
Proceedings ofQua1IT2004: International Conference on Qualitative Research in IT & IT in Qualitative Research:
24-26 November 2004, Brisbane, Australia. Hosted by the Institute for Integrated and Intelligent Systems, Griffith University.
Copyright the authors and QualIT Keywords: System architecture, Architecture-based Analysis, Evaluation Techniques, Soft Systems Theory, Social Issues.

The case for understanding social complexity in the architecture-based analysis process

David Colquitt!
John Leaney'
Tim O'Neill!

!Faculty of Engineering
2Faculty ofInformation Technology
University of Technology Sydney

Sydney, New South Wales
Email: david.colquitt@uts.edu.au

Abstract
Systems architecture is a discipline that seeks to model the abstract form of a system and reason about the qualities of
the end system artefact with respect to the design representation. The analysis need has driven the development of
several architecture-based evaluation techniques, which have evolved over the past decade from expert-centric, to
stakeholder-centric analysis. The resulting group of participants can be considered, as they are in the broader design
process, a human activity system, granting architecture-based analysis many of the attributes of a social or 'soft'
process, The following paper examines the development of architecture-based evaluation techniques in light of soft
systems theory and makes the case for the existence of, and need to understand, social complexity within the analysis
process.

INTRODUCTION
The intersection of the technically oriented domain of Information Technology (IT) and its organisational counterpart
Information Systems (IS) has broadened the way in which we think about systems and importantly how we approach
their development. Systems design lies firmly at the intersection of the IS and IT perspectives where the desire to
express the true complexity of the system and its organisational context has to be balanced against the need for a
prescriptive statement of requirements from which a technological solution can be derived (Checkland & Holwell,
1998),

The need to understand and balance the antagonistic forces of IT and IS is evident in the commonplace modelling of
information systems, several layers of abstraction from the technological system itself (Zachman, 1984) as well as the
more inclusive attitudes towards the design stakeholder group (Bucciarelli, 2002), However broader participation and
modelling alone is insufficient in representing the IS perspective when the premise upon which the system is modelled
originates from a 'hard' systems perspective. Checkland refutes the notion that organisations are simply goal seeking
entities utilising information systems in support of decision making, targeted at achieving those goals (Checkland &
Holwell, 1998), His soft systems methodology (SSM) promotes the way in which IS models are derived and interpreted
as being key to handling the true complexity of systems,

With the organisational context and business goals providing the basic drivers to which all system requirements should
be traceable (van Lamsweerde, 2001), the evolved IS perspective clearly holds consequence for any technique seeking
to reconcile system capability against the business context giving rise to it, as is the case for architecture-based
evaluation,

Arising within the IT discipline, architecture-based evaluation has focused on the need for methods that deal with the
technical issues of system development at the expense of more ill-structure problem elements. As is the case for the
broader design discipline (Bucciarelli, 2002), research within this field has been instrumental in nature, oriented
towards declaring and applying method extensions, By acknowledging the case for social complexity as an issue within
architecture-based evaluation we seek to the lay the platform for and legitimate a qualitative approach to researching
the application of architecture-based evaluation and how this can be used to improve the efficacy of the method. The
following paper discusses the influences that have led to the shift towards systems architecture as a viable approach to
complex systems problems and how this has subsequently imposed upon the way systems architecture analysis is
conducted. It then discusses the consequences of these changes with respect to soft-systems thinking and proposes
techniques to deal with the additional dimensions of complexity,

Page I of II

mailto:david.colquitt@uts.edu.au


DESIGN AND SYSTEMS ARCHITECTURE

The necessity of early stage design reasoning

A natural part of the design process is the making of decisions, both consciously through deliberate design choices and
implicitly through commitment to the decision and acceptance of its consequences (Schon, 1991). The consequences
alluded to by Schon have many dimensions, two of which are the new issues raised in realising the decision and the
pruning of previous options from the theoretical "decision tree", referred to by Simon as a hierarchy of interdependent
sub-solutions (Simon 1992 in (Joseph, 1996» . The notion of deepening commitment is further supported by some fairly
cogent arguments about the cost of late correction of requirements errors within a partially or fully developed system,
when compared with the cost of early correction within the requirements engineering process (Boehm, 1981).

A logical inference from these observations is the further along the system design and development path, the more
committed you are to the solution and the more costly it becomes to change earlier design decisions (Abowd et aI.,
1997). The flow on effect of design decisions influencing each other and subsequently affecting the set of possible
solutions, coupled with the cost of "late" changes, raises the profile of the earliest design decisions as being critical to
the efficacy of the end solution. The situation is analogous to the built environment where the underlying structure
(architecture) contributes most significantly to the properties of the end-product (construction). The relationship
between the two fields has led to the popularisation of the term software architecture (Rikard Land, 2002) and in the
spirit of 'no software is an island', systems architecture.

