
Supporting ONME with a method engineering framework

0 ..Pastor', J"C.Molina, B. Henderson-Sellers
Universidad Politecnica de Valencia; CARE 1 echnologies; University of I echnology, Sydney

opastor@dsicupves; jcmolina@care-t,com; brian@it uts .edu au

Abstract, ONME is an environment for automated software engineering, focussed on the
modelling activity, To make it more useful for practical software development, we here
augment it with a full process derived from the metamodel contained in the OPEN process
framework Then, using the method fragments in the OPEN repository, we use method
engineering techniques to generate the ONME approach in this augmented format. We also
discover two work products not currently described in the OPEN repository that are necessary
for complete support of the ONME approach,

Keywords, Automated software engineering, method engineering, situational method
engineering, Model Driven Architecture

1..Introduction

ONME (OlivaNova Model Execution) is an environment for automated software engineering
and is an implementation ofOO-Method [17], itself based on the formal conceptual modelling
work of OASIS [20] With ONME, a Conceptual Model is' translated into a final software
product in an automated way by applying a model compiling strategy, where the mappings
between conceptual primitives (problem space) and their corresponding software
representations (solution space) are properly defined,
The practical use of the conceptual modelling approach associated with ONME has revealed
the need for solid processsupport in order to apply ONME correctly in industrial settings,
ONME is' intended to be used by different software providers, who must build the
corresponding object-oriented conceptual schemata that constitute the input of ONME's
MDAJ-based engine that takes the PlM (platform Independent Model) and produces the final
software product (essentially a PSM or Platform Specific Model) [IS], ONME provides code
generation capability but offers no advice to users on how to design the conceptual models,
elicit requirements, undertake project management, test the quality of the output system etc
All these must be provided by embedding the ONME MDA-based approach into a more
appropriate methodological framework, thus providing fulllifecycle support.
In this paper, we enhance the ONME approach by adding one such complete process
environment. This is provided from the OPEN2 approach [7], which uses a method
engineering framework 1his framework consists of a metamodel and a repository of method
fragments (as described in detail in Section 2). Fragments are selected from the repository in a
standard method engineering (ME) approach (eg [3,24]), itself described in more detail in
Section 3
The description of ONME in Section 4 is a prelude to our analysis of how we might integrate
the 9NME conceptual models with the OPEN framework in such a way that we can create
process and methodological support fOJ users of the ONME environment. We do this in
Section 5 by analyzing the tasks and techniques suggested in ONME and identifying the
method fragments in OPEN that support these As a final result, this work provides two main
practical contributions:

IMoa'el-Driven Architecture
2 Object-oriented Process, Environment and Notation

195



• The "open" character oftbe OPEN approach is assessed, by analyzing and putting into
practice its capacity to adapt to the particular aspects of the ONME approach

• A precise software process support for successful use of an advanced, MDA-based
method is defined

In summary, in this paper we develop the theory and rationale for the merger of an MDA tool
into an existing method engineering methodological approach We do not attempt to provide
any empirical results here, but intend to do so in a further paper following planned empirical
studies

2. OPEN

OPEN (Object-oriented Process, Environment and Notation) [6,7,11] is an established
approach for developing software, primarily that with an object-oriented implementation It
comprises a metamodel that defines all the methodology- elements at a high level of
abstraction plus a repository that contains instances of those metalevels concepts (Figure 1) It
is thus highly compatible with the ideas of method engineering and process construction as
described below

Metamodel
Repository of

--- •••ihOa---- Method

~lf:t~'--"F'-'ra"""""e~n~ls--'
of I Consrrnetten

Guidelines

Figure 1 A meta model provides a set of definitions from which can be created a large number ofinstanees.
Wben modelllng a methodology, the repository stores method fragments

From this framework, OPEN-compliant processes can be instantiated to be used in actual
software projects within an organization In other words, the process engineer and/or project
manager has to configure OPEN, creating an instance of OPEN that is suitable for use on a
specific project A company-customized OPEN version is then "owned" by the organization,
becoming their own internal standard, while retaining compatibility with the global OPEN
user community (httpvzwww open otgau)
While the OPEN metamodel contains numerous metalevel concepts, there are only five top-
level concepts:

