
Bargaining with Information

John Debenham
Faculty of Information Technology
University of Technology, Sydney

NSW, Australia
debenham@it.uts.edu.au

Abstract

A negotiating agent engages in multi-issue bilateral ne-
gotiation in a dynamic information-rich environment. The
agent strives to make informed decisions. The agent may
assume that the integrity of some of its information decays
with time, and that a negotiation may break down under cer-
tain conditions. The agent makes no assumptions about the
internals of its opponent — it focuses only on the signals
that it receives. It constructs two probability distributions
over the set of all deals. First the probability that its oppo-
nent will accept a deal, and second that a deal will prove to
be acceptable to it in time.

1. Introduction

A Negotiating Agent, NA, engages in bilateral bargain-
ing with an opponent,OP. It strives to make informed de-
cisions in an information-rich environment that includes in-
formation drawn from the Internet by bots. Its design was
provoked by the observation that agents are not always util-
ity optimizers.NA attempts to fuse the negotiation with the
information generated both by and because of it. It reacts
to information derived from its opponent and from the en-
vironment, and proactively seeks missing information that
may be of value.

This work is based on the notion that when an intelli-
gent agent buys a hat, a car, a house or a company she does
so because she feels comfortable with the general terms of
the deal. This “feeling of comfort” is achieved as a result
of information acquisition and validation. Negotiation is as
much of an information acquisition and exchange process
as it is an offer exchange process — one feeds off the other.

NA draws on ideas from information theory. Game the-
ory tells us what to do, and what outcome to expect, in many
well-known negotiation situations, but these strategies and
expectations are derived from assumptions about the inter-
nals of the opponent. Game theoretic analyses of bargain-

ing are founded on the notion of agents as utility optimiz-
ers in the presence of complete and incomplete information
about their opponents [9].

Two probability distributions form the foundation of
both the offer evaluation and the offer making processes.
They are both over the set of all deals and are based on all
information available to the agent. The first distribution is
the probability that any deal is acceptable toOP. The sec-
ond distribution is the probability that any deal will prove to
be acceptable toNA — this distribution generalizes the no-
tion of utility.

NA may not have a von Neumann-Morgerstern utility
function.NA makes no assumptions about the internals of
OP in particular whether it has a utility function.NA does
make assumptions about: the way in which the integrity of
information will decay, preferences that its opponent may
have for some deals over others, and conditions that may
lead to breakdown. It also assumes that unknown probabil-
ities can be inferred usingmaximum entropy probabilistic
logic [8] that is based on random worlds [5]. The maximum
entropy probability distribution is “the least biased estimate
possible on the given information; i.e. it is maximally non-
committal with regard to missing information” [6]. In the
absence of knowledge aboutOP’s decision-making appara-
tus,NA assumes that the “maximally noncommittal” model
is the correct model on which to base its reasoning.

A preference relationis an assumption thatNA makes
aboutOP’s preferences for some deals over others. For ex-
ample, that she prefers to pay a lower price to a higher price.
A single-issue preference relationassumes that she prefers
deals on the basis of one issue alone, independent of the
values of the other issues. A preference relation may be as-
sumed prior to the negotiation, or during it based on the of-
fers made. For example, the opponent may display a prefer-
ence for items of a certain color; [4] describes a basis for or-
dering colors. The preference relations illustrated here are
single-issue orderings, but the agent’s reasoning operates
equally well with any preference relation as long as it may
be expressed in Horn clause logic.



Under some circumstances bilateral bargaining has ques-
tionable value as a trading mechanism. Bilateral bargaining
is known to be inherently inefficient [10]. [1] shows that a
seller is better off with an auction that attractsn + 1 buy-
ers than bargaining withn individuals,no matter whatthe
bargaining protocol is. [11] shows that the weaker bargain-
ing types will fare better in exchanges leading to a gradual
migration. These results hold for agents who aim to opti-
mize their utility and do limit the work described here.

2. The Negotiating Agent:NA

NAoperates in an information-rich environment. The in-
tegrity of its information, including information extracted
from the Internet, will decay in time. The way in which
this decay occurs will depend on the type of information,
and on the source from which it is drawn. Little appears to
be known about how the integrity of information, such as
news-feeds, decays.

One source ofNA’s information is the signals received
from OP. These include offers toNA, and the acceptance or
rejection ofNA’s offers. If OP rejectedNA’s offer of $8 two
days ago then what isNA’s belief now in the proposition
that OP will accept another offer of $8 now? Perhaps it is
around 0.1. A linear model is used to model the integrity de-
cay of these beliefs, and when the probability of a decaying
belief approaches 0.51 the belief is discarded. This choice
of a linear model is independent of the bargaining method.
The model of decay could be exponential, quadratic or what
ever.