The case for architecture

Systems architecture is intended to facilitate designers being able to reason about the structure of a system in an
abstract form, free from the constraints of implementation detail. Far from being the single amorphous collection of
shapes and lines, depicting a solitary aspect of the system (typically function), so commonly found in papers today,
architecture is a very rich concept. A key Neo-Platonic tenet of architecture is that systems are represented by
collections of views. Each view representing a certain aspect of the system, for example a functional view to depict key
system functions and data flow at varying layers of abstraction (Kazman & Bass, 2002); a process view for
synchronisation and concurrency (Kruchten, 1995) and a physical view for showing the mapping of software onto
hardware (Bass et aI., 1998; Kruchten, 1995). Naturally there are as many "views" of a system as there are logical ways
of partitioning and reasoning about a system. Views are represented by one or more models in adherence to the logical
separation of the perspective and the representation (IEEE, 2000). In tum models are comprised of components and
connections, each with specific properties allowing designers to reason about the 3 key dimensions of a system; data,
function and behaviour (Budgen, 1994).

The generic building blocks for creating architectural representations provide a powerful and flexible way for reasoning
about systems in general. Significantly it has been highly influential in furthering knowledge about non-functional
aspects of systems design. Early development methods for computer-based systems were dominated by the need to
capture, describe, grant, allocate and verify function. However it soon became apparent whilst function was important it
was generally the non-functional (quality) aspects of systems that caused them to be perceived as failures (Bass et aI.,
1998). In a world where computer-based systems are pervading most aspects of society and growing increasingly more
complex in the process, issues of performance, reliability, availability, maintainability, security, etc, have become of
equal if not more importance than function.

Early work by Pamas (Pamas, 1972) showing the application of information hiding principles in system decomposition
to grant greater flexibility and Stevens, Myers and Constantine's (Stevens et aI., 1974) work with coupling and
cohesion laid the groundwork for the creation and use of predictive measures of software quality (Kazman et aI., 1994).
Attention has since turned from predictive measures and quality metrics towards ready-made design solutions in the
form of architectural styles and design patterns.

"An architectural style is a description of the component types and a pattern of their run-time control and/or data
transfer. A style can be thought of as a set of constraints on an architecture - constraints on component types and their
interactions -and these constraints define a set or family of architectures that satisfy them" (Bass et aI., 1998)

The Software Engineering Institute (SEI) at Carnegie-Mellon University (CMU) championed the cause of architecture
styles through the work of Mary Shaw and David Garlan. In observing the abstract form of software systems, they
made the observation that coarse grained patterns of interaction tended to repeat themselves throughout different
systems, as did component types and their generic functions. The importance of these styles to the broader software
architecture and design communities was the fact these styles were commonly aimed at providing for some desired
system quality, such as performance, robustness, etc. This provided a crucial causal link between the essential structure
of a system and the quality attribute goals.

In further developing the notion of "styles" to more concrete instantiations within software, the notion of design
patterns were presented. Design patterns (Gamma et aI., 1995) are prescribed configurations of objects in response to a
problem context, with the aim of granting specified functional and non-functional properties. The importance of design
patterns to the budding system architecture community was the causal relationship between the structure of the objects
and the resulting quality goals.

Page 2 of 11



Similar to architectural styles, design patterns present configurations of components with specific properties as being
capable of satisfying quality design goals. However dissimilar to design patterns, architectural styles are perhaps the
earliest design decisions made, dealing with the abstract arrangement of components and connections, rather than the
more concrete notions of software objects.

The knowledge that now exists about quality attributes, how they can be identified, measured and realised, has posited
a highly significant relationship between the goals of a system, be they functional or non-functional and the early
design structure of the system. Importantly it promotes the capability to design for performance, for maintainability or
for security through architecture-based decisions.

Inherent in the need to design for particular qualities is the need to test for them. As witnessed by the testing phases of
traditional software engineering approaches (Boehm, 1988; Pressman, 1996) and the various validation stages within
the systems engineering approaches (IEEE, 1999; ISOIlEC, 2002), all processes that seek to guide the development of
systems need to incorporate rigorous elements to ensure the intended outcomes. Without the ability to evaluate
architecture-based design decisions against the quality attributes, architecture offers little benefit over existing methods
of engineering as shortcomings in the design will remain undiscovered until the later stages of implementation,
incurring the same costly penalties alluded to by Boehm.

ARCHITECTURE-BASED EVALUAnON
The main purpose of existing architecture-based analysis techniques is to assess the extent to which quality concerns
have been addressed in the system architecture and the risk associated with the design (Dobrica & Niemela, 2002). In
terms of architecture-evaluation, risks are identified as important architecture decisions which haven't yet been made
and hold significant consequence for a particular design goal (Kazman et aI., 2000).