• Work Product: "A Work Product is anything of value that is produced during the
development process" [6, p44] Work Products are the result of producers (people)
executing Work Units and are used either as input to other Work Units or delivered to
a client Pragmatically, they also include externally-supplied (e g by user) pre-existing
artifacts used as inputs to Work Units

• Producer: "A Producer is responsible for creating, evaluating, iterating and
maintaining Work Products" [6, p5G]

• Work Unit: A Work Unit is defined as a functionally cohesive operation that is
performed by a Producer There are three major classes of Work Unit: Activity, Task
and Technique Activities and Tasks describe "what" is to be done, the former at a
largescale granularity (e g that of a team), the latter at a more detailed level (e g that
of an individual developer) In contrast, a Technique describes "how" the Task is
undertaken

] We use a definition in which the term methodology encompasses both process end product [22]

196



• Language: A Language is defined as a medium for documenting a Work Product
• Stage: A Stage is defined as an identified and managed duration within the process or

a point in time at which some achievement is recognized

Each of these metaclasses has many subclasses in the detailed metamodel (see Appendix G of
[6]). From each of the leaves in the metamodel hierarchy can be generated one or more
method fragments, which are, in turn, documented and stored in the OPF' repository (Figure
1) Ihis is an important part of OPEN This repository provides an almost complete set of
components and can be readily extended to support changes in technology (as is undertaken
here) It currently contains about 30 predefined instances of Activity, 160 instances of Task
and 200 instances of Techniques.
Method fragments from the OPEN repository are linked together with the advice contained in
a set of deontic matrices Ihe values in these matrices are set to one of five levels of
possibility: mandatory (M), recommended (R), optional (0), discouraged (D) and forbidden
(F) - although a smaller number of values can also be applied e g binary, particularly in the
early stages of process adoption
The values in this matrix will vary depending upon a number of factors such as project size,
organizational culture, domain of the application to be developed, and the skills and
preferences of the development team For example, based on the specific values of these
characteristics, the possibility value for using the OPEN Task: Evaluate quality to help fulfil
the Activity: Verification and Validation (V&V) might be assessed as being "Recommended"
(one of the five prescribed values) Iool support for completing these matrices is currently
under development [14]
Activities and Tasks state what is to be done, but make no suggestion as to how these are
accomplished I echniques to do this are fully documented also in the OPEN repository [11J,

. which brings together all the well-tested 00 (and other useful) techniques that have been used
worldwide for the past decades Users of the OPEN methodological approach utilize a second
deontic matrix to help them choose the Technique most likely to be successful for their
particular Task, bearing in mind the skills and preferences of the people directly involved For
example, there are several Techniques for finding objects Some 00 software developers start
with a textual analysis, some use simulation, some use eRC (Class Responsibility
Collaborator) cards [1J and yet others prefer a use case-driven method New I echniques can
be readily added to the matrix as an extra line
The combination of Tasks and Techniques creates one OI more work products which, in turn,
are consumed by other Tasks These Work Products include plans, reports and graphical
models, the last usually documented by use of the Unified Modeling Language, UML (see
[9])
These matrices are part of OPEN's use of method engineering (see next section) to construct

: the whole methodology from the repository's method fragments The repository also contains
a number of guidelines [6J for helping organizations to adopt OPEN as a standard for their
information system development projects

.3.Situational method engineering

Method engineering [3,26], or more appropriately situational method engineering or SME
[25], recognizes the fact, often ignored, that seeking to develop an all-encompassing
methodology appropriate for all situations is foolish [4] Rather, SME seeks to model
methodological processes and products by isolating conceptual method chunks or method

, OPEN Process framework

197



fragments [22] From these method fragments a specialized methodology can be constructed
that is appropriate for each and every situation When an organization develops software in a
single domain, that constructed methodology may suffice for all developments; for other
commercial developers, the constructed methodology may need to be project-specific Ihe
methodologist publishes the method fragments, usually contained in a methodbase or method
repository together with some construction guidelines [2, 1.3,2!]; and the in-house method
engineer uses these construction guidelines to create the organization-specific or project-
specific methodology within the organizational context and constraints (Figure 2)
Ideally, the elements in an SME repository should be compliant with (in fact generated from)
a set of concepts described by a metamodel [10] - as we have seen in Section 2 for the OPEN
methodological approach The concepts most relevant to the creation of ONME (as will be
discussed in Section 4) are (i) Task, (ii) Technique and (iii) Work Product Each of these
metaclasses can be instantiated to create numerous instances of Task, Technique and Work
Product respectively, all of which are stored in the OPEN repository (Figure 1)

,,,
i

-" . ("--"~'::~~:~!':.-:?Methodolo~v meta model

2i mcthodologtst

"

Figure 2 (right hand side) The methodologist is responsible for the process metarnodel, creating a
significant number (but not all) of the process components in the repository and the guidelines for

construction (left hand side) The user Imethod engineer uses the construction guidelines and the contents
oftbe repository (Which they are at liberty to add to) to create a "personalized development process"

attuned to a specific pr eject or context.