2.1. Interaction Protocol

The agents communicate using sentences in a first-order
languageL. This includes the exchange, acceptance and re-
jection of offers.L contains the following predicates:Of-
fer(δ), Accept(δ), Reject(δ) and Quit(.), whereOffer(δ)
means “the sender is offering you a dealδ”, Accept(δ)
means “the sender accepts your dealδ”, Reject(δ) means
“the sender rejects your dealδ” and Quit(.) means “the
sender quits — the negotiation ends”.

Two negotiation protocols are described. First, negotia-
tion without decayin which all offers stand for the the en-
tire negotiation. Second, withwith decayin which offers
stand only if accepted by return —NA representsOP’s of-
fers as beliefs with sentence probabilities that decay in time.

NA andOP each exchange offers alternately at succes-
sive discrete times [7]. They enter into a commitment if
one of them accepts a standing offer. The protocol has three
stages:

1. Simultaneous, initial, binding offers from both agents;

1 A sentence probability of 0.5 represents “maybe, maybe not”.

2. A sequence of alternating offers, and
3. An agent quits and walks away from the negotiation.

The negotiation ceaseseither in the second round if one of
the agents accepts a standing offeror in the final round if
one agent quits and the negotiation breaks down.

In the first stage the agents simultaneously sendOffer(.)
messages to each other. These initial offers are taken as lim-
its on the range of values that are considered possible. This
is crucial to the method described in Sec. 3 where there
are domains that would otherwise be unbounded. The ex-
change of initial offers “stakes out the turf” on which the
subsequent negotiation will take place. In the second stage
an Offer(.) message is interpreted as an implicit rejection,
Reject(.), of the opponent’s offer on the table.

2.2. Agent Architecture

Incoming messages from all sources are time-stamped
and placed in an “In Box”,X , as they arrive.NA has a
knowledge baseK and a belief setB. Each of these two
sets contains statements inL. K contains statements that
are generally true, such as∀x(Accept(x) ↔ ¬Reject(x))
— i.e. an agent does one thing or the other. The belief set
B = {βi} contains statements that are each qualified with a
given sentence probability, B(βi), that represents an agent’s
belief in the truth of the statement. These sentence probabil-
ities may decay in time.

The distinction between the knowledge baseK and the
belief setB is simply thatK contains unqualified statements
andB contains statements that are qualified with sentence
probabilities.K andB play different roles in the method de-
scribed in Sec. 3.

NA’s actions are determined by its “strategy”. Astrat-
egy is a functionS : K × B → A whereA is the set of
actions. At certain distinct times the functionS is applied
to K andB and the agent does something. The set of ac-
tions,A, includes sendingOffer(.), Accept(.), Reject(.) and
Quit(.) messages toOP. The way in whichS works is de-
scribed in Sec. 5. Momentarily before theS function is ac-
tivated, a “revision function”R is activated:
R : (X ×K × B) → (K × B)
R clears the “In Box”, and stores the messageseither in B
with a given sentence probabilityor in K.

A deal, δ, is a commitment for the sender to do some-
thing,τ (the sender’s “terms”), subject to the receiver com-
mitting to do something,ω (the receiver’s “terms”):δ =
(τ, ω). NAmay have a real-valuedutility function:U : T →
<, whereT is the set of terms. If so, then for any deal
δ = (τ, ω) the expressionU(ω) −U(τ) is called thesur-
plusof δ. An agent may be unable to specify a utility func-
tion either precisely or with certainty.2 Sec. 4 describes a

2 The often-quoted oxymoron “I paid too much for it, but its worth it.”



predicateNAAcc(.) that represents the “acceptability” of a
deal.

NA uses three things to make offers: an estimate of the
likelihood thatOPwill accept any offer [Sec. 3], an estimate
of the likelihood thatNA will, in hindsight, feel comfort-
able accepting any particular offer [Sec. 4], and an estimate
of whenOPmay quit and leave the negotiation [Sec. 5.2].

2.3. Random worlds

Let G be the set of all positive ground literals that can
be constructed using the predicate, function and constant
symbols inL. A possible worldis a valuation function
v : G → {>,⊥}. V denotes the set of all possible worlds,
andVK denotes the set of possible worlds that are consis-
tent with a knowledge baseK [5].

A random world for K is a probability distribu-
tion WK = {pi} over VK = {vi}, where WK ex-
presses an agent’s degree of belief that each of the possible
worlds is the actual world. Thederived sentence proba-
bility of any σ ∈ L, with respect toa random worldWK
is:

PWK(σ) ,
∑

n

{ pn : σ is> in vn } (1)

A random worldWK is consistentwith the agent’s beliefs
B if: (∀β ∈ B)(B(β) = PWK(β)). That is, for each belief
its derived sentence probability as calculated using Eqn. 1
is equal to its given sentence probability.

Theentropyof a discrete random variableX with prob-
ability mass function{pi} is [8]:
H(X) = −

∑
n pn log pn where:pn ≥ 0 and

∑
n pn = 1.