In a report on "Recommended Best Industrial Practice for Software Architecture Evaluation" Abowd identified two
main types of approach to architecture analysis, questioning and measuring (Abowd et aI., 1997). Questioning
techniques incorporated the use of scenarios, checklists and questionnaires, whereas measuring techniques incorporated
the use of modelling and simulation as well as metrics. In general the report remarked that measuring techniques were
good for exploring specific issues such as performance, but were limited in their generality and suffered from higher
resource needs for activities such as prototype development. Conversely questioning techniques offered less rigorous
investigation of issues (Kazman et aI., 1999) but are capable of being applied to explore multiple quality attributes
without the need for development of complex models or simulations. Although the report did not commit to any
specific technique as ideal it favoured the use of scenarios, an attitude that has persisted through all of the subsequent
SEI analysis initiatives and most of the other existing techniques with only formal code metrics being integrated into
the SAABNet analysis framework.

Existing analysis methods

Architecture-based analysis techniques clearly have an important part to play if architecture-based design principles are
to reach critical mass, however its significance has not been reflected in terms of interest within the research or
commercial community. The lack of attention was noted by Kazman back in 1994 (Kazman et aI., 1994) and recent
surveys suggest that not a great deal of exposure has been gained since and architecture evaluation still persists only in
research circles (Dobrica & Niemela, 2002). Further to this, of the literature reviewed only permutations of 2 of the 6
methods discovered have been reviewed or reported in case-study developments, those of ATAM and its predecessor
SAAM (Dobrica & Niemela, 2002; Rikard Land, 2002; R. Land, 2002; Lopez, 2003).

Page 30f1I



tMethod Name
""",t'

:"i;~' :::: i ,iiin First ~"" "d',t,::,t,t

Quality Function Deployment (QFD) (Hauser & Clausing, 1988) 1988

Rank Matrix Analysis (RMA) (Hitchins, 1992) 1992

Software Architecture Analysis Method (SAAM) (Kazman et aI., 1994) 1994

Quantified Design Space (ODS) (Shaw & Garlan, 1996) 1996

Architecture Oualitv Assessment (AOA) (Hilliard et aI., 1996) 1996

Architecture Trade-off Analysis Method (ATAM) (Kazman et aI., 1999) 1999

Architecture-Level Modifiability Analysis (ALMA) (Benztsson et aI., 2000) 2000

Software Architecture Assessment using Bayesian Networks (SAABNet) (van Gurp, 2000
2000)

Software Architecture Requirements Assessment (SARA) (Obbink et aI., 2002) 2002

Table 1 - Existing Published Architecture-based Evaluation Techniques

From evaluation to analysis

The chronology and orientation of the analysis methods presented in Table I above, shows two distinct periods in
which architecture analysis methods were actively researched and proposed. The first period (1988 - 1996) was marked
by the development of QFD, RMA, SAAM, QDS and AQA, when notably all the methods were "questioning" in
nature and incorporated the use of numeric values and weightings. The use the matrix-based evaluation frameworks in
the earliest methods of RMA and QFD appear to have had a significant influence on the subsequent methods of SAAM,
QDS and AQA. These methods were very much evaluation oriented in that they provided input requirements and
design configurations as unquestionable statements of system purpose and structure, and then sought to score and select
specific design approaches that best suited the requirements. Apart from the apparent difficulties in reliably scoring
system designs (Hitchins, 1992) there was also a lack of emphasis on understanding the interdependencies within sub-
systems, design approaches and quality attributes as opposed to just the relation between them. Ultimately these
methods provided a way of selecting design approaches but allowed no further learning as to how to improve the end
solution, in order to account for any inconsistencies encountered during evaluation. They addressed few of the concerns
raised in the opening paragraphs about needing to understand and reason about the earliest design decisions in order to
prevent costly changes late in the system life-cycle (Houkes, 2002). They were effective selection tools but not
effective design learning tools.

Consequently the second epoch of architecture evaluation (1999-2002) witnessed a shift in both technique method and
purpose with the publication of ATAM. While paying homage to its predecessor SAAM for the scenario-based
evaluation modus operandi, ATAM distanced itself from the numeric assignment of values to capability by declaring a
focus on architectural risk. ATAM worked from the understanding that the perfect system was unattainable and in
reality designing was the act of managing the trade-offs between conflicting quality requirements in a way that allowed
the stakeholder to achieve their business goals. Instead of simply selecting amongst candidate design options ATAM
promoted the development of customer goals, the association of these goals to the system quality drivers, the
documentation of design strategies to fulfil these drivers and the identification of points in the architecture where
multiple quality attribute concerns intersected. By identifying aspects of the design that required greater care when
designing and fostering further understanding of both the requirements and design approach, methods like ATAM and
SARA have evolved to fulfil not just an evaluation, but an effective analysis role.

From expert-centric to stakeholder centric, expanding the stakeholder group

The progression of architecture-based analysis techniques towards fulfilling a design analysis role has been
accompanied by the widening of process scope from involving a few technical experts to taking on a broader role of
uniting the stakeholder community, in accordance with the "democratisation of the design process" (Joseph, 1996). A
stakeholder community that inevitably grows in reaction to realisations about the implications of the business and its
people upon the systems they use, a diverse group described esoterically as a "design collective".