4.0NME

In this section, we introduce OlivaNova Model Execution (ONME), an implementation of
OO-Method, an object-oriented methodology for the development of software application'> It
was created by CARE Technologies, a spin-off from the Technical University of Valencia, in
the context of a fruitful cooperation between academia and industry
A precise software process is a main component for any software development method to be
considered sound This has been experienced by CARE Iechnologies practitioners when
acting as software providers using their own technology In the first software projects
developed by CARE itself, the need to have such a precise software process was seen as a
strong facilitator for achieving the goal of obtaining a resulting software product that is both
correct and complete, especially considering the diverse set of situations faced when using the

198



methodology in different environments (e g variations in profiles of technical staff, in local
technological culture of different companies)
In some sense, this is a well-known although typically unsolved problem Some years ago
Entity-Relationships Diagrams were introduced as a way for doing conect data modelling
work; however, no details were normally given about how to deal with a very basic issue:
how to detect relevant system entities and their relationships
Even nowadays, in order to provide a rigorous software production process, it is not enough
to list the number ofUML diagrams to be constructed during process execution Often, well-
known methods require any type of Use Case Model, Class Diagram, Interaction Diagrams,
and so on The problem starts when this has to be done in practice for concrete, complex
systems, when no precise guidelines are provided for the serious accomplishment of such a
software production process through the use of the corresponding set of tasks, techniques and
work products This is a major problem fOI many methods in order for them to be successful
in industral practice
The problem to be solved in this context is twofold:

• how te select the appropriate software process framework,
• how to put it into practice, through the proper component definitions and the

COt responding framework update when required
We discuss now these two aspects Why have we selected OPEN? As noted earlier, OPEN is
a very convenient approach to characterize precisely such a kind of software process, by
defining tasks, techniques and work products associated with a given method Due to its
precise metamodelling approach and its open philosophy, it is really feasible to adapt and
extend it to a particular approach (as ONME) by properly modifying its basic repository of
method fragments. This provides a practical way of putting it into practice, answering the
second question above Accordingly, the problem solved in this paper is how to provide a
precise software process for ONME based on OPEN An added-value of this work is the
successful experience acquired in using a software process framework in an advanced, MDA-
based software development environment provided by ONME [19]
To develop these ideas, we first introduce the most relevant characteristics of ONME in this
section Next, the phases and models needed to accomplish an ONME software development
process are presented Finally, in Section 5, the proposed ONME software process is
characterized as an instance of OPEN, by specifying OPEN method fragments for each
corresponding ONME task, technique and work product

4.1 ONME fundamentals

The idea of generating code from models has been implemented in a variety of ways with
varying success Typically, the process is based on the use of some UML-compliant diagrams
[16] The amount of code automatically produced from those diagrams is relatively small
compared to that of a fully functional application. Consequently, hand-coding is generally still
tile most significant phase in the process of applications development Such implementations
can be catalogued as MDCG (Model-Driven Code Generation) tools, because models are used
to assist developers in the task of programming of software applications In other words,
models can be seen as guidelines but are never considered to be true 'programming artefacts'
ONME's proposal goes one step further It constitutes a real Model-Based Code Generation
(MBCG) set of tools. Unlike Model-Driven tools, in Model-Based Code Generation tools,
models playa central role in the development of applications and can be regarded as true
programming artefacts While it is true that :MBCG tools have been successfully applied in
certain domains like real-time and embedded systems, the goal of OlivaNova Model
Execution is to provide an MBCG solution for information systems in general

