solution of
the (FLBLP) problem defined by (2.1).

Theorem 2.2 Forxe X CcR", yeY c R", If all
the fuzzy coefficients a,] s by s e,] " sy , c and d have

trapezoidal membership functions of the (MLBLP)
problem (2.1).

0 1<z,
a_
Z ﬂL(t z§)+ﬂ zt §t<z
z, — 24
() =1 z, <t<z},
a-pf R R
= R(t+zﬂ)+ﬂ z, <t<zy
zy -2,
k0 z§<t
(2.3)

besE. and

§2 54 i

denotes a

where 7 s
1)

47,. respectively. Then, it is the solution of the problem
(2.1 that (x*, y") e R" x R™ satisfying
1}2\1} (F(x,»); =cigx+di.y,
: R R R
min (F(x,y))a = x+d,y,
. L L L
min (F(x,}’))p =CgX+dy5y,

. R R R
min (F(x,y))ﬂ =Cipx + d,ﬁy,
(2.4a)

subject to



4, x+B y<b

la>
Al x+ B, y<b1a,

Alﬂx+Blﬂy§blﬂ,
A,§x+B,;y§b,§,

(2.4b)
mm(f(x y)) czix + dziy,
I?g(f(%)’))i =Cax +dy,y,
in(/f(x, )5 = ¢, 5% +dy5 3,
Y
] ( )R R 4R (2.4c¢)
min fx,0))g=copx+dyyy,
subject to
Azax + B2 y< bZa,
4, x + 32 y< bza ,
A4, x+Bzﬂy<bzﬂ,
Azﬂx+Bzﬁy§_b2ﬂ (2.4d)

Prof. We can easy to prove it by Definition of fuzzy
number order.

Theorem 23 Forxe X C R", yeY c R", Ifall

the fuzzy coefficients a by, €, s ,C, and d have

trapezoidal membership functions of the (MLBLP)
problem (2.1).

L
0 t<z,
a,-aq, ( L) L L
AR -z, )ta, Z, St<z,
Z4 —Zg
a, —a, ( L) L L
7 T~z Jta Z, St<z,,
Za -za
2 1

0= a zk <t<zf
a, —a,_
2 "R‘( t+z )+a zy <t<zl
zan—l_zan
Qy 1 ( R) R R
R R —it+z, Jta, Z, SILz,,
Z, —Z,
0 2% <«

~

denotes  a,,b._,
y ¥

e..5.,C and

where 7 ,8.,C.
iR i

d, respectively. Then, it is the solution of the problem

(B.1)that (x, ") e R" xR™ satisfying

min (F(x,y))io =c,iox + dlioys

min (F(x, y))i" = c,in x+ d,i” b

: R
13‘151/\1,1 (F(X,J’))ao = C]f:ox + d],’:oy,

min (Fx )i, =cigx+dy; ,

(2.6)
subject to A X+ B A b,a ,
A X+ B o, Vb, L
A X+ BX o) S b,a ,
(2.6b)
A X+ Br 2,V < b,a ,
min (f(an’))éo =C2i x+ dzi ¥
yeY 4 0
min (£(x,3);, =C2q, x+dag, ¥,
. R R R
I}lel}p (f(x, )’))a,, =Crg X +dy, ¥,
min (/(x, ), =C2q, % +day, 3,
(2.6¢)
subject to
A2a x+B2 y<bza ,
A2a x+B2 y<bza ,
Aza x+ 32a y< bza , (2.6d)

4, x+B y<b



We note _
A, x + B, y<b, (2.6b")
A,x+B,y<b, 2.64°)
where
Aliﬂ Azl.;o Bli,, Bzio
- |4 f. - Az,l; 5 Ii 5 Bzz
4, = lR" , A4, = ¥ bBi=l ¥ B = R
lag 2a, la, 2a,
A, 4, B, B,
by, e
L L
- - |b
b, = h;z" ,b, = 2;
\at, bza0
R R
bla,, bZa,,
Then we can re-write (2.6) by using
. L L L
min (F(x, y))ao =Cip X+ dyg, ¥
. I L L (2.6a%)
min (F(x, ), =¢1q, %+ 3,
. R R R
min (F(x, y))wo =Cpp, X+ d\, ¥
. R R R
min (F(x,y))an =cp, X+ d,a" ¥,
subject to le + l_ily < l;l , (2.4b%)

. L L L
min (f (%,9))a, =C20,% + d2g ¥»

. L L L
I};lel}rll (f(x’ y))a" = cZa"x + d2a" s

. R R
min (/(x, Ma, =Caa, %+ d2q, 7>

. R R
min (f(x, 9))g, =C2q,% + d2q,7:
2.6¢")

subjectto A,x+ B,y <b,.
2.64)