"My concept of design process is thus broad, broader than most would frame it, for those I take as members of a design
collective are a varied lot. Participants may come from management, marketing as well as the structures group, the
software department, or the electronics division even customers Any individual who has a legitimate say in the
process, whose words, proposals, claims and supplications matter and contribute to the final form of the product I
consider a participant" (Bucciarelli, 2002)

Increasing social dimension of Architecture-based analysis

Similarly the role of architects is continually being revised and expanded in light of their need to balance the individual
interests of the ever expanding design collective. The consideration of non-functional properties includes the more

Page 4 of 11



traditional design considerations such as performance and availability but also opens the door on any number of
imaginable attributes such as cost, time, usability, and safety, which naturally can all be reasoned about with relation to
the structure of the system.

"When Brunei and Robert Stephenson were building railways in the late 1830s and 1840s, they were expected to
involve themselves with raising capital, appearing before Parliamentary Committee, conciliating influential
people Why should we be surprised if Software Engineers may need to draw on expertise in mathematics,
financial analysis, business, production, quality control, sociology and law, as well as in each application area they deal
with" (Jackson, 1995)

Jackson's software engineer as bricoleur is highly telling of the need to balance more than purely technical issues in
engineering an effective system. Similarly when trying to evaluate what is, an effective system there needs to be
adequate consideration of such concerns. ATAM and SARA, widely viewed as the industry best practice methods
(Obbink et aI., 2002) both strive to involve all key stakeholder groups, acknowledging the contribution of stakeholders
to the realisation of an effective design and importantly achieving greater levels of "buy-in" from the group. In doing so
these methods also bring upon themselves concerns associated with managing "the non-technical aspects of running an
architecture review" (Kazman & Bass, 2002)".

The extent to which these concerns are understood and handled in the context of architecture-based analysis are
conspicuous by their absence with only recent acknowledgement from Kazman, "as architecture reviewers, we
continually run into social, psychological, and managerial issues and must be prepared to deal with them." (Kazman &
Bass, 2002). He suggests resolution to these issues should occur through successful facilitation and process
management, echoing several points from their literature about needing to negotiate your way into an organisation and
effectively set expectations (Clements et aI., 2002). Several pragmatic facilitation skills are also put forward as being
integral for conducting a successful evaluation. Amongst these are the needs to "control the crowd, involve the key
stakeholders, engage all participants, maintain authority, control the pace, and get concurrence and feedback".

While these behavioural aspects of group dynamics are important to the effective functioning of the group, they are
insufficient in themselves to compensate for the effects of human factors within a process. Importantly they don't
appear to explore the dimensions of complexity which arise when the social and psychological perspectives are taken
into account

SHOULD ARCHITECTURE-BASED ANALYSIS BE PERCEIVED AS A 'SOFT'
PROCESS?

Another perspective on social complexity

Design theoretic and methodological research offers another dimension to the characteristics of social processes,
presenting the view that "we see reality through the mental filter of our 'ideas' or conceptions. If we accept this
commonplace observation it is hard to see how one could ever talk about reality except through the very same filter."
(Galle, 1999). Here Galle touches on a significant topic associated with human perspective and understanding, which
has a well respected lineage in the form of 'Weltanshauungen' (Checkland & Holwell, 1998; Hitchins, 1992), 'holons'
(Checkland & Holwell, 1998), 'psychological and metaphysical complexity' (Flood, 1988) and 'object worlds'
(Bucciarelli, 1994).

In organisational development terms, the social system created by the collection of individuals needs to be considered
as a soft system. Sir Geoffrey Vickers fostered the softening of hard systems thinking towards group dynamics. The
previous view of organisations was that the group had a common goal and understanding and were working to achieve
that goal through decisions. Soft systems thinking introduced the notions raised above about individual motivations,
experience and views of the situation that needed to be both understood in context of their peer's world views and
accommodated for in decisions (Checkland & Holwell, 1998). While it is reasonably logical to argue that architecture
analysis does not possess an entirely congruent set of traits to that of an organisation it cannot escape the characteristics
of being seen as a social process, akin to a "messy" human activity system (HAS) (Hitchins, 1992; Jagodzinski et aI.,
2000). The elements of hierarchy, different domains of concern, different historical perspectives and experience,
different intentions (Galle, 1999), different perceptions of the situation (Janes, 1988), social disharmony, etc are all
prevalent to the architecture analysis process, as much as they are the design process at large.

Compounding Factors

The nature of the artefact is not consistent with the nature of the task

When dealing with technology the temptation is to treat the process in the same light as the product. In Boulding's
classification of systems, structures are "classified as physical or mechanical systems, i.e. hard, and are in the province
of the physical sciences" (Hitchins, 1992). However the journey from concept (design need) to design artefact
(communicative medium) (Bucciarelli, 2002) to system or structure does not resemble the characteristics of the end
product at all. In terms of design, all that exists are representations of concepts of the system, which are in tum
interpreted by the stakeholders (Galle, 1999). The use of design representations as a means of communication places
the process at the 'social' end of Boulding's classification.