199



The technical background is simple yet powerful The relevant conceptual primitives required
to specify an information system are defined precisely. A set of UML-compliant diagrams
that represent them is provided, conveniently complemented with the required textual
information Ihis provides a kernel of UML modelling constructs, where the huge variety of
concepts provided by UML is reduced to a precise subset of conceptual primitives Every
conceptual primitive has its corresponding software representation counterpart. The
implementation of this set of mappings between conceptual primitives and their
corresponding software representations is the core of what in omm terms is called a
Conceptual Model Compiler

4,,2 DO-Method fundamentals

The OO-Method [17], upon which ONME is built, focusses on a clear separation of the
Problem Space (the 'what') from tbe Solution Space (the 'how') The definition of a problem
(the abstract description of an application, represented in the corresponding Conceptual
Schema), can occur independently from any concrete reification (concrete implementation of
a solution)
The formalism behind the OO-Method is OASIS [18,20], an object-oriented formal
specification language for information systems This formal framework provides a sound
characterisation for the conceptual constructs required to specify an information system Its
two main components are the Conceptual Model and the Execution Model
Ihe Conceptual Model is divided into four complementary views (Figure 3): the object view,
the dynamic view, the functional view and a fourth view to specify user interfaces These four
views allow all the functional aspects of an application to be described in an abstract manner
by means of a set of conceptual constructs (also called conceptual primitives or conceptual
patterns) that have clear, precise semantics Most of these conceptual patterns have a UML-
based graphical syntax, which hides the complexity and the formalism of the underlying
OASIS specification

F~(tiOnal

SoltctiMCl'l!cil.
Dlspl'C{Stt
_Sot
H~timSot
lIlt2r_

h=ductian "tt""

~
c.. <lis<

f--- -
plate ld
lens nM1e

I--- ---root new
return rent>---- ~

Clu~·.Pa$'%l.

p'l
SUU= 'find"
~I
-sU.ue'httd"

Figure 3 OO·Metbod's four viewpoints The Conceptual Model specification is structured in these four
different but complemental)' system views: object (static architecture), dynamic, functional and

presentation (user Interaction).

The Execution Model defines the behaviour of objects belonging to the specified system
(Conceptual Schema) at execution time The rules governing the conversion of the
Conceptual Schema into its corresponding software representation, fully dependent on the
target technological platform, are defined in the context of the Execution ModeL The Model
Compiler implements the set of mappings that relate conceptual patterns to software

200



representations, under the assumption that any programming decision has a conceptual
counterpart that can be obtained and properly represented at a higher level of abstraction (the
Conceptual Schema) ONME currently implements the conceptual model compiling process
for a 3-tier software architecture, because this is a well-known, widely-extended strategy in
industrial environments Nevertheless, this shouldn't be seen as a limitation, because the
proposed transformation model-based approach can be applied to any software architecture,
since every conceptual pattern has its corresponding software representation in any selected
target software development environment

5" ONME Software Process as an instance of OPEN

The application of OPEN to characterize the ONME Software Process introduces some
interesting aspects. Since OO-Method provides a Model-Based Code Generation approach,
two main phases can be distinguished:

I The Conceptual Model construction (at the problem space level)
2 The Implementation (representation of the Conceptual Model at the solution space

level)
The first important aspect is that the implementation work unit is obtained by the model
compiler, as the result of an automated translation process. In consequence, the main
engineering activities are centred on obtaining the Conceptual Model The question to be
answered is, "What are the relevant tasks, techniques and work units required to build the
Conceptual Model?"

5.1 Iasks charaterizing ONME

As the OO-Method expressiveness is built upon four models, these models provide the key to
specifying the corresponding four ONME tasks:

1 Specification of the Class Model
2 Specification of the Dynamic Model
3. Specification of the Functional Model
4 Specification of the Presentation Model

In the first ONME task, the system has to be represented as a network of interacting objects
The objective is to obtain a specification of the system class architecture, where all the static
aspects of the main components of this object society must be precisely defined, including all
classes and valid relationships between classes
In the second ONME task, the class model obtained in the first task is complemented with the
representation of the dynamic system view, where objects are seen as processes whose lives
can be formally represented as sequences of valid states, and where object
intercommunication mechanisms are refined in terms of global transactions and trigger
relationships
After having declared the system class architecture and its dynamic aspects, in the third
ONME task these static and dynamic views of the object-oriented system are completed with
the functional view, which states the definition of every class service in terms of what
changes of state can be produced in the object acting as service provider
The pre-existing OPEN Tasks that can be mapped to these ONME tasks are just two: Identify
CIRTs (viz classes, instances, roles and types); and Construct the Object Model. In OPEN,
T asks are at a slightly higher level of granularity than ONME tasks - the detailed level is
specified by a number of OPEN Techniques e g for identifying association and aggregations
relationships between classes, identifying specialization hierarchies, identifying agent
relationships, declaring the set of static (attributes and integrity constraints) and dynamic