To solve the problem (2.6”), we can use the method of
weighting [12] to this problem, such that it is the
following problem:

min(F(x, )= et 2+ y)+ e e+ 2 )
i=0

_ (2.7a)
subjectto A,x + B,y <b,, (2.7v)

n
. L L R R
ngel)p(f(x, y)) = Z((cza’_x + dza, y)+ (ch,x + dza,}’))
’ i=0
2.7¢)

subjectto 4,x+ B,y < b,. (2.7d)
Definition 2.2
(a) Constraint region of the linear BLP problem:

S:{(x,y):xeX,yeY,le+§1yil71,zzx+§2yil;z}

(b) Feasible set for the follower for each fixed x € X :
S(x)={yeY:B,y<b, - 4,x}
(c) Projection of S onto the leader’s decision space:

S(X)z{xeX:ElyeY,Z,x+l_3_1y§5,,;1_2x+§2yib_2}

Follower’s rational reaction set for x € S(X):
P(x)={yeY:yeargmin[(f(x,$)): y € S()]}

where

argmin[f(x, y): y € S(x)]
={yeS(x):(f(x,») < (f(x. 9)) § € S(x)}
Inducible region:

IR={(x,y):(x,y) €S,y € P(x)}

The rational reaction set P(x) defines the response

while the inducible region IR represents the set over
which the leader may optimize his objective. Thus in
terms of the above notations, the linear BLP problem
can be written as
min{F(x, y):(x,y) € IR}.
(2.8)
Theorem 2.4 The inducible region can be written
equivalently as piecewise linear equality constraint
comprised of supporting hyperplance of constraint
region S.

Proof. Let us begin by writing the inducible region of
Definition 3.1(e) explicitly as follower:

IR: {(xsy):(x,y)e Sagzy
= min[d,7: B,7<b, - 4,x,i=12,7 2 01}
(2.9)



where

C, =¢; +c +c X d d+d +d,0, i=12.

ig?
Now we deﬁne
Ox)= mm{d il; —A4x =12,y20}

(2.10)
Let us define

18) {2} o)

We rewrite (2.10) as follows
O(x)= mm{d y: By<b —Ax,y> 0}

(2.11)
For each value of x € S(X), the resulting feasible
region to problem (2.5) is nonempty and compact.
Thus Q(x), which is a linear program parameterized in
x, always has a solution. From duality theory, we get

max{u(Zx—b) : ugi—(—i_z,u > 0},

(2.12)
which has the same optimal value as (3.7) at the
solution u”. Let u',..., &’ be a listing of all the vertices
of the constramt region of (2.12) given by

U—{u uB> d ,u = 0{ Because we know that a

solution to (2. 12) occurs at a vertex of U, we get the
equivalent problem

max{u’(Ax b):u’ e{u }},
(2.13)

which demonstrates that Q(x) is a piecewise linear
function. Rewriting IR as

IR = {(x,y)e S: Q(x)—gzy = O},
(2.14)
yields the desired result.

Corollary 2.1 The linear BLP problem (2.7) is
equivalent to minimizing F over a feasible region
comprised of a piecewise linear equality constraint.
Proof. From (2.8) and Theorem 2.3, we have the
desired result.

Corollary 2.2 A solution for the linear BLP problem

occurs at a vertex of IR .
Proof. A linear BLP programming can be written (2.8).
Since F is linear, if a solution exists, one must occur at

a vertex of IR . The proof is completed

Theorem 2.5 The solution (x", y*) of the linear BLP
problem occurs at a vertex of S.

Proof. Let (x',y'),...,(x",y") be the distinct
vertices of S. Since any point in S can be written a
convex combination of these vertices, let(x ", y") =

2o a(x,y) ,

r - — —
’=1ai=l,a,.20,1=1,...,r and r<r . It

must be shown that7 =1 . To see this let us write the
constraints to (2.5) at (x‘, y') in their piecewise linear
form (2.6).

0=0(")-d,y*
= Q(zaixi)—dz(zaiyi)

<Za o(x')- Za d,y’
by convexity of O(x)

=Y 2,00 ~d,y").
But by definition,

Q(x')= min Jzy < Jzyi.
yeS(x')

Therefore, Q(xi)—c_z'-zyi <0,i=1,...,7r . Noting
that @, 20,i=1,...,F , the equality in the

preceding expression must hold or else a contradiction
would result in the sequence above. Consequently,

O(x)-d,y' =0 for all i . This implies that
(x',y)elIR, i=1,...,7 and (x",y") can be
written as a convex combination of points in IR .
Because (x ™, y") is a vertex of IR, a contradiction
results unless 7 =1.