Page 5 of 11



Specifying purely facilitator behavioural traits as the mechanism for managing social complexity within a process is
noticeably dismissive of any need to adapt the process itself. The objectivity (Hilliard et aI., 1996) and replicability
(Kazman et aI., 1994) that were the ideals of earlier analysis methods appear not to have changed. The same theoretical
perspective that informed earlier beliefs about architecture-based analysis is still thought to hold even in the face of
"psychological complexity" and the theoretical arguments about the nature of design (Galle, 1999).

Reasoning for such a perspective lies in the fact architecture has emerged amidst traditional 'hard' systems thinking
processes (Jackson, 1988) where requirements of function are discovered and refined to exact system designs that
perform the required functions. Function is a reasonably tangible way of measuring the conformance of a concrete
system to requirements, either the function is performed or it's not. Architecture on the other hand deals with the
abstract form of the system and similarly attempts to reconcile quality requirements in addition to functional
requirements, which in many instances are themselves hard to produce metrics for and hence reason about in the
context of a system structure.

In disciplines where the process is well bounded by normative rules and understanding such that measures, functions to
manipulate those measures and refutable ways of utilising the outcomes, are all explicitly defined, there is perhaps a
diffused impact of social complexity. Although there have been some attempts at relating structural measures to quality
attributes (van Gurp, 2000), accompanied by the declaration of several design heuristics such as Attribute-Based
Architecture Styles (ABAS)s (Klein & Kazman, 1999), it can be said that few irrefutable or un-situated truths currently
exist in the architecture-based analysis world.

The nature of requirements

Figure I and Figure 2 depict architecture-oriented design life-cycles, in which architecture-based analysis is shown as
being informed by a comprehensive requirements engineering exercise, however it is a fairly well respected belief
within the software engineering community that requirements engineering exercises are fraught with uncertainty.

" .. .it is really impossible for a client, even working with a software engineer, to specify completely, precisely, and
correctly the exact requirements of a modem software product before trying some versions of the product" (Brooks,
1987)

Adding to the requirements problem is the fact that quality attributes are a more recent concern in systems design and
are commonly represented and reasoned about in a vague manner.

"In a perfect world, the quality requirements for a system would be completely and unambiguously specified in a
requirements document In reality, requirements documents are not written, or are written poorly, or do not
properly address quality attributes." (Kazman et aI., 2000)

Page 6 of 11



DOES SOCIAL COMPLEXITY NEED ADDRESSING IN ARCHITECTURE-BASED
ANALYSIS?
As is the case with Schon's architects of the built environment and their sketches, systems architecture deals in
the realm of virtual worlds.

"The situations of Quist and the Supervisor are, in important ways, not the real thing. Quist is not moving dirt on
the site. The Supervisor is not talking to the patient. Each is operating in a virtual world, a constructed
representation of the real world of practice" (Schon, 1991)

Similarly in architecture-based analysis, the architecture presented to the stakeholders is a partial representation
of the system, from which they are left with the task of mentally constructing the system, its goals and
importantly their intent for it. These world views both unite stakeholders in some aspects and divide them in
others, for the view that they share the same object worlds has already been rejected (Bucciarelli, 2002). Davies
suggests that the metaphysical complexity introduced in situations such as examining complex virtual systems is
dealt with in human terms by "human sense-making" simplifying the world by selecting from it "that which it
takes to be important aspects of that world" (Davies, 1988).

"This is the selection of relevance from the world via an assimilation and accommodation process" [Piaget 1952
in (Davies, 1988)].

Soft systems methodology maintains that this accommodation needs to be reached in a group sense, through a
common understanding of the system at hand and an appreciative understanding of the individual world views
of the stakeholder group (WeItanschauungs) (Checkland & Holwell, 1998). Only when accommodations are
made and a sort of group understanding formed, can the ideal system be reasoned about. Without this common
understanding the individual contributions can conceptually swamp the process, imposing their view upon the
situation and adding to the situational complexity rather than seeking to resolve it (Davies, 1988). Analogies can
be drawn in the world of waves where harmonic waves interfere constructively and disharmony causes them to
destructively interfere.

Practical evidence of the need to build analysis from a common understanding of the system is found within
Bass' text on software architecture principles, where accounts of a design review and an architecture-based
analysis review showed constructive argumentation. Initial questioning by one observer sparked the input from
another, who offered further insight into an account of the repercussions of a design decision (Bass et aI., 1998).
Significantly for the evaluation process is discovery of the design problems from unstructured questioning of the
architect in both cases. In one case the scenario was the springboard for the questioning however it was the
interrogation-style perusal of the matter by a stubborn stakeholder that actually uncovered the problem.