201



(services) class-scope properties, identifying valid states for class objects, specifying inter-
class services (whose atomic actions belong to more than one class), capturing services
activated in an automated way when a given condition holds and specifying the corresponding
precondition and postconditions for every class service
In the final ONME task (Specification of the Presentation Model), the important aspects of
user interaction are taken into account The task goal here is to specify the world view of any
system user as a relevant part of the system specification In this case, there is a specific
OPEN Task that can be mapped to this ONME task: Design User Interface As before, this
then uses Techniques at a more detailed level to effect the VI design These techniques are
now explored in more detail in the following section

5,2 ONME techniques

The OPEN repository collects an important number of techniques, but not all of them are
needed in the context of ONME The goal of tbis section is to identify which OPEN
techniques are really relevant for defining a precise Software Process for ONME The added
value of this work is that it can be adapted to any other software production method
Furthermore, and as interesting further work, this provides in the context of MDA a
challenging framework for comparing different MDA-based proposals, analysing those
techniques, activities and work products required by them

5.2.1 For specification of the class model. For specifying the Class Model, ONME suggests
1) identification of the relevant system classes (defining attributes, services and integrity
constraints) and 2) identification of class relationships, distinguishing those of
association/aggregation, specialization (permanent or temporal) and actor (wbich classes are
allowed to activate which services)
In OPEN, there are a large number of pre-existing Techniques used to support the creation of
the class model. Ihese are readily mapped to (and can therefore be used to instantiate) ONME
Techniques as follows For identifying the relevant system classes, the reification of domain
concepts in the form of classes is the main approach This is supported, inter alia, by the
following named OPEN Techniques: abstract class identification, class naming,
collaborations analysis, creation charts, design templates, responsibility identification and
stereotyping Additionally, verbs witbin a class scope are an indication of class services, and
nouns within a class scope can potentially refer to class attributes Relationship-focussed
techniques in OPEN include generalization and inheritance identification, interaction
modelling, relationship modelling and service identification
Other complementary techniques are the representation of nouns as classes (i e lexical

analysis), representing relevant actions as class services (distinguishing between service
server class and service client class), the identification of class taxonomies, the detection of
"part-of' relationships, and the identification of binary associations (including the definition
of their properties (multiplicity, etc) - all subsumed in one or more of the existing OPEN
Techniques

5,2.2 For specification of the dynamic model. FOI specifying the Dynamic Model, ONME
defines 1) validation of object lives, i e ensuring we have valid sequences of class services, 2)
global transactions, i e those services in whose definition services of different classes are
involved and 3) trigger relationships, to specify services that will be activated in an automated
way when a given condition holds
In OPEN, there are a number of pre-existing Techniques used to support the creation of the
dynamic model These are readily mapped to (and can therefore be used to instantiate) ONME

202



Techniques as follows For validating class object lives, identifying object traces composed of
valid sequences of class service occurrences is required (e g OPEN I echniques of Object life
cycle histories) For discovering global transactions, the required technique is to identifying
scenarios for transactions seen as molecular execution units whose atomic components are
services of different classes Here, OPEN Techniques found useful include Scenario
development For detecting trigger relationships, performing an ONME agent service analysis
for identifying those system actions that have no concrete acto! is the technique to be applied
Related OPEN Techniques include State modelling, Service identification and Responsibility
identification

5..2.3 For specification of the functional model, For specifying the Functional Model,
ONME introduces pre/postcondition specification for every class service, to state what change
of state will occur in an object when one of its services is activated, and depending on any
potential condition in the cunent state
In OPEN, there are a number of pre-existing Techniques used to support the creation of the
functional model, including standard 00 techniques such as Scenario development and
Hierarchical task analysis These are readily mapped to (and can therefore be used to
instantiate) ONME Techniques as follows The pre/postcondition specification requires two
main techniques: the analysis, for every service of what condition must hold in order to have a
valid service occurrence (OPEN rechnique: Contract specification), and the identification of
the effect of every class service, which characterizes the change of state associated with the
service execution (OPEN Technique: State modelling)