Corollary 2.3 If x is an extreme point of IR, it is an
extreme point of S.

Proof: Let (x*, ") be an extreme point of IR and
assume that it is not an extreme point of S . Let
(x',y"),...,(x", y" ) be the distinct vertices of S .

Since any point in S can be written a convex
combination of these vertices, let

&)=Y ek, y)

r .
a?, =la, 20,i=1,...

where

,Fy and ¥F<r . It

must be shown that 7 =1. To see this let us write the
constraints to (2.5) at (x‘ s y') in their piecewise
linear form (2.6).

0=0(x")-d,y’
—Q(Zax )-d. (Zay )
<Za o(x') - Za d,y’

by convexity of O(x)



=X 2,(Q(")-d,y").
But by definition, _ _
O(x')= min d,y<d,y".

yeS(xi)
Therefore, Q(x')—d,y’ <0,i=1,...,7 . Noting
that a, 20,i=1,...,r , the equality in the

preceding expression must hold or else a contradiction
would result in the sequence above. Consequently,

O(x")-d,y =0 for all i.
(x',y)elIR, i=1,...,F and (x",¥") can be
written as a convex combination of points in IR .

This implies that

Because (x.,y') is an extreme point of IR, a

contradiction results unless # =1. This means that
(x",y") is an extreme point of S . The proof is
completed.

Theorem 2.3 and Corollary 2.3 have provided
theoretical foundation for our new algorithm. It means
that by searching extreme points on the constraint
region S, we can efficiently find an optimal solution
for a linear BLP problem. The basic idea of our
extended properties algorithm is that according to the
objective function of the upper level, we descendent
order all the extreme points on S, and select the first
extreme point to check if it is on the inducible region
IR . If yes, the current extreme point is the optimal
solution. If not, select the next one and check.

More specifically, let
Cepps Yp s -+ (X Yiny) denote the N ordered
extreme points to the linear programming problem

min{c,x+d,y:(x,y) €S}, (2.15)
such that

C Xy +d Vi X Y Vi =L, N=L

Let Y denote the optimal solution to the following
problem

min(f (x;;, 7)1y € S(x;)). (2.16)
We only need to find the smallest i (i € {1,..., N})
under which y;,, =Y.

Let write (2.16) as follows
min f(x, y)
subjectto y € S(x)
X = Xp
From Definition 2.1(a) and (c), we have

minf(x,y)=52x+(72y (2.17a)
subjectto Ax+ By <bh (2.17b)
A,x+B,y<b, (2.17¢)
X=X (2.17d)
y=0. (2.17¢)

The solving is equivalent to select one ordered
extreme point (X;;), ¥j;;) > then solve (2.17) to obtain

the optimal solution y . If ;:y[i] s (X ) s

the global optimum to (2.7). Otherwise, check the next
extreme point.

3. An Approximation K-best
Algorithm for Solving Fuzzy Linear
Bilevel Programming

Based on Theorem 2.5, we present an approximation
K-best approach for solving fuzzy linear bilevel
programming (FLBLP) problem (2.1) as follows:

Step 1 The problem (2.1) is transferred to the problem
(2.6)

Step 2 Let the interval [0, 1] be decomposed into 2/
mean sub-intervals with (2*/+1) nodes

/1]. (] =0,-.-,2" ) which are arranged in
the order of 0= 4, < 4, <---<4,,, =1 and

a range of errors £ > 0.

Step 3 Set/ =1, then solve (MLBLP), i.e. (2.6) by
using Branch approach when =0 and a =1,
we obtain optimization solution (x, J’)z' .

Step 4 Put i «~ 1. Solve (2.15) with the simplex
method to obtain the optimal solution
(Xpy> V) - Let W ={(xy> )} and
T =¢.GotoStep5.

Step5 Solve (2.17) with the bounded simplex
method. Let J denote the optimal solution to
@17). I Y=y, stop; (X7, Yy,) is the
global optimum to (2.5) with K =i
Otherwise, go to Step 6.

Step6 Let W[,.] denote the set of adjacent extreme

points  of  (x;;,¥y)  such  that
(x,y) e W, implies
Sx+dyzex,+dy, . L
T =T U{(x, Yt and

W=WUW,)\T.GotoStep 7.



Step7 Set i «—i+1 and choose (X}, ¥j;;) so that

ﬁc[i] + &V = min{c,x+d,y:(x,y)eW}
. Go to Step 5.
Step 8 Solve (MLBLP),"' by Step 4 to Step 7 and we

obtain optimization solution (x, y)zm .