Bass suggests that the stakeholders have a "limited" role of "helping craft the statement of goals for the
architecture and then helping articulate scenarios" (Bass et a!., 1998), perhaps by way of mitigation for any
problems experienced by involving the stakeholder community. However the way in which the stakeholders
view the system, their intended uses for it and their overall goals for the system are the critical benchmarks that
drive the analysis methods. Understanding these factors with respect to the stakeholder group is imperative to
the success of the analysis process, something which appears to be jeopardised by the existing lack of
consideration for managing social complexity within the architecture-based analysis process.

Being the medium through which the stakeholders communicate, architectural representation is a logical nexus
of viewpoints and concerns for the design process. Architecture evaluation acts as a key integrating component
serving to both explore the problem space further by expounding the undeclared goals of the customer as well as
provide guidance for the architects in attempting to realise a satisfactory solution.

As we recall the earlier discussion of Jackson's software engineer as bricoleur and the social behaviour
guidelines for the ATAM it becomes evident that systems architecture has placed the responsibility for
managing social complexity on the rather crowded shoulders of the architect, or in the case of architecture
analysis, the facilitator/s. In many ways augmenting the importance of facilitation can be highly counter-
productive to the process of building understanding. The SEI have noted the apparent "mismatch" that occurs in
the communication chain of architecture-based analysis.

"even though the review team is frequently the focus of the conversation and the source of many of the probing
questions. The review's outputs are really for the stakeholders-the review team members are just there to act as
catalysts, experts, and facilitators. Because of this mismatch between the producers and consumers of the
information and the way that the information is elicited (through the facilitation of the review team), extra care
must be paid to ensure that all stakeholders concur ... " (Kazman et a!., 2000)

The review is essentially charged with juxtaposing the problem owner's position with that of the solution
strategist, to ensure that they align. Architecture is the means through which they communicate and negotiate
understanding of each other's object worlds, a negotiation that Bucciarelli argues needs to take place within a

Page 7 of 11



social framework (Bucciarelli 84 in (Sargent, 1994)). The concentration on representation in "architectural"
terms and the focus of the communication on the facilitator has sought to conform a social situation with a
highly rigid process, instead of a social framework.

HOW CAN SOCIAL COMPLEXITY BE MANAGED WITHIN ARCHITECTURE-
BASED ANALYSIS?
In looking to control the social complexity associated with architecture-based analysis, research should focus on
two main principals, born of the need to firstly construct the participants view of the system in a way that
integrates all of the stakeholder viewpoints and secondly the need to balance the conflicting aspects of these
viewpoints.

Within the context of 'social organisational' thinking a key concept to reasoning about the social complexity of
group processes is the use of what can be termed methods of 'shared reality construction' (Truex et aI., 1999).
Which explores the notion that even constructed beliefs can be termed the existent reality, in the event that is
agreed upon by the group. A concept reasonably sympathetic to the view that the system is tested against the
norms of what the group wants it to be, not against some loftier notion of what a "good" system is. Therefore the
essential task becomes converging the group viewpoint towards a common understanding of the goals,
requirements and system they are meant to evaluating. Methods like interpretive structural modelling (ISM) help
to represent complex, linked ideas in a form that is both palatable and understandable to the participants (Janes,
1988; Kanungo & Bhatnagar, 2002). Goal-based requirements (van Lamsweerde, 2001) can be considered a
specialisation ofISM, where the semantic linkage between the conceptual nodes is one of "is achieved by", in a
refinement context. As well as providing operational context to requirements, goals have the added advantage of
offering a dimension of rigour to scenario elicitation. Other techniques such as building a common language and
semantic are also highly important to the process of converging group understanding towards an integrated
group perspective.

Modelling complex situations is a common goal in many disciplines, however very few of them handle the
notion of plurality in an explicit manner. Soft Systems Methodology is one such process that has within its
methodology a distinct aim of creating a common view of the system being examined through rich pictures, as
well as aims to understand and reconcile diverse viewpoints through root defmitions and balance these
viewpoints within a single representation, conceptual modelling. Integral to coping with the social complexity,
and pivotal to SSM is the need to accommodate disparate and often opposing stakeholder views. Progress and
meaningful action in SSM are generated through accommodations, which essentially represent outcomes which
are considered fairly balanced with respect to the polarity of group opinion.

CONCLUSION
The encouraging progression of architecture-based analysis from an expert-centric, evaluation focus to a
stakeholder-centric, analysis focus has improved its utility in complex problem situations. Consequently it has
unknowingly introduced several new dimensions to the complexity of the task itself, which are likely to impact
directly upon its efficacy, by way of affecting the way in which the stakeholders view the system, their intended
uses for it and their overall goals for the system.

By modelling different information elements in an esoteric fashion, peculiar to the responsible stakeholder sub-
group and by assuming a common understanding of the system, its purpose and the most important elements
thereof, architecture-based analysis doesn't seek to resolve the social complexity inherent in a diverse
stakeholder gathering. Further to this, the seeming "mismatch" in communications and strength of facilitation,
which has been suggested as a way of handling non-technical issues, have the capacity to further conceptually
isolate the assembled stakeholders from each other.