Let W{K,B} be the “maximum entropy probability distri-
bution overVK that is consistent withB”. Given an agent
with K andB, its derived sentence probabilityfor any sen-
tence,σ ∈ L, is:

(∀σ ∈ L)P(σ) , PW{K,B}(σ) (2)

Using Eqn. 2, the derived sentence probability for any be-
lief, βi, is equal to its given sentence probability. So the term
sentence probabilityis used without ambiguity.

3. Estimating P(OPAcc(.))

NA does two different things. First, it reacts to offers re-
ceived fromOP — that is described in Sec. 4. Second, it
sends offers toOP. This section describes the estimation
of P(OPAcc(δ)) where the predicateOPAcc(δ) means “the
dealδ is acceptable toOP”.

When a negotiation commencesNA may have no infor-
mation aboutOP or about prior deals. If so then the initial

attributed to Samuel Goldwyn, movie producer, illustrates that intelli-
gent agents may choose to negotiate with uncertain utility.

offers may only be based on past experience or circumstan-
tial information.3 So the opening offers are simply taken as
given.

In the four sub-sections following,NA is attempting sell
something toOP. In Secs. 3.1 and 3.2NA’s termsτ are to
supply a particular good, andOP’s termsω are money —
in those examples the amount of moneyω is the subject of
the negotiation. In Secs. 3.3 and 3.4NA’s terms are to sup-
ply a particular good together with some negotiated war-
ranty period, andOP’s terms are money — in those exam-
ples the amount of moneyp and the period of the warranty
periodw are the subject of the negotiation.

3.1. One Issue — Without Decay

The unary predicateOPAcc(x) means “the amount of
money$x is acceptable toOP”. NA is interested in whether
the unary predicateOPAcc(x) is true for various values of
$x. NA assumes the following preference relation on the
OPAccpredicate:
κ1 : ∀x, y((x > y) → (OPAcc(x) → OPAcc(y)))
Suppose thatNA’s opening offer isω, andOP’s opening of-
fer is ω whereω < ω. ThenK now contains two further
sentences:κ2 : ¬OPAcc(ω) andκ3 : OPAcc(ω). There are
nowω − ω possible worlds, and the maximum entropy dis-
tribution is uniform.

Suppose thatNA knows its true valuation for the good,
una, and thatNA has decided to make an “expected-utility-
optimizing” offer: x = ω+una

2 . This offer is calculated on
the basis of the preference orderingκ1 and the two signals
thatNA has received fromOP. The response is in terms of
only NA’s valuationuna and the signalReject(ω) — it is in-
dependent of the signalOffer(ω) which implies thatω is ac-
ceptable.

In the standard game theoretic analysis of bargaining [9],
NAassumes thatOPhas a utility,uop, that it lies in some in-
terval[u, u], and that the expected value ofuop is uniformly
distributed on that interval. On the basis of these assump-
tionsNA then derives the expected-utility-optimizing offer:
u+una

2 . These two offers differ byu in the game-theoretic re-
sult andω in the maximum entropy result. The game theo-
retic approach relies on estimates foru andu:
E( [u, u] | Reject(ω) ∧ Accept(ω) )
If OP has a utility, and it may not, then ifOP is rational:
u ≤ ω ≤ u. The inherent inefficiency of bilateral bargain-
ing [10] shows for an economically rationalOP that uop,

3 In rather dire circumstances King Richard III of England is reported to
have initiated a negotiation with remarkably high stakes: “A horse! a
horse! my kingdom for a horse!” [William Shakespeare]. Fortunately
for Richard, a person named Catesby was nearby, and advised Richard
to retract this rash offer “Withdraw, my lord”, and so Richard’s inten-
tion to honor his commitments was not put to the test.



and so consequentlyu, may be greater thanω. There is no
reason to suspect thatu andω will be equal.

3.2. One Issue — With Decay

As in the previous example, suppose that the opening of-
fers at timet0 are taken as given and areω andω. ThenK
containsκ1, κ2 andκ3. SupposeL containsn consecutive,
integer constants in the interval[ω, ω], wheren = ω−ω+1,
that represent various amounts of money.κ1 induces a to-
tal ordering on the sentence probabilities forOPAcc(x) on
the interval[ω, ω], where the probabilities are≈ 0 atω, and
≈ 1 atω.

Suppose that at timet1 NA makes an offerωna which
is rejected byOP, who has replied at timet2 with an of-
fer of ωop whereω ≤ ωop ≤ ωna ≤ ω. At time t3 B
containsβ1 : OPAcc(ωna) and β2 : OPAcc(ωop). Sup-
pose that there is some level of integrity decay on these
two beliefs:0 < B(β1) < 0.5 < B(β2) < 1. ThenVK
containsn + 1 possible worlds ranging from “all false” to
“all true” each containingn literals. So a random world for
K will consist of n + 1 probabilities{pi}, where, say,p1

is the probability of “all true”, andpn+1 is the probabil-
ity of “all false”. P{K,B} will be the distribution that max-
imizes−

∑
n pn log pn subject to the constraints:pn ≥ 0,∑

n pn = 1,
∑ω−ωna+1

n=1 pn = B(β1) and
∑ω−ωop+1

n=1 pn =
B(β2).