Step 9 If |(x, y)ym ~(x, y)y|<e - then the

solution (x‘, y‘) of the fuzzy linear bilevel
problem is (x, J’)z"' Otherwise, update / to 2/

and go back to Step 8.
Step 10 Show the result.

4. An Illustrative Example

This section will give an example to illustrate the
proposed algorithm.

Example Consider the following fuzzy linear BLP
problem with xeR', ye R', and X ={x>0},
Y={y20},

m@F{Ly)=Tx—5y
subject to ~Tx+ §y <3

min fi(5,3) = Tx+ Ty
ye

subject to Tx-1 <0
—Tx—Tysa
where
0 t<0
1? 0<t<l
# O 2t 1_<___t<2’
0 2<1
0 t<l1
t-1 1<1<2
HO=N3 0 2y
0 3<t
0 t<2
t-2 2<1<3
w0 = 4-t  3<t<¥
0 4<t

0 t<3
t-3  3<t<4
#0=15_, 4£t<5’

0 5<t

0 t<-1

1+1 ~-1<t<0
MO=Np oci<r

0 1<t

To solve this fuzzy linear bilevel programming
problem by using above the approximation Kuhn-
Tucker approach.

Step I The FBLP problem is transferred to the
following LMMBLP problem by using Theorem 2.2

min (F(x,»)); = T x+(-D)iy, 4e[01]

min (Fe, ) =TFx+(-2)%y, Ae[0,1]

subject to
Dix+31y<4r, (Dix+3{y<4l, Ael0]]

min(f(x, )i =L x+ Ty, 2€[0,1]

min(f(x,5)); = L x+ 1y, 20,1
subject to
Lx+Diy<0;, Tx+(-1)iy<0f, Aef0,1]

Dhx+ Dy <0;, CDix+(Diy<0f, Aefo1]

Step 2. Let the interval [0, 1] be decomposed into P
mean sub-intervals with 2+ nodes

A, (i =O,---,2H) which are arranged in the order
of 0=4, <4 <---<Z.2,_l =1 and a range of errors ¢
=10°>0.

Step 3-step 7. When I = 1, we solve this following
multi-objective multi-follower programming by use
original K-best approach
mi}lF(x,y) =3x—-6y
subjectto —1x+3y <4
-2x+2y<3
Ox+4y<5

miynfl(x,y) =3x+3y
ye



subjectto 1x =1y <0
Ox-2y<-1
2x-0y<1
-1x-1y <0
-2x-2y<-1.
We found that the optimal solution occurs at the point
(x",y")=(0,0.5) with
min £ (x,y) =1x -2y =-1
rgi)x(le(x,y) =0x-3y=-13
rgi;lﬂ(x,y) =2x-1y=-05
min f,(x, y) = 0.5

min f,(x,y) =1
yeY
Step 8. When I = 2, we solve another linear multi-

objective multi-follower programming problem and
get the following result.

min F (x, P =1x-2y=-1
~ p_¥2 3.3

tgl)pF(x,y)%— S ¥V =7%
in F(x,y)! =0x—3y=-2

min F(x,y)y =0x=3y=-2
3 5

inF(x, ) ==x-=y=-=

min (xy)% 2*5Y=73
. 1

min F(x,y) =2x-ly=~>
1

min £, (x, ))i* =lx+ly==
ye¥ 2
mmf.(x,y)f=g +%y—f

mi;lf,(x,y)fz =2x+2y=1
ye

2 2
x=0,y=0.5
Step 9. x=0,y=0.5 is the optimal selution the

. 3 3 3
min f,(x,y)} ==x+=y==
ye¥ 5 4

example because |(x, y),» —(x, y),|=0<s-

Step 10. Show the solution of the problem is
x=0,y=0.5 such that

. ~ = 2
rpeglF(x,y)—lx—2y—-5
min £,(x,y) = 1x+1 1
ye¥ 161 = Y 2.

where

0 t<-1.5
13 s<r<n
=2 %0, :
2 - ~1<t<-0.5
0.5
0 -05<¢
0 t<0
tZ
— 0<r<05
p(0=103 :
2 _— 05<r<1
0.5
0 1<t

5. Conclusion and Further Study

Following our previous research [21, 22, 30], this
paper proposes a fuzzy number based extended Kth
best approach to solve proposed FPBLP problem. A
numeral example is shown to illustrate the proposed
fuzzy number based extended Kth best approach.
Further study will include the development of fuzzy
parameter based multi-follower and multi-objective
bilevel programming problems.
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