Our research has established a compelling case for the existence of what has been termed 'social complexity', in
architecture-based analysis. It has also discussed some appropriate methods of handling this facet of complexity
through incorporating plurality into information gathering and representation, as well as utilising methods to
balance opposing and potentially irreconcilable views. Future research will focus on applying these methods in a
complex systems project, driven by an appropriate methodology capable of providing deep understanding of a
practical learning situation. In this instance, action research will be utilised because of its capability to grant
insight into situations where the issues are born of constructed knowledge in an essentially social context. The
need to achieve meaningful change to the process in order to progress the project, the need for the researchers to
act on the project itself in an instrumental capacity and the inherent need for iteration in complex systems
projects encourages the application of Action Research, of which iteration, participation and reflection form
important constituent phases.

Page 8 of 11



REFERENCES
Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., & Zaremski, A. (1997) Recommended Best

Industrial Practice for Software Architecture Evaluation (CMU/SEI-96-TR-025). Pittsburgh,
Pennsylvania: Sofware Engineering Institute (SEI), Carnegie-Mellon University (CMU).

Bachmann, F., Bass, L., Chastek, G., Donohoe, P., & Peruzzi, F. (2000) The Architecture Based Design Method
(CMU/SEI-2000-TR-001). Pittsburgh: Software Engineering Institute.

Bass, L., Clements, P., & Kazman, R. (1998) Software architecture in practice (1st ed.). Boston: Addison-
Wesley.

Bengtsson, P., Lassing, N., Bosch, 1., & Vliet, H. V. (2000) Analyzing software architectures for modifiability
(HK-R-RES-00/11-SE). Hogskolan: Karlskrona/Ronneby.

Boehm, B. W. (1981) Software engineering economics. Englewood Cliffs, N.J.: Prentice-Hall.

Boehm, B. W. (1988) A spiral model of software development and enhancement. Computer, 21(0018-9162), 61-
72.

Bosch, J. (2003) Software Architecture - Engineering Quality Attributes. Systems and Software, 66, 183-186.

Brooks, F. P. (1987) No Silver Bullet: Essence and Accidents of Software Engineering. Computer, IEEE, 20(4),
10-19.

Bucciarelli, L. (1994) Designing Engineers. Mass: MIT Press.

Bucciarelli, L. L. (2002) Between thought and object in engineering design. Design Studies, 23,219-231.

Budgen, D. (1994) Software design. Wokingham, England; Reading, Mass.: Addison-Wesley Pub. Co.

Checkland, P., & Holwell, S. (1998) Information, systems, and information systems: making sense of the field.
Chichester; New York: Wiley.

Clements, P., Kazman, R., & Klein, M. (2002) Evaluating software architectures: methods and case studies.
Boston: Addison-Wesley.

Davies, L. J. (1988) How SSM deals with complexity. Transactions on Instrumentation Measurement and
Control, 10(3), 130-138.

Dobrica, L., & Niemela, E. (2002) A survey on software architecture analysis methods. Software Engineering,
IEEE Transactions on, 28(7), 638-653.

Flood, R. L. (1988) Situational complexity, systems modelling and methodology. Transactions on
Instrumentation Measurement and Control, 10(3), 122-129.

Galle, P. (1999) Design as an intentional action: a conceptual analysis. Design Studies, 20, 57-81.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995) Design patterns: elements of reusable object-oriented
software. Reading, Mass.: Addison-Wesley.

Hauser, J. R., & Clausing, D. (1988) The house of quality. Harvard Business Review, 66(3),63-73.

Hilliard, R., Kurland, M., Litvintchouk, S., Rice, T., & Schwarm, S. (1996) Architecture Quality Assessment,
version 2.0: MITRE.

Hitchins, D. K. (1992) Putting systems to work. Chichester; New York: Wiley.

Houkes, W. (2002) Design and use as plans: an action-theoretical account. Design Studies, 23, 303-320.

IEEE. (1999) IEEE standard for application and management of the systems engineering process, IEEE Std
1220-1998.

IEEE. (2000) IEEE Recommended practice for architectural description of software-intensive systems, IEEE Std
1471-2000 (pp. i-23).

ISOIIEC. (2002) Systems Engineering - System life cycle processes, ISO/IEC 15288:2002. http://www.jtcl-
sc7.org/: International Organization for Standardization.

Jackson, M. C. (1988) Systems methodologies as complementary tools for managing situational complexity.
Transactions on Instrumentation Measurement and Control, 10(3), 155-160.

Jackson, M. J. (1995) Software requirements & specifications: a lexicon of practice, principles, and prejudices.
New York

Wokingham, England; Reading, Mass.: ACM Press;

Addison-Wesley Pub. Co.

Page 9 of 11



Jagodzinski, P., Reid, F. J. M., Culverhouse, P., Parsons, R., & Phillips, 1. (2000) A Study of electronics
engineering design teams. Design Studies, 21,375-402.