5 2.4 For specification of the presentation model.. For specifying the Presentation Model a
predefined set of User Interaction Patterns is used to determine 1) User Interface CUI)
properties associated with the scope of the service occurrences (characteristics of the
arguments), dependencies between service arguments, offered actions, navigation options); 2)
class population queries to select a subset of an object according to a given condition; and 3)
specification of presentation styles for the local object state (tabular, register etc). Through
the corresponding textual specification of every interaction pattern, the functional system
specification is complemented by the characteristics that will guide the interaction between
the user and the application More detailed information about the Presentation Model can be
found in [27]
In OPEN, there are a number of pre-existing Techniques used to support the creation of the
presentation model These are readily mapped to (and can therefore be used to instantiate)
ONME Techniques as follows. For determining VI Patterns in the class service scope, the
required main technique is the analysis from a usability perspective of what features are
required by any service agent to properly interact with the system for executing the service
This needs to be done in terms of the particular characteristics of the provided Ul patterns.
Here, the OPEN Technique of Pattern recognition must be applied in the specific context of
VI design Other OPEN Techniques useful for the presentation model include Dialogue
design in VI and Screen painting Subsequent to the original OPEN descriptions, Tasks and
Techniques from Usage-Centered Design CUCD) [5] have been added to OPEN [8]. Of
relevance to Ol\i"ME are the new OPEN repository Techniques of Content Modelling
(particularly using Canonical abstract components) and Navigation modelling, derived from
UCD

203



5,,2 ONME work products

As the OO-Method expressiveness is built upon the four tasks described in Section 5 1, these
tasks provide the basis on which to specify the work products that are associated with the
main ONME Conceptual Modelling Construction step They are presented in Table I

Iable 1 Tasks and associated Work Products in ONME
TASK WORK PRODUCT

I Specification of the Class Model UML Class Diagram
2 Specification of the Dynamic Model UML State Diagram I Collaboration Diagram
3 Specification of the Functional Model Dynamic logic Axioms including pre and

postconditions for class services
4. Specification of the Presentation Model User Interaction Patterns

The UMl, Class Diagram required to specify the Class Model is just based on a precise subset
of conceptual primitives, i.e. those provided by the OASIS formal framework This makes the
use of the UML Class Diagram easier and much clearer According to the techniques
previously introduced, classes (including attributes, services and integrity constraints) and
relationships between classes (those of association, aggregation and generalization) are
specified within this diagram
The UML State Diagram defines for every class the valid life cycles (valid sequence of
service occurrences) for the objects from a given class Every transition represents a potential
valid service occunence that can be labelled with the corresponding service precondition
Additionally, global transactions (involving services of more than one class) and trigger
relationships (to specify automatic activation of services when a given condition holds) are
specified through a UML Collaboration Diagram.
To specify class service functionality (the Functional Model), Dynamic Logic Axioms of the
form
f£SOl f
are defined, where I and j' are well-formed formulae built over an alphabet of class attributes
and j is the corresponding service whose functionality is being specified The informal
meaning of such formulae is tbat "assuming that f is true, f' will express the new resulting
object state after the occurrence of s". These dynamic logic axioms are the result of applying
the pre/post specification technique discussed previously
Finally, to specify user interaction properties, the Presentation Model creates a VI
specification built from a set of VI patterns belonging to a predefined catalogue of patterns
They collect the different situations that have to be considered for VI specification purposes
(for instance, selection criteria for looking for determined class instances, display set to fix
whicb attributes should be shown to give more information about a selected object, available
action set, to determine what actions can be executed within the scope of a given class service
etc)
Summarizing, the use of UML Class Diagrams, UML State Diagrams and UML
Collaboration Diagrams as work units maps directly to pre-existing OPEN Work Products,
which themselves frequently use UML notations directly [9J while the use of Dynamic Logic
Axioms (as a result of the Functional Model) and the use of User Interface Patterns (as a
result of the Presentation Model) are inadequately supported by OPEN Consequently, from
this current analytical study, we add two new Work Products to tbe suite of method fragments
in the OPEN repository of method fragments (Figure I) These are:
1) Dynamic Logic Axioms These can be seen as an advanced, formal representation of
pre/post specifications for class services;