The optimization of entropy,H, subject to linear con-
straints is described in Sec. 3.2.1 below.P{K,B} is:

pn =


B(β1)

ω−ωna+1 if 1 ≤ n ≤ ω − ωna + 1
B(β2)−B(β1)

ωna−ωop
if ω − ωna + 1 < n < ω − ωop + 2

1−B(β2)
ωop−ω+1 if ω − ωop + 2 ≤ n ≤ ω − ω + 2

Using Eqn. 2, forωop ≤ x ≤ ωna:

P(OPAcc(x)) = B(β1) +
ωna − x

ωna − ωop
(B(β2)−B(β1))

(3)
These probability estimates are used in Sec. 5 to calculate
NA’s next offer.

The values forP(OPAcc(x)) in the regionωop ≤ x ≤
ωna are derived from only two pieces of information that are
the two signalsReject(ωna) andOffer(ωop) each qualified
with the time at which they arrived, and the decay rate on
their integrity. The assumptions in the analysis given above
are: the choice of values forω andω — which do not ap-
pear in Eqn. 3 in any case — and the choice of the “maxi-
mally noncommittal” distribution.

If the agents continue to exchange offers then new beliefs
will be acquired and the integrity of old beliefs will decay. If
the next pair of offers lies within the interval[ωop, ωna] and
if the integrity ofβ1 andβ2 decays then the sentence prob-
abilities ofβ1 andβ2 will be inconsistent with those of the

two new beliefs due to the total ordering of sentence prob-
abilities on[ω, ω] induced byκ1. This inconsistency is re-
solved by the revision functionR that here discards incon-
sistent older beliefs,β1 andβ2, in favor of more recent be-
liefs. If the agents continue in this way then the sentence
probabilities for theOPAccpredicate are given simply by
Eqn. 3 using the most recent values forωna andωop.

The analysis given above requires that values be speci-
fied for the opening offersω andω. The only part of the
probability distribution that depends on the values chosen
for ω andω are the two “tails” of the distribution. So the
choice of values for these two opening offers is unlikely to
effect the estimates. The two tails are necessary to “soak
up” the otherwise unallocated probability.

3.2.1. Maximizing Entropy with Linear Constraints. If
X is a discrete random variable taking a finite number of
possible values{xi} with probabilities{pi} then theen-
tropy is the average uncertainty removed by discovering the
true value ofX, and is given byH = −

∑
n pn log pn.

The direct optimization ofH subject to a number,θ, of lin-
ear constraints of the form

∑
n pngk(xn) = gk for given

constantsgk, wherek = 1, . . . , θ, is a difficult problem.
Fortunately this problem has the same unique solution as
themaximum likelihood problemfor the Gibbs distribution
[13]. The solution to both problems is given by:

pn =
exp(−

∑θ
k=1 λkgk(xn))∑

m exp(−
∑θ

k=1 λkgk(xm))
(4)

for n = 1, 2, · · · , where the constants{λi} may be calcu-
lated using Eqn. 4 together with the three sets of constraints:
pn ≥ 0,

∑
n pn = 1 and

∑
n pngk(xn) = gk. The distribu-

tion in Eqn. 4 is known asGibbs distribution.
Calculating the expressions for the values of{pn} given

in the example above in Sec. 3.2 does not require the full
evaluation of the expressions in Eqn. 4. That equation shows
that there are just three different values for the{pn}. Apply-
ing simple algebra to that fact together with the constraints
yields the expressions given.

3.3. Two Issues — Without Decay

The above approach to single-issue bargaining general-
izes without modification to multi-issue bargaining, it is il-
lustrated with two issues only for ease of presentation. The
problem considered is the sale of an item with0, . . . , 4 years
of warranty. The terms being negotiated specify an amount
of moneyp and the number of years warrantyw. The pred-
icateOPAcc(w, p) now means “OP will accept the offer to
purchase the good withw years warranty for $p”.

NA assumes the following two preference order-
ings, andK contains:
κ11 : ∀x, y, z((x > y) → (OPAcc(y, z) → OPAcc(x, z)))



κ12 : ∀x, y, z((x > y) → (OPAcc(z, x) → OPAcc(z, y)))
As in Sec. 3.1, these sentences conveniently reduce
the number of possible worlds. The number of possi-
ble worlds will be finite as long asK contains two state-
ments of the form:¬OPAcc(4, a) andOPAcc(0, b) for some
a andb. Suppose thatNA’s initial offer was “4 years war-
ranty for $21” andOP’s initial offer was “no warranty for
$10”.K now contains:
κ13 : ¬OPAcc(4, 21) κ14 : OPAcc(0, 10)
These two statements, together with the restriction to in-
tegers only, limit the possible values ofw and p in
OPAcc(w, p) to a5× 10 matrix.