Janes, F. R. (1988) interpretive structural modelling: a methodology for structuring complex issues.
Transactions on Instrumentation Measurement and Control, 10(3), 145- 154.

Joseph, S. (1996) Design systems and paradigms. Design Studies, 17, 227-339.

Kanungo, S., & Bhatnagar, V. (2002) Beyond Generic Models for Information System Quality: The use of
Interpretive Structural Modeling (ISM). Systems Research and Behavioural Science, 19,531-549.

Kazman, R., Barbacci, M., Klein, M., Jeromy Carriere, S., & Woods, S. G. (1999) Experience with performing
architecture tradeoff analysis. Paper presented at the Software Engineering, 1999. Proceedings of the
1999 International Conference on.

Kazman, R., & Bass, L. (2002) Making architecture reviews work in the real world. Software, IEEE, 19(1),67-
73.

Kazman, R., Bass, L., Abowd, G., & Webb, M. (1994) SAAM: a methodfor analyzing the properties of software
architectures. Paper presented at the Software Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference on.

Kazman, R., Klein, M., & Clements, P. (2000) ATAM: Methodfor Architecture Evaluation (CMU/SEI-2000-
TR-004). Pittsburgh: Software Engineering Institute.

Klein, M., & Kazman, R. (1999) Attribute-Based Architecture Styles (CMU/SEI-99- TRR-022). Pittsburgh:
Software Engineering Institute.

Kruchten, P. B. (1995) The 4+ I View Model of architecture. IEEE Software, 12(0740-7459),42-50.

Land, R. (2002) A Brief Survey of Sotware Architecture (Report). Vasteras: Department of Computer
Engineering, Malardalen University.

Land, R. (2002) Improving quality attributes of a complex system through architectural analysis-a case study.
Paper presented at the Engineering of Computer-Based Systems, 2002. Proceedings. Ninth Annual
IEEE International Conference and Workshop on the.

Lopez, M. (2003) Application of an evaluation framework for analyzing the architecture tradeoff analysis
method. Systems and Software, 68(3),233-241.

Obbink, H., Kruchten, P., Kozaczyynski, W., Postema, H., Ran, A., Dominick, L., Kazman, R., Tracz, W., &
Kahane, E. (2002) Software Architecture Review and Assessment (SARA) Report.

Pamas, D. (1972) On the criteria to be used in decomposing systems into modules. Communications of the
ACM, 15(12),1053-1058.

Pressman, R. S. (1996) Software Engineering: A Practitioners Approach (2nd ed.): McGraw-Hill.

Sargent, P. (1994) Design science or nonscience. Design Studies, 15(4),389-402.

Schon, D. A. (199 I) The reflective practitioner: how professionals think in action. Aldershot, England: Arena.

Shaw, M., & GarIan, D. (1996) Software architecture: pespectives on an emerging discipline. Upper Saddle
River, N.J.: Prentice Hall.

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974) Structured Design. IBM systems Journal, 13(2), I 15-
139.

Truex, D., Baskerville, R., & Klein, H. (1999) Growing systems in emergent organisations. Communications of
the ACM, 42(8), 117-123.

van Gurp, 1. B., J. (2000) SAABNet: Managing qualitative knowledge in software architecture assessment va -.
Paper presented at the Engineering of Computer Based Systems, 2000. (ECBS 2000) Proceedings.
Seventh IEEE International Conference and Workshopon the.

van Lamsweerde, A. (2001) Goal-oriented requirements engineering: a guided tour. Paper presented at the
Requirements Engineering, 200 I. Proceedings. Fifth IEEE International Symposium on.

Zachman, J. A. (1984) A framework for information systems architecture. IBM systems Journal, 26(3).

ACKNOWLEDGEMENTS

The authors wish to thank the ARC and Alcatel Australia for their continued support.

Page 10 of 11



COPYRIGHT
[David Colquitt, John Leaney, Tim O'Neill] © 2004. The authors assign Griffith University a non-exclusive
license to use this document for personal use provided that the article is used in full and this copyright statement
is reproduced. The authors also grant a non-exclusive license to Griffith University to publish this document in
full in the Conference Proceedings. Such documents may be published on the World Wide Web, CD-ROM, in
printed form, and on mirror sites on the World Wide Web. Any other usage is prohibited without the express
permission of the authors.

Page 11 of1I







Proceedings of the

Qual ifafive Research in IT & IT in Qual ifative Research

Date:
November 24 - 26, 2004

Location:
Brisbane, Australia

Program Chair:
Jenine Beekhuyzen, School of Computing & Information Technology, Griffith University

Conference Chair:
Associate Professor Liisa von Hellens, School of Computing & Information Technology, Griffith University

(}Inference Proceedings CD:
I4aren Guest, School of Computing & Information Technology, Griffith University

SOnference Web Site:
)lichelle Morley, School of Computing & Information Technology, Griffith University

ISBN 1-920952-07-1

forward