204



2) User Interface Patterns These can be seen as a particular use in a L'I context of the well-
known patterns-based specifications, widely used in other software engineering environments
and described in OPEN's rechnique of Pattern recognition

These two new OPEN Work Products are described formally as follows:
NA1vfE Dynamic logic axioms
OPF CLASSIFICATION Dynamic behaviour diagrams
RELATIONSHIP 10 EXISTING WORK PRODUCT Adjunct to contract specifications
BRiEF DESCRiPTION A set of well-formed formulae that document pre and postcondit.ons
formally in a form appropriate to code generation These are given as
/ [101 r
where / and r are well-formed formulae built over an alphabet of class attributes I is the
corresponding service whose functionality is being specified
The informal meaning of such formulae is that "assuming that f is true, f' will express the new
resulting object state after the occurrence of s''

NA1'v1E User interface patterns
OPF CLASSIF leA nON Static structure diagrams, Ul diagrams
RELATIONSHIP TO E.\7STING WORK PRODUCT Application of design patterns in the ur
domain
BRIEF DESCRIPTION UI patterns describe various repetitive configurations (pattemsjthat
occur in the UI context These include, for instance, selection criteria for looking for
determined class instances, ordering criteria, strategies for grouping service arguments in the
context of a service execution, dependency rules among service arguments, a display set to fix
the attributes of which should be shown more information about a selected object, available
action sets for determining which actions should be executed within the scope of given class
service etc

6. Discussion and Conclusions

ONME is an environment for automated software engineering thar is focussed on the
modelling activity It is an implementation of OO-Method, based on OASIS, a formal, object-
oriented specification language It provides aI1operational implementation of MDA, where a
PH•.!to PSM transformation is precisely defined through the definition of the model compiler
It takes an 00 Conceptual Schema as input (the PI.Yl model) and obtains its corresponding
software representation in widely-accepted, three-tier based software architecture, where
presentation, functional and data components are properly connected (the PSM model)
However, ONME needs to have a precise software process support, which is especially
required due to the different type of modellers that are anticipated as using the tool to create
the required conceptual schemata. To fix precisely the activities, techniques and work
products associated with ONME, the OPEN methodological approach has been selected It
offers full lifecycle support, which makes it especially appropriate in this context It does so
by utilizing the concepts and tools of method engineering. OPEN consists of a metamodel
underpinning a generated set of method fragments. stored in a repository (Figure 1). The user
can then select from these pre-defined method fragments and construct their own
methodology to exactly fit their local conditions
Here we have used this .Y!E approach, based on OPEN, to re-create the modelling elements of
the ONME approach In this way. the required software process support is given. This is a
needed, prior step towards the full implementation of an ON:\1E-specific full lifecycle
methodology - which will include full support for project management, usability, team and

205



individual skills and characteristics as well as the support of a fully iterative and incremental
lifecycle model
Incidentally, as we created an environment nom which to instantiate ONME, we identified
two work products recommended by OO-Method not previously described in the OPEN
literature These two work products, Dynamic logic axioms and User interface patterns, have
consequently been recommended here for formal adoption as method fragments in the OPEN
repository.
As ONME is being enriched with the addition of a Requirements Analysis Process (RAP)
[12}, further work will be accomplished to enrich the current, OPEN-based proposal, in order
to include the quoted RAP extension in the software process associated with ONME