Suppose thatNA knows its utility function for the good
with 0,. . . ,4 years warranty and that its values are: $11.00,
$11.50, $12.00, $13.00 and $14.50 respectively. Sup-
pose thatNA uses the strategyS(n) which is described
in Sec. 5.2 — the details of that strategy are not impor-
tant now. If NA uses that strategy withn = 2, then NA
offers Offer(2, $16) which supposeOP rejects and coun-
ters with Offer(1, $11). Then with n = 2 again, NA
offers Offer(2, $14) which supposeOP rejects and coun-
ters withOffer(3, $13). P (OPAcc(w, p)) now is:

w = 0 w = 1 w = 2 w = 3 w = 4
p = 20 0.0000 0.0000 0.0000 0.0455 0.0909
p = 19 0.0000 0.0000 0.0000 0.0909 0.1818
p = 18 0.0000 0.0000 0.0000 0.1364 0.2727
p = 17 0.0000 0.0000 0.0000 0.1818 0.3636
p = 16 0.0000 0.0000 0.0000 0.2273 0.4545
p = 15 0.0000 0.0000 0.0000 0.2727 0.5454
p = 14 0.0000 0.0000 0.0000 0.3182 0.6364
p = 13 0.0455 0.0909 0.1364 1.0000 1.0000
p = 12 0.0909 0.1818 0.2727 1.0000 1.0000
p = 11 0.1364 1.0000 1.0000 1.0000 1.0000

and the expected-utility-optimizing offer is:Offer(4, $18).
If NA makes that offer then the expected surplus is $0.95.
The matrix above contains the “maximally non-committal”
values forP(OPAcc(w, p)); those values are recalculated
each time a signal arrives. The example demonstrates how
the NA is able to conduct multi-issue bargaining in a fo-
cussed way without making assumptions aboutOP’s inter-
nals, in particular, whetherOP is aware of a utility function
[12].

3.4. Two Issues — With Decay

Following from the previous section, suppose thatK
containsκ11, κ12, κ13 andκ14. The two preference order-
ingsκ11 andκ12 induce a partial ordering on the sentence
probabilities in theP(OPAcc(w, p)) array [as in Sec. 3.3]
from the top-left where the probabilities are≈ 0, to the
bottom-right where the probabilities are≈ 1. There are
fifty-one possible worlds that are consistent withK.

Suppose thatB contains:β11 : OPAcc(2, 16), β12 :
OPAcc(2, 14), β13 : OPAcc(1, 11) andβ14 : OPAcc(3, 13)
— this is the same offer sequence as considered in Sec. 3.3
— and with a 10% decay in integrity for each time step:
P(β11) = 0.4, P(β12) = 0.2, P(β13) = 0.7 andP(β14) =
0.9. Belief β11 is inconsistent withK ∪ {β12} as together
they violate the sentence probability ordering induced by
κ11 andκ12. Resolving this issue is a job for the belief re-
vision functionR which discards the older, and weaker, be-
lief β11.

Eqn. 4 is used to calculate the distributionW{K,B}
which has just five different probabilities in it. The resulting
values for the threeλ’s are:λ12 = 2.8063, λ13 = −2.0573
andλ14 = −2.5763. P (OPAcc(w, p)) now is:

w = 0 w = 1 w = 2 w = 3 w = 4
p = 20 0.0134 0.0269 0.0286 0.0570 0.0591
p = 19 0.0269 0.0537 0.0571 0.1139 0.1183
p = 18 0.0403 0.0806 0.0857 0.1709 0.1774
p = 17 0.0537 0.1074 0.1143 0.2279 0.2365
p = 16 0.0671 0.1343 0.1429 0.2849 0.2957
p = 15 0.0806 0.1611 0.1714 0.3418 0.3548
p = 14 0.0940 0.1880 0.2000 0.3988 0.4139
p = 13 0.3162 0.6324 0.6728 0.9000 0.9173
p = 12 0.3331 0.6662 0.7088 0.9381 0.9576
p = 11 0.3500 0.7000 0.7447 0.9762 0.9978

In this array, the derived sentence probabilities for the three
sentences inB are shown in bold type; they are exactly their
given values.

4. Estimating P(NAAcc(.))

The propositionNAAcc(δ) means: “δ is acceptable to
NA”. This section describes howNA attaches a conditional
probability to the proposition:P(NAAcc(δ) | It) in the light
of informationIt. The meaning of “acceptable toNA” is de-
scribed below. This is intended to putNA in the position
“looking back on it, I made the right decision at the time” —
this is a vague notion but makes sense to the author. The idea
is for NA to accept a dealδ whenP(NAAcc(δ) | It) ≥ α for
some threshold valueα that is one ofNA’s mental states.

P(NAAcc(δ) | It) is derived from conditional probabili-
ties attached to four other propositions:
P(Suited(ω) | It),
P(Good(OP ) | It),
P(Fair(δ) | It ∪ {Suited(ω), Good(OP )}) and
P(Me(δ) | It ∪ {Suited(ω), Good(OP )}).
meaning respectively: “termsω are perfectly suited to my
needs”, “OP will be a good agent for me to be doing busi-
ness with”, “δ is generally considered to be a good deal for
NA”, and “on strictly subjective grounds,δ is acceptable
to NA”. The last two of these four probabilities factor out



both the suitability ofω and the appropriateness of the op-
ponentOP. The difference between the third and fourth is
that the third captures the concept of “a good market deal”
and the fourth a strictly subjective “whatω is worth toNA”.
The “Me(.)” proposition is related to the concept of a pri-
vate valuation in game theory.

To determineP(Suited(ω) | It). If there are sufficiently
strong preference relations to establish extrema for this dis-
tribution then they may be assigned extreme values≈ 0.0
or 1.0. NA is repeatedly asked to provide probability esti-
mates for the offerω that yields the greatest reduction in
entropy for the resulting distribution [8]. This continues un-
til NAconsiders the distribution to be “satisfactory”. This is
tedious but the “preference acquisition bottleneck” appears
to be an inherently costly business [2].

To determineP(Good(OP ) | It) involves an assessment
of the reliability of OP. For some retailers (sellers), infor-
mation — of varying reliability — may be extracted from
sites that rate them. For individuals, this may be done ei-
ther through assessing their reputation established during
prior trades [14], or by the inclusion of some third-party es-
crow service that is then rated for “reliability” instead.

P(Fair(δ) | It ∪ {Suited(ω), Good(OP )}) is deter-
mined by market data. As for dealing withSuited, if the
preference relations establish extrema for this distribution
then extreme values may be assigned. Independently of this,
real market data, qualified with given sentence probabilities,
is fed into the distribution. The revision functionR identi-
fies and removes inconsistencies, and missing values are es-
timated using the maximum entropy distribution.

DeterminingP(Me(δ) | It ∪ {Suited(ω), Good(OP )})
is a subjective matter. It is specified using the same device as
used forFair except that the data is fed in by hand “until the
distribution appears satisfactory”. To start this process first
identify thoseδ that “NAwould be never accept” — they are
given a probability of≈ 0.0, and second thoseδ that “NA
would be delighted to accept” — they are given a proba-
bility of ≈ 1.0. TheMe proposition links the information-
theory approach with “private valuations” in game-theory.

There is no causal relationship between the four proba-
bility distributions as they have been defined, with the pos-
sible exception of the third and fourth. To link the proba-
bilities associated with the five propositions, the probabil-
ities are treated as epistemic probabilities and the nodes
form a simple Bayesian net. The weights on the four arcs
of the Bayesian net are a subjective representation of what
“acceptable” means toNA. The resulting net divides the
problem of estimatingP(NAAcc) into four simpler sub-
problems.

The conditionals on the Bayesian network are subjective
— they are easy to specify because twelve of them are zero
— that is, for the cases in whichNA believes that eitherMe
or Suitedis “false”. For example, if the conditionals (set by

NA) are:
P(NAAcc| Me, Suited, Good, Fair) = 1.0
P(NAAcc| Me, Suited,¬Good, Fair) = 0.1
P(NAAcc| Me, Suited, Good,¬Fair) = 0.4
P(NAAcc| Me, Suited,¬Good,¬Fair) = 0.05
then, with probabilities of 0.9 on each of the four evidence
nodes, the probabilityP(NAAcc) = 0.75. It then remains to
manage the acquisition of informationIt from the available
sources to, if necessary, increaseP(NAAcc(δ) | It) so that
δ is acceptable. The conditional probabilities on the net rep-
resent an agent’s priorities for a deal, and so they are speci-
fied for each class of deal.

The NAAccpredicate generalizes the notion of utility.
Suppose thatNA knows its utility functionU. If the con-
ditionals on the Bayesian net are as in the previous para-
graph and if eitherP(Me(.)) or P(Suited(.)) are zero then
P(NAAcc(.)) will be zero. If the conditional probabilities
on the Bayesian net are 1.0 whenMe is true and are 0.0 oth-
erwise thenP(NAAcc) = P(Me). Then define:
P(Me(τ, ω)) = 1

2 × (1 + U(ω)−U(τ)
U(ω)−U(τ) ) for U(ω) > U(τ)

and zero otherwise, whereω = maxω U(ω).4 A bargaining
thresholdα > 0.5 will then accept offers for which the sur-
plus is positive. In this wayNAAccrepresents utility-based
bargaining with a private valuation.

NAAccalso is intended to be able to represent apparently
irrational bargaining situations (eg: “I’ve justgot to have
that hat”), as well as tricky multi-issue problems such as
those typical in eProcurement. It enables an agent to bal-
ance the degree of suitability of the terms offered with the
reliability of the opponent and with the fairness of the deal.