References
I Beck, K. and Cunningham, W, 1989, "A laboratory for teaching object-oriented thinking",
Procs 1989 OOPS LA Conference ACM SlGPlAN Notices, 24(10), 1-6
2 Brinkkemper S, Saeki M and Harmsen F, 1998, "Assembly techniques for method
engineering", Procs, CAISE 1998, Springer Verlag, Berlin, Germany, pp 381-400
3 Brinkkemper, S., 1996, "Method engineering: engineering of information systems
development methods and tools", Inf Software Technol , 38(4), pp 275-280
4. Cockburn AS, 2000, "Selecting a project's methodology", IEEE Software, 17(4), pp 64-
71
5 Constantine L L and Lockwood LAD, 1999, Software for Use, Addison-Wesley,
Reading, MA, USA
6 Firesmith D G and Henderson-Sellers B, 2002, The OPEN Process Framework An
Introduction, Addison-Wesley, Harlow, Heits, UK
7 Graham 1, Henderson-Sellers Band Younessi B , 1997, The OPEN Process Specification,
Addison-Wesley, Harlow, Herts, UK
8 Henderson-Sellers B and Hutchison J , 2003, "Usage-Centered Design (UCD) and the
OPEN Process Framework (OPF)", Performance by Design Procs forUSE2003, Second
International Conference on Usage-Centered Design (ed LL Constantine), Ampersand
Press, Rowley, MA, USA, pp 171-196
9 Henderson-Sellers B and Unhelkar B ,2003, OPEN Modeling with UMl, Addison Wesley
Longman, Ltd , London, UK
10. Henderson-Sellers B , 2003, "Method engineering for 00 system development", Comm
ACM, 46(10), pp. 73-78
II. Henderson-Sellers B , Simons A J H and Younessi H, 1998, The OPEN roolbox of
rechniques, Addison-Wesley Longman Ltd, London, UK
12. Insfran E, Pastor 0, Wieringa R, 2002, "Requirements engineering-based conceptual
modelling", Requirements Engineering Journal, Springer-Verlag, 7(2), PP 61-72
13 Klooster M, Brinkkemper S, Harmsen F and Wijers G, 1997, "Intranet facilitated
knowledge management: A theory and tool for defining situational methods", Procs CAISE
1997, Springer Verlag, Berlin, Germany, pp 303-317
14. Nguyen VP. and Henderson-Sellers B, 2003, "OPENPC: a tool to automate aspects of
method engineering", PIOCS ICSSEA 2003. Volume 5, 7pp
15 OMG, 2003, MDA Guide Version 10.1, omg/2003-06-01, Object Management Group
http://www.omg.orglcgi-binldoc?omgl03-06-01, 62pp
16. OMG, 2001, Unified Modeling Language Specification, vI 4. formaV01-09-67 Object
Management Group http://www.omg.orgidocs/forrnaIlOI-09-6?.pdf, 566pp
17. Pastor 0, Gomez T, Insfran E and Pelechano V, 2001, "The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to automated
programming", Information Systems, 26, pp 507-534

206

http://www.omg.orglcgi-binldoc?omgl03-06-01,
http://www.omg.orgidocs/forrnaIlOI-09-6?.pdf,


18 Pastor 0, Hayes F and Beal S., 1992, "OASIS: An object oriented specification
language", PIOCS CAiSE 1992, LNCS593, Springer-Verlag, Berlin, Germany, pp. 348-363
19 Pastor 0, Molina IC and Iborra E, 2004, "Automated production of fully functional
applications with OlivaNova Model Execution", ERCIM News No.57, Apri12004
20 Pelechano V, Pastor V. and Insfran E, 2002, "Automated code generation of dynamic
specializations: an approach based on design patterns and formal techniques", Data &
Knowledge Engineering, 40, pp. 315-353
21. Ralyte J and Rolland C, 2001, "An assembly process model for method engineering",
Advanced Information Systems Engineering), LNCS2068, Springer-Verlag, Berlin, Germany,
pp 67-283
22 Rolland C and Prakash N, 1996, "A proposal for context-specific method engineering",
Procs lFIP WG81 Coni on Method Engineering, pp 191-208
23 Rolland, C, Prakash, N and Benjamen, A., 1999, A multi-model view of process
modelling, Requirements Eng. J ,4(4), pp 169-187
24. Saeki M., 2003, "CAME: the first step to automated software engineering", Process
Engineering for Object-Oriented and Component-Based Development Procs OOPSLA 2003
Workshop, Centre for Object Technology Applications and Research, Sydney, Australia, pp.
7-18.
25 Tel Hofstede ARM and Verhoef T F, 1997, "On the feasibility of situational method
engineering", Information Systems, 22, pp 401-422
26 Van Slooten K and Hodes B, 1996, "Characterizing IS development projects",
Proceedings of the ITIP TC8 Working Conference on Method Engineering: Principles of
method construction and tool support (eds S Brinkkemper, K Lyytinen and R Welke),
Chapman & Hall, London, UK, pp. 29-44
27 Molina, P l., Melia, Sand, Pastor, 0 , 2002 "User interface conceptual patterns".
Proceedings of the 9th Int Conference on Design, Specification, and Verification of
Interactive Systems (DSY-IS'2002), Restock, Germany, LNCS 2545, Springer-Verlag,
pp159-173

207