5. Negotiation Strategies

Sec. 3 estimated the probability distribution,P(OPAcc),
thatOP will accept an offer, and Sec. 4 estimated the prob-
ability distribution,P(NAAcc), thatNA should be prepared
to accept an offer. These two probability distributions rep-
resent the opposing interests of the two agentsNA andOP.
P(OPAcc) will change every time an offer is made, rejected
or accepted.P(NAAcc) will change as the background in-
formation changes. This section discussesNA’s strategyS.
Sec. 5.2 considers the risk of breakdown.

Bargaining can be a game of bluff and counter-bluff in
which an agent may even not intend to close the deal if
one should be reached. A basic conundrum in any offer-
exchange bargaining is: it is impossible to force your oppo-
nent to reveal information about their position without re-

4 The introduction ofω may be avoided by definingP(Me(τ , ω)) ,
1

1+exp(−β×(U(ω)−U(τ))
for U(ω) ≥ U(τ) and zero otherwise,

whereβ is some constant. This is the sigmoid transfer function used in
some neural networks. This function is near-linear forU(ω) ≈ U(τ),
and is concave, or “risk averse”, outside that region. The transition be-
tween these two behaviors is determined by the choice ofβ.



vealing information about your own position. Further, by
revealing information about your own position you may
change your opponents position — and so on.5 This infinite
regress, of speculation and counter-speculation, is avoided
here by ignoring the internals of the opponent and by fo-
cussing on what is known for certain — that is:what in-
formation is contained in the signals received andwhendid
those signals arrive.

A fundamental principle of competitive bargaining is
“never reveal your best price”, and another is “never reveal
your deadline — if you have one” [15]. It is not possible
to be prescriptive about what an agentshould reveal. All
that can be achieved is to provide strategies that an agent
may choose to employ. The following are examples of such
strategies.

5.1. Without Breakdown

An agent’s strategyS is a function of the informa-
tion It that is has at timet. That information will be rep-
resented in the agent’sK andB, and will have been used
to calculate P(OPAcc) and P(NAAcc). Simple strate-
gies choose an offer only on the basis ofP(OPAcc),
P(NAAcc) and α. The greedy strategyS+ chooses
arg maxδ{P(NAAcc(δ)) | P(OPAcc(δ)) � 0}, it is ap-
propriate for an agent that believesOP is desperate to
trade. Theexpected-acceptability-to-NA-optimizing strat-
egyS∗ choosesarg maxδ{P(OPAcc(δ))×P(NAAcc(δ)) |
P(NAAcc(δ)) ≥ α}, it is appropriate for a confident agent
that is not desperate to trade. The strategyS− chooses
arg maxδ{P(OPAcc(δ)) | P(NAAcc(δ)) ≥ α}, it op-
timizes the likelihood of trade — it is a good strategy
for an agent that is keen to trade without compromis-
ing its own standards of acceptability.

An approach to issue-tradeoffs is described in [4]. The
bargaining strategy described there attempts to make an ac-
ceptable offer by “walking round” the iso-curve ofNA’s pre-
vious offer (that has, say, an acceptability ofαna ≥ α) to-
wardsOP’s subsequent counter offer. In terms of the ma-
chinery described here, an analogue is to use the strategy
S−: arg maxδ{P(OPAcc(δ)) | P(NAAcc(δ) | It) & αna }
for α = αna. This is reasonable for an agent that is attempt-
ing to be accommodating without compromising its own in-
terests. Presumably such an agent will have a policy for re-
ducing the valueαna if her deals fail to be accepted. The
complexity of the strategy in [4] is linear with the number of
issues. The strategy described here does not have that prop-
erty, but it benefits from usingP(OPAcc) that contains foot
prints of the prior offer sequence — see Sec. 3.4 — in that
distribution more recent offers have stronger weights.

5 This a reminiscent of Werner Heisenberg’s indeterminacy relation, or
unbestimmtheitsrelationen: “you can’t measure one feature of an ob-
ject without changing another” — with apologies.

5.2. With Breakdown

A negotiation may break down because one agent is not
prepared to continue for some reason.pB is the probabil-
ity that the opponent will quit the negotiation in the next
round. There are three ways in whichNA models the risk
of breakdown. First,pB is a constant determined exoge-
nously to the negotiation, in which case at any stage in a
continuing negotiation the expected number of rounds un-
til breakdown occurs is1

pB
. Second,pB is a monotonic in-

creasing function of time — this attempts to model an impa-
tient opponent. Third,pB is a monotonic increasing func-
tion of (1 − OPAcc(δ)) — this attempts to model an oppo-
nent who will react to unattractive offers.

At any stage in a negotiationNA may be prepared to
gamble on the expectation thatOP will remain in the game
for the nextn rounds. This would occur if there is a con-
stant probability of breakdownpB = 1

n . Let It denote the
information stored inNA’s K andB at time t. S is NA’s
strategy. IfNA offered to trade withOP at S(I1) thenOP
may accept this offer, but may have also been prepared to
settle for terms more favorable than this toNA. If NA of-
fered to trade atS(I1 ∪ {Accept(S(I1))}) thenOP will ei-
ther accept this offer or reject it. In the former case trade
occurs at more favorable terms thanS(I1), and in the lat-
ter case a useful piece of information has been acquired:
Reject(S(I1)) which is added toI1 before calculating the
next offer. This process can be applied twice to generate
the offerS(I1 ∪ {¬Accept(S(I1 ∪ {¬Accept(S(I1))}))}),
or any number of times, optimistically working backwards
on the assumption thatOP will remain in the game forn
rounds. The strategyS(n), whereS(1) = S∗ the expected-
acceptability-to-NA-optimizing strategy defined in Sec. 5.1.
S(n) is the strategy of working back fromS(1) (n−1) times.
At each stageS(n) will benefit also from the information in
the intervening counter offers presented byOP. The strategy
S(n) is reasonable for a risk-taking, expected-acceptability-
optimizing agent. This strategy was used to generate the of-
fer sequence in the example in Sec. 3.3.

Define the value of making an offerOffer(δ) to be:
Υ(Offer(δ)) = P(NAAcc(δ)) if δ is accepted, and zero
otherwise. Theexpected valueof making an offer is then:
E(Υ(Offer(S(It)))) =
P(OPAcc(S(It)))×P(NAAcc(S(It)))+
(1−P(OPAcc(S(It))))×(1−pB)×E(Υ(Offer(S(It+1))))
whereIt+1 = It ∪ {¬Accept(S(It))}. This is of little help
in finding the “best”S, but two approximations are interest-
ing. Either replace theS in the final term by a simple strat-
egy such asS−. Or assume thatE(Υ(Offer(S(It+1)))) =
θ ×E(Υ(Offer(S(It)))) — for someθ < 1 — then:
E(Υ(Offer(S(It)))) = P(OPAcc(S(It)))×P(NAAcc(S(It)))

1−(1−P(OPAcc(S(It))))×(1−pB)×θ

in either case the expression can be optimized numerically,
even ifpB is a function ofP(OPAcc(S(It))).



The preceding considers the possibility ofOP quitting.
NA may choose to quit and cause the negotiation to break
down if the negotiation appears to be leading nowhere.
One measure of convergence is to monitor the sequence:
maxδ(P(OPAcc(δ)) | P(NAAcc(δ)) ≥ α) — ie: the great-
est likelihood of acceptable trade. If this sequence is not
increasing in time to a “reasonable” value thenNA may
choose to quit.

6. Conclusions

The negotiating agent achieves its goal of reaching in-
formed decisions whilst making no assumptions about the
internals of its opponent. Ms Minghui Li, a PhD student,
has implemented it in Java. It incorporates a modified ver-
sion of tuProlog that handles the Horn clause logic includ-
ing the belief revision and the identification of those ran-
dom worlds that are consistent withK. Existing text and
data mining bots have been used to feed information intoNA
in experiments including a negotiation between two agents
in an attempt to swap a mobile phone for a digital camera
with no cash involved.

NAhas five ways of leading a negotiation towards a posi-
tive outcome. First, by making more attractive offers toOP.
Second, by reducing its thresholdα. Third, by acquiring in-
formation to hopefully increase the acceptability of offers
received. Fourth, by encouragingOP to submit more at-
tractive offers. Fifth, by encouragingOP to acceptNA’s of-
fers. The first two of these have been described. The third
has been implemented but is not described here. The re-
maining two are the realm of argumentation-based negoti-
ation which is the next step in this project. The integrated
way in whichNA manages both the negotiation and the in-
formation acquisition should provide a sound basis for an
argumentation-based negotiator.

[5] discusses problems with the random-worlds ap-
proach, and notes particularly representation and learning.
Representation is particularly significant here — for exam-
ple, the logical constants in the price domains could have
been given other values, and, as long as they remained or-
dered, and as long as the input values remained unchanged,
the probability distributions would be unaltered. Learn-
ing is not an issue now as the distributions are kept as sim-
ple as possible and are re-computed each time step. The
assumptions of maximum entropy probabilistic logic ex-
ploit the agent’s limited rationality by attempting to assume
“precisely no more than is known”. But, the computa-
tions involved will be substantial if the domains in the
languageL are large, and will be infeasible if the do-
mains are unbounded. If the domains are large then
preference relations such asκ1 can simplify the computa-
tions substantially.

Much has not been described here including: the data and
text mining software, the use of the Bayesian net to prompt a
search for information that may lead toNAraising — or per-
haps lowering — its acceptability threshold, and the way in
which the incoming information is structured to enable its
orderly acquisition [3].

The following issues are presently being investigated.
The random worlds computations are performed each time
the knowledge,K, or beliefs,B, alter — there is scope for
using approximate updating techniques interspersed with
the exact calculations. The offer accepting machinery op-
erates independently from the offer making machinery —
but not vice versa — this may mean that better deals could
have been struck under some circumstances.
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